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Abstract—Evolving mobile edge computing has greatly im-
proved cellular network performance and mobile user experi-
ence. However, the ever-increasing demand for new and het-
erogeneous services generates redundant signalling, leading to
communication overheads and congestion in the network’s core.
We propose a novel AI-enabled edge architecture to support
future networks with minimizing signalling redundancy at its
heart. In this domain, we deploy a cluster-based signal and
admission control framework to maximize the efficiency of link
(or bandwidth resources) between the edge and core networks.
We minimize the redundant signalling by employing two popular
unsupervised machine learning algorithms, i.e., K-mean- and
Ranking-based clustering. We evaluate the proposed framework
through comparisons with recent studies in the literature. Our
results show that the proposed framework provides substantial
latency reduction while maximizing resource utilization. The
proposed approach is 35% superior in reducing the redundant
signalling compared to the current work.

Index Terms—5G/6G, mobile edge computing, control sig-
nalling, resource management, and admission control.

I. INTRODUCTION

Multi-access mobile edge computing (MEC) enables
latency-sensitive services such as autonomous vehicle control
and real-time health monitoring systems. The technology
which was first introduced by the European Telecommuni-
cations Standard Institute (ETSI) in 2015 [1], extends the
capabilities of cloud computing by moving resources closer
to the network’s edge. MEC along with the support of Ar-
tificial Intelligence (AI) techniques is an essential part of
future network architecture for improving overall network
performance. For instance, AI-enabled edge networks would
fulfil the visions of 6G (e.g., seamless connectivity, ultra-low
latency, ultra-high data rates and reliability) [2].

However, MEC faces various challenges in traffic flow
management due to the ever-increasing demand for new and
heterogeneous services [3]. One example is the need to manage
the MEC network in such a way that it maximizes end-to-
end (E2E) link efficiency and minimises latency in the Data
Plane (DP) and Control Plane (CP). Recent research into
MEC shows the concept of data offloading at cloud nodes
to accommodate a massive number of users while keeping
latency within acceptable bounds [4], [5]. In contrast, the
current MEC provides limited or no access to the core control
and management functions of a cellular network. This limited

access reduces overall edge network performance. For exam-
ple, if device density increases beyond edge network capacity,
a large amount of traffic generated from the connected devices
flows towards the core cellular network. The serving edge
network may collaborate with other edge networks in the
area and offloads a certain amount of load to neighbouring
edge networks. However, these networks might have simi-
lar signalling for service and resource demand from their
associated traffic loads. This inefficient resources utilization
create congestion in the network that induces delays in service
provisioning. However, higher delays in the edge network are
unacceptable for latency-critical communication [6].

Similarly, the imbalance between traffic flow and man-
agement in the edge network causes congestion in the core
network. Whenever a user request for connectivity is received,
the edge node accesses the user’s profile, which is stored and
managed by a centralized Unified Data Management (UDM)
in the core network. UDM offers various services, includ-
ing subscriber data management, authentication and event
exposure, with the help of service operations. A subscriber
data management service is offered by Get, Subscription,
Unsubscription, Modify, and Notification service operations
[7]. These operations go through several rounds of signalling
between the edge and core network functions (NFs) for the
provisioning of UDM services. The core NFs also share the
user’s information in the case of modification of policies or
privileges, notification of the user subscribing or unsubscribing
from a particular application [8]. This exchange of information
among core NFs is to limit the users’ access to the network
when needed. The massive number of user requests could
have similar signalling to and response from the core, which
would create communication overheads on the link capacity
of the core network. Such overhead reduces overall network
performance by inducing substantial latency and congestion,
which is potentially intolerable for real-time applications [9].
These issues in the cellular network have attracted significant
attention from the research community. For example, a novel
solution for signalling optimization, Diameter Protocol, pro-
posed carrying out CP signalling of the LTE network [10]. The
authors in [11] proposed an E2E connectivity model to handle
CP signalling redundancy generated by massive IoT devices
in 5G networks. Similarly, Wang et al. [12] proposed an



intelligent edge management and optimization framework for
5G networks for latency-critical applications. Hund et. al., [13]
proposed a hash-based grouping scheme for flow management
in the MEC system. Furthermore, Cao et al. proposed a fast-
authentication and data transfer scheme to reduce signalling
and communication overheads in 5G mIoT networks [14]. In
MEC, the existing research emphasised reducing latency via
data offloading and traffic flow management between access
and edge node. However, reducing latency and congestion
induced between edge and core control NFs in the cellular
network is still an open issue.

