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A B S T R A C T
Cyber attacks on the Internet of Things (IoT) have seen a significant increase in recent years. This is
primarily due to the widespread adoption and prevalence of IoT within domestic and critical national
infrastructures, as well as inherent security vulnerabilities within IoT endpoints. Therein, botnets
have emerged as a major threat to IoT-based infrastructures targeting firmware vulnerabilities such as
weak or default passwords to assemble an army of compromised devices which can serve as a lethal
cyber-weapon against target systems, networks, and services. In this paper, we present our efforts to
mitigate this challenge through the development of an intrusion detection system that resides within
an IoT device to provide enhanced visibility thereby achieving security hardening of such devices.
The device-level intrusion detection presented here is part of our research framework BTC_SIGBDS
(Blockchain-powered, Trustworthy, Collaborative, Signature-based Botnet Detection System). We
identify the research challenge through a systematic critical review of existing literature and present
detailed design of the device-level component of the BTC_SIGBDS framework. We use a signature-
based detection scheme with trusted signature updates to strengthen protection against emerging at-
tacks. We have evaluated the suitability and enhanced the capability through the generation of custom
signatures of two of the most famous signature-based IDS with ISOT, IoT23, and BoTIoT datasets
to assess the effectiveness with respect to detection of anomalous traffic within a typical resource-
constrained IoT network in terms of number of alerts, detection rates, detection time as well as in
terms of peak CPU and memory usage.

1. Introduction
The emergence of Internet of Things (IoT) has signifi-

cantly reformed the everyday life in the modern world. IoT
paradigm enables small internet connected smart devices em-
bedded with sensors and actuators to act as a facilitator to ef-
ficiently connect people, households, offices/businesses, and
healthcare services etc. These devices are utilized to accom-
plish a number of activities including socializing, informa-
tion sharing, monitoring & control. For instance, a sensor
placed in the soil sends humidity & moisture telemetry to
the water system for irrigation of agricultural land. These
smart devices are typically resource constrained in nature
with limited resources available for employing efficient se-
curity mechanisms. Moreover, the enormous amount of sen-
sitive data generated by these devices also attracts malicious
adversaries to exploit inherent vulnerabilities to gain access
to these devices which may result in information leakage or
a Distributed Denial of Service (DDoS) attack.

Due to the recent boom in utilizing ubiquitous smart de-
vices, the world has witnessed increasing attacks employ-
ing botnets [1, 2] . Specifically, the proliferation of IoT bot-
net attacks has emerged as one of the primary security con-
cerns as the malicious adversaries exploit weak security con-
figurations for IoT devices to assemble a formidable botnet
which can trigger a devastating and large scale DDoS at-
tack. Contrary to the traditional botnets which infect com-
puters or server machine, an IoT botnet is more complex and
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has a large scale impact which typically infects thousands of
internet-connected devices including surveillance cameras,
DVRs, smart appliances, and wearables etc. with a malware
that allows carrying the tasks similar to traditional botnets.
Since the number of connected devices is continuously in-
creasing and almost 50 billion devices are expected in the
next few years [3, 4], it entices malactors to leverage security
vulnerabilities of IoT devices to spread malware at a faster
pace.

Intrusion detection within IoT has attracted significant
attention from the scientific community with number of ef-
forts been made to establish efficient intrusion detection mod-
els by using centralized, distributed and hybrid approaches
(Refer to Table 2, 3, and 4 for details). These approaches
either uses collaborative or individual detection strategies.
However, these approaches have issues including single point
of failure, tested on small data samples or outdated datasets
such as KDD-CUP99/NSL-KDD that do not represent mod-
ern day traffic, assuming a pre-trusted environment, there-
fore, do not contain mechanism to cope with insider adver-
saries. Furthermore, few studies including [5, 6, 7, 8] em-
ploy a signature detection mechanism which is although ef-
ficient but these approaches either present only a framework
that does not target DDoS attack which is considered to be
the most devastating botnet attack and do not have the mech-
anism for protection of signature database from being cor-
rupted, or devise a HIDS model hence do not consider net-
work traffic. Moreover, the collaborative approaches are ei-
ther not tested in the real environment or only tested for en-
ergy efficiency (refer to Section 3 for details). This necessi-
tates an intrusion detection model that is efficient enough to
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cater these issues.
1.1. Problem statement

The IoT botnet attacks have emerged as one of the pri-
mary concerns of research community due to their complex-
ity and large scale effects. The impact of botnets for IoT de-
vices is aggravated as these are typically resource-constrained
and minuscule amount of resources are available to employ
an efficient security mechanism. Existing researchers have
contributed to this area however these approaches are limited
in that they are generally susceptible to single point of fail-
ure, require significant profiling time for each device, have
not been tested in real environment, evaluated using outdated
datasets or small data samples, and do not consider insider
attacks. We expand on these in Section 3 including a detailed
gap analysis.

In order to address the issues highlighted during our lit-
erature review process, our focus is to develop a collabora-
tive botnet detection framework BTC_SigBDS (Blockchain
powered, Trusted, and Collaborative Signature-based Bot-
net Detection System) whereby multiple IoT nodes collab-
orate to achieve efficient detection of botnets. Due to the
collaborative design of the approach, the workload for in-
trusion detection is shared across multiple nodes resulting
in a more efficient detection process. The approach also in-
corporates a reputation management scheme to establish a
trusted environment and prevent misbehaving nodes which
may attempt to influence the detection process. Further, it
leverages blockchain technology to securely store attack sig-
natures and trust values of each node within the IoT network
thereby preventing it from being corrupted by malicious ad-
versaries.
1.2. Contributions

In this paper, we present a botnet detection framework in
which our focus is on the device-level detection aspect em-
phasising the role of IoT nodes in achieving effective botnet
detection. Therein, we present the design and development
of device-level botnet detection engine which utilises signa-
ture based intrusion detection techniques. We also present an
implementation and evaluation of this system using two sig-
nature based intrusion detection tools i.e. Snort & Suricata
with three of the publicly available botnet datasets namely
ISOT [9], BotIoT [10], and IoT23 [11] with default signa-
ture (rule) base as well with custom updates. Specifically,
We make following contributions:

• We present a critical insight into state-of-the-art within
device-level IoT botnet detection to highlight open re-
search challenges in this domain. We have used a sys-
tematic approach to conduct this review, analysing re-
search efforts published within IEEE, Elsevier, ACM
and Springer.

• We present a novel collaborative botnet detection frame-
work BTC_SigBDS (Blockchain-powered, Trustwor-
thy, Collaborative, Signature-based Botnet Detection
System). BTC_SigBDS is powered by node-level rep-
utation system to create a trustworthy environment and

a signatures based detection scheme to efficiently de-
tect known attacks where signatures are shared in a
trustworthy manner through the use of blockchain tech-
nology.

• We evaluate the device-level botnet detection approach
using existing signature-based approaches i.e. Snort
and Suricata to assess the effectiveness of the proposed
scheme. The evaluation utilised three publicly avail-
able datasets namely ISOT, IoT23 and BoTIoT (avail-
able in PCAP format), firstly with default signature
database and then with custom signature database rep-
resenting botnet behaviour to assess detection of anoma-
lous traffic in terms of number of alerts, detection ac-
curacy, detection time, CPU and memory usage.

Rest of the paper is organised as follows. Section 2.4
discusses features of prominent publicly available IoT botnet
datasets followed by Section 3 which presents a critical re-
view of relevant existing work. A device level collaborative
botnet detection framework is presented in Section 4. The
experimental scenarios and results of applying three datasets
namely IoT23, ISOT and BoTIoT are presented in Section 5.
Section 6 concludes the paper highlighting future directions.

2. Background
This section presents an insight into the types of a typ-

ical intrusion detection system as well as underlying tech-
nologies that paved the way to construct our botnet detec-
tion framework. This helps readers to get preliminary under-
standing of the technologies including collaborative-signature
detection, reputation/trust management and blockchain, that
subsequently are utilized in the proposed framework.
2.1. Intrusion Detection System

An Intrusion Detection System is a software or hardware
device that constantly monitors a network or system for de-
tection of malicious activities or policy violations. Upon de-
tection of such activity, it responds by generating an alert
that can either be logged in a file or sent directly to a secu-
rity analyst for further analysis and decision-making. The
intrusion can be classified in several ways such as accord-
ing to their scope i.e. Network Based (NIDS) that is moni-
toring network entry points, Host Based (HIDS) to monitor
critical systems or combination of both (i.e. Hybrid). They
can also be classified according to their detection approaches
like Anomaly based which typically works by calculating the
baseline profile of a network or system in order to detect ma-
licious/abnormal activity or utilize a machine learning al-
gorithm to classify an intrusion. The misuse/rule/signature
based IDS contains intrusion’s signature that consequently
yields efficient detection of known attacks. In the past few
years, an intrusion detection strategy known as collaborative
intrusion detection has emerged and has already shown sig-
nificant improvements in the efficiency of the ID model espe-
cially in resource-constrained IoT environments. The collab-
orative intrusion detection distributes the detection load on
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multiple devices also known as Intrusion Detection Agents
(IDAs) that may not have the capability to perform such a
task. This consequently results in efficient and effective de-
tection of malicious activities within an IoT environment.
2.2. Blockchain

The blockchain has been evolved as one of the widely
adopted Distributed Ledger Technology (DLT) that supports
de-centralization mechanism in a distributed environment.
The records are saved in a chain of blocks with the first block
(aka Genesis block) containing Smart contracts (SC) and
chaincode to control the actions within a blockchain. The
blockchain was initially proposed to store financial transac-
tions but with the addition of smart contracts, it is widely ap-
plied for development of Decentralized Applications (DApps).
The processes in a typical blockchain are controlled by an
underlying consensus algorithm and a group of devices/ en-
tities called minors or validators. These minors validate each
transaction that consequently results in a consensus amongst
them to commit and store the transaction into a block. Typi-
cally a blockchain can be classified as public or private. Pub-
lic blockchain is often called permissionless blockchain in
which any node willing to participate is allowed after im-
plementation of relevant protocol. Whereas, in a private
blockchain, sometimes referred to as permissioned blockchain,
participation permission is typically granted by a centralized
controlling authority [12, 13].

