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Abstract
Today, we have access to a vast data amount, especially on the internet. Online news agencies play a vital role in this data 
generation, but most of their data is unstructured, requiring an enormous effort to extract important information. Thus, 
automated intelligent event detection mechanisms are invaluable to the community. In this research, we focus on identifying 
event details at the sentence and token levels from news articles, considering their fine granularity. Previous research has 
proposed various approaches ranging from traditional machine learning to deep learning, targeting event detection at these 
levels. Among these approaches, transformer-based approaches performed best, utilising transformers’ transferability and 
context awareness, and achieved state-of-the-art results. However, they considered sentence and token level tasks as separate 
tasks even though their interconnections can be utilised for mutual task improvements. To fill this gap, we propose a novel 
learning strategy named Two-phase Transfer Learning (TTL) based on transformers, which allows the model to utilise the 
knowledge from a task at a particular data granularity for another task at different data granularity, and evaluate its perfor-
mance in sentence and token level event detection. Also, we empirically evaluate how the event detection performance can be 
improved for different languages (high- and low-resource), involving monolingual and multilingual pre-trained transformers 
and language-based learning strategies along with the proposed learning strategy. Our findings mainly indicate the effective-
ness of multilingual models in low-resource language event detection. Also, TTL can further improve model performance, 
depending on the involved tasks’ learning order and their relatedness concerning final predictions.
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1  Introduction

Nowadays, a huge amount of data is generated, especially 
on the internet, mainly by social media platforms and online 
news agencies [1, 2]. However, a vast majority of this data 
is unstructured and cannot be easily understood. Also, 
the high amount of generation makes it harder for human 
beings to analyse data and extract important information 

manually. Thus, automated intelligent mechanisms are cru-
cial for effectively extracting the information available in 
data. Such mechanisms will be beneficial to a wide range of 
applications, including knowledge base construction, ques-
tion answering and text summarising [2–4]. In this research, 
we target automatically detecting events from news media 
text to support knowledge base constructions. We specially 
focus on detecting events at sentence (event sentence iden-
tification) and token (event trigger and argument extraction) 
levels of news articles considering their fine-grained infor-
mation coverage. Developing such an approach would be 
beneficial to multiple parties, such as governments, disaster 
management teams and social and political science com-
munities, but it has been a challenge due to the diversity and 
nuance in events and high accuracy requirements [5].

Considering the importance of event detection, various 
approaches have been proposed by previous research rang-
ing from traditional machine learning (ML) to deep learning 
(DL), as further described in Sect. 2. Overall, the earlier 
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work extensively relied on language-specific linguistic tools, 
resources and features, only focusing on high-resource lan-
guages such as English [6–8]. Such approaches mainly suf-
fered from expandability issues and the inability to support 
low-resource languages. With the evolution of deep neu-
ral networks and their effectiveness, later research focused 
more on DL-based approaches to detect events [9–12]. 
This mostly eliminated the requirement to rely on linguis-
tic tools, resources and features. However, deep networks 
require more instances for the training process, limiting 
their applicability when training data is scarce [13]. The 
other major challenge experienced by both traditional ML- 
and DL-based approaches is handling text ambiguity. For 
example, the word ‘workers’ in the sentences in Fig. 1 plays 
three different roles. The first sentence does not describe any 
event, but the other two describe events expressed by the 
words (triggers) ‘strike’ and ‘vandalised’. Thus, ‘workers’ 
in sentence (1) is not event-related. However, ‘workers’ in 
sentences (2) and (3) hold event arguments participant and 
target, respectively. It is crucial to focus on textual context 
to resolve such ambiguities while extracting event details.

