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Olusola O. Abayomi-Alli 1 , Robertas Damaševičius 1,* , Atika Qazi 2, Mariam Adedoyin-Olowe 3

and Sanjay Misra 4

1 Department of Software Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
2 Centre for Lifelong Learning, Universiti Brunei Darussalam, Gadong BE1410, Brunei
3 School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
4 Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
* Correspondence: robertas.damasevicius@ktu.lt

Abstract: The aim of this systematic literature review (SLR) is to identify and critically evaluate
current research advancements with respect to small data and the use of data augmentation methods
to increase the amount of data available for deep learning classifiers for sound (including voice,
speech, and related audio signals) classification. Methodology: This SLR was carried out based on
the standard SLR guidelines based on PRISMA, and three bibliographic databases were examined,
namely, Web of Science, SCOPUS, and IEEE Xplore. Findings. The initial search findings using the
variety of keyword combinations in the last five years (2017–2021) resulted in a total of 131 papers. To
select relevant articles that are within the scope of this study, we adopted some screening exclusion
criteria and snowballing (forward and backward snowballing) which resulted in 56 selected articles.
Originality: Shortcomings of previous research studies include the lack of sufficient data, weakly
labelled data, unbalanced datasets, noisy datasets, poor representations of sound features, and the
lack of effective augmentation approach affecting the overall performance of classifiers, which we
discuss in this article. Following the analysis of identified articles, we overview the sound datasets,
feature extraction methods, data augmentation techniques, and its applications in different areas in
the sound classification research problem. Finally, we conclude with the summary of SLR, answers to
research questions, and recommendations for the sound classification task.

Keywords: sound data; audio data; data augmentation; feature extraction; deep learning

1. Introduction

The continuous growth of the application of artificial intelligence (AI) methods in a
diverse range of scientific fields has played a significant role in solving real-life problems,
especially in classification tasks in various domains such as computer vision [1], natural
language processing (NLP) [2], healthcare [3], industrial signal processing [4], etc. Inter-
estingly, the success of these AI methods has also spread across other domains, including
speech recognition and the music recommendation task [5]. The need for effective and
automatic sound classification systems is on the rise, as its relevance cannot be underesti-
mated in our everyday life. Automatic sound classification technologies are widely applied
in surveillance systems [6], voice assistants [7], chatbots [8], smart safety devices [9], and in
different real-world environments, such as engineering [10], industrial [11], domestic [12],
urban [13], road [14], and natural [15].

Machine learning approaches such as random forest (RF), decision tree (DT), logistic
regression (LR), multilayer perceptron (MLP), etc. have been applied for sound recognition
systems [16]. In the last decade, the advancement of machine learning algorithms (including
deep learning methods) has shown great capabilities in extracting high-level features that
have helped to effectively learn complex level characteristics from raw input data, thus
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improving performance of classification models [17]. Recently, the paradigm shift in
improvement in these deep learning algorithms, such as finetuning hyperparameters such
as enhancing dropout and regularization, momentum methods of gradient descent, etc. [18],
has played an important role in the advancement of researchers’ contributions in many
areas such as computer vision, natural language processing (NLP), finance, and biomedical
imaging [19–22].

The exceptional performance of deep learning, especially convolution neural network
(CNN) for pattern recognition, has continued to show great impact in an effective mod-
ern classification task. Recently, the application of deep learning methods in different
kinds of sound/audio classification tasks has shown great progress, especially in domains
such as environmental sound detection [23], automatic speech recognition (ASR) [24],
music/acoustic classification [25], medical diagnostics [26], etc. However, this approach
to deep learning methods still struggles with poor performance due to the availability
of insufficient data to solve audio/sound related issues, noisy audio signals [27], and
industrial sounds [28]. Considering the vast application of deep learning methods, several
researchers have been fascinated by applying different machine learning algorithms in
sound classification [29–31]. However, audio signals have high dimensionality, indicating
that more than one thousand floating point values are required to represent a short audio
signal, raising the need for exploring dimensionality reduction and feature extraction
methods.

Deep learning models in sound recognition systems can be seriously affected by envi-
ronmental noise, which could possibly result in loss of detailed information [32]. Another
important challenge in developing an efficient sound recognition system is accessing a
large and well-annotated dataset. In addition, challenges with data scarcity in sound
classification systems include privacy [33] and ethical and legal considerations [34].

The poor performance of deep learning models can be attributed to the following:

• Insufficient sound or audio data makes it extremely difficult to train deep neural net-
works, as efficient training and evaluation of audio/sound systems are only dependent
on large training data [35].

• Traditional audio feature extraction methods lack strong abilities to effectively identi-
fying better feature representations, thus affecting the performance of sound recogni-
tion [36].

• Robustness and generalization are the key challenges in building a high-performance
sound recognition system, and some of the existing systems degrade due to scenario
mismatch due to some factors such as reverberations, noise types, channels, etc. [37].

• Dependency on expert knowledge for reliable annotation of audio data [38].

Another problem that negatively affects research progress in sound classification re-
search is imbalance of data [39]; this plays a major factor by deteriorating the performance
of deep learning systems because most audio recordings are susceptible to environmen-
tal noise [40]. In addition, the creation of a sound recording dataset is extremely time-
consuming and a resource constraint; thus, the need for data augmentation techniques is
not negotiable, as this approach has become powerful in generating a synthesis dataset
(images, sounds, text, etc.) and has significantly contributed to improving the performance
of deep learning models.

Contrary to the popular claim that training large datasets is essential to achieve
optimal results for deep architecture models [41], the advancement of data augmentation
in sound classification tasks has shown its consistency in improving the performance of
training models for small data [42]. The need for data augmentation cannot be overlooked,
as previous research studies have shown in the application of neural network models
in the sound/audio classification task [43,44] because it is a typical over-parameterized
model and therefore requires larger datasets to mitigate overfitting and reduce sensitivity
to background noise and information redundancy [45]. Furthermore, the application
of neural network models is highly dependent on initializing and carefully adjusting
hyperparameters during the training process to improve the classification model [46].
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This article presents a systematic review of the comprehensive past, present, and future
trends of data augmentation techniques in sound classification tasks. This study aims to
present the different data enhancement methods applied in the literature to increase data
generalization and detection rate using statistical analyses (quantitative and qualitative)
measures to showcase research trends in combating insufficient/imbalance datasets. In
this paper, a systematic review of the literature is presented based on a comprehensive
methodology with the purpose of identifying current progress and progress of related
studies in sound classification tasks with respect to sources, data repositories, feature
extraction methods, data enhancement steps, and classification models is presented.

The following research questions (RQs) are raised to define the scope of the systematic
review, and analytical results are presented to enhance future research studies on sound
classification as follows:

1. Are existing papers based on the sound classification task applied to specific and
established data sources for experimentation?

2. What are the data repository or dataset sources used?
3. Which feature extraction methods are used and which data are extracted?
4. What are the different data augmentation techniques applied in sound classification?
5. How can we measure the importance of data augmentation techniques in learning

algorithms?
6. What is the future research recommendation for augmentation techniques?
7. What obstacles are identified in the application of data augmentation for sound

classification?

The rest of this paper is organized as follows: Section 2 discusses in detail the overview
of sound datasets, feature extraction methods, data augmentation techniques, and its
applications in different areas in sound classification. The SLR methodology steps are
presented in Section 3 with a description of search selection methods. The details of our
results/findings and the analysis of selected studies with respect to the research questions
raised are addressed in Section 4, and finally Section 5 concludes with a summary of the
SLR and future recommendations in the sound classification task.

