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This work investigates the effectiveness of solar heating using clear polyethylene bags against rice
weevil Sitophilus oryzae (L.), which is one of the most destructive insect pests against many strategic
grains such as wheat. In this paper, we aim at finding the key parameters that affect the control
heating system against stored grain insects while ensuring that the wheat grain quality is maintained.
We provide a new benchmark dataset, where the experimental and environmental data was collected
based on fieldwork during the summer in Canada. We measure the effectiveness of the solution using
a novel formula to describe the amortising temperature effect on rice weevil. We adopted different
machine learning models to predict the effectiveness of our solution in reaching a lethal heating
condition for insect pests, and hence measure the importance of the parameters. The performance

of our machine learning models has been validated using a 10-fold cross-validation, showing a high
accuracy of 99.5% with 99.01% recall, 100% precision and 99.5% F1-Score obtained by the Random
Forest model. Our experimental study on machine learning with SHAP values as an eXplainable post-
hoc model provides the best environmental conditions and parameters that have a significant effect
on the disinfestation of rice weevils. Our findings suggest that there is an optimal medium-sized grain
amount when using solar bags for thermal insect disinfestation under high ambient temperatures.
Machine learning provides us with a versatile model for predicting the lethal temperatures that

are most effective for eliminating stored grain insects inside clear plastic bags. Using this powerful
technology, we can gain valuable information on the optimal conditions to eliminate these pests.
Our model allows us to predict whether a certain combination of parameters will be effective in the
treatment of insects using thermal control. We make our dataset publicly available under a Creative
Commons Licence to encourage researchers to use it as a benchmark for their studies.

The global population has been estimated to be about 7.8 billion in 2020 and is expected to reach 9.8 billion in
2050'*. Therefore, increasing global grain production is a key factor to meet world food demands. Food produc-
tion and consumption are expected to increase by approximately 50-70% in 2050'-*. On the other hand, post-
harvest loss is responsible for huge damage of the total food production especially in some African countries and
causes about 20-40% loss, which is a significant loss compared to low food production in the same countries?.
Insects are the main cause of grain damage and grain losses are estimated to be 30-90%>°. Efforts to reduce
post-harvest losses would have a significant impact and improve food availability and food supply compared to
limitations and challenges to increase food production®.
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Rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae) is one of the most important insect pests of
stored wheat and other cereal grains worldwide®’. It is a primary stored-grain insect that attacks whole grains
and causes significant grain losses”®. The feeding activity of S. oryzae leads to a secondary infestation of pests,
fungal diseases, and grain spoilage”®. The mature rice weevil grows 3 to 4 mm long and the larvae feed internally
inside the grain kernel through its escape, creating distinctive tiny, round holes known as weevil damage’. The
eggs are laid on the grain surface and the incubation period to hatch is 2.62-5.85 days. When food is available,
male longevity is 42.63-58.72 days, and female longevity is 60.69-77.23 days®. Female fecundity rate is 53.60
eggs/lifetime’. Rice weevil growth acceleration occurs in temperatures of 25-30 °C and 65-75% Relative humid-
ity (r.h.)”®. Most grain storage ecosystems have temperature and r.h. close to the favourable conditions for rice
weevil growth and other insects, which also causes a vast loss of grain>!°.

Synthetic insecticides and phosphine fumigants are the most effective method used to control stored grain
insects®. These fumigants have some limitations such as relatively high cost and the ability of insects to develop
resistance to these insecticides*. Moreover, improper use of fumigants by smallholders and farmers could lead
to health and environmental hazards''. In many developing countries in Africa and Asia, grain production
depends mainly on small farmers and smallholders rather than large-scale governmental institutions®. In these
areas, the grains are stored in warehouses and open granaries with a poor storage system and lack of adequate
technologies®. Therefore, several non-chemical control methods have been used against stored grain insects,
such as airtight (hermetic) storage ozone treatment and thermal control>*!%. Thermal control against stored
grain insects has been used in many developed and developing countries. Large-scale heating control depends
on the heating of storage buildings, large warehouses, and big silos'**. On the other hand, many simple heating
systems have been adopted by small farmers in many developing countries. Solar disinfestation against insect
pests has been used successfully against soil, museum, and stored grain insects'*.