The proposed framework aims to prevent the entry of
a control signalling storm into the core network to ensure
efficient traffic flow management. This is achieved by moving
the essential core NFs to the network edge. For the sake
of limited edge resources, two very popular unsupervised
machine learning (ML) algorithms are employed in the pro-
posed framework for efficient admission control and resource
allocation to manage the massive devices connectivity demand.
The main contributions of this work are as follows: (1) a
novel AI-enabled edge architecture is proposed for the core
network to support heterogeneous applications and massive
connectivity demand. (2) Two K-mean- and Ranking-based
clustering and optimization algorithms are established for
signalling optimization and efficient admission control. (3)
Performance of the proposed framework is evaluated in terms
of latency, link utilization efficiency, admission control, and
resource allocation fairness. The outcomes are also compared
with the existing schemes found in the literature.

The remainder of the paper is organized as follows: Section
II presents the system model. Section III introduces the pro-
posed framework and evaluation schemes. Results are shown
in Section IV. The conclusion is presented in Section V.

II. SYSTEM MODEL

In this section, a novel AI-enabled edge architecture has
been presented for CP signalling optimization and efficient
admission control in future core networks, as explained in
detail in the following subsection.

A. Proposed Edge Architecture

For application latency sensitivity, the service signalling and
resource demand are sent to the core network through the
traditional RAN or AI-enabled edge RAN in this work, as
illustrated in Fig. 1. In the AI-enabled edge RAN, the edge
controller is considered as a crucial entity, which analyses and
centralizes the incoming demands from various applications
to ensure optimal network management in massive device
connectivity and latency-sensitive situations. The controller
consists of three major components: pre-clustering demand
analysis and categorization, AI-enabled demand processing
(clustering) system, and admission control and resource allo-
cation. The demand analyser, as the name suggests, analyses
and categorizes the application-specific services and resource
demand for clustering at the edge. In this work, the processing
system is employing two popular unsupervised ML algorithms
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Fig. 1. Proposed AI-enabled Edge Architecture for Future Core Networks

i.e., K-mean- and Ranking-based clustering. The processing
system processes the incoming services and resources de-
mands based on the homogeneous characteristics by adopting
these algorithms and cluster them for signalling optimization
and admission control. The clustered signals for the services
and resources demands are sent to the core network to fetch
the user’s service-specific profile from the core UDM to
the edge node for efficient admission control and resource
allocation. Users’ service-specific profiles in the core UDM
will also be clustered based on homogeneous responses and
control information. This can help reduce control signalling
redundancy among the core NFs generated due to similar
demands and responses, which may otherwise lead to con-
gestion and resource inefficiency in the core network. The
essential core NFs are configured at the network edge to
accomplish a massive number of latency-sensitive applications
with faster authentication, admission control and resource
allocation. These are called as Edge Access and Mobility
Management Function (eAMF), Edge Session Management
Function (eSMF), Edge Network Slice Selection Function (eN-
SSF), Edge User Data Management Function (eUDM), Edge
User Plan Function (eUPF), and Edge Serving Gateway/Edge
Packet Gateway (eSGW/ePGW). These core edge functions
are managed by the proposed Edge Management Function
(EMF) in the core network. To ensure network security, the
edge NFs acquire only limited privileges through EMF from
the core Policy Control Function (PCF) [3].

B. Key Notations and Description

Let us consider the deployment of an MEC network in
an urban area. We consider that U total number of users,
represented as U = {1, 2, · · · , U} are associated with this
network. Each user has a set of services and resources
demands, represented as M = {1, 2, · · · ,M}. The service
demand represents the service signalling requests of the UDM
offered services, denoted as a set S = {1, 2, · · · , S}, and
S ⊂ M. A set of service operations for the service s is
P = {1, 2, · · · , P}, where s ∈ S . Similarly, the resource
demand represents the resources requests of a particular ap-
plication, denoted as a set L = {1, 2, · · · , L}, and L ⊂ M.
We also assumed that each user can support up to K number
of heterogeneous applications simultaneously, denoted as a set
Λ = {1, 2, · · · ,K}.



