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Abstract. The future wireless network aims to accommodate new forms
of services arising from the large scale inclusion of the internet of things
(IoT). This inclusion of IoT and ever-increasing users will require the fu-
ture network to possess higher system capacity and manage heterogeneity
in the service requirement. Layer division multiplexing (LDM) is a poten-
tial technology that can enhance network capacity by taking advantage
of this inherent heterogeneity of future wireless networks. This chapter
presents a transmission framework where the LDM layer serves IoT-user
pairs. The IoT devices are served using an LDM upper layer (UL), and
the users are served using a lower layer (LL). We have developed a phys-
ical layer model incorporating LDM and tested its performance for the
intended usages scenario. Both UL and LL performance show the capa-
bility to serve IoT devices and users to justify our proposed transmission
scenario. Mobility management for LDM LL is a crucial challenge as
it was initially developed for static receivers. Moreover, the mobility of
both IoT devices and the user impacts the LDM pair sustainability. To
test our system’s robustness against receiver mobility, we have developed
an analytical model to test the link sustainability for LDM pairs when
both receivers have different levels of mobility. We have also included
massive multiple-input multiple-output transmission and beamforming
in the system model, focusing on the future wireless network. For simu-
lation, We have considered three different mobility models for both types
of receivers, and link sustainability for LDM pairs belonging to different
mobility groups are compared to determine the more suitable LDM pair
from receiver mobility. The achieved results show that LDM can enhance
the system capacity in future wireless networks.
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1 Introduction

The future wireless system’s development is focused on achieving higher capac-
ity and flexibility than the existing systems. The future network should provide
seamless services to new types of services such as the internet of things (IoT), en-
hanced Mobile BroadBand (eMBB) communications and tactile internet. These
services are setting the standards for the long term evolution of fifth-generation
(5G) and beyond 5G (B5G) [1]. Multiple technologies have the potential to
achieve this seamless connectivity with increased user capacity. Non-orthogonal
multiple access (NOMA) is one such potential technology [2, 3].

In this chapter we are exploring the application and feasibility of LDM in
future wireless communication to achieve higher network capacity while deliver-
ing the required standard of user and IoT communications. We have developed a
reliable downlink transmission framework and usages model that can take advan-
tage of the different characteristics of the LDM layers. LDM is a layer division or
power-based NOMA which can be configured with diverse power levels (layers)
to provide different services using its Upper and Lower layer [4]. LDM can serve
two different services using a single traffic channel (OFDM channel as will be
presented later) as both layers can use the available time and frequency slot of
the traffic channel simultaneously. This characteristic makes LDM a more spec-
tral efficiency system as it can use the available channel capacity for both layers
with intelligent layer configuration. One such simple structure is used in the in-
tegration of LDM into advanced television systems committee (ATSC 3.0) PHY
layer baseline technology [5]. In this case, a robust configuration is implemented
in the Upper (Core) Layer (UL), oriented to portable and mobile receivers. On
the other hand, in the Lower (Enhance) Layer (LL), a high capacity configu-
ration is chosen to deliver high data rate services, such as ultra-high-definition
television (UHDTV) or multiple high definition television (HDTV) services, to
fixed receivers. Motivated from the successful integration of LDM in ATSC 3.0,
we have investigated the possibilities of convergence between the user and IoT
devices based on their difference in required data rate and network condition.
In our model, the UL is used to serve the IoT communications while LL is used
to serve the users (e.g. mobile handsets). As the model is developed for future
wireless needs, it has to perform with user mobility. We have aimed to implement
LDM UL and LL for the mobile user, which is a challenge as in ATSC 3.0, static
users are considered LL receivers.

We have developed an OFDM physical layer framework to adopt LDM into
our transmission model. In principle, heterogeneity for the 5G network is dic-
tated by QoE/QoS of different applications – in terms of latency, privacy, data
rate, accuracy, and robustness requirements. LDM Upper and Lower layers can
address these heterogeneous requirements as UL offers higher accuracy and ro-
bustness with lower latency; in contrast, LL can ensure better privacy and a
higher data rate. In this chapter, we are looking into a downlink transmission
scenario for IoT and users. Moreover, the impact of mobility on the formation
and termination of IoT pairs will be explained. A way to calculate LDM link
sustainability for combining different mobility models of both receivers is devel-
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oped and explained. This chapter aims to give readers an insight into the LDM’s
applicability in future wireless communication.