Thermal control depends on increasing the temperatures to 40-60 °C, which is lethal limits to most of the
stored grain insects'. Thermal control is a promising technique without any health hazards or development of
insect resistance. Different studies have investigated thermal control against rice weevil”®"'7. A complete adult
mortality of rice weevil was achieved after 130, 50, 12, and 4 min at 44, 46, 48, and 50 °C, respectively'®. Other
studies reported that rice weevil adults were killed after 4 days, and 40 seconds at 39, and 66 °C, respectively'.
According to Beckett!” the lethal time to kill 99.9 of the adult population of rice weevil is 37.36-3.71 hours
between 42 and 48 °C. In one of the authors’ previous studies, solar disinfestation was used against rice weevil
inside plastic bags of wheat grains under field conditions'*. These plastic bags were able to heat up the grains to
lethal insect temperatures of 4055 °C and were able to cause 67.6 + 30 % mortality of rice weevil adults'®. In the
same study various parameters that could affect the heating capacity of plastic bags to kill 100% of adult insects
were investigated, but no thermal model were developed for temperature distribution inside the plastic bags.
Therefore, the current work aimed to use Machine learning (ML) algorithms to examine the interaction among
various parameters to predict the best conditions lead to a complete suppression of insect population. One of
the main factors that were considered to be investigated in the initial study was the grain thickness inside the
bags. Since grains are considered a good heat insulator'*'3, it was hypothesised that the time to heat the grains,
especially at the bottom of the bags, will increase as the grain thickness inside the bags increases. Therefore,
different grain thicknesses were used.

Machine learning (ML) has been used as an alternative to mathematical and statistical modelling in differ-
ent fields including the agriculture sector'®*. Machine learning is very promising at monitoring and predicting
the quality of grain. It has shown great potential in the investigation of new grain storage strategies based on
different environmental factors. For example, in?! artificial neural networks (ANNs) were used as a predictive
model in an Internet of Things (IoT) workflow where the gain quality was monitored to predict the quality of the
stored grain and hence its deterioration during the post-harvest stages. In??, the quality of stored soybean seeds
was predicted under different temperature and packaging conditions using several machine learning models,
including ANN, REPTree and M5P decision tree algorithms, Random Forest (RF) and linear regression (LR)
models. RF model has outperformed other models in predicting the physiological quality indices of such seeds.
Mathematical modelling and multivariate analysis were also used? to evaluate the physicochemical properties
of early harvest of soybean stored at different packages and temperatures. A prototype wireless sensor network
in IoT platform was designed** for real-time monitoring of intergranular equilibrium moisture content, where
neural network algorithms were used to predict the physical, physical quality-chemical and microbiological
mass of corn stored in bag silos. Likewise, wireless sensor network prototype, IoT platform, and neural network
algorithms were used in® for real-time equilibrium moisture content monitoring and predicting grain quality
of corn stored in different conditions in silo and raffia bags. Furthermore, previous attempts have been made
to study the thermal behaviour of indoor air in greenhouses, where ML was used to predict the inside environ-
ment (e.g., temperatures) of plastic greenhouses or solar heating for soil disinfestation against microbes and
other organisms. For example, different machine learning models such as Multiple Linear Regression, Support
Vector Machine (SVM), Tree Ensembles, and Gaussian Regression Process were used' to predict indoor air
temperatures in a Moroccan greenhouse using the outdoor data, where the Gaussian Regression Process model
outperformed other models during the validation and testing stages. In?®, ANNs and SVM models were used to
estimate three variables: inside air, soil and plant temperatures, and energy exchange in a polyethylene green-
house in Shahreza city in Iran, showing a better performance by the Radial Bias Function (RBF) as an ANN
model compared to other models.

Unlike previous attempts, this paper introduces a supervised machine learning solution to help better under-
stand the thermal behaviour inside plastic bags to maximise the effectiveness of solar heating against stored
grain insects. This is done by introducing a new formula to measure the effectiveness of the solution, and hence
formulate the problem as a binary classification problem. To the best of our knowledge, the study is the first of
its kind to predict lethal heating conditions of insect pests and is the first to model the effectiveness of thermal
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control (solutions) using machine learning. Moreover, we adopted model explainability to provide the commu-
nity with the different conditions that can lead to an effective heating solution for grain disinfestation and help
in better understanding the effect of thickness on our solution.