III. SIGNALLING AND ADMISSION CONTROL

In this section, we propose an Edge Redundancy Min-
imization and Admission Control (E-RMA) framework in
future core networks. The systematic diagram of the proposed
framework is illustrated in Fig. 2 and discussed in detail in
the following subsections.

A. Pre-clustering Demand Analysis and Categorization

The edge node continually assesses the demand of the
users associated with the serving edge base stations for each
application of set Λ for optimal network management in
a massive-device-connectivity and latency-sensitive situation.
When the users of the κth application are known to the edge
controller, a demand matrix Ve(U×M) is constructed over set
U and M. Each element, vum, of Ve represents the user-
application-specific service or resource demand from set M
of κth application, where κ ∈ Λ. The pre-clustering system
isolates the UDM service signalling and resource demand of
application κ for clustering, as shown in Fig. 2. For service
s signalling, the service operations of the edge users are
populated as a row entry in the service matrix As(U×P ), where
sup ∈ As represents user-application-specific service demand.
Similarly, resource demand for application κ contains a set
of user-application-specific resource demands. These demand
characteristics of the associated edge users are populated as
a row entry in the resource demand matrix Ar(U×L), where
rul ∈ Ar represents the user-application-specific resource de-
mand. Isolated services and resource demand are processed by
the processing system for reducing redundancy in signalling.

B. Demand Processing (Clustering) System for Signalling

The proposed demand processing system efficiently serves
massive device connectivity by minimizing the impact of
constraints with the help of the optimization and clustering
approach, as discussed in the following subsections.

1) Clustering for Capacity Optimization: In the network,
uplink capacity, Cup, is the sum of the total capacity reserved
for signalling and data transmission of κth application. Such
as:

Cup = Cup(sig) + Cup(data). (1)

In the case of massive demand for κth application, the
reserved capacity, Cup, should be greater than or equal to the
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Fig. 2. Systematic diagram of the proposed E-RMA framework

observed capacity. The observed capacity, Cup(obs), is the total
capacity consumed by signalling and data transmission by κth
application in the network, as shown below:

Cup(obs) = Cup(obs sig) + Cup(obs data) ≤ Cup. (2)

Cup(obs sig) for s service and r resources demand over the
set U can be determined as follows:

Cup(obs sig) =
∑
u∈U

α(u,s)sSig(u) +
∑
u∈U

α(u,r)rSig(u) , (3)

where, α = 1 only if service s or resource r demand is granted,
otherwise 0. sSig(u) and rSig(u) are the uth user desired
service and resource demand signalling. The observed capacity
increases exponentially with an increase in the application
demand on the edge, which creates inefficiency in resource
utilization. This problem can be modelled as an optimization
problem. The objective is to meet signalling demand from set
U in such a way that efficiently utilizes the overall uplink
capacity, symbolized as Cup(sig). Mathematically, it can be
described as follows:

min
∑U
u=1 Cup(obs sig),

s.t.
U∑
u=1

Cup(obs sig) ≤ Cup(sig) ,

U∑
u=1

α(u) ≤ 1 ,

(4)

where, u ∈ U . The observed signalling capacity, denoted as
Cup(obs sig), should not exceed the overall reserved uplink
signalling capacity over set U . For signalling, all users from
set U should be admitted by the edge controller. In this
work, a ranking-based clustering technique has been applied to
service and resource demand signalling. The isolated services
and resource signalling from the pre-clustering system are
grouped into clusters based on their homogeneous demand.
This is to fetch the user profile to the edge. Homogeneous
signalling respective coefficients are populated in the ranking
matrix as a single row entry for the particular cluster demand.
The updated ranking matrix for s service and r resource
demand will be represented as ARs(R×P ) and ARr(R×L),
respectively. R = {1, 2, 3, · · · , R} is the ranking set with R
possible individual clusters for service or resource signalling.
The proposed clustering mechanism reduces the complexity
from O(U) to O(R). Hence, after clustering, the clustered
signalling reduces Cup(obs sig) to make it approximately equal
to or less than Cup(sig), as shown below:

Cup(obs sig) = Rank(ARs)sSig(u) +Rank(ARr )rSig(u) ,
(5)

where, Rank(ARs) and Rank(ARr ) are the possible indi-
vidual cluster signals for s service and r resource demand
by κth application after clustering. Now, the ranking-based
service signalling will be sent to the core UDM to provide
the particular service. Similarly, the ranking-based resource
signalling will be sent to the edge core NFs for admission
control and resource allocation. Once service signalling is



received, the core UDM reclusters user service responses into
a response matrix, XRo(R×P ), based on the homogeneous
service-signalling response. The matrix X rank will be less
than V but greater than or equal to ARs . Significantly, a clus-
tered user service profile will be built over set S for signalling
and information exchange in the core network. The service
processing by UDM over user service signalling is illustrated
in Algorithm 1. Each user service operation privilege will be
accessed against the user profile in the edge UDM. S Listκ
is the list of service s clusters maintained by the edge, where
sτ ∈ S Listκ and τ ∈ R. If all users of cluster sτ have
the same access, then the clustered users will be added with
a unique group ID, G id, to the service list, Service Listκ.
Otherwise, users of sτ will be subclustered into SS Listκ
w.r.t. possible response and added to the Service Listκ or
Reject Listκ for admission control.

Algorithm 1: Service Signalling over Clustering
Input: Chose sτ clustered service demand,
sτ ∈ S Listκ = {s1, s2, s3, · · · , sRs},
Service Listκ =Reject Listκ = ∅.

Output: Service Listκ 6= ∅ & |Reject Listκ| ≥ 0
for (i = 0, i < S Listκ.length, i+ +) do

sτ ←− S Listκ[i]
Assign a G id to S Listκ[i] users
if (Check user privileges w.r.t. sτ matches) then

Add G id of the cluster users of sτ demand in
Service Listκ[i] of edge.

else
sub cluster sτ users into SS Listκ w.r.t.

possible cluster service response.
for (j = 1, j < SS Listκ.length, j + +) do

ssτ ←− SS Listκ[j]
Assign a G id to SS Listκ[j] users
if (check ssτ of each associated user) then

Add G id of the cluster users of ssτ
demand in Service Listκ[i] of edge.

else
Add G id of the cluster users of ssτ

demand in Reject Listκ[i] of edge.

Send Service Listκ & Reject Listκ towards edge
core NFs for admission control.

2) Clustering for Latency Optimization: In latency-
sensitive scenarios along with the massive connectivity de-
mands, resource allocation becomes challenging for the edge
operators with limited network capacity [3]. The presented
latency minimization problem can be modelled as an opti-
mization problem. The prime objective is to minimizes the
mean latency, T (N ), of N optimal clusters, represented as a
set N = {1, 2, 3, · · · , N}. Mathematically, it can be written
as:

min T (N ),

s.t.
U∑
u=1

β(u,r)γ(u,r) ≤ Υ(r) ,

U∑
u=1

N∑
n=1

U(u,n) = U ,

(6)

where, u ∈ U , n ∈ N , r ∈ Ar. β(u,l) = 1, only if
demanded resource r is allocated to the user u, otherwise 0. γ
is the quantity of rth resource demanded by the uth user. The
aggregate resources allocated to the set U should not exceed
the total available resources, Υ, of the particular resource r.
Each user from set U should belong to a particular cluster with
regards to the homogeneous resource demand. Thus, K-mean
and Ranking-based clustering algorithms have been applied
in this work for clustering the users’ resource demand. It is
essential to acquire an optimal solution that ensure minimum
latency and efficient link utilization in the deployed network.
However, this is an NP-hard problem. Thus, Nondominated
Sorting Genetic Algorithm II (NSGA-II) has been adopted
as a basic optimization method. The crucial step in NSGA-
II is to define an appropriate genetic representation of set N
over their mean resource demand r. U users are distributed
into N clusters over each cluster K-mean resource demand.
The similarity index, δ, among users of a cluster is obtained
via the ranking-based approach. As, the objective function is
to minimize mean latency, T (N ), over N clusters w.r.t. rth
resource allocation, where N ≤ U . This can be obtained by
computing the latency of each cluster over its associated users
r, such as:

∆n =

Un∑
u=1

γ(u,r)

Υ(r)
− δn

Un∑
u=1

γ(u,r)

Υ(r)
, (7)

where, δn = [0, 1]. Now, the mean latency T (N ) is:

T (N ) =
1

N

N∑
n=1

∆n . (8)

Now, the MAC layer will multiplex the nth cluster resources
demand into an aggregate demand, γn, and send a frame with
a brief header for associated user identification to the physical
layer for transmission. In the core network, the optimal number
of clusters, along with their aggregate demand, are placed into
the resource list R Listκ for admission control and resource
allocation.

C. Admission Control and Resource Allocation

In the core network, the nth cluster γn from R Listκ
will be assessed against available edge capacity (i.e. Ce)
by the eAMF, as illustrated in Algorithm 2. If demand is
within the guaranteed edge QoE bounds, users belonging to
γn will be added to the admission queue, represented as
Admit Listκ. In the case of γn > Ce, nth cluster users
will go through subclustering. Their aggregate demand, γγn,
will be populated into the RR Listκ, concerning the edge
available capacity. Now subcluster aggregate demand will be
assessed, and the user will be admitted into Admit Listκ for
resource allocation. Otherwise, the clustered users placed in
Offload List would be offload to the neighbouring edges.

In the network, each cluster demand has to be executed
either locally or offloaded to a neighbouring edge node. Thus,
the unidirectional E2E latency, symbolized as Tee, would be
computed as a sum of transmission time (T(tx) =

βγ
B ), queuing



Algorithm 2: Admission Control
Input: Build R Listκ = {γ1, γ2, . . . , γN} via K-mean

and Ranking-based clustering. Chose γn as a kth
application nth cluster demand (γn ∈ R Listκ),
Ce 6= 0, Admit Listκ = 0.

Output: Admit Listκ 6= ∅, |Offload List| ≥ 0.
for (i = 0, i < R Listκ.length, i+ +) do

γn ←− R Listκ[i]
Assign a group ID to R Listκ[i] users
if (γn ≤ Ce) then

Add the cluster users of γn demand in
Admit Listκ[i] of edge.

Update Ce.
Compute ∆ of cluster n
Compute Cup(obs sig) with cluster n

else
sub cluster γn users into RR Listκ w.r.t. Ce.
for (j = 1, j < RR Listκ.length, j + +) do

γγn ←− RR Listκ[j]
Assign a sub-group ID to RR Listκ[i]
users

if (γγn ≤ Ce) then
Add the sub-cluster users of γγn

demand in Admit Listκ[i] of edge.
Update Ce.
Compute ∆ of cluster n
Compute Cup(obs sig) with cluster n

else
Add the sub-cluster users of γγn

demand in Offload List[i] for
offloading to the neighbouring edge
network.

Find opt. T (N ) and Cup(obs sig) via NSGA II.
Send Admit Listκ towards edge core NFs.
Send offload demands to the neighbouring edges from
Offload List .

Compute Tee and Fη over U .

time (T(qu) = ∆), and execution time (T(ex) =
cγn
C(exe)

) at
each edge node. ∆ denotes the user’s average queuing latency
by clustering. cγn is the required computation capacity of γn
demand. C(exe) is the computation capacity (i.e. CPU cycles
per second) of the edge node. βγ and B are the corresponding
data size in bits and available data rate in bits per second.