The remainder of the chapter is structured as follows: Key works in LDM for
broadcasting and 5G wireless communication is discussed in section 2. The use
case scenario of this transmission system is described in section 3. The system
model is described for the downlink communication scenario in section 4. An
analytical framework for LDM performance evaluation is presented in section
5. The device mobility model and its impact on the LDM pair is discussed in
section 6. Section 7 describes our findings and relevant analysis. Moreover, the
outcome is summarised in the final section 8.

2 Literature Review

LDM is a power-based NOMA technology that was introduced in cloud trans-
mission (a flexible multi-layer system that uses spectrum overlay technology to
deliver multiple program streams simultaneously) [6] in 2012. Later, LDM was
accepted for use in the physical layer design of advanced television systems com-
mittee (ATSC) 3.0 due to its higher degree of flexibility and performance advan-
tages over existing orthogonal multiple access (OMA) techniques [7]. LDM can
combine various services in a single radio frequency (RF) channel to support mul-
tiple user applications using the same traffic channel. Since adapting LDM into
ATSC 3.0 physical layer design, much work has been done on finding the LDM’s
performance for the downlink broadcast transmission. Reference [8] for exam-
ple investigated this performance trade-off between UL and LL where capacity
and coverage performance of LL at the cost of that of UL is shown for ATSC
3.0. [8] work shows a better performance of LDM compared with time-division
multiplexing (TDM) and frequency-division multiplexing (FDM). Reference [9]
proposed a multiple physical layer pipe (M-PLP) configuration based on multi-
layer LDM and performed a capacity analysis of this configuration to determine
the lower capacity bound (approximately 1 Mbps) of UL. In [10] the authors
showed that LDM UL provides higher channel capacity than TDM/FDM at a
low signal to noise ratio (SNR), and LL can do the same at high SNR conditions.
Due to increased capacity gain over TDM and FDM, LDM is gaining interest in
5G deployment. Many have investigated the possibility of using LDM in point
to multipoint (P2MP) and broadcasting transmission in 5G wireless communi-
cation. Both [11], [12] investigated the capacity improvement of LDM over OMA
techniques for providing multimedia services in 5G and found that LDM offers
higher channel capacity. On the other hand, in [13] higher network throughput is
achieved by using LDM for a unicast-broadcast convergence. These works show
that LDM can serve heterogeneous devices and increase network capacity. Most
of the works on LDM are focused on exploiting its advantages for broadcast mul-
timedia transmission; these works motivated us to look for other use cases where
LDM can be successful. In our previous work [14], we proposed a system model
that uses LDM to take advantage of the heterogeneity requirements of user and
IoT devices. Our analysis showed that LDM increased capacity is achieved only
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Fig. 1. Downlink transmission model for IoT devices in urban area

at higher SNR for both UL and LL. Due to this higher SNR requirement, the
impact of the rapid changes in the channel condition arising from the mobil-
ity needs to be determined. Therefore, mobility management for LDM pairs is
crucial for the successful broader implementation of LDM in the future wireless
network.

The following section describes the usage scenario where such user IoT pairing
would be needed. Both urban and rural scenario showing the usages model is
presented. The focus is mainly on the IoT usages as these are the expected new
inclusion in future wireless communication.

3 Use case scenario of LDM in future wireless network

Our system model focuses on heavy downlink communication for IoT and users
[14]. It is widely assumed within the predecessor communication technologies
that IoT communication does not require much downlink data. However, the
future usage models are expected to demand more uplink and downlink data
transmission for both users and IoT devices. This section aims to describe a
few such future transmission scenarios where our proposed system model can
be of use to support such transmission. We have considered both urban and
rural scenarios for such possible heavy downlink transmission dependency for
mMTC communication. These possible usages scenarios justify our downlink
heavy transmission model for IoT communication.