Materials and methods

Field experiment. In order to investigate the effectiveness of solar heating using clear plastic bags, differ-
ent parameters have been examined. Some of these variables are solar radiation, air temperature, air humidity,
substrate (ground) material, wind speed, grain thickness, and grain moisture content'*?’-%**. It has been also
assumed that mixing grain and stacking them inside insulating boxes can help to minimise the time required to
heat the grains to temperatures of 40-60 °C. Therefore, before the experiment, the wheat grain moisture content
was uninformed at 12.5% by a rotating metal container. In the field, wood sheets were also added beneath the
plastic bags to uniform the substrate with a low thermal conductivity material. All environmental and tempera-
ture data were collected during a field experiment in Canada in the summer of 2018. There were four different
treatments of wheat amounts, 16, 21, and 25 kg of wheat inside clear polyethylene bags with wooden boxes
and 21 kg of wheat inside a clear polyethylene bag without a wooden box. The Canadian hard red spring wheat
Triticum aestivum L., (certified seed, SY Slate variety) was used. The wheat was purchased from a grain supplier
(Pitura Seeds, Manitoba, Canada) with moisture content of 12.2 + 0.0%. This work was further subdivided into
two parts; the first part was run over 5 days from about 11 am to 8 pm, from 26 to 30 July 2018, where all treat-
ments were kept in the field over the daytime and were mixed and stacked in foam boxes during the night (Can-
ada 1, Fig. 1a). The second part was carried out over 6 days from 7 to 12 of August 2018, where all treatments
were kept in the field throughout the day and night without mixing or stacking of the plastic bags (Canada 2,
Fig. 1b). The amount of 16, 21, and 25 kg of wheat were representing 9, 13, and 15 cm of wheat thickness, respec-
tively. Temperature fluctuations inside the plastic bags were recorded using thermocouples every 15 min in six
positions distributed on the vertical scale in the centre of each bag. These positions were the outer surface of the
bag, top of the grain inside the bag, top-middle, middle, middle-bottom, and bottom of the grain. The thermo-
couples were distributed vertically on equal distance apart along the thickness of each bag. Therefore, wooden
boxes were used to uniform the grain thickness, see Fig. 1. Weather data was recorded during the experiment
using a weather station at the experimental site. A detailed description of the experimental protocol and how the
data were collected is described in the original article and in another data article related to the same work!**.

Dataset. Our dataset is composed of 7871 observations and 14 features, they are: 16 kg (of wheat inside a wood
box), Air Relative Humidity (RH%), Ambient temperatures (°C), 21 kg (not in a wood box, binary feature),
Solar radiation (M;/ m?), Solar Flux density (Ky/ m?), Wind speed (m/s), Mixing and stacking of the grains (binary
feature), Air pressure (kpa), 21 kg (of wheat inside a wood box, binary feature), Wind direction (Deg), 25 kg (of
wheat inside a wood box, binary feature), Rain (binary feature), and finally the binary Class Label which can be
defined by Eq. (1).

t>T D x 2t=T

where g; is the time in minutes the solution lasts on a specific temperature ¢, D is the time in minutes per day
(i.e.24 x 60 = 1440 minutes), and T is the temperature threshold to be reached to start a duration of an effective
solution to reach lethal heating condition for stored grain insects. For this study, T = 40, based on the previous
literature mentioned earlier in the introduction section. As per our proposed equation for solution labelling, the
higher temperatures will affect the duration of the effective solution logarithmically disproportionally (i.e. it takes
a shorter time for an effective solution when the temperature is higher). Figure 2 shows this logarithmic effect.
It is worth noting that the equation is applied when the temperature is 40 °C or more. Once the temperature
drops below 40 °C, the value of S is reset to zero, to be conservative about labelling only certain solutions, and

Figure 1. Experimental design: (a) Canada 1, after sun exposure the wheat bags were mixed and stacked in the
foam boxes. (b) Canada 2, during the night all treatments were covered with another wood boxes to prevent any
animal disturbance.
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Figure 2. The logarithmic effect of the temperature on the pace of reaching an effective solution.

thus modelling the conditions creating them. Finally, the floor function (|.]) is applied to result in the final value
of S, where the value of zero indicates an ineffective solution, and any value > 1indicates an effective solution.