Blockchain technology can greatly enhance a signature-
based botnet detection process as well as a Trust Manage-
ment System (TMS) in an IoT environment where multiple
IoT nodes collaborate with each other to find out an intrusion
with trustworthiness in several ways:

• Decentralization: In an IoT environment, a decen-
tralized architecture provided by the blockchain can
make the signature-based botnet detection process and
trust management system more resilient to attack, as
the signatures and trust values are not stored in a single
location that can be compromised.

• Immutability: Blockchain provides immutability, once
data is added to the blockchain, it cannot be altered.
This can be very useful as it ensures that the signa-
tures and trust values used for botnet detection and
trust management respectively are tamper-proof and
cannot be changed by an attacker.

• Transparency: Since all transactions on the blockchain
are visible to all parties. This can be useful in a signature-
based botnet detection process and trust management
system in an IoT environment, as it allows for easy au-
diting of the system to detect and track botnet and all
the iot devices can have a clear view of the transaction.

• Consensus mechanism: Consensus mechanism en-
sures that the data on the blockchain is accurate. This
can be useful for both botnet detection process as well
as TMS in an IoT environment, as it ensures that the
signatures and trust values used for botnet detection

and trust management respectively are accurate and
have not been tampered with.

• Tamper-proof signature and trust databases: By
using blockchain technology to store the hash of the
signature and trust values database, it becomes tamper
proof and can prevent the databases from corruption.

• Automation through Smart contracts (SC): The SC
can be used to automate the process of botnet detec-
tion, trust management, and updating the signature and
trust databases and the corresponding hash stored on
the blockchain. When a new signature is added or
an existing signature is updated, or when a new trust
value is added or an existing trust value is updated.
This method eliminates the need for manual interven-
tion and reduces the risk of unauthorized updates.

• Collaboration: Blockchain allows multiple parties to
access and share data on the blockchain, which can
be useful in an IoT environment, as it allows multiple
IoT devices to collaborate on botnet detection and trust
management efforts and share threat intelligence.

The blockchain technology empowers IoT security by
creating tamper-proof ledger where shared records can be
stored with the consensus of others without the need of cen-
tral management of control. The blockchain powered IoT
network allows network devices to autonomously perform
its action where the chained arrangements within blockchain
ledger allows tracking of stored records. The implementa-
tion of blockchain within the IoT network is always a chal-
lenging task due to the typical resource-constrained nature of
these systems. The private blockchain is more suited in an
IoT environment due to the fact that they can scale to the or-
ganization’s business needs which usually consists of lesser
nodes than a public blockchain may have. The permissioned-
private blockchain is typically owned centrally and each node
wanting to participate in the network will be authenticated
before a permission is granted. Furthermore, the central au-
thority can define the rules, underlying consensus mecha-
nism or delete any malicious activity.

Specifically, for saving the Trust values and intrusion
signatures use of public blockchain will consequently add
more computational as well as processing cost. Furthermore,
private (permissioned) blockchains are well suited for pro-
posed botnet detection framework since any unknown or ma-
licious adversary with sufficient resources can not directly
participate within the network.
2.3. Trust Management System

Trust Management Schemes (aka Reputation Manage-
ment Schemes) have gained significant attention of the re-
searchers especially with the exponential increase and re-
liance on IoT devices. Since a typical IoT network consists of
heterogeneous nodes / devices that interact with each other
for accomplishment of a task. The trust management schemes
are employed in a network to automatically assess the reputa-
tion of a user / node to determine a measure of trust that other
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users / nodes may have to start interaction with them. The
trust is calculated based on various factors including initial
belief, observed behavior, and run-time feedback. The indi-
vidual opinion (aka local trust) of a node about other peers is
often collected to create an aggregated trust matrix that con-
tains the global reputation of every node within the network.
These global trust values influence the overall network that
how, or with whom, a node / user can interact [14, 15].
2.4. Public Botnet Datasets

The evaluation of an IDS model using credible datasets
plays a significant role in assessing the effectiveness of pro-
posed intrusion detection framework. This section provides
a brief insight into some of the important publicly available
IoT botnet datasets. This is envisaged to help researchers
in selecting a suitable botnet detection dataset according to
available attack types, traffic type, features used, and training
strength in terms of number of malicious-benign instances
provided by a dataset.
2.4.1. ISOT Botnet Datasets

The ISOT dataset [9] combines multiple malicious and
benign datasets mainly targeting HTTP based Peer-to-Peer
(P2P) botnets. The malicious datasets contain traces of Storm
and Waledac botnets which were extracted from Honeynet
project [16].The dataset consists of more than 1.6 million
instances with a malicious benign ratio of 96.66 and 3.33 %
respectively. The instances of benign dataset were extracted
from Ericsson’s Traffic Lab [17] and Lawrence Berkeley Na-
tional Lab (LBNL)[18].
2.4.2. BOT IOT Dataset

The Bot-IoT [10] is a labelled dataset, with diverse at-
tack scenarios, generated from realistic testbed. It is a pub-
licly available dataset(in both pcap and csv formats) con-
taining around 72M instances each having 46 features. The
dataset overcomes the cons of various available datasets in-
cluding lack of reliably labeled data, poor attack diversity
such as botnet scenarios and missing ground truth. The fea-
tures of the dataset are analyzed using correlation coefficient
and joint entropy approaches. The dataset consists of nor-
mal traffic by activating Ostinato, so that the generated data
resembles normal traffic. This prevents the botnet malware
from detecting virtualized environments, and attack traffic
using attack software in a virtualized environment. The testbed
uses four machines having kali Linux OS to simulate DoS,
DDoS (HTTP, TCP, UDP), port scan for service or OS scans,
key-logging and data ex-filtration attacks. The existence of
IoT devices, running MQTT, in the network is ensured by us-
ing a middle-ware known as Node-RED in a virtual network.
The virtualized environment has the advantages of low cost
implementation, portability with ease of setup and recovery
of devices since it prevents real machines to become a zom-
bie and be a part of Botnet. On the contrary, this type of en-
vironment does not allow to launch deeper attacks especially
in the firmware and hardware thereby limiting the ways an at-
tack could be launched on such devices. The dataset contains
five IoT scenarios including weather station, smart fridge,

motion activated lights, remotely activated garage door and
a smart thermostat which uses MQTT protocol to generate
data.
2.4.3. NBaIoT Dataset

Meidan et al. [19] presented a botnet data set named
NBaIoT that employs deep auto encoders for behavioral anal-
ysis for detection of anomalous traffic within IoT network.
The detection process takes place by taking the snapshot of
benign IoT traffic of nine commercial IoT devices for de-
tection of two variants of botnets i.e. Mirai [20] and Bash-
lite[21] (that includes Gafgyt, Q-bot, Torlus, Lizard-Stresser
and Lizkebab). The dataset contains more than 7 million in-
stances with 115 features that can be classified into eleven
different classes including ten attack classes and one benign
class.
2.4.4. IoTID20 Dataset

I.Ullah and Mahmoud [22] presented a dataset which is
generated in a testbed environment that consists of multi-
ple devices including security camera, AI speaker and smart
phone. The dataset contains 625784 network flows with a
malicious benign ratio of 93.6% and 6.4% respectively. Each
flow in the dataset contains 12 features that can be used to
classify four attack classes (DoS, Mirai, MITM, & scans)
and one benign class. These four attack classes can further
be divided into syn/HTTP/UDP flooding, Brute force, ARP
spoofing, and port/OS scans.
2.4.5. Anthi Dataset

Another publicly available IoT dataset is by Anthi et al
[23]. In this dataset, 2 million instances with 135 in number
features are extracted from 8 IoT Devices including Ama-
zon Echo Dot, Belkin NetCam, TP-Link NC200, Hive Hub,
Samsung Smart Things Hub, TP-Link SmartPlug, Apple TV,
and Lifx Smart Lamp.Different fields (and a payload infor-
mation) extracted from 5 different layers (i.e. Physical, DLL,
Network, Transport and Application ) with six classes of
attacks including DoS, DDoS, MITM, Spoofing, Insecure
Firmware, & Data Leakage. The dataset is labelled through
a 4-step process that includes feature selection, device pro-
filing, malicious-benign classification and attack type clas-
sification.
2.4.6. IoT23 Dataset

The IoT23 dataset [11] is a labeled dataset funded by
Avast and developed in Stratosphere Laboratory, AIC group,
FEL, CTU University, Czech Republic. The dataset consists
of twenty three captures ( 20 malicious and 3 benign) which
simulates various botnet attacks including Mirai, Torii, Tro-
jan, Gagfyt, Kenjiro, Okiru, Hakai, IRCBot, Hajime, Muh-
stik, Hide&Seek etc. The dataset is generated in realistic
but controlled IoT environment. The 280.77 million flows
are labeled with the help of Zeek out of which 213 millions
are Partof HorizontalScan, 47.38 million for Okiru and 19M
DDoS flows.
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Table 1
Publicly available datasets

Name Format Size No. of
Records

Attack Types Features Data
Types

Environment Publisher Year

ISOT PCAP 1.74 GB 1.67+M
unique
flows

HTTP Botnet 49 Network
(App
Layer)

