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Abstract

Recent exponential growth in demand for traffic heterogeneity support and the num-
ber of associated devices has considerably increased demand for network resources
and induced numerous challenges for the networks, such as bottleneck congestion,
and inefficient admission control and resource allocation. Challenges such as these
degrade network Quality of Service (QoS) and user-perceived Quality of Experience
(QoE). This work studies admission control from various perspectives. For example,
two novel single-objective optimisation-based admission control models, Dynamica
Slice Allocation and Admission Control (DSAAC) and Signalling and Admission Control
(SAC), are presented to enhance future limited-capacity network Grade of Service
(GoS), and for control signalling optimisation, respectively. DSAAC is an integrated
model whereby a cost-estimation function based on user demand and network ca-
pacity quantifies resource allocation among users. Moreover, to maximise resource
utility, adjustable minimum and maximum slice resource bounds have also been
derived. In the case of user blocking from the primary slice due to congestion or re-
source scarcity, a set of optimisation algorithms on inter-slice admission control and
resource allocation and adaptability of slice elasticity have been proposed.

A novel SAC model uses an unsupervised learning technique (i.e. Ranking-
based clustering) for optimal clustering based on users’ homogeneous demand char-
acteristics to minimise signalling redundancy in the access network. The redun-
dant signalling reduction reduces the additional burden on the network in terms of
unnecessary resource utilisation and computational time. Moreover, dynamically
reconfigurable QoE-based slice performance bounds are also derived in the SAC
model from multiple demand characteristics for clustered user admission to the op-
timal network. A set of optimisation algorithms are also proposed to attain efficient
slice allocation and users’ QoE enhancement via assessing the capability of slice QoE
elasticity. An enhancement of the SAC model is proposed through a novel multi-
objective optimisation model named Edge Redundancy Minimisation and Admission
Control (E-RMAC). A novel E-RMAC model for the first time considers the issue of
redundant signalling between the edge and core networks. This model minimises re-
dundant signalling using two classical unsupervised learning algorithms, K-mean-
and Ranking-based clustering, and maximises the efficiency of the link (bandwidth
resources) between the edge and core networks.

For multi-operator environments such as Open-RAN, a novel Forecasting and Ad-
mission Control (FAC) model for tenant-aware network selection and configuration
is proposed. The model features a dynamic demand-estimation scheme embedded
with fuzzy-logic-based optimisation for optimal network selection and admission
control. FAC for the first time considers the coexistence of the various heterogeneous
cellular technologies (2G, 3G,4G, and 5G) and their integration to enhance overall
network throughput by efficient resource allocation and utilisation within a multi-
operator environment. A QoS/QoE-based service monitoring feature is also pre-
sented to update the demand estimates with the support of a forecasting modifier.
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The provided service monitoring feature helps resource allocation to tenants, ap-
proximately closer to the actual demand of the tenants, to improve tenant-acquired
QoE and overall network performance. Foremost, a novel and dynamic admis-
sion control model named Slice Congestion and Admission Control (SCAC) is also
presented in this thesis. SCAC employs machine learning (i.e. unsupervised, re-
inforcement, and transfer learning) and multi-objective optimisation techniques (i.e.
Non-dominated Sorting Genetic Algorithm II ) to minimise bottleneck and intra-
slice congestion. Knowledge transfer among requests in form of coefficients has
been employed for the first time for optimal slice requests queuing. A unified cost-
estimation function is also derived in this model for slice selection to ensure fairness
among slice request admission. In view of instantaneous network circumstances and
load, a reinforcement learning-based admission control policy is established for tak-
ing appropriate action on guaranteed soft and best-effort slice requests admissions.
Intra-slice, as well as inter-slice resource allocation, along with the adaptability of
slice elasticity, are also proposed for maximising slice acceptance ratio and resource
utilisation.

Extensive simulation results are obtained and compared with similar models
found in the literature. The proposed E-RMAC model is 35% superior at reducing re-
dundant signalling between the edge and core networks compared to recent work.
The E-RMAC model reduces the complexity from O(U) to O(R) for service sig-
nalling and O(N) for resource signalling. This represents a significant saving in the
uplink control plane signalling and link capacity compared to the results found in
the existing literature. Similarly, the SCAC model reduces bottleneck congestion by
approximately 56% over the entire load compared to ground truth and increases the
slice acceptance ratio. Inter-slice admission and resource allocation offer admission
gain of 25% and 51% over cooperative slice- and intra-slice-based admission control
and resource allocation, respectively. Detailed analysis of the results obtained sug-
gests that the proposed models can efficiently manage future heterogeneous traffic
flow in terms of enhanced throughput, maximum network resources utilisation, bet-
ter admission gain, and congestion control.
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Chapter 1

Introduction

1.1 Background Study

From the innovation of the first-generation (1G) cellular communication system in

1979 to the current, fifth-generation (5G) system, networks have been transformed

from pure voice communication to Multimedia- and Artificial Intelligence- (AI) en-

abled smart communication (Gupta and Jha, 2015). Due to this continuous techno-

logical advancement, a wide range of innovative products and services from vari-

ous sectors, such as the Internet of Thing (IoT), smart homes, industrial automation,

healthcare, education and transportation, have noticeably improved our lifestyle,

society, business and industrial operations. However, these emerging services are

characterised by an extremely diverse set of requirements. For example, enhanced

Mobile Broadband (eMBB) services require higher data rate and bandwidth, Ultra-

Reliable Low-Latency Communications (URLLC) services require minimum latency

and higher reliability, and massive Machine-Type Communications (mMTC) ser-

vices have higher connectivity demand. On the other side, supporting these emerg-

ing services from the existing network is challenging due to inadequate traffic man-

agement and resource scarcity (Foukas et al., 2017). The next-generation wireless

networks (5G and beyond) promise to meet diverse demand for services by incor-

porating the concepts of advanced traffic and resource management. Therefore, a

call to propose new and novel research efforts in 5G and beyond network design

and operational approaches for efficient admission control has activated the research

community around the globe (ZHANG, TAO, and ZHANG, 2016; Panwar, Sharma,

and Singh, 2016).
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The rapid growth of technologies and emerging industry demands have con-

siderably increased network complexity by stretching network resources and their

virtualization (Gupta and Jha, 2015; Mudassir et al., 2019). Due to the increase in

network complexity, the third-generation partnership project (3GPP) has proposed

a novel and flexible architecture called "Network Slicing" (3GPP, 2018c). Network

slicing is an end-to-end (E2E) architecture that acts as the key enabler for the new

business model, supporting heterogeneous applications, and is a vital feature of

the next generation. In this architecture, a single physical network is logically split

into multiple virtual networks (network slices) by a dedicated or shared E2E set

of logical network functions (network instances). Similarly, network slicing accom-

modates diverse use cases through unified physical infrastructure and shared net-

work resources. Based on communication needs, 3GPP defined three main use cases:

eMBB (enhanced Mobile Broadband), URLLC (Ultra-Reliable Low-Latency Commu-

nications), and mMTC (massive Machine-Type Communications). The demand for

eMBB may require high data rates, such as required for watching HD video, or low

data rates, such as required for sending a text message on WhatsApp. For URLLC,

the demand is for a highly reliable connection with very low latency, such as re-

quired for self-driving cars. In the case of a massive IoT network, a huge number of

devices need network connectivity for communication.

For network virtualization, network slicing uses the concept of Software Defined

Networking (SDN), whereby the control and data planes are separated from each

other. Isolation of the network planes reduces complexity and makes the network

more manageable due to the ease of customisation of the virtual network instances.

The virtual network instances are customised to balance the device’s emerging het-

erogeneous demand with available network resources and to achieve maximum util-

ity (Alliance, 2016; Kaloxylos, 2018; Barakabitze et al., 2020). The most common

advantages of SDN are the implementation of network automation, agility, pro-

grammability and policy-driven network supervision. Therefore, SDN, along with

Network Function Virtualization (NFV), is assumed to be a promising solution in

the provisioning of network slicing features in 5G and beyond networks (Ordonez-

Lucena et al., 2017; Khan et al., 2020a).
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However, with the various enabling technologies available to future networks,

efficient admission control is still an open issue that ensures the provisioning of bet-

ter user Quality of Experience (QoE) and network Quality of Service (QoS) demand

in an integrated environment, particularly when the load on the network changes

frequently due to huge demand for connectivity, high-speed mobile users, and ex-

ponentially increasing diverse user-device specific requirements (Su et al., 2019).

The design and implementation of the admission control algorithm relies on specific

strategies chosen by the network operator (or provider). Such strategies explain how

network instances would be customised to meet the incoming demand to achieve

the defined goals of the network; for example, revenue maximisation, congestion

control, and enhanced network performance, as well as user satisfaction with the

network. The emphasis of the thesis is to investigate existing admission control

strategies and to propose a novel model that utilises advanced Machine Learning

(ML) techniques, such as unsupervised learning, reinforcement learning, and trans-

fer learning, to efficiently support future use cases and acquire defined goals from

the network.

1.2 Research Problem

Due to the rapid advancement in wireless technologies and the support of various si-

multaneous heterogeneous services, traffic demand is growing exponentially. Such

demand results in inefficient user admission to networks and inefficient resource

utilisation. This, in turn, makes network and resource management a more challeng-

ing task for network and service providers, as they are bound to the provisioning of

guaranteed bandwidth and data rate by an agreed service level agreement (SLA).

Considering the growing complexity of networks, previous network architectures

(4G/LTE, Wi-Fi, 3G, 2G and 1G) are more suitable for human and data commu-

nication than for device communication and future heterogeneous traffic support

(Moradi et al., 2018; Vashi et al., 2017; Ojijo and Falowo, 2020). Therefore, previous

cellular networks face three major challenges: (1) lack of customisation and pro-

grammability in the core and data planes, (2) users dropping from the network due
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to congestion, and (3) large forwarding delays and signalling overheads in the con-

trol plane (Gupta and Jha, 2015; Caballero et al., 2018; Khan et al., 2020b).

For example, one of the problems in 4G EPS (Evolved Packet System) is the “Al-

ways ON” bearer for signalling purposes. This is a default bearer established at

the time of user registration. Once a user is registered with the requested slice, this

bearer will be established for signalling. Due to signalling overheads, this default

bearer is the cause of an additional burden on the core network and resources (Triv-

isonno et al., 2018). For specific service provisioning, 3GPP proposed Dedicated

Core networks (DECOR) and enhanced Dedicated Core architecture (eDECOR) for

4G/LTE in Releases 13 and 14 (3GPP, 2014; 3GPP, 2016), a service-oriented archi-

tecture that assigns dedicated core networks with specific characteristics to specific

users/devices.

One problem with DECOR is re-routing, whereby User Equipment (UE) is not

permitted to select the Mobility Management Entity (MME) of 4G/LTE. UE first at-

taches to the default MME. Then, based on the attaching request, the default MME

redirects the user to the requested MME. This creates unnecessary signalling from

eNodeB (eNB) to the default MME and Home Subscriber Server (HSS), and then

back to the default MME and eNB to redirect signals to the target MME. In the case of

a massive number of demands for connectivity, huge signalling overheads in the net-

work occur that result in additional delays in communication and more users drop-

ping due to congestion on the network, which in turn reduces the Grade-of-Service

(GoS) of the serving network. Given this problem, UE assistance information was

introduced for requested Dedicated Core Networks (DCN) selection in eDECOR.

Moreover, the 4G core network also suffers from inefficient allocation of resources,

core burden due to the massive amount of signalling, and complex control plane

protocol stack, such as Long Term Evolution (LTE) protocol. This is due to a lack

of proper customisation and programmability of the network functions on the core

and data planes, as well as inefficient network policies (Gohil, Modi, and Patel, 2013;

Kaloxylos, 2018; Agiwal et al., 2021). Therefore, there is a need for fine-grained cus-

tomisation of network functions for access and the core network to enhance network

performance and user experience. In release 15, 3GPP proposed the novel concept
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of network slicing with more scope for customisation and programmability of net-

work functions (3GPP, 2018c). Although network slicing is reliant on virtualization

for the provisioning of parallel services to the industrial market, virtualization itself

relies on the availability of physical resources, whereby few physical resources are

borrowed to implement partial or full virtualization. Initially, the researcher’s focus

was on only the virtualization of core network resources. However, for the provi-

sioning of E2E heterogeneous use cases, slicing and virtualization of RAN resources

are also essential. RAN and core network resources both need to be efficiently sliced

into distinct instances to serve a variety of use cases in future networks. Therefore,

a significant amount of research into the virtualization of access and core network

instances is still required to fulfil the promises of 5G and beyond networks. Such

promises include the coexistence of various heterogeneous technologies and their

integration, ultra-low latency, high throughput and greater reliability. The major

challenges in keeping these promises arise through rapidly changing user demand

and service-specific characteristics that can lead to inappropriate admission control

and resource allocation due to poor management policies in the network. Such as

no policies are available on signalling redundancy reduction in the access and con-

trol plane of the 4G EPS network (Trivisonno et al., 2018). The frequently changing

user demand and service-specific characteristics need to be investigated in-depth,

especially for the support of the multi-tenant environment, where there is a need for

dynamic customisation of network functions and resources (Le et al., 2016; Kaloxy-

los, 2018; Ojijo and Falowo, 2020). Therefore, the major contributions presented in

this thesis are to propose optimised admission control using ML techniques, such

as unsupervised learning, reinforcement learning and transfer learning, that accom-

modate future demand along with enhanced network QoS and user QoE.

1.3 Research Questions

Given the problem statement, the research questions are as follows:

• How to enhance Grade-of-Service (GoS) in future networks with limited or

without scaling up network capacity to support a massive demand for hetero-

geneous traffic?
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• Can minimising signalling redundancy in access and core networks help ad-

mission and resource utilisation without degrading network QoS and user-

desired QoE demand within a dense environment?

• Can the coexistence of the various heterogeneous cellular technologies (2G,

3G,4G, and 5G) and their integration help to enhance overall network through-

put through efficient resource allocation and utilisation within a multi-operator

environment?

• How effective are ML techniques (unsupervised learning, reinforcement learn-

ing and transfer learning) and optimisation in bottleneck (as well as inter-

slice) congestion and admission control in 5G and beyond networks to support

mMTC and eMBB traffic demand?

1.4 Research Scope

The scope of this research is to provide appropriate answers to the above-mentioned

research questions. While doing so, the crucial factors that need to be considered, as

shown in Figure 1.1, are as follows:

- To cope with a diverse set of user and network requirements, throughput max-

imisation is a primary consideration in wireless communication systems. Through-

put determines the effectiveness of the deployed network. 5G promises to provide

end-to-end latency of less than 1 ms (Gupta and Jha, 2015; Ojijo and Falowo, 2020).

Therefore, the major emphasis in a network is on guaranteed throughput that should

not diminish while providing this latency. In a network, throughput is measured by

achieved link efficiency and latency, whereby greater link efficiency at lower latency

results in better throughput and less congestion. This, in turn, also improves the

admission efficiency (i.e. GoS) in a network (Parvez et al., 2018). Therefore, one of

the scopes of this thesis is to investigate the impact of massive heterogeneous de-

mand for connectivity during admission control within a multi-operator- and multi-

technology-enabled environment to improve network throughput by designing ef-

ficient admission control and resource allocation algorithms.
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- An increase in demand for device connectivity helps the network operator to earn

more revenue from maximum network resource utilisation in the deployed network.

However, to efficiently accommodate the massive number of heterogeneous de-

mands is not a simple task for the network operator due to continuously increasing

network complexity. Various approaches to efficient resource allocation and utilisa-

tion were addressed in (Han et al., 2019; Su et al., 2019). However, greed on the part

of the operator can see the network saturated with excessive resource allocation to

users. In this case, network QoS and user QoE would be impacted due to inefficient

resource utilisation (Sciancalepore et al., 2017; Jiang et al., 2016b). In this thesis, the

scope is to propose an optimal network and resource utilisation model that also takes

network QoS and user-perceived QoE into consideration during admission control

and resource allocation.

- In a dense environment, enhancing admission gain and maintaining user satisfac-

tion is challenging for the network providers due to limited network capacity. A

solution for increasing network capacity through temporary resource scaling and

sharing has been addressed in the literature (Gavrilovska, Rakovic, and Denkovski,

2018; Gutierrez-Estevez et al., 2018; Ojijo and Falowo, 2020). To increase admission

gain and user satisfaction, resource scaling and sharing between providers often re-

sults in significant improvement in GoS. However, this approach is costly for the

network providers, as they often have a limited budget to operate, and network rev-

enue would be affected by making decisions on resource scaling and sharing. To

minimise the cost and improve the revenue of the network, the network providers

need to make an on-demand and precise decision about dynamically borrowing ad-

ditional resources from the neighbouring network providers (Gutierrez-Estevez et

al., 2019). Therefore, one of the plans in this research is to propose a model that opti-

mises resource sharing and utilises the existing resources of various heterogeneous

technologies in a way that improves admission gain (i.e. GoS) and user satisfaction

in future networks.

- The increasing demand for services from future use-cases is starting to drive new

control signalling traffic, primarily due to a rapid increase in the number of devices,

both individuals and machines. This trend will have a significant impact on net-

work performance in terms of increased network complexity and congestion, due
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to control signalling storms in the access and core network (Al-Fuqaha et al., 2015;

Trivisonno et al., 2018). The scope is to propose a signalling redundancy minimisa-

tion model that reduces congestion within the access and core network to improve

admission control and resource management within dense wireless networks.

QoS and QoE Enhancement 
   in 5G & Beyond networks

 

To manage the massive 
amount of heterogenous 
traffic flow in future network 
that  minimises congestion 
in access and core network.

Network and 
  resources 
 utilisation

Throughput

Grade of Service 
        (GoS) 

Congestion 
  Control

To enhance the GoS via 
suitable admission 
control framework.

To propose an efficient 
network and resources
utilisation framework.

To improve the throughput
via efficient resource 
allocation algorithm. 

FIGURE 1.1: Research questions, scope and aim

1.5 Research Aim and Objectives

The aim of this research is to investigate the use of modern optimisation and ma-

chine learning (ML) techniques for dynamically admitting the heterogeneous traffic

flow in future networks (i.e., 5G and beyond) to enhance overall user experience

(QoE) and network performance (QoS) in terms of increased throughput, maximum

network and resource utilisation, better admission gain and user satisfaction level,

and congestion control, as shown in Figure 1.1. Accordingly, the research objectives

to be achieved given the above-mentioned scope are itemised below:
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1. To review and investigate the state of the art in admission control of heteroge-

neous traffic flow in future networks (i.e., 5G and beyond).

2. To identify and analyse the most relevant admission control strategies in the

5G and beyond networks to propose enhancements in future network man-

agement.

3. To design and develop novel admission control models for single objectives

using optimisation and unsupervised machine learning techniques.

4. To design and develop novel admission control models for multiple objectives

using optimisation, reinforcement learning, and transfer learning techniques.

5. To evaluate the robustness of the proposed models by comparing them with

the existing models found in the literature.

1.6 Research Methodology

The purpose of the proposed research is to allow a massive amount of traffic flow in

future wireless networks with the assurance of heterogeneous service provisioning

and better QoE. Given the aim and above-mentioned objectives, the research onion

approach is considered in this thesis to demonstrate the overall research methodol-

ogy, as shown in Fig 1.2. Accordingly, the presented methodology has the following

phases:

• Phase I: Research Philosophy:-Recent research study and analysis

• Phase II: Research Approach:-Modelling and network design specification

• Phase III: Research Techniques and Procedures:- Optimisation and machine

learning techniques

• Phase IV: Research Strategy and Choice:-Simulation setup, results, and analy-

sis

• Phase V: Research Time Horizon:-Thesis write-up, publications, and presenta-

tion in pursuit of a PhD
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Phase I: Research 
      Philosophy

Phase II: Research 
       Approach

      Phase III: Research 
Techniques & Procedures 

Phase IV: Research 
 Strategy & Choice

Phase V: Research 
           Time

FIGURE 1.2: Research methodology

Phase I of the methodology begins with a background study to formulate the

research theme, problem statement and research questions. The research aim and

objectives are defined on the given problem statement and research questions. A

detailed survey of related literature is then conducted. Moreover, network and re-

source requirements are analysed for modelling. After surveying various relevant

research works, and their models, analysing results and their evaluation, improved

theoretical system models are proposed, along with the presentation of the network

design on various scenarios in phase II. Under mathematical problem modelling and

numerical analysis, a set of equations and algorithms are established by using op-

timisation and machine learning techniques (unsupervised learning, reinforcement

learning and transfer learning) in phase III of this research. In phase IV, using a

given set of performance evaluation parameters, a simulation environment is estab-

lished in MATLAB to obtain the required results for analysis. The required data for

the evaluation parameters are acquired from the 5G implementation guideline and

3GPP R15 standard (3GPP, 2018c; GSMA, 2019). The robustness of the proposed



Chapter 1. Introduction 11

model is analysed through comparison with the results of various relevant mod-

els in the existing literature. The research contributions derived from the proposed

models are disseminated via well-known conferences and journal publications. Fi-

nally, on the attainment of suitable solutions to all research questions and objectives,

the thesis is written up and presented in pursuit of a PhD in phase V.

1.7 Contribution to Knowledge

The major contributions of this thesis, as illustrated in Figure 1.3, are summarised as

follows:

• To serve heterogeneous traffic demand with efficient resource utilisation and

network GoS enhancement, a novel dynamic slice allocation and admission

control (DSAAC) model for 5G and beyond networks has been presented in

this thesis and disseminated internationally through the publication C01 (Per-

veen, Patwary, and Aneiba, 2019). In this model, an integrated user-application-

specific demand characteristics and network characteristics have been consid-

ered for admission control optimisation. Such characteristics include required

bandwidth, data rate and priority. Moreover, a cost estimation function has

been derived for optimising slice allocation and to quantify resource allocation

decision metrics that is valid for both the static and dynamic nature of the user

and network characteristics. A set of algorithms for efficient utilisation of net-

work slice with inter-slice resource allocation and back-off-based admission

control has also been proposed in DSAAC.

• To accommodate more user-specific traffic data, a novel signalling and admis-

sion control (SAC) model using optimisation and clustering techniques has

been proposed in this thesis and disseminated internationally through the pub-

lication C02 (Perveen, Patwary, and Aneiba, 2020). In this model, it is pro-

posed that pre-clustering end-use analysis, usage-specific clustering, and clus-

tering based on end-use application and device-specific resource demand be

exploited. To ensure a given level of QoE, a usage-specific clustering scheme

has been derived for redundancy minimisation in the access network. In doing
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so, dynamically reconfigurable QoE-based slice performance bounds have also

been considered for user admission to the network. Moreover, a set of algo-

rithms to attain efficient slice allocation and resource utilisation via assessing

the capability of slice QoE elasticity has also been established.

• A novel edge redundancy minimisation and admission control (E-RMAC) model

has been proposed in this thesis to support future networks in terms of min-

imising the aforementioned control signalling redundancy and congestion. This

research work is disseminated internationally through the publication C03 (Per-

veen et al., 2021a). E-RMAC model is the enhancement of the SAC model.

In this model, two popular unsupervised learning techniques (K-mean- and

Ranking-based clustering) and multi-objective optimisation (Non-dominated

sorting genetic algorithm II) are employed to reduce core network signalling

redundancy. By using these techniques, cluster-based signal and admission

control algorithms have been established to maximise link efficiency between

the edge and core networks.

• A novel dynamic traffic forecasting and admission control (FAC) model for a

federated O-RAN environment has been proposed in this thesis and published

in J01 (Perveen et al., 2021b). This model predicts future traffic demand for ef-

ficient admission control and resource allocation. In this model, a fully recon-

figurable admission control model using fuzzy-logic optimisation by drawing

on the information on user demand and network capacity has been proposed

for the optimal network selection. After optimal network selection, a set of

algorithms are also proposed for admission control and service monitoring.

Whereby, a multivariate service allocation priority factor has been developed

for admission queuing. Moreover, a service profile has been built on admis-

sions for service monitoring to ensure efficient resource utilisation and better

user-perceived QoE.

• A novel slice congestion and admission control (SCAC) model has been pre-

sented to minimise the number of slice requests rejection that occurs due to

bottlenecks and intra-slice congestion in the network. This model consists of

a slice demand analysis and classification (SDAC), a demand clustering and
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queuing (DCQ), and an admission and resource management (ARM). Two

popular unsupervised learning algorithms, Ranking and K-mean clustering al-

gorithms, along with multi-objective optimisation and transfer learning, have

been employed for slice request queuing. A unified cost-estimation function

is also derived for slice selection to ensure fairness among slice requests. Given

instantaneous network circumstances and load, a reinforcement learning-based

admission control policy is also established for taking appropriate action on

the guaranteed soft and best-effort slice request admissions. Intra slice, as well

as inter-slice, resource allocation, along with the adaptability of slice elastic-

ity, are also proposed in this model for maximising slice acceptance ratio and

resource utilisation.

  Dynamic Slice Allocation &

   Admission Control (DSAAC)
Model for 5G & beyond Network 

               

 - Proposed a novel dynamic slice allocation and admission control model
   for 5G and beyond networks.
- Derived a unified cost estimation function for optimising slice allocation.
- Proposed a set of optimisation algorithms for efficient utilisation of 
  network slice with inter-slice resource allocation and backoff based 
  admission control.

  Signaling & Admission Control 
     (SAC) Model for 5G & 

            beyond Networks              

- To ensure a given level of QoE, a usage-specific clustering scheme is
   derived for redundancy minimisation in the access network.
- Proposed a set of optimisation algorithms to attain the efficient slice 
  allocation and user admission via assessing the capability of slice QoE 
  elasticity.

Edge Redundancy Minimisation 
& Admission Control (E-RMAC) 

Model for 5G/6G Networks

- Proposed a novel edge redundancy minimisation and admission control 
  model to support heterogeneous applications and massive connectivity 
  demand in future.
- A set of multi objective optimisation algorithms are established by using
  K-mean and Ranking based clustering approaches for signalling  
  optimisation and admission control. 
  

 
Forecasting and Admission 
  Control (FAC) Model for
    5G O-RAN Networks

- Proposed a novel federation model for tenant-aware network 
  configuration, which features a dynamic demand-estimation embedded 
  with fuzzy-logic-based optimization for the optimal network selection.
- A set of algorithms are proposed for admission control and service 
  monitoring. A multivariate service allocation priority factor and service 
  profile has been developed for admission queuing and service monitoring. 

    Slice Congestion & Admission 
     Control (SCAC) model in 

      

            

- Proposed a novel slice congestion and admission control model to minimise 
  the number of slice requests rejections within future networks.
- A set of clustering algorithms are developed by applying NSGA-II based multi 

objective optimisation and transfer learning approaches.
- A reinforcement learning-based admission control policy is developed along 

with Intra/inter-slice as well as adaptability of slice elasticity approach for 
resource allocation.    

     future Network
      

- Proposed a novel signaling and admission control model for 5G network.

FIGURE 1.3: Contribution to knowledge
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1.8 Organisation of Thesis

This thesis is organised as follows (see. Figure 1.4):

• Chapter 2 presents a comprehensive survey of the state of the art in admission

control for traffic and resource management in wireless networks. The main

contributions of the thesis are discussed in detail in Chapters 3 and 4.

• In Chapter 3, two novel single objective optimisation models for slice and user

admission in 5G and beyond networks are proposed. Introduction on admis-

sion control with single objective optimisation models is described in Section

3.1. In Section 3.2, an integrated user application, as well as a network-specific,

characteristics-based dynamic slice allocation and admission control model is

proposed for 5G wireless networks. Section 3.3 describes a cluster-based opti-

mised control signalling and admission control model to accommodate more

user-specific data traffic. The concluding remarks on the chapter are presented

in Section 3.4.

• Chapter 4 extends the work presented in Chapter 3 with the help of multi-

objective optimisation, whereby three novel models have been proposed for

user admission in edge and federated 5G-OpenRAN networks. Introduction

on admission control with multi-objective optimisation is described in Section

4.1. In Section 4.2, a novel NSGA-II algorithm-based signal-clustering and

admission-control model is presented for signalling redundancy reduction in

future edge networks. In Section 4.3 on dynamic demand forecasting, a fully

reconfigurable fuzzy-logic-based admission control model is presented to ac-

commodate high-density traffic demand in an open radio access network. By

using multi-objective optimisation (i.e. NSGA-II) and machine learning (i.e.

unsupervised learning, reinforcement learning, and transfer learning) tech-

niques, a novel slice congestion and admission control model is presented in

Section 4.4. This model is proposed for bottleneck and intra-slice congestion

control in 5G and beyond networks. The concluding remarks on the chapter

are presented in Section 4.5.
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• Finally, I concluded the presented research with a detailed analysis of the achieved

research objectives in Chapter 5. Moreover, limitations in the proposed models

and possible directions for future research are also presented in detail.

Chapter 2: State of the Art in Admssion Control

Chapter 3: Admission Control with Single-Objective Optimisation 

Chapter 4: Admission Control with Multi-Objective Optimisation

Chapter 5: Conclusion and Future work

 - Admission control via single-objective optimisation 
- Admission control via multi-objective optimisation 
- Research gap and contribution

Dynamic slice allocation & admission
control (DSAAC) model
Publication: C01  

End-use aware optimised signaling
& admission control (SAC) model
Publication: C02

Dynamic traffic forecasting & admission
control (FAC) model 
Publication: J01  

Edge redundancy minimisation and
admission control (E-RMAC) model
Publication: C03 

Slice Congestion & Admission Control (SCAC) model in future Networks 
Submission: J02

Chapter 1: Introduction
- Background Study
- Research Problem, Questions and Scope
- Aim and Objectives, Research Methodology
- Contribution to Knowledge
- Thesis organisation

  

Future Work

 

-Implement data redundancy reduction via ML &
   optimisation approaches to acquire link utilisation 
   efficiency in data plane.

   -Develop a well-trained model on real data for 
 multi-edge computing & O-RAN networks in
  order to further latency reduction & congestion
  control.

 Conclusion
-Dynamic reconfiguration of slice resource 
 block size & boundaries is an important 
 factor to improve the network GoS.

-Signalling redundancy minimisation has a
 significant impact on link utilisation efficiency 
 and latency.
-Optimal admission control on demand fore-
 casting enhance network QoS & user QoE.

-ML-based knowledge transfer scheme is 
 effective in dense networks for efficient 
 admission control & resource management.  

 - Introduction 

Research Limitations
-Management issues in multi-slice & multi-edge 
 environment, such as handover.
-Redundancy in data transmission
-Edge-to-edge different configuration induces 
 complexity and optimisation is costly.
-Tenant’s slice reconfiguration induces latency.

FIGURE 1.4: Thesis structure
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Chapter 2

State of the Art in Admission

Control

2.1 Introduction

5G wireless networks promise to provide a diverse range of services by incorporat-

ing advanced network and resource management techniques such as network func-

tion virtualisation (NFV), software-defined networking (SDN) and network slicing.

These techniques, especially network slicing, provide resource customisation capa-

bilities to balance emerging demand in the network against the available capacity.

By next-generation mobile networks (NGMN) alliance (Alliance, 2016), the network

slicing concept consists of 3 layers: Resource layer, Network Slice Instance Layer,

and Service Instance Layer, as depicted in Figure 2.1. The resource layer holds and

manages the resources within a resource pool. This layer shares resources among

slices upon request through instances. The network slice instance layer contains the

slice instance to establish an end-to-end connection to serve the specific application

via sub-network slice instances. The sub-network slice instance contains a set of cus-

tomised resources from the resource pool, which can be shared among various slice

instances. Moreover, a slice can obtain the resources from multiple sub-network slice

instances. The sub-network slice instance can also be shared among various active

slices for resource allocation on demand. The capability of multi-slice connectivity

for heterogeneous service provisioning makes the scenario more complex. The ser-

vice instance layer contains application instances to serve a particular application

from the respective network. Services can be provided by the network operator or
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by 3rd parties.

Resource 
   Layer

Network Slice
Instance Layer 

Service Instance 
Layer

Service Instance 1 Service Instance 2 Service Instance 3 

Service Instance 4 

Network Slice
   Instance 1

Network Slice 
   Instance 2

Network Slice 
   Instance 3

Sub-network 
   instance 1

Sub-network 
   instance 2

Sub-network 
   instance 3

Resources/Network Functions/Network Infrastructure

FIGURE 2.1: Network slicing conceptual architecture by NGMN (Al-
liance, 2016)

In the network, resource allocation and utilisation are influenced by decisions

made by admission control algorithms. Admission control is a fundamental ap-

proach to achieving specific objectives that ensure efficient network traffic and re-

source management. These objectives include revenue optimisation, network Qual-

ity of Service (QoS) and user Quality of Experience (QoE) control, congestion con-

trol, and admission fairness (Han et al., 2018a; Kammoun et al., 2018; Caballero et

al., 2018; Sun et al., 2019a; Ojijo and Falowo, 2020). Today, the primary concern

of mobile network and service providers is to ensure adequate resource allocation

and their maximum utilisation to earn more revenue by improving network perfor-

mance or QoS, and to satisfy user QoE (Ge and Tan, 2014). The critical challenge

encountered by the mobile network or service providers is to balance the emerging

user demand against available resources in such a way that it does not create con-

gestion. Accordingly, coping with emerging user demand in proportion to available

resources and achieving their maximum utilisation are a guaranteed attraction for

researchers today. Enormous advances in virtualisation technologies divert the at-

tention of researchers and the industry to virtually maximise network capacity in
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proportion to demand to serve more users with their desired QoE and earn revenue

(Jiang et al., 2016b; Pratap and Das, 2021). Accordingly, a comprehensive survey

of the state of the art in admission control for traffic and resource management in

wireless networks is presented in detail in the following sections.

2.2 Admission Control Strategies

Along with technological advancements, admission control becomes difficult in un-

foreseen scenarios, due to growing network complexity. On another side, having

better network QoS is also essential to assure users of the provisioning of their re-

quired QoE. Therefore, efficient admission control in future networks that ensures

better resource management without degrading user QoE and network QoS demand

is still an open issue (Su et al., 2019). The design and implementation of an ad-

mission control algorithm relies on a specific strategy chosen by the network op-

erator to achieve the above-mentioned objectives. The admission control approach

can be simple with single objective optimisation (e.g. priority-based or first-come-

first-served, random or greedy with single variate optimisation), or complex with

multi-objective optimisation and ML-enabled approaches (Ojijo and Falowo, 2020),

as discussed in detail in the following subsections.

2.2.1 Admission Control via Single-Objective Optimisation

The simplest strategy to consider the incoming request is the conventional approach

with single objective optimisation for admission control. In these approaches, the

strategy is to serve the requests as they arrive (first-come-first-served), or to admit

the requests in order of priority, or to adopt a greedy approach to maximise rev-

enue, or random approaches to ensure fairness among users during admission, as

discussed below in detail.

The first-come-first-served or first-in-first-out (FIFO) strategy is the simplest ap-

proach to user admission to the network and ignores non-trivial constraints such as

latency and bandwidth demand (Ojijo and Falowo, 2020). For example, the authors

Han et al. proposed a utility-based admission control model for network slicing

in 5G (Han et al., 2019). To serve the requests of multiple queues, first come first
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served (FCFS), last come first served (LCFS), random selection for service (RSS), and

priority-based (PR) schemes have been investigated by the authors in their work.

Similarly, Anand et al. proposed a signal-to-interference ratio (S/I) based call ad-

mission control model (Anand and Chockalingam, 2003). In this model, calls are

been admitted by the network at the time of arrival based on their S/I ratio. Fenton

method approximation has been used in this model for call blocking probability es-

timation. However, a newly admitted call can cause an outage to any ongoing calls

due to the S/I ratio and resource scarcity in this model. Similarly, Walingo et al.

proposed a connection admission control model for radio resource management in

5G (Walingo and Takawira, 2014). In this model, signal-to-interference ratio and de-

lay parameters had been used to estimate call blocking probability. However, When

there are no resources on the network, any request arriving, either critical or not, will

be automatically rejected. Such admissions may lead to degradation of network per-

formance due to poor traffic management. Moreover, to obey resource constraints,

the requests must be within the bounds of the admission region (Bega et al., 2017).

Nowadays, FIFO is not a frequently used admission control approach due to its lack

of optimisation.

During admission control, network providers may give preference to requests

that belong to a certain category; for example, to URLLC slice requests in 5G, where

the requests have strict latency requirements. This type of request is considered

to have higher priority for admission and is also expensive in terms of operational

cost (Kammoun et al., 2018; Soliman and Leon-Garcia, 2016). Therefore, admission

of high-priority requests onto the network results in higher revenue. By utilising

a Reinforcement Learning (RL) method, a priority-based slice admission scheme is

suggested by the authors in (Raza et al., 2018). The author’s emphasis is on revenue

maximisation while also considering the latency requirements of the access network.

Compared to FIFO, this scheme increases the revenue earned from high-priority re-

quests with superior QoE but also increases the rejection ratio of lower-priority re-

quests. Thus, short-term contracts on high-priority request fulfilment may be less

profitable compared to long-term contracts on medium- or low-priority requests

(Ojijo and Falowo, 2020). An example could be a network provider considering

a contract to accommodate requests for autonomous driving with higher priority
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while rejecting other requests. Contracts such as this may be scarce and limited to

a certain region. On the other hand, providers endeavour to have longer-duration

contracts at higher demand to generate more revenue. Similarly, Caballero et al.

proposed a network slicing game-based admission control and resource allocation

model for guaranteed rate services (Caballero et al., 2018). In this model, users have

been assigned a weight based on their resource utilisation from a particular slice.

The authors used the Nash equilibrium method for admission control in their work,

that checks whether the slices can satisfy the rate requirements of all admitted users

or not. However, some of the slices become saturated by this approach that results

in unfairness in resource allocation among slices. Another approach proposed by

Caballero et al. is static slicing for admission control and resource allocation. In this

approach, each slice receives a fixed fraction of resources from the network resource

pool, which is shared among its users. If there are no resources in the slice, the user

will drop instantly from the network. Similarly, Jiang et al. proposed two novel

approaches 5G Slice Allocation (5G-SA) and 5G Admission Control Slice Allocation

(5G-AC-SA) in (Jiang, Condoluci, and Mahmoodi, 2016). 5G-SA consider intra/inter

slice priority for resource allocation among slices. In this approach, resources are al-

located to the users based on their demand and earned revenue in the slice. In this

model, resources are allocated to users of high data rate demand in case of heavy

load on the network, which degrades overall network QoS due to lower satisfaction

of users with low data rate demand. 5G-AC-SA consider users’ intra-slice priority

and demanded QoE for slice allocation and admission control. This approach gives

better fairness in resource allocation as compared to 5G-SA. However, in the case of

massive connectivity demand, network QoS degrades due to more number of lower

priority users and slices rejections from the network.