Supervised machine learning models. To examine the dataset and measure the effectiveness of the
wheat solar disinfestation solution, we utilised different machine learning models (see Table 1) to predict how
effective the solution is in terms of its effect on the rice weevil inside the solar heating bags. The choice of the
supervised machine learning methods is based on previous successes reported in the literature utilising them in
a variety of applications. Also, we leaned toward a shallow machine learning approach, as explainability is key to
the in-hand application, as will be discussed later on.

Performance evaluation. To evaluate the performance of our machine learning models, we used 10-fold
cross-validation and adopted accuracy, recall, precision, and F1-score metrics to quantify the correctly True
Positive values, the ratio between the True Positives and the Positives values, and the Harmonic mean of Preci-
sion and Recall, respectively®. The formulas of the adopted metrics can be defined as:

. TP
Precision = ————— (2)
TP + FP
Recall L 3
ecall = ——
TP + FEN )
(2 * Precision * Recall)
F1 — score = — (4)
(Precision + Recall)
Model Description Ensemble | Explainable

Decision Tree (DT)

A decision tree is a statistical machine learning model that consists of nodes and arrows, where each node leads
to either a decision or a related consequence. The common ID3 algorithm®' has been used in this work as a
top-down approach to generate the decision tree. The algorithm splits nodes into sub-nodes using all available

Foact - . : NO YES
features, resulting in the most comparable sub-nodes®'. Each node represents feature in a category to be classified,
and each subset defines a value that the feature can take. A decision tree algorithm can determine which feature is
suitable for the split based on entropy and information gain.

Random Forest (RF)

Random Forest Algorithm is constructed based on a collection of classification and Regression Trees (CART)
prominent for ensemble learning®. Random forest approach is a bagging method that combines deep trees
trained on bootstrap samples to achieve a reduced variance output®. The class with the highest votes becomes
our model’s forecast since each tree in the random forest gives out a class prediction. Bagging includes training YES NO
a weak learning model on many sets of training data in parallel and then averaging the outcomes of these basic
models*. RF has demonstrated its robustness in the presence of outliers and the very high dimensional param-
eter space than other machine learning algorithms.

eXtreme Gradient Boosting (XGB)

Extreme Gradient Boosting or XGBoost is a tree-based machine learning algorithm that works by combining
various optimisation techniques to produce outputs within a short time scale®. Unlike in Random Forest algo-
rithm where results are obtained by computing the average of all the tree values, in XGBoost, decision trees are YES NO
built one at a time where results of one tree are computed and summed up for the next tree. Thus, in XGBoost,
consideration is given to the gradient of the results. Even though XGBoost computes results faster, the algorithm
is complex when compared to other decision tree algorithms.

Table 1. A brief description of the machine learning models adopted in this study.
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| TP + TN .
ccuracy =
Y= TP+ TN + FP + EN )

where, TP is the true positive in the case of the effective solution and TN is the true negative in the case of the
ineffective solution, while FP and FN are the incorrect model predictions for non-effective and effective cases.

Statistical analysis. Time above 40 °C and Degree-minutes (DM) inside the plastic bags were estimated.
The homogeneity of variances was tested using Levene’s test. Then One-way ANOVA was conducted followed
by the Tukey-Kramer HSD. DM model was estimated according to'** to study the relationship between grain
temperatures, exposure time to heat, and rice weevil mortality.