3.1 Urban use-case scenario for IoT downlink communication

The urban areas are expected to be high devices density areas. Fig. 1 depicts
a transmission scenario for the downlink communication requirements for au-
tonomous vehicle systems and cloud-controlled drones in the future city context.
Small cell or picocells are expected to adopt in urban cellular infrastructure.
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Fig. 2. Downlink transmission model for IoT devices in rural area

Hence, a transmitter is expected to take advantage of existing urban structures
such as radioheads installed on the lamp-post, as shown in Fig. 1 [15]. Along-
side the massive number of IoT devices attached to users, such as smartwatches
and other devices, cloud control drones and autonomous vehicle systems will
add to the total number of IoT users in future cities. The drones in this Fig. 1
are controlled from a central cloud location, requiring constant control informa-
tion from the cloud depicting high downlink communication dependency. Au-
tonomous vehicles also have a heavy downlink dependency as they also require
continuous traffic and control information from the cloud to navigate the urban
streets [16]. Most of these communications are expected to be real-time com-
munication; hence they require ultra-reliable low latency communication [17].
As the number of users and IoT devices are expected to multiply significantly,
future wireless networks need to achieve the capability to manage such a high
number of connections. Due to the similarities of payload information in most
of the associated machine type devices, any IoT device can be paired with a
suitable user device. In this configuration, the UL layer is suitable for all IoT
devices due to its robustness and lower latency.

3.2 Rural use-case scenario for IoT downlink communication

The application of IoT in the rural scenario is different from that of the urban
scenario depicted in the earlier section. Many future farming and agriculture
systems will be controlled and monitored by IoT sensors, and cloud-controlled
drones can be useful for surveillance, as shown in Fig. 2. The drones need real-
time control information as described in urban scenarios; sensors also have signif-
icant use for future rural applications, for example, to monitor water flow, assess
stored food conditions, and different agriculture-related monitoring. These de-
vices can serve multiple services based on the requirement and are expected to
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be self-reconfigurable upon receiving control information from the clouds. Subse-
quently, these devices require a heavy downlink transmission. One major change
in the network configuration of rural areas is the use of cells with large coverage
areas. This large cellular coverage area will make the user IoT pair more sus-
tainable even when both are receiving devices are mobile. However, the design
of LL will be more critical to the extensive coverage area and hence will be more
susceptible to channel conditions. However, the slow nature of changes in rural
areas makes for better channel prediction. Hence, the UL and LL can serve these
IoT and user combinations in such scenarios.

A physical layer transceiver framework that adopts LDM within a standard
OFDM model is described next. The model is for a two-layer LDM transmission
where UL serves the IoT devices, and the LL is used to serve the user.

4 Transceiver Framework Adopting LDM

We have proposed the integration of LDM within an OFDM system as shown
in Fig. 3. We are focusing on benchmarking the performance of LDM layers
within an OFDM framework, and for that purpose, have not included any error-
correcting code in our proposed model. Like any communication model, the
system is described as per transmitter, channel and receiver.

Transmitter framework with LDM superposition The processing of both
UL and LL data is done in parallel at the transmitter end, as shown in Fig. 3.
Both layers can have different transmission bit rate with different Quadrature
Amplitude Modulation (QAM) modulation scale M . The UL will have a lower
bit rate hence a lower M , and the opposite is assumed for the LL. However, M is
chosen in a way that will result in an equal number of UL and LL QAM symbols.
LDM superposition is done in the next step, resulting in the same number of
LDM symbols. The power of the LL symbol is reduced during the superposition
process to have a smaller power portion of the total transmit power. The total
transmission power is the same as any single-core transmission. Equation (1)
represents the LDM superposition where X(k) represents the LDM symbols
of kth sub-carrier, g is the power ratio between layers, and XUL(k), XLL(k)
represent UL and LL symbols of kth sub-carrier, respectively. As a result, each
LDM symbol contains a UL layer symbol and a LL symbol where the total
number of LDM symbols is the same as that of an OFDM system in a sub-
carrier.

X(k) = XUL(k) + gXLL(k). (1)

Channel model A single traffic channel serves user-IoT paired devices with
LL and UL layer data. In this analysis, we have considered the AWGN channel
model. The IoT device and user come under various mobility models, and hence
the channel condition will vary for both of them. However, the IoT devices are
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Fig. 3. OFDM transmission framework with LDM adaptation

assumed to be in poorer channel conditions due to their versatile locations and
power restrictions, making them ideal recipients of UL data. The user device is
more sensitive to channel conditions, but it can enjoy a higher data rate due to
the properties of LL. We assume perfect channel estimation and perfect recep-
tion of control signalling at the receivers, and receivers have all the necessary
information needed to detect the signal.

