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Abstract: Flood disasters are a natural occurrence around the world, resulting in numerous casualties.
It is vital to develop an accurate flood forecasting and prediction model in order to curb damages and
limit the number of victims. Water resource allocation, management, planning, flood warning and
forecasting, and flood damage mitigation all benefit from rain forecasting. Prior to recent decades’
worth of research, this domain demonstrated to be promising prospects in time series prediction
tasks. Therefore, the main aim of this study is to build a forecasting model based on the exponential
smoothing-long-short term memory (ES-LSTM) structure and recurrent neural networks (RNNs)
for predicting hourly precipitation seasons; and classify the precipitation using an artificial neural
network (ANN) model and decision tree (DT) algorithm. We employ the dataset from the Australian
commonwealth office of meteorology named Historical Daily Weather dataset to test the effectiveness
of the proposed model. The findings showed that the ES-LSTM and RNN had achieved 3.17 and
6.42 in terms of mean absolute percentage error (MAPE), respectively. Meanwhile, the ANN and DT
models obtained a prediction accuracy rate of 96.65% and 84.0%, respectively. Finally, the outcomes
revealed that ES-LSTM and ANN had achieved the best results compared to other models.

Keywords: flood forecasting and prediction; multilayer perceptron (MLP); time series analysis; es-
lstm; machine learning (ML); deep learning (DL); artificial neural network (ANN); decision tree (DT);
recurrent neural network (RNN); exponential smoothing

1. Introduction

Natural disasters frequently result in major and long-lasting disturbances in the entire
socioeconomic system. A single catastrophic event, such as a flood, can devastate complex
infrastructure systems, resulting in recurring failures and significant socioeconomic harm,
so impeding progress. Ample precipitation will immediately result in unharvestable crop,
floods and waterlogging disasters, rendering crops, resulting in events that lead to disasters
such as landslides, collapses, waterlogging, and mudslides [1].

Precipitation causes are extremely complicated because of the bundle impact of mon-
soon, geography, evaporation, urbanization, and temperature adding difficulties in fore-
casting precipitation [2–4]. In addition, rainfall has some set properties, and the elements
affecting it, such as terrain, urbanization, and temperature, will not change significantly in
short term. Furthermore, precipitation exhibits a high degree of predictability. Accurate
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flood forecasting can help in lowering the danger of flooding and give managers insightful
and feasible environmental information [5].

In further detail, sensor nodes will conduct local processing in order to minimize
communication and, hence, energy expenses. Various metrics are utilized to measure the
degree of prediction accuracy in forecasting the flood. One of the most popular measures is
the mean absolute percentage error (MAPE) measurement that is used in this study; the
lower the MAPE value, the higher the accuracy for the system’s predictions.

Further, flood prediction is a complicated technique that considers multiple variables
affecting a river’s water level, including its location, water flow, rainfall, soil types, hu-
midity, and catchment area. The association between these variables is complicated. The
association between these variables is complicated. Time series models based on classical
linear gaussian distributions are insufficient for analyzing and forecasting complicated
geophysical phenomena [6,7].

Linear methods such as linear regression (LR) and time series data mining (TSDM)
approaches are unable to find complex features because of the goal of identifying all-time
series observations, the requirement of time series stationarity, and the necessity of residual
normality and independence [8]. Over brief prediction periods of up to one day, artificial
neural networks (ANNs) [9], and nonlinear prediction (NLP) provide accurate predictions.

Traditional ML models treat each sample separately, with inputs and outputs, which is
considered inefficient at forecasting since they require time series information and generate
temporal dependency in the data. The output of these models is frequently degraded when
the input data contains missing values or environmental noise. The predictions produced
by most of regularly used models contain significant inaccuracies, particularly for highly
nonstationary predictands [10,11].

Additionally, precipitation is always a type of time-series data that changes dramat-
ically over time. Therefore, the most commonly used and advanced deep learning (DL)
approaches to deal with time series problems is recurrent neural networks (RNNs) [12].
RNN-based rainfall prediction is more accurate compared to some other DL approaches [13].
Rainfall [14], as well as a dynamic weather forecast [15], can be utilized to estimate radiation
levels using RNN since its coding is excellent for rainfall predictions with time series or
time-based data [16].

As previously stated, both process-based models and conventional ML methods
achieve desperate results in forecasting streamflow. Numerous studies [17–20] have es-
tablished the superiority of DL models over standard ML algorithms in solving various
problems of forecasting and prediction and in various domains. To address the above-
mentioned shortcomings, the following contributions are proposed in this study:

• A forecasting modal-based window size technique that adopts a hybrid model of
time-series analysis using exponential smoothing (ES) and long short-term memory
model (LSTM) network along with recurrent neural network (RNN).

• A prediction model based on artificial neural network (ANN) and decision tree (DT).
• A design of decision and response module to analyze the results of proposed models,

formulate the final decision as well as activation of IoTs’ sensor nodes.
• A prototype of forecasting and prediction model for floods in city and rural areas.