Testbed University of
Victoria

2017

Bot-IoT
Dataset

Pcap,
argus,
csv

PCAP
(69.3GB)
CSV
(16.7GB)

72M DoS, DDoS (TCP, UDP,
HTTP), Services scan, OS
Scan, Keylogging, Data
ex-filtration attacks

46 Network Testbed UNSW Can-
berra Cyber

2018

N_BaIoT CSV - 7062606 Mirai and BASHLITE (10
attack classes, 1 benign
Class)

115 Network ReaL (9
Commercial
IoT Devices)

Maiden et al. 2018

Anthi
Dataset

Arff 977MB 2M
Malicious-
Benign
Ration
50-50%)

DoS,DDoS ,MITM,
Spoofing, Insecure
Firmware, Data Leak-
age

135 Network Real (8 De-
vices)

Anthi et. al 2019

IoTID20 CSV 294MB 625784 DoS, Mirai, MITM, Scan 12 Network - OntarioTech
University

2020

IoT-23 Pcap,
csv

21GB
8.8GB
(Lighter
Ver)

- Mirai, Torii, Gagfyt,
Kenjiro, Hakai, IRCBot,
Linux.MIrai, Linux.Hajmi,
Muhsitk, Hide and Seek,
Trojan, Okiru

21 Network
(Appli-
cation
layer
proto-
cols)

Real (23 De-
vices)

Avast, AIC
group, CTU

2020

3. State-of-the-art within Device Level
Intrusion Detection for IoT
This section presents a critical insight into the state-of-

the-art IoT botnet intrusion detection strategies (refer to Ta-
ble 2, 3, and 4 for details) with their strengths and weak-
nesses so as to devise an effective botnet detection frame-
work for timely and efficient detection of malicious attacks.
In order to achieve a comprehensive understanding, we be-
gin with the article extraction process by searching from four
most popular digital scientific libraries including IEEE Dig-
ital Library, Springer, Elsevier & ACM with the following
search terms:

(IoT OR Internet of Things) AND (Device Level Intrusion
Detection OR Device-level Intrusion Detection OR Host-based
intrusion detection OR Node-based Intrusion Detection )

Since the research on intrusion detection within IoT es-
pecially for detection of botnet received significant attention
when a botnet named "Mirai" targeted the vulnerable IoT de-
vices having weak password settings and overwhelmed more
than 6,00,000 devices in 2016 [20]. Therefore, in order to
extract device level ID approaches from the post Mirai era,
the duration has been set to last five years (between 2016
to 2021) that initially yields 2710 articles without any ex-
clusion criteria. The basic search to the four digital libraries
also reveals that a large number of studies are irrelevant such
as articles from the fields of social sciences, Energy, business
management, material science, environmental science etc.,
due to the massive adoption of IoT in various fields. There-
fore, in order to refine the search, an exclusion criterion has
been built to remove irrelevant (such as articles which are
not focusing on intrusion detection, review articles, posters,
book chapters etc.), redundant and non-English literature.
The articles which are published in the relevant field such
as computer science/engineering, IoT, security etc, and rel-
evant areas (Intrusion detection within IoT environments)

were taken for initial assessment. Since in this study, we
are focusing on only those studies in which the IoT device
itself participates in the intrusion detection process. There-
fore, the search has been refined by eliminating those stud-
ies in which the intrusion detection process solely relies on
edge devices, central servers and nodes other than IoT. As a
result, 23 studies were selected for review and gap analysis
in which participation of IoT devices was found for detection
of an intrusion. These studies were further divided into three
major categories. The first category contains 9 articles and
consists of those approaches which employed as standalone
model. The second category consists of distributed and de-
centralised approaches that contains 7 articles. Finally, re-
maining 7 articles fall into the category in which a hybrid
approach is used for detection of intrusion.
3.1. Standalone Approaches

This section presents a review of various device-level in-
trusion detection approaches which have been summarised
in Table 2. Murali and Jamalipour [24] present the ABC-
based lightweight ID classification model to detect Sybil at-
tacks within a resource-constrained RPL environment that is
evaluated for static and mobile RPL in three Sybil attack sce-
narios using the Cooja simulator. Their results in terms of
accuracy, specificity, sensitivity, and F-scores in the case of
mobile RPL are lower because of misinterpretation of mo-
bile malicious nodes as benign. Similar approach is pre-
sented by Qureshi et al.[25] present an anomaly-based IDS
where ABC is employed to optimize the weights of the Ran-
dom Neural Network (RNN) classifier with improved per-
formance and an accuracy of up to 91.65% when the size of
the colony is increased.

An ID framework presented by Tian et al. [26] with a
deep auto-encoder technique and dimensionality reduction
with ABC for optimum parameter selection of SVM classi-
fier shows decent accuracy and acceptable FAR at the cost of
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Table 2
Standalone approaches for device-level intrusion detection

Paper
ID

Attack Types Detection
Method

Dataset
Network
/Host
Traffic

Node
Participation Protocol Tool/

Language
Algorithm

Implementation
(simulation/
Testbed)

Performance Matrics

[24] Sybil Attack Anomaly No Dataset Host Anomaly
Classification

RPL Cooja
(Contiki OS)

ABC Simulation

Accuracy= 0.968(SA1),
0.952(SA2),0.948(SA3)
Sensitivity= 0.974 (SA1),
0.935(SA2), 0.955(SA3)
Specificity=0.952(SA1),
0.904(SA2),0.852(SA3)
F-Score=0.972(SA1),
0.943(SA2),0.894SA3)

[25] DoS, Prob,
U2R, R2L

Anomaly NSL-KDD Network Classification Protocol
Independent Matlab ABC, RRN Simulation Accuracy=91.65%

[26] - Anomaly UNSW-NB15 Network Classification
Feature Selection

Protocol
Independent - SVM, ABC

Deep Auto Encoder Simulation Accuracy=90%, FAR<10%

[27]
DoS,
DDoS,
Reconnaissance,
Information Theft

Anomaly BoT-IoT Network
Binary &
Multiclass
Classification

Protocol
Independent Python FFN

Simulation
(TensorFlow,
Keras &
Google
Colaboratory)

BINARY CLASSIFICATION:
Accuracy, Precision, Recall
& F1scores are above 99.9%
Info Theft:
exfilteration=92.78%
, key-logging = 96.82%,
ACC: (DoS/DDoS = 99.41%,
Reconnaissance = 98.375%
Info: theft 88.918%).

[28] DoS,U2R,
R2L, Probe

Anomaly NSL-KDD Network Attack
Classification

Protocol
Independent

Python-
Tensorflow

SDPN Simulation
Accuracy = 99.02
Precision = 99.38
Recall = 99.29
F1 Score = 98.83

[5] Botnet (DoS ) Signature No Dataset Network Protocol
Independent

Bot Hunter
for Detection,
Snort Inline
Prevention
Engine

-

Testbed
for detection
of extrusions

Infected Devices found= 41
C&C Server=65
Egg downloads=32
Outbound Scanning=24

[29] Impersonation Behavior No Dataset Host
Mote module
to calculate
behavior

Zigbee Labview CNN USRP
based testbed

Accuracy = 98.8

[30]
DoS
(black Snarfing,
Power Draining
attack)

Behavior No Dataset Network
Master Slave
(hierarchical
architecture)

blacktooth Wireshark,
Smote

C4.5,
Adaboost,
SVM, NB,
Jrip & Bagging

Testbed Precision=99.6%
Recall=99.6

[31] VPN Filter,
IoT Reaper Behavior No Dataset Host Direct

Deployment
Protocol
Independent - -

Testbed
(7 IoT Devices
consists of routers
and cameras)

Accuracy
(2-Class Classification) = 94%
Accuracy
(3-Class Classification) = 81%
Detection Rate 100%,
Memory consumption =5.5%

increased training time of the model. However, the frame-
work needs further improvement to manage the enormous
amount of IoT communication.

A deep learning-based approach for anomaly detection
with higher accuracy is presented by M.Ge at al. [27] for the
detection of multiclass attacks with 90% except for multi-
class classification of information theft which comes out to
be 88.9%. A similar approach is presented by Otoum et al.
[28] using Stacked-Deep Polynomial Network (SDPN) as an
attack classifier extractor and Spider Monkey Optimization
(SMO) metaheuristic to select the optimal features within
the dataset with an accuracy of 99.02% with F1-score of
98.83% and precision and recall of 99.38%, 98.29% respec-
tively.

A Snort-inspired signature based Botnet detection NIDS
model N-EDPS that monitors extrusions by correlating the
inbound malicious alarms with outbound communication pat-
terns is presented by Behal et al. [5]. However, this model
lacks in detecting encrypted C&C channel and requires an
updated rule base to efficiently detect intrusions.