Receiver framework for LDM detection The LDM signal at the receiver
can be expressed by

Y(k) = XUL(k).H(k) + gXLL(k).H(k) + N(k), (2)

where Y(k) is the received signal of kth sub-channel, H(k) is the channel matrix,
and N(k) is the added noise. The dimensions of all the parameters used in (2) are
the same as the number of OFDM symbols of kth sub-carrier, which we assumed
to be 64 in our simulation. The UL detection is done in a simple OFDM detection
process where the LL signal from (2) is treated as added interference. Equation
(3) shows the total noise and interference for the UL detection. UL detection
does not require complex computing; hence this is suitable for low power IoT
devices. The signal at the receiver will have the originally transmitted signal
with added noise as well as channel effects and can be expressed as

NUL(k) = gXLL(k) .H(k) + N(k). (3)

The detection of LL data is done in the next phase, where the detected UL
data is processed the same way as it is done at the transmitter. The recon-
structed UL data was then subtracted from the original received signal. Then
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the remaining signal is amplified and detected in that order. Equation (4) shows
the subtracted signal for the LL detection.

YLL(k) = XUL(k).H(k) + gXLL(k) .H(k) + N(k)−XUL re(k). (4)

Assuming a perfect UL detection with perfect channel estimation, we can
derive LL signal as

YLL(k) = gXLL(k) .H(k) + N(k). (5)

The signal from (5) is amplified with a factor of 1/g before the detection of
LL data. As we can not separate noise during this phase of detection, the noise is
also amplified by the same ratio, and it makes the LL data detection more prone
to channel noise power level. Successful UL detection is essential in this trans-
mission framework for successful LL detection, so the UL needs to be reliable
and robust. Moreover, the LL data detection process is more computationally
intensive, so user devices require higher computation capability.

The analytical model to evaluate the UL bit error rate (BER) is developed
empirically, and described in the following section. The Chanel capacity distri-
bution and the maximum UL channel capacity is also derived.

5 Theoretical Evaluation

We analyzed the system models described in the last section to evaluate the
performance of LDM in our proposed usage models. To justify the results of
this analysis and have a reference point for future work, we have developed an
empirical equation to examine the performance bound of the LDM UL. Due to
the incorporation of LL data, the maximum UL channel capacity is bounded by
the g. This capacity bound is also defined in this section.

5.1 Bit error rate of LDM upper layer

We considered the performance of LDM in an uncoded OFDM system in the
AWGN channel. We have obtained the equation for symbol error rate (SER) of
an uncoded QAM OFDM system from [18] as

SERAWGN
k = 4

(
1− 1√

M

)
Q

(√
3 ρk
M − 1

)

− 4

(
1− 1√

M

)2

Q

(√
3 ρk
M − 1

)2

, (6)

where

Q(x) =
1

pi

∫ pi
2

0

exp

(
− x2

2 sin2θ

)
dx (7)
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and ρk is the SNR of the kth symbol.
By assuming Gray coding for QAM constellation, which gives a single bit

error for each symbol error, we get the relation between BER and SER as
BER = SER/M . An analytical model for the BER calculation of the UL is
developed from the equations above. For evaluation, no inter symbol interfer-
ence is assumed. LL has lower power than the UL; therefore, the value of g is
always negative in dB. We apply this setup for all the different QAMs used. We
identified that the UL data rate and g follow the relation in an uncoded OFDM
system as

g = −4Mc (8)

where Mc is the QAM order for the UL. Now, the UL SNR is calculated from
channel SNR as

ρkcl =
2 ρk
−g

. (9)

Using the values of UL SNR from (9) in (6) we calculate the SER of the UL
data as

SERAWGN
k = 4

(
1− 1√

M

)
Q

(√
6 ρk

g(1−M)

)

− 4

(
1− 1√

M

)2

Q

(√
6 ρk

g(1−M)

)2

. (10)

5.2 Channel capacity distribution

The channel capacity of an AWGN channel can be written as

C = log2

(
1 +

Ps
Pn

)
, (11)

where Ps is the signal power and Pn is the noise power. This shows the de-
pendency between channel SNR and capacity, and can be used to calculate the
channel capacity for LDM layers as [10]

CUL = log2

(
1 +

PUL
PLL + Pn

)
(12)

and

CLL = log2

(
1 +

PLL
Pn

)
. (13)

As the power ratio g is known, we can evaluate the UL’s maximum system
capacity with a fixed value of g from

CUL = log2

(
1 +

1

g

)
. (14)
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Fig. 4. IoT and user mobility in LDM pairing

The following section considers a model where both user and IoT receivers are
mobile. A detailed analysis of LDM pair sustainability with mobility is presented
in the next section.