Results and discussion

Field experiment. In the first part of the experiment, where the plastic bags of wheat were mixed and
stacked (Canada 1), the duration of temperatures that were higher than 40 °C (time above 40 °C) (min) at the
bottom of each plastic bag for each day was significantly higher in 16 kg of wheat compared to other treatments:
25+%0.6,0.6 £0.2,0.1 £0.1, and 0.1 £ 0.01 (min, mean * s.e.m.) for 16, 21, 25 kg of wheat inside wood boxes,
and 21 kg of wheat without wooden box, respectively (One-way analysis of variance (ANOVA): F3 g = 14.4864, P
=0.0013). Time above 40 °C at the bottom of 21 and 25 kg of wheat bulks, and 21 kg of wheat without a wooden
box was not significantly different from each other. DM were significantly different between different treatments
(One-way ANOVA: F3 g = 4.5996, P = 0.0375), see Fig. 3a.

In the second part of the experiment, where the plastic bags of wheat were not mixed or stacked (Canada 2),
the temperatures only reached 40 °C and higher at the bottom of the 16 kg of wheat. None of the other treat-
ments reached 40 °C or higher except one replicate out of three replicates in 21 kg of wheat in the wooden box.
DM were significantly different between all treatments (One-way ANOVA: F3 7 = 8.5934, P = 0.0096), see Fig. 3b.

Machine learning experimental study. Considering that the major challenge in this work is how to
handle the imbalanced classes in our dataset as shown in Fig. S1 (see bottom left), four experiments were per-
formed to investigate the performance of different machine learning methods. The first experiment was per-
formed on the original imbalanced dataset and the aim is to evaluate the prediction capability of the different
machine learning algorithms on the class imbalance. Results of the first experiment are presented in Table 2.
The results shown in Table 2 indicate that the three models achieved an accuracy of not less than 98% in
predicting the classes. However, these results are not reliable, as the metrics used are not able to provide further
information on which classes are predicted correctly and which are predicted incorrectly. Consequently, the

@ (b)

1200 - b 1800 - a
> a > 1600 -
© 4 [}
3 1000 3 1400 -
o 800 - ab b & 1200 A b
5 5 1000 - b b
£ 600 - £
g g 800 -
o 400 - @ 600 -
% % 400 -
& 2007 Aa 200 -
0 T T T \ 0 T T T ]
16 21 25 21 (not in 16 21 25 21 (notin
wooden wooden
box) box)
Wheat mass (kg)/ treatment Wheat mass (kg)/ treatment

Figure 3. (a) Degree-minutes/day (°C-min, mean + s.e.m.) of 16, 21, and 25 kg wheat of plastic bags inside
wood boxes and another 21 kg of wheat in a plastic bag without a wood box exposed to solar radiation over

5 d in Canada (Canadal). (b) Degree-minutes/day (°C-min, mean + s.e.m.) of 16, 21, and 25 kg wheat in
plastic bags inside wood boxes and another 21 kg of wheat in a plastic bag without a wood box exposed to solar
radiation over 6 days in Canada (Canada 2, without stacking). All treatments were kept continuously in the field
during the experiment. Different letters indicate significant differences between treatments (P < 0.05).

Algorithm Accuracy | Recall | Precision | Fl-score
Decision Tree (DT) 0.9881 0.5833 | 0.2100 0.3088
Random Forest (RF) 0.9892 0.6087 | 0.4200 0.4970
eXtreme Gradient Boosting (XGB) 0.9873 0.0000 | 0.0000 0.0000

Table 2. Performance evaluation on original dataset.
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confusion matrices for the three algorithms are calculated and presented in Fig. S1 in the Supplementary Mate-
rial. As illustrated by Fig. S1, the results of this first experiment show that relying on the accuracy of machine
learning methods when coping with an imbalanced dataset might be misleading. To address this challenge,
three data resampling techniques were applied, namely, oversampling the minority class, under-sampling the
majority class, and the synthetic minority oversampling technique (SMOTE), to the class imbalanced data. The
performance of each algorithm on the resampled datasets was evaluated.

The original dataset is transformed by oversampling the minority class technique. In this technique, sam-
ples from the minority class are randomly replicated until their number is equal to that of the majority class.
Figure S2 (see bottom left) shows the distribution of class labels after applying oversampling the minority class
technique. The second experiment was conducted on the oversampled dataset to evaluate the performance of
the machine algorithms in classifying both the majority and minority classes. Table 3 presents the results of
the second experiment on the oversampled dataset. The results shown in Table 3 indicate that both DT and RF
achieved up to 99% accuracy while XGB recorded 95% accuracy. To accurately report the performance of each
model, confusion matrices for the three algorithms are computed and presented in Fig. S2 in the Supplementary
Material. As demonstrated by Fig. S2, in the case of predicting the minority class, it can be observed that all
the three algorithms correctly predicted all samples of the minority class. From these outputs, both DT and RF
algorithms have achieved better performance over the XGB algorithm.