The authors of (Challa et al., 2019) proposed a greedy policy for admission con-

trol. In this strategy, a Partial Adaptive Greedy (PAGE) algorithm was deployed that

maximised revenue and minimised SLA violation for customers. In this algorithm,

a π policy is exploited. π is determined by a learning process through several it-

erations to meet the admission objective, and an example of such a policy is given

in (Tang, Shim, and Quek, 2019). Online auction on available resources and greedy

approaches are applied for resource allocation in (Liang et al., 2019). In this model,
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users are admitted to the network based on profit. The user, who can give more

profit among other users to the network becomes the winner and has been served

from the network. A bankruptcy game-based resource allocation algorithm for 5G

Cloud-RAN slicing is proposed by the authors in (Jia et al., 2018). In this approach,

user groups are created for admission to the network based on the Lloyd Shapley

approach. In this work, a user would be a part of a group, if the user adds more

benefits to the slice. However, a greedy-based admission control strategy may not

always be optimal. Such a policy makes the greedy decision on the spot to achieve

the objective, such as increasing the admitted requests to earn more revenue from

the network. The admitted requests may affect network QoS and resource utilisa-

tion due to the congestion created by their massive number and long queuing delays

(Yi, Wang, and Huang, 2018).

Random admission control helps to reduce unfairness occurring among users

during the admission process. One such example is the Markov model for slice

admission control proposed by the authors in (Han, Feng, and Schotten, 2018). In

this work, the state transitions, such as pre-state to post-state and vice versa, are

evaluated to reduce the computational complexity in the physical network. A fairly

normal distribution can be achieved by applying this strategy over a long period to

user admission; however, random admission control is not popular due to its lack

of optimisation and management policy. Similarly, Lee et al. in (Lee et al., 2018),

proposed a dynamic network slice management model for multi-tenant heteroge-

neous cloud-RANs. This model consists of two controls: an Upper-Level, which

manages resources allocation, user association and admission; and a Lower-Level,

which manages access network resources allocation among different users. Pablo

et al. in (Caballero et al., 2018), considered a dynamic slice resource-sharing mech-

anism that shares resources among the elastic and inelastic nature of user traffic

to achieve required network performance and revenue. Similarly, Zheng et al. in

(Zheng et al., 2018), studied a simple and dynamic resource sharing model. This

model allocates a “share” of pool resources to each tenant’s slice based on demand

and ensures efficient resource utilisation. In addition, from this share, each tenant

assigns the resources to the admitted user via a slice share constrained proportion-

ally fair (SCPF) scheme. The work in (Wu et al., 2018) developed a bio-inspired
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resources allocation model for 5G IoT applications. This model considers a diverse

group of users, along with their homogeneous service and resource requirements,

and their social relationships and behaviour update these characteristics periodically

via a cellular automaton (CA) model. However, this approach results in creating un-

fairness on users’ admission to the network due to their extremely diverse set of

requirements. Due to increased network complexity, modern intelligent and multi-

objective optimisation algorithms might be adopted in future wireless networks to

deal with unfairness occurring among users in admission control (Adou, Markova,

and Gudkova, 2018; Ojijo and Falowo, 2020).

2.2.2 Admission Control via Multi-Objective Optimisation

Multi-objective optimisation approaches have been successfully applied to provide

optimal solutions to several difficult non-deterministic polynomial-time (NP) prob-

lems in wireless communication systems, such as spectrum allocation (Zhao et al.,

2009; Gözüpek and Alagöz, 2011; Shami, El-Saleh, and Kareem, 2014), resource

scheduling (Gu et al., 2015), channel assignment (Xu et al., 2012), indoor and outdoor

tracking (Gharghan et al., 2015), and call admission control (Jain and Mittal, 2016).

Compared to conventional approaches, multi-objective optimisation algorithms are

known to find efficient solutions faster and more accurately, and they can produce a

solution individually or in combination with other approaches.

In wireless/cellular communication, well-known examples of applied multi-objective

optimisation algorithms are Swarm Intelligence (SI) and Genetic Algorithms (GA).

Swarm Intelligence (SI) techniques for optimisation include Particle Swarm Opti-

misation (PSO) (Kennedy and Eberhart, 1995), Ant Colony Optimization (ACO)

Dorigo and Di Caro, 1999, Dragonfly Algorithm (DA) (Mirjalili, 2016), Salp Swarm

Algorithm (SSA) (Mirjalili et al., 2017) and Grey Wolf Optimizer (GWO) (Mirjalili,

Mirjalili, and Lewis, 2014). PSO is among the top multi-objective optimisation ap-

proaches, due to its lower computational time requirement and simplicity compared

to other approaches. Impressed by PSO, the authors proposed an enhanced swarm

intelligence algorithm for a multi-objective joint power and admission control opti-

misation problem. Their optimisation algorithm is developed from two-phase PSO

(TPPSO) and diversity global position binary PSO (DGP-BPSO) variants (El-Saleh
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et al., 2021). Similarly, Du, Jianbo, et al. proposed an enhanced optimal PSO-based

radio resource allocation and admission control scheme in an LTE-A system. The

proposed multi-objective optimisation algorithm is applied for resource block and

power allocation with lower computation complexity. For modulation and coding,

a Channel Quality Indicator (CQI)-based assignment scheme is adopted to obtain

higher throughput from diverse channel conditions (Du et al., 2016). Similarly, Wang

et al. adopted a Neighbourhood-Redispatch (NR) PSO-based approach for solving

the mixed-integer programming problem of resource block assignment and power

allocation in device-to-device communication (wang2017resource). Another, PSO-

based resource allocation and admission control scheme for Software-Defined Het-

erogeneous Cellular Networks is proposed in (Gong et al., 2019). However, PSO

suffers from premature convergence, because it attempts to obtain near-optimal so-

lutions quickly. In addition, late phases of the search process with no further im-

provements are a burden on the network in terms of time consumption and unnec-

essary resource holding (Bhatia, Chauhan, and Yadav, 2021).

An enhanced swarm algorithm-based call admission control technique is pro-

posed in (Suresh and Kumaratharan, 2021) to minimise call-blocking probability due

to congestion in 5G cloud-based radio access networks (C-RAN). In this research,

fuzzy parameters are optimised by applying the artificial fish swarm algorithm-

based fuzzy inference system (FIS-AFSA) algorithm. A similar approach is proposed

by Jain and Mittal in (Jain and Mittal, 2016) for handoff priority and handoff guar-

antee services in the cellular network. In this approach, optimal resources were al-

located to requests over the dynamically adjusted threshold for admission control.

Chowdhury et al. proposed an adaptive multi-level bandwidth-allocation scheme

for non-real-time calls. This scheme diminishes the probability of call dropping by

efficiently using available bandwidth (Chowdhury, Jang, and Haas, 2013). Khan et

al. (Khan et al., 2021) presented a decoupled cell association method to solve the

problem of resource allocation and admission control in 5G networks. They pro-

posed an outer approximation algorithm (OAA) to acquire an optimal solution with

lower computational complexity and better throughput.

GA is among the most important classes of evolutionary algorithms and has

great potential to solve difficult optimisation problems that start with a search of a
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randomly generated population. The search proceeds, generation after generation,

through biological operations. Such operations include selection, crossover, muta-

tion and reproduction to evolve to the next generation (Mirjalili, 2019). The authors

of (Sun, Lin, and Xu, 2018) proposed a two-level resource scheduling model for fog

computing. They implemented clustering and the improved non-dominated sort-

ing genetic algorithm II (NSGA-II) for optimum resource scheduling and admission

control. In another effort, a multi-objective genetic algorithm-based optimisation

framework was developed. This framework aims to obtain an optimal solution for

spectrum allocation for Internet of Things applications (Han et al., 2018b). A hybrid-

fuzzy logic-based genetic algorithm (H-FLGA) is proposed to solve a multi-objective

resource optimisation problem in 5G vehicular networks. Adopting a service-oriented

view, H-FLGA is implemented in the SDN controller for optimal admission control

and resource allocation (Khan et al., 2019). Because of the higher computational

complexity, these algorithms can be applied only to big data available on the cloud

node. A hybrid GA and Binary PSO-based resource scheduling scheme is proposed

for D2D multi-cast communication. Resource allocation is formulated as a min-max

optimisation problem (Hamdi and Zaied, 2019). Such problems are generally known

as NP-hard combinatorial problems, and typically require enormous amounts of

searching to find an optimal solution.

In a multi-services scenario, a multi-population genetic algorithm is proposed

to solve the resource allocation problem for D2D communications (Li et al., 2017).

Bouali et al. proposed a fuzzy, multiple-attribute decision-making (MADM) ap-

proach for the best RAT selection (Bouali, Moessner, and Fitch, 2016). Similarly,

Inaba et al. proposed a fuzzy call admission control model for multimedia networks

(Inaba et al., 2015). In (Faris et al., 2019), the binary GA is implemented in combi-

nation with Random Weight Network (RWN) for identification of the most relevant

features and spam detection. The proposed detection technique filters traffic during

admission control, which prohibits spam messages from wasting resources such as

storage, bandwidth, and productivity.

Multi-objective optimisation approaches generally provide a solution faster but

sacrifice optimisation and accuracy by trapping in local minima or maxima. Thus,

PSO- and GA-like multi-objective optimisation approaches may be adopted in cases
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where approximate solutions are sufficient for the learning process instead of more

accurate solutions, which are computationally expensive. Such solutions are not

mathematically intensive. Due to the higher computational complexity of optimal

solutions, these approaches are partially suitable for future networks, and for ex-

isting mission-critical and latency-sensitive applications, where the promise is to

provide latency under 1 millisecond. In the last few years, machine learning tech-

niques, when used in combination with the optimisation algorithm, have proven

their efficiency in solving various NP-hard problems of wireless communication,

such as network admission control, resource allocation, radio resource management

and channel estimation (Wang et al., 2020; Fourati, Maaloul, and Chaari, 2021).

The evolution of new technologies and standards (i.e. new radio (NR), and net-

work slicing) is continuously increasing the network complexity of new use cases

and service classes such as URLLC, mMTC and eMBB. These new technologies are

designed to be flexible enough to meet future network service requirements and use

cases. However, such flexibility increases network complexity through the growing

number of core network control parameters, and increased complexity is forcing the

implementation of fundamental changes in network operations. Recently, ML tech-

niques have proven their efficiency in various domains of wireless communication.

These techniques have the potential to increase the value of 5G and beyond net-

works, subject to proper integration into the system. As key components of future

networks, they will play a significant role in customising the network at the technical

level through ML-based network planning and service deployment, policy control,

configuration, resource management and monitoring (Le et al., 2018; Mahmood et

al., 2019; Challita, Ryden, and Tullberg, 2020; Nguyen et al., 2020).

A substantial amount of literature is available on the applications of ML tech-

niques in wireless communication. For example, how network admission control, re-

source allocation, radio resource management and channel estimation can be lever-

aged from ML techniques is discussed in (Jiang et al., 2016a; Gündüz et al., 2019;

Chen et al., 2019). However, the authors did not consider deployment and network

design issues regarding how to implement ML techniques in applications of wireless

networks. Among ML techniques, reinforcement learning (RL) has been frequently
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used in wireless networks for various purposes. The goal of RL techniques is to ob-

tain an optimal policy that maximises the reward. Through a system of reward and

penalty, RL reduces the complexity of the problems with strict constraints in the net-

work. The reward is evaluated through the agent to proceed in network operations

(Li et al., 2018; Maksymyuk et al., 2018; Elayoubi et al., 2019; Sun et al., 2019b).

Among RL approaches, the Markov Decision Process (MDP) is widely used to

address various decision-making problems in dynamic wireless environments such

as cognitive radio, spectrum management, power control and wireless security, and

is determined by the state, action, transition probabilities and reward (Ye, Li, and

Juang, 2019; Sun, Peng, and Mao, 2018). In MDP, policy iteration, value iteration,

or a Q-learning approach can be applied to achieve optimal solutions. In policy

iteration, the aim is to acquire the best policy that minimises the cost and maximises

the reward. The value iteration approach evaluates the state–action pair to obtain an

optimum value of the defined objectives. The Q-learning approach builds a lookup

table of state–action pairs and rewards (Altman, 2000). Q-learning-based network

selection, slice admission, and congestion control schemes have been proposed for

5G network control in (Han et al., 2018a; Wang, Su, and Liu, 2019; Antevski et al.,

2020). Han et al. proposed a Q-learning-based admission and congestion control

model for 5G network slicing (Han et al., 2018a). Similarly, Wang et al. proposed a

novel network selection model by using Q-learning for 5G heterogeneous networks

(Wang, Su, and Liu, 2019). A Q-learning strategy for the federation of 5G services is

proposed in (Antevski et al., 2020). Although Q-learning is proven in convergence

to an optimal solution, this approach is inefficient in a higher dimension state and

action space. Building a Q-table for a large volume of data is memory intensive.

Moreover, Q-learning suffers from slow convergence.

In an artificial neural network, highly effective solutions used to address high-

dimensional problems are known as deep RL (DRL) or deep Q-learning (Shrestha

and Mahmood, 2019; Santos et al., 2020). Moreover, deep Q-learning applies gradi-

ent descent to optimise the objective function, while using a deep neural network

to approximate the Q function. DRL can be value-based or policy-based. Value-

based DRL relies on deep Q-learning to find an optimal policy based on Q-function

(Pouyanfar et al., 2018; Xiong et al., 2019). Li et al. in (Li et al., 2018) proposed a deep



Chapter 2. State of the Art in Admission Control 27

reinforcement learning-based model for resource management in network slicing.

Similarly, Bega et al. proposed a deep learning-based model known as DeepCog

for cognitive network management in sliced 5G networks (Bega et al., 2019). The

authors in (Tang, Zhou, and Kato, 2020) proposed a deep reinforcement learning-

based model for dynamic uplink/downlink resource allocation in high mobility 5G

HetNet. By utilising the deep reinforcement learning approach, another intelligent

resource slicing model for URLLC and eMBB traffic in the 5G and beyond network

is proposed in (Alsenwi et al., 2021). An end-to-end network slicing model based

on deep Q-learning for a 5G network is proposed by the authors in (Li, Zhu, and

Liu, 2020). However, if the available data is highly correlated, and the Q-function is

estimated from a nonlinear function approximator, then DRL can diverge to unsuit-

ability.

Recent studies have revealed that conventional ML approaches have shortcom-

ings in solving future network problems, especially emergency and mission-critical

problems. This is because of the diverse characteristics and requirements of future

wireless networks such as dynamic environment, high mobility, interference and

diverse connections. Conventional ML approaches are usually trained in specific

scenarios with a significantly huge amount of data. ML algorithms are highly data-

intensive, where the size and duality of data matter, and the quality of the data

determines the required processing time and computational complexity. For exam-

ple, higher-dimensional data will require more time and is computationally costly.

Moreover, a huge quantity of high-quality, raw data sent to the central node for

training and processing creates congestion in the network, which might not be ac-

ceptable in latency-sensitive scenarios. Wireless environments may have significant

variations from one scenario to another (e.g. user mobility and changes in data de-

mand (Kato et al., 2020; Chen et al., 2019). The impact on ML performance due to

varying network circumstances can hinder its applicability in future wireless net-

works. Therefore, because of the underlying network conditions, ample tuning is

required in existing ML techniques to obtain a better result.

In network design and configuration, the design of an optimisation algorithm is

complex, due to various network parameters and their associated constraints. To ad-

dress these kinds of issues, Transfer Learning (TL) among advanced ML techniques
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has recently emerged as an effective solution, where knowledge is transferred from

one optimised task or problem to solve another related or similar problem (Cook,

Feuz, and Krishnan, 2013). TL has various advantages over conventional ML ap-

proaches. For example, the learning process in TL is faster due to the use of pre-

trained models or policies, and knowledge sharing between tasks. Compared to

traditional approaches, knowledge transfer in TL reduces the computing demand

and congestion created in the network due to the huge amount of data. Just en-

hanced quality and quantity of training data is used in TL, which also provides data

privacy protection (Zhuang et al., 2020). A significant amount of research into the

applications of TL in wireless networks is available in the literature. For example, a

novel TL-based paradigm for dynamic spectrum allocation and topology manage-

ment of radio networks is proposed by authors in (Zhao et al., 2013). The knowledge

learned through spectrum allocation is converted through their proposed priority

algorithm and applied to topology management. During their research, Zhao et

al. investigated the use of the K-means clustering approach for optimal spectrum

and load management of mobile broadband networks (Zhao et al., 2015), whereby

coefficients acquired from Q-parameters after demand clustering were transferred

from spectrum allocation to broadband load management. Parera et al. proposed

a transfer-based model for resource utilisation in wireless networks (Parera et al.,

2020). The authors exploited deep learning and TL algorithms for dynamic resource

allocation and efficient network control. Wagle et al. proposed three transfer learn-

ing algorithms for radio frequency allocation in wireless cellular networks (Wagle

and Frew, 2012). The objective of their proposed TL algorithms is to identify the

similarities in demand from the original data set to extract pertinent information,

which was used in the target data set to achieve efficient radio frequency alloca-

tion. Zeng et al. proposed a deep TL-based traffic prediction framework for wire-

less cellular networks (Zeng et al., 2020). The authors proposed a spatial-temporal

cross-domain neural network model (STC-N) in this work. STC-N model uses cross-

domain data along with a regional fusion TL strategy to improve the accuracy of

future traffic prediction. TL-and DRL-based mode selection and resource manage-

ment models for fog RAN, V2V communication and 5G networks are proposed in
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(Sun, Peng, and Mao, 2018; Zhang et al., 2019b; Dong et al., 2020). Similarly, Par-

era et al. proposed a TL model for channel quality prediction of a given frequency

carrier in wireless networks (Parera et al., 2019). In this work, convolutional neural

networks and long short-term memory networks have been considered as TL tasks.

The existing research did not provide an ML-based solution for bottlenecks or intra-

slice congestion problems to ensure efficient admission control in future networks.

Impressed by the effectiveness of TL in solving the problems of wireless net-

works, the ML-enabled optimal admission control and resource management model

is presented in Chapter 4 of this thesis for bottleneck and intra-slice congestion con-

trol in 5G and beyond networks. The goal of this approach is to manage the demand

proportionally with available capacity using two unsupervised learning-based clus-

tering and optimisation approaches for congestion control. In view of the eMBB

network’s complexity, knowledge learned by implementing optimisation of mMTC

traffic demand for clustering is implemented to eMBB traffic demand to reduce bot-

tleneck congestion. RL-based admission control and resource management have

also been proposed using intra-slice and inter-slice resource allocation, along with

adaptability of slice elasticity, to maximise admission gain and resource utilisation

by reducing the slice request rejection ratio.

2.3 Research Gap and Contributions

Nowadays, conventional single objective admission control strategies are not as

popular, due to a lack of optimisation and the presence of unfairness during admis-

sion control. However, due to their simplicity and cost effectiveness, they are still

in use for indoor communication in small networks (e.g. airports, bus stops, train

stations, and shopping malls) (Kaloxylos, 2018; Le et al., 2016; Ojijo and Falowo,

2020). In a defined area, how 5G or future networks manage resources and unex-

pected demand with enhanced network QoS and user QoE is still an open issue

(Gohil, Modi, and Patel, 2013; Khan et al., 2020b). Rapidly changing traffic flow

and its associated heterogeneous demand can cause saturation in a network due

to resource scarcity. For example, greed for earning more revenue and inefficient
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admission control cause unfairness in resource allocation among users, which over-

whelms the network and creates congestion due to redundant signalling and data.

To address these problems, enhanced conventional approaches are a better option

for small networks to find a suitable solution with low computation complexity,

cost, and time requirement. Therefore, a novel DSAAC model for 5G and beyond

networks has been presented in Chapter 3 to service diverse traffic demand with

efficient resource utilisation and network GoS enhancement. This approach takes

into account network and user-application-specific demand characteristics for ad-

mission control. These characteristics include the required bandwidth, data rate,

and priority. In addition, a cost estimation function that can quantify resource allo-

cation decision metrics for both static and dynamic user and network characteristics

has been developed. DSAAC also presents a set of optimisation algorithms for ef-

fective network slice utilisation, inter-slice resource allocation, and back-off-based

admission control. Similarly, a novel SAC model utilising optimisation and cluster-

ing approaches has also been presented in Chapter 3 to support more user-specific

traffic data. In this model, it is proposed that pre-clustering end-use analysis, usage-

specific clustering, and clustering based on end-use application and device-specific

resource demand be exploited. A usage-specific clustering strategy has been devel-

oped for the access network’s signalling redundancy minimisation that guarantees

a given level of QoE. For user admission to the network, dynamically reconfigurable

QoE-based slice performance bounds have also been taken into account. Addition-

ally, a set of optimisation algorithms for achieving effective resource utilisation and

slice allocation through evaluating the elasticity of slice QoE bounds has also been

devised.

Multi-variate optimisation admission control has been frequently applied in wire-

less networks. This is because of their ability to adapt to dynamically reconfigure

the network according to pre-defined optimisation objective(s). However, these ap-

proaches require a great deal of time for training and processing (Mirjalili, 2019; Han

et al., 2018b). This is because a large amount of data is required for training purposes

from the demand. Data contains simple signalling requests, as well as high-quality

data, such as data for augmented reality, 4K images etc. In the case of a huge volume

of network traffic flow, redundancy in demand is a burden on the network in terms
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of congestion created. Moreover, the time spent on training on the data from the de-

mand would generate additional latency, which creates large forwarding delays in

communication and user dropping due to congestion, which may not be acceptable

in latency-critical scenarios in future networks (Gupta and Jha, 2015; Caballero et al.,

2018; Mahmood et al., 2019). In view of these constraints, redundancy reduction in

the demand at the edge of the network can help to minimise congestion and latency

in access and the core network. To assist future networks in minimising the afore-

mentioned control signalling redundancy and congestion, a novel E-RMAC model

has been presented in Chapter 4. E-RMAC model is the enhancement of the SAC

model. In this model, two popular unsupervised learning techniques (K-mean- and

Ranking-based clustering) and multi-objective optimisation (Non-dominated sort-

ing genetic algorithm II) are employed to reduce core network signalling redun-

dancy. By using these techniques, cluster-based signal and admission control algo-

rithms have been established to maximise link efficiency between the edge and core

networks.

Moreover, running optimisations for forecasting demand is a better option, due

to time constraints in an integrated network environment such as O-RAN. A novel

dynamic traffic forecasting and admission control (FAC) model for a federated O-

RAN environment has also been presented in Chapter 4, that predicts future traffic

demand for efficient admission control and resource allocation. In this model, a fully

reconfigurable admission control model using fuzzy-logic optimisation by drawing

on the information on user demand and network capacity has been proposed for

the optimal network selection. After optimal network selection, a set of algorithms

are also proposed for admission control and service monitoring. Whereby, a mul-

tivariate service allocation priority factor has been developed for admission queu-

ing. Moreover, a service profile has been built on admissions for service monitoring.

These approaches are developed in the proposed models for maximising network

QoS and user-perceived QoE, as well as congestion control caused by the massive

number of connectivity demands in future networks.

Increasing bottleneck congestion and rejection ratio due to the massive number

of connectivity demands in future networks, especially in network slicing, is a criti-

cal problem that needs attention (Dandachi et al., 2019). The use of conventional and
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optimisation approaches to address these issues has several constraints, such as data

dependency, computational complexity and cost. The existing models for network

slicing provide only brief guidelines on design and architecture and do not provide a

specific solution to issues such as these. To address this problem, along with efficient

admission control and resource management, the implementation of the advanced

ML approach is a better solution. Among advanced ML approaches, RL and TL have

proved highly effective at providing optimal solutions to various wireless network

problems (Nguyen et al., 2021; Tan et al., 2018), as discussed earlier. Therefore, a

novel SCAC model has been presented in Chapter 4 to minimise the number of slice

requests rejection that occurs due to bottlenecks and intra-slice congestion in the

network. This model consists of a slice demand analysis and classification (SDAC),

a demand clustering and queuing (DCQ), and an admission and resource manage-

ment (ARM). Two popular unsupervised learning algorithms, Ranking and K-mean

clustering algorithms, along with multi-objective optimisation and transfer learning,

have been employed for slice request queuing. A unified cost-estimation function is

also derived for slice selection to ensure fairness among slice requests. Given instan-

taneous network circumstances and load, a reinforcement learning-based admission

control policy is also established for taking appropriate action on the guaranteed

soft and best-effort slice request admissions. Intra slice, as well as inter-slice, re-

source allocation, along with the adaptability of slice elasticity, are also proposed in

this model for maximising slice acceptance ratio and resource utilisation.
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Chapter 3

Admission Control with

Single–Objective Optimisation

3.1 Introduction

In the last few years, continuous advancement in wireless technologies has enabled

small industries to quickly enter the market at a low cost. These industries are help-

ing various sectors with their innovative products and services such as in health-

care, industrial automation, transportation, education, etc. (Da Xu, He, and Li, 2014;

Gupta and Jha, 2015). However, to meet the continuously rising demand of the small

industries, a cost-effective and simple solution is required in network admission con-

trol and resources management (Ojijo and Falowo, 2020). Therefore, due to simplic-

ity and lower computational complexity, two novel single-objective optimisation-

based admission control and resources management models are presented in this

chapter. In Section 3.2, a dynamic slice allocation and admission control model, oth-

erwise known as the DSAAC, is proposed to ensure better network QoS (or GoS)

and user-perceived QoE by using a QoE-based resource allocation metric. Next, an

optimised signalling and admission control model, also known as the SAC, is pro-

posed in Section 3.3 for signalling redundancy minimisation in the access network.

In this model, a ranking-based clustering approach is applied to the demand for op-

timal admission control and resource allocation. Finally, a summary of the chapter

is given in Section 3.4.
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3.2 Dynamic Slice Allocation and Admission Control (DSAAC)

Model

Nowadays, a significant number of industries are adopting novel business mod-

els by delivering innovative products and services via the internet of things (IoT)

and other wireless-enabled technologies. These industries bring social and economic

benefits to various sectors such as education, industrial automation, transportation,

and healthcare (Da Xu, He, and Li, 2014; Kaloxylos, 2018). Consequently, in recent

years, this trend reports a significantly huge volume of connected devices, which

is termed as an ultra-dense wireless network. Ericsson Mobility report on 5G devel-

opment predicts that there will be approximately 550 million 5G subscriptions by

2025 (Gozalvez, 2017). This trend will induce significant challenges in the network,

leading to increased network complexity, congestion and user dropping due to mas-

sive traffic, control signalling storms in the access and core network, and resource

inefficiency in terms of usage (Brown, 2012; Hicham, Abghour, and Ouzzif, 2014;

Al-Fuqaha et al., 2015; Gupta and Jha, 2015; Bhandari, Sharma, and Wang, 2018).

Efficient admission control helps network operators and service providers to

maximise resource utilisation and earn more revenue. In this context, a novel con-

cept proposed by the 3rd generation partnership project (3GPP) is network slicing

(3GPP, 2018c). This is a vital feature of future networks for virtual network de-

ployment enhancing the existing infrastructure to accommodate heterogeneous QoE

requirements of various customers. Software defined network (SDN), along with

network function virtualisation (NFV), is a promising solution for the provision-

ing of dedicated services in cloud-based networks (Ofcom, 2017; Ordonez-Lucena

et al., 2017). However, virtualisation for resource allocation in network slicing to en-

sure better network quality of service (QoS) and user quality of experience (QoE) is

more challenging compared to cloud-based networks. These challenges include (1)

slice admission to the network and user admission to the slice with required QoE,

(2) dense traffic management and congestion control on the slice, (3) optimal and

dynamic resources allocation and their efficient utilisation, and (4) varied network

conditions such as critical and latency-sensitive networks (Kaloxylos, 2018; Su et al.,

2019).
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A significant amount of research is being carried out all around the world to ad-

dress these challenges. For example, the Markov Model has been proposed in (Han,

Feng, and Schotten, 2018) for the support of MNO synchronous slice admission in

5G Networks. In this work, the state transitions, such as pre-state to post-state and

vice versa, are evaluated to reduce the computational complexity in the physical

network. Lee et al., in (Lee et al., 2018), proposed a dynamic network slice man-

agement model for multi-tenant heterogeneous cloud-RANs. This model consists

of two controls: an Upper-Level, which manages resources allocation, user associ-

ation and admission; and a Lower-Level, which manages access network resources

allocation among different users. Pablo et al., in (Caballero et al., 2018), considered

a dynamic slice resource-sharing mechanism that shares resources among the elas-

tic and inelastic nature of user traffic to achieve required network performance and

revenue. In this model, users have been assigned a weight based on their resource

utilisation from a particular slice. The authors used the Nash equilibrium method

for admission control in their work, that checks whether the slices can satisfy the rate

requirements of all admitted users or not. However, some of the slices become satu-

rated by this approach that results in unfairness in resource allocation among slices.

Another approach proposed by Caballero et al. is static slicing for admission con-

trol and resource allocation. In this approach, each slice receives a fixed fraction of

resources from the network resource pool, which is shared among its users. If there

are no resources in the slice, the user will drop instantly from the network. Similarly,

Zheng et al., in (Zheng et al., 2018), studied a simple and dynamic resource sharing

model. This model allocates a “share” of pool resources to each tenant’s slice based

on demand and ensures efficient resource utilisation. In addition, from this share,

each tenant assigns the resources to the admitted user via a slice share constrained

proportionally fair (SCPF) scheme. The work in (Wu et al., 2018) developed a bio-

inspired resources allocation model for 5G IoT applications. This model considers a

diverse group of users, along with their homogeneous service and resource require-

ments, and their social relationships and behaviour update these characteristics pe-

riodically via a cellular automation (CA) model. Random admission control helps to

reduce unfairness occurring among users during the admission process. One such
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example is the Markov model for slice admission control (Han, Feng, and Schot-

ten, 2018). A fairly normal distribution can be achieved by applying this strategy

over a long period during user admission. However, random admission control is

not popular due to a lack of optimisation and management policy. Other authors

(Challa et al., 2019) have proposed a greedy policy for admission control. In this

strategy, a partial adaptive greedy (PAGE) algorithm was deployed that maximised

revenue and minimised SLA violation for customers. Similarly, Anand et al. pro-

posed a signal-to-interference ratio (S/I) based call admission control model (Anand

and Chockalingam, 2003). In this model, calls are been admitted by the network at

the time of arrival based on their S/I ratio. Fenton method approximation has been

used in this model for call blocking probability estimation. However, a newly admit-

ted call can cause an outage to any ongoing calls due to the S/I ratio and resource

scarcity in this model. Similarly, Walingo et al. proposed a connection admission

control model for radio resource management in 5G (Walingo and Takawira, 2014).

In this model, signal-to-interference ratio and delay parameters had been used to

estimate call blocking probability. However, When there are no resources on the

network, any request arriving, either critical or not, will be automatically rejected.

Such admissions may lead to degradation of network performance due to poor traf-

fic management.

The existing work adopts greediness by considering only a few access or core

network parameters for admission control and resource allocation. But practically,

there are influences of many known and unknown parameters in the dynamic ad-

mission and allocation process, especially in the case of a massive amount of con-

nectivity demand, where the network can get saturated with inefficient admission

control, resource allocation and management policies that result in inducing conges-

tion and latencies into the provisioning of heterogeneous applications (Andrews et

al., 2014; Alliance, 2015). Therefore, this research work aims to facilitate future traf-

fic demand with the assurance of better QoE in the provisioning of heterogeneous

services from 5G networks. Given the above-mentioned challenges, an intelligent

slice-management solution is proposed in this section. The major contributions of

this work are as follows:
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• Proposed a novel architectural model for dynamic slice allocation and admis-

sion control in 5G and beyond networks.

• To serve future wireless networks with better QoS and user QoE, a unified cost

estimation function has been derived from the normal equation for optimising

slice allocation and admission control in the proposed model.

• For efficient network slice utilisation, a set of optimisation algorithms with

intra-slice allocation elasticity, inter-slice handover, and a user back-off-scheme-

based admission control and resources allocation has been proposed.

• Robustness of the proposed admission control and resources allocation algo-

rithms are analysed through GoS, network utility, mean delay and throughput.

Moreover, the results obtained are compared with those of existing models

found in the literature.

3.2.1 DSAAC System Model

In this work, the NGMN (Alliance, 2016) network slicing conceptual architecture, as

seen in Figure 2.1, is enhanced by the proposed Dynamic Slice Allocation and Ad-

mission Control (DSAAC) model. The proposed model of network slicing consists

of four major layers: a Resource layer, a Network layer, an Application or Service layer,

and a User layer, as shown in Figure 3.1. The resource layer holds and manages the

resources within a resource pool. This layer shares resources among slices upon re-

quest through instances. The network layer contains the slice instance to establish

an end-to-end connection to serve the specific application via subnetwork slice in-

stances. The subnetwork slice instance contains a set of customised resources from

the resource pool, which can be shared among various slice instances. For example,

a slice such as s2 can support heterogeneous applications or services requested by

a single user group or from multiple groups. This means sharing of resources is al-

lowed by the network management policies in that particular instance. In addition,

a user group can be connected to multiple slices simultaneously; for example, user

group s21 is also connected to application instance s11 in the network layer. More-

over, a slice can obtain the resources from multiple subnetwork slice instances. The
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FIGURE 3.1: Slice interaction schematic diagram of the proposed
DSAAC model

subnetwork slice instance can also be shared among various active slices for resource

allocation on demand. The capability of multi-slice connectivity for heterogeneous

service provisioning makes the scenario more complex. The application or service

layer contains application instances to serve a particular application from the respec-

tive network.

To acquire uniform slice allocation and resource utilisation, the user layer, (a sub-

layer of the application layer in the NGMN concept), is separated from the applica-

tion layer in the proposed model. Disaggregation of the user layer from the appli-

cation layer is acquired with respect to different groups of users and their homo-

geneous characteristics and association with the verticals, applications or network

operators. In view of this, E2E slice management and orchestration via the proposed

DSAAC model is shown in Figure 3.2. The admission controller is responsible for

the optimal slice selection and user admission to the network by the exchange of

information between access (i.e. random access network (RAN)) and core control

network functions (i.e. access and mobility management function (AMF) and net-

work slice selection function (NSSF)). After slice selection, a slice instance is created
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from the sub-slice instances based on the management and orchestration policies

and agreed service level agreement (SLA) with the tenant. On successful creation of

slice instances, the mobile network operator (MNO) populates network types for its

users for service provisioning. After that, the session management function (SMF)

establishes an E2E session between the user and data network for communication

via the user plane function (UPF). Considering the proposed model, the follow-

ing subsection elaborates on the proposed assessment scheme of slice demand and

leads toward the design of the optimisation algorithms for admission control and

intra/inter-slice-based resources allocation.

User demand
(IoT devices, 
Health-care, 
Smart phones,
 etc.)

(R)AN

Admission
 Controller

Intra-slice admis
-sion & resource 
     allocation

Inter-slice admis
-sion & resource 
     allocation

Data 
Networks
(internet, 
3rd party,
Sensors, 
etc.)

AMF SMF UPF

AMF SMF UPF

Network Slice Instance 1

Network Slice Instance n

Default
AMF
NSSF
Core

....

FIGURE 3.2: End-to-End slice management and orchestration via the
proposed DSAAC model

Network Design and Statistics: In this work, a cellular network with M num-

ber of users denoted as u = {u1, u2, . . . , uM} is considered, as illustrated in Table

3.1. It is assumed that each user’s behaviour is independent and different from

other users in the network. Moreover, each user can support up to k number of

heterogeneous applications simultaneously, denoting user-specific application set

Λ = {Λ1, Λ2, . . . , Λk}. A set of user-application demands, as well as real-time,

network-specific collaborative data (e.g. user-demanded QoE and available network

capacity), is supposed to be available in AMF. Given the user-network-specific data,

each application is supposed to have N required characteristics that are predeter-

mined within an AMF repository. As users can have access to multiple applica-

tions simultaneously, these measurable demand characteristics might be different
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TABLE 3.1: DSAAC model key symbols and definitions

Symbols Definitions
u Set of M number of users
S Set of slices in the network
A Demand matrix of M users
w network weights for slice selection
v Cost estimation function for slice

selection
λsu Slice upper configuration bound
λsl Slice lower configuration bound
Rs

A sth slice available resources
Rm mth user required resources
Pb(m) Blocking probability of the mth user

from the slice
Um(Rm) mth user utility
Us sth slice utility
UNet Network utility on set S

from one application to another application and quantified within a range of val-

ues between amin
j and amax

j , where amin
j and amax

j are the minimum and maximum

jth demand from the slice, respectively. Once a resource request is received from

the user, AMF assesses that resource request and populates the respective coefficient

within the user-specific rows in the matrix A, as shown in Eq.(1). At a given time,

the matrix A row-wise statistical characteristics are represented by their mean (i.e.

µ1, µ2, . . . , µN) and variance (i.e. σ1, σ2, . . . , σN) respectively.

A =



a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N
...

...
...

. . .
...

aM1 aM2 aM3 · · · aMN


. (3.1)

Let us assume that k=1 for simplicity. When a user um requests access to the

network for service provisioning of its kth application with few desired characteris-

tics, it issues a request denoted as amn = [am1, am2, . . . , amn], where um ∈ u, k ∈ Λ,

amn ∈ A. The vector amn contains statistics related to user demand such as band-

width, priority, latency, etc. Based on the active network current load and slice pri-

orities, etc., the network weighting factors denoted as w1, w2, . . . , wN for each user’s

demanded characteristics are also defined. This is to acquire a reflection of the net-

work status in advance of the user demand for service provisioning. Accordingly,
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the w vector is expressed as

w = [w1, w2, . . . , wN ]
T . (3.2)

The network weighting factors are dynamic in nature, due to changes in net-

work circumstances. For example, w1, w2, . . . , wN values might change periodically

or non-periodically with respect to the critical and environmental conditions of the

particular slice s; where s ∈ S, and S = {s1, s2, . . . , sn}.