6 Mobility model

We are considering both user and IoT mobility in this analysis. In ATSC 3.0,
a 4k-Ultra High Definition TV or multiple enhanced HDTV services are trans-
mitted using LL to a fixed receiver with advanced antennas [19]. The proposed
model is developed to test the UL and LL layers’ performance with various mo-
bility models for users and IoT devices. Moreover, the future wireless network
is expected to use advanced transmission technology such as massive MIMO to
transmit configurable signals with custom power and beamwidth management.
These technologies will allow the system to manage interference and frequency
reuse more efficiently. However, these techniques will lower the coverage area
with narrower beamwidth and lower transmission power. This smaller coverage
area will be more challenging to sustain the mobile LDM pair. Ideally, we want
our LDM pair to be within the coverage area for the duration of the entire data
transmission to minimize the effort needed to form new IoT-user pair. There-
fore, there is a trade-off between the transmission beam width and power and
the optimum coverage area for a different receiver mobility group.

6.1 IoT and user mobility

As shown in Fig. 4, the IoT devices are assumed to be distributed randomly over
the entire transmission, and the initial beam is directed at the user location;
hence it is at a zero degree angle with the transmission beam. The IoT devices
can start with any random angle θ2i with transmission direction. Fig. 4 shows
the mobility of IoT and user devices from an initial position to a final position.
The base station (BS) is assumed to be located at position (xb, yb). The initial
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IoT and user location is assumed to be at (x1, y1). Then the initial distance
Linitial can be calculated using

d =
√

(x1 − x2)2 + (y1 − y2)2. (15)

The transmission is assumed to be directed at the user’s initial position.
Therefore, the user is initially located on the x-axis, as shown in Fig.4. The
distance between the user’s initial position and the base station is the same as
the x values of the user’s initial coordinates.The initial angle between IoT device
and BS θ2i can be calculated as

θ2i = cos−1

(
l2initial + x2

1 − y2
1

2linitial x1

)
. (16)

If the device moves at a random speed v for a time t to reach its final position,
then the distance between IoT’s initial and final position d can be written as

d = v t. (17)

The IoT device is assumed to move at a random angle φ to the (x2, t2) after
time t. Then the final position can be calculated using

x2 = x1 + d cos(φ), (18)

and
y2 = y1 + d sin(φ). (19)

The coordinates of BS and IoT is now known. The distance between the
initial and final location of IoT and with BS can be measured using (15). At the
final position, the angle between BS and IoT is taken as θ2 as shown in Fig. 4
which can be calculated as

θ2f = cos−1

(
l2final + x2

2 − y2

2lfinal x2

)
. (20)

Similarly for user device, the final angle θf can be calculated using the fol-
lowing values of user’s initial and final position.

θf = cos−1

(
l2initial + l2final − d2

2linitial lfinal

)
. (21)

By assuming tp as the power transmitted from the BS with np being the
white noise power, h being the channel fading. Path-loss Lp can be calculated
as [20]

Lp = 32.4 + 20 log10(fc) + 20 log10(r), (22)

where fc is the carrier frequency in GHz, and r is the distance between trans-
mitter and receiver in meters. Then finally, we can calculate the SNR at IoT
devices from

ρ =
tp h cos θ

np Lp
, (23)
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where h is the time selective fading coefficient. For L number of transmission
paths, h depends on the career frequency fc and Doppler frequency fd. The
following equation provides the relation between h and these above parameters
as a function of time.

h(t) =

L−1∑
i=0

ai e
−j 2π fc τi ej 2π fdt. (24)

From this relation, we can calculate h from the carrier frequency fc and the
speed of the devices, which is the cause of the Doppler frequency fd. We assume
the SNR of IoT at the initial position as ρ1. IoT data is transmitted using the UL,
and LDM configuration is developed based on ρ1 and user network conditions. As
the IoT and user device moves from the initial position, the SNR condition will
keep changing. The LDM pair needs to break when the minimum SNR required
for the IoT devices or the user is greater than the channel SNR of either devices.