Another important class of IDS utilises behaviour based
approach. For example, Bassey et al.[32] present a deep
learning based model to detect malicious IoT devices via RF
fingerprinting which is evaluated using RF data provided by
a Mote module from Crossbow Technology with an accu-
racy of 98.8%. S.Satam et al. [30] also present a behav-
ioral Multi-level blacktooth IDS (MLBIDS) mainly focus-
ing on blacktooth network of medical devices by utilising
10 features for the classification of network traffic with the

detection accuracy of 99.6% to detect a DoS attacks. How-
ever, it does not address the situation when the master de-
vice is compromised. Breitenbacher et al. [31] present a
Host-based Anomaly DEtection System for IoT (HADES-
IoT) to monitor the behavior of a linux-based IoT device.
It is a lightweight model that only utilizes a maximum of
12% CPU load with a maximum memory usage of 14% with
100% detection rate.
3.2. Distributed Approaches

There have been a number of approaches presented for
IoT device-level intrusion detection, as summarised in Ta-
ble 3. For example, behavior-based models presented by
M.Jagadeesh Babu and A.RajiReddy [33] in which Specifi-
cation Heuristics (SH) based model at each LLN (low-power
lossy Network) device is applied to detect intrusion at device
level. The sensitivity & specificity of the model comes out to
be 92.11% & 88.22% respectively, with almost linear mem-
ory and energy consumption. Similar contribution at device
level is presented by Raja et al. [34] in which a decentralized
IDS is proposed. It uses blockchain based consensus mech-
anism to prevent Goldfinger attack. However, this approach
is not effective if the intruder after compromising the node,
somehow, maintains the pattern i.e. normal usage. Another
behavior based distributed NIDS, Hawkware, is presented by
S.Ahn et al. [35] that ulitises LSTM based ANN model to
lighten memory load. It is designed to analyze as well as cor-
relate network and device behavior for intrusion detection.
However, the model is only designed to detects network at-
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Table 3
Distributed approaches for device-level intrusion detection

Paper
ID Attack Types Detection

Method Dataset
Network
/Host
Traffic

Node
Participation Protocol Tool/

Language
Algorithm

Implementation
(simulation/
Testbed)

Performance Matrics

[33] Generic Intrusions Behavior UNSW-NB15 Network Participation
of each node

LLN CUPCORBAN,
RStudio

Specification
Heuristics

Simulation
Accuracy = 0.9177
Specificity & NPV= 0.9138
Sensitivity & PPV= 0.9211

[34] DDoS,
Goldfinger attack Behavior No Dataset Network Behavioral

Monitoring
Protocol
Independent -

Goldfinger
Resistance
Consensus

Simulation
Consensus Probability
Goldfinger attack
= 0.26 (peak value)

[35]
DDoS botnets,
bitcoin miner,
backdoor.

Behavior Virustotal Network Behavioral
Monitoring

Protocol
Independent Python, ANN

Testbed
(Raspberry
PI 3
with tshark,
ftrace,
Tensoreflow)

Error Equal Rate(EER)
FPR=(0.0328-0.0014)
Area Under Curve=0.99+
Performance(Single input):
Runtime Overhead:7.38
CPU Performance:
4033.196 cycles

[36] DoS, Prob,
U2R, R2L Anomaly NSL-KDD Network Collaborative

Fog Nodes
Protocol
Independent

Python
(Keras, Theano)
Apache Spark

Deep Learning Simulation

Binary Classification
Acc(99.2) , DR(99.27),
FAR(0.85), Pre(99.02)
Recall(99.27), F1(99.1)
Acc(98.27)
DR(96.5), FAR(2.57)

[37] DoS, Prob,
U2R, R2L Anomaly KDD Cup 99,

HoneyBird .HK Hybrid Collaborative Protocol
Independent Weka

DT based
Semi
Supervised
Learning

Simulation &
Testbed

Honeypot Dataset
Hit Rate
(92.48),
Error Rate
(10.5)
Real IoT Environment
Hit Rate
(92.43),
Error Rate
(7.3)

[6] Botnet( DoS,
Prob, Info Theft)

Signature BoT-IoT Network Classification Protocol
Independent

Generic rules
for
Signature
detection

Corelation
based FS
, J48(C4.5)

Framework Only -

[7] Flooding, Insider
Exploration, worm

Signature No Dataset Host Collaborative - Snort None Simulation +
Testbed

Survival Rate= 66.7%

tacks and assumes a pre-trusted environment therefore does
not cope with insider attacks whose origin is from inside a
device.

Anomaly based ID approaches that employ a collabo-
rative mechanism to lighten the load on IoT devices have
also been investigated earlier. Diro and Chilamkurti [36]
presented AI enabled distributed Deep-Learning (DL) based
model that works in a collaborative manner for the detec-
tion of small variants of known attacks in Social IoT. For
binary classification, an accuracy, DR, Precision, Recall and
F1 scores of greater than 99% is achieved with FAR of 0.85.
for multi class classification, an accuracy of 98.27 with DR
of 96.5 and FAR of 2.57 is achieved. Wenjuan Li et al. [37]
presents a disagreement based semi supervised approach to
label the data automatically for collaborative IDS (DAS-CIDS).
Their experiments with KDDCup99, honeypot datasets, and
Snort inline showed the lowest results while in real IoT envi-
ronment an error rate of 8.2 is achieved. Although the over-
all IDS performance is enhanced in a collaborative manner,
however, these approaches still suffer from insider attacks.

An effective method for creating rule for signature based
botnet detection systems that creates miniscule amount of
rules from large number of malicious signatures within BoT-
IoT dataset has been presented by Yan NaungSoe et al. [6].
Their rule set consists of one theft rule, one DoS rule and
fourteen rules to detect probe attack. However, this is a con-
ceptual framework that needs to be further evaluated for ac-
curacy and performance.

A trust based collaborative approach that applies a sig-
nature based mechanism on contrary to anomaly detection in
[37] is presented by W.Li et al.[7]. It utilizes a consortium

blockchain-based collaborative ID model for detection of in-
sider attacks and to incrementally build a trusted database
to store malicious signatures in an un-trusted IoT environ-
ment. This model though effective for known attacks, but
lacks a mechanism to update the signature-base for detec-
tion of novel attacks.
3.3. Hybrid Approaches

Thamilarasu et al. [38] presented a hierarchical, hybrid
and autonomous mobile agent based IDS designed for in-
ternet enabled medical devices (IoMT) to detect device and
network level anomalies over a Wireless Body Area Network
(WBAN). The authors achieve device-level detection by pro-
filing each sensor device via polynomial regression model
that flags activities above a preset threshold. Simulation-
based evaluation showed best case detection accuracy of 97.8
% however, it decreases if the malicious adversaries are elu-
sive in nature.

With respect to anomaly based approaches for device-
level intrusion detection, Liang et al. [39] presents a novel
IDS based on multi-agent reinforcement learning model where
communication between multiple agents is stored on private
blockchain. The model is simulated using NSL-KDD dataset,
the simulation results shows performance of DNN is better
than other techniques such as DTs.However, The model is
still low accuracy in various types of attacks and is resource
hungry, it also has complex data flow which needs to be ad-
dressed. Nandita Sengupta [40] presented a Server/device
level ML based ID model for detection of anomalous traf-
fic and hybrid encryption of data to maintain the integrity
of the data in the communication medium. The classifica-
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Table 4
Hybrid approaches for device-level intrusion detection

Paper
ID Attack Types Detection

Method Dataset
Network
/Host
traffic

Node
Participation Protocol Tool/Language

Implementation
(simulation
/Testbed)

Performance Matrics

[38]

DoS, Data
Fabrication
& falsification,
PrivacyData
Breach

Behavior No Dataset Device/
Network

Agent based Zigbee,
WBAN

OMNET
(Castalia 3.2) Simulation

Acc =99.9% (Nw Lvl)
= 97.81 % (Device Lvl)
Energy Overhead = 2-7%

[39] DoS,Prob,U2R, R2L Anomaly NSL-KDD Network Agent based Protocol
Independent - Simulation

Acc= 99
precision = 99
Recall= 99% (TCP)

[40] Generic Intrusions Anomaly synthetic
Dataset

Network Classification Protocol
Independent RST Simulation -

[41] DoS, Prob /Host
Exploit, generic

Anomaly UNSW-NB15 Network Cluster based Protocol
Independent - Simulation

Acc = 88.92%,

Mean F-Measure = 79.12%
ADR= 86.15%
FAR of 3.8%

[42]
Mirai,
Hail Marry attack,
Scan

Anomaly No Dataset Host Collaborative Protocol
Independent Python

Testbed
(Raspberry
PI)

(Max achieved on GBT)
Accuracy = 100
Precision = Recall = F1 Score
=99.99

[8] DoS (Hello Flooding,
Ver No. Modification)

Signature No Dataset Network Collaborative RPL Cooja Testbed

Avg Power Consumption:
Normal= 0.03% (TX),
0.08% (RX)
Under attack= 0.35%(TX),
1.03%(RX)

[43],
[44]

Multi-Stage Attacks Hybrid No Dataset Network Collaborative 6LowPAN
Cooja with
Tmote Sky
Motes,
Powertrace

Testbed

Pkts/s Power Consumption
1 Pkt/s <2mW <2.5mW
10 Pkt/s <10mW <10mW
100/1000 Pkt/s <30mW <25mW
RAM Overhead
(With/without Duty Cycle)
When Pkt Size 5/10:
RAM 230bytes/420 bytes
Rom =980 bytes

tion is performed using four different ML-based classifier
i.e. SVM, RF, NN and NB and evaluation results highlighted
RF classifier to have the highest classification accuracy.

Another simulation based study that uses KMC based
behavioral analysis optimized by information gain is pre-
sented by Kumar et al. [41] which presents a unified ID
model for detecting malicious activities within the IoT net-
work. The IoT network is divided into multiple clusters and
a cluster head, that also contains ID model, controls and
routes the data for internal communication as well as send-
ing information to the gateway node. The evaluation is done
using UNSW-NB15 dataset and various DT models includ-
ing C5, CHAID, CART, QUEST, etc. The intrusion detec-
tion model is designed using 13 features. The evaluation re-
sults of UIDS, when compared with C5, ENADS and Den-
dron models, showed better performance with an accuracy
of 88.92, Mean F-Measure of 79.12, Attack Detection Rate
of 86.15 and FAR of 3.8 is achieved

Ioulianou et al. [8] presented a signature-based DoS de-
tection mechanism in RPL scenario with both centralized
and distributed modules implemented using cooja simula-
tor to detect two major variants of DoS attacks i.e. hello
flooding and version number modification. The framework
includes a centralized router node that runs the detection
module along with a firewall and distributed IoT detectors
that run lightweight module for monitoring and reporting.
Authors focus on evaluating power consumption during nor-
mal and attack scenario within this approach which is critical
for resource constrained devices. COLIDE [43, 44] focus on
the performance implications of intrusion detection within
IoT. The authors use collaboration between device and net-
work level components to achieve detection of large scale

attacks where signature based detection is adopted at sen-
sor nodes and network-level detection is performed using
anomaly based approaches. Authors reported efficiency of
the approach with respect to power and memory consump-
tion.
3.4. Discussion and analysis of literature

This section presents a critical analysis of the limitations
of existing research and serves as a foundation to develop a
novel botnet detection framework for identification of mali-
cious events in an IoT environment.