The paper is outlined according to: Section 2 covers the related literature along with
the identification of used parameters and limitations. Section 3 introduces the theoretical
and mathematical models for used algorithms and methods. Section 4 illustrates the
methodology of the proposed work in details and provide discussion for the roles of the
used models. Section 5 elaborates the experimental setup, findings, and discussion on the
outcomes of the used models. Finally, Section 6 presents the conclusion and highlights the
insight for future research directions.

2. Literature Review

In this section, we highlight a review on the literature studies relevant to our work.
D’Addabo et al. [21] applied the Bayesian network technique to flood detection. The authors
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obtained the flood detection model using an existing dataset rather than performing actual
measurements in their work. The authors used light detection and ranging (LiDAR)
technology to gather the information. A study was conducted by Wu and Wang [22] to
investigate and implement network sensors to construct a portable flood detection system.
In this work, the roads were monitored by sensors to send out alerts to drivers in case
the flooding is detected. As for flood detection, Khalaf et al. [23] employed sensors and
ML methods in their work. This study merely used a sensor network to assess the water
level and sent an SMS alert in case flooding is detected. In addition, the authors chose
ML algorithms randomly to show the applicability of using architecture time series in ML
algorithms.

Compared to ANNs, which have a limited number of processing units and layers due
to algorithm computational limits, DL-based models such as LSTM have been used and
enhanced by employing graphical processing unit (GPU) parallel processing and powerful
optimization methods [24]. LSTM can also capture time series and memorize long-term
associations with the addition of a forget gate, making it helpful for sophisticated long-time-
lag applications [17]. Kratzert et al. [25] offered an LSTM model to predict daily streamflow,
whereas Hu et al. [26] proposed another LSTM model to predict hourly streamflow using
six models. In the lower portions of the Semarang region, Widiasari et al. [27] employed an
LSTM model to forecast river water levels. Moreover, a flood early detection system-based
IoT was proposed by Mousavi et al. [28]. In this work, the authors employed various ML
and DL algorithms for real-time flood monitoring and detection.

Zhang et al. [29] utilized LSTM to anticipate water tables in agricultural zones. Xiang
et al. [30] provided a model for hourly streamflow prediction based on LSTM and seq2seq
structure. Damavandi et al. [18] suggested a method for forecasting streamflow utilizing a
digital elevation model (DTM) as supplemental information to historical observed data as
another application of LSTM layers. Dong et al. [31] introduced a dynamic sliding window
approach that can mimic distinct flow times in different months of the year and used LSTM
to opt for the best window. An urban flooding forecasting and alerting model was proposed
by Won et al. [32]. The proposed model involves ANN, LSTM, bi-LSTM, and Stack-LSTM.
The outcomes showed the superiority of bi-LSTM over other models in high-water level
predictions.

Furthermore, a water level forecasting model was developed by [33]. The authors
utilized a variety of ML and DL models to predict floods in the Red River of the North.
They analyzed hourly level data from three U.S. Geological Survey to evaluate the water
level. The results show the superiority of LSTM over other approaches. Kunverji et al. [34]
devised various ML algorithm such that DT, RF, and Gradient Boost for flood prediction.
The results show high flood prediction with high detection accuracy. Moreover, a deep
learning model was developed by [35] for rainfall forecasting model in variable climatic
condition. Chen et al. [36] introduced an urban flooding prediction model using LSTM and
Numerical model. The simulation results from the numerical model is used to construct
the prediction model which yielded high prediction accuracy and fast detection for daily
flood with fast response time. Table 1 displays the summary of related works.



Processes 2023, 11, 481 4 of 23

Table 1. Summary of related works.

No. References Aim of Study Model(s) Dataset(s) Performance
Metric(s) Limitation(s)

1 D’Addabo
et al. [21]

Flooding
monitoring

using synthetic
aperture radar

and
interferometric

SAR data

Bayesian
Network (BN)

Synthetic
aperture radar,
interferometric

SAR
(InSAR)

Sensitivity,
specificity,
probability

• It lacks evaluation using crucial
other metrics, such as Accuracy,
False Positive Rate, MAPE, etc.

• It uses only image dataset for
analysis.

• No details about the
prediction/forecasting about
rainfall.

2 Wu and
Wang [22]

A flood
monitoring and

detection
system using

portable
heterogenous

sensor
networks

NA Real Time
Dataset NA

• It deploys some wireless sensors
for flood monitoring and
detection.

• Lack of analysis in terms of the
collected data and sensors’
power consumption.

• Lack of using ML or DL
techniques with the proposed
system.

• Unable to forecasting of rainfall.

3 Khalaf
et al. [23]

A flood
detection and

alert generation
using ML and

sensor
technology

Random Forest
Bagging

Decision Tree
Hyper Pipes

Environment
Agency Offices

data search

True Positive,
True Negative,

Recall,
F-Measure,

ROC

• It uses ML algorithms for flood
detection and luck of using DL
algorithm.

• It is unable to forecast rainfall.
• It is uses GSM network for

communication which require
additional infrastructure.

4 Balogun and
Adebisi [17]

A sea Level
Prediction

Using ML and
DL algorithms

ARIMA, SVR,
LSTM

Monthly Sea
Level Altimetry

(SLA)

Heat Map, R
accuracy,

Correlation
pattern

• It does provide forecasting
model for future rain occurrence.

• It does not provide an
intelligence network for
rain/flood monitoring.