The original dataset is transformed by applying SMOTE (Synthetic Minority Oversampling Technique)”’, see
the Supplementary Material. This technique is similar to oversampling the minority class technique. However,
unlike the oversampling the minority class technique where samples of the minority class are being replicated,
in SMOTE, samples of the minority class are synthetically created until their number is equal to that of the
majority class. Figure S3 shows the distribution of the class labels after applying the SMOTE technique. The third
experiment was performed on the SMOTE dataset to evaluate the performance of the three algorithms. Table 4
presents the results of the fourth experiment. The results presented in Table 4 show that both DT and RF achieved
up to 99% accuracy while XGB recorded 95% accuracy. To further evaluate the performance of each algorithm
in classifying both majority and minority classes correctly, the confusion matrices for the three algorithms are
computed and presented in Fig. S3 in Supplementary Material. Figure S3 shows that XGB performed better in
predicting the minority class, followed by RE, then DT. For predicting the majority class, DT performed well,
followed by RE, then XGB.

Now, the original dataset is transformed by applying under-sampling the majority class technique. In this
technique, samples from the majority class are randomly removed until their number is equal to that of the
minority class. Figure 4 (see bottom left) shows the distribution of class labels after applying the under-sampling
of the majority class technique. The fourth experiment was conducted on the under-sampled dataset to evalu-
ate the performance of the machine algorithms in classifying both the majority and minority classes. Table 5
presents the results of the third experiment on the under-sampled dataset. The results shown in Table 5 indicate
that both DT and RF achieved up to 99% accuracy while XGB recorded 96% accuracy. To accurately demonstrate
the performance of each algorithm (in classifying both the majority and minority classes) on the under-sampled
dataset, confusion matrices for the three algorithms are computed and presented in Fig. 4.

As illustrated by Fig. 4, out of 100 samples for both the majority and minority classes, DT correctly predicted
99 samples and incorrectly predicted 1 sample for both classes. RF predicted 99 samples of the majority class
correctly, 1 sample of the majority incorrectly, and all the 100 samples of the minority correctly. XGB predicted
99 samples of the majority class correctly, 8 samples of the majority class incorrectly, and all the 100 samples
of the minority correctly. From these outputs, the RF algorithm achieved better performance over the DT and
XGB algorithms.

)37

Interpretation of RF model using SHAP values.  As described in the results, the RF model performed
well on the under-sampled dataset. However, it is challenging to explain the predictions of RF out of the box. To
mitigate this challenge, we apply the eXplainable Artificial Intelligence (XAI) technique known as SHAP (SHap-

Algorithm | Accuracy | Recall | Precision | Fl-score
DT 0.9910 0.9823 | 1.0000 0.9911
RF 0.9910 0.9823 | 1.0000 0.9911
XGB 0.9591 0.9243 | 1.0000 0.9607

Table 3. Performance evaluation on oversampled dataset.

Algorithm | Accuracy | Recall | Precision | Fl-score
DT 0.9946 0.9982 | 0.9910 0.9946
RF 0.9945 0.9961 | 0.9929 0.9945
XGB 0.9564 0.9246 | 0.9940 0.9580

Table 4. Performance evaluation on SMOTE dataset.
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Figure 4. Performance evaluation using confusion matrix on under sampled dataset.

Algorithm | Accuracy | Recall | Precision | Fl-score
DT 0.9900 0.9900 | 0.9900 0.9900
RF 0.9950 0.9901 | 1.0000 0.9950
XGB 0.9600 0.9259 | 1.0000 0.9615

Table 5. Performance evaluation on under sampled dataset.

ley Additive exPlanations) to provide an intuitive explanation of the RF model’s inner functioning and increase
its transparency. Explanations provided are based on the RF model trained on the under-sampled dataset. SHAP
is a game-theoretic technique for explaining the output of the machine learning model®. It provides global and
local explanations using classic Shapley values from the game theory. In addition to estimating feature impor-
tance that focuses on interpreting a model in its entirety (global), the SHAP method provides interpretations of
separate predictions of the whole model (local).