3.2.2 Proposed DSAAC Model Schema

Dynamic network reconfiguration is essential to accommodate the massive amount

of future heterogeneous traffic. The flexibility provided in the 5G network slicing

feature is to obtain the user/application-requested QoE with the capability of dy-

namic resources allocation in a slice. Thus, it is essential to have flexibility in resource

allocation from available resources in the slice pool to adapt to user application re-

quirements (Khan et al., 2020b). On-demand resource aggregation technique for

admission control has been adopted in this work, which provides resource elastic-

ity along with slice reconfiguration dynamically when needed. For this aggregation

model, a framework is defined with slice upper and lower bounds. In addition, a set

of generalised expressions are presented below that define the elasticity of N num-

ber of demand characteristics for M number of active users in matrix A. By taking

into consideration the truncated Gaussian distribution of the user demand on time

t, as in (Brichet and Simonian, 1998), lets denote the minimum aggregate slice re-

source requirement for sth slice with jth characteristics column as Rs
j(Min). Since γj is

the minimum jth resource required to serve a single user, µj is the mean jth resource

requirement from a single user application, ∆j is the difference of the minimum jth

resource demand from the mean, and σj is the variance of jth resource demand.

Then, the minimum jth resource requirement for M number of users in the sth slice

is calculated by the following equation.

Rs
j(Min) = µj Ms + ∆j

√
Ms , (3.3)
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where,

∆j = γj − µj . (3.4)

Now, the minimum sth slice resource characteristics bound over N resources is

represented by

Rs
Min = [Rs

1(Min), Rs
2(Min), . . . , Rs

N(Min)] . (3.5)

Similarly, slice maximum jth resource requirement for M users, as in (Brichet and

Simonian, 1998), is calculated as follows:

Rs
j(Max) =

M

∑
m=1

µj +

√√√√γj

M

∑
m=1

σm
j . (3.6)

By now, the maximum sth slice resource characteristics bound over N resources

is expressed as:

Rs
Max = [Rs

1(Max), Rs
2(Max), . . . , Rs

N(Max)] . (3.7)

3.2.2.1 User Admission Control: In the dense network environment, inefficient ad-

mission control is a significant issue that increases the blocking probabilities of the

request from the network due to resource scarcity (Khan et al., 2020b). This problem

can be modelled as a single objective optimisation problem, where the objective is

to minimise the blocking probabilities, denoted as Pb, from the network via efficient

admission control on set Us. Mathematically it can be represented as

min Pb,

s.t. ∑
um∈Us

amRm ≤ sc ,
(3.8)

where, a = 1 on a user’s admission to the slice, otherwise zero. Rm is the guar-

anteed resource allocation to the mth user. Aggregate resource allocation on set Us

should not exceed slice capacity, sc. In this work, a cumulative soft decision-making

solution has been proposed to redirect the umth user to an appropriate slice for ad-

mission. This solution relies on the novel cost function estimation to make an in-

telligent decision on admission control dynamically, due to the frequently changing

nature of the characteristics. The cost function is derived from the normal equa-

tion over the user-application-specific demand, network dynamic characteristics,
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and slice bounds with former information. Thus, the cost function, symbolised as

v, can be estimated as:

v = Aw = [v1, v2, . . . , vM]T . (3.9)

This implies that the estimated cost function for mth user is:

vm =
N

∑
n=1

amnwn , (3.10)

where amn ∈ A and wn ∈ w. vm is the cost estimation value of mth user, this rep-

resents the slice type for mth user admission and resource allocation. Each slice is

designated with a reconfigurable bound set, denoted as [λsl , λsu ], to serve a user de-

mand from the slice, where λsl represents the slice lower bound and λsu represents

the slice upper bound. Accordingly, they are evaluated as:

λsl =
1

Sn
(i) , (3.11)

and

λsu =
1

Sn
(i + 1) , (3.12)

where i is index and i ={0, 1, 2...Sn− 1}. and Sn represents the total number of active

slices in set S.

3.2.2.2 Intra-Slice Admission and Resources Allocation: Algorithm 1 represents

the proposed intra-slice resources allocation. On arrival of the user request, the com-

puted user cost value is assessed against the slice cost bounds, as shown in Algo-

rithm 1 and verified by the equation below:

fs(vm) =


Admit, λsl < vm ≤ λsu

Reassessed via (3.1) otherwise
. (3.13)

Subject to the availability of the resource on that slice, the user is admitted and

accommodated with the desired resources. The slice resource pool would also be

updated after user admission and resource allocation. In addition, the resource util-

isation of a user’s allocated resources is computed to obtain the overall slice and

network utilisation for revenue estimation by the operator. Otherwise, in the case
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Algorithm 1: Intra-slice admission and resources allocation
Input: s ∈ S, Rs

A ̸= 0, um ∈ u, and calculate vm.
Output: Pb, Um(Rm), ∑um∈Us

Um(Rm) and ∑s∈S Us.
begin

if (λsl < vm ≤ λsu) then
if (Rs

A ≥ Rm) then
Admit um

Assign the resources
Update available resources in Rs

A

Update running resource pool with um and vm

Sort running resource pool with respect to v in descending order
Compute Pb

Calculate Um(Rm), ∑um∈Us
Um(Rm) and ∑s∈S Us

end

else
Back-off and Reassessed via (3.1)

end

end

of an out-of-bounds condition or no resources being available on the slice, this user

might be backed off in the matrix A and reassessed by the slice with a higher cost

value. This reassessment to accommodate user application is subject to a user’s pri-

ority conditions and network GoS. The consideration may include the possibility of

back-off with the time-shift nature of the application and resource availability. In the

case of an inability to time-shift or there being no resources on the slice, the proposed

allocation model assesses the possibility of inter-slice handover.

3.2.2.3 Inter-Slice Admission and Resources Allocation: In this model, the provi-

sion of inter-slice admission control and resource allocation using the roaming prin-

ciple is considered. During inter-slice admission control and resources allocation,

the sth slice acts as the primary candidate slice for the mth user. However, in the

case of unavailability of resources in the primary slice, user admission is assessed by

the neighbouring slice (i.e. (s + 1) or (s− 1)). The lower and upper asset bounds (λsl

and λsu ) of the neighbouring slice will be temporally updated for that user only via:

λsu = λsu + δ(λ(s+1)u
− λ(s+1)l

) , (3.14)
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and

λsl = λsl − δ(λ(s−1)u
− λ(s−1)l

) , (3.15)

where δ varies from zero to 0.5 by the central limit theorem (Rosenblatt, 1956; John-

son, 2004; Fischer, 2010). Algorithm 2 and 3 represents the inter-slice admission con-

Algorithm 2: Inter-slice admission and resources allocation from slice (s−
1)

Input: (s− 1) ∈ S, (s + 1) ∈ S, Rs
A = 0 or Rs

A < Rm, um ∈ u, update
cost bounds (i.e. λsl , λsu ), set s = (s-1), and calculate vm.

begin
if (λsl < vm ≤ λsu) then

if (Rs
A ≥ Rm) then

Compute Algo. 1
else

Handover um to (s + 1)
end

end

end

trol and resources allocation strategies for slice (s− 1) and (s + 1), respectively. As-

suming capital expenditure (CAPEX) is proportional to the slice index; i.e. CAPEX(s−1) <

CAPEX(s+1).

Algorithm 3: Inter-slice admission and resources allocation from slice (s +
1)

Input: (s + 1) ∈ S, Rs
A = 0 or Rs

A < Rm, um ∈ u, update cost bounds
(i.e. λsl , λsu ), set s = (s+1), and calculate vm.

begin
if (λsl < vm ≤ λsu) then

if (Rs
A ≥ Rm) then

Compute Algo. 1
else

Back-off and Reassessed via (3.1)
end

end

end
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3.2.3 Performance Evaluation Measures

This section presents the measures for performance evaluation of the proposed work.

The context of evaluation is set out to be an assessment of GoS, throughput, mean

delay, and network utility. The proposed model provides additional flexibility with

its inter-slice allocation elasticity and inter-slice handover for admission control. The

performance evaluation measures developed in this section have been aligned with

the work in the existing literature.

3.2.3.1 Grade-of-Service: Resource insufficiency on slice s might cause the mth user

to be blocked or a handover to the neighbouring slice, subject to the availability of

sufficient resources to serve the user. Hence the user blocking probability Pj
b(m)

from

slice s with respect to the jth resource characteristic is derived by the probability

density function or PDF, which is denoted as f (xj). In this work, overall demand for

the jth resource is assumed to have exponential distribution on the network, which

states that the mth user will be served if the required jth resource statistic is in the

range asmin
j to asmax

j , otherwise, the user is not served.

Pj
b(m)
{asmin

j < Xj(m) ≤ asmax
j } = 1−

∫ asmax
j

a
smin
j

f (xj)dxj , (3.16)

where f (xj) is obtained by

f (xj) =
1
µs

j
e
−xj
µs

j . (3.17)

User’s admission or access probability with respect to the jth resource character-

istics, denoted as Pj
adm(m)

, to slice s is obtained by

Pj
adm(m)

= 1− Pj
b(m)

. (3.18)

Overall blocking probability of the mth user from the slice is Pb(m). This can be

obtained as

Pb(m) = ΠN
j=1(Pj

b(m)
) = ΠN

j=1(1− Pj
adm(m)

) . (3.19)
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Subsequently, the probability of the user being admitted to the network slice is

Padm(m), which can be rewritten as

Padm(m){λi
l < vm ≤ λi

u} = ΠN
j=1(1− Pj

b(m)
) . (3.20)

Overall blocking probability over M number of users on slice s can be found as

Pb = ΠM
m=1Pb(m) . (3.21)

3.2.3.2 Throughput: Likewise, average slice throughput, which is symbolised as η,

is defined as a fraction of successful rate transmission with respect to blocking (Pb)

and retransmission probabilities (prtx), respectively, over available data rate and n

resources (Anand and Chockalingam, 2003). Accordingly, η in the proposed model

can be obtained as

η =
ℓvΓ(v)(1− Pb) + ℓdΓ(d)(1− Pb)(1− prtx)

nΓ(d)
, (3.22)

where, ℓv, ℓd, Γ(v), Γ(d) represents the network load and data rate in terms of voice

and data traffic, respectively.

3.2.3.3 Mean Delay: Mean delay, which is denoted as D̄d in the data transmission,

is defined as the product of system service time Tser, blocking probability and the

number of retransmissions per packet Nrtx (Anand and Chockalingam, 2003). Ac-

cordingly, D̄d in the proposed model can be obtained as

D̄d = PbTser Nrtx , (3.23)

where, service time, Tser, is the sum of the mean waiting time of a user request in a

buffer; known as buffering time Tbu f f and its processing time Tp (Anand and Chock-

alingam, 2003). Hence, TSer can be achieved as:

Tser = Tbu f f + Tp . (3.24)

As long as the resources are available within the slice, the user request will be

scheduled concurrently, and the waiting time will be zero.
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3.2.3.4 Aggregate User and Slice Utility: For provisioning of a particular service,

each user has a minimum resource demand or guaranteed rate requirement (as in

Lee et al., 2018), which is denoted as Rm in the proposed model. The admitted users’

aggregate and guaranteed resource requirement from the sth slice can be obtained

as

∑
um∈Us

amRm ≤ sc , (3.25)

where, a = 1 on a user’s admission to the slice, otherwise zero. The aggregate value

should not exceed slice capacity sc with respect to the bounds, as discussed earlier.

To this end, the user transmission resources rate Rm can be calculated as

Rm =
ωm

∑um∈U ωm
cm , (3.26)

where cm is the achievable rate or peak rate of user m, which is the product of the

user resource reservation factor and the aggregate resources of the slice. ω is the

non-negative user share over slices. Hereafter, the mth user utility, which is denoted

as Um, with respect to Rm can be acquired as

Um(Rm) = φ fm(Rm) , (3.27)

where, Rm is greater than the user minimum guaranteed rate requirement, γm, φ is

the user priority, and fm(.) is the concave utility function, where fm(Rm) = R(1−α)
m

(1−α)

and α = 0 subject to linear sum. Subsequently, based on the user utility, Um(Rm), the

slice s utility, Us, is the sum of individual utilities (as in Caballero et al., 2018). Thus

Us = ∑
um∈Us

Um(Rm) . (3.28)

Based on the individual utility Us, the overall network utility over slices from set

S is

UNet = ∑
s∈S

Us . (3.29)
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3.2.4 Performance Analysis and Results

To evaluate the robustness of the proposed model, a simulation environment is con-

structed in MATLAB software. In this simulation environment, a small network is

considered with Sn = 5 number of slices, where the number of resource parameters

considered in the matrix (A) is N=5. The parameters considered are required data

rates =[8, 100] kb/s, latency-sensitivity=[10, 200] ms, priority=[1, 5] ms, bandwidth

= [10, 100] MHz, and acceptable packet loss ratio =[10−2, 10−7] (as in GSMA, 2019).

ℓv = [1, 20] Erlangs, and ℓd = [1, 14] Erlangs are the considered range of network

loads with regards to voice and data communication. The minimum considered

data rates for the communication of voice and data in the network are Γ(v) = 8kb/s

and Γ(d) = 16kb/s, respectively (as considered by Walingo and Takawira, 2014; Ca-

ballero et al., 2018).

Figure 3.3 to Figure 3.6 illustrate the analytical performance of the proposed slice

allocation and admission control model. The performance is assessed through GoS,

network utilisation, as well as throughput, and mean delay. The results obtained

are also compared with the results of existing models found in the literature. The

existing models of a similar context are named as Connection Admission Control

(CAC) (Walingo and Takawira, 2014), Signal to Interference ratio (SIR) (Anand and

Chockalingam, 2003), Static Slicing (SS) and Central decision-based Network Slice

(NES) allocation and admission control (Caballero et al., 2018).

Figure 3.3 shows the probability of a user being blocked upon admission to the

network. The result obtained is compared with existing admission control mod-

els (i.e. SIR (Anand and Chockalingam, 2003), and CAC (Walingo and Takawira,

2014). It can be seen that the blocking probability of the proposed model, obtained

from (3.21), is significantly low compared to SIR and CA. For example, at 7 Erlangs

DSAAC attained a gain of 30% on CAC and 48% on SIR in terms of blocking proba-

bility of the network. Blocking probability increases with an increase in the network

load. The achieved gain of DSAAC in terms of blocking probability of the network

at 12 Erlangs on CAC is 27% and SIR is 39%. The reason behind this gain in blocking

probability from the proposed model is the consideration of the cumulative proba-

bility of N resource demand characteristics within the matrix A, and reconfigurable
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FIGURE 3.3: Network GoS comparison of DSAAC with SIR (Anand
and Chockalingam, 2003), and CAC (Walingo and Takawira, 2014)

based admission control models.

slice resource bounds for inter-slice admission and resources allocation. However,

the existing models consider only the interference-to-signal (I/S) ratio and delay as

admission parameters. Congestion occurs due to load more than networks capacity

employing existing models, which increases the blocking probability of these net-

works due to resource scarcity. Hence, the consideration of multiple resource char-

acteristics in the matrix A, ensures a wider range of flexibility in admission control

and resources allocation.

Figure 3.4 shows the network utilisation, as obtained from (3.29), at various

loads. The result obtained for utilisation for the proposed model is compared with

the result of SS and NES models from the literature (Caballero et al., 2018). The net-

work utilisation obtained from DSAAC is significantly greater compared to its coun-

terparts. For example, at the lowest network load, the achieved gain in utilisation

from the proposed model on NES is 1.08% and on SS is 4.3%. Based on efficient ad-

mission control, with an increase in network load, network utilisation also increases.

Thus at 100% load, utilisation gain from the proposed model is 1.32% on NES and

5% on SS. The existing models implemented the greedy approach for user admis-

sion to the network with consideration of user rate requirements, weight and slice

share. However, DSAAC considers the aggregate user resource demand from a slice

(3.25). This consideration is for efficient admission control and slice utilisation with

the flexibility of intra-slice, as well as inter-slice resource allocation. Hence, efficient

slice utilisation from the proposed model leads to greater network utilisation.
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FIGURE 3.4: Network utilisation vs. traffic arrival with respect to
aggregate resource requirement.

Figure 3.5, and Figure 3.6 illustrates the acquired mean delay and network through-

put for various load. It can be seen that the proposed model performs efficiently

over the increased load due to the lower number of user requests blocked from the

network. Lower probabilities of blocking are achieved by the provided flexibility

in the admission process, which is slice elasticity and inter-slice admission and re-

source provisioning. Thus, by reducing the blocking probabilities and number of

retransmissions, the proposed model reduces mean delay and increases network

throughput. Moreover, the mean delay in communication that is obtained by (3.23)

in DSAAC is remarkably lower compared to its counterparts. For example, at 10 Er-

langs, the mean delay by DSAAC is 0.043s, whereas by CAC and SIR it is 0.061s and

0.122s, respectively. Thus the achieved gain in mean delay from DSAAC is 41.86%

on CAC and 64.75% on SIR, which results in better network QoS and user-demanded

QoE.

The achieved throughput in Fig 3.6 increases with network load. However, it

starts to decline in the case of a load that is greater than the network capacity, and

congestion results. However, the throughput achieved by the proposed model is

superior to CAC and SIR-based allocation models. For example, at 13 Erlangs, the

throughput gain achieved by DSAAC on CAC is 8% and on SIR it is 13.2%. This

throughput gain is due to lower blocking probabilities and the number of retrans-

missions. In summary, the proposed dynamic user admission and slice allocation
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FIGURE 3.5: Mean delay measurements over the increased load.

model is better than the existing models in terms of lower blocking probability, ef-

ficient network utilisation, better throughput, and reduced mean delay for future

wireless networks.
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FIGURE 3.6: Average system throughput over the increased load.

3.3 Signalling and Admission Control (SAC) Model

Compared to previous cellular technologies, 5G technology has revolutionised wire-

less and cellular communication through the support of a massive number of con-

nectivity demands, provisioning of much higher data rates, and lower latency. Lower

latencies are essential for ubiquitous computing, including IP multimedia subsys-

tem (IMS), VoLTE, VoWiFi, autonomous smart, and critical applications (Andrews

et al., 2014; Alliance, 2015). Due to advances in technology, virtual industries have
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significantly impacted the networks because of increased usage through both indi-

viduals and machines. Therefore, application heterogeneity in the network is cre-

ating divergent signalling traffic that will generate a huge wave of communication

(Aguwamba, 2020).

Moreover, the exponentially rising demand for network access cannot be ig-

nored. Forecasts and market reports predict the proliferation of smart and heteroge-

neous services will lead to millions of devices being deployed, each requiring contin-

uous network connectivity. Ericsson Mobility report on 5G development predicts that

there will be approximately 550 million 5G subscriptions by the end of the decade

(Gozalvez, 2017). This continuously increasing connectivity demand, along with the

number of devices, may have a significant impact on user QoE and network per-

formance because of increased network complexity, congestion, overloading, and

control signalling storms in the access and core network (Brown, 2012; Al-Fuqaha

et al., 2015; Gupta and Jha, 2015).

Today, the research community’s emphasis is to resolve the issues through in-

ternational standardisation, especially the massive amount of device connectivity

and diameter signalling in latency-critical scenarios. For example, a novel solution

known as Diameter Protocol, had been proposed for control plane signalling optimi-

sation in LTE networks (Ewert, Norell, and Yamen, 2012). The Diameter Signalling

Controller (DSC) is the principal component of this protocol. The controller operates

to balance the load between the mobility management entity (MME) and the home

subscriber server (HSS) of the LTE network on a priority basis. Another effort by

Trivisonno et al. (Trivisonno et al., 2018) has been the development of an E2E con-

nectivity model for signalling optimisation in a 5G IoT network. In this model, the

IoT devices are gathered based on their homogeneous characteristics and associa-

tion with a single base station to build a virtual device class. For each device class,

a single default barrier is established in their work for control plane signalling re-

duction and to overcome the load limitations problem in the data plane. However,

this research is limited by prioritisation among device classes, few resource charac-

teristics for classification, and the holding of the barrier by the particular class for
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a long time. Thus, earlier research has neglected the massive number of device de-

mands, their heterogeneous demand characteristics, and the need for consistent con-

nectivity. Jiang et al. proposed two novel approaches 5G Slice Allocation (5G-SA)

and 5G Admission Control Slice Allocation (5G-AC-SA) in (Jiang, Condoluci, and

Mahmoodi, 2016). 5G-SA consider intra/inter slice priority for resource allocation

among slices. In this approach, resources are allocated to the users based on their de-

mand and earned revenue in the slice. In this model, resources are allocated to users

of high data rate demand in case of heavy load on the network, which degrades

overall network QoS due to lower satisfaction of users with low data rate demand.

5G-AC-SA consider users’ intra-slice priority and demanded QoE for slice allocation

and admission control. This approach gives better fairness in resource allocation as

compared to 5G-SA. However, in the case of massive connectivity demand, network

QoS degrades due to more number of lower priority users and slices rejection from

the network.

Many solutions have been proposed in recent research to manage the massive

amount of future connectivity from the limited network capacity; for example, the

use of Millimetre Wave (Rappaport et al., 2013; Roh et al., 2014; Qiao et al., 2015),

Intelligent Cognitive Radio (Wang et al., 2019; Yu, Lin, and Chen, 2019) in cellular

networks, especially in unmanned aerial vehicles (UAVs) communication. These

approaches have enormous potential for implementation in cellular wireless radio

communication. This is because of the provisioning of lower latency, higher band-

width and data rate, on-demand deployment, and reconfiguration flexibility. Un-

like radio communication, they have numerous shortcomings, such as interference,

propagation losses, limited coverage, greater power consumption, channel charac-

terisation, and hardware limitations (Farooq and Rather, 2019; Zhang et al., 2019a;

Arjoune and Kaabouch, 2019; Kakalou et al., 2017). Due to the limitations of these

approaches, a substantial amount of research solutions are demanded in cellular

wireless communication, especially for signalling optimisation and admission con-

trol in the case of the massive amount of future traffic demand. Hence, it is expected

that research efforts in signalling can efficiently balance available capacity against
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the demand to ensure efficient admission control. This research work aims to pro-

vide an adequate admission control model that can control the signalling storm gen-

erated by the massive amount of future network heterogeneous traffic. The pro-

posed approach first analyses the incoming network traffic signalling, as shown in

Figure 3.7. From the acquired analysis, signalling requests are processed, where the

requests are clustered based on user-application demand co-relation and homoge-

neous characteristics to ensure efficient admission control within slice QoE bounds.

Eventually, the aim is to ensure efficient load balancing and resource utilisation, and

reduce network complexity, cost and congestion, which will enhance the system GoS

for the massive amount of future heterogeneous network traffic. Accordingly, the

following major contributions of this research work are:

• Proposed a novel optimised signalling and admission control model for 5G

and beyond networks.

• Derived a usage-specific demand analysis and clustering scheme based on

user-application demand co-relation and homogeneous characteristics, to en-

sure a given level of network QoS and user QoE.

• Proposed slice QoE elasticity bounds from QoE-based resource allocation met-

ric and a set of QoE aware optimised admission control algorithms. These

algorithms achieve efficient slice allocation and user admission by assessing

the capability of the slice QoE elasticity.

• Presented the theoretical basis of performance enhancement due to the utilisa-

tion of the proposed model. In addition, the robustness of the proposed model

is analysed with admission gain, signalling reduction, and acquired QoE from

the network, and compared with the existing models in the literature.

3.3.1 SAC System Model

The system model presented in section 3.2.1 is enhanced with the presented sig-

nalling and admission control, also known as SAC, model, as shown in Figure 3.7.
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This model proposes a dynamic pre-clustering analysis of the incoming heteroge-

neous traffic characteristics. This analysis is to manage the massive amount of sig-

nalling load on slices to enhance slice resource utilisation and slice GoS. In the pro-
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FIGURE 3.7: End-to-End service management and orchestration via
the proposed signalling and admission control (SAC) model

posed model, gNodeB or (R)AN is a node to aggregate the signalling in the wireless

network. In this research, the Signalling and Admission Controller is assumed to be an

essential aspect of future networks for both multi-node and multivariate environ-

ments. The controller normalises and centralises the massive amount of signalling

concerning the specific network requirements to ensure efficient large-scale network

management. The controller is comprised of three major components: the Signalling

(Pre_Cluster) analyser, the Signalling processing (Clustering) system, and the QoE-

based signalling and admission controller, as shown in Figure 3.7. The function of

the analyser is to analyse the signalling requests of the incoming traffic concern-

ing their demand characteristics for processing and admission control. Afterwards,

the signal processing system processes those signals and gathers them into a clus-

ter based on their homogeneous demand and device heterogeneity. The resulting

optimised service signals are examined by the core network entities (such as AMF

and NSSF) to execute authentication and slice selection. After slice selection, a net-

work slice instance is created from the sub-slice instances based on the management

and orchestration policies and agreed service level agreement (SLA) with the tenant.

Thus a particular network slice instance is configured based on the user-required
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QoE. On the successful configuration of slice instances, the mobile network opera-

tor (MNO) populates network types for its users for service provisioning. After that,

the session management function (SMF) establishes an E2E session between the user

and data network for communication via the user plane function (UPF).

FIGURE 3.8: Scenario of signalling optimisation via clustering

Network Design and Statistics: In this model, a small network is considered with

M number of users, symbolised as a set U = {U1, U2, . . . , UM}, as illustrated in

Table 3.2. Let us assume that this small network can support K heterogeneous

applications simultaneously, which is denoted as the user-specific application set

Λ = {1, 2, . . . , K}. Such applications include live streaming and video calling, using

smart help points, and Web browsing to obtain the required information, as shown

in Figure 3.8. Each application is supposed to have a set of specific resource char-

acteristics, symbolised as set J = {1, 2, 3, . . . , N}. Such characteristics include data

rate, bit error rate (BER), latency, demand density and service priority. Moreover,

each resource characteristic has a set of acceptable states defined on the basis of

users’ preferences, denoted as S = {St1, St2, St3, . . . , StN}. Accordingly, the possi-

ble distinct service requests for a Λk heterogeneous application will be denoted as

the set Zk = {Z1, Z2, Z3, ....ZN}, whereby the cardinality of Zk (i.e. |S||J|) is the total

possible service requests for a Λk application, where Λk ∈ Λ.
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TABLE 3.2: SAC model key symbols and definitions

Symbols Definitions
U Set of M number of users
X Demand matrix of M users
XR Ranking-based clustered demand

matrix
ck kth clustered request
rm mth user required resources
Cs

up sth slice uplink capacity
Cs

up(sig) sth slice uplink signalling capacity
QoEs

k(γ) sth slice application-specific mini-
mum guaranteed QoE bounds

QoEs
k(r) sth slice application-specific maxi-

mum guaranteed QoE bounds
Qs

m(r)
mth user-desired QoE

Qs
m(γ) mth user minimum agreed QoE

3.3.2 Proposed SAC Model Schema

To establish a connection for communication, each user sends a signalling request

to the access network node. Users who belong to a similar application and have

similar service demands send homogeneous signals to the network for service pro-

visioning. This massive amount of homogeneous signalling generates a burden

on the network functions, which induces greater latencies in communication due

to congestion. While service provisioning of a massive amount of heterogeneous

traffic, it is essential to ensure efficient network resource utilisation and that the

network GoS does not drop below a certain level. Therefore, this work proposes

a dynamic signalling optimisation and admission control architecture, known as

SAC. The proposed architecture contains three main components: the Signalling

(Pre_Cluster) analyser, the Signalling processing (clustering) system, and the QoE-

based signalling and admission controller, as described in Figure 3.7. The functional-

ity of each component in correspondence with the proposed architecture is explained

in detail in the following section.

3.3.2.1 Signalling (Pre_Cluster) Analyser: Whenever a user um accesses the net-

work with a connectivity request, a desired resource request is issued, symbolised

as xmj = [xm1, xm2, . . . , xmN ], where um ∈ U, xmj ∈ Xk and j ∈ J from set Zk for its Λk

application. Moreover, for simplicity, two acceptable states are considered in set S
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for each application characteristic. With help of the signalling analyser, the respec-

tive application assessor (or the cluster head that can be in the RAN or the master

node in the smart networks) assesses each resource characteristic of the user’s re-

quest to populate a respective coefficient within the matrix Xk as a row index in

(R)AN, as shown in (3.30).

Xk =



x11 x12 x13 · · · x1N

x21 x22 x23 · · · x2N
...

...
...

. . .
...

xMk1 xMk2 xMk3 · · · xMk N


. (3.30)

For admission control, the signalling analyser also accesses the current network cir-

cumstances. On the uplink communication in a 5G network, the slice capacity Cs
up

is the sum of total capacity reserved for signalling, represented as Cs
up(sig), and data

transmission, represented as Cs
up(data), respectively.

Cs
up = Cs

up(sig) + Cs
up(data) . (3.31)

In a 5G network, the observed slice capacity Cs
up(obs) is also the sum of the total

capacity utilised by the signalling and data transmission:

Cs
up(obs) = Cs

up(obs_sig) + Cs
up(obs_data) . (3.32)

Now, Cs
up(obs_sig) over the application set Λ can be determined as follows:

Cs
up(obs_sig) = ∑

Λk∈Λ
|Uk|rSig(k) = ∑

Λk∈Λ
Rank(Xk)rSig(k) , (3.33)

where, Uk represents the set of users associated with the kth application, and Uk ⊆ U.

Rank(Xk) determines the matrix Xk rank with regards to the kth application before

clustering. rSig(k) is the desired user resource demand for signalling that represents

the NAS PDU in 5G and beyond networks (3GPP, 2018c). Cs
up(obs) should not exceed

the reserved slice capacity Cs
up but instead be equal to or less than Cs

up, as shown

below:

Cs
up ≥ Cs

up(obs) . (3.34)
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However, the observed slice capacity will increase exponentially with an increase

in slice load, especially in the case of a massive traffic load on the slice.

3.3.2.2 Signalling Processing (clustering) System: Users who belong to a similar

application and have similar service demands send homogeneous signals to the net-

work for service provisioning. In case of a massive amount of connectivity demand,

the observed slice capacity can exceed the reserved slice capacity. Moreover, the

massive amount of homogeneous signalling generates a burden on the network

through poor GoS, inefficient resource utilisation, and congestion, which induces

greater latencies in communication. Therefore, while service provisioning of a mas-

sive amount of heterogeneous traffic, it is essential to ensure efficient network re-

source utilisation and that the network GoS does not drop below a certain level. This

can be modelled as an optimisation problem. whereby the objective is to minimise

Cs
up(obs) in a way that it should not exceed Cs

up. Mathematically, it can be written as

min Cs
up(obs) ≤ Cs

up,

s.t. ∑
um∈U

Cs
up(obs_sig)(um) ≤ ∑

um∈U
Cs

up(sig)(um) ,

∑
um∈U

α(um) ≤ 1 .

(3.35)

The observed signalling capacity due to the users of set U should not exceed the

overall reserved uplink signalling capacity. Moreover, α represents all the signalling

demands from the users of set U should be admitted by the network.

In view of the massive volume of requests, the implementation of an efficient

clustering approach is essential to reduce signalling overheads in the access net-

work. Therefore, this work proposes a dynamic signalling processing system for in-

coming traffic, which will facilitate a massive amount of heterogeneous traffic with

the potential of redundant signalling reduction through a ranking-based clustering

approach. In the processing system, each subsequent user request is assessed based

on users’ application-specific service signalling and resource characteristics. This as-

sessment implements a comparative analysis approach to determine whether or not

the requests are homogeneous in demand with respect to device type and resource

demand characteristics. If the mth user request, symbolised as xmj, is similar to the

(m − 1)th user request, symbolised as x(m−1)j, the application assessor will group
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them into a cluster, due to their homogeneous demand characteristics, as illustrated

in Algorithm 4. Given that clustering, a respective coefficient will be populated in

the rank matrix XR as a single row entry for the respective cluster demand. Thus,

the updated rank matrix XRk for the Λk application will be as follows:

XRk =



x1k1 x1k2 x1k3 · · · x1k N

x2k1 x2k2 x2k3 · · · x2k N
...

...
. . .

...
...

xRk1 xRk2 xRk3 · · · xRk N


, (3.36)

whereby, for M users of the kth application, rank R of the respective matrix X will

be equal to or less than M (denoted as Rk ≤ Mk) regarding the guaranteed soft,

best-effort, and hard QoE user traffic demand.

Similarly, A matrix for K number of heterogeneous applications will be as fol-

lows:

A =



a111 a112 a113 · · · a11 N
...

...
. . .

...
...

aR11 aR12 aR13 · · · aR1 N

a121 a122 a123 · · · a12 N
...

...
. . .

...
...

aR21 aR22 aR23 · · · aR2 N
...

...
. . .

...
...

a1K1 a1K2 a1K3 · · · a1K N
...

...
. . .

...
...

aRK1 aRK2 aRK3 · · · aRK N



. (3.37)

Based on their homogeneity, requests are grouped as a common scaled entity

in the application cluster. Thus, after clustering, the clustered signalling capacity

Cs
up(cls_sig) will be less than or equal to the Cs

up(obs_sig), which, in turn, reduces Cs
up(obs)

to make it approximately equal to or less than Cs
up:

Cs
up(cls_sig) = ∑

Λk∈Λ
Rank(XRk)rSig(k) , (3.38)
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where the rank of the matrix XRk , denoted as Rank(XRk), determines the total num-

ber of possible signals of the kth application after clustering. Due to the homoge-

neous resource demand, it is also assumed that rSig is similar for the signalling re-

quests of all applications. Accordingly, the matrix A rank is less than the number of

users accessing the network at that instant for service provisioning of their hetero-

geneous applications from set Λ. Thus, (3.38) can be as rewritten as

Cs
up(cls_sig) = rSig ∑

Λk∈Λ
Rank(XRk) = Rank(A)rSig . (3.39)

Likewise, redundancy reduction from the observed data transmission (Cs
up(obs_data))

can also reduce observed uplink capacity.

Algorithm 4: Clustering for signalling optimisation
Input: User_Listk = {x1, x2, x3....xMk} is in order, Zk.
Output: Cluster_Listk = {x1, x2, x3....xRk} is in order with respect to the user
arrival time.

begin
count = 1
User_Listk ̸= ∅
Cluster_Listk ←− ∅
Every element of User_List ∈ Zk

for (i = 0, i < User_Listk.length, i ++) do
if (i = 0) then

Update Cluster_Listk[i]←− User_Listk[i]
end
if (i ̸= 0) && (User_List[i] == User_List[i− 1]) then

Increment the count.
Scale the value of User_List[i] by count.
Cluster User_List[i] with User_List[i− 1] with scaling factor
Update Cluster_Listk[i− 1]←− User_List[i]

else
Update Cluster_Listk[i]←− User_List[i]

end
end

end

From the Algorithm 4, in time 0 to t, the first user from the list User_List to

access the access node for service provisioning of the applications (e.g. for smart

MTC and Web browsing), will be considered a cluster head. With a guarantee to

abide by the security policy, it is supposed that the cluster head has the right to
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assess user requests from similar device types and application characteristics in the

neighbourhood. Moreover, based on homogeneity among requests of application

k, requests will be included in a unique cluster for their admission to the respective

slice and resources allocation. Thus, each cluster represents a unique application and

device type. All the unique clusters from the application k are listed in the cluster

list, denoted as Cluster_List, for admission control. Now, a single signalling request

on each cluster would be sent to the core network for multiple users.

3.3.2.3 QoE-based Admission Control and Resource Allocation: After signalling

optimisation, now the desired QoE of the cluster request, denoted as QoEs
(ck)

(where

ck ∈ Cluster_Listk) is assessed by the slice QoE bound set, which is symbolised as

[QoEs
k(γ), QoEs

k(r)] for service provisioning of the kth application, as shown in Algo-

rithm 5. QoEs
k(γ) and QoEs

k(r) are the respective slice application-specific minimum

and maximum guaranteed QoE bounds for cluster request admission to the net-

work. For QoE based admission control, QoEs
(ck)

is computed from the individual

user-desired QoE within the cluster c. Whereby, user-desired QoE is acquired as:

Qs
m(r) =

( rs
m

Rs
Max

)
+ βm + ιm + ρm ≤ 1 , (3.40)

where, Rs
Max represents the maximum sth slice available resources, rs

m represents the

mth user-desired resource demand, ρ, ι and β represent the user priority, latency sen-

sitivity, and acceptable user-application-specific BER, respectively. Their statistical

values are normalised between zero and 1 for simplicity. When the network is ex-

periencing a higher volume of traffic (e.g. during peak hours and special occasions),

the network will become saturated such that it will not be able to allocate users’ de-

sired resources for their service provisioning. In instances such as this, the user will

acquire the guaranteed QoE on the provisioning of its agreed minimum resource

(denoted as γs
m) demand from the slice. This can be illustrated as:

Qs
m(γ) =

( γs
m

Rs
Min

)
+ βm + ιm + ρm < 1 . (3.41)
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Significantly, now the slice QoE over set Us with respect to user-desired and

guaranteed resource demand can be expressed as follows:

Qs
r = ∑

m∈Us

Qs
m(r) ≤ 1 , (3.42)

Qs
γ = ∑

m∈Us

Qs
m(γ) ≤ 1 . (3.43)

Likewise, the overall network QoE (denoted as Q) over set S with respect to the

guaranteed or desired QoE along with slice priority (i.e., ρs) can be represented by

the equations:

Qγ = ∑
s∈S

(
Qs

γ

)ρs , (3.44)

Qr = ∑
s∈S

(
Qs

r
)ρs , (3.45)

Q = Qr + Qγ ≤ 1 . (3.46)

The network assigns resources based on a scheduling frame slot t from the total

number of T scheduling frames. Therefore, the time average network QoE can be

estimated as:

E[Q] =
1
T

T

∑
t=1

Qt . (3.47)

If QoEs
(ck)

is within the slice guaranteed QoE bounds for serving the particular

application, the resource requests of users in that cluster will be assessed to imple-

ment efficient resources allocation and admission control, as shown in Algorithm 5.

Therefore, to accommodate the user request, the user-required resources, either de-

manded r or guaranteed γ resources, will be assessed based on slice uplink capacity

(i.e. Cs
up). Based on available slice resources and the required QoE of the cth request,

users of the cth cluster will be admitted to the admission queue, which is symbol-

ised as Admit_Listk of the kth application. Otherwise, users of the cth cluster will

be admitted to the backoff queue, symbolised as Block_Listk, of the kth application

for group backoff. Then, in the next slot, the cth cluster request will be reassessed,

along with the updated QoE demand characteristics obtained from the estimates.

From here on, the list of admitted users will be passed to the core control network

functions (AMF, SMF, and UPF) for slice configuration, session establishment, and
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data transmission.