• No Details about the
deployment strategy.

5 Kratzert
et al. [25]

A rainfall
prediction

model using
LSTM networks

LSTM CAMELS
dataset

Correlation
coefficient of
the observed

and simulated,
Flow Duration

Curve, Total
Volume Bias,

Discharge
Variance Bias

• Lack of Analysis in term of
MAPE, ACC, etc.

• It uses only one model for rain
prediction.

• There is no information available
on the deployment plan.

• No involvement of rain sensors.

6 Hu et al. [26]

A LSTM model
for streamflow
Forecasting of

small river

LSTM, SVR,
MLP

Collected
Dataset

RMSE, MAE,
coefficient of

determination

• There is no information available
on the deployment plan.

• The developed model evaluated
with old dataset.

• It produces high errors in top
volume forecast.

7 Widiasari
et al. [27]

A flood and
water elevation

prediction
model using

context -based
hydrology

LSTM

LSTM Collected
Dataset MAPE, RMSE

• It uses only one algorithm
(LSTM) which could results in
inaccurate prediction results.

• There is no information on the
availability of the dataset.

• There is no information available
on the deployment plan.

8 Mousavi
et al. [28]

A flood early
detection

system based
IoT using ML

and DL
techniques

ANN, LSTM,
GRU

historical
precipitation

and streamflow
data

Root Mean
square error

(RMSE),
Normalized

Statistic (NSE),
Regression

• It limited the study sample.
• Don’t show to reduce human,

financial, and infrastructural
damage.

• The study lack analysis in term
of Accuracy, False Positive Rate,
Sensitivity, Specificity, Precision,
and Negative Predictive Value.

• Do not have rain sensors to
observation.
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Table 1. Cont.

No. References Aim of Study Model(s) Dataset(s) Performance
Metric(s) Limitation(s)

9 Zhang
et al. [29]

A prediction
model for water
table depth in
agricultural
areas using

LSTM

LSTM Collected
Dataset

RMSE,
Coefficient of

Determination

• It relies on one model (LSTM) to
predict the water depth.

• It uses old dataset to asset the
performance of the model.

• There is no information available
on the deployment plan.

• The mode is incapable of
forecasting future rainfall.

10 Xiang
et al. [30]

A rainfall
prediction

using
LSTM-seq2seq

model

Lasso
regression,

Ridge
regression,

linear
regression,
Gaussian
processes
regression,

support vector
regression,

LSTM-seq2seq

WY2016 for
Coralville

Station

Nash-Sutcliffe
efficiency

coefficient, the
correlation
coefficient,
normalized
root-mean-

square error,
statistical bias

• It proposed LSTM-based seq2seq
with different topographies and
different watersheds.

• Its study compares with
Statistical Measures only, leaving
Measures of Accuracy, False
Positive Rate,

• Sensitivity, Specificity, Precision,
and Negative Predictive Value.

• The model only uses hourly
rainfall/runoff observation, and
rainfall forecast.

11 Damavandi
et al. [18]

Streamflow
prediction

based on LSTM
LSTM Livneh’s

database

Pearson
correlation,

Nash–Sutcliffe
model

efficiency

• The LSTM was evaluated with
old dataset.

• No analysis of other metrics, like,
RMSE, and MAPE.

• No details about the deployment
strategy.

• The prediction process relays on
one model which make it
sustainable for high error rate

12 Dong
et al. [31]

A dynamic
sliding

window-based
LSTM for
predicting
streamflow

a dynamic
window-based

LSTM

Zhutuo
Hydrological

Station

Flow
Prediction,
Error Rate

• It is evaluated with old dataset.
• It is unable to forecasting future

rainfall.
• No information is given about

the deployment strategy.
• The prediction model relies on

sole model which make it
sustainable to high false
prediction.

13 Kunverji
et al. [34]

A flood
prediction

model based on
ML algorithms

Decision Tree,
Gradient Boost,
Random Forest

India Water
Portal

Accuracy, True
Positives, False
Positives (FP),

True Negatives
(TN), False

Negatives (FN),

• It is evaluated with outdated
dataset.

• No details about the deployment
strategy.

• It is unable to forecast future
rainfall.

14 Won
et al. [32]

An urban
flooding

forecasting and
alerting model

using DL
algorithms

ANN, LSTM,
bi-LSTM and
Stack-LSTM

Seoul pump
stations

Water level
prediction,

RMSE, MAE,
MAPE, R2

• Limited study solely on Dorim
River Basin, Seoul

• It uses only image datasets for
analysis.

• It deploys urban flood
forecasting and warning process,
as a non-structural measure to
mitigate urban flood.

• It uses DL algorithms for flood
damage and excludes of using
ML algorithms.

• It uses DL models that lacks high
performance for univariate
hydrological time series data
prediction.

15 Atashi
et al. [33]

A ML and DL
models for
water level

forecasting of
Red River of

the North

Integrated
moving
average

(SARIMA),
Random Forest,

LSTM

U.S. Geological
Survey (USGS)

RMSE, Water
Level

Prediction

• There is no information provided
on the deployment strategy.

• Lack of analysis of other critical
metrics, like Accuracy, and False
Positive Rate.
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Table 1. Cont.