2. Methodology of Literature Search and Selection

We adopted the guidelines [47] that cover the systematic literature review in the
formulation of research questions, the structure of the search study, and the data extraction
criteria. In addition to this, we also adopted a simple and effective process in accordance
with the methodological approach proposed in [48] as shown in Figure 1.
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In this context, a research plan was initially outlined that involves the research objective
and questions, and a variety of combinations/keywords metadata was constructed as
represented in Figure 1. For consistency throughout the article and to avoid confusion
and misinterpretation of words, this article decides on the basis that the term ‘sound’
encompasses audio, speech, and voice, which are all related to a category of sound. The
search was carried out on two databases, the Web of Science and Scopus databases as
summarized in Table 1. The article search using combinations of keywords carried out
from January 2017 up to 2022 returned a total of 42 for Scopus and 34 for Web of Science,
and these articles passed the title, abstract, and keyword selection, and supplemented with
forward and backward snowballing [49]. Other databases were also selected, and a total of
12 relevant articles are included in this study. Therefore, the final set of relevant selected
articles included only 55 full text articles which were compared to the SLR research focus.
These selected groups of articles were read, reviewed, categorized, and analyzed to ensure
openness and detailed reporting of the systematic literature review process [50] as depicted
using the PRISMA workflow diagram in Figure 2.

Table 1. Number of studies found per keyword combination.

Database Search (Title, Abstract or
Keyword)

No. of
Results

Filtered by
Exclusion
Criteria

Forward
Snowballing

Backward
Snowballing

Final
No.

Scopus

T-A-K: ((Sound OR Audio OR
Voice OR Speech)) AND T: (Data

Augmentation) AND
(L-T: (SRCTYPE, “j”)) AND (L-T
(PY: 2021) OR L-T (PY: 2020) OR
L-T (PY: 2019) OR L-T (PY: 2018)

OR L-T (PY: 2017)) AND (L-T
(LANG, “English”))

42 32 4 2 38

Web of
Science

T: ((Sound OR Audio OR Voice
OR Speech)) AND

T: (Data Augmentation) AND
((PY:2021) OR (PY:2020) OR (PY:

2019) OR (PY: 2018) OR
(PY = 2017))

34 28 - 4 32

IEEE Xplore

T: ((Sound OR Audio OR Voice
OR Speech)) AND

T: (Data Augmentation) AND
((PY:2021) OR (PY:2020) OR (PY:

2019) OR (PY: 2018) OR
(PY = 2017))

55 20 - - 20

T = title, A = abstract, K = keyword, PY = publication year, LANG = language, L-T = limit-to.

Considering the research questions raised, the context of this study aims to identify
the concepts of changes and main perspectives related to sound classification in diverse
research domains using the following groups of keywords as presented in Figure 1 and
a summary of studies found per keyword combinations as depicted in Table 1. Table 1
summarizes the keyword combinations and the number of papers identified using the
keywords in the title, abstract, and keywords of the papers.
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3. Results of SLR

This section presents the results of the SLR including the quantitative and qualitative
analyses of selected articles that meet the inclusion criteria. We describe the main statistics
of the 56 primary studies [51–106] selected for this SLR.

We have included 56 primary studies in this SLR, and the highest percent of the studies
were published in the year 2020, more than 26% of selected articles were published in 2021,
23% were published in 2019, and less than 10% of the selected article was published in 2018
and 2017 as depicted in Figure 3. The type of publication was classified as Workshop (which
includes workshop and symposium papers), Conference, and Journal. In the publication
type, 59% of the selected articles are journals, 34% were conference papers, and 7% of
studies were workshop papers.
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The importance of feature extraction methods in the sound classification task cannot
be overlooked in this SLR as we analyzed the different methods presented in the selected
publications. From the selected studies, we realized that some feature extraction methods
were used more by previous researchers than others and the results of our analysis showed
that 25.6% of our selected publications used MFCC-based representation, while 18.6% of
selected publications applied the log-mel spectrogram, 16.3% of selected publications used
Mel spectrogram methods, 9.3% applied the STFT approach, and the remaining 30% of the
publications applied other feature representation methods such as bag of words, CQT, and
ZCR energy as depicted in Figure 5.
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The results of data augmentation methods in Figure 6 show that the data augmentation
based on addition of noise has the highest number of publications of 22 (39.2%), while
the second highest is the time shift method with 15 (26.7%) of the selected publications.
Next to that are the GAN based models and pitch shift with 12 (21.4%) each, followed by
other methods such as time stretching, mix-up, and background noise with 10 (17.8%), 9
(16.1%), and 8 (13.6%), respectively. Methods such as speed modulation, masking, VTLP,
trim silences, flipping, etc., have less than 10% application in selected publications.
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The results of performance evaluation methods in Figure 7 show that accuracy was
the most used performance evaluation method used in 36 publications (64.3%), while the
second highest is F1-score with 14 (25%) of analyzed publications. Next to that is recall
with 13 (23.2%) publications, followed by precision with 9 (16.1%) publications. Other
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measures such as equal error rate (EER), word error rate (WER), mean square error (MSE),
and specificity were used less commonly.
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The dataset usage results in Figure 8 show that urbanSound8k was the most popular
dataset used in seven publications (12.5%), while the second most popular is Primary DB
with six (10.7%) of the analyzed publications. Next to that is ESC-50 and DCASE with
five (8.9%) publications each, followed by ESC-10 and ICBHI datasets with four (7.1%)
publications each.
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The results of classification methods in Figure 9 show that convolutional neural
networks (CNN) were the most used classification methods used in 44 publications (78.5%),
while the second most used were various variants of recurrent neural networks (RNN)
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with nine (16.1%) of analyzed publications. The ensemble learning and machine learning
methods were each used in six (10.7%) publications.
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For more in-depth analysis, in the following sections we also use bubble plots, which
allow visualizing of the relations between different aspects of analysis by different dimen-
sions. It allows identifying the research gaps in the existing literature. The methods used in
the analyzed studies are discussed in Section 4.

4. Discussion of the Results of Review

We discuss in detail the overview of the different categories of sound classification
modules as depicted in Figure 10. In the last decades, interesting findings and research
methods have been introduced and implemented by researchers ranging from the creation
of sound databases from environmental sounds, medical sounds, etc.
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Figure 10. A simple sound classification architecture.

In addition, some studies have improved data cleaning methods since sound datasets
are susceptible to noise and these play a major role in either improving or degrading the
performance of learning models. An interesting overview of feature extraction methods
was also presented, and the uniqueness of existing feature extraction techniques was
also addressed. To further widen the scope of this SLR, we concentrated on the data
augmentation methods applied to both audio/sound datasets and images generated from
feature extractions. Finally, in this section, we analyze the various classification methods
presented in previous studies and emphasize the pros and cons of the classifiers with
respect to their overall performance.



Electronics 2022, 11, 3795 10 of 32

4.1. Sound Datasets

The real-life application of sound datasets ranges from the automatic speech recogni-
tion (ASR) system for developing smart systems (smart cities, smart healthcare, etc.) [107],
acoustic scene recognition [69], music classification [108], speaker recognition [78], voice
rehabilitation [109], voice disorder detection [110], speech emotion detection [111], cardiac
auscultation [61], etc. Datasets presented in related studies include the following Audioset
tagging [21], INTERSPEECH 2017 computational paralinguistics challenges for automatic
snore sound recognition [112], animal audio datasets such as Birdz and CAT [77], and
speaker verification datasets including PRISM [113], NIST SRE10, SRE08 [114], etc.

The lack of sufficient amounts of labeled data has become one of the major barriers to
the advancement of sound classification. The major reason behind these can be outlined
into the following: class imbalance, data privacy issues, time constraints involved in data
collection, high dependency of expertise for effective annotation, etc. Another interesting
factor to consider in existing sound datasets is the problem of a noisy environment within
the dataset, especially when recognizing children’s speech [63].