6.2 The range of IoT device’s initial position

When forming LDM pair, both user and IoT devices need to be within the
coverage area. As the transmission is directed towards the user, we need to
sort out the boundary condition for the IoT device that will keep it within the
transmission angle. To simplify, we are assuming the base station location as
(0,0), we get the initial distance between BS and IoT as

Linitial =
√

(xb − x1)2 + (yb − y1)2

=
√
x2

1 + y2
1 . (25)

Using (16) and (25) we can derive the following relation

cos(θ1) =
L2
initial + x2

1 − y2
1

2Linitial x1

=
x2

1 + y2
1 + x2

1 − y2
1

2Linitial x1

=
2x2

1

2Linitial x1

=
x1

Linitial
. (26)

For the IoT device’s initial position to be within the transmission area, the
maximum value of θ1 can be θmax = Beamwidth/2. For this θmax angle, we can
calculate the maximum value of the initial y position from a given x position
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using (26) and derive the following relation.

cos(θ1)

x1
=

1

Linitial

Linitial =
x1

cos(θ1)

x2
1 + y2

1 =
x2

1

cos2(θ1)

y2
1 =

x2
1

cos2(θ1)
− x2

1

y1 =

√
x2

1

cos2(θ1)
− x2

1. (27)

Equation (27) gives the maximum limit on the initial y position for IoT device
for any given x value and transmission beamwidth.

6.3 Mobility model

In the proposed scenario, we have considered IoT devices attached to human
usages, such as smartwatches, car sensors and similar devices. So the mobility
model of these devices is similar to the human mobility model. We have consid-
ered the following three mobility models for IoT movement.

Random Way-point mobility model This mobility model represents static
to downward movement in urban and rural areas. This movement model applies
to non-motorised movements such as walking, running, and cycling. The speed
of the users in this model is assumed to be within the range of 0 to 10 kph, and
the angle is between 0 to 360 degree. The movement pattern is random both in
terms of speed and direction as both can be changed randomly at any time [21].
For simplicity, we have assumed that the devices can alter their speed after every
t time interval and direction after every 100 meter.

Manhattan mobility model This model refers to the urban street movement
for motorised vehicles [21]. The roads are assumed to be in a grid design with
the change of direction can only be multiple of 90-degree angle. We assume the
block lengths to be 200 meter for this work, which means the user can change
direction every 200 meter with a speed range between 10 to 40 kph.

Free-way mobility model This mobility model is for unidirectional mobility.
In this model, the device keeps moving in a constant direction for the whole
scenario with variable speed. We have taken this model to represent vehicle
movement on the motorway. This model assumed the vehicle speed to be between
40 to 100 kph. Moreover, as the vehicle does not take turns frequently and moves
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Fig. 5. Performance comparison of LDM UL between simulation and analytical results
for 16, 32 and 64 QAM modulation

freely via a single road at a higher speed, we can assume their movement to be
unidirectional for a more petite time frame. This model is a simple linear model
where the receiver’s position can be predicted.

7 Results and Analysis

We are presenting two sets of analyses to evaluate our transmission framework.
In the first set, we test the performance of LDM transmission without any ad-
ditional channel coding. The results show different channel SNR requirements
for UL and LL data detection. Moreover, our analytical model is also verified
in this analysis. In the second set we test the link sustainability of LDM pair
with mobility. All our previously discussed mobility models are considered in
this simulation, and the results show the feasibility of LDM for mobile receivers.

7.1 The performance of LDM in an OFDM framework

In this simulation, two independent data sets are transmitted using LDM within
an OFDM framework using an AWGN channel model. The SNR values presented
in the results refer to the overall channel SNR for the OFDM signal. Table 1
presents the parameter used in these simulations. The analytical model in (10)
is also evaluated alongside the simulated values. The distribution of channel
capacity between UL and LL is also given, which provides a clear indication of
the applicability of both layers for IoT devices and users, respectively.

The performance bound of the UL layer presented in the earlier section is
evaluated in Fig. 5. The BER performance follows a waterfall curve as the BER
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Table 1. OFDM parameters used for LDM simulation

Parameter Values

No. of carriers 64
Single frame size 96 bits
Total no of frame 1000
No. of pilot bits 4
Cyclic extension 16 bits
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Fig. 6. BER performance of LDM LL transmission for 16, 32 and 64 QAM constellation
with a fixed UL data rate

decreases with channel SNR. The SNR does not calculate the additional interfer-
ence to UL data from LL data. We have tested the UL performance for different
data rates, which is varied by QAM modulation index M (16, 32, and 64) and
the power ratio g is selected as per (8). From the figure, we see overlapping BER
performance for analytical and simulation results, which shows the correctness of
our developed performance bound. This equation can be used to evaluate future
works on LDM and OFDM. Another noticeable characteristic from the results
is the increment of SNR values for similar BER performance as the data rate
increases.