No. References Aim of Study Model(s) Dataset(s) Performance
Metric(s) Limitation(s)

16 Fahad
et al. [35]

A rainfall
forecasting
model in
variable
climatic

condition based
on deep
learning

technique

Gated
Recurrent Unit

(GRU)

Climate
Change

Knowledge
Portal (CCKP)
of the World

Ban

Normalized
Root Mean

Squared Error
(NRMSE),

Normalized
Mean Absolute
Error (NMAE),

Correlation

• The prediction model depends
on GRU only which might lead
to false prediction of rainfall.

• It is unable to forecast future
rainfall.

• It suffers from volatile
atmospheric behavior and
climatic condition.

• It did not provide information
about the deployment strategy.

17 Chen
et al. [36]

An urban
flooding

prediction
model-based

LSTM Network
and Numerical

model

LSTM,
Numerical

Model

Self-Generated
Dataset

Ponding Depth
Error, Depth of

Water
Accumulation

• No evaluation of other critical
metrics like, RMSE, and MAE.

• There is no information provided
on the deployment strategy.

• Lack of involvement of windows
side technique with LSTM.

• It produces noticeable error rate.

To sum up, based on our knowledge and according to the analysis of existing literature
(see, Table 1), it could be concluded that there is no study conducted to merge ML and DL
techniques for forecasting and predicting floods. Consequently, this study is proposed to
fulfill the loopholes by merge ML (i.e., ANN and DT) and DL (i.e., RNN and ES-LSTM)
techniques to build forecasting and prediction model for early detection of flood occurrence.

3. Algorithms and Methods

We give a brief overview of the theoretical and mathematical model of the applied
methods and algorithms in this section, which is followed by an illustration of the evalua-
tion metrics applied in this work.

3.1. Time Series (Slide Window)

Time series analysis is useful in extracting information related to the research about
the number of rain forecasting over time. It can also be utilized to determine the expansion
of the existing modifications noticed within the same time. In addition, analysis techniques
may be used to determine if time series data are continuous or seasonal [37]. A reliable
method for presenting data over a long period of time at various times is the time series
approach (hourly, weekly, quarterly, or yearly). More observations lead to a smoother
measurement trend, which improves predictions [32].

The time series approach has the potential to identify seasonal patterns, which is
a significant advantage and a crucial component of forecasting the future. In addition,
the sliding window is an essential technique for time series prediction using feedforward
neural networks (FNNs). Accordingly, the FNNs require fixed-size input with no memory,
which is considered the most common method to feed them with time series data. The
basic concept of sliding window input is shown in Figure 1.
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3.2. Recurrent Neural Network (RNN)

The first RNN was developed in the 1980s [38]. The architecture of RNN consists of
an input layer, one or more hidden layers, and an output layer. It has a series structure
as repeating units with the idea of using these units to store important information from
previous processing steps [39]. In addition, RNN can learn the sequence and solve the
dependency problem in time series. Figure 2 shows the basic structure of an RNN.
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From the preceding Figure 2, it can be seen that the network is composed of an input
unit, an output unit, and a recurrent hidden unit, where xt represents the input at a given t
time and ht represents the output all at once. RNN uses the reaction propagation algorithm,
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which is frequently used in gradient computation and modification of the matrices that
will be adjusted after adjusting the feedback process, throughout the training phase.

ht = f
(

Uxt, Wh(t−1)
)

(1)

ot = softmax
(
Vht) (2)

xt: input vector, ht: hidden layer vector, and ot: output layer vector. U, W and V: parameter
matrices and vector. ht and ot: activation functions.

Consequently, this algorithm is also typically known as back-propagation through
time (BPTT) [40]. The BPTT approach works layer by layer, from the beginning of the
network, with weights set based on the calculated part of the error units. Consequently,
if the training data are longer, then the network will waste resources, which will slow
down the update process of networks’ weights. Therefore, RNN has a gradient problem
and cannot consider the effect of long-term memory in practical applications. Moreover, a
plug-in is required to store this memory. Thus, a special RNN known as long-short term
memory model is introduced.

3.3. Exponential Smoothing-Long Short-Term Memory (ES-LSTM)

Exponential smoothing (ES) was proposed by Brown in [41], and it was later expanded
by Holt and Winters. The main idea is to forecast future observations based on previous
observations using a simple method of weighing past observations in a time series to
predict the future. The model is often observed as suitable for data that do not have an
expected upward or downward trend. The goal is to estimate the true level. This estimate
of the level is then used to forecast future values. It is used in practice to forecast trends
and seasonality. The Holt–Winters method would then be considered, which uses three
smoothing Equations (3)–(5):

lt = α

(
yt

st − m

)
+ (1− α)× lt −1bt −1 (3)

lt = β

(
lt

(lt −1)

)
+ (1− β)× bt−1 (4)

st = γ

(
yt

lt −1 bt −1

)
+ (1− γ)× st − m (5)

y′t + h = ltbh
t st − m + hm (6)

where α, β, and γ are between 0 to 1, and the constant value of smoothing is set.
If the value is equal to 1, then the observation is current. If the value is equal to 0, then

the forecasting will be same and naive. h step forecast is given by Equation (6). lt is the
level of the observation at time t.st is the seasonality of the observation at time t.