• A Centralized approach such as Satam et el. [30]
by installing IDS on the master device of each piconet
and a white listing server containing the list of trusted
devices. However, there is no mechanism to deal with
the situation if the master device or white listing server
is compromised.

• The Standalone approaches based on Swarm intel-
ligence (SI) methods are widely deployed to optimize
the intrusion detection process. However, Its applica-
bility in a resource-constrained IoT environment, where
much less processing, storage, memory and energy is
left for employing a security mechanism, requires fur-
ther efforts at higher level of abstraction to further op-
timize the intrusion detection process to lighten the
detection load from individual IoT devices especially
working in collaboration. Current approaches, such
as by Qureshi et al.[25] has already made some initial
efforts by applying Artificial Bee Colony (ABC) algo-
rithm to automatically select and optimize the weights
and biases of RNN classifier and evaluated using NSL-
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KDD dataset with an accuracy of 91%, and Otoum et
al.[28] that applies Spider Monkey Optimization ap-
proach for optimum feature selection in NSL-KDD
dataset with an accuracy of more than 99%. These ap-
proaches shows promising results however, these ap-
proaches are only evaluated in standalone mode with
outdated datasets. The effectiveness of SI-based ap-
proaches in optimizing various aspects of ID process
such as weight/feature selection, classification etc. in
a centralized, collaborative, or hybrid IoT scenarios
still needs to be evaluated using various latest datasets
(or testbeds) to further optimize the ID process.

• Other Standalone approaches such as S.Behal et al.
[5] that present signature-based botnet detection but
lacks in detecting encrypted C& C channels and Breten-
bacher et al. [31] leverage standalone anomaly de-
tection mechanism using whitelisting approach that
has low CPU and memory load. However, signifi-
cant device profiling time is required to establish accu-
rate profile. Moreover, if a new process or application
needs to be executed it has to be added after profiling
period.

• Distributed approaches presented by Babu & Reddy
[33] and Raja [34] are not tested in real world en-
vironments. Moreover, Diro et al. [36] present an-
other distributed approach that deploys a collabora-
tive mechanism to detect intrusions locally at device
level with multiple master nodes at fog level to re-
duce the overheads at individual IoT devices. How-
ever, the approach is tested on NSL-KDD which does
not represent modern day traffic. Moreover, it is not
tested for energy efficiency such as processor, mem-
ory, and energy consumption. Li et al [37, 7] propose
to add a trust management module within IDS to cope
with insider attacks, and are tested in real world envi-
ronments. However, the authors evaluate the perfor-
mance using small data samples and require further
evaluation using larger data samples to assess its ef-
fectiveness in real world IoT scenarios. Further, [7]
utilise a signature-based detection which is not effec-
tive for zero day attacks.

• A Distributed approach with real world collabora-
tive NIDS implementation presented by S.Ahn et al.
[35] that monitors device behaviors and uses optimized
weight quantization with ANN to reduce memory load.
Although this approach has decent accuracy while de-
tecting network attacks however, the model assumes a
pre-trusted environment and is not intended to cope
with insider attacks.

• The Hybrid approaches, such as by Thamilarasu et
al. [38] and Arshad et al. [43, 44] present a col-
laborative architecture where the individual IoT nodes
perform basic intrusion detection either by using sig-
nature or behavior based approach and a centralized
powerful node that can perform resource hungry tasks

such as anomaly detection. However, the performance
of the model degrades if the master node or edge de-
vice fails. Moreover, the approach either only per-
forms power/ energy evaluation or do not tested in real
IoT environments which is a critical aspect to assess
the real-world efficiency of the ID model. Other Hy-
brid models such as Liang et al. [39] Sengupta [40]
and kumar et al.[41] also present simulation-based stud-
ies. However, these models have issues of low accu-
racy, outdated datasets or requirement of resourceful
hardware that are required to be resolved before de-
ploying and testing it in a real world scenarios.

The open challenges in the existing approaches neces-
sitate an efficient mechanism to efficiently and effectively
identify botnet attacks in a resource-constrained IoT envi-
ronment. In this paper we have introduced a novel botnet
detection framework BTC_SigBDS that uses a collaborative
approach to share the load amongst multiple IoT devices, a
trust Management Module to cope with internal adversaries,
an updated signature based detection to increase efficiency
and a blockchain based ledger to securely store malicious
signatures as well as individual node’s trust for effective de-
tection of IoT botnets. The next section discusses various
components of botnet detection framework along with its
working mechanism. We have also performed experimenta-
tion on the device level botnet detection component to eval-
uate the efficiency of custom signatures.

4. Device Level Botnet Detection Framework
This section presents a discussion on the proposed bot-

net detection framework (BTC_SigBDS) and its components
for efficient and effective detection of botnet attacks within
IoT networks.It employs a trustworthy collaborative device-
level botnet detection in which multiple IoT nodes work to-
gether for efficient and effective detection of IoT botnets.
The framework is empowered with a collaborative signature-
based botnet detection component for early detection of known
attacks. Since an IoT-based environment typically consists
of resource-constrained devices with limited resources avail-
able to employ an efficient security mechanism. Therefore,
a collaborative approach will be helpful to share detection
load amongst multiple IoT devices which may not be able to
perform such tasks single-handedly. The trust management
module helps mitigate against the increasing and complex
nature of botnet attacks in a trustworthy manner and to cope
with insider adversaries. Since IoT devices can potentially
span across different security domains and therefore trust-
worthiness of information and knowledge sharing within a
typical IoT environment is critical to achieve trust sharing
of security events. The blockchain component to develop
an immutable (tamper proof) database for storing attack sig-
natures and trust values. As both the attack signatures and
global trust values if compromised can put the whole IoT
network to stake. A blockchain will be helpful since it al-
lows amendments in the ledger/ database after the consen-
sus of other mining nodes ensures trust in a trustless envi-
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Figure 1: An overview of the proposed device-level botnet detection framework

ronment especially if the trust management component of
the proposed framework is somehow being compromised.
Although the framework consists of various components in-
cluding the Reputation management module and blockchain
database for storing signatures and trust values which are
briefly described below. However, in this paper, our main
focus is on device-level intrusion detection and evaluation
of Snort/ Suricata within IoT devices/environments.
4.1. Components

A high-level illustration of the proposed framework is
presented in Figure 1. It consists of a trusted IoT environ-
ment with two layers of nodes including generic IoT nodes
(H) at layer 0, and specialized IoT nodes (IDA or detection
agents) at layer 1. The core of the botnet detection frame-
work is collaborative detection of malicious activities backed
by a decentralized Reputation/ Trust Management System
to facilitate trustworthiness amongst IoT nodes within the
network thereby addressing the challenge of misbehaving
nodes. Further, we envisage using a blockchain-based dis-
tributed database for immutable storage of attack signatures.
Primary components of the framework are described below:

• Generic IoT Nodes: The generic IoT nodes are de-
vices such as sensors, actuators, etc. that are capable
of sending/receiving data to and from network. These
devices run a trust calculation engine to participate in
calculating reputation of other devices and also for-
ward updates to shared blockchain ledger via update
engine and blockchain interface. Upon reception of
any data within IoT network, it verifies the trust value
(reputation) of the node from the blockchain ledger
before starting communication.

• Intrusion Detection Agents (IDA): Specialized IoT
nodes also known as Intrusion Detection Agents (IDA)
are nodes that have enough computational power in

terms of power, memory and storage to run a signature
detection Engine. These devices are the most trusted
IoT devices within the network they also collabora-
tively control and manage the de-centralized trust man-
agement module and perform activities including node
registration and authorization, and participating in cal-
culating and updating reputation of other devices within
the environment. These nodes also manage the blockchain-
based signature database as well as node’s global trust
values.

• Trust Management Module (TMM): The distributed
trust management module is responsible for calculat-
ing, aggregating and interpreting the local as well as
global trust values within the IoT network. It has a
Node Registration and Authorization engine that ac-
knowledges the registration request of incoming node
by giving an initial (minimum) level of trust. The
Sensing Agent Sub-module controls the Blockchain’s
Trust Ledger/ Interface that contains the global trust
values of all nodes within the network to allow or deny
any further communication with other node. It also re-
ceives the local trust values from all nodes and sends
it to Trust Calculation Engine that subsequently nor-
malize and aggregate local trust values to create global
reputation of individual nodes and update the blockchain
trust database via Update Engine.In future, the com-
plete implementation along with testing of TMM along
with other related components will be performed to
evaluate the efficiency of proposed botnet detection
framework.