Global interpretation. Here, the SHAP values are combined to reveal the contribution of each predictor to the
model’s outputs (target variables). The RF model’s feature importance for effective solution of storing wheat
grains is shown as a normal bar chart in Fig. 5a and as a SHAP summary plot in Fig. 5b. Figure 5a lists the most
influential features in descending order for the efficient solution (class 1). A red bar colour means that the fea-
ture has a positive impact on the output, while a blue colour means a negative impact. It can be observed that
storing 21 kg of wheat grains inside a wood box has a strong positive impact on output followed by ambient
temperature, air pressure, wind speed, and finally mixing and stacking. On the other hand, air RH has a strong
negative impact on the output, followed by 25 kg of wheat inside a wood box, solar flux density, solar radiation,
16 kg of wheat inside a wood box, wind direction, then finally 21 kg of wheat without a wood box. Rain has no
impact on the output.

The SHAP summary plot shown in Fig. 5b reveals the positive and negative relationships of the features
with the target variable. The summary plot reveals the SHAP values of each feature and the dots represent each
observation in the dataset. The plot lists all features alongside their importance on the y-axis in descending order
of influence and demonstrates whether the effects of their values are associated with a lower or higher predic-
tion. On the x-axis, the position of the dots reveals the impact of the features on the model’s prediction for each
observation. For each observation, the colours show whether a feature is low (in blue) or high (in red). Thus,
it can be observed that storing 21 kg of wheat grains inside a wood box has a high as well as a positive impact
on the model output. The high impact emerges from the red colour, and the positive impact is displayed on the
x-axis. Likewise, we will say the feature “Air RH” has a negative impact on the model output.
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Figure 5. (a) Feature importance plot, and (b) SHAP summary plot showing feature influence on wheat grains
storage solution.

Local interpretation. In Fig. 5a and b, the gradient colours give a picture of the impact each feature has on the
solution. To understand how the model arrived at making the decision for each observation, SHAP force charts
were created for separate observations. Therefore, each observation or data sample gets its own set of SHAP
values which are used to explain why an observation receives its prediction/output and the predictors’ contri-
butions. Figure 6 shows two force plots for separate observations in the dataset. This contains two values: one
as a base value and the other as a model prediction. The base value denotes the average model output over the
dataset, and the model prediction denotes prediction from the model. These visualisations showed the features
that were responsible for the disparity between the model output and the base value. The features that lower the
prediction are coloured blue, and those that higher the prediction are coloured red. These plots have the ability
to provide recommendations that will inform decision-makers whether or not a particular case will lead to the
effective storage of wheat grains.

The RF model was developed based on the default 0.5 threshold of Python’ scikit-learn library where values
between 0 and 0.5 belong to class 0 (ineffective solutions) and those between 0.5 and 1 belong to class 1 (effective
solutions). For the observation shown in Fig. 6a, the model predicted a value of 0.00 which is lower than the base
value of 0.4968 which indicates an ineffective solution for heating the wheat grains. This force plot also shows the
features that make the solution ineffective. This solution has solar radiation = 143.9 (M;/ m?). This feature pushes
the prediction to higher values as shown in red colour. Even with this force pushing towards higher values, there
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Figure 6. Illustration of SHAP force plots for ineffective (a) and effective (b) predicted solutions of storing
wheat grains.

is a much larger group of features pushing this solution toward lower values as shown in blue colour bars. Each
of these features is assigned a value and their combined force causes the model to arrive at this prediction. This
simply means that heating of wheat grains would be ineffective if 21 kg of wheat grains is heated without a wood
box, at an ambient temperature of 19.86 °C, air RH of 79.94%, and solar radiation of 143.9 (M;/m?). Similarly,
the model predicted an effective solution for heating the wheat grains in Fig. 6b. This is shown by the model’s
predicted value of 1.00 which is greater than the base value. This plot can also be used to identify which feature
attributes make it an effective solution. This solution has a mixing and stacking value of 0 that pushes the predic-
tion toward lowers values as shown in blue colours. Even with this force pushing towards the lower values, there
is a much larger group of features pushing this solution toward the higher values as shown in red colour bars.
Each of these features is assigned a value and their combined force causes the model to arrive at this prediction.
This means that heating wheat grains would be effective if 21 kg of wheat grains are heated inside a wood box,
at air RH = 38.72 %, solar radiation = 78.89 (Mj/mz), and ambient temperature of 33.8 °C.