LSTM is a revolution in RNN which was presented by Hochreiter and Schmidhuber
(1997) to process prior issues in RNN when supplementary cells are added, namely, the
ability to learn long-term dependencies and remember information for a long time [38,42],
the LSTM model is organized into a series structure. However, the unit of recurrence is
different. Unlike standard RNN, LSTM has four interactive layers with an exceptional
method of communication. The architecture of LSTM model has three gate modules: the
input, output, and forget gates. The input gate is responsible for saving the information
of the present, the output gate is responsible for giving information, and the forget gate
chooses the information. As illustrated in Figure 3, the ft gate denotes the exit gate and
st gate output, and they control the cells state, and ct stores the information y.xt and ht
represents information and output for the LSTM, respectively.
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Initially, the LTSM cell identifies and discards undesirable information. The sigmoid
function, which tracks the removal of the previous LSTM unit (ht−1) at time t− 1 and the
current entry (xt) at time t, determines this process of identification and exclusion. The
purpose of this component determines the removal of the previous output. The forget gate
( ft), which has values ranging from 0 to 1, corresponding to each number in the case of the
cell, ct 6= 1.

ft = σ (wt[ht−1xt] + bt) (7)

where σ is the sigmoidal function, wt and bt are the weights and the bias matrices, respec-
tively.

The second step is to store and define the new input environment (xt) to update the
cell status. This process has two parts; first, whether the information should be updated or
ignored (0 or 1) is determined as mandated by the Sigmoid function; second, the tanh layer
ignores its weights for the values that can continue according to the level of importance
(−1 to 1). The two values are multiplied to update the state of the cell. This new memory is
added to the previous memory (ct 6= 1), which results in ct.

it = σ (wt[ht −1xt] + bt) (8)

Nt = tan h (wt[ht −1xt] + bn) (9)

Ct = Ct −1ft + Ntit (10)

where Ct−1 and Ct are state cells in time t− 1 and t, while w and b are weights and bias
matrices of state cells, respectively.

The third step is to determine the output (ht) values based on the state of the output
(ot) cell but being a filtered copy. The sigmoidal layer decides that part of the cell state that
reaches the exit. Then, the output gate doubles the new values generated by the tab layer
of cell state (Ct), which varies between −1 and 1.

ot = σ (wo[ht −1xt] + bo) (11)

ht = ot tan h(Ct) (12)
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where wo and bo correspond to weights and bias matrices of the output gate, respectively.

3.4. Time Series Analysis Forecasting-Based ES-LSTM

Time series refers to the number of observations over a time. Hence, it is necessary to
analyze the coefficients of seasonal and level time series. It comprises of three layers, the
first layer is the ES layer that acts as a filter for capturing and analyzing the time series, the
second layer is the LSTM that works on capturing randomness in the time series, and finally
the dense layer whose task is to collect the prediction from the first and second layers as
shown in Equation (13). In addition, this model also uses wind (speed and direction and
temperature) features to predict the amount of rain as shown in Figure 4.

LSTM (Xt)× ( st × lt) (13)

Xt is the input state depending on time, st refers to the exponential smoothing and depends
on time, and lt denotes the LSTM depends on time.
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Additionally, before feeding the data into the ANN model, a sliding window technique
(See Figure 5) is used to slice the time series data into a slice of window and target. The
length of the window is assigned to six days, and the target is the seventh day. Further,
the length of the seasonality will be one year to capture and learn the seasonality from the
same day for the previous year.
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The task of this model is to forecast the rain to reinforce the IoT devices capabilities in
transferring from sleep mode to standby mode to be prepared for capturing the data from
the sensors.

3.5. Artificial Neural Network (ANN) Model

The concept of ANN was first developed by McCulloch (1943) in [43]. It is modelled
after the idea of how the human brain functions. An artificial neural network (ANN) is
made up of multiple layers of neurons. ANN is one of these methods since it conducts a
nonlinear mapping between inputs and outputs. Over the last few decades, ANN proves
its efficacy in solving complex problem, such as function approximation and pattern recog-
nition. Furthermore, ANN have the ability to produce meaningful solution to problems
using learning and generalize from examples and input data even the input data contain
some errors or are not completed. Another advantage of ANNs is their ability to function in
real-time environments and store knowledge as the strength of the interconnecting weights
(a numerical parameter) in ANNs is updated through a process known as learning, which
employs a learning algorithm [44,45].

The application of ANNs to resolve hydrology-related problems has been documented
in a number of papers. For example, French et al. [46] utilized ANNs to estimate rainfall
for a watershed using artificial rainfall inputs, while Hsu et al. [47] used ANNs to model
the rainfall-runoff process. Additionally, an ANN mimics this structure by distributing the
computation across tiny, straightforward processing units, sometimes known as nodes or
artificial neurons. An ANN has demonstrated to be a potent mathematical model using
this architecture, excelling at function approximation and pattern recognition. In addition,
nodes are connected to form the ANN. Nodes that share similar features are grouped
together into layers. A layer can be thought of as a collection of nodes that link to other
layers or the surrounding environment but do not interconnect.