Tee = ωe
(
T e(qu) + T e(ex) + T e(tx)

)
, (9)

where, the admission index ω = 1, if request is admitted to the
edge node, otherwise zero. The uth user acquired throughput,
η(u), is a product of the resource allocation probability pr
and the tolerable latency probability, pTee . Thus, the fairness
of resource allocation among users of set U are:

Fη =

(∑
u∈U η(u)

)2
U ×

∑
u∈U (η(u))2

. (10)

IV. RESULTS AND DISCUSSION

To evaluate the proposed framework, a set of analytical
results are presented in this section. The parameters used for
the numerical analysis in MatLab are: (1) U = [500, 104],
(2) Ce = 32 GB, (3) Υ = 200, (4) Cup = 500 MHz,

500 1000 1500 2000 2500

Traffic density (U)

0

1

2

3

L
a

te
n

c
y
 (

m
s
)

Hash-based [13]

JSNC [15]

E-RMA

Fig. 3. latency measurements on varying traffic density, rMTC = [0.064, 1]
Mb/s, rURL = [1, 5] Mb/s and rMBB = [25, 100] Mb/s.
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A. Impact of Clustering on Latency

Fig. 3 shows mean uplink latency measurements for various
traffic densities. The latency is obtained using mathematical
analysis and compared to Hash-based [13], and JSNC [15].
At high demand Ue = 2500, the achieved uplink latency is
1.3 ms, significantly lower compared to JSNC, 2.2 ms and
Hash-based, 2.5 ms. The difference in performance compared
to the existing schemes is by the proposed K-mean– and
ranking-based clustering approach for users admission into
the network, which reduces capacity overheads and results in
relatively low latency in the edge network.

B. Impact of Clustering on Capacity

Fig. 4 illustrates the achieved link utilization efficiency for
the given traffic density. We can observe that the achieved
link utilization efficiency over the proposed framework is
approximately 95% at full load (i.e. U = 104), markedly
higher compared to the existing scheme in [11]. The achieved
gain of the proposed framework over 5GS is 19% at U = 103

and 24% at U = 104. The rise in gain is because of the
lower flow of redundant signalling to the core of the dense
network. Moreover, in the case of heavy traffic load, the
proposed clustering approach would save a significant amount
of resources via efficient resources utilization in the network.

C. Impact of Clustering on Admission Control

Fig. 5 illustrates the user admission with and without clus-
tering over varying traffic load. Clustered users are admitted
into the network in order concerning the tolerable application
latency. We can observe that the admission efficiency of
clustered users is 100% in every case on the entire range of U
(i.e. U = [1000, 3000]). This admission efficiency is gained
by the optimal resource utilization, which reduces latency
and congestion on the network to admit 10% more users.
However, user admission without clustering will be lower in
every case, as a result of signalling redundancy and congestion.
This results in users being offloaded onto the neighbouring
edge network. Hence, in the case of massive traffic demand,



the clustering approach guarantees zero or fewer user clusters
being offloaded from the edge, subject to the availability of
resources and latency consideration.

D. Impact of Clustering on Resource Utilization

Fig. 6 indicates the resource allocation fairness vs time. A
significant difference can be seen in the resource allocation
of the proposed framework compared to its counterparts (i.e.
Bankruptcy Game (BG), Equal Ratio (EQ), and Traffic Propor-
tion (TP) [16]). The resource allocation index is approximately
1 compared to that of BG, EQ and TP, with their fairness
indexes hovering around 0.99, 0.92 and 0.91. The achieved
fairness is by the admission of the edge’s users in form of
clusters. Thus, efficient resource allocation on the arrival of
the clustered request leads to maximum resource utilization
and fairer resource allocation among clustered users. To sum-
marise, the k-mean and ranking based clustering approach
along with optimisation not only reduce the signalling redun-
dancy in the access and core network but can also enhance the
admission gain and resources utilisation in the future network.

V. CONCLUSION

In this paper, we presented a novel AI-enabled edge ar-
chitecture, a clustering-based signalling control procedure
and an admission control framework. We have employed
two popular unsupervised ML-based K-mean and Ranking-
based clustering approaches to reduce the communication
overheads on the edge by reducing signalling redundancy,
providing low latency and efficient resource utilization. The
proposed clustering mechanism reduces the complexity from
O(U) to O(R) for service signalling and O(N) for resource
signalling. This represents a significant saving in the uplink
control plane signalling and link capacity compared to the
results found in the literature. Future work is to enhance
the proposed framework via adopting slice elasticity in both
uplink-downlink traffic flow to efficiently support the multi-
edge network environment.
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