In recent years, the exceptional performance of deep learning methods in pattern
recognition tasks has continued to have a great impact on modern sound classification
tasks. With the advancement of deep learning, some state-of-the-art possibilities have
emerged; however, this approach still struggles with poor performance (see Figure 11)
due to the insufficient availability of data to solve audio/sound-related issues. On this
note, the lack of sufficient sound data negatively impacts the performance of deep learning
methods, especially CNN [100]. Based on studies, we were able to summarize some of
the problems of existing sound dataset as follows: problem with weakly labeled data [96],
noisy environment, insufficient data [115], and imbalance classes within existing sound
datasets [116].
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The datasets used in analyzed studies are summarized in Table 2. Four types of
sound datasets are distinguished: speech datasets (including emotion recognition from
speech data), medical sound datasets including various sounds originating from the living
body, natural sound datasets including various sounds originating from the natural world
(animals), and environmental sound datasets combining sounds from the environment.
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Table 2. Summary of sound datasets.

Datasets Number of
Categories

Number of Samples
(Training/Test/Validation) References

Speech datasets

Acted Emotional Speech
Dynamic Database

Five emotion classes
(anger, disgust, fear,
happiness, sadness)

600 phrases Vryzas et al. [94]

AMI (meeting transcription) n/a 100 h of meeting recordings Qian et al. [85]

ASVspoof 2017 corpus Two utterance classes (bona
fide, spoofing) 3014/1710/13,306 Zhao et al. [103]

Dysarthric Speech Corpus in
Tamil n/a 22 dysarthric speakers,

262 sentences and 103 words Celin et al. [53]

Baum-1a 13 emotional & mental states 1184 clips Lalitha et al. [66]

Indian Institute of Technology
Kharagpur Simulated

Emotion Speech Corpus
(IITKGP-SESC)

8 emotions 40 sentences Lalitha et al. [66]

Indonesian Ethnic Speaker
Recognition 70 classes 280 records Nugroho et al. [79]

OC16-CE80 Mandarin-English
mix lingual speech 50 speakers 80 h Long et al. [70]

Punjabi Children speech
corpus n/a

1887 utterances (39
speakers)/and 485 (6

speakers)
Kadyan et al. [62]

Speech Command Dataset v1,
v2 30 words V1: 28,410 (22,236/3093/3081)

V2: 46,258 (36,923/445/4890) Pervaiz et al. [83]

Toronto Emotional Speech Set
(TESS) 7 emotion classes 200 target words Praseetha and Joby [84]

WSJCAM0 adults’ speech
corpus 92/20 speakers 16 h of records Kathania et al. [63],

Vecchiotti et al. [93]

PF-STAR children’s speech
corpus 122/60 speakers 9.4 h Kathania et al. [63],

Vecchiotti et al. [93]

EmotionDB 1999 7 emotion classes 3188 records Garcia-Ceja et al. [58]

Surrey Audio Visual
Expressed

Emotion (SAVEE) database
7 emotions 4 subjects, 480 utterances Lalitha et al. [66],

Vryzas et al. [94]

VOCE Corpus Database Stress levels 38 raw recordings
(638 min of speech) Shahnawazuddin et al. [89]

Universal Access research
(UA-corpus)

Two health classes (palsy/no
palsy) 19 speakers Celin et al. [53]

Medical sound datasets

Gastrointestinal Sound
Dataset 6 kinds of body sounds 43,200 audio segments Zheng et al. [106]

PhysioNet CinC Dataset 2 classes
(normal/abnormal) 3240 audio files Jeong et al. [61],

Koike et al. [64]
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Table 2. Cont.

Datasets Number of
Categories

Number of Samples
(Training/Test/Validation) References

Medical sound datasets

PASCAL Heart Sound
Challenge (HSC) A and B

datasets
5 classes of heart sounds A: 176 records

B: 656 records Jeong et al. [61]

Munich-Passau Snore Sound
Corpus (MPSSC) 219 subjects 828 snore events Zhang et al. [101]

ICBHI Challenge database 4 classes 6898 cycles (5.5 h)

Basu and Rana [51],
Chanane and Bahoura [54],

Zhao et al. [104],
Rituerto-González et al. [87]

Natural datasets

BIRDZ 12 classes 3101 samples Nanni et al. [77]

CAT 10 sound classes 3000 samples Nanni et al. [77]

NARW calls dataset 2 classes 24 h Padovese et al. [82]

Environmental sound datasets

Audioset dataset 632 audio event classes 2,084,320 sound clips Padhy et al. [81]

DCASE dataset 11 sound classes 20 sound files

Wyatt et al. [97],
Ykhlef et al. [100],
Zhang et al. [102],

Esmaeilpour et al. [57],
Imoto [60]

Emotional Soundscapes
database na 1213 clips Mertes et al. [74]

TAU Urban Acoustic Scenes 10 acoustic scenes 64 h of audio Diffallah et al. [56],
Ma et al. [72]

Mivia Road Audio Events
Dataset

2 classes
(car crash/tire skidding) 400 records Greco et al. [59]

Urbansound8K (US8K) 10 sound event classes 302 labeled sound recordings

Davis and Suresh [55],
Esmaeilpour et al. [57],

Lu et al. [71],
Madhu and Kumaraswamy [73],

Singh and Joshi [90],
Mushtaq and Su [75],
Mushtaq et al. [76],
Salamon et al. [88]

ESC-10, ESC-50 50 classes 2000 (ESC-50)

Esmaeilpour et al. [57],
Mushtaq and Su [75],
Mushtaq et al. [76],
Zhang et al. [102],
Wyatt et al. [97]

Real Word Computing
Partnership Sound Scene
Database (RWCP-SSD)

105 kinds of
environmental sounds 155,568 words Ozer et al. [80]

Sound Events for Surveillance
Applications (SESA) 4 sound classes 585 (480/105) Greco et al. [59]

TUT acoustic scenes 15 acoustic scenes 312 segments (52 min) Leng et al. [69],
Yang et al. [98]

YBSS-200 10 sound classes 2000 (1600/400) Singh and Joshi [90]
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4.2. Feature Extraction Methods in Sound Classification

The degree of how great or poor a model performs is also determined by the choice of
features used. Therefore, it is completely important to consider the various state-of-the-art
feature extraction methods used in previous studies. Some of the findings of previous work
show that the use of handcrafted features suffers with the generic representation of audio
signals [117].

Spectrogram characteristics have been widely used by previous researchers in different
domains of sound classification, such as heartbeat sounds to detect heart diseases [64]. The
features of mel-frequency cepstral coefficients (MFCC) have shown good achievement in
representing sounds for the detection of respiratory diseases [51]. Ramesh et al. [86] pre-
sented combinations of different feature extraction methods for the detection of respiratory
diseases based on lung sounds and the examples of feature extraction methods proposed
are as follows: ZCR, energy, entropy of energy, spectral centroid, spectral spread, spectral
entropy, spectral flux, spectral roll-off, and MFCC. Similar studies were carried out using
four feature extraction methods to represent lung sound such as CQT, STFT, and mel-STFT,
and finally the combination with empirical mode decomposition (EMD) [54]. The authors
in [118] introduced an aggregated feature extraction scheme based on the combination of
local and global acoustic features.

Class-dependent temporal-spectral structures and long-term descriptive statistics fea-
tures were extracted for sound events. Other authors applied the Discrete Gabor Transform
(DGT) audio image representation [119], multiresolution feature [53], hybrid method based
on mel frequency cepstral coefficient and the gammatone frequency cepstral coefficient [62],
inverted MFCC and extended MFCC [66], bag of audio words (BoAW) [120], narrow band
auto-correlation features (NB-ACF) [121].