Fig. 6 compares the performance of UL and LL and evaluate their perfor-
mance with our proposed IoT-user LDM usage models. The power ratio g is set
fixed at -10 dB in this analysis. We simulated the system with different data
rate combinations for the UL and LL. The UL data are fixed at 192 bits (16
QAM) per frame, while the LL data ranges from 192 bits (16 QAM), 240 bits
(32 QAM) and 288 bits (64 QAM) per frame. The UL performance is unchanged
with the different data rates of the LL. Moreover, we obtain a bit error rate of
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Fig. 7. Distribution of channel capacity between LDM UL and LL for fixed power ratio
g

10−4 at around 22 dB. In [22], the authors investigated the UL performance
for QPSK with a strong low-density parity-check (LDPC) coding of 4/15. They
achieved the same 10−4 bit error rate at 7 dB. They also attained a similar
LL performance for 64 QAM at 20 dB. In another work, [23] used BPSK for
the UL with 1/8 Turbo coding for error correction and QPSK for LL with 1/2
turbo coding and achieved a similar performance at 1 and 15 dB, respectively.
We get a similar performance of LL around 40 dB channel SNR for uncoded
OFDM system. Our model requires higher SNR due to lack of error correction
ability as we were focused on finding the performance of LDM itself. However,
we also have around 15 dB higher SNR requirement for LL than UL, which is
similar to the results found in [23]. Similar to the earlier results, higher SNR
is needed to achieve similar BER performance with a higher data rate. Fig. 6
shows the channel condition required for different receivers. The receiver of the
UL can be in the worse transmission area with a poor SNR, whereas the receiver
of the LL needs to be in a good coverage area for successful detection. The BER
performance of UL at lower SNR works well for small IoT devices as they will be
distributed among different places with varying channel conditions. On the other
hand, LLs need higher SNR values, as seen in Fig. 6, which is more suitable for
users due to their better channel condition and data requirement.

Channel capacity distribution between the LDM data layers is explained
using (11), (12) and (13). Fig. 7 shows the total channel capacity distribution
between the LDM layers. The figure shows that the capacity distribution is
lossless and non-linear. At lower SNR, the UL capacity is higher than that of the
LL. However, it gets saturated with an increase in SNR, which can be calculated
using (14) and shows the maximum UL capacity in any given LDM configuration.
This distribution works well for IoT devices in our usage model as the devices are
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Fig. 8. Impact of the LDM pair mobility on the sustainable link time for random
way-point mobility model.

assumed to be in different locations, which can cause bad channel conditions for
some devices. Due to the robustness of the UL against the channel conditions, it
can be used to serve all IoT devices. Moreover, the UL capacity is lower, which
also fits with the IoT devices data requirements we assumed in our usage model.
On the other hand, the LL has a low capacity at lower SNR. The capacity of LL
increases significantly as the SNR values improve. LL has most of the available
channel capacity in good channel conditions.

7.2 Receiver mobility

We have simulated the user and IoT mobility based on the earlier mobility
models. The LDM pair performance is evaluated for link sustainability for a
different mobility model and transmission beamwidth combination. In the first
case, the user is assumed to be static while the IoT device is mobile. The x
position of the IoT devices is between 0 to 500 meter and is randomly chosen in
each iteration. The range of y position is calculated using the known transmission
beamwidth, x and (27). In the second case similar simulation is done for the user
movement, assuming that the transmission angle is set based on the user’s initial
position. Moreover, we simultaneously moved both IoT and the user to determine
the sustainable link time in the final setup. We have combined the random
way-point and Manhattan model to test the link sustainability of such mobility
combination. These comparisons will help the system form LDM pairs more
efficiently based on the mobility group of the receivers. Both models represent
urban areas, whereas the free-way mobility model is for separate geographical
areas.