• Blockchain Ledger: The botnet detection module will
also leverage the inherent benefits of security, immutabil-
ity, and trustworthiness of blockchain technology by
storing important information in the blockchain’s ledger.
The ledger has a dual role; it maintains the integrity of
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the trust database by protecting the values calculated
by the reputation management system as well as main-
tains the integrity of malicious signatures that can be
used by IDA for the detection of a malicious adversary.
This is accomplished by calculating the hash of both
databases. Each node maintains a trust-database that
contains the global trust values of other nodes within
the network and the hash of the database is stored in
the blockchain ledger that prevents it from corruption.
Similarly, all IDAs maintain a signature database with
an underlying blockchain maintaining its hash.
We have discussed the suitability of private (permis-
sioned) blockchain in this scenario. However, the im-
plementation and testing of the blockchain ledger is
not in the scope of this study and is left for future work.

• Policy Engine: The policy engine has the capabil-
ity to receive, interpret and distribute the rules (sig-
natures) amongst collaborating agents (IDAs). It con-
trols the blockchain-based signature database and is
responsible for network packet capture, inspection, and
matching of signatures with incoming traffic. Upon
identification of anomalous traffic, it sends an alert to
alert correlation and update engine. This paper ex-
amines the suitability of two engines (i.e. Snort and
Suricata) to find out their suitability for IoT environ-
ments.

• Alert Correlation and Update: This module will per-
form a number of rich activities including alert aggre-
gation, normalization, analysis of generated logs, and
correlate amongst a number of generated alerts and
sequence of events and uses predictive analytics to fi-
nalize the event of a botnet attack. This will also help
in suggesting a security vulnerability. Upon identifi-
cation of a malicious event, it sends its recommenda-
tions back to the policy engine that will subsequently
enforce the updated policy to block any malicious traf-
fic/IP/port/mac to all other nodes as well as inform the
network administrator.

4.2. Working Mechanism
Figure 1 presents our proposed botnet detection frame-

work (BTC_SigBDS) whereas Figure 2 presents an detailed
insight into the working of the model. The proposed model
consists of a trusted IoT environment with two layers of nodes
including generic IoT nodes (H) at layer 0, and specialized
IoT nodes (IDA or detection agents) at layer 1. A distributed
reputation/Trust Management Module (TMM) is established
within the network to ensure a trusted environment by cal-
culating the reputation of individual nodes and updating it to
a blockchain-based decentralized (Shared) ledger. Further,
an additional layer of security is added by blockchain that
prevents any malicious adversary to modify the trust values
as well as signature-base which, if compromised, may lead
to any security breach or complete system failure.

The framework ensures a multi-level collaborative en-
vironment in which multiple components (including TMM,
signature detection process etc.) as well as IDAs collaborate
with each other for efficient and effective detection of bot-
net attacks within the IoT environment. The collaboration
amongst the components is done through a blockchain inter-
face that ensures the integrity of signatures as well as node’s
global trust. This consequently prevents malicious/untrustworthy
nodes or nodes with less reputation to sabotage the intrusion
detection process and allows only highly trustworthy nodes
(having reputation greater than a pre-set threshold) to take
part in the botnet detection. Moreover, since the trust and
signature databases are stored on a blockchain, the hash of
the databases are stored on the blockchain instead of the ac-
tual trust values or signatures. This allows for the integrity
of the databases to be verified without having to store the
entire database on the blockchain. By comparing the stored
hash value of the signature database and/ or trust database
with the hash value of these databases on the IoT device, the
system can detect if any changes have been made to the sig-
nature database, and if so, it can prevent it from being used,
and thus preventing corruption. Then the IDA can download
the legitimate database from its peer node.

Whenever a new node enters the network, it goes through
a node registration process through the trust management
module and is assigned an initial level of trust (𝑇𝑖). All the
IoT nodes (H and IDA) within the network takes part in cal-
culating the reputation of other nodes and update the under-
lying ledger (blockchain) by aggregating the trust values. If
a node’s reputation value reaches below a preset threshold
( i.e. zero), it will be blocked from the network. The bot-
net detection process consists of a collaborative model which
mainly involves IDA nodes running a signature detection en-
gines with underlying blockchain based database to securely
store the malicious signatures. The IDAs perform signature
detection and also governs the TMM module. Upon detec-
tion of an intrusion, they update each other to stop inspect-
ing that network packet. It also sends policy updates to both
IDA & H. These IDAs also take part in aggregating the local
trust value to transform the local trust into global reputation
while updating the trust ledger (blockchain) for each node
in the IoT network. This collaboration amongst these IDAs
results in creating a trusted environment as well as efficient
and effective detection of botnets within the network.

The Signature detection engine and TMM interact with
each other via blockchain interface. Each time the detec-
tion engine receives detection information from an IDA, it
will first check the reputation of the sending agent in the
blockchain based trust ledger before accepting the informa-
tion and updating other participating nodes within the net-
work. Thereby allowing only trusted agents to update the
blockchain ledger. An IoT device with sufficient resources
(see Figures 8 & 9 for peak memory and CPU usage respec-
tively) and a reputation or global trust value greater than an
specified threshold (𝐺𝑇 ≥ T) will be allowed to become IDA
and participate in the botnet detection process. On the con-
trary, if the reputation falls below the preset threshold (i.e.
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Figure 2: Process model for the proposed botnet detection mechanism

𝐺𝑇 <T), the IDA is then prevented from participating in the
botnet detection process until it regains the desired reputa-
tion. However, it will continue to remain part of the IoT
network as a generic IoT node (i.e. H), until its reputation is
greater than zero.

In this study, we have created signatures for identifica-
tion of malicious botnet activities (for details see Section
5). In order to automate the signature detection process, an
anomaly detection with automated signature creation com-
ponent is added in Figure 2 for efficient and effective detec-
tion of botnet attacks. As an anomaly detection module, run-
ning a Machine Learning classification algorithm can iden-
tify novel attacks, whereas the signature creation module au-
tomatically creates signatures for identified attacks and up-
dates the signature database. This also leads to detection
of this type of attack more efficiently in future by IDA run-
ning signature detection component. However, this anomaly
detection and automated signature generation is not in the
scope of current study and left for future work.
4.3. Threat Model

Protecting the IoT ecosystem with the help of the ID pro-
cess necessitates a slight distinct security requirement due to
its inherent features including ubiquitous connectivity, het-
erogeneous nodes, & resource-constrained device thereby
adding more vulnerabilities to such an environment. This
section contains a discussion on various scenarios that pose
a threat to a typical IoT environment and how the devised
framework would react to them or what are the possible so-
lutions.

Single internal Malicious Adversary: The scenario,
when a malicious individual/node entered the network or a
legitimate IDA is somehow being compromised or infected.
As a result, it always sends wrong detection information to
other IDAs to sabotage the whole intrusion detection pro-
cess.

Discussion: If the model does not include a trust man-
agement mechanism, a malicious adversary will succeed in
deceiving the detection process, especially if it is able to in-
fect other agents (IDAs). However, if our Trust Management
Module (TMM) is activated, the trust value of malicious in-
dividuals (IDA) will decrease at every wrong information
(i.e. false detection information) that it propagates and ulti-
mately the malicious adversary will be thrown-out (blocked)
from the network. Since the presence of TMM will never al-
low the infected/malicious individuals to receive high trust
values from other IDAs it may strive to increase it by infect-
ing other legitimate IDAs to make a team of infected nodes.

Collusion amongst Multiple Malicious Adversaries:
The scenario, when a malicious collective is formed and starts
a secret cooperation in order to deceive legitimate nodes as
well as the botnet detection process. The collusion amongst
these malicious nodes would result in receiving positive trust
values from other malicious agents thereby increasing the
reputation of malicious collectives. This subsequently re-
sults in increased reliance on malicious nodes for data shar-
ing as well as in the botnet detection process. detection sab-
otages the botnet detection process as well as the whole net-
work.

Discussion: In our framework, if a collusion amongst
M.H Nasir et al.: Preprint submitted to Elsevier Page 12 of 20
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Figure 3: Evaluation Topology

multiple malicious IDAs is formed. Even if they give each
other a positive trust value, still they need to provide enough
correct detection information to maintain their trust values
above the threshold. This is very unlikely for the nodes hav-
ing malicious intent to send correct detection information.
Our future work involves empirical investigation of how our
framework behaves in present of malicious collectives espe-
cially how much correct detection information it gets from
these infected agents (IDA)

Trustworthy Vs Malicious Signatures: The scenario
when an IDA wants to include a malicious signature in a
blockchain ledger. This would result in wrong detection in-
formation. Furthermore, if a large number of malicious sig-
natures are added to the ledger, the detection engine may al-
low/or block traffic which may not need to be allowed/blocked.
Moreover, a large number of malicious signatures may also
consume more memory and CPU usage which is critical es-
pecially in a typical resource-constrained IoT environment.

Discussion: When our framework is activated, the sig-
natures are maintained in a blockchain ledger therefore ad-
dition of any signature can only be possible upon consensus
of majority of trusted IDAs within IoT network and a single
IDS or malicious collectives that constitutes less than 51%
of total agents can never add malicious signatures to the sig-
nature database. Our model also ensures that no malicious
node or collective is formed as discussed in the threat model
of worm spreading agents.

Ledger Based Attacks The scenario when, integrity of
blockchain ledger is somehow compromised.

Discussion: This is a threat scenario that is not addressed
by BTC_SigBDS. Since our framework assumes that the in-
tegrity of ledger is maintained by blockchain and therefore
it does not consider ledger based attacks.

Worm Spreading Agents (IDAs) Scenario when Mali-
cious IDAs spread a worm and infect other legitimate nodes
and try to built malicious collectives. This most threatening
scenario since the may lead to establishment of a bot-army
(zombie network) to launch devastating DDoS attacks.

Discussion: This is a threat model when an infected agent

enters the network and sending malicious codes to infect
other legitimate nodes. since new entrants will be assigned
minimum level of trust. After the activation of the frame-
work, the node sending malicious code files will gradually be
assigned negative trust value and will ultimately be blocked
from the network.