Figure 12 shows a distribution of publications by feature extraction method and the
dataset used. Although melSpectrogram and MFCC are commonly used, the figure allows
us to identify the gaps for several datasets, such as melSpectrogram that was not used with
the ICBHI dataset, while STFT was also rarely used.
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Based on our findings, feature representation is crucial to improve the performance
of learning algorithms in the sound classification task. Audio signals usually have high
dimensionality. Therefore, there is a need to develop effective feature recognition meth-
ods through the applications of better feature representation techniques with the aim of
enhancing sound recognition.

The feature extraction methods used in analyzed studies are summarized in Table 3.

Table 3. Summary of feature extraction methods.

Features/Feature Extraction Methods Application References

BoAW Medical sound recognition Zhang et al. [101]

cepstral mean, variance normalization
(CMVN) Speech recognition Pervaiz et al. [83]

chromagram, spectral contrast,
spectral centroid, spectral roll-off

Speech and breathing
sound recognition Tran and Tsai [92]

Constant Q transform (CQT) Lung (respiratory)
sound classification

Chanane and Bahoura [54],
Zhao et al. [103]

Data De-noising Auto Encoder Respiratory sound classification Lella and Pja [68]

Empirical mode decomposition (EMD) Lung (respiratory)
sound classification Chanane and Bahoura [54]

Filter-bank features Speech recognition Long et al. [70]

Gammatonegram Sound event recognition Greco et al. [59]

GCC-PHAT Pattern features Speaker recognition Wang, Yu et al. [96]

IFFT Speaker recognition Zheng et al. [105]

log-gammatone spectrogram Environmental sound
classification Zhang et al. [102]

Log-Mel Multiple applications

Leng et al. [69], Qian et al. [85],
Salamon et al. [88], Sugiura et al. [91],

Wang, Yang et al. [95], Diffallah et al. [56],
Ma et al. [72], Wang, Yu et al. [96],

Yang et al. [98], Yella and Rajan [99],
Lu et al. [71], Rituerto-González et al. [87],

Koszewski and Kostek [65], Mushtaq and Su [75],
Singh and Joshi [90]

Mel filter bank energy Speech emotion recognition Praseetha and Joby [84]

Mel Frequency Cepstral Coefficient
(MFCC)

Mushtaq and Su [75], Basu and Rana [51],
Vecchiotti et al. [93], Zheng et al. [106],

Davis and Suresh [55], Novotny et al. [78],
Nugroho et al. [79], Padovese et al. [82],

Pervaiz et al. [83], Shahnawazuddin et al. [89],
Ykhlef et al. [100], Imoto [60],

Ramesh et al. [86], Tran and Tsai [92],
Zhao et al. [104], Wang, Yang et al. [95],

Koszewski and Kostek [65], Garcia-Ceja et al.
[58]

Mel spectrogram Multiple applications

Mushtaq and Su [75], Mushtaq et al. [76],
Padhy et al. [81], Billah and Nishimura [52],

Tran and Tsai [92], Vryzas et al. [94],
Madhu and Kumaraswamy [73], Wyatt et al. [97]
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Table 3. Cont.

Features/Feature Extraction Methods Application References

Mel-Frequency Cepstral Coefficient,
Gammatone frequency cepstral

coefficient (MF-GFCC)
Speech recognition Kadyan et al. [62]

Mel-STFT Lung sound classification Chanane and Bahoura [54]

MFCC, inverted MFCC (IMFCC),
extended MFCC, extended IMFCC, LPC,

Mel, Bank filter bank-derived features
Speech recognition Lalitha et al. [66]

Multi-resolution feature extraction Speech recognition Celin et al. [53]

Short Time Fourier Transform (STFT) Medical sound recognition,
speech recognition

Greco et al. [59], Jeong et al. [61],
Kathania et al. [63]

SIFT Sound classification Ozer et al. [80]

Spectral features (Spectral Centroid, RMS,
Spectral Bandwidth, Spectral Contrast,

Spectral Flatness, Spectral Roll-off)
Speaker recognition Mertes et al. [74], Zhao et al. [104]

Spectrogram
Heart sound recognition, sound
quality evaluation, animal audio

classification

Koike et al. [64], Lee and Lee [67],
Nanni et al. [77]

Speed Up Robust Feature (SURF) Environmental sound
classification Esmaeilpour et al. [57]

STFT Lung sounds classification Chanane and Bahoura [54], Zheng et al. [105]

Waveform based features Music processing Koszewski and Kostek [65]

Zero crossing rate, energy, entropy of
energy, spectral centroid, spectral spread,

spectral entropy, spectral flux, spectral
roll-off

Emotion recognition, respiratory
sound classification Garcia-Ceja et al. [58], Ramesh et al. [86]

4.3. Data Augmentation Methods in Sound Classification

The increasing numbers of articles based on the application of data augmentation
techniques in sound classification studies show the importance of these techniques for
effective classification of sound data in various research domains such as from medical
disease detection to environmental sound classification.

With some of the challenges identified with existing sound datasets, especially the
lack of sufficient sound datasets, and class imbalance have huge impact on performance of
classifiers, therefore, the need to increase the data samples and balancing class distributions
is essential for improving sound recognition systems. A general term used to increase the
overall data samples by generating a synthetic dataset is data augmentation [122]. When
adopted to the audio domain, data augmentation can be achieved by using some filters
on an audio signal such as pitch shifting, removal of noise, compression, time stretching,
etc. [88]. In addition to increasing generalization capabilities and representation of input
training data, the augmentation of data also allows the system designed to improve data
significance, regardless of the available data samples [59].

Considering the vast application of deep learning methods, several researchers have
been fascinated by applying different machine learning algorithms to sound classification.
Data augmentation (DA) is a very popular approach that is used to enhance the number
of training data. A simple description of DA is the process of creating synthetic samples
by transforming training data with the purpose of enhancing performance and robust-
ness of learning classifiers. This is one of the most effective ways to solve the problem
of overfitting, which is most prevalent when using deep learning models, and thereby
improves generalization ability [105]. In audio or speech data, the means of corrupting
clean training speech by adding noise has been said to improve the robustness of speech
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recognition systems [123]. Furthermore, previous work has shown that the accuracy of a
data-driven algorithm improves significantly when more data are used for the training
model, reducing the chances of overfitting [93]. On a similar note, Diffallah et al. [56]
described the main objective of data augmentation as disrupting training data by injecting
variation of transformed synthetic data, thus increasing training data. The importance of
data augmentation cannot be overemphasized, as it has played a major role in obtaining
state-of-the-art results. Another study by the authors in [124] applied the window removal
method to increase training samples and improve knee health classification.

The effect of wrong choices of data augmentation schemes is more likely to generate
synthetic samples with poor generalization, which would result in poor performance of
classifiers. Unfortunately, in the medical application domain, the issue of insufficient data
in terms of images or sound has been a major gap, as existing data still suffer from class
imbalance in available databases, a typical case being the ICBHI dataset [125]. Some of
the existing sound datasets also suffer from background noise, which also affect overall
performance of the learning models. In addition to traditional data augmentation methods,
some interesting transformation methods were also proposed to generate synthetic training
samples, such as random erasing, scaling, masking (frequency and time), standardization,
and trimming [126]. Another study by [71] introduced a two-stage data enhancement
framework for environmental sound classification that is categorized as brute-force, class-
conditional, and metric-based augmentation. Interesting data augmentation methods such
as Griffin Lim and the WORLD Vocode technique were proposed by [103].