A multilayer perceptron (MLP), a type of feed-forward ANN, was employed in this
study to categorize the season of hourly precipitation. There are three layers of the MLP:
the input layer, hidden layer, and output layer. These layers consist of neurons and perform
independent computations on data before transferring it to another layer. The computation
of the neuron is based on the weighted sum of the inputs. The network is fed with raw data,
which is represented by the input unit. The function of each hidden unit is determined by
the functions of the input units and the weights on the connections between the input units
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and the hidden units. The hidden units’ function and the weights assigned to them in the
output units’ behavior determine the behavior of the hidden units.

Figure 6 shows a typical structure of an ANN which contains layers of several units
and thus, it is termed as multilayer ANN. The input layer neurons receive signals from the
outside world. Following that, the input layer sends the received data to the hidden layer
neurons without any alteration or computations. Hence, output layer neurons provided
ANN predictions [45].
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3.6. Decision Tree (DT)

The family of supervised ML algorithms includes the decision tree (DT) algorithm.
It can be applied to regression problems as well as classification problems. The objective
of this approach is to build a model that forecasts the value of a target variable. This is
accomplished by using a DT, where the leaf node stands in for a class label and the internal
node for an attribute [48].

3.7. Evaluation Metrics

In this work, the MAPE and accuracy metrics were utilized to evaluate the performance
of the proposed models in terms of prediction errors and model accuracy. More information
on those measures is provided in the subsections as follows.

3.7.1. Mean Absolute Percentage Error (MAPE)

The MAPE is used to compute prediction errors by dividing the absolute error for
each period by the actual observed values for that period. The absolute percentage of error
should then be averaged. This measure is helpful when determining the prediction accuracy
depending on the size or magnitude of the prediction variable. MAPE denotes the level of
prediction inaccuracy in comparison to the true value determined from Equation (14).

MAPE =
∑n

t=1
|yt−y′t|

yt

n
(14)

where yt is the actual target at is the t, y′t forecasting target resulting in t, n is the quantity
predictive data.
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3.7.2. Prediction Accuracy

It refers to the ratio of correctly classified rain status to the total number of samples in
the dataset [43]. This metric can be computed using Equation (15):

Accuracy (AC) =
TN + TP

TP + TN + FP + FN
(15)

where TN (True Negative), TP (True Positive), FP (False Positive), and FN (False Negative).

4. Methodology of Proposed Work

The methodology of this work is conducted in three stages: (i) data preparation,
(ii) prediction and forecasting models, and (iii) decision and response. The first stage
focuses on preparing the dataset through several pre-processing steps. The second stage in
contrast comprises two steps, predication, and forecasting using time series (Slide Window).
As illustrated in Figure 7, the third stage is responsible for transferring out the final decision
(flood prediction, email sending, and activation of the system sensors) in accordance with
the findings from the previous stage.

4.1. Stage 1: Dataset Preparation

There are three steps involved in this stage: missing values, data transformation, and
data normalization. The subsequent sections provide more details about those steps.

4.1.1. Step 1: Missing Values

The problem with missing values in time series is that occasionally the rain sensor is
not working to indicate the occurrence of rain or not and the rain percentage, which leads
to null values in the dataset records. Therefore, we address this issue by compensating
zero value for the missing value. In addition, there are also missing values that need to
be processed in numerical columns. Hence, we replaced all missing values with column
mean value. However, for categorical columns. We applied the “get_dummies” function to
convert the categorical variables into dummy/indicator variables.

4.1.2. Step 2: Data Transformation

The dataset contains a lot of object features in various formats. Such features should be
in similar format (categorical, numeric, and text) to reduce processing time, computational
overhead and obtain better results from the classification and prediction models.

In this work, we transform the features into numeric form, for instance the “date” fea-
ture is converted from object to date with the following formula (DD/MM/YYYY). Whereas
“RainToday” and “RainTomorrow” features are represented as logical data. Consequently,
we simply replace “yes” with 1 and “no” with 0.

4.1.3. Step 3: Data Normalization

In this stage, normalization is known as the transformation of the range of dataset
values into a specific range of 0 and 1 values. The process requires a predefined range of
values to accurately estimate the minimum and maximum of the observable values. There-
fore, we used the available data for estimating those values. Estimating these predicted
values can be challenging if the time series is moving up or down. Finally, this process is
conducted using Equation (16):

z =
xi − min(x)

max(x)− min (x)
(16)

where xi is the input value, max(x) is the maximum value in dataset’s record, and min (x)
refers to the minimum value in the dataset’s record.
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4.2. Stage 2: Prediction and Forecasting Models

This stage consists of two main steps: prediction and forecasting using time series
(Slide Window). The following section gives more information about the used algorithms.

4.2.1. Step 1: Prediction

This step comprises two algorithms: artificial neural network (ANN) and decision tree
(DT). The following paragraphs provide more details about the role of those algorithms in
the proposed methodology.

As for the role of ANN model in this stage, the Historical Daily Weather dataset is used
to train ANN model for the purpose of obtaining the decision without human intervention.
Wherein three layers are present: the first layer is made up of 118 neurons, and the second
layer is made up of 59 neurons. In addition, we assign ReLU as an activation function:
f(x) = max(0, x). The final layer consists of a single artificial neuron, As shown in Figure 8.
We utilize the sigmoid activation function (see, Equation (17)) for this layer as we have a
binary prediction.