In both Fig. 8 and 9, the IoT devices are moving according to the random
way-point mobility model while we change the mobility model for users. In Fig. 8
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Fig. 9. Impact of the LDM pair mobility on the sustainable link time for random
way-point model for IoT and Manhattan model for user.
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Fig. 10. Impact of the LDM pair mobility on the sustainable link time for Manhattan
mobility model.
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Fig. 11. Impact of the LDM pair mobility on the sustainable link time for Manhattan
model for IoT and random way-point model for user.

both IoT and user devices are in the same mobility group. User mobility has less
impact on pair sustainability as the transmission is directed towards the user.
The IoT devices go out of the transmission area faster as there are cases when
the IoT devices initial position can be at the network edge, which will break
the LDM pair more quickly. The combined results follow a similar trend as IoT
mobility, and as expected, the combined mobility offers a shorter sustainable link
time. In Fig. 9, the user is on a higher mobility model, hence performs worse
than IoT. We see a similar pattern in this case as well, where the combined
mobility serves less than the user mobility. From these results, this is clear that
the most efficient pairing would be IoT devices and users in the same mobility
group; otherwise, the system will need to find a new device for pairing as one of
the devices goes out of range.

In both Fig. 10 and 11, the Manhattan mobility model is used for IoT mobility
while we used different mobility models for user mobility. In Fig. 10, again,
just as in the case of the random way-point mobility model, the user stays
within the transmission area for a significantly longer period. At a 120 degree
transmission angle, user mobility offers almost double link sustainability time
than IoT mobility. Figure. 11 on the other hand, shows similar results with one
exception; unlike the other results here, the combined mobility is almost the same
as IoT mobility. This behaviour is due to the gap in the link sustainability time
of user and IoT mobility. As user mobility offers a much higher link sustainable
time, the pair needs to be broken almost every time due to the IoT device’s
network condition. This pattern can help the BS monitor one of the device’s
conditions with higher frequency based on their mobility model, lowering the
computation load at the BS with higher efficiency.
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Fig. 12. Impact of the LDM pair mobility on the sustainable link time for free-way
mobility model.

Table 2. Combined performance comparison for 60 degree transmission angle

Mobility model IoT User Both
Ratio
IoT

Ratio
User

Random-Way-point 4.49 9.02 3.1 0.69 0.34

Random-Way-point Manhattan 4.49 1.58 1.09 0.24 0.68

Manhattan 0.78 1.59 0.54 0.7 0.34

Manhattan Random-Way-point 0.77 9.05 0.76 0.98 0.08

Free-Way 0.15 0.21 0.1 0.64 0.46

In Fig. 12, both IoT device and user are moving as per the freeway mobility
model. Both devices are moving at a higher speed, and hence the sustainable
time is much lower than the urban scenario. However, the gap in performance
between IoT and user devices are lower in this scenario. In future work, other
technologies such as beam-following can be applied to improve the performance
in this scenario as the movement is unidirectional and predictable. Table 2 shows
the comparison of link sustainability at 60 degree transmission angle for all five
transmission scenarios. When both devices are in the same mobility group, IoT
devices are more likely to go out of range before the user. As we can see, when
the gap between user and IoT sustainability is too significant, the gap between
IoT and combined mobility performance become smaller. The BS can use this
knowledge of known patterns during LDM pairing and make a more efficient
IoT-user LDM pair that can improve the LDM performance in future wireless
networks.
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8 Conclusion

The analysis presented in this chapter focuses on the performance of LDM and
its sustainability when both receivers have various degrees of mobility. LDM can
take advantage of the diversity of channel conditions and user requirements. An
adaptive power-sharing ratio with extensive experimental measurement to use
LDM UL for mMTC is developed in this work. The modelled power-sharing ratio
has been explored to derive an analytical model that defines the LDM UL per-
formance bound. The proposed analytical model has been shown to be robust
for any order of modulation size, which justifies the LDM UL’s feasibility for
downlink communications for the future wireless network in certain downlink-
heavy use cases. In this chapter, we have considered three mobility models to
represent the movement of both IoT devices and users. In each case, the trans-
mission direction is set up based on the initial user location; hence the user has
a more manoeuvrable distance in all directions before it goes out of the coverage
area. In contrast, the IoT devices are positioned randomly on the total coverage
area, creating a scenario where IoT mobility plays a more dominant role in the
sustainability of the LDM pair. The simulation results show the possibility of
LDM in our proposed scenario. Future work on this area may consider machine
learning to improve the accuracy of LDM pairing based on the mobility model
and position of the user and IoT devices.
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