A major challenge of environmental sound recognition task is the lack of a universal
database; this is because the majority of the existing acoustic databases are specific to
some applications tasks and are indirectly related to natural environmental sounds [55].
The application of data enhancement methods in environmental sound classification task
helps create artificial input data from existing sound or audio samples that are altered in
such a way that they differ from raw samples and maintain vital information for the task
at hand [74]. Traditional data augmentation or transformation methods popularly used
by previous authors in generating synthetic datasets for both sound and image features
extracted from sound data are as follows: time shift, pitch shift, random noise, volume
gain range, vocal tract length perturbation VTLP (54], etc. In this SLR, we realized that
the use of random noise data augmentation applied in our selected publication include
examples such as white noise [75,79], babble noise, MUSAN noises, static noise [78], factory
noise, destroyer control room, factory floor, jet cockpit [80], volvo [63], shouting, brass [91],
background noise [55,90], salt and pepper noise, etc. Other data augmentation techniques
from Leng et al. [69] are based on the topic model—latent Dirichlet allocation (LDA)
algorithm—for generating synthetic data, mixup approaches [81], etc.

More sophisticated data augmentation methods include the application of generative
adversarial networks (GANs) [85,86] and another variants of GAN such as ACGAN [104],
WCCGAN [57], GAN and VAE [95], and WaveGAN [74,99]. This SLR has shown some
state-of-the-art methods used for data augmentation in different sound classification tasks,
speech recognition, music retrieval, etc. The generation of artificial data samples is very
challenging considering the complex sequential structure of audio/sound data [74].

The most notable contributions that GANs have been made to realistic image synthesis
and the modeling of motion patterns in videos. Synthetic datasets can be improved using
GANs such that the statistical distribution mimics that of a real-world dataset. Numerous
methods investigate how to alter spectrogram images more effectively by using GAN
models [85,86]. Additionally, GANs’ successes are in modeling highly dimensional data,
their capacity to manage missing data, and their ability to produce accurate results.

Recently, the one-dimensional RNN models, long short-term memory (LSTM) and
gated recurrent unit (GRU), have recently been merged with CNN. The 3D convolutions are
yet another method for analyzing picture temporal sequences. To gain temporal information
in this instance, the third dimension is employed to stack numerous consecutive frames.
A possible alternative is to extend GANs with a time series-specific model, such as 3D
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convolutions or RNN. Encoder-decoder networks convert a high-dimensional input into a
lower-dimensional vector in latent space, which is subsequently converted back into the
original high-dimensional or structural input. Data augmentation techniques decode vector
samples taken from the latent space to produce novel patterns. In one instance, artificial
data was produced using an LSTM-based autoencoder (LSTM-AE) [95].

Despite the importance and improvement of data augmentation in increasing training
samples and overall sound classification task, it still suffers from some drawbacks, as
described in previous analytical studies, which show that the expansion of data volumes
may limit the structural complexity of neural networks [106]. In addition, the dataset
generated from data augmentation methods lacks a proper representation and thereby leads
to a poorly learned model [127]. Other advanced methods such as the conventional GAN
augmentation approach are based on general random outputs resulting in an uncontrolled
expansion of training samples with little or no impact on the learning classifier [74]. Another
issue with GAN is the high computational complexity involved in generating synthetic data.
Therefore, based on some of the shortcomings of existing data augmentation techniques
in sound recognition, it is extremely crucial for future research endeavors to consider
improving synthetic data representations through the adoption of effective hybridized
models for generating better training samples which can be better represented, and thus
improving classification models for sound classification.

The data augmentation methods used in analyzed studies are outlined in Table 4.

Table 4. Summary of data augmentation methods.

Reference Data Augmentation Methods Applications

Basu and Rana [51] random noise, time stretching Respiratory sound classification

Billah and Nishimura [52] mixup Chewing and swallowing sound
classification

Celin et al. [53] multi resolution Speech recognition

Chanane and Bahoura [54] Time stretching, spectrogram flipping, Vocal
tract length perturbation (VTLP), Lung sounds classification

Davis and Suresh [55]
Time Stretching, pitch shifting, Dynamic range
compression (DRC), background noise, Linear

prediction cepstral coefficients (LPCC)
Environmental sound classification

Diffallah et al. [56] Mix up Acoustic scene classification

Esmaeilpour et al. [57] Weighted Cycle-Consistent Generative
Adversarial Network (WCCGAN) Environmental sound classification

Garcia-Ceja et al. [58] Random oversampling Emotion recognition

Greco et al. [59] Adding noise attenuating or amplifying the
energy Sound event recognition

Imoto [60] Mask, overwrite, random copy, swap Acoustic scene classification

Jeong et al. [61]
random noise, salt, pepper noise,

SpecAugmentation (random frequency masking,
time masking)

Cardiac sound classification

Kadyan et al. [62] Adding noise (factory, babble, white) Speech recognition

Kathania et al. [63] Adding noise (factory, babble, white, volvo) Speech recognition

Koike et al. [64] trimming, scaling frequency masking, time
masking, isation, random erase Heart sound classification

Koszewski and Kostek [65] mixup approach (linear interpolation), scale
augmentation Music classification
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Table 4. Cont.

Reference Data Augmentation Methods Applications

Lalitha et al. [66] Synthetic Minority Oversampling Technique
(SMOTE) Emotion recognition

Lee and Lee [67] Bayesian approach, grayscale Sound quality evaluation

Lella and Pja [68] Stretching Time, Shift Pitch, Compression of
Range Dynamically, Background of Noise Respiratory sound classification

Leng et al. [69] Topic model-LDA (Latent Dirichlet Allocation) Acoustic scene classification

Long et al. [70] speed, volume, noise perturbation;
SpecAugment Speech recognition

Lu et al. [71] Time stretch, pitch shift 1, pitch shift, dynamic
range compression, background noise Environmental sound classification

Ma et al. [72] Mix-up, Image Data Generator, temporal corp Acoustic scene classification

Madhu and Kumaraswamy [73] GAN, time stretching, Pitch shifting, background
noise (BG), Dynamic range compression (DRC) Environmental sound classification

Mertes et al. [74] WaveGAN Soundscape classification

Mushtaq and Su [75] Offline augmentation (pitch shifting, silence
trimming, time stretch, adding white noise) Environmental sound classification

Mushtaq et al. [76]

Augmentation 1: (Zoom, Width shift, Fill mode,
Brightness, Rotation, Height shift, Shear,

Horizontal flip). Augmentation 2: (pitch shift,
time stretch, trim silences)

Environmental sound classification

Nanni et al. [77]

Audiogmenter, image augmentation (Reflection,
Rotation, Translation); Signal augmentation

(speed scaling, pitch shift, volume Gain range,
random noise, Time shift); Spectrogram

augmentation (Randomshift, SameClass Sum,
VTLN, Equalized Mixture Data Augmentation,

Timeshift, random Image Warp)

Animal audio classification

Novotny et al. [78] Reverberation, MUSAN noises, music, Babble
noise, static noise Speaker recognition

Nugroho et al. [79] Adding white noise, pitch shifting, time
stretching Speaker recognition

Ozer et al. [80] Adding noise: Destroyer Control Room, Speech
Babble, Factory Floor-1, Jet Cockpit-1 Sound event recognition

Padhy et al. [81]
Background white noise, Time shifting, Speed
Tuning, Mixing white noise with stretching or

shifting, Mixup
Audio classification

Padovese et al. [82] SpecAugment (Time warping, Masking; time,
Frequency masking), Mixup Animal sound classification

Pervaiz et al. [83] Noise (six types) Speech recognition

Praseetha and Joby [84] Time stretching, embedding noise Speech emotion recognition

Qian et al. [85] GAN under all noisy condition, additive noise,
channel distortion, reverberation. Speech recognition

Ramesh et al. [86] GAN Respiratory sound classification

Rituerto-González et al. [87]

Time Domain, Time-Frequency Domain (Vocal
tract length perturbation (VTLP), volume

adjusting, noise addition, pitch adjusting, speed
adjusting

Speaker identification
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Table 4. Cont.