(x) =
1

1 + e−K (x − x0)
(17)

where x is sigmoid’s midway value, x0 is the function’s maximum value, and k is the
logistic growth rate.
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It is deceptively simple, but by combining these simple decision-makers and finding
ideal connection weights, we can make arbitrarily complex decisions and calculations
which stretch far beyond what our biological brains allow. Additionally, we used a callback
function called “Early Stopping” to end training when a monitored metric stops improving.

We compile our neural network with a binary cross-entropy as a loss function, and we
use an Adam optimization [44]. The Adam optimization is a stochastic gradient descent
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variant that can be used besides of regular stochastic gradient descent to update network
weights more efficiently.

Furthermore, the DT’s classifier (j48) is used to predict the dataset records (Rain/Not
Rain). After that, the outcome of the DT algorithm is compared with the results of ANN
model and the best results are selected as input for the third stage.

4.2.2. Step 2: Forecasting Using Time Series (Slide Window)

This step addresses two issues. The first issue is relevant to regression, which is time
series using two models: recurrent neural network (RNN) and exponential smoothing
with LSTM (ES-LSTM). During the training time, the results of the models are compared
against each other and, the highest results of the comparison will be used as an input to
Sage 3 (Decision and Response). In addition, this step used the whole dataset to predict the
occurrence of rain, unlike the first step, which only uses the rain data.

4.3. Stage 3: Decision and Response

This stage is designed to formalize the final decision and send a report to the su-
pervisor in case the predefined conditions are satisfied. The first condition is related to
rain percentage (i.e., in case the rain percentage is more than 40%), an email (notification)
will be sent to the supervisor, which in turn switches on the rain detector sensors. Mean-
while, if there is a chance of rain occurrence (second condition), an email will be sent to
the supervisor to turn on the rain detector sensor. As a result, these processes lead to
the minimization of power consumption since the sensors only operate in the event of a
possible rain occurrence. In addition, the supervisor should send an acknowledgement to
the system to confirm the operation of the sensors within a specific time period. However,
in case the supervisor failed to send an acknowledgement to the system. The proposed
system will automatically send an alert to the sensors directly, which in turn sends a report
for the presentence of rain to diminish flood incidence.

To sum up, the RNN and ES-LSTM models were involved for forecasting, whereas
the DT and ANN models were utilized for prediction. In addition, the operation of the
forecasting and prediction rely on the sensor’ status. For example, if the rain sensors
active, the prediction models start to predict the rain occurrence based on the collected
data from rains’ sensors. In addition, the forecasting models use the seasonal dataset for
forecasting rain’s occurrence. Finally, the outcome of both models (i.e.,) is considered in
taking final decision.

5. Experimental Setup, Results, and Discussion

This section includes information on the dataset utilized in this study as well as the
software and hardware requirements. Additionally, the experiment outcomes are examined
and discussed. The software and hardware requirements used in this work are listed
in Table 2.

Table 2. Hardware and software specifications.

Specifications Parameters

Hardware
CPU Core i5-8th gen
RAM 8 GB

Software
Operating System Windows 10
Programming Language Python (Version 3.7)

5.1. Historical Daily Weather Dataset

In this work, we used a dataset collected from multiple locations across Australia [49].
The Australian Commonwealth Office of Meteorology created and processed a truly large
model dataset to inform, analyze, and extract information. The dataset comprises a total of
11 features and 2359 records. In addition, the datasets records contain several measurements
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and parameters, such as mean temperature, daily rainfall total, minimum temperature,
max wind speed, etc.

Furthermore, the rainfall feature is used in this work for two purposes: time-series
analysis and for forecasting of Melbourne Airport Rainfall since the dataset does not
contain missing values. In addition, all the features in the dataset were used for sliding
window technique and ANN model, wherein the target (label) is the assigned as rain status
tomorrow. It is also worth to mention that during data preprocessing steps, the data are
divided into 80% learning set and 20% testing set.

The dataset being used contains some outliers. There are several processing stages
that must be carried out, such as feature selection, which prepares the data for use in order
to produce the best forecasts. Some characteristics in this work, such as on-going rainfall,
wind speed, and direction, have an impact on floods. Since there is a time of year when
rainfall is more frequent, the majority of these characteristics are seasonal. Figure 9 displays
a sample of the used dataset.
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5.2. Results of the Proposed Approach

This section illustrates the results and parameters used for the proposed approach.
Tables 3 and 4 depict the utilized parameters for DT, ANN, ES-LSTM and RNN model in
this work, respectively.

Table 3. The utilized configuration parameters for DT model.

Models Criterion Max_Depth Metric

DT Gini 7 Accuracy

As shown in the table above, we used the Gini index for criterion and the max_depth
value is assigned to 7.
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Table 4. The used configuration parameters for ANN, ES-LSTM, and RNN models.