The results show that the medium-sized grain amount inside a wood box (21 kg of wheat grains) had a sig-
nificant effect on our solution to raise temperatures higher than 40 °C to kill rice weevil. The heating superiority
of the 21 kg box compared to other grain amounts especially the one that has a lesser amount of 16 kg is mainly
due to the fact that grains are considered a good insulator!'3**°, Recently, puffing grains have been used as a
bio-based eco-friendly insulation in building construction'®. The thicker the amount of grains (insulator), the
lower the rate of heat transfer*!. This means that the thicker the amount of grains, the lower the rate of grain
heat gain and the lower the rate of grain heat loss. The optimum grain thickness to achieve the balance between
these two processes is a medium amount of grain. Another important feature to optimise our solution is the
high ambient temperature. This study was carried out in July and August in Canada, where the maximum air
temperature was from 28 to 32 °C (Appendices A; Tables A.1 and Table A.2)*2. The performance of our solar
heating bags will be improved in different areas around the world with higher temperature regimes from 30 to
37 °C. The summer and autumn seasons are the best time of year to use this heating system, where the daily
difference between maximum and minimum air temperatures is the minimum between May and October*!. The
daily rising of air temperature is going faster (about 8 hours) than the dropping from maximum to minimum
during the night (about 15 hours)*'. Therefore, the medium-sized grain amount will perform better than other
amounts, especially during the hot seasons. In line with our results, in thermal science, previous studies investi-
gated the effect of material thickness on its thermal isolation**. These studies reported that there is an optimal
thickness for each insulating material.

Finally, mixing and stacking plastic bags had a significant impact on achieving our goal. This effect could
be neglected in some cases, when other feature has been met such as high temperature of 33.8 °C and using 21
kg of wheat inside wood box. SHAP output is quite similar to the experimental results as mixing and stacking
of plastic bags increased the DM of grains, Fig. 3. In the experimental results, DM of 16, 21, and 25 kg of wheat
were not significant from each other, Fig. 3a, while according to SHAP output, the medium-sized amount of
grains had a positive effect compared to others, Fig. 5a. Finally, the ML model seems to be satisfactory to predict
the temperatures inside our closed-heating plastic bags. Similarly, in recent years, different ML model have been
developed to used the same environmental data to predict the temperature inside closed greenhouse for planting
or soil disinfestation!®2026:44,
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Conclusion

Machine learning is a promising alternative to mathematical and statistical models to study the thermal behav-
iour inside heating systems used for post harvest thermal control. Machine learning algorithms can effectively
examine the interaction among various parameters to predict the effective lethal temperatures for grain insects
stored inside clear plastic bags. In this work, we provided a new benchmark dataset, where the experimental and
environmental data was collected based on fieldwork during the summer in Canada. We introduced a supervised
machine learning solution to help better understand the thermal behaviour inside clear plastic bags to maximise
the effective solar heating system against stored grain insects while ensuring that the wheat grain quality is main-
tained. We utilised the eXplainable Artificial Intelligence (XAI) technique known as SHAP (SHapley Additive
exPlanations) to provide an intuitive explanation of the Random Forest model’s inner functioning and increase
its transparency. Our main finding is that an optimal medium-sized grain amount inside a wood box (21 kg of
wheat grains) had a significant effect on our solution to raise temperatures higher than 40 °C against the rice
weevil Sitophilus oryzae (L.).

Statement
We confirm that the experimental research and field studies on plants comply with relevant institutional, national,
and international guidelines and legislation.

Data availibility
We have released the dataset under a Creative Commons Attribution 4.0 International License, which can be
downloaded at https://sandbox.zenodo.org/record/1067714.
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