Reference Data Augmentation Methods Applications

Salamon et al. [88]
offline augmentation (pitch shifting, time

shifting, dynamic range compression (DRC),
background noise)

Environmental sound classification

Shahnawazuddin et al. [89] oversampling (SMOTE), Pitch, Speed
Modifications Speech recognition

Singh and Joshi [90] Background noise Sound classification

Sugiura et al. [91] Mixup, synthetic noise (shouting, brass) Audio classification

Tran and Tsai [92]
Background noise addition, time-shifting,

time-stretching, value augmentation, a
combination

Speaker identification

Vecchiotti et al. [93] Pitch modification, time shift Speaker identification

Vryzas et al. [94] (1) Pitch alterations with constant tempo; (2)
Overlapping windows Speech emotion recognition

Wang, Yang et al. [95] Generative adversarial network (GAN)
and variational autoencoder (VAE) Speech recognition

Wang, Yu et al. [96] Room Impulse Response generator Speaker recognition

Wyatt et al. [97] noise Environment sound classification

Yang et al. [98] label smoothing mixup (spatial-mixup)
technique Acoustic scene classification

Yella and Rajan [99] waveGAN Respiratory sound recognition

Ykhlef et al. [100] not disclosed Sound event detection

Zhang et al. [101] semi-supervised conditional Generative
Adversarial Networks (scGANs) Snore sound classification

Zhang et al. [102] time, frequency masking, mixup Environmental sound classification

Zhao et al. [103]

Auxiliary classifier generative adversarial
network

(AC-GAN), shifting, stretching traditional
method

Respiratory sound classification

Zhao et al. [104] GriffinLim, WORLD Vocode Speaker recognition

Zheng et al. [105]
spectrum interference-based data augmentation

(random cropping, random label, soft label,
amplitude interference, spectrum interference

Radio signal classification

Zheng et al. [106] data sampling, class balance sampling, audio
transformation Biomedical sound detection

Figure 13 shows a distribution of publications using feature extraction and data
augmentation methods. The figure shows that pitch stretching, time shift, and other data
augmentation methods were more commonly used with MFCC features, while GAN,
Mix-up and dynamic range compression (DRC) augmentations are more commonly used
with log-mel features. The MFCC-based features are most used and allow achieving of
state-of-the-art results in the domain.
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4.4. Classification Methods for Sound Classification

Classification is a common task in machine learning and pattern recognition. The
application of deep learning methods, such as CNN models, often performs weakly in
comparison to machine learning methods, such as random forest, Adaboost, etc., especially
in small data [100]. For a better performance of the classifier, a larger amount of data
is required to achieve a reliable estimate of the generalization error. In contrast, typical
machine learning algorithms, such as ensemble classifiers, have been shown to adapt really
well in learning features with improved generalization ability even in the case of a small
and imbalanced dataset.

In recent years, different machine learning algorithms have been applied in the detec-
tion of sound events and in medical sound detection, and its achievement has also been
of great significance. Interestingly, some single classifiers have shown to be very useful
in automatic sound classification tasks such as support vector machine (SVM) [66,74,126],
multilayer perceptron in person identification using speech and breath sounds [92], hidden
Markov model (HMM) [53], logistic regression and linear discriminant analysis [118], etc.
Other studies applied ensemble methods such as random forest [86,100], XgBoost [99], etc.
Although, considering the complexity of sound and the need for the learning classifier
to be extremely sensitive in order to identify different representations of sound features,
traditional machine learning algorithms still suffer with the complex tasks involved in
effective classification of sound data. Therefore, the choice of deep learning methods has
been proven to be more efficient in a sound classification task. Deep learning, which is
a subdivision of machine learning, differs from other branches of machine learning due
to its ability to extract meaningful features from data through the application of a hier-
archical structure and without human intervention [67]. Sound classification methods
have shown a great transition from simple machine learning classifiers to advanced deep
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learning classifiers, and CNNs were able to achieve significant and more accurate training
results [65].

Previous research works have shown the diverse application of deep learning methods
and neural network architectures for sound classification tasks, such as MLP and another
four machine learning algorithms, was presented by [66], namely, VGG network [90],
long short-term memory network [69], DCNN [82,83], TDNN [70,96], and GoogleNet [77].
Another study by Mushtaq et al. [76] further applied different pretrained deep learning
models including DenseNet, ResNet [56,60], AlexNet, SqueezeNet, in environmental sound
classification, and BiGRU Attention XGBoost [103]. Greco et al. [59] also implemented a
CNN-based on the audio event recognition network (AReN). The hybrid method using
the combination of SVM and GRU-RNN was presented by Zhang et al. [101], and another
hybrid method by Celin et al. [53] applied the combination of the hidden Markov model of
deep neural networks (DNN) for sound classification.

Figure 14 shows the distribution of the publications by feature extraction and clas-
sification methods. Most of the articles used MFCC for feature extraction and CNN for
classification. MFCC was also frequently used with RNN, ensemble learning, and ma-
chine learning, however, other features have been rarely used with ensemble and machine
learning methods.
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The classification methods used in analyzed studies are summarized in Table 5.
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Table 5. Summary of classification methods.

Classification Method References Application

Adaboost Ykhlef et al. [100] Sound event detection

AlexNet Diffallah et al. [56], Esmaeilpour et al. [57],
Mushtaq et al. [76]

Environmental sound and acoustic
scene classification

Audio Event Recognition Network
(AReN) Greco et al. [59] Sound event recognition

Autoencoder DNN Ma et al. [72], Novotny et al. [78] Acoustic scene classification, speaker
recognition

Bidirectional Encoder
Representations from
Transformers (BERT)

Wyatt et al. [97] Environmental sound classification

Bidirectional Gated
Recurrent Neural

Networks (BiGRU)
Zhao et al. [104], Zheng et al. [106] Sound event detection, speaker

recognition

Convolutional Neural
Network (CNN)

Chanane and Bahoura [54], Davis and Suresh [55],
Jeong et al. [61], Koike et al. [64],

Lee and Lee [67], Lella and Pja [68],
Lu et al. [71], Pervaiz et al. [83],

Salamon et al. [88], Sugiura et al. [91],
Tran and Tsai [92], Vryzas et al. [94],

Wang, Yu et al. [96], Yella and Rajan [99],
Ykhlef et al. [100], Zhao et al. [103],

Zheng et al. [106]

Various applications

Deep CNN (DCNN) Madhu and Kumaraswamy [73],
Mushtaq and Su [75], Zheng et al. [105] Various applications

Deep neural network (DNN)
Kadyan et al. [62], Nugroho et al. [79],
Padovese et al. [82], Pervaiz et al. [83],

Shahnawazuddin et al. [89]
Various applications

DenseNet Koszewski and Kostek [65], Mushtaq et al. [76] Music classification, environmental
sound classification

DNN-hidden Markov model
(HMM) Celin et al. [53], Kathania et al. [63] Speech recognition

DNN trained with Restricted
Boltzmann Machine Ozer et al. [80] Sound classification

Ensemble CNN Rituerto-González et al. [87] Speaker identification

Gated Recurrent Unit (GRU) Basu and Rana [51], Praseetha and Joby [84],
Zhang et al. [101]

Respiratory sound classification,
speech emotion recognition, snore

sound classification

GoogLeNet Esmaeilpour et al. [57], Nanni et al. [77] Environmental sound classification

LSTM
Billah and Nishimura [52], Leng et al. [69],

Long et al. [70], Pervaiz et al. [83],
Vecchiotti et al. [93], Zheng et al. [106]

Multiple applications

Multi-channel CNN Padhy et al. [81] Audio sound recognition

Multilayer perceptron (MLP) Lalitha et al. [66], Leng et al. [69],
Tran and Tsai [92]

Speech emotion recognition, acoustic
scene classification, medical sound

classification
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Table 5. Cont.