Agents with Sybil Identities Scenario when a malicious
IDA create thousands of sybil identities to influence signa-
ture ledger as well as network.

Discussion: This threat model takes the advantage of the
absence of any cost to enter the network. This scenario can
be averted by employing an entry cost mechanism such as
imposing a mandatory capthca to enter the network. Con-
sequently making it hard for a malicious IDA to create high
number of sybil identities.

5. Experimental Setup and Results
This section presents experimental scenarios used to con-

duct an empirical investigation to find out the efficiency and
effectiveness of IDS/IPS tools for device-level botnet detec-
tion within IoT environments. The evaluation network topol-
ogy for the research, as shown in figure 3, was designed to
assess the device-level botnet detection system for the In-
ternet of Things (IoT). Two intrusion detection/prevention
systems (IDS/IPS) tools, namely Snort and Suricata, were
used to perform experiments. These tools were installed on
the Kali Linux operating system and ran in a virtual envi-
ronment. The use of a virtual environment was crucial in or-
der to simulate a resource-constrained environment, which is
typical for IoT devices. To achieve this, each virtual machine
was allocated a processor with 2 cores and 2 GB of memory.
This ensured that the experiments were run in a controlled
environment, allowing for a consistent evaluation of the in-
trusion detection systems. Out of several publicly available
datasets, as shown in Table 1 IoT23, ISOT, and BoTIoT have
been used in experimentation. These three datasets are se-
lected (out of six mentioned in Table 1 ) due to their avail-
ability in PCAP format. Since both Snort and Suricata can
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Table 5
Experimental results

Dataset Packets
Snort Suricata Suricata

with complete Snort Ruleset
Snort

(With Custom Signatures)
Suricata

(With Custom Signatures)

Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time

ISOT 10,250,791 347,459 3.39 152.87 2,370,559 23.13 240.78 2,547,445 24.85 506.54 2,670,356 26.05 407.67 2,934,583 28.63 359.87
BOTIOT 8,559,054 110,718 1.29 391.77 352,946 4.12 81.56 352,986 4.12 91.23 7,331,120 85.65 578.02 3,270,352 38.21 112.46
IOT23 53,942,175 118,079 0.22 1,493.62 2,374,581 4.40 607.06 2,480,907 4.60 787.26 10,926,140 20.26 1,736.44 13,279,260 24.62 949.11

Figure 4: Comparison of Snort & Suricata results on ISOT, BOTIOT & IoT23 datasets

not process files( Such as CSV, Ariff, etc) other than PCAPs.
Moreover, out of these three datasets, ISOT and BoTIoT are
generated using a testbed environment whereas IoT23 is gen-
erated using 23 real IoT devices. In order to simulate a real
network scenario and to evaluate the behavior of both the

IDSs in real time, TCPReplay utility is utilized to replay the
captured traffic (PCAP files) to the ethernet port as these
packets were recorded. The IDS/IPS tools were used to mon-
itor the incoming traffic from various datasets, to identify
any security threats.The performance of Snort and Suricata

Table 6
Detailed results for ISOT dataset

ISOT Dataset Snort Snort
(Custom Signatures) Suricata Suricata

with complete Snort Ruleset
Suricata

(Custom Signatures)

FileName Packets
Analyzed Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time

init 203398 29378 14.4 13.0 32038 15.8 15.1 427 0.2 7.7 430 0.2 7.4 34439 16.9 5.8
init2 1313543 209081 15.9 20.7 227456 17.3 25.3 828 0.1 32.2 25549 1.9 33.2 183222 13.9 33.2
init3 1263913 13565 1.1 32.4 513271 40.6 15.6 563460 44.6 76.9 638872 50.5 62.4 692504 54.8 55.3
init4 7266524 66057 0.9 71.1 1528255 21.0 166.6 1982301 27.3 384.2 2005073 27.6 298.5 1988607 27.4 258.3
init5 15 0 0.0 1.5 2 13.3 1.2 2 13.3 0.1 2 13.3 0.1 2 13.3 0.2
ISOT BOT 203398 29378 14.4 14.2 69537 34.2 17.0 427 0.2 5.4 430 0.2 6.1 35809 17.6 7.1

Figure 5: Snort and Suricata results on ISOT dataset
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Table 7
Detailed results on BOTIOT dataset

BOT IOT Dataset Snort Suricata Suricata with Complete Snort Ruleset Snort (with Custom Signatures) Suricata (with Custom Signatures)

FileName Packets Alerts %age Time(sec) Alerts %age Time(sec) Alerts %age Time(sec) Alerts %age Time(sec) Alerts %age Time(sec)

HTTP_DoS 129369 10370 8.02 23.28 15339 11.86 2.13 15340 11.86 2.72 62199 48.08 11.45 15340 11.86 2.14
HTTP_DDoS 357961 20765 5.80 46.00 31123 8.69 8.24 31123 8.69 7.29 145548 40.66 29.73 52099 14.55 7.80
TCP_DoS 1270992 4458 0.35 53.56 146757 11.55 16.79 146619 11.54 17.99 1019580 80.22 143.29 1222328 96.17 17.99
TCP_DDoS 1391827 3190 0.23 52.00 63827 4.59 16.38 63804 4.58 17.43 1168131 83.93 99.42 1311721 94.24 19.53
UDP_DoS 2262813 10244 0.45 43.00 6264 0.28 10.24 6265 0.28 12.08 2241278 99.05 94.26 277794 12.28 20.94
UDP_DDoS 2339194 3645 0.16 40.35 5222 0.22 10.21 5223 0.22 11.95 2316398 99.03 126.36 267371 11.43 26.50
Data_Theft 218833 17052 7.79 41.47 25226 11.53 5.72 25226 11.53 4.02 102505 46.84 27.46 25388 11.60 3.80
SerciveScan 170008 13237 7.79 50.55 19347 11.38 3.29 19416 11.42 8.04 80421 47.30 15.25 22481 13.22 4.02
OSScan 352142 22513 6.39 27.39 32084 9.11 7.45 32213 9.15 7.65 163505 46.43 26.68 67963 19.30 7.98
Keylogging 65915 5244 7.96 14.16 7757 11.77 1.10 7757 11.77 2.07 31555 47.87 4.12 7867 11.94 1.76

Figure 6: Snort and Suricata results on BOTIoT dataset

was measured based on their ability to detect intrusions, de-
tection time as well as CPU and memory consumption.

All the dataset files are analyzed using Snort/Suricata us-
ing the following scenarios:

a. Snort with default ruleset
b. Suricata with default ruleset
c. Merging of Snort’s signature base with Suricata’s rule-

set & its evaluation on Suricata.

Table 8
Detailed results for IoT23 dataset

IOT23 Snort Suricata Suricata with complete Snort Ruleset Snort (With Custom Signatures) Suricata (With Custom Signatures)

FileName Packets Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time Alerts %age Time

Honeypot_Philips 8,573 869 10.14 1.29 281 3.28 0.27 457 5.33 0.27 1,822 21.25 1.30 1,015 11.84 0.42
Honeypot1 21,664 9052 41.78 2.51 14 0.06 0.35 117 0.54 0.42 203 0.94 1.20 256 1.18 0.34
Honeypot2 398,312 2840 0.71 6.20 69 0.02 4.85 103 0.03 4.98 4,640 1.16 6.50 788 0.20 5.26
Malware1 1,686,291 36676 2.17 43.52 3,393 0.20 13.88 24,063 1.43 21.76 993,998 58.95 122.75 987,039 58.53 104.66
Malware2 501,356 - - 8.18 133,444 26.62 10.20 133,444 26.62 10.90 302,167 60.27 13.27 401,377 80.06 11.11
Malware3 496,959 - - 7.10 120,026 24 22.70 120,026 24 22.70 302,167 61 36.26 418,885 84.29 27.12
Malware7 11,508,430 7287 0.06 278.88 49 0 84.08 7,554 0.07 185.10 133,708 1.16 119.28 3,997,690 34.74 99.00
Malware8 23,623 - - 1.64 - - 0.24 2,162 9.15 0.45 12,334 52.21 1.17 13,440 56.89 1.06
Malware9 6,437,837 3975 0.06 312.97 820 0.01 59.11 5,197 0.08 103.16 6,363,939 98.85 445.20 2,792,779 43.38 253.19
Talnet 3,793,326 944 0.02 88.10 2,560 0 49.77 3,001 0 51.10 100,048 3 98.70 101,773 2.68 6.12
Malware17 15,000,000 3302 0.02 505.11 2,079,180 14 120.00 2,080,223 14 125.00 2,316,695 15 602.00 4,118,059 27.45 155.00
Malware20 50,156 1 0 1.45 5 0.01 0.50 2,020 4.03 0.61 30 0.06 1.20 34 0.07 0.46
Malware21 50,277 68 0.14 1.42 5 0.01 0.67 527 1.05 0.61 131 0.26 1.49 97 0.19 0.57
Malware34 233,865 50559 21.62 9.12 30,951 13.23 2.99 95,948 41.03 7.49 117,321 50.17 18.70 160,710 68.72 26.72
Malware36 13670225 377 0 224.10 12 0.00 236.60 914 0.01 251.45 235,019 1.72 262.30 236,178 1.73 255.14
irc 36,797 1752 4.76 1.37 2,501 6.80 0.38 3,587 9.75 0.73 33,041 89.79 4.12 36,601 99.47 2.18
Malware42 24,484 377 2 0.67 1,271 5.19 0.46 1,564 6.39 0.53 8,877 36.26 1.00 12,539 51.21 0.76
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Figure 7: Snort and Suricata results for IOT23 dataset

d. Evaluation of Snort & Suricata by creating custom
signatures.
5.1. Performance Analysis

This section presents a detailed discussion on the results
to evaluate the suitability of Snort & Suricata for our botnet
detection framework. The Table 5 shows the summary of
results and Figure 4 shows comparison of results for both the
signature detection engines i.e. Snort and Suricata in terms
of number of alerts, accuracy with respect to total number
of packets analyzed and detection time. The Tables 6,7, 8
and Figures 5, 6, 7 show detailed evaluation results of ISOT,
BOTIoT, and IoT23 datasets respectively.