Algorithm 5: QoE-based admission control and resource allocation
Input: Cluster_Listk = {x1, x2, x3....xRk} is in order with respect to the user
arrival time. Cluster_List are in order with respect to the application
priority. Chose ck as a kth application cluster request (i.e.
ck ∈ Cluster_Listk). QoEs

(ck)
̸= 0, QoEs

k(γ) ̸= 0, QoEs
k(r) ̸= 0, Cs

up ̸= 0.

Admit_Listk = 0, Block_Listk = 0. slot 0 −→ t.
Output: Admit_Listk ̸= 0, Block_Listk ≥ 0.
begin

for (i = 0, i < Cluster_Listk.length, i ++) do
ck ←− Cluster_Listk[i]
if (QoEs

k(γ) < QoEs
(ck)
≤ QoEs

k(r)) then

for (j = 0, j < ck.length, j ++) do
mk ←− ck[j]
if (mk(r) ≤ Cs

up) or (mk(γ) ≤ Cs
up) then

Add mth request in admission queue at Admit_Listk[i]
update Cs

up

else
Add mth request in back_o f f queue at Block_Listk[i]

end

end

else
Reassess and update QoEs

(ck)

end

end
Send signalling via Admit_Listk towards AMF.
Populate respective coefficient in matrix A with respect to application
priority and user arrival time.

Send group back_o f f signal via Block_Listk.
Queue back_o f f users in t −→ t + 1 slot at front of Cluster_Listk.

end

3.3.3 Performance Analysis and Results

The robustness of the proposed model is assessed through a simulated network en-

vironment that supports four different use cases: VoLTE/VoWiFi, video streaming,

smart MTC, and Web browsing. Therefore, a dense virtual network with various

system parameters has been developed in MatLab software for evaluation. This
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validation illustrates how the proposed model helps to reduce signalling redun-

dancy that leads to reduced congestion and how admission control and QoE can

be improved in a denser network. The parameters considered are acceptable user-

application-specific BER (β = [10−9, 0]), latency sensitivity (ι = [100, 400] ms), pri-

ority (ρ = [1, 4]), and desired data rate (r = [1, 25] Mbps) (as given in GSMA, 2019).

The results obtained, as shown in Figure 3.9 to Figure 3.12, illustrate the improved

efficiency and robustness of the proposed model and are compared with the results

of relevant models found in the literature ( Jiang, Condoluci, and Mahmoodi, 2016;

Trivisonno et al., 2018).

Figure 3.9 illustrates uplink signalling capacity Cup(sig) vs. traffic load from 5G

heterogeneous applications. It can be seen that the control signalling capacity ob-

tained from (3.39) in the proposed model is significantly lower than that of the exist-

ing 5G-mIoT model, as given in (Trivisonno et al., 2018). The performance in terms

of redundant signalling reduction achieved from the proposed ranking-based clus-

tering approach is 96% over the entire range of U. This performance is a result of

each cluster representing a unique application and device type. So, the number of

clusters will remain the same based on device type and the number of heterogeneous

applications. However, based on the incoming load on the network, the number of

requests within a cluster can vary. Hence, the signalling redundancy reduction from

the cluster reduces the unnecessary and massive amount of control messages flow-

ing into the network. Otherwise, the aforementioned huge volume of message flow

into the network creates congestion and reduces network QoS.

Similarly, Figure 3.10 represents the admission gain (or the number of admis-

sions) on service provisioning of various heterogeneous applications vs. their con-

sidered priority in a dense network. In this work, priority is determined with re-

spect to the reliability demanded by the application. Hence, the considered order

is VoLTE/VoWiFi > Live Streaming > MTC > Web Browsing. When the network

is fully loaded, cluster requests from VoLTE/VoWiFi and Live Streaming applica-

tions take priority according to demanded QoE. However, a few requests belong-

ing to MTC and Web Browsing were rejected due to resource scarcity. However,

when the load is greater than the available capacity, the proposed model admits
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FIGURE 3.9: Computation of core signalling over varying user den-
sity

the request according to their guaranteed QoE bounds (between desired and min-

imum guaranteed QoE demand) to reduce the rejection ratio within the network.

Thus, at U = 20000, the admission gain or number of admissions obtained from

VoLTE/VoWiFi users is greater than that of its counterparts (i.e. > 90%). How-

ever, the admission gains or the number of admissions obtained from live streaming,

MTC, and Web browsing users are 90%, 83%, and 74%, respectively. This trend in

gain is because of the different preferences of the application. Therefore, clustered

users of an application with higher priority always take priority for admission to the

network. Moreover, consistency in the achieved admission gain at heavy load is due

to the consideration of clustering and adaptability of slice elasticity for resource allo-

cation. Subject to availability of resources, slice elasticity guarantees a lower cluster

user backoff from the slice in the case of massive network traffic load.

Figure 3.11 shows the average QoE obtained by (3.46) on various heterogeneous

applications from 2000 users. The proposed SAC model performance was compared

with that of its counterparts i.e. 5G Slice Allocation (i.e. 5G-SA) and 5G Admission

Control Slice Allocation (i.e. 5G-AC-SA) models, as in (Jiang, Condoluci, and Mah-

moodi, 2016). Compared to its counterparts, a significant difference is seen in the

QoE achieved by the proposed model. Moreover, the achieved QoE of live stream-

ing is better than that achieved through MTC and Web browsing requests, due to

priority considerations. In the case of heavy load on the network, user requests
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FIGURE 3.10: Computation of admission gain over the massive load

for live streaming need to be accommodated at their minimum guaranteed QoE de-

mand Qγ based on priority considerations, where γ = 0.5. In terms of operational

cost, the particular service slice QoE bounds will be dynamically adjusted to admit

user requests into the slice to lower the rejection ratio. This extension in bounds

in turn increases the average QoE by reducing blocking probability. A similar trend

can be seen in serving MTC and Web-browsing cluster users by the proposed model.

However, the achieved QoE of MTC and Web-browsing users in existing models are

reducing, due to resource scarcity in their slices and higher blocking probability.

In the proposed model, each user in the cluster will be treated fairly by the slice

through dynamic bounds adjustment in an unforeseen situation. Besides cluster-

ing, this adaptability eventually increases overall QoE and slice utilisation. Conse-

quently, the proposed SAC model guarantees higher user admission and enhanced

slice QoE compared to existing models.

Figure 3.12 demonstrates the QoE of the entire network at various traffic loads.

The results obtained from the proposed model are also compared with those of its

counterparts. It can be seen that at minimum guaranteed demand γs = 0.5, the gain

in achieved QoE is high, that is 31.3% and 19.4% on 5G-SA and 5G-AC-SA based

models upon the arrival of U = 100. A similar trend can be seen at U = 30, and

U = 60. This is because the proposed model admits users into the slice through

clustering and slice elasticity to enhance achieved QoE. Therefore, all users, along

with their desired QoE demand, will be admitted in the form of clusters and served

from the slice subject to the availability of resources. However, user admission and
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their associated QoE continuously decrease as traffic load increases because of the

massive number of users requesting connectivity. Thus, an overloaded network cre-

ates competition among the users for admission and resource allocation, which leads

to users being backed off due to congestion or resource deficiency. However, com-

pared to existing models, the proposed model performs efficiently at increased load

and shows meaningful QoE due to flexible QoE bounds.
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FIGURE 3.12: Computation of network QoE over 5G-SA/5G-AC-SA,
and SAC.

To summarise, the proposed dynamically signalling analysis and QoE-based ad-

mission control model performs efficiently with regards to reduced redundant sig-

nalling in the access network, better resource and network utilisation, and better

user QoE in a dense network.



Chapter 3. Admission Control with Single–Objective Optimisation 70

3.4 Summary

In this chapter, integrated slice allocation, admission control and signalling redun-

dancy reduction strategies have been presented. First, DSAAC model has been pre-

sented in Section 3.2. In this model, a decision matrix, along with the unified cost

estimation function is proposed for dynamic slice allocation and admission control.

This model considers varied user demands, as well as multiple real-time network re-

source characteristics for optimised admission control to enhance the network GoS.

These characteristics include user and slice bandwidth, data rate, priority, latency

sensitivity, and cost revenue. Moreover, to maximise resource utility, adjustable min-

imum and maximum slice resource bounds have also been derived. In the case of

user blocking from the primary slice due to congestion or resource scarcity, inter-

slice admission control and resource allocation and adaptability of slice elasticity

have been proposed.

Moreover, an access network control signalling redundancy minimisation SAC

model is presented in Section 3.3 for 5G and beyond networks. In this model,

a three-stage approach involving pre-clustering analysis, usage-specific clustering,

and a signalling optimisation and admission mechanism, has been introduced. This

model deals with the usage and user-device-specific heterogeneity in a single-layer

approach rather than a two-layer approach. The proposed unsupervised learning-

based clustering approach reduces the additional burden on the network in terms of

unnecessary resource utilisation and computational time by reducing redundancy in

the signalling. Moreover, a set of optimisation algorithms are also proposed to attain

efficient slice allocation and users’ QoE enhancement via assessing the capability of

slice QoE elasticity.

Eventually, the proposed models are evaluated in terms of GoS, network utility,

mean delay, throughput, uplink signalling load, and admission gain. The results

obtained are also compared with those of relevant models in the literature and sug-

gest that the proposed DSAAC and SAC models outperform their existing coun-

terparts. From the comparative results, it can be seen that a flexible but efficient

decision metric can be obtained through the accumulation of user demand and net-

work resource characteristics. The proposed models provide explicit definitions of
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the requirements of network slice characteristics, which leads to better admission

control and resource utilisation to ensure enhanced network QoS and user-acquired

QoE. Accordingly, a summary of an analysis of DSAAC and SAC models is also

presented in Table 3.3.

TABLE 3.3: Summary of analysis of DSAAC and SAC Models

Analysis Measures DSAAC Model SAC Model
Admission objective Objective of the

DSAAC model is
unified slice allocation
and network GoS en-
hancement.

Objective of the SAC
model is signalling
redundancy minimi-
sation and users’ QoE
enhancement.

Slice elasticity Slice reconfigurable
resource bounds for
inter-slice admission
and resource allocation

Slice reconfigurable
QoE bounds for intra-
slice admission and
resource allocation

Tenancy Multi-tenant support Multi-tenant support
Slicing domain E2E slice management

and orchestration sup-
port

E2E slice management
and orchestration sup-
port

Admission strategy Single objective optimi-
sation

Single objective optimi-
sation

Optimisation Algorithm Normal equation Unsupervised learning
Admission domain Intra and inter-slice ad-

mission and resource
allocation

Intra slice admission
and resource allocation

Admission efficiency The average admis-
sion efficiency of the
DSAAC model over a
fully loaded network
is 88.4% due to lower
blocking probabilities
from the network.

The average admission
efficiency of the SAC
model over a fully
loaded edge network
is 91.12% due to sig-
nalling redundancy
minimisation in the
edge access network.
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Chapter 4

Admission Control with

Multi-Objective Optimisation

4.1 Introduction

Continuous technological advancements and the massive amount of heterogeneous

service support have made today’s network environment more complex in terms

of management and operation. Compared to conventional approaches, it has been

recognised for decades that multi-objective optimisation algorithms can quickly and

accurately find efficient solutions to the problems of complex networks. Multi-

objective optimisation approaches have been successfully applied to provide opti-

mal solutions to several non-deterministic polynomial-time (NP) hard problems in

wireless communications systems, such as spectrum allocation (Zhao et al., 2009;

Gözüpek and Alagöz, 2011; Shami, El-Saleh, and Kareem, 2014), resource schedul-

ing (Gu et al., 2015), channel assignment (Xu et al., 2012), indoor and outdoor track-

ing (Gharghan et al., 2015), and call admission control (Jain and Mittal, 2016). Such

approaches can produce a solution individually or be used in combination with

other approaches such as machine learning. Therefore, due to their ability to solve

complex problems, optimised admission control models have been presented in this

chapter. In Section 4.2 of this chapter, an edge redundancy minimisation and admis-

sion control model, also known as the E-RMAC model, is presented for signalling

optimisation to ensure better network QoS and user-demanded QoE using efficient

admission control and resource allocation. A forecasting and fuzzy-logic-based ad-

mission control model, also known as the FAC model, is presented in Section 4.3
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for resource allocation and admission control on the forecasted demand in the 5G

open-RAN network. In this model, a non-dominated sorting genetic algorithm is

employed for optimal network selection on the forecasted demand. Similarly, for

bottleneck congestion control in 5G and beyond network, slice congestion and ad-

mission control (SCAC) model is presented in Section 4.4, that uses the optimisa-

tion and machine learning approaches such as unsupervised learning, reinforcement

learning and transfer learning. Finally, a summary of the chapter is given in Section

4.5.

4.2 Edge Redundancy Minimisation and Admission Control

(E-RMAC) Model

Mobile edge computing (MEC) is expected to be a promising key enabler for pro-

visioning latency-sensitive heterogeneous services within future wireless networks;

for example, autonomous drones for live streaming, autonomous vehicle control,

and health-monitoring systems for emergencies. MEC was first introduced by the

European Telecommunications Standard Institute (ETSI) in 2015 (Hu et al., 2015) and

extends the capabilities of cloud computing by moving resources closer to the net-

work edge to provide lower latency and higher reliability for highly demanded and

latency-sensitive applications (Abbas et al., 2017; Pham et al., 2020; Qu et al., 2020).

Therefore, it is expected that MEC will be an essential part of future network archi-

tecture to improve overall cellular network performance; for instance, AI-enabled

edge architecture to fulfil the visions of 6G (e.g. seamless connectivity, ultra-low

latency, ultra-high data rates, and reliability) (Russell and Norvig, 2010; Qu et al.,

2020).

However, due to the continuously increasing demand for various heterogeneous

services in wireless-cellular networks, MEC is facing numerous challenges in traf-

fic flow management (Roman, Lopez, and Mambo, 2018). One such example is the

need for efficient MEC network management that minimises latency in network data

and control planes, and maximises E2E link efficiency. Recent research in (Liu and

Zhang, 2018) and (Sun et al., 2020) applied the concepts of data offloading at edge

or cloud nodes. During data transmission, data offloading is mainly for the service
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provisioning of critical applications from the edge network while keeping latency

within acceptable bounds. In contrast, the current MEC provides limited or no ac-

cess to the core control and management functions of the control plane in the cellular

network (Roman, Lopez, and Mambo, 2018). The limited access of MEC to the core

network functions (NFs) reduces overall network performance. For example, if de-

vice density is more than the capacity of the edge network, a huge volume of traffic

from these devices flows into the core network. The serving network edge may col-

laborate with other edges in the neighbourhood to offload a certain amount of data

onto them. However, the neighbouring network edges have a similar kind of sig-

nalling from their associated traffic. So, redundancy occurs from similar signalling,

which leads to inefficient resource utilisation in the collaborated environment (Chen

et al., 2018; Ullah et al., 2019). For example, 5G joint network slicing and edge com-

puting model is proposed by the authors in (Xiang et al., 2019) for latency minimi-

sation. Branch and bound method is been used by the authors for E2E slice creation.

In their model, edges are ranked based on the link and computational capabilities

along with least latency. Data is been offloaded to the neighbouring edges based on

the latency requirement of the application. However, offloading signalling or data

from primary edge also generate signalling and data redundancy in the neighbour-

ing edge. In the cellular network, such issues have gained significant attention from

the research community around the globe. For example, a novel solution proposed

for signalling optimisation is Diameter Protocol, which carries out CP signalling of

the LTE network (Ewert, Norell, and Yamen, 2012). Another effort to handle CP

signalling redundancy is the E2E connectivity model proposed by the authors in

(Trivisonno et al., 2018) for massive IoT in 5G networks.

Similarly, asymmetry in traffic flow and its management at the network edge

causes congestion (Cao et al., 2019). For example, when a user connectivity request

is received, the edge node accesses the user profile managed by a centralised core

network user unified data management (UDM) function to retrieve the user data for

the offered UDM services, including subscriber data management, authentication,

and event exposure. The UDM offers services through numerous service operations.

For example, a subscriber data management service is offered by Get, Subscription,
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Unsubscription, Modify, and Notification service operations (3GPP, 2020). For the pro-

visioning of the offered services, these operations perform several signalling opera-

tions between the edge and core NFs. The core NFs also exchange user information

with each other in case of modification in privileges or policies, or notification of

a user’s subscription or unsubscription from a particular application (Behrad et al.,

2020). The massive volume of user requests could have similar signalling and re-

sponse in the core network, which would create communication overhead on the

link capacity of the core network. Such overheads might include 100% in a baseline

LTE/EPC system, due to bearer establishment, and 40% in a 5G system, due to slic-

ing and device-based classification (Trivisonno et al., 2018). This leads to degrada-

tion of overall network performance by inducing substantial latency and congestion,

which is potentially intolerable for latency-sensitive applications (Emara, Filippou,

and Sabella, 2018).

Considering these issues, a hash-based grouping scheme is proposed by the au-

thors in (Hung, Hsieh, and Wang, 2017) for traffic flow management in the MEC

system. Wang et al. (Wang and Cai, 2019) proposed an intelligent edge manage-

ment and optimisation model for latency-critical applications of 5G networks. To

reduce the communication overheads in 5G mIoT networks, Cao et al. proposed a

fast-authentication and data transfer scheme (Cao et al., 2019). A bankruptcy game-

based resource allocation algorithm for 5G Cloud-RAN slicing is proposed by the

authors in (Jia et al., 2018). In this approach, user groups are created for admission

to the network based on the Lloyd Shapley approach. In this work, a user would be a

part of a group, if the user adds more benefits to the slice. However, a greedy-based

admission control strategy may not always be optimal. Such a policy makes the

greedy decision on the spot to achieve the objective, such as increasing the admitted

requests to earn more revenue from the network but also creates a lot of congestion

due to signaling redundancy. Moreover, equal ratio strategy (EO) and traffic propor-

tion (TP) approaches are employed by the authors as a benchmark in this work. The

equal ratio strategy means resources are allocated equally to different slices. This

result in over and under resource utilisation in the network on frequently varying

demand. The traffic proportion strategy means that resources are allocated to differ-

ent slices in proportion according to their random requirements. These approaches
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degrade the network QoS through inefficient resource allocation. Existing research

into MEC highlights the problem of latency minimisation through data offloading

and traffic flow management between access and edge nodes. However, how to

minimise latency and congestion between the edge and core control NFs of cellular

networks is still an open issue.

To ensure efficient resource utilisation and traffic management, this work en-

deavours to prevent control signalling storms from entering the core network. This

could be achieved by moving the essential NFs of the core network onto the edge

for efficient admission control. The edge core functions would acquire limited priv-

ileges from the core of the cellular network for security assurance. Accordingly, the

following major contributions of this work are:

• A novel edge architectural model known as edge redundancy minimisation

and admission control (E-RMAC) has been proposed in this work to support

massive amount of connectivity demand and to reduce signalling redundancy

in future core networks.

• A k-mean- and ranking-based clustering approach has been implemented in

this work, along with genetic optimisation for control signalling redundancy

reduction and efficient admission control.

• The proposed model is assessed through performance evaluation measures

such as latency, link efficiency, admission control, and fairness of resource allo-

cation. The outcomes of the proposed model are compared with the outcomes

of existing models found in the literature.

4.2.1 E-RMAC System Model

It is assumed that future networks would be more efficient at managing varied traf-

fic flow according to network capacity. One example is MEC, which can manage

network traffic dynamically with efficient admission control and resource utilisation

(Pham et al., 2020). For CP signalling optimisation and efficient admission control,

a novel edge architectural model has been presented in this work for future core

networks, as illustrated in Figure 4.1. In this architectural model, the RAN is the
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aggregation point that receives signalling requests in addition to user-application-

specific demand for resources. In this work, the service signalling and resource de-

mand for latency-sensitive applications are sent to the core network through the

traditional RAN or edge RAN. The edge controller of the RAN is a crucial entity

that analyses and centralises application signalling and resource demand to ensure

optimal network management at all times. The controller consists of three major

components: pre-clustering demand analysis and categorisation, a demand pro-

cessing (clustering) system, and admission control and resource allocation. As the

name suggests, the demand analyser at the network edge analyses and categorises

user-application-specific service signalling and resource demand for clustering. The

proposed processing system of the edge controller processes service signalling and

resource demands with respect to their homogeneous characteristics and clusters

them for signalling optimisation and admission control. The clustered signals are

then sent to the core network UDM to fetch user-service-specific profiles onto the

edge for admission control and resource allocation. However, in the core UDM, user

profiles are also clustered based on homogeneous control information and signalling

response. The clustered responses in the UDM help to reduce control signalling re-

dundancy among the core NFs. Otherwise, this may lead to resource inefficiency

and congestion in the core network.

The essential core NFs are configured at the edge to support the massive vol-

ume of latency-sensitive applications with faster authentication, admission control,

and resource allocation, as shown in Figure 4.1. The proposed core edge NFs are

termed Edge Access and Mobility Management Function (eAMF), Edge Session Manage-

ment Function (eSMF), Edge Network Slice Selection Function (eNSSF), Edge Unified Data

Management (eUDM), Edge User plane Function (eUPF), and Edge Serving/Packet Gate-

way (eSGW/ePGW). Within the core network, these functions would be managed

by the proposed Edge Management Function (EMF). With the assistance of the pro-

posed EMF, the core edge NFs would acquire limited privileges from the core PCF

to ensure network security (Roman, Lopez, and Mambo, 2018).

Key Notations and Description: In this work, the deployment of an edge network is

considered to serve an urban area. It is assumed that the deployed edge network can

serve U total number of users, symbolised as U = {1, 2, · · · , U} of URLLC, mMTC,



Chapter 4. Admission Control with Multi-Objective Optimisation 78

Pre-Clustering 
Demand Analysis &

Categorisation

Admission Control &

Resource Allocation

     Edge (R)AN

Demand 
Processing System

    Edge 

ControllerHeterogeneous

Traffic Demand
(mMTC, 

URLLC,

eMBB, etc.)

eAMF eNSSFeSMF

eUPF eSGW/

ePGW
eUDM

Edge Core NFs

AMF NSSFSMF UPF

SGW/PGWUDM EMF

5G/6G Core NFs

Data 

Network
(Smart City, 

Health, 

Industory,

Transport, etc.)

     Traditional (R)AN

FIGURE 4.1: Proposed edge architecture for future core networks

and eMBB applications. Each user associated with this network has M number of

service and resource demand characteristics, represented by M = {1, 2, · · · , M}.

The service demand, symbolised as a set S = {1, 2, · · · , S}, and S ⊂ M, deter-

mines the signalling request to the UDM-offered services. Moreover, these UDM

services are offered by a set of service operations, represented by P = {1, 2, · · · , P}.

Likewise, the resource demand, denoted as a set L = {1, 2, · · · , L}, determines the

L number of resource request of a particular application, where L ⊂ M. Each of

the resource characteristics belonging to L is independent and different from other

resource characteristics based on the particular application. Such characteristics

could be data rate, available bandwidth, acceptable jitter, packet loss, etc. More-

over, it is also assumed that each user can be connected simultaneously to a max-

imum of K heterogeneous applications, expressed as a user-specific application set

Λ = {1, 2, · · · , K}. Key symbols included in this work are illustrated, along with

their definitions, in Table 4.1.

4.2.2 Proposed E-RMAC Model Schema

In this section, I am going to present a systematic scheme of the proposed E-RMAC

model, for future core networks, which is shown in Figure 4.2 and also discussed in

detail in the following subsections.
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TABLE 4.1: E-RMAC model key symbols and definitions

Symbols Definitions
U Set of users in the network
M Set of services and resource demands
S Set of UDM-offered service signalling
P Set of UDM-offered service operations
L Set of resource demand represents
Λ Set of applications
Ve Edge user-demand matrix
Ar Resource-demand matrix
As Service matrix for signalling
Cup Total uplink capacity
Cup(sig) Reserved uplink signalling capacity
Cup(obs_sig) Observed uplink signalling capacity

4.2.2.1 Pre-clustering Demand Analysis and Categorisation

The incoming user demand for applications belonging to set Λ is continuously as-

sessed by the edge node. This assessment is for optimal network management in

latency-sensitive and massive-device-connectivity situations. Therefore, when U

number of users access the edge network for service provisioning of the κth ap-

plication (κ ∈ Λ), a demand matrix Ve(U×M) is constructed for these users by the

edge controller. Each element, vum, belonging to Ve determines the user-application-

specific service, as well as resource demand characteristics from setM.

User-application 
specific demand

 Demand 

Analysis &

Categori-

  sation

Admission

Control &

Resource 

Allocation

Processing

   System

  Core

Control

   NFs

  Edge

Control

   NFs

   Signalling

FIGURE 4.2: Systematic diagram of the proposed E-RMAC model

The pre-clustering system detaches the signalling requests of the UDM service

from the resource demand of the kth application available in Ve for clustering and

signalling optimisation, as shown in Figure 4.2. For the UDM sth service signalling,
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the service operations are populated as a row entry in the service matrix As(U×P)

for that particular edge user, where sup ∈ As represents user-application-specific

service demand. Likewise, resource demand L for application κ contains a set of

user-application-specific resource demand characteristics. The edge-user-required

resource demand characteristics are populated as a row entry within the resource

demand matrix Ar(U×L), where rul ∈ Ar represents the user-application-specific re-

source demand. Isolated services and resource demand characteristics are passed to

the processing system for signalling optimisation and efficient admission control, as

explained in detail in the next subsection.

4.2.2.2 Demand Processing (Clustering) System for Signalling

Optimal resource allocation plays an important role in network QoS and user QoE.

However, supporting the massive number of service demands in an edge network

for device connectivity becomes challenging for the network itself, because of the

limited link capacity (bandwidth) of the edge, latency sensitivity of the application,

and offloading constraints (Emara, Filippou, and Sabella, 2018). To address this chal-

lenge, a demand processing system is presented in this section. With the help of op-

timisation and clustering approaches, the proposed demand processing system can

serve a massive number of connectivity requests with efficient admission control

and resource utilisation.

A) Clustering for Capacity Optimisation: A huge amount of control signalling traf-

fic in the core network (more than core capacity) creates signalling overheads, which

reduces network performance on ineffective resource utilisation (Hung, Hsieh, and

Wang, 2017). For communication, the uplink network capacity, represented as Cup,

is the sum of the total capacity reserved for transmission of signalling and data in

the network, as follows:

Cup = Cup(sig) + Cup(data) . (4.1)

In the network, when the demand on the κth application is heavy, the reserved

capacity should be equal to or greater than the observed traffic capacity, represented

as Cup(obs). This observed capacity is the total capacity consumed during transmis-

sion by signalling and data for the κth application in the network, as illustrated
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below:

Cup(obs) = Cup(obs_sig) + Cup(obs_data) ≤ Cup , (4.2)

whereby, Cup(obs_sig) for sth service signalling and rth resources demand signalling

for the set U can be determined as follows:

Cup(obs_sig) = ∑
u∈U

α(u,s)sSig(u) + ∑
u∈U

α(u,r)rSig(u) , (4.3)

whereby, α would be set to 1 only if the sth service or rth resource demand is granted,

otherwise 0. The uth user-desired-service signalling (sSig(u)) and resource demand

signalling rSig(u) are measured in bits; for instance, NAS PDU in 5G and beyond

networks (ETSI, 2020). On the network edge, the observed capacity increases expo-

nentially with increasing application demand, which may cause inefficient resource

utilisation. Thus, ineffective capacity utilisation could be modelled as an optimisa-

tion problem. The objective of the mentioned optimisation problem is to meet the

signalling demand coming from U such that the overall uplink capacity, Cup(sig), is

utilised efficiently. This can be written mathematically as follows:

min ∑U
u=1 Cup(obs_sig),

s.t.
U

∑
u=1

Cup(obs_sig) ≤ Cup(sig) ,

U

∑
u=1

α(u) ≤ 1 ,

(4.4)

where, u ∈ U , |S| = 1 and |L| = 1 for simplicity. The observed signalling capacity

due to the users of set U should not exceed the overall reserved uplink signalling

capacity. Moreover, all the signalling demands from the users of set U should be

admitted by the edge controller. In view of the massive volume of requests and

their latency constraints, the implementation of an efficient clustering approach is

essential to fetch user profiles onto the edge, speed up the admission process, and

reduce signalling overheads in the core network.

To efficiently process service and resource demand signalling, a ranking-based

clustering technique has been adopted in this work. Ranking-based clustering is

a simple and powerful approach used to compute the similarity index within the
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cluster (Saxena et al., 2017). The isolated services and resource demand signalling

received from the pre-clustering system are grouped, based on their homogeneous

demand characteristics, into clusters. This is to fetch the user profile to the edge.

Thus, if the uth user service (or resource) demand, sup (or rul), is similar to (u− 1)

user service (or resource) demand, s(u−1)p (or r(u−1)l), the processing system will

group them into a cluster. The respective coefficients for homogeneous signalling or

clustered signalling are placed as a single entry for the particular cluster demand in

a row of the ranking matrix. After clustering for the sth service and rth resource de-

mand, the updated matrices are called ranking matrices and represented as ARs(R×P)

and ARr(R×L), respectively. R = {1, 2, 3, · · · , R} represents the ranking set for ser-

vice or resource demand signalling with R possible individual clusters. The pro-

posed clustering mechanism reduces the complexity from O(U) to O(R), because

the respective rank of the matrix, either ARs or ARr , will be less than U number of

users requests belonging to the demand matrix V for the κth application. Hence,

the massive service signalling or resource demand clustering on the edge helps to

reduce overload and congestion in the network by efficient network resource util-

isation. Therefore, after ranking-based clustering, the clustered signalling would

reduce Cup(obs_sig) to make it approximately equal to or less than Cup(sig), as follows:

Cup(obs_sig) = Rank(ARs)sSig(u) + Rank(ARr)rSig(u) , (4.5)

where, after clustering Rank(ARs) and Rank(ARr) determines the individual cluster

signals for the sth service and rth resource demand of the κth application. Now,

the ranking-based service signalling is sent to the core network UDM to provide the

particular service. Likewise, the ranking-based resource demand signalling for the

κth application is sent to the core NFs of the edge for admission control and resource

allocation.

Once the core UDM receives the service signalling, it re-clusters user service re-

sponses, based on their homogeneity, into a response matrix, represented as XRo(R×P).

Thus, the matrix X respective rank would be less than V but equal to or greater than

ARs . In addition, on UDM-offered services, S , a service profile would be built for

clustered users in the network core for ease of signalling and information exchange
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among the core NFs. The UDM processing of user service signalling (e.g. autho-

risation, authentication, subscription operations, etc.) is illustrated in Algorithm 6.

For a particular service operation, each user privilege would be acquired from the

user profile available in the edge UDM. S_Listκ represents the list of service s clus-

ters maintained by the edge for κth application, where sτ ∈ S_Listκ and τ ∈ R.

If all cluster sτ users have the same access, they would be added to the service

list, Service_Listκ with a unique group ID, G_id. Otherwise, users of sτ would be

subclustered into SS_Listκ on possible responses and added to the Service_Listκ or

Reject_Listκ for admission control.

B) Clustering for Latency Optimisation: Due to redundant signalling in a dense

edge network, the traditional approaches for resource allocation cause ineffective

resource utilisation, which results in congestion and latency in communication (Ro-

man, Lopez, and Mambo, 2018). Hence, resource allocation becomes challenging for

the edge operators in latency-sensitive scenarios with massive connectivity demand

and limited network capacity. The presented latency-minimisation problem can be

modelled as an optimisation problem. The objective of the mentioned optimisation

problem is to minimise the mean latency, symbolised as T(N ), of N optimal number

of clusters from a set N = {1, 2, 3, · · · , N}. This can be written mathematically as

follows:
min T(N ),

s.t.
U

∑
u=1

β(u,r)γ(u,r) ≤ Υ(r) ,

U

∑
u=1

N

∑
n=1

U(u,n) = U ,

(4.6)

where, u ∈ U , n ∈ N , r ∈ Ar. β(u,l) = 1, only if the demanded rth resource is

allocated to the uth user, otherwise 0. γ is the quantity of resource r. The aggregate

resources allocated to the set U should not exceed the total available resources, Υ, of

the particular resource r. Each user from set U should belong to a particular cluster

with regard to homogeneous resource demand.

In this work, two popular unsupervised learning algorithms, k-mean and Ranking-

based clustering, have been applied for demand clustering. For the huge number of

users and their heterogeneous demand, acquiring an optimal clustering solution of

(4.4) and (4.6) with minimum latency and better link efficiency is essential for the



Chapter 4. Admission Control with Multi-Objective Optimisation 84

Algorithm 6: Service signalling over clustering
Input: Chose sτ clustered service demand, sτ ∈ S_Listκ, where,

S_Listκ = {s1, s2, s3, · · · , sRs}, Service_Listκ =Reject_Listκ = ∅.

Output: Service_Listκ ̸= ∅ & |Reject_Listκ| ≥ 0.

begin

for (i = 0, i < S_Listκ.length, i ++) do

sτ ←− S_Listκ[i]

Assign a G_id to S_Listκ[i] users

if (Check user privileges w.r.t. sτ matches) then
Add G_id of the cluster users of sτ demand in Service_Listκ[i] of

edge.

else
sub-cluster sτ users into SS_Listκ w.r.t. possible cluster service

response.

for (j = 1, j < SS_Listκ.length, j ++) do

ssτ ←− SS_Listκ[j]

Assign a G_id to SS_Listκ[j] users

if (check ssτ of each associated user) then
Add G_id of the cluster users of ssτ demand in

Service_Listκ[i] of edge.

else
Add G_id of the cluster users of ssτ demand in

Reject_Listκ[i] of edge.

end

end

end

end

Send Service_Listκ & Reject_Listκ towards edge core NFs for admission

control.

end
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edge network. However, simultaneously acquiring an optimal solution of (4.4) and

(4.6) is an NP-hard problem. This is because to acquire link efficiency, if the number

of clusters is reduced, latency would also increase due to the increasing number of

requests within the cluster. However, (4.4) and (4.6) show convexity in behaviour

to acquire global minima during optimisation. Thus, a basic but adequate optimisa-

tion method called the Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been

adopted in this work. By NSGA-II, each of the clusters belonging to set N would

have an appropriate genetic representation on the mean rth resource demand. On

each cluster k-mean resource demand, U total number of users are scattered into N

number of clusters. The similarity index, denoted as δ, among users of a cluster is

acquired by the ranking-based approach. The main objective is to minimise mean

latency, T(N ), in N number of clusters with respect to the rth resource allocation.

The latency experienced can be obtained by obtaining each cluster latency from its

associated users acquired resource r, such as:

∆n =
Un

∑
u=1

γ(u,r)

Υ(r)
− δn

Un

∑
u=1

γ(u,r)

Υ(r)
, (4.7)

where, δn = [0, 1] for cluster n. Now, the mean latency T(N ) on N optimal clusters

is:

T(N ) =
1
N

N

∑
n=1

∆n . (4.8)

Resource demand of users of the nth cluster would be multiplexed into an ag-

gregate resource demand, γn, in the MAC layer. Now, along with a brief header for

associated user identification, the MAC layer would send the frame to the physical

layer for transmission (ETSI, 2020). In the core network, the received MAC layer

frame with the optimal number of clusters and their aggregate resource demand

would be placed onto the resource list, denoted as R_Listκ for admission control

and resource allocation by the eAMF and eNSSF.

4.2.2.3 Admission Control and Resource Allocation

In the core network, each γn resource demand belonging to the R_Listκ would be

assessed with respect to the available edge capacity, denoted as Υe, for cluster user

admission control and resource allocation by the eAMF and eNSSF, as illustrated
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in Algorithm 7. If γn demand is within the guaranteed edge QoE bounds, the as-

sociated clustered users would be added to the admission queue, represented as

Admit_Listκ, of κth application. Otherwise, the nth cluster users will go through

sub-clustering with regards to the edge available capacity. Hence, the subcluster

aggregate demand, γγn, would be populated onto the RR_Listκ. Hereafter, γγn

would be assessed, and the user would be admitted into Admit_Listκ for resource

allocation. Otherwise, the subclustered users placed in O f f load_List would be of-

floaded to the neighbouring edge for resource allocation. Now, the admitted user

list would be delivered to the eSMF, eSGW/ePGW, and eUPF for the establishment

of a connection, selection of gateway and data transmission.

From Admit_Listκ, each cluster demand would be executed locally or offloaded

to a neighbouring edge node. The unidirectional E2E latency, represented as Tee, is

computed as the sum of transmission time (T(tx) =
βγ

B ), queuing time (T(qu) = ∆),

and execution time (T(ex) =
cγn

C(exe)
) of each edge node (Emara, Filippou, and Sabella,

2018). C(exe) is the available computation capacity (CPU cycles per second) of the

edge node. cγn determines the required computational capacity of γn demand. ∆

determines the average user queuing latency in a cluster. βγ and B are the corre-

sponding data size in bits and available data rate, respectively, in bits per second.

Tee = ωe
(
Te
(qu) + Te

(ex) + Te
(tx)
)

, (4.9)

whereby, the admission index ω would be set to 1 if the task had been admitted to the

edge node for further operations, otherwise zero. The degree of network resource

utilisation represents fairness in resource allocation among users admitted into the

network. Throughput, denoted as η(u), acquired by the uth user, is a product of

the tolerable latency probability (pTee ) and resource allocation probability (pr). Thus,

fairness of resource allocation among set U users, by Jain’s fairness equation (Jain,

Durresi, and Babic, 1999), is obtained as:

Fη =
(∑u∈U η(u))2

U ×∑u∈U (η(u))2 . (4.10)
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Algorithm 7: Admission control with clustering and optimisation
Initialisation: BuildR_Listκ = {γ1, γ2, . . . , γN} via K-mean and
Ranking-based clustering. Chose γn as a kth application nth cluster
demand (γn ∈ R_Listκ), Υe ̸= 0, Admit_Listκ = 0.

for (i = 0, i < R_Listκ.length, i ++) do
γn ←− R_Listκ[i]
Assign a group ID toR_Listκ[i] users
if (γn ≤ Υe) then

Add the cluster users of γn demand in Admit_Listκ[i] of edge.
Update Υe.
Compute ∆ of cluster n
Compute Cup(obs_sig) with cluster n

else
sub-cluster γn users intoRR_Listκ w.r.t. Υe

for (j = 1, j < RR_Listκ.length, j ++) do
γγn ←− RR_Listκ[j]
Assign a sub-group ID toRR_Listκ[i] users
if (γγn ≤ Υe) then

Add the subcluster users of γγn demand in Admit_Listκ[i] of
edge.