Classification Method References Application

Random forest (RF) Garcia-Ceja et al. [58], Lalitha et al. [66], Ramesh
et al. [86], Ykhlef et al. [100]

Speech emotion recognition, medical
sound classification, sound event

detection

Recurrent Neural Network (RNN) Praseetha and Joby [84], Zhang et al. [102],
Zheng et al. [106]

Speech emotion recognition,
environmental sound classification,

sound event detection

REPTree (RT) Lalitha et al. [66] Speech emotion recognition

ResNet Diffallah et al. [56], Imoto [60],
Mushtaq et al. [76], Wang, Yang et al. [95]

Acoustic scene classification,
environmental sound classification

SqueezeNet Mushtaq et al. [76] Environmental sound classification

Support Vector Machine (SVM)
Lalitha et al. [66], Mertes et al. [74],

Ramesh et al. [86], Tran and Tsai [92],
Ykhlef et al. [100], Zhang et al. [101]

Speech emotion recognition, audio
classification, sound event detection,

biomedical sound classification

Time-Delay Neural Network
(TDNN) Long et al. [70], Wang, Yang et al. [95] Speech recognition

VGG
Imoto [60], Mushtaq et al. [76],

Nanni et al. [77], Singh and Joshi [90],
Leng et al. [69]

Acoustic scene and environmental
sound classification, animal sound

classification

Xception Yang et al. [98] Acoustic scene classification

4.5. What Are the Obstacles in Application of Data Augmentation in Sound Classification?

Table 6 shows the summary of information identified from the selected studies with the
total number of corresponding studies. Most of the selected articles in this SLR highlighted
that the increasing or high computational complexity of data augmentation methods
with respect to training time is a serious obstacle. More importantly, another interesting
obstacle is creation of noisy synthetic data from a noisy dataset (e.g., captured using low
quality microphone) would possibly result in poor sound quality and thereby lead to
poor performance of the machine learning classifier. Furthermore, obstacles such as high
misclassification evidenced by high false positive rate and poor data generalization of
existing data augmentation methods also play a crucial role in the sound classification task.

Despite the shortfalls identified in the selected articles, we also identified that the appli-
cation of data augmentation methods in sound classification research has shown significant
progress in the last five years, between 2017 and 2022. Advancement of classification or
recognition of a sound dataset with integration of data augmentation techniques has helped
to improve the generalization ability as recorded by the authors in [62,69,72,92,98,103].
Second, the introduction of class-specific data augmentation techniques in imbalanced
datasets has helped to overcome the problem of overfitting [67,86,92,104] and thus increas-
ing prediction performance [58,61] and classification stability [59,65,66,69,91,106]. Some of
the reports from selected articles implied that the implementation of augmentation tech-
niques achieved better classification results [51,63,67,75,76,79,84,87,89,93,95] and reduction
in misclassification or error rate [62].

Table 6. Identified obstacles reported in the selected studies.

Obstacles References No of Papers

Limited amount of data volume Garcia-Ceja et al. [58], Lee and Lee [67],
Zhang et al. [101], Ykhlef et al. [100] 4

Lack generalization between data classes Jeong et al. [61] 1
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Table 6. Cont.

Obstacles References No of Papers

Noisy dataset/poor sound quality
Jeong et al. [61], Rituerto-González et al. [87],

Lu et al. [71], Mertes et al. [74],
Tran and Tsai [92], Wang et al. [96]

6

High computational complexity
(Training time)

Lella and Pja [68], Zheng et al. [106],
Vryzas et al. [94], Mushtaq and Su [75],

Zhao et al. [103], Kadyan et al. [62],
Mushtaq et al. [76], Padovese et al. [82],

Pervaiz et al. [83], Sugiura et al. [91],
Singh and Joshi [90], Wyatt et al. [97]

12

High Misclassification errors Vecchiotti et al. [93], Kathania et al. [63],
Lalitha et al. [66] 3

Over-smoothing effect Esmaeilpour et al. [57] 1

Poor performance of classifier

Yang et al. [98], Vryzas et al. [94],
Zhang et al. [102], Salamon et al. [88],
Novotny et al. [78], Zhao et al. [103],

Long et al. [70]

7

Degradation of synthetic data Shahnawazuddin et al. [89], Chanane and Bahoura [54] 2

Class imbalance Chanane and Bahoura [54] 1

Overfitting Padhy et al. [81], Chanane and Bahoura [54] 2

4.6. Summary of Results

We summarize the results of SLR as a taxonomy of methods used in sound classifi-
cation (Figure 15), which is based on a summary of methods presented in Figure 16. The
taxonomy includes the feature extraction and data augmentation methods as well as the
datasets used in the research field of sound classification. The taxonomy is expected to be
useful for the researchers working in the domain.
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Basu and Rana [51]   - - - - - - - - -  - -  - - -  - - -  - - - -  - - - - -
Billah and Nishimura [52] - - - -  - - - - - - -  - - - -  - - -  - - - -  - - - - -
Celin et al. [53] - - - - - - - - - - - - -   - - - - - - - - - - -  - - - - - 

Chanane and Bahoura [54] -  - - -  - - - -  - -  - - - - - -   - - -   - - -  

Davis and Suresh [55]     - -  - - - - - - -  - - - - - - -  - - - -  - - - - -
Diffallah et al. [56] - - - -  - - - - - - - -   - - - - - - - -  - - - -  -   

Esmaeilpour et al. [57] - - - - -  -     - - -  - - - - - - - - - - -   - - - - -
Garcia-Ceja et al. [58] - - - - - -  - - - - - -   -  - - - - - - - - -   - - -  -
Greco et al. [59]  - - - - - - - - - - - -   - - - - - -  -  - - - - - -  -
Imoto [60] - - - - - -  - - -  - -   - - - - - - -  - - - - - - - - - 

Jeong et al. [61]  - - - - -  - - - - - -   - - - - - -  - - - - -   -  - -
Kadyan et al. [62]  - - - - - - - - - - -  -  - - - - - - -  -   - - - - - - 

Kathania et al. [63]  - - - - - - - - - - - -   - - - - - -   - - - -  - - - - -
Koike et al [64] - - - - - -  - - - - - -   - - - - -  - - - - -  - - - - -
Koszewski and Kostek [65] - - - -  - - - - - - - -   - - - - - -   - - - -  - - -  -
Lalitha et al. [66] - - - - - -  - - - - - -  -   - - - - -  - - -   - - - - 

Lee and Lee [67] - - - - - -  - - - - -  -  - - - - - - - - - - -   - - - - -
Lella and Pja [68]     - - - - - - - - -   - - - - - - - - - - -   - - -  -
Leng et al. [69] - - - - - -  - - - - - -   - - -  - - - -  - -  - - - - 

Long et al. [70]  - - - - -  - - - - - -   - - -  - - - - - - -   - - - - 

Lu et al [71]     - - -  - - - - - -  - - - - - - - -  - - -  - - - - -
Ma et al. [72] - - - - -   - - - - - -   - - - - - - - -  - - -  - - - - -
Madhu and Kumaraswamy [73]     -  -  - - - - - -  - - - - -  - - - - - -  - - - - 

Mertes et al. [74] - - - - -  - - - - - - -   - - - - - - - - - -     -  

Mushtaq and Su [75]    - - -     - - - -  - - - - -  -  - - -  - - - - -
Mushtaq et al. [76] - - - - - -     - - - -  - - - - -  - - - - - -  - - - - -
Nanni et al. [77] - - - - - -  - - - - - -   - - - - -  - - - - - -  - - - - 