Model Optimizer Loss Epochs Metrics

ANN Adam binary_crossentropy 26 Accuracy
ES-LSTM RMSprop mse 10 MAPE

RNN Adam mse 10 MAPE

Several algorithms with different contexts are used to test the precipitation detection
and monitoring system. In this work, the algorithm used for prediction by time-series anal-
ysis of precipitation is ES-LSTM. Table 5 shows the results of MAPE validation and testing.

Table 5. Results of MAPE for time series (slide window) step.

Model MAPE

ES-LSTM 3.17
RNN 6.42

The results in the Table 5 above indicate that the MAPE error is small which indicates
that the model is working well. Nevertheless, there are some mis-predictions in the obtained
results which is owning to the outliers. On the other hand, during the experiments, we
discover that there are some flooding sensors that do not operate occasionally, so it was
replaced by zero values in the used dataset. Figure 10 shows the plot between the actual
and the forecasting values using ES-LSTM.
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As mentioned above, the aim of this experiment is to discover the occurrence of rain
through DL using ANN. Table 6 shows that the accuracy of the ANN model is higher than
that of the DT classifier.
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Table 6. Results of ANN and DT models.

Time Series ES-LSTM Accuracy (%)

ANN 96.65
DT 84.0

In addition, to visualize the performance of the classification model on a specific
classification problem, the confusion matrix is used which consists of rows and columns.
The rows of the matrix refer to the actual class, whereas the columns represent the predicted
class, or vice versa. In addition, this matrix is used for both binary and multi-class classifica-
tion and relies on four parameters (i.e., FP, FN, TP, TN) that provide the total count of correct
and incorrect instances predicted by the classification model. Finally, the computation of
performance measures such as recall, accuracy, precision, and F-measure uses the four
parameters that were obtained. Table 7 exhibits the confusion matrix performance results.

Table 7. The performance results of confusion matrix.

Predicted

No Rain Rain

Actual
No Rain TP = 0.98098 FN = 0.06833

Rain FP = 0.000141 TN = 0.999595

From the table above, it can be noted that confusion matrix shows satisfactory results
with a prediction of 0.0683 of (Rain) occurrence, which the actual case is (No Rain). More-
over, the model predicated 0.0001 of (No Rain). In addition, Table 8 displays the results of
various evaluation metrics for the obtained outcome of the ANN model.

Table 8. The results of evaluation metrics.

Evaluation Metrics Mathematical Model Results

Sensitivity TP
TP+FN 1.04931

Specificity TN
TN+FP 0.999736

Precision TP
TP+FP 0.981121

Negative Predictive Value TN
TN+FN 1.067925

Table 8 presents and discusses the experimental findings of the ANN-proposed model
and demonstrates how well the ANN model performed using the evaluation metrics of
Sensitivity, Specificity, Precision, and Negative Predictive Value. The findings from the
results shows that the result of the sensitivity evaluation metric of our ANN proposed
model is 1.04931 and it significantly performed better than the others evaluation metrics
which are Specificity, Precision, and Negative Predictive Value. While the result of the
Negative Predictive Value evaluation metric of ANN proposed model is 1.067925 and
it performed better than Specificity and Precision evaluation metrics. The results of the
proposed ANN model based on Specificity and Precision evaluation metrics are 0.999736
and 0.981121 respectively.

5.3. The Proposed Prototype

MQTT is a standard publish-subscribe network protocol that allows devices to ex-
change messages. Despite the fact that MQTT typically works with TCP/IP, it can work
with any network protocol that permits ordered, lossless, two-way communication. It is
intended for connectivity to distant places that have resource constraints or have limited
network capacity. The protocol is an open OASIS standard (ISO/IEC 20922) and an ISO
recommendation [50]. Figure 11 presents the flow diagram for the proposed prototype.
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The proposed prototype is represented in the figure above as a group of rain installed
sensors all across the city. Then, the MQTT protocol will be used to send the gathered
data from the sensors to the gateway. After that, based on the information provided, the
proposed prediction and forecasting model will then analyze the received information and
decide based on the pre-trained model. Finally, according to the decision provided in the
third module (decision and response module). Finally, if an alert is triggered, the supervisor
will be notified to make the final decision and inform the rescue team about the situation.

6. Conclusions

The objective of this study is to investigate the applicability of ML and DL techniques
in the event of floods in Melbourne Airport, Australia. The link between the precipitation
data was the subject of the conclusions reached which is regarded as one of the most
important elements influencing the incidence of floods.

In addition, this research tackles the flood prediction using two different models in
order to aid disaster response efforts and curb casualties. The first model is built using
ANN and DT to predict the rain based using the dataset gathered by sensors. Whereas the
second model is constructed using ES-LSTM and RNN model to analyze seasonal dataset
for rain forecasting. Furthermore, the simulation results reveal that the proposed model
achieves promising results in term of MAPE and prediction accuracy. Meanwhile, the
proposed model proves its capability to provide an early prediction of rain incidence.

In terms of future work, we intend to improve the performance of the suggested model
by addressing the following issues. In order to develop a strong prediction and forecasting
system, it is necessary to: (i) Enhance the performance of Section DL algorithms through
turning and optimizing the weight parameters; (ii) consolidate a new group of ML and DL
algorithms to build solid prediction and forecasting system; (iii) optimize the window size
duration; and (iv) feed new characteristics into the prediction models.
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