Update Υe.
Compute ∆ of cluster n
Compute Cup(obs_sig) with cluster n

else
Add the subcluster users of γγn demand in O f f load_List[i] for
offloading to the neighbouring edge network

end

end

end

end
Find opt. T(N ) and Cup(obs_sig) via NSGA-II.
Send Admit_Listκ towards edge core NFs.
Send offload demands to the neighbouring edges from O f f load_List.
Compute Tee and Fη over U .
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4.2.3 Performance Analysis and Results

For evaluation of the proposed model’s performance, a set of analytical results has

been presented in this section. The parameters considered for the numerical analysis

in MatLab are U = [500, 104], Ce = 32 GB, Cup = 500 MHz, γMTC = [0.064, 1] Mb/s,

γURL = [1, 5] Mb/s and γMBB = [25, 100] Mb/s, respectively (as obtained from

GSMA, 2019). The results obtained from the proposed model are compared with the

results of several alternative approaches from (Trivisonno et al., 2018; Hung, Hsieh,

and Wang, 2017; Xiang et al., 2019 and Jia et al., 2018).

4.2.3.1 Impact of Clustering on Latency: Figure 4.3 determines the mean uplink

latency measurements for various traffic densities. In this model, the results are ac-

quired through mathematical analysis and compared with hash-based (Hung, Hsieh,

and Wang, 2017), and joint network slicing and mobile edge computing (JSNC) (Xi-

ang et al., 2019) models. At the beginning of the results, it can be seen that the

achieved latency, as obtained from (4.9), is low due to a lower traffic load in each ap-

proach. However, the achieved latency increases with traffic load in all approaches,

and their performance gain in terms of acquired latencies also varies. The achieved

uplink latency is 1.3 ms at demand Ue = 2500, which is significantly lower than that

of JSNC (i.e. 2.2 ms) and hash-based model ( i.e. 2.5 ms). This noticeable difference

in acquired latency compared to existing models is due to the proposed k-mean-

and ranking-based clustering approach for user admission and resource allocation.

The proposed approach effectively reduces the signalling overheads on the edge ca-

pacity in a dense network and causes relatively low signalling latency. However,

the existing models uses the concept of offloading on the neighbouring edges with

least latency, as explained earlier. Thus, the k-mean- and ranking-based clustering

approach in the proposed model results in better resource management and utilisa-

tion.

4.2.3.2 Impact of Clustering on Capacity: Figure 4.4 shows the achieved link effi-

ciency in terms of bandwidth utilisation at the given traffic density. It can be ob-

served that the achieved link efficiency obtained from (4.5) in the proposed model

is approximately 95% at full load (i.e. U = 104), which is markedly higher than that
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FIGURE 4.3: latency measurements on varying traffic density,
γMTC = [0.064, 1] Mb/s, γURL = [1, 5] Mb/s and γMBB = [25, 100]

Mb/s.

of the existing model, 5G-mIoT, as given in (Trivisonno et al., 2018). 5G-mIoT em-

ployed a random approach for clustering the requests into various physical device

classes based on their arrival time and associated base station. The achieved gain in

terms of link utilisation efficiency in the proposed model is a result of the k-mean

and ranking-based clustering approach, along with the applied optimisation. It is

also seen that the proposed clustering approach would save more resources in the

case of heavy traffic density compared to lower density on the network. The rea-

son behind this saving is the maximum number of acceptable requests in a cluster

that is acquired from optimisation. Thus, if more requests are within a cluster, more

resources would be saved. The number of requests in a cluster is obtained from op-

timisation; therefore, the size of the cluster would not be affected by traffic density.

The achieved gain of the proposed model on 5G-mIoT is 19% at U = 103 and 24% at

U = 104. Hence, the proposed clustering approach would utilise the link efficiently

by minimising the flow of redundant signalling into the network core in a dense

environment.

4.2.3.3 Impact of Clustering on Admission Control: Figure 4.5 explains the user

admission with and without clustering at various traffic loads. Clustered users are

admitted into the network in order with respect to their tolerable latency. Applica-

tion users with higher priority due to latency sensitivity have a preference over other
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FIGURE 4.4: Computation of link efficiency due to varying traffic den-
sity, Cup(sig) = 100 MHz, ssig = 0.002 MB/s, and rsig = 0.006 MB/s.

application users for admission into the edge network. It can be seen that the admis-

sion efficiency obtained by clustered users is noticeable on the entire range of U (i.e.

U = [1000, 3000]). The acquired admission efficiency is due to optimal resource util-

isation, which reduces latency and congestion in the network to admit more users.

However, user admission without clustering would be lower in each case, due to re-

dundancy in signalling and congestion. In particular, a massive volume of demand

resource scarcity in the edge network would create competition for admission and

resource allocation. This results in users being offloaded onto the neighbouring edge

network or backed off. Hence, in the case of massive traffic demand, the clustering

approach guarantees fewer or even zero user clusters being offloaded from the edge

to the neighbouring edges, subject to the availability of resources and latency con-

sideration.

4.2.3.4 Impact of Clustering on Resource Utilisation: Figure 4.6 illustrates the fair-

ness in resource allocation obtained from (4.10) versus time. A remarkable difference

can be seen in the resource allocation of the proposed model compared to its coun-

terparts (i.e. Bankruptcy Game (BG), Equal Ratio (EQ), and Traffic Proportion (TP)

(Jia et al., 2018). The resource allocation index by the proposed model is approxi-

mately 1 compared to that of BG, EQ and TP, with their fairness indexes hovering

around 0.99, 0.92, and 0.91. In Jia et al., 2018) approach, user groups are created for

admission to the network based on the Lloyd Shapley approach. In this work, a user

would be a part of a group, if the user adds more benefits to the slice. However, a
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greedy-based admission control strategy may not always be optimal. Such a policy

makes the greedy decision on the spot to achieve the objective, such as increasing

the admitted requests to earn more revenue from the network but also creates a lot

of congestion due to signaling redundancy. The achieved fairness in the proposed

E-RMAC model is by the admission of edge users in the form of clusters over their

guaranteed or desired demand. Moreover, throughput is greater, due to small or

no communication overheads on the link, which enhances the fairness index. Thus,

upon arrival of the clustered request, the efficient resource allocation among clus-

tered users leads to maximised resource utilisation, along with enhanced admission

gain.
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FIGURE 4.6: Resource allocation fairness on varying traffic density,
U = [500, 2500].
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To summarise, the k-mean- and ranking-based clustering approach, along with

optimisation, not only reduces signalling redundancy in the access and core net-

works but can also enhance admission gain and resource utilisation in future net-

works. Thus, it is expected that the proposed model will be a crucial part of future

networks for traffic and network management. Similarly, in the case of a multi-

operator environment, a novel forecasting and fuzzy-logic-based admission control

and resource allocation model for O-RAN is presented in the following section.

4.3 Forecasting and Fuzzy-logic-based Admission Control (FAC)

Model

The adaptive nature of 5G technology presents numerous opportunities to network

operators to enhance system capacity and provide more efficient radio resource util-

isation. This adaptivity is acquired partly by recent advancements in NFV, network

slicing, and the coexistence of multiple RATs (Tseliou et al., 2016). One of the princi-

pal incentives behind redesigning cellular networks is to serve a plethora of devices

with different requirements. For enhancing system capacity, numerous techniques

are available, such as the use of ultra-dense small cell distribution (Habibi et al.,

2019), millimetre waves (mmWave) (Busari et al., 2017; Wang et al., 2018; Uwaechia

and Mahyuddin, 2020), new radio (NR) (Richart et al., 2016; Memisoglu et al., 2019;

Camps Mur et al., 2020), and intelligent cognitive radio (Amjad, Rehmani, and Mao,

2018; Wang et al., 2019; Yu, Lin, and Chen, 2019; Ahmad et al., 2020). However,

to guarantee a seamless multi-operator orchestration, limited emphasis is seen in

the literature on the interpolation of current standards with existing ones. Such a

seamless ecosystem is essential to provide efficient radio resource utilisation and

enhanced QoE (Andrews et al., 2014; 3GPP, 2017).

The coexistence and cooperation of several heterogeneous RATs provides better

performance through supporting higher data rates, efficiently accumulating system

capacity, and reducing latency and packet loss. From the implementation perspec-

tive, network operators usually use existing network infrastructure to serve voice

calling and Web browsing applications. This existing network infrastructure offers

satisfactory services to conventional applications. Additionally, whenever users are
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outside 5G coverage, network operators expect that the availability of legacy RATs is

essential to provide seamless end-user services (Banchs et al., 2015; Lee et al., 2018;

Camps Mur et al., 2020). Thus, the coexistence of heterogeneous technologies is be-

coming the dominant feature of the current and future cellular wireless generations.

In this respect, the novel concept of open RAN (also known as O-RAN) could be con-

sidered a complementary option to the new 5G RATs (Alliance, 2018; Gavrilovska,

Rakovic, and Denkovski, 2020).

The tenant-based approach for network selection is a frequently used mechanism

for providing heterogeneous RAT services (3GPP, 2012; Aryafar et al., 2013; 3GPP,

2013a; 3GPP, 2013b; Tseliou et al., 2016). The best RAT selection by the tenant from

an available set creates latency. Moreover, this selection leads to network congestion,

particularly when a large number of devices request access to the network. The in-

efficient admission control saturates the network, which is impractical for providing

real-time services with stringent QoE demand (Bouali, Moessner, and Fitch, 2016;

Yu, Lin, and Chen, 2019). Ineffective resource allocation and utilisation also have a

significant impact on network QoS. In such situations, having an efficient model for

the tenant to select the best access network from the available heterogeneous RATs

remain an open issue. Therefore, in this work, a forecasting and admission control

(aka. FAC) model is proposed to support the presented federated O-RAN architec-

ture. This model has been built on dynamic traffic demand and expanded by particle

filtering, followed by network selection using NSGA-II fuzzy-logic optimisation to

address the challenges mentioned above.

The presented federated O-RAN is an extension of the novel O-RAN architec-

ture. A federation controller is proposed for the O-RAN architecture to achieve the

objectives of FAC model autonomously. The controller operates as a switch for se-

lecting the optimal network from the available set of heterogeneous RATs based on

the various heterogeneous networks, as well as user demand characteristics. These

characteristics include available network bandwidth, latency sensitivity of the re-

quested service, packet loss, required data rate, and signal strength. Accordingly,

the following major contributions of the presented research are:
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• A novel federation model known as forecasting and admission control (aka.

FAC) model is proposed for tenant-aware network selection and configuration.

This model features a dynamic demand-estimation scheme embedded with

fuzzy-logic-based optimisation for optimal network selection.

• Two algorithms for network selection and admission control are proposed, in

which a multivariate service allocation priority factor is established for admis-

sion queuing. On attainment of optimal admission, a service profile is also

build for service monitoring.

• Performance of the proposed model is compared analytically with various

state-of-the-art schemes for admission control and resource allocation to show

how FAC is more efficient at providing better network QoS and user QoE.

4.3.1 Related work

5G promises support for service heterogeneity, on-demand service deployment, and

coordination among various access network technologies. In recent years, several

global research groups have undertaken work on integrating various heterogeneous

technologies to provide more agile services to end-users. For example, 3GPP de-

scribes dual connectivity between 4G LTE and 5G NR in TR 38.804 Release 14. Sim-

ilarly, 3GPP TR 37.900 Release 15 explains the deployment architecture for multiple

RAT in a network. Radio frequency requirements were also identified in release 15

for implementing the Multi-Standard Radio (MSR) Base Station (3GPP, 2012; 3GPP,

2013a; 3GPP, 2013b; 3GPP, 2017; 3GPP, 2018a). The xRAN forum is another novel

effort, which is an open-source alternative to the conventional RAN architecture.

xRAN provides a solution by separating the data and control planes of network

devices and opening intelligent interfaces among various RAN building blocks (Fo-

rum, 2016). Recently, a novel architecture called open radio access network (or O-

RAN, aka V-RAN) has been proposed with the interoperability of various networks

as its core principle. O-RAN is an emerging technology that incorporates virtual-

isation and intelligence in networks. One such example is the OpenRAN project



Chapter 4. Admission Control with Multi-Objective Optimisation 95

by Telecom Infra, a software-driven architecture that evolved from Cloud RAN (C-

RAN). It provides a solution based on the concepts of SDN and openness of general-

purpose hardware (Wang, Roy, and Kelly, 2019).

The C-RAN Alliance and the xRAN forum merged into an O-RAN in 2018 to

support the evolution of 5G and beyond networks (Alliance, 2018). O-RAN is a

multi-vendor and interoperable technology that eliminates dependencies on a par-

ticular network deployment from scratch. This interoperable technology opens pro-

tocols and interfaces between various heterogeneous network components to incor-

porate intelligence into RAN that supports different deployment scenarios. More

than 160 well-known contributors from small to large size companies, academic in-

stitutions, vendors, and network operators are participating in the standardisation

of this technology (e.g. Nokia, Intel, Hewlett Packard Enterprise, Vodafone) (Nokia,

2020; Gavrilovska, Rakovic, and Denkovski, 2020; Niknam et al., 2020). In this the-

sis, the presented research work continues this trend by introducing a federation

layer within an O-RAN architecture to enable dynamic traffic forecasting, efficient

admission control, and service monitoring.

Along with efficient integration of multiple access technologies, the prediction

of future network demand (using efficient forecasting techniques) is among opera-

tors’ main challenges. To cope with volatile demand, network operators strive to

make resource management and orchestration processes highly automated. To re-

alise this, Sciancalepore et al. proposed a traffic-forecasting and slice-scheduling

approach that employs the concepts of the Holt–Winters theory for admission con-

trol in 5G networks (Sciancalepore et al., 2017). To solve the geometric knapsack

problem, two low-complexity algorithms were developed by the authors that en-

sure optimal slice admission and better QoE. Moreover, the authors proposed en-

hancements to their work for user mobility analysis on best-effort and guaranteed

traffic, as given in (Sciancalepore, Costa-Perez, and Banchs, 2019). In this work, the

signalling-based network slicing broker had been utilised for cellular network ca-

pacity forecasting. For an efficient transportation management system, Raikwar et

al. also used the Holt–Winters method for predicting vehicular traffic demand in

short- and long-term traffic windows (Raikwar et al., 2017). Tseliou et al. proposed

the Monte Carlo–based traffic-forecasting model for on-demand resource allocation
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TABLE 4.2: Table on existing research

Subject Authors & Publications Description
Support
for hetero-
geneous
connectiv-
ity

3GPP TR 23.234 (R-12), 38.804
(R-14), and 37.900 (R-15) (3GPP,
2012; 3GPP, 2017; 3GPP, 2018a) .

3GPP worked on interworking of cel-
lular network and WLAN, dual con-
nectivity of cellular users with 4G LTE
and 5G NR, and Multi-RAT deploy-
ment architecture, as given in releases
12, 14 and 15.

Telecom Infra (Wang, Roy, and
Kelly, 2019), xRAN forum (Fo-
rum, 2016), O-RAN Alliance (Al-
liance, 2018), Open RAN tech-
nical report (Techplayon, 2019;
Wireless, 2020; Nokia, 2020)
Gavrilovska et al. (Gavrilovska,
Rakovic, and Denkovski, 2020)
and Niknam et al. (Niknam et
al., 2020) .

O-RAN is a multi-vendor, interopera-
ble product with neutral architecture
to support various access technolo-
gies. O-RAN intelligently opens pro-
tocols and interfaces among various
RAN components to integrate vari-
ous operators’ networks and supports
different deployment scenarios with
lower time to market and cost.

Demand
Forecasting

Sciancalepore et al. (Sciancale-
pore et al., 2017; Sciancalepore,
Costa-Perez, and Banchs, 2019),
and Raikwar et al. (Raikwar et
al., 2017) .

Techniques based on Holt–Winters
theory are proposed by the authors
for long- and short-term traffic de-
mand forecasting to ensure efficient
admission control and resource man-
agement in cellular networks.

Tseliou et al. (Tseliou et al.,
2016), Dudek et al. (Dudek,
2016; Dudek, 2019), and Hippert
et al. (Hippert, Pedreira, and
Souza, 2001) .

The authors implemented Monte
Carlo–based prediction models for
on-demand resource allocation in
cellular and neural networks.

Narmanlioglu et al. (Narman-
lioglu et al., 2017), Miao et al.
(Miao et al., 2016), and Zhang et
al. (Zhang et al., 2017) .

A significant amount of work based
on Bayesian techniques is presented
by the authors to predict the num-
ber of active users and their distribu-
tion within the cellular network for lo-
calisation and resource allocation over
handover.

Madan et al. (Madan and
Mangipudi, 2018), and Monteil
et al. in (Monteil et al., 2020)

The authors implemented ARIMA
RNN, DNN, and LSTM based ap-
proach for network traffic forecasting.

Fuzzy-
logic-based
network se-
lection and
resource
allocation

Inaba et al. (Inaba et al., 2015),
Bouali et al. (Bouali, Moess-
ner, and Fitch, 2016), Goudarzi
et al. (Goudarzi et al., 2019), and
Kaloxylos et al. (Kaloxylos et al.,
2014) .

The authors implemented the fuzzy-
logic-based approach in their pro-
posed hybrid model for efficient ac-
cess network selection among hetero-
geneous networks.

Khan et al. (Khan et al., 2019),
Zeng et al. (Zeng et al., 2019),
silva et al. (Silva et al., 2018),
and Shrimali et al. (Shrimali,
Bhadka, and Patel, 2018) .

The authors adopted fuzzy-logic and
multi-criterion optimisation schemes,
or algorithms such as a genetic algo-
rithm, to propose their model for re-
source allocation in 5G cellular and ve-
hicular networks.
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to tenants in LTE networks. In this work, the authors integrated a multi-tenant slic-

ing capacity broker into the 3GPP reference architecture for extracting short- and

long-term variations in traffic patterns (Tseliou et al., 2016). A few other models us-

ing the Monte Carlo approach for short-term forecasting can be found in (Hippert,

Pedreira, and Souza, 2001; Dudek, 2016; Dudek, 2019). To ensure efficient resource

allocation, Narmanlioglu et al. proposed a Bayesian technique–based forecasting

model to predict the active number of users in an LTE network (Narmanlioglu et

al., 2017). Miao et al. proposed a multi-spatio-temporal model for forecasting cellu-

lar user traffic (Miao et al., 2016). Based on the Bayesian model and Markov chain

Monte Carlo (MCMC) techniques, the authors in (Zhang et al., 2017) proposed a

hybrid forecasting model to predict traffic distribution in a cellular network. Holt–

Winters and Bayesian are simple yet work well over short time series in a linear

system using prior information and assumptions about the user. These are basic

exponential smoothing techniques. Similarly, Monte Carlo–based forecasting tech-

niques rely on data from previous instances (Raza and Khosravi, 2015). However,

these techniques are unsuitable for forecasting future demand in dense networks,

especially in cases where there is limited or no prior information about network ca-

pacity and user demand.

The suggested method in (Madan and Mangipudi, 2018) decompose the network

traffic into linear and non-linear components for forecasting. A discrete wavelet

transformation is used by the authors for network traffic decomposition. After that,

the Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Net-

work (RNN) models are applied for forecasting the linear and non-linear compo-

nents. The final forecasts are acquired by averaging the forecasts of both compo-

nents. Similarly, the authors in (Monteil et al., 2020) proposed a data-driven fore-

casting approach using long short-term memory (LSTM) and deep neural network

(DNN) for resource reservation in a sliced 5G network. In this work, the authors

employed ARIMA as a baseline model. In long time series data forecasting , ARIMA

and LSTM also proved their efficiency by having less average error in actual and

forecasted data. ARIMA uses linear regressions technique for forecasting the de-

mand. This is because ARIMA assumes each demand trend to be constant over

time. Moreover, a long historical horizon is necessary to run ARIMA on a particular
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problem. Running ARIMA, LSTM and DNN on a wide dataset are computation-

ally expensive (Siami-Namini, Tavakoli, and Namin, 2018). Therefore, they are not

suitable to solve the problems of wireless communication where latency matters. In

this work, a hybrid Monte Carlo–based particle filtering technique have been imple-

mented to predict future network traffic demand. This is because particle filtering

technology has proved its superiority due to its non-dependency on previous data

samples in non-Gaussian and nonlinear systems. Therefore, its multi-modal pro-

cessing capability makes it suitable for a wide range of communication applications.

Fuzzy-logic optimisation is the most effective approach to dealing with informa-

tion scarcity and uncertainties in available information about users. A significant

amount of research can be found on fuzzy-logic optimisation. Bouali et al. im-

plemented a fuzzy multiple-attribute decision-making (MADM) approach in their

work to select the best RAT on the network’s defined policies (Bouali, Moessner,

and Fitch, 2016). Goudarzi et al. proposed a multi-point-algorithm-based hybrid

model for the most suitable RAT selection from available heterogeneous networks.

This model implements biogeography-based optimisation on probabilities obtained

from a Markov decision process for RAT selection (Goudarzi et al., 2019). Kaloxy-

los et al. implemented a fuzzy-logic approach for an efficient RAT selection be-

tween (H)eNBs and Wi-Fi APs (Kaloxylos et al., 2014). This scheme addresses static

and low-mobility users only. A fuzzy call admission control model is proposed by

the authors in (Inaba et al., 2015) for wireless multimedia networks. Similarly, a

hybrid fuzzy-logic-based genetic algorithm (H-FLGA) is proposed by the authors

for resource allocation in 5G VANETs (Khan et al., 2019). The authors in (Zeng et

al., 2019) proposed a fuzzy-logic-based multi-criterion model for resource alloca-

tion in the 5G NOMA system. Their proposed resource allocation algorithms are

"serve channel-gain-based subchannel allocation" (denoted as SCG-SA) and "low-

complexity, fuzzy-logic user-ranking-order-based joint resource allocation" (denoted

as FLURO-JRA). Likewise, Silva et al. proposed a fuzzy-logic-based self-tuning

model for resource allocation in dense cells (Silva et al., 2018). This model compared

received signal strength with the threshold derived from the signal power, user ve-

locity, and channel quality. In another work, a multi-objective optimisation model

is proposed by Shrimali et al. in (Shrimali, Bhadka, and Patel, 2018) for resource
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allocation in cloud networks. This model utilises the concepts of fuzzy logic to gen-

erate coefficients on the defined multiple objectives. In this work, the implemented

genetic algorithm uses these coefficients to generate Pareto optimal solutions. A

bankruptcy game-based resource allocation algorithm for 5G Cloud-RAN slicing is

proposed by the authors in (Jia et al., 2018). In this approach, user groups are created

for admission to the network based on the Lloyd Shapley approach. In this work, a

user would be a part of a group, if the user adds more benefits to the slice. However,

a greedy-based admission control strategy may not always be optimal. Such a pol-

icy makes the greedy decision on the spot to achieve the objective, such as increasing

the admitted requests to earn more revenue from the network but also creates a lot

of congestion due to signaling redundancy. Moreover, equal ratio strategy (EO) and

traffic proportion (TP) approaches are employed by the authors as a benchmark in

this work. The equal ratio strategy means resources are allocated equally to differ-

ent slices. This result in over and under resource utilisation in the network on fre-

quently varying demand. The traffic proportion strategy means that resources are

allocated to different slices in proportion according to their random requirements.

These approaches degrade the network QoS through inefficient resource allocation.

An online auction-based resource allocation model for 5G networks is proposed in

(Liang et al., 2019). In this model, admission control is based on the user’s profile

and their bidding. The greedy and first-come-first-out approaches have been used

by the authors to maximize the network’s revenue. However, more users’ bidding

as compared to available resources in the network would drop the overall network

QoS and user satisfaction from the network.

The existing research mainly considers only a few user-application specific re-

quirements or network-specific statistical characteristics for best network selection

and resource allocation. However, today’s network is dynamic and more complex,

due to numerous heterogeneous applications and their requirements, as well as the

network’s uncertain circumstances, especially in the case of coexistence of various

heterogeneous RATs or O-RAN. In such scenarios, information about how uncertain

the application requirements and network circumstances can be is crucial for fuzzy-

logic operations. This is because higher uncertainty with regards to requirements
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and availability leads to inappropriate network selection, inefficient resource alloca-

tion, and agreed QoE degradation (Ghosh et al., 1998). The proposed model applies

NSGA-II, coupled with the fuzzy-logic approach, to provide an optimal network se-

lection based on user-forecasted demand, network capacity, and fitness policies to

ensure efficient resource allocation and network management.

4.3.2 FAC System Model

To efficiently manage and serve a massive amount of heterogeneous traffic from

the deployed multiple access networks is still an open issue (Gupta and Jha, 2015;

Kaloxylos, 2018). A novel forecasting and admission control (FAC) model for feder-

ated O-RAN is presented in this section. In this model, a federation layer is proposed

to enhance the features of O-RAN , as illustrated in Figure 4.7. The federation con-

troller of the proposed layer operates as a switch for selecting an optimal network

from the available heterogeneous networks with respect to user-application-specific

demand, as discussed in detail in the following subsections.

4.3.2.1 Logical network architecture of federated O-RAN

O-RAN is designed with openness and intelligence. It is built by desegregating

three key components (i.e. the Radio Unit (RU), the Distributed Unit (DU), and the

Centralised Control Unit (CU)) of the traditional RAN by intelligently decoupling

their virtualised software and hardware functionalities (Techplayon, 2019; Wireless,

2020). The establishment of open-standard protocols and interfaces between soft-

ware and hardware components of the RAN eliminates vendor dependency on tra-

ditional networks. Moreover, O-RAN facilitates a wide range of heterogeneous ser-

vices by transforming existing business models into a new paradigm, or launching

new business models with a shorter time to market and lower cost (Alliance, 2018).

As illustrated in Figure 4.7, O-RAN consists of four functional building blocks:

(1) Orchestration and Automation, (2) RAN Intelligent Controller (RIC) near real time, (3)

Multi-RAT Control Unit protocol stack, and (4) Distributed Unit (DU) and Remote Radio

Unit (RRU) (Techplayon, 2019). In contrast to the general RAN, O-RAN near-real-

time and non-real-time controllers are decoupled due to strict latency requirements.

In O-RAN, these controllers are placed as isolated layers and connected through an
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A1 interface. An orchestration and automation function supervises non-real-time

services such as configuration, network design, and policy management. This func-

tion also analyses the incoming traffic on the access network to model the training

data for run-time executions by RIC near-real-time controller. The trained model,

RAN database, and intelligent radio resource management unit in RIC near-real-

time controller provide a reliable and robust execution platform for third-party ap-

plications.

Federa�on Layer

Trained Model

Management unit

(QoS, Mobility, 

interference, 

Connec�on)

3rd party applica�on

● Service policies and billing

● Network and resource selec�on

● Scheduling and configura�on

Network Selec�on &

   Configura�on Func�on (NSCF)

● MNO’s/ MVNO’s inventory and resource managment

● MNO’s/ MVNO’s Services (2G, 3G, 4G, 5G)

● Tenant demand analysis and predic�on

Demand & 

Capacity Analyzer (DCA)

QoS/QoE & Traffic

Flow Monitoring (QTFM)

● Connec�on monitoring

● Traffic monitoring and managment

● QoS/QoE monitoring

RAN Distribu�on

Unit (DU)

Applica�on Layer

A1

Inventory
RAN Intelligent Controller (RIC)

 Non-Real TimeDesign Configura�onPolicy

Mul� RAT Control Unit (CU)

Higher Layer Protocol Stack
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PHY Low
Radio Resource

UnitOpen Fronthaul

E2 E2 Antena

FIGURE 4.7: E2E network operations and management in federated
O-RAN via FAC model

The main purpose of the proposed model is to efficiently utilise network re-

sources through optimal network selection and user admission. The controller of

the federation layer has three main functions: (1) Demand and Capacity Analyser

(DCA), (2) Network Selection and Configuration Function (NSCF), and (3) QoS/QoE

and Traffic Flow Monitoring (QTFM). The DCA analyses incoming traffic and avail-

able network capacity for demand forecasting to ensure optimal network selection,

admission control, and resource allocation. The DCA also holds the MVNO re-

source inventory, which contains MVNO supporting services, content, and billing

information. Based on forecasted demand and the set of available networks and

resources, the NSCF selects an optimal network through fuzzy-logic optimisation



Chapter 4. Admission Control with Multi-Objective Optimisation 102

for user admission and resource allocation. In fuzzy-logic optimisation, network

selection relies on the suitability-factor derived from multiple decision parameters.

On defined policies, this factor ensures that network QoS and user QoE continue to

meet the agreed level. The selected MVNO receives service requests, chooses a gate-

way through SGW/PGW, and establishes an E2E connection through SMF for data

transmission and management. The next step is to continuously monitor the admit-

ted network traffic to ensure the granted QoE is within guaranteed bounds through

efficient resource utilisation. If the allocated resources are over/underutilised and

user-acquired QoE is less than the guaranteed bounds, the QTFM will trigger the

analyser. The purpose of this triggering is to modify the demand predictions after

observing the difference between forecasted and actual demand.

A multi-RAT CU protocol stack is installed on the virtualisation platform to pro-

cess the heterogeneous wireless generation protocols. The DU and RRU functions

of this model are responsible for baseband and Radio Frequency (RF) processing.

These functional units are linked to the RIC near-real-time controller via the E2 in-

terface in the O-RAN (Techplayon, 2019). This novel, vendor-neutral architecture

would enable virtual industries to quickly upgrade their networks or deploy new

networks to support various deployment scenarios and geographies.

4.3.2.2 E2E customised network configuration in federated O-RAN

Novel O-RAN architecture can more efficiently accommodate rising heterogeneous

service demand in future networks than traditional RAN (Nokia, 2020). Therefore,

industry professionals and researchers envisage that O-RAN will be an essential

component of future wireless/cellular networks. O-RAN reduces vendor and op-

erator dependency on conventional network deployment and operates by opening

protocols and interfaces among various building blocks of the access network. Thus,

the coexistence of heterogeneous technologies in O-RAN will facilitate an automated

vendor network with reduced network operational cost and enhanced performance

(Gavrilovska, Rakovic, and Denkovski, 2020).

When a device is turned on, it sends a control signal for E2E network connec-

tivity and configuration to the O-RAN, as shown in Figure 4.8. The CU of the re-

spective virtual access node (i.e. virtual Base Transceiver Station (vBTS), virtual Node B
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FIGURE 4.8: Federated O-RAN architecture illustrating the NFs for
the customised network configuration

(vNB), virtual evolved Node B (veNB), virtual Next Generation Node B (vgNB)) receives

the Service Request and Registration Request of the control signal. Hereafter,

the CU sends the control signal to the unified real-time or non-real-time controller,

based on the requested service sensitivity. The virtual access node requests tenant

information from the corresponding repository in the core network, such as Home

Location Register (HLR) and Unified Data Management (UDM). The tenant’s subscrip-

tion data is sent back and confirms whether or not the tenant is authorised for ser-

vice from the network. After successful authorisation and authentication, tenant

requests will be sent to the real-time O-RAN controller of the federation layer for

admission control and resource allocation by the NSCF. However, tenant admission

to the network would be through the conventional approach in the non-real-time O-

RAN controller. Based on user preferences and demanded service network statistics,

the NSCF selects an optimal network from the service operator list for the requested

service. The optimal networks are in order in the list with regards to the forecasts

generated by the DCA. After that, the federation controller sends the service request

and the session ID to the corresponding NFs in the core to perform customised net-

work configuration. These functions include Mobile Switching Station (MSS), Serving

GPRS Support Node (SGSN), Mobility Management Entity (MME), and Access and Mo-

bility Management Function (AMF). The ID contains the network function instance ad-

dress, where the NAS message terminates (Choi and Park, 2017). Finally, the request

forwards to the respective core entities (i.e. Media Gateway (MGW), Gateway GPRS
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Support Node (GGSN), Serving Gateway/Packet Gateway (SGW/PGW), Session Manage-

ment Function (SMF), user plane function (UPF)) for gateway selection, E2E session es-

tablishment for data or voice communication through DU, and service management

and monitoring through QTFM.

TABLE 4.3: FAC model key symbols and definitions

Symbols & Defini-
tions
U Set of tenants in the network
M Set of MNOs
V Set of MVNOs
S Set of services
S_Op List of service operators on S
N Set of resources
τ Tenant’s forecasted demand
d(n) Aggregate nth resource de-

mand
R(n) Aggregate nth resource allo-

cation
R_Op Service operator’s available

resources
τγ, τh Acceptable tenant resource

bounds
Q(γ),Q(h) Expected tenant QoE bounds
B(γ), B(h) Service network resource

bounds
SQγ

,SQh Network’s guaranteed QoS
bounds

4.3.2.3 Network description

In this work, a network is considered with U number of tenants, denoted as a set

U = {1, 2, . . . , U}, and M number of MNOs, denoted as a set M = {1, 2, . . . , M},

respectively. Each MNO supports up to V total number of MVNOs, represented by

a set V = {1, 2, . . . , V}. Moreover, each MVNO is assumed to have N number of

similar resources, indexed by a set N = {1, 2, . . . , N}. Let’s assumed that each v is

independent and different from other vs associated with the same MNO in terms of

resource capacity, guaranteed network QoS, and billing information, where v ∈ V .

Information such as this is stored in the inventory matrix in the repository of DCA
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by the federation controller and symbolised as P,

P =



v11 v12 v13 · · · v1V

v21 v22 v23 · · · v2V
...

...
. . .

...
...

vM1 vM2 vM3 · · · vMV


, (4.11)

here vij (1×N) is the resource vector, where, i ∈ M and j ∈ V . Each operator

provides services from 2G, 3G, 4G, and 5G, which is represented as a service set

S = {g2, g3, g4, g5}. In addition, these services represent a particular row entry in

the mask matrix G and

G =



g2v11 g2v12 g2v13 · · · g2vMV

g3v11 g3v12 g3v13 · · · g3vMV
...

...
. . .

...
...

g5v11 g5v12 g5v13 · · · g5vMV


. (4.12)

If the operator supports service gı, where gı ∈ S and ı = {2, 3, 4, 5}, then the

entity is determined by 1 in G, otherwise zero. For service provisioning to the ten-

ants with frequently varying demand in latency-sensitive or critical applications, 5G

networks have an additional feature called network slicing. Each 5G network is as-

sumed to have S total number of slices with both homogeneous and heterogeneous

resource capacity from set N . In that case, vij is S× N dimension matrix. This is be-

cause each slice has the potential of resource elasticity to support a varying number

of connectivity requests. DCA holds this matrix for the provisioning of services to

tenants over forecasting and optimal admission control.

4.3.3 Proposed FAC Model Schema

A Forecasting and Admission Control (FAC) model is presented in this section. This

model applies the aforementioned sampling-based forecasting technique to obtain
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optimal network selection through three crucial components of the federation con-

troller. These components are Demand and Capacity Analyser (DCA), Network se-

lection and configuration function (NSCF), and QoS/QoE and Traffic Flow manage-

ment (QTFM), as illustrated in Figure 4.9 and discussed in detail in the following

subsections.

     Demand 
 Measurements

        Demand 
  Observations

Forecasting

     Model

    

Fuzzy logic

   Network 

  Selection

   

QoE based

 Admission

   Control

   Service & Flow 

       Monitoring

        

    

FIGURE 4.9: Systematic diagram of the proposed Forecasting and Ad-
mission Control (FAC) model

4.3.3.1 Forecasting and demand characterisation

In traffic engineering, traffic analysis is the fastest approach to knowing the charac-

teristics of future service demand in advance (Miao et al., 2016). More precise fore-

casting results in maximising user-acquired QoE, network QoS, and resource utilisa-

tion. In this work, a Sequential Monte Carlo (SMC)–based particle filtering technique

has been implemented for forecasting future wireless network demand. DCA iso-

lates tenant demand with respect to specific service requirement from the network

and then observes the actual demand from the service network using the particle

filter for future demand forecasting, as shown in Fig 4.9.

For observation, whenever the uth tenant accesses the network for service s pro-

visioning; where u ∈ U and s ∈ S , it issues a request denoted as dun = [du1, du2, . . . , dun],

where dun ∈ D. The vector dun contains the tenant-demand-specific characteris-

tics. These characteristics include service holding time, physical resources, latency,

priority, and revenue. The role of the controller is to assess the request to acquire
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tenant-specific application characteristics to populate the respective coefficient in

the demand matrix D as a row entry, as shown below:

D =



d11 d12 d13 · · · d1N

d21 d22 d23 · · · d2N
...

...
. . .

...
...

dU1 dU2 dU3 · · · dUN


. (4.13)

After resource allocation to the tenant u for the service s from a particular net-

work, the respective coefficients are populated in the allocation matrix R as a row

entry. Hence, the resource allocation vector can be represented by run = [ru1, ru2, . . . , run],

where run ∈ R and

R =



r11 r12 r13 · · · r1N

r21 r22 r23 · · · r2N
...

...
. . .