Novotny et al. [78]  - - - - - - - - - - - -   - - - - - - -  - - - - - - - - 

Nugroho et al. [79]    - - - - - - - - - -   - - - - - - -  - - - -  - - - - -
Ozer et al. [80]  - - - - - - - - - - - -   - - - - - - - - - -  -   - - -
Padhy et al. [81]   - -  -  - - - - - -   - - - - -  - - - - - - -   -  

Padovese et al. [82] -  - -  -  - - - - - -   - - - - - - -  - - - - - - - - - 

Pervaiz et al. [83]  - - - - - - - - - - - -   - - -  - - -  - - -     -  -
Praseetha and Joby [84]   - - - - - - - - - - -  - - - -  -  - - - - - - - - - - - 

Qian et al. [85] - - - - -  - - - - - - -  - - - - - - - - -  - - - - - - - - 

Ramesh et al. [86] - - - - -  - - - - - -  - -   - - - - -  - - -   - - - - -
Rituerto-González et al. [87] - -  - - -  - - - - - -   - - - - - - -  - - - - -     

Salamon and Bello [88]     - - -  - - - - - -  - - - - - - - -  - - - - - - - - 

Shahnawazuddin et al. [89] -   - - - - - - - - - -  - - -  - -  - - - -  - - - - -
Singh and Joshi [90]  - - - - - -  - - - - -   - - - - - - - -  - - -      

Sugiura et al. [91]  - - -  - - - - - - - -   - - - - - - - -  - - - - - - - - 

Tran and Tsai [92]    - - - - - - - - - - -   - - - -  -  - - -   - - - - -
Vecchiotti et al. [93] - - - - -  - - - - - - -   - - - - - - - -   - - - - - - - 

Vryzas et al. [94] - - - - - -  - - - - - -   - - - - -  - - - - - -  - - - - -
Wang et al. [95] - - - - -  - - - - - - -  - - - - - - - - - - - - - - - - - 

Wang et al. [96] - - - - -  - - - - - - -  - - - - - - - -  - -  - - - - -
Wyatt et al. [97]  - - - - - - - -   -  -  - - - - -  - - - - - -   -  - 

Yang et al. [98] - - - -  - - - - - - - - -  - - - - - - - -  - - -  - - - - -
Yella and Rajan [99] - - - - -  - - - - - -  -  - - - - - - - -  - - -    -  -
Ykhlef et al. [100] - - - - - -  - - -  - - -    - - - - -  - - - - - - -  -
Zhang et al. [101] - - - - -  - - - - - - -  -  - - - - - - - - -  - - - - - 

Zhang et al. [102] - - - -  -  -    - - - - - - - - - - -  - - -  - - - - -
Zhao et al. [103] -   - -  - - - - - - -   - - - - - - - - - - -  - - - - - 

Zhao et al. [104] - - - - - -  - - - -  - - - -  -  - -   - - -   -  - - -
Zheng et al. [105] - - - -   - - - - - -   - - - - - -  - - - -    - - - 

Zheng et al. [106] - - - - - -  - - - - - -   - - -  - - -  - - - -      -

Performance Metric

Authors

Data Augmentation Datasets Classification Feature Extraction

Figure 16. A summary of methods analyzed in this SLR. Symbol ‘X’ means that a corresponding
method is used in the reference [51–106].
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4.7. Recommendations

Different augmentation methods were identified and most augmentation techniques
applied had a strong impact on improving overall classification performance such as
adding random noise, time shifting, time stretching and warping, pitch modification,
mixup, scaling, and spectrogram transformations. These methods are recommended
to be used by the researchers in the area to improve the performance of classification
in case of small data availability. Furthermore, this study identified and reported the
contributions and limitations of selected studies in the application of data augmentation for
sound classification. All the highlighted issues arising with respect to applications of data
augmentation techniques will aid future research endeavors and help future researchers
in the development or implementation of more robust augmentation methods for better
sound generalization and improving sound recognition systems for real-world systems.

Currently, various convolutional deep learning methods with memory such as RNN,
LSTM, and their flavors such as time-delay neural network (TDNN) and bidirectional gated
recurrent neural networks (BiGRU), provide best results in the field of sound classifica-
tion. Deep learning models often require input data formatted as matrices and interpreted
as images. In that case, the appropriate feature extraction methods commonly used are
mel frequency cepstral coefficients and mel spectrograms, which allow converting one-
dimensional audio sequences into images that can be used for training deep learning
models. Furthermore, in addition to integrating an effective data augmentation tech-
nique, the need to identify the best representation of sound data is also a crucial factor for
improving performance results in sound classification.

4.8. Potential Threats to Validity

To ensure the complete findings of an SLR, the need to identify potential threats to
validity is very important. Possible threats to validity could be categorized as internal,
external, and conclusive validity. This SLR addressed the internal category and was con-
structed as a discussion among authors who agreed to formulate all research questions in
this study and to identify the synergy between our formulated RQs and research objectives.
Contrary to recent SLRs in other domains that focused only on journal papers, this SLR
applies a thorough and careful literature search in high-quality journals and conferences.
Based on this factor, the major literature search was in journal articles and conference
papers considering quality of the proposed findings and the ability to provide sufficient
information needed to address our defined research objectives.

The 56 selected articles in this research can represent the state-of-the-art in the field
of application data augmentation techniques for sound classification. Additionally, we
systematically applied automated and manual search strategies to identify existing litera-
ture. A snowballing method was adopted in the search for relevant articles with the aim
of avoiding the possibility of missing any relevant article using our search query, and the
search results were evaluated by thorough reading through the abstract for relevance.

For the validity of our conclusions, we reported all the details of our findings and
analyzed the search results. Therefore, we were able to obtain reliable and meaningful
results and that all potential threats to this study have been carefully addressed.

5. Conclusions

The aim of this review study is to identify the progress of data augmentation methods
in sound classification tasks related to environmental and medical sounds detection, and
secondly, to recognize the best methods with respect to classification and feature extraction
model. To this end, we applied a quantitative and qualitative mix of systematic literature
review. To the best of our knowledge, this study is one of the first to analyze the different
perspectives of data augmentation methods; however, there have been some previous
reviews based specifically on sound classification methods, but this SLR combines all the
progress of data augmentation, classification, and feature extraction methods into a single
coherent paper. Unlike the progress of data augmentation methods in computer vision,
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through our systematic literature review, we identified that there is still a lagging in the
application of advanced methods for generating synthetic sound data.

The literature search was based on three databases (Web of Science (WoS), Scopus, and
IEEEXplore) with the intention of searching only for high-quality academic publications
in journals and conferences. This systematic review of the literature shows that studies in
sound classification belong to a wide variety of applications areas, environmental sound
classification, music instrument recognition, mechanical sound recognition, medical disease
detection, etc. In this study, to focus on recent trends and future projections of previous
studies in sound classification, we narrowed down our search to studies within a five-year
span (2017–2022) and 56 selected publications were identified after thorough selection crite-
ria were applied. For better interpretation, these selected publications were analyzed based
on quantitative and qualitative methods with the aim of addressing the research questions
raised regarding adopted data augmentation techniques; measuring the efficiency of these
techniques on learning algorithms, future recommendation of augmentation techniques to
improve the efficiency of classifier in developing smarter sound classification systems that
are applicable in real-life scenarios were made.

This study contributes to the state-of-the-art by thoroughly creating a new and com-
prehensive systematic literature review that structures data augmentation techniques for
advancing the sound classification task. This study showcases the influence and the
shortcomings of data augmentation methods by identifying the obstacles and areas of
improvement that would benefit substantially in future research focusing on the need to
improve data augmentation methods for small datasets and improving sound classification.
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