Testing of Snort & Suricata with default rulesets: As
shown in the Figure 4 and Table 5, Snort shows a percent-
age/number of alerts 3.39% (0.34M alerts), 1.29% (0.11M
alerts) and 0.22% (0.118M alerts) whereas Suricata with the
default signature base generates higher number of alerts i.e.
23.13% (2.37M alerts), 4.12% (0.353M alerts) and 4.4% (2.37M
alerts) for ISOT, BoTIoT, and IoT23 datasets. However, the
initial experiment yields that both Snort and Suricata with
their default signature base show extremely poor results and
generates minuscule number of alerts. Suricata has rela-
tively better number of alerts but still shows poor perfor-
mance to detect botnet attacks. The results also show that
Suricata has in general (specifically for BoTIot and Iot23
datasets) lower processing time than its counterpart. This
is due to its multi-threaded nature whereas the Snort con-
tains a single-threaded processing engine and utilizes only a
single core of the processor. Moreover, Suricata also has a
higher processing time in the ISOT dataset, this is probably

due to the processing of a higher number of alerts.
Merging of rulesets of both tools and its evaluation in

Suricata: The initial experiments with the default dataset
reveals that the Suricata performs better than Snort both in
terms of number of alerts and detection time. Therefore,
the experimentation has been extended by adding Snort’s
Signature base (aka ruleset) to the default Suricata’s signa-
ture base. This shows further improvements in detection
which has improved from 23.13% (2.37M alerts) to 24.85%
(2.54M alerts) for ISOT and from 4.4% (2.37M alerts) to
4.6% (2,48M alerts) for BotIoT dataset but with increased
processing time. This is obvious since the detection engine
needs to compare more signatures while processing the pack-
ets. Moreover, merging of the signature base does not sig-
nificantly improve the results on the IoT23 dataset.

Evaluation of Snort & Suricata using custom signa-
tures: Although the results are improved in previous experi-
ments when the signature-base of both the tools is combined
and executed through Suricata. However, these results need
further improvements in order to achieve a decent detection
rate. Consequently, the experiments have been extended by
creating custom signatures keeping in view of the botnet’s
behaviour to find out the following abnormal activities:

• TCP/UDP Flooding attempts
• Ping of Death attempts (ICMP Flooding)
• Syn Flooding attempts
• IRC Communication
• File Download attempt
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• Brute Force attack
The evaluation results on ISOT dataset (see Table 6 and

Figure 5 for details) using Snort show significant improve-
ments with a peak alert of 1.5 million which was more than
the total alerts generated (around 0.34 million) with default
ruleset with maximum processing time of 298.5s. Suricata
performs better and reaches a peak alert of 2.0M with a max-
imum processing time of 258.3 seconds. For BoTIoT (see
Figure 6 and Table 7 for details), both the engines performs
better for TCP and UDP based Dos/DDoS attacks with a
peak alert percentages in 90s. Figure 7 and Table 8 show
detailed results on IoT23 dataset, both engines show decent
improvements with peak alerts of more than 6.0m and 4.0M
respectively. Moreover, the Suricata appears to be more effi-
cient in terms of less processing time to generate these alerts.

Figure 8: Snort and Suricata peak CPU usage

Figure 9: Snort and Suricata peak memory usage

5.2. Memory & CPU Overheads
Since memory and CPU consumption are two factors

that are of prime importance, especially in a typical resource-
constrained environment, therefore, experiments were per-
formed to assess CPU and memory consumption to find out
the suitability of Snort and Suricata for the proposed bot-
net detection framework. Figures 9 & 8 show the evaluation

results of memory and CPU usage of Snort and Suricata re-
spectively. The experiments were performed by evaluating
both IDS with different packet rates (i.e. 100, 1000, 10,000
& 20,000 Pkt/s). The results in Figure 9 demonstrate that the
increase in the packet rate has a minuscule effect on mem-
ory consumption and Suricata consumes slightly less mem-
ory than Snort. In terms of CPU consumption, as shown in
Figure 8, the Snort hit the peak CPU usage of 21.7% while
Suricata consumes almost 14.2% of CPU resources when the
packet rate reaches 20k per second. The CPU and mem-
ory consumption of both tools shows their suitability in a
resource-constrained IoT environment. Moreover, the Suri-
cata is more suitable for multithreaded and multi-core CPU
environments due to its support whereas Snort only supports
processing the packets utilizing a single core of the CPU
(processor).

Figure 10: Snort and Suricata peak Accuracy

5.3. Accuracy
Figure 10 depicts the peak accuracy of both snort and

suricata on three different datasets. The results showed that
for the ISOT dataset both suricata achieves a peak accuracy
of 96.53%. However, when evaluating the BotIoT dataset,
Snort showed better performance, with a peak accuracy of
94.98% compared to Suricata’s 46%.In the IoT23 dataset,
Snort demonstrated the highest peak accuracy of 99.95%,
surpassing Suricata’s 95.59% accuracy.

A comparison of accuracy between our research and pre-
vious studies is presented in Table 9, which clearly illustrates
the dominance of our study over the others. While previous
studies either relied solely on simulation, evaluated a single
attack, or used outdated datasets. Out of a number of sur-
veyed studies only one study [31] achieved 100% accuracy.
However, the study evaluated a host-based technique, not
a network-based intrusion detection system, Furthermore,
other studies like [43] and [44] focused on ram overheads
and [35] evaluated CPU cycles. On the other hand, this study
evaluated several key performance indicators, including ac-
curacy, number of intrusion alerts, time consumption, CPU
usage, and memory consumption.
5.4. Discussion and Future work

This paper mainly focuses on the implementation of device-
level intrusion detection system by evaluating the suitability
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Table 9
Comparison of Peak Accuracy of other research with this study

Paper ID Peak Accuracy
[24] 96.8%
[25] 91.65%
[26] 90%
[27] 99.41%
[28] 99.02%
[29] 98.8%
[31] 81%
[33] 91.77%
[36] 98.27%
[38] 97.81%
[39] 99%
[41] 88.92%
[42] 100%
This Study 99.95%

of Snort and Suricata in IoT environment both in terms of re-
source consumption (i.e. CPU and memory consumption) as
well as efficiency (in terms of detection time and number of
alerts generated). We have also created custom signatures to
strengthen the capabilities of both tools in order to increase
their efficiency against botnet attacks.

• The evaluation results show the potential of both Snort
and Suricata to be applied in an IoT node as device-
level BDS both in terms of efficiency and memory/CPU
usage. The Snort is more suitable in a single core
CPU based machine whereas Suricata is more suit-
able for devices having multi-core CPUs due to its
support-ability of multi-threaded processing environ-
ments. Moreover, the evaluation results are signifi-
cantly improved after adding custom signatures in some
cases.

• Our experimental study also reveals the requirement
of evaluation of ML algorithms to thoroughly analyze
the labeled CSV files available with two of the three
selected datasets and generation of signatures for ef-
ficient detection of botnets. Since two of these three
datasets (including BotIot and Iot23) are available in
both PCAP and CSV formats (see Table 1), therefore
the signatures generated by ML-based algorithms can
further be applied to the original PCAP files to evalu-
ate their performance.

• The proposed framework also necessitates an anomaly
detection and signature creation component as shown
in Figure 2 that will utilize an edge device for anomaly
detection as well as automated signature generation to
update the underlying blockchain ledger. This compo-
nent leverages the benefits of Machine Learning clas-
sification algorithms for detection of novel attacks and
will automatically create automatic signatures. This
consequently leads to efficient detection of this type
of attack in future via signature detection component.

Our future work involves the implementation and evaluation
of a complete botnet detection model with decentralized trust
management scheme, underlying blockchain ledger, and op-
timized anomaly detection engine to create automated bot-
net signatures as shown in Figure 2. Moreover, the avail-
able labeled datasets (as shown in Table 1) will be used to
train the anomaly detection module after evaluating the effi-
ciency in terms of accuracy, F-Measure, FAR etc., to be used
in anomaly detection as well as automated signature creation
process. The work will also involves testing of complete bot-
net detection model in various scenarios (using threat mod-
els) as discussed in Section 4.3

6. Conclusions
Adoption of IoT devices within widespread domains has

made them a lucrative target for adversaries - botnets are one
the of most prominent threats to such systems. This paper in-
troduced our efforts to establish a collaborative intrusion de-
tection for IoT systems whilst focusing on device-level detec-
tion scheme to address this challenge. We presented a criti-
cal review of the existing work within device-level intrusion
detection for IoT, highlighting challenges which require fur-
ther work. We presented the design and implementation of
device-level intrusion detection scheme which utilises signature-
based detection (Snort and Suricata) to achieve light-weight
operation whilst addressing limitations of such systems through
the use of signature update mechanism to ensure protection
against emerging attacks. Evaluation with three IoT botnet
datasets (ISOT, BoTIoT, and IoT23) shows that the proposed
device-level detection scheme is able to achieve 99% detec-
tion accuracy for TCP-based DoS and DDoS attacks. We
envisage working on the challenge of trustworthy attack sig-
nature sharing among IoT nodes by developing a robust de-
centralised reputation system which can ensure protection
against tampering of attack signatures.
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