...
...

rU1 rU2 rU3 · · · rUN


. (4.14)

Initially, the nth resource demand of the uth tenant, symbolised as d(n), must be

analysed through probability density function (PDF) on the observation time win-

dow, symbolised as tow (from t− tobs to t). Thus, the equation is:

d(n) =
∫ t

t−tobs

f (dn,t) d(dn,t) , (4.15)

where, dn,t ∈ D, and d(n), as known by ground truth demand, is obtained through

Gaussian distribution function, as shown in Figure 4.10. Next, the measured de-

mand, symbolised as z(n), on the ground truth of the previous interval, along with

the measurement noise covariance, symbolised as Υ, in the system is obtained as:

z(n) =
d(n,t−1)

20
+ Υ . (4.16)

In view of required services and network capacity, observation of the allocated

resource, denoted as R, to the tenants on tow can be obtained as

R(n) =
∫ t

t−tobs

f (rn,t) d(rn,t) , (4.17)



Chapter 4. Admission Control with Multi-Objective Optimisation 108

where, R(n) ≤ d(n), R(n) is the observed nth resource allocation and rn,t ∈ R. There-

fore, the initially acquired tenant QoE, symbolised as Q(n), for the nth resource is

obtained by

Q(n) =
R(n)

d(n)
≤ 1. (4.18)

The forecasting model f (·) uses the particle filter estimates, denoted as τ̂, to fore-

cast tenant demand, symbolised as τ, on d(n). Thus, the overall estimates over the

forecasting window tw (from t + 1 to t + f ), (see Figure 4.10), are obtained by

E[τ(n)] =
∫ t+ f

t+1
f (τ̂n,t) dτ̂n,t , (4.19)

where

f (τ̂n,t) =
τ̂t−1

2
+

25τ̂t

1 + τ̂2
t
+ 8 cos (1.2(t− 1)) + ϵ(n) , (4.20)

and, τ̂t−1
2 + 25τ̂t

1+τ̂2
t
+ 8 cos (1.2(t− 1)) provides the estimates from the posterior PDF

(Walters and Ludwig, 1994), and ϵ(n) is the noise covariance in the system. The uth

tenant overall forecasted demand, symbolised as E[⃗τ], on the forecasting window tw

is obtained by E[τ(n)] on setN , where |N | ≥ 1. Accordingly, the estimated measured

value (denoted as ẑ(n)) can be obtained as follows:

ẑ(n) =
f (τ̂n,t)

20
. (4.21)

Based on ẑ(n) from the particle filter and z(n) from demand observation, the com-

puted error, also known as noise covariance and denoted as ϵ(n) (Allen, 1971), in the

system is obtained by

ϵ(n) =

√√√√ 1
t2
w

t+ f

∑
t−t+1

(z(n,t) − ẑ(n,t))2 . (4.22)

This mean-squared error determines the covariance of the observation and esti-

mates. Furthermore, ϵ(n) updates in each iteration until the error in the prediction

converge, where z(n) − ẑ(n) ≈ 0.
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FIGURE 4.10: Long-term resource demand forecasting; U = 1 with
E[ui] = 100 users, |N | = 1, tw = 300 minutes, and τh = [10, 100]

MHz

4.3.3.2 Fuzzy-logic and QoE-based admission control

The main goal of the proposed federation approach is to provide efficient admis-

sion control and resource utilisation in a heterogeneous RAN environment, which is

based on precise tenant demand forecasting to enhance network throughput and

tenant-acquired QoE. To maximise the network throughput and tenant acquired

QoE on the forecasted demand is a NP hard problem. Mathematically, it can be

written as

max Q, η

s.t. B(γ) < τ ≤ B(h) ,

S_Op ̸= 0 ,

(4.23)

Where, τ demand should be within the lowest and highest guaranteed resource

bounds of the service network and the service network list S_Op should not be

empty. Based on the maximum Q and η, the optimised tenant-forecasted demand

matrix, symbolised as Ten, would be constructed for admission control.

Therefore, NSGA-II has been considered in this work to select an optimum net-

work for the tenant upon arrival. NSGA-II is a multi-objective optimisation method
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of quickly obtaining optimal and non-dominated solutions by using an explicit di-

versity preserving mechanism (Deb et al., 2002). The presented optimisation ap-

proach considers tenant QoE and throughput maximisation during network selec-

tion to obtain fair resource allocation and maximum utilisation, as explained in the

following subsections.

Algorithm 8: NSGA-II based optimisation for network selection
Input: Forecasted demand (⃗τ), number of generations (gen), population
size (ρ), evaluation objectives (Q, and η), network resource bounds (B(γ),
B(h)) and B(γ) < τ ≤ B(h).

Output: Optimised Tenu w.r.t. Q and η.
begin

P0(⃗τ1, τ⃗2, . . . , τ⃗ρ) = select τ⃗ from resource bounds (B(γ), B(h)) of networks
from S_Op.

Fo( f⃗1, f⃗2, . . . , f⃗ρ) = evaluate objective (P0(⃗τ1, τ⃗2, . . . , τ⃗ρ)).
Sort P0 w.r.t. F0.
for i = 1→ gen do

Pi,parent (⃗τ1, τ⃗2, . . . , τ⃗ρ) = select (Pi−1(⃗τ1, τ⃗2, . . . , τ⃗ρ)).
Pi,child (⃗τ1, τ⃗2, . . . , τ⃗ρ

2
) = crossover (Pi,parent (⃗τ1, τ⃗2, . . . , τ⃗ρ)).

Pi,child (⃗τ1, τ⃗2, . . . , τ⃗ρ) = Pi,child (⃗τ1, τ⃗2, . . . , τ⃗ρ
2
)+ mutation

(Pi,child (⃗τ1, τ⃗2, . . . , τ⃗ρ
2
)).

Fi,child( f⃗1, f⃗2, . . . , f⃗ρ) = evaluate objective (Pi,child (⃗τ1, τ⃗2, . . . , τ⃗ρ)).
Pi (⃗τ1, τ⃗2, . . . , τ⃗ρ) = sort (Pi,parent + Pi,child) w.r.t. Fi and select optimal ρ

solutions.
end
Tenu = P.
sort S_Op w.r.t. Tenu.

end

A) Network selection based on the fuzzy-logic approach: In this work, the proposed

federation controller deploys the fuzzy-logic-based NSGA-II for optimal network

selection for the tenants, as shown in algorithm 8. The forecasted demand of the uth

tenant, denoted as E[⃗τ], on set N and service-specific network characteristics (i.e.

available bandwidth, packet loss, required data rate, latency, and cost), are provided

to the FLC as inputs for network selection. The lowest and highest guaranteed re-

source bounds, symbolised as {B(γ), B(h)}, respectively, of the corresponding service

network from S_Op are selected for the tenant in view of forecasted demand. The

tenant-acceptable resource demand among {B(γ), B(h)} are represented as a genome
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of size ρ for generation of the initial population, which is denoted as P0. In the

selection criteria, fitness of the resource demand characteristics of the initial popula-

tion is evaluated with respect to objective functions such as tenant-desired QoE and

maximum throughput. The selection process goes through many iterations or gen-

erations (denoted as gen), until convergence to a global optimum. After crossover of

the parent and mutation of the child population, the most suitable statistics among

the service-guaranteed network resource bounds are selected with respect to their

fitness according to the defined objectives. The selected resource demand statistics

(⃗τγ, τ⃗h) are placed in the tenant-forecasted demand matrix, symbolised as Tenu (ρ×k),

where k = 2|N |. Tenu (ρ×k) is arranged in descending order of the tenantQ and η for

provisioning of the service from the selected network from S_Op. This is to present

the corresponding selected network resources with guaranteed QoS to the tenant for

customised network configuration.

Now, the uth tenant is admitted to a particular network from S_Op, subject to

resource availability and provisioning of guaranteed QoS. However, the simultane-

ous access of various heterogeneous tenants to the network creates competition that

leads to congestion in the network. Therefore, a priority-based admission queue has

been generated in this approach for efficient admission control and resource alloca-

tion. Accordingly, a service allocation priority factor of the tenant, denoted as φ, can

be acquired as:

φu = f (κu, ψu, λu, hu) , (4.24)

where, κu determines the requested service type across default classification, ψu rep-

resents generated revenue, λu determines the frequency of uth tenant requests, and

hu determines the uth tenant nth resource utilisation history, where n ∈ N and

|N | = 1. The priority list for tenant admission to the network is arranged in de-

scending order of allocation factor. The tenant with the highest allocation factor is

served first from among all tenants, belonging to set U , by the network.

B) QoE-based admission control: Admission requests are processed in terms of QoE

constraints in each network. Higher tenant satisfaction level from the network rep-

resents efficient admission control, and better network utilisation and revenue max-

imisation. The uth tenant-acquired QoE, symbolised as Q(R), should not go beyond
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the expected QoE bounds, {Q(γ),Q(h)}, where R ≤ τh ≤ τ. Thus, the uth tenant

highest-demanded QoE (Q(h)) on the forecasted demand τ and the acquired QoE

(Q(R)) on the acquired resources R are defined as:

Q(h) = f (τh, βτ, ιτ, φu) , (4.25)

Q(R) = f
(

R, βR, ιR, φu
)

, (4.26)

where, β, ι, and φ are the acceptable user-application-specific packet loss, latency

sensitivity, and priority, respectively. For simplicity, these measures are normalised

for summation in f (·). Likewise, the tenant served with the least-expected QoE,

denoted as Q(γ), during peak hours due to limited resources availability in the net-

work and to minimise the rejection. This occurs due to availability of softness in

tenant QoE demand, such that γ == R. Thus, Q(γ) can be determined as

Q(γ) = f (τγ, βγ, ιγ, φu) . (4.27)

The uth tenant service request arrives in order with respect to φ from the priori-

tised admission queue, symbolised as

A_List = {u1(Q(γ),Q(h)), u2(Q(γ),Q(h)), ...} . (4.28)

Upon arrival of each tenant request, the optimal networks are accessed from the

list built by the service operator, represented as S_Op. For the customised network

configuration, S_Op is arranged according to tenant preferences in descending or-

der. The NSCF assesses each tenant’s desired Q across the network guaranteed QoS

bounds, denoted as SQγ
and SQh , as shown in Algorithm 9. SQγ

and SQh represents

the lower and upper QoS bounds of the network, respectively. Next, the tenant τ

resource demand (either guaranteed or demanded) is checked against network ca-

pacity for resource allocation. The tenant’s resource demand should be less than

the serving network resource capacity. Thus, the tenant-acquired QoE, resource util-

isation, and overall network throughput are obtained to compute the fairness of

resource allocation on set U . Resource allocation fairness (i.e. Fη) of that particular



Chapter 4. Admission Control with Multi-Objective Optimisation 113

service operator network (i.e. Sv) has been stored in the network service profile (i.e.

Ψ_List), along with the tenant-achieved QoE (i.e. Q(R)). This is for the federation

controller to examine the fairness of resource allocation and user satisfaction level of

the serving network. In the case of selected network resource unavailability or un-

satisfied QoS bounds, the next network from S_Op will be examined by the NSCF

for admission control. After admission, the tenant-acquired Q is monitored to en-

sure efficient network performance. In the case of a violation of QoS/QoE bounds,

the user will be dropped from the serving network and reassessed with higher pri-

ority by the NSCF. To summarise, by optimising the forecasted demand and service

network statistics, a customised network is selected, and resources are allocated with

guaranteed QoS bounds to ensure efficient resource utilisation and tenant-acquired

QoE.

Algorithm 9: QoE-based admission control
Input: Service operator list (S_Op), tenant-forecasted demand ({τγ, τh}),
and {τγ, τh} ∈ Tenu, admission queue (A_List).

Output: Ψ_List = {u1(Q(R),Fη ,Sv), . . .}.
for i = 1→A_List.length do

for (j = 1→ S_Op.length) do
Select {SQγ

,SQh} bounds of S_Op(j).
if (SQγ

< Q(τh(i)) ≤ SQh)&&(SQγ
≤ Q(τγ(i)) < SQh) then

R_Op = assign S_Op(j) operator resources.
if (τh(i) ≤ R_Op)||(τγ(i) > R_Op) then

Allocate resources viaR_Op = R_Op− R(i).
Obtain tenant-acquired QoE via
Q(R) =

R(i)
τh(i)

.
Obtain resource utilisation via Ui(R(i)).
Compute throughput via ηi = pR(i)pι(i).
Update Fη by including ith tenant.
Sv = save S_Op(j).
Ψ_List = ui(Q(R),Fη ,Sv).

else
Check j + 1 ∈ S_Op for tenant resource allocation.

end

else
Check j + 1 ∈ S_Op against tenant QoE demand.

end

end

end
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4.3.3.3 Service and flow monitoring

After network selection for the tenant via fuzzy-logic optimisation, the network is

configured with guaranteed QoS for the tenant for respective service provisioning.

After network configuration and establishment of a connection, E2E service flow

should also be monitored to ensure that the tenant’s acquired QoE does not degrade,

and that traffic flow is proportional to network capacity. Thus, proposed a QoS/QoE

and traffic flow monitoring system (QTFM) with the following goals: (1) monitor

flow to ensure the tenant’s acquired QoE is within guaranteed bounds, whereby

Q(γ) represents the least-expected QoE, and Q(h) represents the highest achievable

QoE, (2) provide feedback to the analyser for modification of the forecasted demand

in proportion to the actual demand and utilisation, as described in detail in the fol-

lowing subsections.

A) QoS/QoE monitoring: Continuous service monitoring is essential for network

operators to ensure that network QoS and tenant-acquired QoE remain above the

agreed least-guaranteed bounds, where violation in provisioning of agreed QoE and

QoS can occur. Therefore, the proposed QTEM continuously monitors network QoS

during the duration of service to ensure the tenant’s acquired QoE is within ex-

pected bounds, as shown in Algorithm 10. In the case of violation of the agreed

QoS/QoE bounds, the tenant is dropped from Ψ_List and added to the admission

queue, A_List with higher priority as compensation. Now, the tenant will be re-

assessed by the NSCF for network selection with the change in QoE statistics. The

QTFM will also trigger the forecasting model to modify the demand to improve the

overall network QoS and tenant-acquired QoE. The network service profile, Ψ_List,

would also be updated by the federation controller to maintain the network service

inventory.

B) Forecasted service demand monitoring: Inefficiency in the forecasting process

might over-/under-utilise network resources, leading to inappropriate tenant ad-

mission to the network. This would result in a violation of the agreed QoS/QoE,

due to poor network QoS and tenant QoE (Sciancalepore et al., 2017). Taking into

account the above-mentioned issue, a monitoring procedure is designed to consis-

tently monitor the forecasted and actual demand. This keeps track of the number of

violations, such as inefficient resource utilisation, huge forecasting error or variance,
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Algorithm 10: Service and flow monitoring
Input: Tenant QoE (QRu ), serving network QoS (SQ(h,u)

), service operator list

(S_Op), service profile (Ψ_List).

Output: Updated Ψ_List.

if (QRu > SQ(h,u)
) then

Ψ_List = Ψ_List− u(QRu ,Fη ,Sv).

φu = increase φu.

A_List = A_List + u(Qγ,Qh).

Compute Algo. 9.

Update P via (4.29).

Update τ via (4.30).

else
u ∈ Ψ_List

end

agreement violation and poor QoE. For future forecasting optimisation, the QTFM

provides feedback to the forecasting model, DCA, to update forecasted estimates

using the penalty history function. This is symbolised as P and obtained on tw as

P(n) = exp

(
p(n)

∑u∈U a(u,n)

)
, (4.29)

where, n ∈ N , p(n) = 1 indicates the penalty due to QoE violation on resource

demand n of the uth tenant, otherwise zero. The admission indicator is a = 1 for the

uth tenant due to the acquired resource n from the subscribed operator, respectively.

On the given number of penalties for resource demand n, the forecasted demand

will be updated for future services. Eq. (4.20) is updated by the forecasting modifier,

(denoted as Pϵ), and defined as

f ( ˆ̂τn,t) =
τ̂t−1

2
+

25 τ̂t

1 + τ̂2
t
+ 8 cos (1.2 (t− 1)) + P(n) ϵ(n) , (4.30)

where, τ̂t−1
2 + 25τ̂t

1+τ̂2
t
+ 8 cos (1.2(t− 1)) gives the estimates from the posterior proba-

bility distribution function (Walters and Ludwig, 1994). ϵn is the noise covariance

in the system for adjusting estimates according to actual demand. Unlike the con-

servative setting of the existing forecasting techniques (Holt–Winters, Bayesian, and

Monte Carlo), the penalty function dynamically updates the system, such that no
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agreed QoE and QoS violation could occur. This is due to the adaptability of the

service and flow monitoring feature, which obtains the effective demand from the

forecasted information to release inefficient resources for better utilisation, thus per-

mitting the network operator to accommodate more users.

4.3.4 Performance Evaluation Measures

To evaluate the proposed model, performance evaluation parameters are defined

in this section. The chosen performance metrics include assessment of resources

and network utilisation, resource allocation fairness among tenants, and user satis-

faction. For comparison, the performance evaluation model has been aligned with

relevant work found in existing literature.

4.3.4.1 Resource utilisation: To observe tenant admission by the vth network op-

erator at a given time, t, au is introduced as an admission indicator that takes the

value 1 upon tenant admission to the network, subject to availability of resources

and services, otherwise zero. After successful admission, the nth resource assigned

to tenant u from the service operator resource pool is defined as

Ru = au Ru,n , (4.31)

where Ru ≤ τh. Now the aggregate resources assigned to the tenant set U is obtained

from

∑
u∈U

au Ru,n ≤ R_Op . (4.32)

Aggregate resources should not exceed network capacity. Similar to (Kuo and

Liao, 2008), the uth tenant utility w.r.t. Ru, i.e. symbolised as Uu(Ru) in the proposed

model, is computed as

Uu(Ru) = α eωq , (4.33)

whereby ω is the difference between achieved and desired resources, and q and α

determine the slope and curve of the slope of the utility function, respectively. Now,
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the vth operator network utility can be computed as

Uv = ∑
u∈U

Uu (Ru) . (4.34)

Subsequently, based on Uv, the mean network utility, represented as UNet on set

V andM can be obtained as:

UNet =
1

MV

M

∑
i=1

V

∑
j=1

Uvij . (4.35)

4.3.4.2 Resource allocation fairness: Maximum resource utilisation and tenant-

acquired throughput are crucial in the network to derive maximum revenue. More

throughput determines higher resource allocation fairness and better tenant QoE in

the network (Jiang, Condoluci, and Mahmoodi, 2016). The acquired fairness in ad-

mission control, represented as FA, by Jain’s fairness equation (Jain, Durresi, and

Babic, 1999), is obtained as:

FA =
(∑u∈U au)

2

U ×∑u∈U (au)2 , (4.36)

whereby, a ∈ {0, 1}, subject to the availability of resources and services from the

subscribed operator v network. Likewise, at the time of user admission to the net-

work, resource allocation is also a key factor to be considered. Resource allocation

determines the acquired throughput on the probability of resource utilisation (pR)

within the given latency constraints (pι) at massive tenant demand. Accordingly,

this can be obtained as:

ηu = pR pι . (4.37)

Significantly, the fairness factor in resource allocation, by Jain’s fairness equation

(Jain, Durresi, and Babic, 1999), can be achieved as follows:

Fη =
(∑u∈U ηu)

2

U ×∑u∈U (ηu)2 . (4.38)
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4.3.5 Performance Analysis and Results

For performance evaluation of the proposed model, a simulation environment is de-

veloped in MATLAB software. In this environment, a virtual network is constructed

with different system parameters (as given in GSMA, 2019) to support four heteroge-

neous services belonging to S . Tenants associated with this network are considered

to be within the range U = [5, 330]. The average number of users associated with

the tenant u is E[ui] = 100, as considered in (Sciancalepore et al., 2017) and (Scian-

calepore, Costa-Perez, and Banchs, 2019). Significantly, φ = [1, 5], ι = [10, 200] ms,

β = [10−2, 10−7], R_Op = 500, and τh = [10, 100] MHz are the considered ranges

of priority, latency sensitivity, tenant-service-specific packet loss, available operator

resources, and desired resource demand for each service belong to S , respectively.

Overall demand is normalised for simplicity.

Figure 4.11 to Figure 4.15 determine the performance of the proposed FAC model

in terms of user satisfaction, fairness of resource allocation, and utilisation gain. The

achieved results are compared with Mobile Traffic Forecasting (MTF) (Sciancale-

pore et al., 2017), Reinforcement Learning (RL-NSB) (Sciancalepore, Costa-Perez,

and Banchs, 2019), Online Auction (O-RAN) and Greedy Algorithm (Liang et al.,

2019), and Bankruptcy Game (BG) (Jia et al., 2018), based resource allocation and

admission control models found in the literature and summarised in Table 4.4.

4.3.5.1 Impact of forecasting

As discussed earlier, demand forecasting is essential for network operators for the

sake of efficient network management and traffic engineering. More precise demand

forecasting helps the operator in network planning and resource allocation to the

tenants to ensure better network QoS and tenant QoE. The proposed model also

admits the tenants to a corresponding network based on their forecasted demand.

Thus, how the forecasting impacts tenant-acquired QoE, resource allocation, user

satisfaction, and load distribution has been illustrated in Figure 4.11, 4.12 and 4.13

in the following subsection.

A) Tenant’s QoE and fairness: Figure 4.11 illustrates tenant-perceived QoE and fair-

ness in admission control on forecasted guaranteed resource bounds (τγ = 0.8 and

τh = 1). The achieved trend in admission control fairness by (4.36) is more than 97%
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on the entire range of U with respect to τγ and τh demand. The fairness achieved

begins to rise with an increase in the number of tenants on the network. The rise in

fairness is due to resource allocation to the tenants on their actual demand on the

forecasted guaranteed resource bounds. From guaranteed and desired demand, the

actual demand is acquired by the convergence of the forecasting modifier on the de-

fined objectives. Hence, the relative gain in acquired admission control fairness by

τγ over τh is 0.5% at U = 150. In a fully loaded network, this change in fairness gain

is noticeable in keeping tenant admission rejection from the network as low as pos-

sible. The proposed model gives the operator precise future-demand estimates, due

to self-healing of the forecasts via continuous monitoring of network QoS and tenant

QoE. Thus, efficient demand forecasting and monitoring result in more appropriate

network selection and admission control for tenants.
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FIGURE 4.11: Computation of QoE and Fairness on U = 150 number
of tenants with τγ ≥ 0.8 and τh = 1 forecasted demand

Average QoE by (4.26) is high at the beginning of the acquired result. The reason

is that tenants are acquiring resources on their forecasted demand (τh = 1), which

might be greater than the actual demand obtained after modification by the forecast-

ing modifier. The achieved QoE begins to decline with an increase in the number of

tenants, because tenants are acquiring resources on their actual demand to reduce

rejection and improve fairness among tenants. The relative loss in QoE by τγ over

τh is 0.6% at U = 150, which is noticeably low in a fully loaded network to keep ten-

ant admission rejection from the network as low as possible. However, the achieved

QoE is over 99% over the entire range of U. Therefore, because of the adaptability
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of the convergence to actual demand, the proposed model is significantly better at

managing heavy demand on the network with better acquired QoE and resource

allocation fairness.

B) User satisfaction level on forecasting: Consistent monitoring of various parame-

ters during service provisioning is an added feature of the proposed model that can

impact user satisfaction. Figure 4.12 shows the satisfaction level of 300 tenants with

approximately 100 users each. In this work, the satisfaction level is obtained by ac-

cepted users acquired QoE from guaranteed resource bounds (τγ = 0.8 and τh = 1)

on the desired QoE and the average of the total number of requests received. User

satisfaction reflects the proportion of accepted users at their desired QoE for service

provisioning. The performance of the proposed model is superior compared to its

counterparts (i.e., O-RAN and Greedy algorithms) (Liang et al., 2019). At U = 50,

the relative gain in user satisfaction by the proposed FAC model is 8% on O-RAN

and 20% on the greedy algorithm, respectively. The variance in gain w.r.t user sat-

isfaction increases with an increase in the number of tenants and their associated

users. Similarly, at U = 300, the relative gain in user satisfaction by the proposed

FAC model is 25% on O-RAN and 58% on the greedy algorithm.
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FIGURE 4.12: Comparison of user satisfaction at various demands;
number of tenants U = [50, 300] with respect to |S| = 4 and |N | = 1

First, acquired user satisfaction will be greater with the arrival of fewer tenants

and associated users. This is because each tenant’s user has access to its desired

demand. However, congestion occurs with more tenants and associated users ar-

riving on the network. This situation can cause the network to become inefficiently
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saturated, which leads to an increasing number of users being backed off from the

service or rejected, as can be seen at U = 300 in the results of the O-RAN and greedy

approaches in (Liang et al., 2019). The proposed FAC model reduces the number

of rejections by providing services from the optimal network on the tenant’s actual

demand due to its QoS/QoE monitoring feature. The monitoring feature helps the

efficient distribution of traffic flow among the services of set S to assure efficient

admission control and resource allocation. In contrast, existing schemes have higher

rejection rates, due to competition among users for limited desired resources and the

adoption of the greedy approach. This deficiency in the existing scheme results in

degradation of user satisfaction and network resource utilisation.

C) Traffic/load distribution across heterogeneous services: A detailed analysis of the

traffic distribution for heterogeneous services provisioning from set S is presented

here. Figure 4.13 shows average network utilisation with and without the proposed

FAC model. Results are acquired on a fully loaded network; for instance, if 300

tenants arrive on the network. On admission without forecasting and with 100%

utilisation, the 4G and 5G networks are inefficiently saturated. This saturation re-

sults in tenant QoE dropping due to congestion and more tenants being rejected or

backed off from the network. Similarly, resources are underutilised with 62%, and

66% utilisation in the 2G and 3G networks. These circumstances become costly for

an operator in an O-RAN-enabled network, because over/under resources utilisa-

tion in the respective service network not only increase operational cost but also

reduces overall network performance and tenant-acquired QoE.

The network utilisation achieved by (4.35) in FAC is superior (i.e. more than

95%) in heterogeneous service provisioning from set S compared to the legacy ap-

proach. The proposed model minimises the drawbacks of the legacy approach by

dynamically forecasting traffic demand for optimal tenant admission through fuzzy-

logic-based network selection. The fuzzy-logic approach encourages efficient traffic

load distribution based on demanded services and available capacity of various het-

erogeneous networks. The self-organisation feature of the proposed model ensures

that the networks do not saturate in the case of 100% load. In congestion, the pro-

posed model permits the tenant to accept resources over guaranteed bounds close

to network capacity. In this way, each service will accept only relevant demand to
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accommodate more tenants at the agreed QoE. In contrast, without forecasting, traf-

fic is randomly admitted by the network at desired demand and sensitivity, which

leads to congestion and over/under network utilisation.
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FIGURE 4.13: Average network utilisation of the fully loaded wireless
network, with and without tenant demand forecasting and admission

control on |S| = 4 and |N | = 1

4.3.5.2 Impact of optimisation and service monitoring

Tenant demand forecasting is crucial to run the optimisation. However, a higher de-

gree of uncertainty in that demand can lead to inefficient admission. When a tenant

accesses the network, the proposed model fetches the information from the tenant

history to improve the efficiency of the demand forecasting and admission control

mechanism. This enhanced mechanism reduces network saturation through efficient

distribution of load among various networks and increases network utilisation, as

shown in Figure 4.14 and 4.15 in the following subsections.

A) Priority-based supervised admission with optimisation: Figure 4.14 shows the

performance of FAC with respect to bandwidth utilisation at various numbers of

tenants. The results obtained from the proposed model are compared with those of

existing models found in the literature. The utilisation gain is estimated by averag-

ing the bandwidth utilisation of the tenants on legacy and forecasted demand as in

(Sciancalepore, Costa-Perez, and Banchs, 2019). The relative gain achieved in band-

width utilisation at U = 5 by FAC are 81.43% and 72.22% on RL-NSB (Sciancalepore,

Costa-Perez, and Banchs, 2019) and 94.69% and 92% on MTF (Sciancalepore et al.,

2017). The reason behind this achieved utilisation gain is the proposed admission

priority factor (φ) by (4.24) and forecasting modifier (Pϵ) by (4.30). After reviewing
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tenant history upon arrival, φ prioritises tenant admission to the network to earn

more revenue by efficient resource allocation. Pϵ optimises the demand estimates

through NSCF and QTFM to enhance admission control and network utilisation.

However, existing schemes admit users upon their arrival on the network according

to their resource demand forecasting.
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FIGURE 4.14: Computation of network utilisation gain by forecasting
and legacy approach across U = 20 number of tenants along with

E[ui] = 100 user each, and τh = [10, 100] MHz

Resource utilisation continuously increases with an increase in the number of

tenants. It can be seen that resource utilisation by FAC is above 95% at U = 20. The

relative utilisation gain achieved at U = 20 by FAC(Pϵ) and FAC (ϵ) are 3% and 2%

on RL-NSB, and 55% and 54% with MTF, respectively. Existing models admit users

on their forecasted demand and take more time to converge on an optimal solution

to improve the admission process. Therefore, these models show less utilisation at

the beginning and converge to higher utilisation with an increase in the number of

tenants and processing time. In the case of fewer tenants arriving on the network,

resources are allocated to tenants at their expected QoE bounds in the proposed ap-

proach. The remaining resources are returned to the pool for other operators to serve

their associated tenants if needed. This adaptive mechanism provides the operator

with an incentive to lease available resources and earn more revenue from resources

utilisation. Tenants are accommodated at their guaranteed demand on negotiation

in case of congestion on the network. This is to minimise tenant rejection or their

being backed off from the network. Hence, the FAC model is efficient at demand

forecasting due to the priority factor and self-organised forecasting mechanism. The
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proposed model yields better performance in terms of tenant-acquired QoE and re-

source utilisation.

B) Resource allocation with optimisation: The fitness function and its relationship

with the demand are the key parameters to be considered for optimal network selec-

tion. This determines the appropriate network for the tenant, as well as fair resource

distribution among tenants in the network. Figure 4.15 explains the fairness of re-

source allocation by (4.38) on U = [315, 330] tenants, with 100 users each, across var-

ious approaches. The results obtained from the proposed model are also compared

with relevant work found in existing literature (Jia et al., 2018). In the proposed

model, fairness is obtained by the tenants’ acquired average throughput at a given

load. Each user belonging to same tenant shares the same proportion with regards

to acquired QoE and resource utilisation. The result shows that the proposed QoE-

based admission control attain efficient resource allocation with a fairness index of

approximately 1 compared to the bankruptcy game allocation scheme with its fair-

ness index floating around 0.99. The reason is that users randomly form groups for

network admission and resource allocation in the bankruptcy game model. This re-

sults in more users being rejected at the edge of the service network due to resource

scarcity. This also creates congestion within the network due to inefficient admission

control and competition for limited resources. The relative gain in fairness of FAC

is 0.6% and 0.65% at U = 315 and U = 330. It can be observed that the rise in the

fairness gain is relatively low but noticeable on U. This achieved gain in fairness is

because of the availability of optimal network solutions and multi-variate priority

features for tenant admission and resource allocation, which is obtained through

fuzzy-logic-based network selection in the proposed model. It helps to serve as

many tenants as possible with guaranteed resource allocation and fewer tenants re-

jected or backed off from the network. Thus, efficient admission and resource alloca-

tion lead to maximised network utilisation and encourage fairness among tenants,

as summarised in Table 4.4.
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FIGURE 4.15: Resource allocation fairness on varying demand; num-
ber of tenants U = [315, 330] with E[ui] = 100 users each on |S| = 4

and |N | = 1

TABLE 4.4: Summary of comparisons of average efficiency between
the proposed work and existing methods

Evaluation Pa-
rameters

Approaches Efficiency

User satisfaction
level

The forecasting model and availability
of multiple heterogeneous networks
(O-RAN) ensure optimal resource al-
location to the tenants in the proposed
work.

Average efficiency 93%
from U = 50 to U =
300.

Online auction on available resources
and greedy approaches are applied
for resource allocation in (Liang et al.,
2019).

Average efficiency ap-
proximately 73%, and
43% from U = 50 to
U = 300.

Network re-
sources utilisa-
tion

In the proposed work, the forecasting
modifier (Pϵ) and multi-variate prior-
ity factor (φ) ensure optimum admis-
sion control.

Approximately 90% av-
erage efficiency from
U = 5 to U = 20.

Mobile traffic forecasting (Sciancale-
pore et al., 2017) and reinforcement
learning (Sciancalepore, Costa-Perez,
and Banchs, 2019) approaches to ten-
ant admission control are applied.

Average efficiency ap-
proximately 27%, and
59% from U = 5 to U =
20.

Resources alloca-
tion fairness

In the proposed work, fuzzy-logic-
based network selection, QoE-based
admission control and resource alloca-
tion approaches are applied.

Average efficiency
approximately 99.5%
from U = 315 and
U = 330.

Bankruptcy game approach is applied
for admission control and resource al-
location in (Jia et al., 2018).

Average efficiency ap-
proximately 99% from
U = 315 and U = 330.
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4.4 Slice Congestion and Admission Control (SCAC) Model

The growing demand for traffic heterogeneity support creates numerous challenges

for wireless communication systems, such as bottleneck congestion and inefficient

admission control (Mudassir et al., 2019; Gupta and Jha, 2015), which degrade net-

work QoS and user-perceived QoE. Due to the increasing complexity of networks,

the 3GPP consortium has proposed a novel and flexible architecture, built on the

Network Slicing concept, to segment the network into various capabilities. In this

architecture, a single physical network is logically split into multiple virtual net-

works by a dedicated or shared set of end-to-end network functions (aka network

instances) (3GPP, 2018c). The virtual networks are then customised to balance the

heterogeneous demand of emerging use cases to achieve maximum utility (Alliance,

2016; Kaloxylos, 2018).

Based on user-perceived QoE, 3GPP categorises the demand into three distinct

5G slice types (use cases or service types): ultra-reliable low latency communication

(URLLC), enhanced mobile broadband (eMBB), and massive machine-type commu-

nication (mMTC) (Choi and Park, 2017; Shin et al., 2017). These service-specific

slices can be classified into hard-QoE, guaranteed soft-QoE, and best-effort QoE traf-

fic demand (Kuo and Liao, 2008). Depending on the service QoE requirements and

network load, efficient selection and deployment of network slice instances are also

essential for admission control and resource management (allocation and utilisa-

tion) (Mei, Wang, and Zheng, 2020; Ojijo and Falowo, 2020). When a 5G network is

overloaded, requests are queued for slice admission. In the queue, the requests are

arranged with respect to guaranteed soft and best-effort QoE traffic demand. Slice

queue capacity is limited to avoid long delays in admission. When the number of

slice requests exceeds queue capacity, bottleneck congestion occurs, due to no space

being available in the waiting queue, which results in non-queued slice requests be-

ing instantly dropped (Han et al., 2018a). Similarly, inefficient admission into slices

can lead to under- or over-utilisation of resources and can also create congestion

through contention for shared resources. This, in turn, leads to increased rejection of

queued slice requests (Haile et al., 2021).
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For slice admission and congestion control, 3GPP has proposed a network slice

management and orchestration function in 5G referenced architecture (3GPP, 2018b;

3GPP, 2018c). However, the 3GPP-proposed framework provides only the design

principles and brief guidelines on service and reference interfaces. Based on the

3GPP network slice reference architecture, Vamshi et al. proposed a mobile virtual

network operator slice resource reallocation architecture (MSRAA) in (Buyakar et al.,

2020). In this work, resources are relocated from low-priority slices to high-priority

slices to reduce the high-priority slice request rejection rate in overloaded networks.

This approach causes resource starvation in the admitted low-priority slices and vi-

olation of the agreed QoE. The rejection rate of queued low-priority slice requests

also increases. When the rejection rate crosses a certain threshold, more resource re-

allocation is prohibited, increasing the rejection of both high- and low-priority slice

requests. Moreover, for each slice reconfiguration, this process goes through sev-

eral rounds of signalling among core network functions, which creates signalling

overheads and congestion in the core network (Han et al., 2018a; Najm et al., 2019;

Dandachi et al., 2019). The Experiential Networked Intelligence (ENI) group un-

der European Telecommunication Standard Institute (ETSI) is investigating the use

of machine learning (ML) techniques in network slice management and orchestra-

tion (ETSI, 2017). However, conventional ML techniques (Supervised Learning, Un-

supervised Learning, and Reinforcement Learning) have various shortcomings in

solving emerging issues of wireless communication. These techniques require a suf-

ficient amount of training data for resource optimisation in a particular scenario.

Many wireless devices are also unable to run higher-complexity tasks, due to their

limited computational capacity and power. Thus, the training data, which contains

both high (AR/VR data or 4K videos)- and low-quality data (signals or audios),

is sent to the central cloud node for training and processing, which might become

costly in terms of extended training time and processing. A large amount of unnec-

essary data transmission into the cloud also creates communication overheads and

congestion in the core network. One such problem is addressed by the authors Dan-

dachi et al. in (Dandachi et al., 2019). Dandachi et al. proposed an ML-enabled slice

deployment and management model for cross-slice congestion control in 5G net-

works. The authors evaluate the similarities between slice requests with respect to
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dedicated or shared network slice instance (NSI) demands by implementing Jaccard

similarity-based assignment. According to their work, if the slice request requires a

dedicated NSI or no existing NSI can serve the request, then a new NSI will be de-

ployed and configured. Otherwise, the existing NSI is reconfigured with new slice

requests and additional resources if needed. An alternative approach is spectral

clustering with a computational complexity of O(n3), which has also been applied

to reduce slice request rejection rate. In this approach, the running slices are re-

clustered based on similarity into a newly configured NSI. However, this approach

has more competition for resource allocation and greater computational complexity.

Each slice acquires the resources even partially. If more slice requests are added to

the cluster, resource starvation may occur.

Similarly, advanced ML techniques, i.e. Deep learning, Federated Learning, and

Deep Reinforcement Learning (Zhang, Patras, and Haddadi, 2019; Lim et al., 2020;

Luong et al., 2019), are also trained on a large amount of data, which takes a long

time to acquire an optimal solution and are also computationally complex. All these

factors make these approaches impractical to apply to latency-sensitive and emerg-

ing applications from the core cloud network (Nguyen et al., 2021). A significant

amount of research is available addressing this issue with the help of edge and fog

computing (Zhang et al., 2019b; Santos et al., 2021). In this context, transfer learn-

ing (TL) has recently emerged as an effective solution for addressing the emerg-

ing problems of wireless communication. In this technique, a sufficient amount of

only high-quality training data and knowledge transfer improves and speeds up

the learning process. Prohibiting sending large amounts of unnecessary data helps

to protect data privacy and also reduces communication overheads and congestion

(Zhuang et al., 2020). The emphasis of this research is on ML-based slice congestion

and admission control with the goal of achieving a minimum slice rejection ratio and

maximum resource utilisation. To acquire the mentioned goal, the following are the

major contributions of the proposed research work:

• A machine learning-based slice congestion and admission control model is

proposed in this work to minimise the slice rejection ratio occurring due to

bottlenecks and intra-slice congestion. Unsupervised learning algorithms, (i.e.
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Ranking and K-mean clustering), along with optimisation and transfer learn-

ing, have been employed for slice request queuing.

• Derived a unified cost estimation function for slice selection to ensure fairness

among slice requests. A reinforcement learning-based admission control pol-

icy is developed for taking appropriate action for the admission of guaranteed

soft and best-effort slice requests in view of instantaneous network circum-

stances and load.

• A set of optimisation algorithms for Intra-slice and inter-slice resource alloca-

tion, along with adaptability of slice elasticity, are also proposed to maximise

the slice acceptance ratio and resource utilisation. Robustness of the proposed

model and algorithms are analysed by obtaining rejection ratio, bottleneck con-

gestion, and fairness of resource allocation and utilisation at various traffic

loads of mMTC and eMBB.

4.4.1 Related work

RL has been frequently used in wireless networks for network admission control,

resource allocation and management (Jiang et al., 2016a; Gündüz et al., 2019; Chen

et al., 2019). For example, Tong et al. proposed an RL-based call admission control

model for wireless communication. In this work, the authors incorporated state-

dependent and past-dependent constraints of QoS to maximise network revenue

(Tong and Brown, 2000). However, the provided formulation is quite generic and not

a good fit for solving recent wireless issues such as bottleneck and intraslice conges-

tion in the dense environment. The authors, Mao et al. investigated Deep RL-based

state-of-the-art techniques for resource management of large-scale wireless systems

(Mao et al., 2016). Similarly, a Deep RL-based resource management model for 5G

network slicing is proposed by the authors in (Li et al., 2018). In this work, demand-

aware resource allocation is employed in two different slicing scenarios. However,

higher-dimensional data generated by the devices in the scenario makes this ap-

proach computationally complex. Higher-dimensional data from various devices

also contain redundancy that creates overhead on the core network function. Raza

et al. proposed a slice selection and admission policy based on RL for 5G RAN (Raza



Chapter 4. Admission Control with Multi-Objective Optimisation 130

et al., 2018). The authors investigated their proposed approach to high- and low-

priority service demand to maximise the operator’s revenue. Similarly, a dynamic

reservation and DRL-based resource slicing model for virtual RAN is proposed by

the authors in (Sun et al., 2019b). The authors employed Q function approximation

for resource allocation in their work. Zhang et al. proposed a mode selection and

resource allocation model for cellular networks (Zhang et al., 2019b). The authors

applied the Markov decision process, as well as DRL algorithms, to solve the capac-

ity problem. Bega et al. proposed a deep learning-based model known as DeepCog

for cognitive network management in sliced 5G networks (Bega et al., 2019). The

authors in (Tang, Zhou, and Kato, 2020) proposed a deep reinforcement learning-

based model for dynamic uplink/downlink resource allocation in high mobility 5G

HetNet. By utilising the deep reinforcement learning approach, another intelligent

resource slicing model for URLLC and eMBB traffic in the 5G and beyond network

is proposed in (Alsenwi et al., 2021). An end-to-end network slicing model based

on deep Q-learning for a 5G network is proposed by the authors in (Li, Zhu, and

Liu, 2020). However, if the available data is highly correlated, and the Q-function is

estimated from a nonlinear function approximator, then DRL can diverge to unsuit-

ability.

Recent studies have revealed that conventional ML approaches have shortcom-

ings in solving future network problems, especially in emergency and mission-critical

applications. As higher-dimensional data is required by conventional ML approaches,

which require more time for processing and are computationally costly, they are not

acceptable for latency-sensitive applications. Moreover, today’s smart wireless de-

vices are not capable of processing this higher-dimensional raw data, and such data

needs to be processed on the cloud, which creates an extra burden on the network

and also creates congestion. Recently, TL has emerged as an effective solution, where

knowledge is transferred from one optimised task to solve another, related or simi-

lar task (Cook, Feuz, and Krishnan, 2013). TL has various advantages over conven-

tional ML approaches. For example, the learning process in TL is faster due to the

use of pre-trained models or policies, and knowledge sharing between tasks. Com-

pared to traditional approaches, knowledge transfer in TL reduces the computing

demand and congestion created in the network due to the huge amount of data. Just
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enhanced quality and quantity of training data is used in TL, which also provides

data privacy protection (Zhuang et al., 2020). For example, the learning process in

TL is faster due to the use of pre-trained models or policies, and knowledge shar-

ing between tasks. Compared to traditional approaches, knowledge transfer in TL

reduces the computing demand and congestion created in the network due to the

huge amount of data. Just enhanced quality and quantity of training data is used in

TL, which also provides data privacy protection (Zhuang et al., 2020). A significant

amount of research into the applications of TL in wireless networks is available in

the literature. For example, a novel TL-based paradigm for dynamic spectrum al-

location and topology management of radio networks is proposed by authors Zhao

et al. (Zhao et al., 2013). The knowledge learned through spectrum allocation is

converted through their proposed priority algorithm and applied to topology man-

agement. During their research, Zhao et al. investigated the use of the K-means clus-

tering approach for optimal spectrum and load management of mobile broadband

networks (Zhao et al., 2015), whereby coefficients acquired from Q-parameters af-

ter demand clustering were transferred from spectrum allocation to broadband load

management. Parera et al. proposed a transfer-based model for resource utilisation

in wireless networks (Parera et al., 2020). The authors exploited deep learning and

TL algorithms for dynamic resource allocation and efficient network control. Wagle

et al. proposed three transfer learning algorithms for radio frequency allocation in

wireless cellular networks (Wagle and Frew, 2012). The objective of their proposed

TL algorithms is to identify the similarities in demand from the original data set

to extract pertinent information, which was used in the target data set to achieve

efficient radio frequency allocation. Zeng et al. proposed a deep TL-based traffic

prediction model for wireless cellular networks (Zeng et al., 2020). The authors pro-

posed a spatial-temporal cross-domain neural network model (STC-N) in this work.

STC-N model uses cross-domain data along with a regional fusion TL strategy to

improve the accuracy of future traffic prediction. TL-and DRL-based mode selection

and resource management models for fog RAN, V2V communication and 5G net-

works are proposed in (Sun, Peng, and Mao, 2018; Zhang et al., 2019b; Dong et al.,

2020). Similarly, Parera et al. proposed a TL model for channel quality prediction

of a given frequency carrier in wireless networks (Parera et al., 2019). In this work,



Chapter 4. Admission Control with Multi-Objective Optimisation 132

convolutional neural networks and long short-term memory networks have been

considered as TL tasks.

Based on best of the knowledge, the existing research did not provide a TL-based

solution for bottlenecks or intra-slice congestion problems to ensure efficient admis-

sion control in future networks. Dynamic slice congestion and admission control

using advanced ML approaches is proposed in this work. The goal of this approach

is to manage the demand proportionally with available capacity using two unsu-

pervised learning (i.e. ranking-and k-mean-based clustering) and optimisation ap-

proaches for congestion control. In view of the eMBB network’s complexity, knowl-

edge learned by implementing optimisation of mMTC traffic load for clustering is

implemented to eMBB traffic load to reduce bottleneck congestion. RL-based ad-

mission control and resource management have also been proposed using intra-slice

and inter-slice resource allocation, along with adaptability of slice elasticity, to max-

imise admission gain and resource utilisation by reducing the slice request rejection

ratio.

4.4.2 SCAC System Model

Managing a large amount of heterogeneous traffic flow proportionately with slice ca-

pacity at a tolerable latency in future networks is still an open issue Da Xu, He, and

Li, 2014; Ojijo and Falowo, 2020. An ML-based dynamic slice congestion and admis-

sion control (SCAC) model is proposed for 5G and beyond networks. This model

has been developed using an architecture similar to 3GPP release 15 3GPP, 2018c

and Next Generation Mobile Networks (NGMN) slice architecture Alliance, 2016. The

proposed SCAC model is composed of three major entities: a slice demand analysis

and classification (SDAC) system, a demand clustering and queuing (DCQ) system,

and an admission and resource management (ARM) controller, as shown in Fig. 4.16.

A network slice selection is performed at the time of user registration on the

core network. When the user equipment (UE) is powered on, it sends a Service

Request and Registration along with the user ID and service type (i.e., one of the

slice types from the 3GPP defined categories) to the accessed Next generation NodeB

(gNodeB/gNB) of the radio access network (RAN). The demand analyser analyses
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FIGURE 4.16: ML-based SCAC architecture for communication in fu-
ture wireless networks

the requested slice QoE for the given service type. This analysis isolates guaranteed

soft-QoE slice requests from best-effort QoE requests through a classification mask.

The demand processing system or DCQ clusters requests using ML and optimisa-

tion techniques based on similar service types and QoE demand for queuing in a

slice admission queue. After verification, the gNodeB sends the clustered slice re-

quests from the slice queue to the access and mobility management function (AMF)

of the default slice for admission control and resource management. The default

AMF request for each UE’s information from the unified data management (UDM).

The UDM sends the subscribed user data to the default AMF and confirms if the

user is authorised to be served from the core. After authentication for service provi-

sioning, a slice ID is selected by the network slice selection function (NSSF). The slice

ID contains NF instances, which are shared among users of clustered slice requests.

The default slice stores all this information in an unstructured data storage function

(UDSF) and finally forwards the clustered slice request to the session management

function (SMF) and the serving gateway/packet gateway (SGW/PGW) for the es-

tablishment of a connection and its management for data transmission (Choi and

Park, 2017; 3GPP, 2018b; 3GPP, 2014). Hence, in this work, the admission control

is imposed by the signalling and the exchange of information among RAN, AMF,
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and NFFS, which optimises learning by accessing the current network situation on

both sides for congestion control and implements the intra-slice, inter-slice, or slice

elasticity approach for efficient resource allocation.

Network setup: Consider a 5G/6G cellular network with a set of slices denoted as

S = {1, 2, . . . , S}. In this network, a set of M and N number of mMTC and eMBB

devices (or users) are considered with best-effort and guaranteed soft-QoE demand,

denoted as UMTC = {up1
best, up1

so f t}, and UMBB = {up2
best, up2

so f t}, whereby the users

belong to mMTC and eMBB are denoted by p1 and p2 respectively. Its assumed

that, up1
best = {1, 2, . . . , κ} and up1

so f t = {κ + 1, κ + 2, . . . , M}, and up1
best ∩ up1

so f t = ∅.

Similarly, up2
best = {1, 2, . . . , ι} and up2

so f t = {ι + 1, ι + 2, . . . , N}, and up1
best ∩ up2

so f t = ∅.

Its also assumed that the best-effort and guaranteed soft-QoE demand have various

characteristics J = {1, 2, 3, . . . , J} with varied distributions. The characteristics are

predetermined and quantified within a range of values between jmin and jmax, where

j ∈ J , stored in the AMF repository, as in (Perveen, Patwary, and Aneiba, 2019).

Based on these characteristics the slice service request is classified as either best-

effort or guaranteed soft-QoE demand. Each device can be connected to K number

of heterogeneous application-specific service slices, denoted as Λ = {1, 2, 3, . . . , K},

concurrently from set S . However, for simplicity, K is assumed to be equal to 1. Key

symbols used in this work are listed and described briefly in Table 4.5. A systematic

diagram of the proposed SCAC model on this network setup is shown in Fig. 4.17

and discussed in detail in the following subsections.

4.4.3 Slice Demand Analysis and Classification

When user u ∈ UMTC attempts to access the sth slice with desired QoE demand,

it issues a request au = [a(u,1), a(u,2), . . . , a(u,J)], which is placed into the respective

demand matrix, represented by A in (4.39), within the repository of the 5G slice

controller in RAN. The vector au consists of the required user-application-specific

statistical parameters, such as bandwidth, required data rate, latency, and packet
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TABLE 4.5: SCAC model key symbols and definitions

Symbols Definitions
UMTC Set of users belonging to mMTC
UMBB Set of users belonging to eMBB
up1

best, up2
best Set of users belonging to best-effort demand

of mMTC and eMBB, respectively.
up2

so f t, up2
so f t Set of users belonging to guaranteed soft de-

mand of mMTC and eMBB, respectively.
S Set of slices in the network
AMTC Demand matrix of mMTC
AMBB Demand matrix of eMBB
Mc Demand classification masks
MR Demand ranking masks
Cs

que Slice queuing capacity
Cs

req Requests required capacity
D(x) Queue waiting time of cluster x
D(x) Queue threshold time for each cluster
d(xu) uth request waiting time from cluster x
v Cost estimation function for slice selection
w network weights for slice selection
p(ab,ag) RL-based admission control policy function
Bs

l Lower slice configuration bounds
Bs

u Upper slice configuration bounds
Q Number of rejected requests
wb Acquired reward on best-effort demand ad-

mission
wg Acquired reward on guaranteed soft de-

mand admission
U(Rx) xth cluster utility
Us sth slice utility
U Network utility on set S
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loss ratio.

AMTC =



a(1,1) a(1,2) a(1,3) · · · a(1,J)

a(2,1) a(2,2) a(2,3) · · · a(2,J)
...

...
...

. . .
...

a(M,1) a(M,2) a(M,3) · · · a(M,J)


. (4.39)

A similar demand matrix, denoted as AMBB(N×J), is constructed for mMBB re-

quests. Now, in the SDAC system, the request au, either belongs to mMTC or eMBB,

passes through the classification mask denoted as Mc. This mask assists demand

classification among the best-effort and guaranteed soft-QoE traffic to maximise the

slice request acceptance ratio through clustering.

Mc =


cb = 1, if au ∈ ubest

cg = 1, if au ∈ uso f t

, (4.40)

whereby, cb and cg represent the best-effort and guaranteed soft-QoE demand classi-

fier, respectively. When a slice request for a particular service type arrives, the slice

controller assesses each characteristic value of the request. After analysis, the con-

troller classifies and places the request into the user-specific row of the best-effort

(denoted as Ap1
b ) or guaranteed soft-QoE demand matrix (denoted as Ap1

g ) of the

respective p1, as shown below:

Ap1
b =



b(1,1) b(1,2) b(1,3) · · · b(1,J)

b2,1 b(2,2) b(2,3) · · · b(2,J)
...

...
...

. . .
...

b(κ,1) b(κ,2) b(κ,3) · · · b(κ,J)


, (4.41)

or

Ap1
g =



g(κ+1,1) g(κ+1,2) g(κ+1,3) · · · g(κ+1,J)

g(κ+2,1) g(κ+2,2) g(κ+2,3) · · · g(κ+2,J)
...

...
...

. . .
...

g(M,1) gM,2 g(M,3) · · · g(M,J)


. (4.42)

Similarly, the best-effort and guaranteed soft-QoE-based demand matrices, rep-

resented as Ap2
b(ι×J) and Ap2

g(N×J), are constructed for users belong to eMBB. Now, the
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FIGURE 4.18: Systematic diagram for clustering by optimisation and
knowledge transfer

isolated QoE-based slice service demands are passed to the DCQ system for process-

ing to reduce redundancy in the service request signalling, which can cause conges-

tion due to resource starvation in the network.

4.4.4 Demand Clustering and Queuing System

In this section, the operations of the DCQ are explained in detail for slice request

clustering, as shown in Figure 4.18. Two popular unsupervised learning techniques

(i.e. k-mean and ranking) are implemented for clustering, along with optimisation

and knowledge transfer, to maximise the slice request acceptance ratio by redun-

dancy reduction in the requests, as explained in detail in the following subsections.

4.4.4.1 Demand Clustering for Capacity Optimisation: In the network, the slice

queuing capacity, denoted as Cs
que, is limited to avoid long delays being encountered

by slice requests in the queue. In the normal network situation, the capacity required

by the incoming services requests, denoted as Cs
req, in the queue is proportional to

the slice queuing capacity, due to the short waiting time in the queue. However, the

required services request capacity increases exponentially with an increase in de-

mand for services on the network (Gupta and Jha, 2015; Han et al., 2018a). Thus, in

the case of a massive number of service requests, limited queuing capacity can cause
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bottleneck congestion at the network edge, which, in turn, increases the slice service

request rejection ratio. This congestion at the edge also causes operator revenue

and network QoS to drop due to inefficient resource utilisation in the core network.

This problem can be modelled as an optimisation problem, whereby the objective

is to manage the service requests, either guaranteed soft or/and best-effort QoE re-

quests, belonging to MTC or p1 users, in such a way that minimises the rejection

rate at the edge, denoted as α, due to bottleneck congestion by efficiently utilising

the slice queuing capacity. Mathematically, this can be described as follows:

min ∑
b(κ)
i=b(1)

α(i) + ∑
g(M)

i=g(κ+1)
α(i),

s.t. ∑
b(κ)
i=b(1)

Cs
req(i) + ∑

g(M)

i=g(κ+1)
Cs

req(i) ≤ Cs
que ,

M

∑
u=1

β(u) ≤ 1 .

(4.43)

The aggregate capacity acquired by slice service requests, Cs
req, should not ex-

ceed the overall reserved slice queuing capacity over M number of slice requests for

mMTC. An admission index β of 1 indicates that the request of the uth user is ad-

mitted to the queue, otherwise zero. All requests from set UMTC should be admitted

for queuing by the RAN controller.

In this work, ranking-based clustering techniques have been applied to reduce

the overall rejection ratio in slice requests. Ranking-based clustering is a simple

yet powerful approach to computing the similarity index within a cluster (Saxena

et al., 2017). When a request is received by the SQC system, it is compared with the

existing request for clustering based on homogeneous demand characteristics. Thus,

the request, belongs either to the best-effort or soft-QoE demand matrix of p1, passes

through the ranking-based clustering mask, denoted asMR. After passing through

the mask, the QoE-based demand matrices (Ap1
b and Ap1

g ) converted into the QoE-

and Ranked-based demand matrices (Ap1
Rb

and Ap1
Rg

), where bR ≤ bκ and gR ≤ gM.

Similarly, requests from p2 users are passed through the maskMR, and Ap2
Rb

and Ap2
Rg

are constructed, where bR ≤ bι and gR ≤ gN . Now, Cs
req acquired by the clustered

requests would not exceed the overall reserved slice queuing capacity over a set of
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users from either mMTC,

bR

∑
i=1

Cs
req(i) +

gR

∑
i=κ+1

Cs
req(i) ≤ Cs

que . (4.44)

or eMBB,
bR

∑
i=1

Cs
req(i) +

gR

∑
i=ι+1

Cs
req(i) ≤ Cs

que . (4.45)

4.4.4.2 Demand Clustering for Delay Optimisation: As discussed earlier, requests

should be clustered in such a way that the delay (or waiting time) experienced by

the requests in a cluster should not exceed the threshold waiting time, which would

result in a violation of the provisioning of the agreed QoS to the users (Morgado et

al., 2018; Khan et al., 2020b). Delay minimisation within clusters can be modelled as

an optimisation problem. The objective is to cluster requests in a way that minimises

delay, denoted as D(x), in the slice queue, and reduces the overall rejection ratio on

the acquired capacity. This can be described mathematically as follows:

min D(x),

s.t.
L

∑
xu=1

d(xu) ≤ D(x) ,

M

∑
u=1

X

∑
x=1

β(u,x) ≤ |UMTC| .

(4.46)

The aggregate waiting time of service requests belonging to cluster x should not

exceed the threshold time, D(x), of the particular cluster x in the queue. β(u,x) = 1

only if the slice service request of user u belongs to a cluster x and is admitted, oth-

erwise 0. All admitted requests from users of set UMTC should belong to a particular

cluster based on homogeneous demand.

Reducing the request rejection ratio at the network edge that occurs due to long

delays in the queue and limited capacity is an NP-hard problem. Therefore, opti-

misation and ML-based approaches are investigated in this work to simultaneously

obtain an optimal solution for (4.43) and (4.46). Based on homogeneous-slice ser-

vice demand, user requests are distributed into R number of clusters by applying a

ranking-based approach. K-mean (Likas, Vlassis, and Verbeek, 2003) and Nondomi-

nated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) have been applied to
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obtain an optimal number of clusters, X , and their associated requests L over the de-

fined objectives. Due to the massive number of connectivity requests from users, an

optimisation approach is applied to requests belonging to p1. The knowledge gained

from the p1 requests during optimisation is transferred to requests of p2 in form of

coefficients to reduce the time spent on optimisation and speed up the process of ad-

mission control, as shown in Figure 4.18. In this optimisation approach, the crucial

step is to define an appropriate genetic representation of the requests from set either

up1
best or up1

so f t. The objective is to gather an optimal number of requests, L, within a

cluster x such that the aggregate delay (or waiting time) D(x) of L requests should

not exceed the threshold time D(x). This can be obtained by efficiently scheduling

each request u of p1 in the cluster x based on the minimum aggregate waiting time:

D(x) =
L

∑
xu=1

d(xu) ≤ D(x) , (4.47)

where, d(xu) is the delay induced by request u in cluster x. Thus, by M/M/1 queuing

theory (Schwarz et al., 2006), d(xu) in the proposed model can be obtained as follows:

d(xu) =
1

(µ− L)
− 1

µ
, (4.48)

where, µ represents the mean rate of the request execution from clusters, and L is

the request arrival rate within a cluster x. After optimisation, the demand clustering

metric, either Ap1
Xb

or Ap1
Xg

, where bX ≥ bR and gX ≥ gR, passes to the admission and

resource management controller for resource allocation.

4.4.4.3 Demand Clustering through Knowledge Transfer: The performance of the

optimisation techniques relies on the availability of a huge amount of training data

that might include both high-quality and raw data. Many current wireless devices,

especially smart devices, are unable to run highly complex tasks, due to their limited

computation capacity (Nguyen et al., 2021). So, the data needs to be sent to the cen-

tral network to acquire an optimum solution to a particular problem (e.g. admission

control and resource scheduling of the requests belong to eMBB). This data not only

consumes time in training and processing on the network but also creates commu-

nication overheads and congestion in the access and core network. TL provides a
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highly effective solution to this sort of problem (Zhuang et al., 2020; Niu et al., 2020).

To reduce communication overheads or congestion that could occur due to eMBB

requests, the concepts of transfer learning have been applied in this work. Upon

arrival, the requests of p2 initially belonging to eMBB pass through the Mc and

MR for QoE-based classification and clustering based on homogeneous demand

characteristics. The constructed masks for processing the requests of p1 are applied

to the requests of p2 to save the time spent on classification and clustering. This also

blocks the entry of unnecessary data into the network. Next, the objectives, as given

in (4.43) and (4.46), are analysed on the clustered requests belonging to Ap2
Rb

and Ap2
Rg

,

obtained from maskMR, as shown in Figure 4.18. In the case of a violation of the

objectives, the coefficients, denoted as Co f f , obtained from curve-fitting to a set of the

optimum solutions of p1 users requests (or mMTC traffic demand) are applied to the

requests of p2 (or mMBB traffic demand). The set of optimum solutions is obtained

after running a number of experiments on the requests of p1. The optimal L number

of requests for each cluster of p2 users obtained from Co f f can be represented as

follows:

L(p2) =
η

∑
i=0

Co f f (i)(|UMBB|)i , (4.49)

where η is the degree of curve-fitting. Hence, the optimal L number of requests of

p2 are clustered in each cluster x based on knowledge gained from the requests of

p1 in the form of coefficients. Thereafter, X number of clusters would be acquired
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over the load of p2, with L number of requests in each cluster. Such as, Figure 4.19

illustrates the no of clusters obtained by employing the optimisation and knowledge

transfer in the proposed model on load [50,250]. Now, the demand clustering metric,

either Ap2
Xb

or Ap2
Xg

, where bX ≥ bR and gX ≥ gR, passes to the admission and resource

management controller for resource allocation.

4.4.5 Admission Control and Resource Management

In this section, a dynamically adaptive admission control and resource management

scheme of the SCAC model is proposed. The proposed scheme reduces the dropping

probability of slice requests occurring due to intra-slice congestion using RL-based

admission control, intra/inter-slice and slice elasticity-based resource allocation ap-

proaches, as shown in Figure 4.20. Moreover, this scheme also leads to enhanced

network resource utilisation through efficient resource allocation and scheduling.

More details on this scheme of the proposed SCAC model are explained in the fol-

lowing subsections.

Observation

  
  Intra/inter-slice & cooperarive 
slice elasticity based admission 
      and resource allocation

Admission Control 
         Policy 

FIGURE 4.20: Systematic diagram of RL-based admission control,
intra/inter-slice and slice elasticity based resource allocation

4.4.5.1 Slice Selection and Admission control: Future networks are expected to

be reconfigured dynamically. The network slicing feature in 5G networks has the

ability to provide heterogeneity of massive traffic with the capacity of adaptive and

dynamic resource allocation within a slice (Gupta and Jha, 2015; Kaloxylos, 2018).
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In this section, an ML-based admission control function is proposed that applies

the aforementioned reinforcement learning technique to obtain optimal slice selec-

tion and admission control. When the network receives a Service Request and

Registration request from a device with guaranteed soft (or best-effort) QoE de-

mand attempting to access the network for kth application service, where k ∈ Λ,

the AMF function accesses that request and verify from the respective repository

AXg (or AXb ) to grant admission to a suitable slice. To achieve this, a cumulative

soft-decision technique using cost function is proposed, which is derived from the

demand matrix (AXg or AXb ) and network weights w. Accordingly, the cost function,

denoted as vXg and vXb , can be represented as

vXg = AXg w =
[
vκ+1, vκ+2, . . . , vgX

]⊺ ,

and

vXb = AXb w = [v1, v2, . . . , vbX ]
⊺ . (4.50)

To achieve dynamic uniform slice allocation among requests, a set of network

characteristic learning weights, denoted as w = {ω1, ω2, . . . , ωJ} is defined, which

indicates the current network load status, resource availability, and other parame-

ters. The learning weights can be computed using the normal equation for multi-

variate linear regression, as:

w = (AXg)
−1I , (4.51)

where I is the identity matrix with respect to uniform slice distribution among all

clustered requests and (AXg)
−1 is the Moore–Penrose inverse of AXg . The resultant

weighting factors are dynamic in nature and might be modified systematically or

non-systematically by a change in network parameter values, with respect to time

and network load. The learning weights can also be obtained using gradient descent

linear regression techniques. However, such techniques are designed for scenarios

in which a large amount of data (J >1000) is available, and they have high computa-

tional complexity to converge due to their iterative nature (Hospedales et al., 2020).
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The estimated cost value vx for xth clustered request is obtained as

vxg =
J

∑
j=1

gxjwj, ∀ gxj ∈ AXg and wj ∈ w , (4.52)

where, gxj is the xth clustered request jth resource demand. Similarly, vxb obtained

for the requests belong to AXb . Now, vxg and vxb are placed in the respective queue

for action taken for admission control. Action on the clustered slice requests is based

on an admission control policy p(ab,ag) built through an RL algorithm. The policy

aims to reduce the rejection ratio by taking appropriate action on instantaneous sys-

tem rewards on guaranteed soft or best-effort request admission and resource allo-

cation. The policy at time t can be expressed as follows:

p(ab(t) , ag(t)) =
(
ab(t−1)

wb(t) , ag(t−1)wg(t)
)

, (4.53)

where, ag, ab, wg, and wb determine the number of accepted guaranteed soft (gX)

and best-effort (bX) clustered requests, and their associated rewards on previous ac-

tion, respectively. Initially, the action on the admission of the clustered requests

(either guaranteed or best-effort) to the network is based on their ratio from overall

demand with wb = wg = 1. For example, the ratio of gX to bX is 1 : 1, available

network resources are allocated evenly (or 50%) to requests belonging to gX and (or)

bX. Following successful clustered request admission to the network, the proposed

model applies the strategies of intra-slice and inter-slice resource allocation, as well

as adaptability of slice elasticity for their service provisioning, as described in the

following section.

4.4.5.2 Slice Resource Allocation: However, in a dense environment, where mil-

lions of devices with varied heterogeneous demands are deployed, blocking proba-

bilities of slice requests may increase and reach the undesirable territory. In addition,

if the host server of the slice is compromised or becomes unavailable, the slice oper-

ation would also be affected, causing outages (Sattar and Matrawy, 2019; Ojijo and

Falowo, 2020). In this section, this problem is addressed by the dynamic reconfig-

uration of slice bounds. Three adaptive resource allocation techniques: intra-slice,

inter-slice, and cooperative slice elasticity, have also been developed in this model,
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as discussed in detail in the following subsection:

A) Intra-slice resource allocation: 5G network slicing accommodates traffic hetero-

geneity with an adaptive and dynamic resource allocation mechanism within a slice

through a slice resource pool (3GPP, 2018c; 3GPP, 2018b). Assumed that, slices are

associated with re-configurable slice bounds, denoted as Bs
l and Bs

u, where Bs
l and Bs

u

represent the slice lower and upper bounds, respectively, and is obtained by

Bs
l =

1
|S| (i) and Bs

u =
1
|S| (i + 1), (4.54)

where i ={0, 1, 2, . . . , |S|}. Algorithm 11 represents clustered request admission and

Algorithm 11: Cluster request admission by intra-slice resource allocation

Input: AX ̸= 0, Rs
A ̸= 0, where, x ∈ X and s ∈ S, calculate vx.

Output: U > 0, Q, and w.
begin

if (Bs
l < vx ≤ Bs

u) then
if (Rs

A ≥ Rx) then
Admit xth cluster request and assign resources.
Update available resources Rs

A in slice s resource pool.
Calculate resource utilisation U.
Compute respective values of Q and w.

else
if (Inter-slice resource allocation) then

Update slice learning bounds (Bs
l , Bs

u) via (4.58) and (4.59)
Compute Algo. 12

else
Apply slice elasticity approach via (4.62)
Compute Algo. 13

end

end

else
Reassess vx

Compute Algo. 11
end

end

intra-slice resource allocation. If the cost values are within the slice configurable

bounds, clustered request admission can be guaranteed, subject to the availability

of resources in the slice, denoted as Rs
A. Respectively, on overall admissions, the
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number of rejections, denoted as Q and rewards w are computed. Subsequently, if

resources are unavailable, the possibility of inter-slice resource allocation or coop-

erative slice elasticity is assessed. Otherwise, the requests might be placed back in

the respective matrix Ag (or Ab) and reassessed according to the change in circum-

stances and cost values. Such consideration may include the possibility of back-off

with the time-shift nature of application or assessment of QoS. Clustered requests

belonging to best-effort QoE will go through a similar process. Now, rejections or Q

value after admission of clustered requests can be obtained as:

Q(ia)(ag(t−1)) = gX − a(ia)g , (4.55)

and

Q(ia)(ab(t−1)
) = bX − a(ia)b , (4.56)

where a(ia) determines the admission of the clustered requests using intra-slice re-

source allocation. Now, based on the previous action, rewards are obtained as

w =


wg(t) = 2wg(t−1) , wb(t) = wb(t−1)

Q(ag(t−1)) > Q(ab(t−1)
) ,

wg(t) = wg(t−1) , wb(t) = wb(t−1)
Q(ag(t−1)) = Q(ab(t−1)

) ,

Inter-slice admission otherwise .

(4.57)

In the case of Q(ag(t−1)) > Q(ab(t−1)
) from intra-slice admission and resource al-

location, the reward wg will be updated, due to the higher priority of guaranteed

soft-QoE demand over best-effort demand. The updated wg reduces rejections of

clustered requests from the gR queue; however, it may increase the rejection ratio of

requests belonging to bR, due to resource scarcity in the network. In such circum-

stances, inter-slice admission control is applied for resource allocation, as explained

in the following subsection.

B) Inter-slice resource allocation: Inter-slice admission control is another key fea-

ture for resource allocation. It is defined in recent 3GPP items and developed based

on roaming techniques (3GPP, 2018c). In this setting, the devices belonging to a par-

ticular clustered request are configured with two slices: (1) the primary slice (aka
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serving slice) and (2) the neighbouring slice, denoted as (s + 1) and (s− 1) (used for

fall-back during instances of primary slice unavailability). To access the neighbour-

ing slices, the slice s bounds (Bs
l and Bs

u) will be updated (via (4.58) and (4.59)) by

a certain bound index denoted as δ for the xth clustered request only. If handover

to the neighbouring slice is completed, the neighbouring slice will have full control

over the admitted clustered request. The bounds are mathematically expressed as

Bs
l = Bs

l − δ(ie)(B(s−1)
u − B(s−1)

l ) , (4.58)

and

Bs
u = Bs

u + δ(ie)(B(s+1)
u − B(s+1)

l ), (4.59)

where δ(ie) = [0, 0.5], according to the central limit theorem. Algorithm 12 represents

the inter-slice resource allocation strategies from slice (s− 1) and (s+ 1), respectively.

Assumed that the capital expenditure (CAPEX) is proportional to the slice index,

where CAPEX(s−1) < CAPEX(s+1). The clustered user requests are guaranteed ad-

mission subject to the availability of resources, denoted as RA from either (s− 1) or

(s + 1) slice. Subsequently, rejection rate Q, and resource utilisation are computed

for the next action taken by the admission policy. The clustered requests belonging

to best-effort QoE will go through a similar process if needed. Thus, the rejection

ratio or Q(ie) value after intra-slice and inter-slice admission and resource allocation

will be as follows:

Q(ie)(ag(t−1)) = gX − a(ia)g − a(ie)g = gX − a(ia, ie)
g , (4.60)

and

Q(ie)(ab(t−1)
) = bX − a(ia)b − a(ie)b = bX − a(ia, ie)

b , (4.61)

where, a(ia, ie) determines the admission of the clustered requests using intra-slice

and inter-slice resource allocation, as given in (Perveen, Patwary, and Aneiba, 2019).

C) Cooperative slice elasticity for resource allocation: In the case of insufficient
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Algorithm 12: Cluster request admission by inter-slice resource allocation
Input: (s− 1) ∈ S, (s + 1) ∈ S, Rs

A = 0 or Rs
A < Rx, Update slice

learning bounds (Bs
l , Bs

u) via (4.58) and (4.59).
begin

if (Bs
l < vx ≤ Bs

u) then

if (R(s−1)
A ≥ Rx) ∨ (R(s+1)

A ≥ Rx) then
Admit xth request and assign the resources.

Update R(s−1)
A or R(s+1)

A .
Calculate resource utilisation U.
Compute respective Q value

end

else
Reassess vx

Compute Algo. 11
end

end

primary slice capacity Cs and privacy constraints, cooperative slice elasticity is pro-

posed to accommodate demand. Through this feature, the primary slice capacity

extends to an absolute value by a certain elasticity index, denoted as δ(se). The neigh-

bouring slice capacity (C(s+1) or C(s−1)) will be temporally allocated to the primary

slice s for a defined time period, as expressed below.

Cs = Cs + δ(se)(C
(s+1) + C(s−1)) . (4.62)

Thus, the rejection ratio or Q(se) value after intra-slice, inter-slice, and coopera-

tive slice elasticity admission and resource allocation will be as follows:

Q(se)(ab(t−1)
) = bX − a(ia)b − a(ie)b − a(se)

b = bX − a(ia, ie, se)
b , (4.63)

and

Q(se)(ag(t−1)) = gX − a(ia)g − a(ie)g − a(se)
g = gX − a(ia, ie, se)

g . (4.64)

Algorithm 13 presents the proposed resource allocation approach with the co-

operative slice elasticity. This contingency solution is one of the key features of the

proposed work. It implements capacity elasticity among the slices and captures the

slice policies, which are defined by the mobile network operator.



Chapter 4. Admission Control with Multi-Objective Optimisation 150

Algorithm 13: Admission control with cooperative slice elasticity

Input: s ∈ S, Rx ̸= 0, vx, Cs ̸= 0.

if (Bs
l < vx ≤ Bs

u) then

if (Cs ≥ Rx) then

Admit xth request and assign the resources.

Update Rs
A.

Calculate resource utilisation U.

Compute respective Q value

else
Update slice capacity bounds Cs via (4.62)

Compute Algo. 13

end

else
Reassess vx

Compute Algo. 11

end

4.4.5.3 Slice Resource Scheduling: Along with optimised admission control, re-

source scheduling also has a significant impact on network QoS. An adequate slice

scheduling guarantees support for diverse QoS requirements of different use cases,

as identified by the International Telecommunication Union (ITU) (Schmidt, Chang,

and Nikaein, 2019). One of the important measures to quantify network QoS is the

resource utility estimation on efficient scheduling. Additionally, the shape of the

utility function varies in line with the device application, as well as with network

characteristics (Kuo and Liao, 2008; Ojijo and Falowo, 2020). In the proposed work,

traffic demand is categorised into two types: (1) best-effort QoS slice traffic demand,

and (2) guaranteed Soft-QoS slice traffic demand. Thus, the goal of the proposed

multi-slice resource scheduling is efficient resource allocation among clustered slice

requests to maximise resource utilisation and overall throughput. The utility func-

tion is the projection of slice request demand on allocated and desired resources (Tan

et al., 2015; Han et al., 2019). Accordingly, the uth request utility U(Rxu) is obtained
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by the following equation:

U(Rxu) =


φ epq, Rxu < Rd

(1− φ) e−pq − 1 Rxu ≥ Rd,
(4.65)

where Rxu and Rd represent the achieved and desired resources of the uth slice re-

quest, p is the difference between the achieved and desired resources, q and φ rep-

resents the utility function slope and the utility function curve slope (as in Tan et al.,

2015). The achieved resources, Rxu , can be obtained as

Rxu =
νxu

∑L
xu=1 νxu

rxu , (4.66)

where ν as a channel condition is the non-negative resource share of the slice request

among clustered requests. rxu is the peak rate or maximum achievable rate of the uth

request from the cluster x. The aggregate resource allocation to all clustered requests

should be equivalent to or less than the total slice capacity Cs. The γu, minimum

guaranteed rate requirement of the uth soft QoS traffic device is non-negative and

non-zero (i.e., Rxu ≥ γu > 0). In the case of best-effort traffic, γu can be zero such

that γu = Rd = 0. Thus, (4.65) can be rewritten as

Ub(Rxu) = (1− φ) e−qRxu − 1. (4.67)

The marginal utilities, denoted as u(Rxu), of the achieved resource can be com-

puted by taking the derivative of (4.65) and can be expressed as

u(Rxu) =
dU(Rxu)

d(Rxu)
=


φqepq, Rxu < Rd

(1− φ) qe−pq Rxu ≥ Rd.
(4.68)

By utility U(Rxu), the xth cluster utility U(Rx) is the sum of individual utilities,

as in (Caballero et al., 2018), and can be obtained as

U(Rx) =
L

∑
xu=1

U(Rxu) , (4.69)
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where, U(Rx) is computed with regards to best-effort and/or guaranteed soft clus-

ter demand, which are represented as Ub(Rx) and Ug(Rx), respectively. Now, slice

utility can be obtained as

Us =
X

∑
x=1

αxU(Rx) , (4.70)

whereby, αx determines that the cluster x is admitted to the slice s. Accordingly, the

overall network utility U over the slices from set S is derived as

U =
S

∑
s=1

Us. (4.71)

Network utility maximisation is key to optimal resource scheduling and alloca-

tion. Thus, resource allocation problems to the clustered best-effort and soft QoS

traffic are formulated in terms of the maximisation of the utility function, as proved

mathematically in the following:

Lemma 1. Assumed that slice s is serving massive heterogeneous traffic with the best-effort

QoS cluster demand only. To ensure maximum slice utilisation, the maximum aggregate

resource allocation to the X number of clusters belonging to best-effort QoS demand from

the slice s will be equivalent to or less than the total capacity of the slice Cs. This can be

expressed mathematically as

max :
X

∑
x=1

αxUb(Rx) = U(R(b,x)) ≤ 1 , (4.72)

and

Cs ≥ Rs
b =

X

∑
x=1

R(b,x), s.t. R(b,x) > 0 , (4.73)

where R(b,x) determines the resources assigned to the best-effort cluster x on request, Rs
b is

the slice assigned aggregate resources to X number of admitted clusters, and Ub(Rx) is the

x cluster acquired utility from the slice and U(R(b,x)) is the overall slice utility with respect

to best-effort demand.
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Proof. To prove the statement accordingly and achieve an optimal solution, the La-

grange function has been considered.

L = U(R(b,x)) + λ
(
Cs − Rs

b
)
. (4.74)

Its assume the gradient of L (denoted as ∇L), according to R(b,x) and λ, is equal

to zero, and simplified as follows.

u(R(b,x)) = λ
d
(

Rs
b

)
d(R(b,x))

, (4.75)

∇Lλ = Cs − Rs
b,

Cs = Rs
b, (4.76)

where Cs is the slice capacity as in (4.73) and u(R(b,x)) is the best-effort cluster request

marginal utility that gives us the slope of the utility curve φ, and Rs
b

R(b,x)
will gives the

slope of utility function q, where utilisation will be at a maximum.

Lemma 2. Suppose slice s is serving massive heterogeneous traffic with soft QoS demand

only. To ensure maximum slice utilisation, the maximum aggregate resource allocation to

the X number of clusters belonging to soft QoS demand from the slice s will be equivalent to

or less than the total capacity of the slice Cs. This can be expressed mathematically as

max :
X

∑
x=1

αxUg(Rx) = U(R(g,x)) ≤ 1, (4.77)

and

Cs ≥ Rs
g =

X

∑
x=1

R(g,x), s.t. R(g,x) > 0, (4.78)

where R(g,x) determines the resources assigned to the guaranteed soft cluster x on request,

Rs
g is the slice assigned aggregate resources to X number of clusters, and Ug(Rx) is the x

cluster acquired utility from the slice and U(R(g,x)) is the overall slice utility with respect to

soft demand.
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Proof. Let’s prove the statement using the Lagrange function.

L = U(R(g,x)) + λ
(
Cs − Rs

g
)
. (4.79)

Let’s consider the gradient of L (denoted as ∇L) according to R(g,x) and λ, equal

to zero and simplify it.

Let’s consider the gradient of L (denoted as ∇L) according to R(g,x) and λ, is

equal to zero and simplified as follows.

u(R(g,x)) = λ
d
(

Rs
g
)

d(R(g,x))
, (4.80)

∇Lλ = Cs − Rs
g,

Cs = Rs
g, (4.81)

where Cs is the slice capacity as in (4.78) and u(R(g,x)) is the soft cluster request

marginal utility that gives the slope of the utility curve φ, and
Rs

g
R(g,x)

will gives the

slope of utility function q, where the utilisation will be at a maximum.

Lemma 3. Let’s assume slice s is serving incoming heterogeneous traffic with both best-

effort and soft QoS demand. To ensure maximum slice utilisation, the maximum aggregate

resource allocation to the number of clusters belonging to best-effort and guaranteed soft

demand from the slice s will be equivalent to or less than the total capacity of the slice Cs.

Mathematically

max :
Xb

∑
x=1

αxUb(Rx) +
Xg

∑
x=1

αxUg(Rx) = U(R(b,x)) + U(R(g,x)) ≤ 1 , (4.82)

and

Cs ≥
Xg

∑
x=1

R(b,x) +
Xg

∑
x=1

R(g,x) = Rs
b + Rs

g , s.t. R(g,x) > 0, R(b,x) > 0 . (4.83)

Proof. Let’s prove the statement using the Lagrange function.

L = U(R(b,x), R(g,x)) + λ
(
Cs − (Rs

b + Rs
g
)

. (4.84)
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Let’s consider the gradient of L (denoted as ∇L) according to Rs
b, Rs

g as in (4.75)

and (4.80), and λ equal to zero to simplify it.

u(R(b,x)) = λ
d
(

Rs
b

)
d(R(b,x))

, and u(R(g,x)) = λ
d
(

Rs
g
)

d(R(g,x))
,

∇Lλ = Cs − (Rs
b + Rs

g),

Cs = Rs
b + Rs

g . (4.85)

Subsequently,
u(R(b,x))

u(R(g,x))
will gives the slope of the utility curve φ, and Rs

b
Rs

g
will gives

the slope of utility function q, where the utilisation will be the maximum.

Requests within a cluster are scheduled in descending order based on their max-

imum utility and waiting time in the queue for resource allocation. Resources are

allocated to the clustered requests according to the scheduling order. In the case

of extra resources, the remaining resources are returned to the pool for successful

operations of inter-slice resource allocation or slice elasticity if needed.

4.4.6 Performance Analysis and Results

For performance evaluation of the proposed model, an analytical model is devel-

oped in MATLAB. In this model, a virtual network is established with different sys-

tem parameters, as given in (GSMA, 2019), to support mMTC and eMBB demand.

Traffic load associated with mMTC and eMBB are considered to be in the range of

50 to 250 user requests. Considering the number of supporting slices, queue capac-

ity and threshold waiting time are S = 5, Cs
que = 30, D(x) = 0.2 ms, respectively.

J (1) = [1, 5], J (2) = [10, 80] ms, J (3) = [10−2, 10−7], and J (4) = [10, 100] MHz

are the considered ranges of priority, latency sensitivity, user-service-specific packet

loss, and desired resource demand from the slice belonging to S , respectively. The

overall demand is normalised for simplicity. Through these considered parameters,

outcomes of our proposed SCAC model are shown in Table 4.6 to Table 4.11 and also

discussed in detail in the following:

4.4.6.1 Impacts of Optimisation and Knowledge Transfer on Bottleneck Conges-

tion Reduction: Table 4.6 illustrates the ratio of bottleneck congestion at various
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loads. It can be seen that the acquired congestion from the proposed approach is

significantly lower compared to the ground truth, whereby the results are obtained

without using any approach. The achieved gain with regards to bottleneck conges-

tion control from the proposed approach on p1 (or mMTC traffic) and p2 (or eMBB

traffic) at load 50 is 40% on the ground truth values. The gain with regards to bot-

tleneck congestion control from the proposed approach increases significantly with

increasing load. For example, at load 250, the gains of p1 and p2 over ground truth on

bottleneck congestion are 91% and 74%, respectively. The lower bottleneck conges-

tion is due to clustering of the requests by using optimisation and machine learning

approaches in proportional to the slice queue capacity. Moreover, bottleneck conges-

tion occurring among p1 requests is lower compared to that among p2 requests. The

increasing gain of p1 requests on bottleneck congestion is due to the implementation

of ranking-based and K-mean clustering with optimisation on capacity, as well as de-

lay minimisation. The resource demand from mMTC requests is lower than that of

eMBB requests. Thus, within the range of defined objectives, the proposed approach

results in more users being accommodated from a cluster belongs to the mMTC traf-

fic load. Ranking-based clustering is implemented on p2 to efficiently utilise queue

capacity. The knowledge gained by applying the optimisation approach to p1 is im-

plemented on p2 to acquire an optimal number of requests in each cluster for delay

minimisation. The capacity demand from p2 requests is greater; hence, the number

of clusters on eMBB load would be more with a fewer number of requests in each

to obey the defined objectives. In bottleneck congestion, the proposed optimisation

and knowledge transfer show superiority over the ground truth approach with 2.8%

and 7.8% mean value and 2.8% and 8.2% standard deviation respectively.

TABLE 4.6: Computation of slice bottleneck congestion using op-
timisation and machine learning approaches on load [50, 250] and

Cs
que = 30

Traffic load
Approaches 50 100 150 200 250

Ground truth 40% 63% 72% 84% 87%
Mean: 69.2% Std.: 16.94 %

Knowledge transfer on p2 0% 1.8% 5% 9% 23%
Mean: 7.8% Std.: 8.2%

Optimisation on p1 0% 0% 2.2% 4.1% 7.5%
Mean: 2.8% Std.: 2.8%
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4.4.6.2 Impacts of Proposed Resource Allocation Approaches on Intra-Slice Con-

gestion Reduction: Table 4.7 illustrates the behaviour of intra-slice, inter-slice, and

cooperative slice elasticity-based resource allocation with varied loads. It can be seen

that the achieved request rejection ratio in the case of intra-slice resource allocation

is greater than that achieved using cooperative and inter-slice resource allocation.

Clustered requests are admitted to the particular slices based on their cost estima-

tion value to attain fair admission. After slice allocation, resources are allocated to

the clustered requests in order from the admission queue. When the rejection ratio

begins to increase due to resource scarcity within the slices, the clustered requests

from the admission queue are diverted to neighbouring slices, along with a change

in their cost bounds. Now, the diverted clustered requests are admitted to the neigh-

bouring slices to reduce the rejection ratio that occurs due to intra-slice congestion.

The rejection ratio in cooperative slice elasticity is greater than that of the inter-slice

approach but less than that of intra-slice recourse allocation. This significant dif-

ference from the other two approaches is due to the slice scalability factor. Based on

bounds, each slice is allowed to scale its capacity up to δ value of the available capac-

ity of the neighbouring slice. This results in more requests being admitted compared

to the intra-slice approach but less than inter-slice resource allocation.

TABLE 4.7: Comparison of p1 and p2 requests rejection due to intra-
slice congestion over intra-slice, inter-slice, and cooperative slice

elasticity-based resource allocation at a load of [50, 250]

Resource p1 traffic load p2 traffic load
allocation 50 100 150 200 250 50 100 150 200 250
Intra-slice 0% 18% 44% 52% 56% 30% 45% 63% 74% 78%

Mean: 34% Std.: 21.54% Mean: 58% Std.: 18%
Cooperative 0% 0% 28% 29% 31% 15% 26% 33% 40% 53%

Mean: 17.6% Std.: 14.4% Mean: 33.4% Std.: 12.8%
Inter-slice 0% 0.80% 2.00% 3.17% 5.02% 0% 12% 18% 23% 27%

Mean: 2.2% Std.: 1.8% Mean: 16% Std.: 9.4%

In Table 4.7, at the beginning of the results, the requests belonging to p1 have

a lower rejection ratio in all three cases, due to their resource demand. The lower

resources demand from mMTC leads to smart accommodation of requests and re-

duction of congestion using the proposed approaches. It can be seen that the overall

request rejection ratio increases with increased load. However, the achieved gain of
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the inter-slice resource allocation approach with load 250 is 84% and 91% on coop-

erative and intra-slice resource allocation approaches, respectively. A similar trend

can be seen in the case of p2 requests. Moreover, mean rejection ratio of the clustered

requests of p2 in all three cases is greater than that on p1 for loads between 50 and

250. The greater rejection ratio on eMBB load is due to the aggregate resource de-

mand, which creates more competition for resource allocation among clusters. The

achieved gain of the inter-slice resource allocation approach at the load of 50 is 15%

and 30% on the cooperative and intra-slice resource allocation approaches, respec-

tively. With an increase in load, a similar trend of increase in rejection ratio can be

seen in Table 4.7.

4.4.6.3 Impacts of RL-based Admission Policy on Guaranteed soft and Best-effort

Traffic Load: This section illustrates the performance of the proposed policy-based

admission control approach in terms of rejection ratio of guaranteed soft (p1(g) or

p2(g)) and best-effort (p1(b) or p2(b)) requests at various loads. The aim is to min-

imise the intra-slice rejection ratio of the guaranteed soft requests belonging to ei-

ther mMTC or eMBB. Therefore, an RL-based admission control policy has been

proposed in this work. In the case of congestion, guaranteed soft requests belonging

either to p1 or p2 would have higher priority on best-effort requests for admission

and resource allocation from the slice. The proposed approach is evaluated through

intra-slice (see Table 4.8), inter-slice (see Table 4.9), and cooperative slice elasticity

(see Table 4.10), based resource allocation approaches.

TABLE 4.8: Comparison of guaranteed soft and best-effort request
rejection on RL-based admission policy and intra-slice resource allo-

cation

p1 traffic load p2 traffic load
Requests 50 100 150 200 250 50 100 150 200 250

Best-effort 0% 23% 38% 40% 43% 19% 33% 40% 46% 54%
Mean: 28.8% Std.: 15.96% Mean: 38.4% Std.: 12%

Guaranteed soft 0% 6% 11% 19% 27% 14% 25% 31% 37% 49%
Mean: 12.6% Std.: 9.5% Mean: % 31.2 Std.: 11.7%

As explained earlier, the overall request rejection ratio from intra-slice admission

and resource allocation is greater than that of the other two approaches, as shown

in Table 4.8. At the beginning, the rejection ratio in the case of p1(g) and p1(b) ad-

missions is the same. But as demand increases, rejection ratio increases such that
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at load 250, p1(b) have approximately 37% more rejections as compare to p1(g). The

lower rejection ratio in p1(g) is achieved as a result of the proposed admission pol-

icy, whereby a number of requests are admitted to a particular slice with regards to

their cost value and rewards. Therefore, clustered requests are queued in the ad-

mission queue in order with respect to their rewards. Rewards are set based on the

rejection ratio of the requests in the previous action, as seen in Figure 4.20. Based

on the preferences mentioned in the policy, the acquired reward of the guaranteed

soft requests would be more than the best-effort request on rejection in each action.

Therefore, the rejection percentage of the guaranteed soft is less than best-effort re-

quests in intra-slice admission and resource allocation. A similar trend can be seen

in the case of p2(g) and p2(b). However, the greater number of rejections on p2(g) and

p2(b) compared to p1(g) and p1(b) are due to implementation of knowledge transfer,

which give solutions approximately closer to the optimal solutions, as obtained in

case of p1.

TABLE 4.9: Comparison of guaranteed soft and best-effort request
rejection on RL-based admission policy and inter-slice resource allo-

cation

p1 traffic load p2 traffic load
Requests 50 100 150 200 250 50 100 150 200 250

Best-effort 0% 3% 12% 20% 37% 0% 22% 29% 37% 43%
Mean: 14.4% Std.: 13.3% Mean: 26.2% Std.: 14.9%

Guaranteed soft 0% 0% 0% 0% 0% 0% 7% 14% 21% 25%
Mean: 0% Std.: 0% Mean: 13.4% Std.: 9%

When the rejected requests from intra-slice congestion are diverted to neighbour-

ing slices for admission, rewards will be updated. Accordingly, the guaranteed soft

request would have more preferences on best-effort for admission and resource al-

location due to the change in the rewards, as shown in Table 4.9. The inter-slice

admission and resource allocation attempts to accommodate more guaranteed soft

requests to lower their rejection ratio. Therefore, the rejection ratio of best-effort

requests is significantly more than that of guaranteed soft requests. However, the

overall rejection ratio of guaranteed soft and best-effort requests is significantly less

than that of intra-slice and cooperative slice elasticity-based admission and resource

allocation. It is also noticed that the mean rejection ratio in the case of eMBB traffic

load is more compared to mMTC, as shown in Table 4.9.
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A similar trend can be seen in the case of the cooperative slice elasticity-based

admission and resource allocation approach, as shown in Table 4.10, where the re-

jection ratio of guaranteed soft requests is also less than that of best-effort requests.

Moreover, the overall rejection ratio of cooperative slice elasticity is lower than that

of intra-slice but more than that of inter-slice-based admission and resource alloca-

tion. This is due to the scalability feature of the cooperative scheme, where each slice

has access to δ value of the available resources of the neighbouring slices to admit

the rejected requests. In this way, the primary slice capacity extends to an absolute

value with regards to δ for a particular period, that leads to enhance network perfor-

mance and user-acquired QoE. It is also noticed that the mean rejection ratio in the

case of eMBB traffic load is more compared to mMTC, as shown in Table 4.10. This

is due to more resource demand from eMBB compared to mMTC traffic load.

TABLE 4.10: Comparison of guaranteed soft and best-effort re-
quest rejection on RL-based admission policy and cooperative slice

elasticity-based resource allocation

p1 traffic load p2 traffic load
Requests 50 100 150 200 250 50 100 150 200 250

Best-effort 0% 8% 18% 27% 40% 16% 29% 36% 43% 49%
Mean: 18.6% Std.: 14% Mean: 34.6% Std.: 11.5%

Guaranteed soft 0% 0% 2.3% 4% 10% 14% 24% 30% 37% 44%
Mean: 3.26% Std.: 3.7% Mean: 29.8% Std.: 10.36%

4.4.6.4 Impact of Resource Scheduling on Network Utilisation: Table 4.11 illus-

trates the network utilisation by the guaranteed soft and best-effort requests be-

longing to mMTC (or p1) and eMBB (or p2), respectively. The achieved resource

utilisation is evaluated using intra-slice, inter-slice, and cooperative slice elasticity-

based resource allocation. In the case of p1 requests, resource utilisation is low at

the beginning, due to the lower demand of the mMTC traffic, as shown in Table

4.11. However, with an increase in demand, utilisation increases. Greater utilisation

can be observed on inter-slice admission compared to intra-slice and cooperative

schemes. For example, at a load of 250, the achieved utilisation gain of inter-slice

over cooperative and intra-slice schemes is 28% and 60%, respectively. As in intra-

slice admission, the requests are bound to the specific slices only, which leads to

low utilisation of the slices. In cooperative resource allocation, due to the scalability

factor, utilisation is higher than that of intra-slice but lower than that of inter-slice.
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A similar trend can be seen in the case of p2. However, in the case of p2, due to

higher demand, resource utilisation is significantly more with a gain of almost 8%

in the intra-slice scheme compared to p1, as shown in Table 4.11. With an increase

in the demand of both p1 and p2 requests, utilisation also increases. However, at a

greater load, overall utilisation in the case of p1 load is more than that of p2, due to a

lower rejection ratio. To summarise, the proposed RL-based admission and resource

allocation approach not only reduces Intra-slice congestion but also improves net-

work utilisation. Mean resource utilisation in the case of eMBB traffic load is more

compared to mMTC, as shown in the table below.

TABLE 4.11: Computation of resource utilisation through intra-slice,
inter-slice, and cooperative slice elasticity-based resource allocation

to guaranteed soft and best-effort traffic load [50, 250]

Resource p1 traffic load p2 traffic load
allocation 50 100 150 200 250 50 100 150 200 250
Inter-slice 35% 63% 75% 93% 97% 53% 65% 74% 86% 90%

Mean: 73% Std.: 22.5% Mean: 74% Std.: 13.57%
Cooperative 35% 50% 58% 66% 70% 48% 54% 59% 62% 69%

Mean: 56% Std.: 12.4% Mean: 58.4% Std.: 7%
Intra-slice 26% 30% 33% 37% 38% 28% 32% 35% 40% 47%

Mean: 32.8% Std.: 4.4% Mean: 36.34% Std.: 6.7%

4.5 Summary

In this chapter, three optimised admission control models have been presented for

future wireless networks. In Section 4.2, a novel edge architecture for future core

networks is presented, whereby, a clustering-based signalling optimisation and ad-

mission control model has been presented to derive benefits from the proposed ar-

chitecture. The proposed model is a three-stage approach: Demand analysis and

categorisation, Demand processing system, and Admission control and resource al-

location. Moreover, two popular unsupervised learning algorithms, k-mean and

ranking-based clustering, have been employed in this model to reduce communica-

tion overheads on the edge by reducing signalling redundancy, providing low la-

tency and efficient resource utilisation. The proposed clustering mechanism reduces
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the complexity fromO(U) toO(R) for service signalling andO(N) for resource sig-

nalling. This represents a significant saving in the uplink control plane signalling

and link capacity compared to the results found in the existing literature.

In Section 4.3, a dynamic traffic forecasting and admission control (FAC) model

has been presented for a federated O-RAN in this thesis work. FAC consists of three

stages: Demand and capacity analyser, Network selection and configuration, and

QoS/QoE and traffic flow management. The role of FAC is to predict future traffic

demand to select an optimal network from multiple heterogeneous service networks

and for efficient resource management to assure better tenant-acquired QoE and re-

source utilisation. In this model, a fuzzy-logic-based network selection scheme has

been introduced with a multi-variate admission priority feature for optimal admis-

sion control, and service as well as resource allocation to tenants. A QoS/QoE-based

service monitoring scheme is also presented to update the demand estimates with

the support of a forecasting modifier. The provided service monitoring feature helps

resource allocation to tenants, approximately closer to the actual demand of the ten-

ants, to improve tenant-acquired QoE and overall network performance. FAC out-

performs existing legacy approaches in terms of efficient network utilisation, en-

hanced tenant QoE, and fairness of resource allocation, as well as better user satis-

faction in the provisioning of various heterogeneous services in O-RAN networks.

In Section 4.4, a dynamic slice congestion and admission control model is pre-

sented to minimise the slice rejection ratio that occurs due to bottlenecks and intra-

slice congestion. This model consists of a slice demand analysis and classification

system, a demand clustering and queuing system, and an admission and resource

management controller. Two popular unsupervised learning algorithms, known as

Ranking and K-mean clustering algorithms, along with optimisation and transfer

learning, have been employed for slice request queuing. A unified cost estimation

function is also derived for slice selection to ensure fairness among slice requests.

In view of instantaneous network circumstances and load, an RL-based admission

control policy is also established for taking appropriate action on guaranteed soft

and best-effort slice requests admissions. Intra-slice, as well as inter-slice resource

allocation, along with the adaptability of slice elasticity, are also proposed for max-

imising slice acceptance ratio and resource utilisation. The proposed SCAC model
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and algorithms are analysed by obtaining the rejection ratio, bottleneck congestion,

and utilisation at various traffic loads of mMTC and eMBB. Accordingly, a summary

of the analysis of the presented E-RMAC, FAC, and SCAC models is also presented

in Table 4.12.

TABLE 4.12: Summary of E-RMAC, FAC, and SCAC models analysis

Analysis Mea-
sures

E-RMAC Model FAC Model SCAC Model

Admission ob-
jective

Objective of the E-
RMAC model is link
capacity and latency
optimisation via core
control signalling
redundancy minimi-
sation and efficient
admission control.

Objective of the
FAC model is to
enhance overall net-
work throughput
through efficient re-
source allocation and
utilisation within a
multi-operator envi-
ronment or O-RAN.

Objective of the SCAC
model is the bottleneck
(as well as interslice)
congestion and admis-
sion control in 5G and
beyond networks to
support mMTC and
eMBB traffic demand.

Slice elasticity Slice elasticity not
supportive

Support tenant-aware
slice reconfiguration
from optimised service
network list

Slice reconfigurable
resource bounds for
inter-slice and coop-
erative slice elasticity
based admission and
resource allocation

Tenancy Multi-tenant support Multi-tenant support Multi-tenant support
Slicing domain E2E slice management

and orchestration sup-
port in Edge network

E2E slice management
and orchestration sup-
port in O-RAN net-
work

E2E slice management
and orchestration sup-
port in 5G and beyond
network

Admission
strategy

Multi-objective opti-
misation

Multi-objective opti-
misation

Multi-objective opti-
misation

Optimisation
Algorithm

Unsupervised learn-
ing and NSGA-II

SMC based particle fil-
tering and NSGA-II

Unsupervised learn-
ing, NSGA-II, rein-
forcement and transfer
learning

Admission do-
main

Intra and inter-slice
admission and re-
source allocation

Intra and inter-slice
admission and re-
source allocation

Intra/inter-slice and
cooperative slice elas-
ticity based admission
and resource alloca-
tion

Admission effi-
ciency

The average admis-
sion efficiency of the
E-RMAC model over
a fully loaded edge
network is 98% due
to lower signalling re-
dundancy in the ac-
cess and core of the
edge network.

The average admis-
sion efficiency of the
FAC model over a
fully loaded O-RAN
network is 94.12% due
to the availability of
various heterogeneous
RATs and optimised
admission control.

The average admission
efficiency of the SCAC
model over a fully
loaded 5G network is
95% due to the pro-
posed clustering and
optimised admission
control.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Dynamically optimised admission control is considered a promising solution for ef-

ficient resources management in future wireless networks. This approach exploits

the nature of user demand and network resource statistics for more appropriate net-

work selection and management of heterogeneous traffic flow in future networks

(i.e. 5G and beyond). This occurs in such a way that it improves overall user-

acquired QoE and network QoS. By applying this approach, a number of admission

control models were considered in this research. Based on user preferences from de-

mand analysis, available network opportunities were identified for admission con-

trol and resource allocation in a dense network. However, dynamically selecting an

optimal network with regard to numerous heterogeneous user-demand characteris-

tics at an agreed SLA becomes a challenging task. This thesis has contributed to the

research by proposing dynamically reconfigurable admission control models using

optimisation and advanced machine learning approaches (i.e. unsupervised learn-

ing, reinforcement learning and transfer learning) for network QoS and user QoE

enhancement.

In Chapter 3 of this thesis, a novel dynamical slice allocation and admission con-

trol (DSAAC) model has been presented for 5G and beyond networks, in which a

unified cost estimation function is proposed for dynamic optimising slice allocation

and admission control. This model considers varied user demands, as well as mul-

tiple real-time network resource characteristics. These characteristics include user
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and slice required bandwidth, data rate, priority, latency sensitivity, and cost rev-

enue. Moreover, to maximise network utility, adjustable minimum and maximum

slice resource bounds have also been derived. In the case of user blocking from

the primary slice due to congestion or resource scarcity, a set of admission control

and resource allocation algorithms has been derived, such as inter-slice admission

control and resource allocation algorithm, and adaptability of slice elasticity for re-

source allocation algorithm. These algorithms ensure efficient utilisation of network

slices on optimal admission control. For the access network control signaling re-

dundancy minimisation, a novel optimised signaling and admission control (SAC)

model is also presented for 5G and beyond networks in Chapter 3. In this model,

a three-stage approach including pre-clustering analysis, usage-specific clustering,

and a signalling optimisation and admission mechanism has been introduced. This

model deals with the usage and user-device-specific heterogeneity in a single-layer

approach instead of a two-layer approach. By reducing redundancy in demand, the

unsupervised ML-based clustering approach implemented reduces the additional

burden on the network in terms of unnecessary resource utilisation and computa-

tional time. Thus, signalling redundancy reduction from the cluster decreases the

massive amount of unnecessary control messages flowing into the network. Even-

tually, the proposed models are evaluated in terms of GoS, network utility, mean

delay, throughput, uplink signalling load, and admission gain. The results obtained

are also compared with those of relevant strategies from the literature, suggesting

that the proposed optimised admission control models outperform their existing

counterparts. From the comparative results, it is observed that a flexible but effi-

cient decision metric can be obtained through the accumulation of user demand and

network resource characteristics. The proposed models provide explicit definitions

of the requirements of network slice characteristics, which leads to better admission

control and resource utilisation to ensure enhanced network QoS and user-acquired

QoE.

A novel learning-based optimised edge redundancy minimisation and admis-

sion control (E-RMAC) model for 5G/6G edge networks has been presented in Chap-

ter 4. The proposed model is a three-stage approach including demand analysis and
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categorisation, demand processing system, and admission control and resource al-

location. Moreover, two popular unsupervised learning algorithms, K-mean and

Ranking-based clustering, were employed in this model to reduce communication

overheads at the edge by reducing signalling redundancy, and providing low la-

tency and efficient resource utilisation. The proposed clustering mechanism reduces

the complexity from O(U) to O(R) for service signalling, and O(N) for resource

signalling. This represents a significant saving in the uplink control plane signalling

and link capacity compared to results found in the existing literature. Moreover, a set

of optimisation algorithms are also established in this model for efficient resource al-

location and admission control, whereby K-mean is employed in combination with

NSGA-II. In Chapter 4, a dynamic traffic forecasting and admission control (FAC)

model for a federated O-RAN (also called FORAN in this thesis) is presented. FAC

also consists of three-stages: the demand and capacity analyser, network selection

and configuration, and QoS/QoE and traffic flow management. The role of FAC is

to predict future traffic demand for optimal network selection from amongst mul-

tiple service networks and resource management to assure better tenant-acquired

QoE and network utilisation. A fuzzy-logic-based network selection scheme with

a multi-variate admission priority feature is introduced in this model for optimal

admission control and service allocation to tenants. Moreover, a QoS/QoE-based

service monitoring approach is also presented to update demand via a forecasting

modifier. This is to allocate resources approximately closer to the actual demand of

tenants to improve tenant-acquired QoE and overall network QoS. The proposed

models outperform existing legacy approaches in terms of control signalling re-

dundancy reduction, admission gain, more efficient network utilisation, enhanced

tenant-acquired QoE and resource allocation fairness, as well as better user satisfac-

tion levels in the provisioning of various heterogeneous services in edge and O-RAN

networks, respectively.

A novel slice congestion and admission control (SCAC) model is presented in

Chapter 4 to minimise the slice rejection ratio that occurred due to a bottleneck, as

well as intra-slice congestion. This model consists of a slice demand analysis and

classification system, a demand clustering and queuing system, and an admission

and resource management controller. The demand analyser analyses the requested
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slice QoE from the given service type, which isolates the guaranteed soft-QoE slice

requests from best-effort QoE requests through a classification mask. The demand

processing system clusters the requests using two popular unsupervised learning

algorithms known as Ranking and K-mean clustering algorithms, along with multi-

objective optimisation and TL techniques for slice request queuing that reduces bot-

tleneck congestion. Next, a unified cost estimation function for slice selection was

derived to ensure fairness among slice requests. In view of instantaneous network

circumstances and load, an RL-based admission control policy was established to

take appropriate action on the arrival of guaranteed soft and best-effort slice requests

for admission into the network. Intra-slice and inter-slice resource allocation, along

with the adaptability of slice elasticity, are proposed for maximising slice acceptance

ratio and resource utilisation. The proposed model and algorithms are analysed by

obtaining the ratio of bottleneck congestion that occurred at varying loads of mMTC

and eMBB after applying clustering along with the multi-objective optimisation and

transfer learning approaches. The requests’ rejection ratio and resource utilisation

are also acquired for analysis of the proposed intra-slice, inter-slice, and coopera-

tive slice-elasticity-based admission and resource allocation. The results obtained

suggest that the proposed optimised clustering approach has a significantly greater

impact in terms of congestion control on the massive volume of network load than

the conventional approaches. Moreover, the proposed RL-based admission policy

ensures fairness among requests on admission and a lower rejection ratio due to the

proposed resource allocation schemes. It can also be observed that the difference in

outcomes achieved from implementing optimisation and transfer learning for clus-

tering is not significant. Precise solutions to a particular problem would be acquired

from the optimisation; however, they are computationally complex and costly in

terms of resources. Instead, knowledge sharing from an already optimised problem

to another relevant problem can speed up the process and preserve resources. Thus,

among ML techniques, transfer learning is considered an effective approach for slice

congestion and admission control in future networks.
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5.2 Research Objectives Achievement

The achievements regarding the research objectives mentioned in Chapter 1 are as

follows:

1. How to enhance Grade-of-Service (GoS) in future networks with limited or

without scaling up network capacity to support a massive amount of hetero-

geneous traffic demand?

- Efficient slice allocation and admission control has been achieved within 5G

and beyond networks via dynamically reconfigurable slice resource bounds,

inter-slice and intra-slice resource allocation, and adaptation of the slice elas-

ticity approach, as presented in Section 3.2 and disseminated internationally

via the publication C01 (i.e. 2019 IEEE 89th Vehicular Technology Conference).

2. Can signalling redundancy minimisation in access and core networks enhance

admission and resource utilisation without degrading network QoS and user-

desired QoE demand within a dense environment?

- For the first time access and core network control signalling redundancy min-

imisation is achieved via two unsupervised learning approaches, along with

optimisation for efficient admission control and resources utilisation within

future networks, as presented in Sections 3.3 and 4.2, and disseminated in-

ternationally via the publications C02 (2020 IEEE International Conference on

Communications) and C03 (2021 IEEE 5G World Forum).

3. Can the coexistence of the various heterogeneous cellular technologies (2G,

3G,4G, and 5G) and their integration help enhance overall network throughput

via efficient resource allocation fairness among users and resources utilisation

within a multi-operator environment?

- In the O-RAN environment, resource allocation fairness among users and effi-

cient network resources utilisation has been achieved via demand forecasting

and fuzzy-logic-based optimal admission control and resource allocation, as

presented in Section 4.3 and disseminated internationally via the publication

J01 (2020 Springer Journal).
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4. How can the techniques of ML and optimisation help in bottleneck and inter-

slice congestion control along with efficient admission control in 5G and be-

yond networks to support mMTC and eMBB traffic demand?

- Optimisation and ML approaches have been implemented for the first time

for bottlenecks, as well as intra-slice congestion control. Moreover, reinforce-

ment learning-based admission control policy, intra/inter-slice, and coopera-

tive slice elasticity based resource allocation approaches have been proposed to

enhance admission gain and achieve efficient network utilisation, as presented

in Section 4.4.

5.3 Research Limitations

The proposed optimised admission control models have novel contributions to the

research. However, there are some limitations associated with the presented re-

search. For example, the DSAAC model is not supported in a multi-slice connec-

tivity environment. By the network slicing concept given in (3GPP, 2018c; Alliance,

2016), a user can be connected to multiple slices simultaneously. However, the user

was supposed to be connected to one slice only for the service provisioning of a

particular application in the DSAAC model. This is because when the user will be

connected to multiple slices for different applications, signalling redundancy would

occur that would overwhelm the network and create congestion. Moreover, due to

mobility admission control on handover would be complicated. If high mobility

users are to be considered in DSAAC, slices can lose their ability of uniform utili-

sation. Similarly, in the SAC model redundancy minimisation in data transmission

was not been considered. For data redundancy minimisation in the access network,

advanced multiplexing techniques are required to be investigated in depth, which

was out of the scope of this research.

The E-RMAC model is not supported in a multi-edge connectivity environment.

As, edge-to-edge configuration can be different, which can induce complexity in the

network operations. Users profiles can be stored on various edges due to mobility.

Some of the edges would not have much capacity to store users profiles. Moreover,
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each edge has to update user’s profile consistently with changes in user application-

specific characteristics. In the FAC model, due to changes in network circumstances

or tenant preference, a tenant might be redirected to the next available network slice

from the optimised network operator list to ensure the provisioning of agreed QoE.

In this case, the tenant’s slice reconfiguration induces latency in the communication.

As the fuzzy logic-based technique has been applied in the FAC model for optimal

network selection on the forecasting demand. To apply optimisation on actual de-

mand is costly in terms of computation time and memory. Therefore, for the tenant’s

slice reconfiguration more optimised policies are required. The FAC model is evalu-

ated in the simulated environment in MATLAB. However, for a more robust evalua-

tion and in-depth analysis real experimental environment is required. Similarly, the

optimised clusters and their associated number of requests can be acquired by ap-

plying optimisation techniques in the SCAC model but optimisation itself takes time

to converge to an optimal solution, which is not acceptable in communication. More-

over, the acquired knowledge in the SCAC model is from a simulated environment,

which gives performance on the target task less than the optimisation task. There-

fore, a real environment is mandatory to acquire a more robust and well-trained

model from optimisation and knowledge transfer.

5.4 Future Work

This research contributes to the theme of dynamic admission control by using ML

and optimisation algorithms. In this section, I am going to discuss possible direc-

tions of research work into future wireless networks. There are several possible di-

rections for dynamically reconfigurable slice allocation and admission control, as

suggested in Chapter 3. The most obvious is user connectivity to multiple slices si-

multaneously, which can generate several issues. For example, simultaneous access

to multiple access and core NFs creates a burden on the network. Moreover, mobil-

ity issues such as handover would be complex, as the user is connected to multiple

slices. Little mobility can be confused with the handover, which should be managed

dynamically during slice setup and maintenance. Hence, there is a need for a more-

optimised design for decision-making that can efficiently manage user multi-slice
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connectivity and mobility, and create less burden via reducing redundant connectiv-

ity to NFs. Redundancy in requests of numerous user devices for connectivity can

be eliminated with the proposed SAC model. However, redundancy in non-critical

data transmission also needs to be reduced to achieve efficient resource utilisation.

Multiple devices can send similar data, such as in IoT and MTC. Redundancy in

their data needs to be filtered and compressed via optimisation, along with help of

learning approaches. Redundancy reduction in non-critical data transmission would

prohibit the entry of raw or low-quality data into the network to improve overall

network QoS and user-acquired QoE.

In Chapter 4, the design of a novel edge architecture to support the visions of

advanced technology is still an open topic. This emerging topic requires further re-

search that would cover other issues. For example, multiple-edge self-configuration,

management and synchronisation, and the need for network slicing support with

efficient resource sharing strategies among slices of various edges (inter-slice ) or

within slices (intra-slice) of a particular edge. Multiple configured edges could have

a single, shared edge core to cope with security issues and signalling redundancy.

Another emerging topic is support for O-RAN in future networks and its integra-

tion with existing technologies and physical infrastructure. O-RAN is a few years

old only, so it needs a significant amount of research in dynamic admission control

and resource management via optimised network policies and standards. More-

over, learning and model training using optimisation, AI, and ML approaches can

help O-RAN dynamically support various heterogeneous future use cases with re-

duced latency and higher reliability. As, 5G applications have an extremely diverse

set of requirements such as high-definition real-time streaming, automated vehicu-

lar systems, and remote operations using robotic hands. These applications require

a higher data rate with low latency and higher accuracy in transmission. Any sig-

nificant disturbance in the network can have a catastrophic impact on critical appli-

cations such as automated vehicle systems. Therefore, the networks must be mon-

itored regularly to address any performance decline before it leads to the failure of

any of these applications due to congestion in the network. However, it takes a lot of

time and money to regularly test the network strength of an entire city for optimis-

ing admission control and resource management that can minimise the congestion
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in the network. As discussed in Chapter 4, TL has proved efficient in various do-

mains of image processing and computer vision. Therefore, a key topic is currently

the role of TL in cellular networks. Now, how TL can address admission and con-

gestion control issues of a 5G and beyond network needs a significant amount of

research. Inefficient admission control can occur in a network due to data scarcity.

Moreover, the huge amount of raw and multidimensional data creates congestion

and induces additional latency in a network. Training and optimisation are costly

for operators in terms of resources and time. Hence, the availability of well-trained

and open-source TL-based models is essential for wireless communication. In my

future work, the plan is to enhance the models presented in Chapter 4 and develop

a well-trained model in a real multi-edge computing and O-RAN environment for

admission control and resource management. For this project, data would be col-

lected from various locations of the Birmingham City Council United Kingdom via

an android application. The collected data would be analysed and tested on the

enhanced model to provide an optimal solution for admission control and resource

management of an entire city network without human resources.
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