Meta and transfer learning approaches have been popu-
larly used in recent research to tackle data scarcity issues 
[14]. The main idea behind meta learning is learning to 
learn. It seeks an algorithmic solution for a problem with few 
training instances based on a set of models which perform 
a wide range of tasks [15]. Transfer learning pre-trains a 
model on an upstream dataset first and fine-tunes it on down-
stream tasks later, focusing more on learning representations 
and data source [14]. Due to the knowledge transfer, fine-
tuning can be effectively done using a few training instances 
from the downstream task. Among these techniques, transfer 
learning has been popularly used recently [16, 17]. In the 
domain of natural language processing (NLP), this tendency 
is mainly influenced by the evolution of transformer-based 
language models or encoders (e.g. BERT), which can be 
pre-trained on the unlabelled text and fine-tuned for a wide 
range of downstream tasks [18]. Also, transformer architec-
ture is capable of capturing contextual details in the text, 

disambiguating word senses. For simplicity, we will refer 
to the transformer encoder models as ‘transformers’ in the 
below content.

Transformer-based approaches have also been proposed 
for event detection recently, setting the state-of-the-art per-
formance [5, 19]. However, to the best of our knowledge, 
all the available transformer-based approaches for news 
media event detection considered sentence and token level 
detection as two separate tasks and built separate models 
per task, ignoring their interconnections, which are help-
ful for mutual learning. Targeting this gap, in this research, 
we propose a novel transfer learning strategy named Two-
phase Transfer Learning (TTL) based on transformers. This 
strategy allows the model to learn a task, following another 
related task in different data granularity (i.e. sentence or 
token), transferring the knowledge from the first task. We 
apply this learning for sentence and token level event detec-
tion tasks involving different pre-trained transformer models 
and comprehensively discuss their performance and involved 
tasks’ transferability in this paper.

We also investigate how pre-trained transformer mod-
els can be effectively used in cross-lingual event detection, 
reporting a comprehensive experimental study, which was 
not available with previous work as far as we are aware. 
We use the multilingual version of GLOCON gold standard 
dataset [4], which has sentence and token level data, cover-
ing three languages: English, Portuguese and Spanish, for 
our experiments. At the sentence level, the training data dis-
tribution over these languages is approximately 23:1:3. At 
the token level, the English training dataset is 37 times larger 
than other language datasets. These statistics mainly explain 
the wide usage and data availability of English. Based on 
them, we consider English as a high-resource language and 
the other two as low-resource languages. We involve dif-
ferent language-based learning strategies: monolingual, 
multilingual, transfer and zero-shot learning, and different 
pre-trained transformer models for our experiments to ana-
lyse their impact on high- and low-resource language pre-
dictions at the sentence and token levels of event detection. 
We further extend these analyses with TTL to investigate its 
performance with other language-based learning strategies. 
Figure 2 illustrates a summary of the learning strategies we 
devised in this study, including the explored applications 
using different data types. To maintain simplicity, we did 
not include zero-shot learning in this diagram because it is 
applicable to all other strategies.

In summary, the main contributions of the paper are as 
follows. 

1.	 We propose a novel learning strategy named Two-phase 
Transfer Learning (TTL), involving different levels of 
data granularity and the capabilities of state-of-the-art 
transformer models, and release its implementation as 

Fig. 1   Sample sentences from news articles with word ‘workers’. 
Bold text represents the triggers in event-described sentences. Word 
‘workers’ is highlighted in yellow if it represents an event argument 
and in green otherwise
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an open-source project1 to support related research and 
applications.

2.	 We apply the proposed strategy to sentence and token 
level tasks of news media event detection and discuss its 
effectiveness and applicability.

3.	 We empirically evaluate how the performance of news 
media event detection at the sentence and token levels 
can be improved for low-resource languages involving 
language-based learning strategies and cross-linguality 
in transformer models along with TTL, answering the 
following research questions:

RQ1: Can an event detection model based on a multilin-
gual transformer, which is only fine-tuned for a particular 
language, outperform a model based on a monolingual trans-
former of that language?

RQ2: Can a high-resource language improve the event 
detection performance of a low-resource language using the 
cross-linguality in transformer models?

RQ3: Can two-phase transfer learning on transformers 
using different event detection tasks improve the perfor-
mance of involved tasks in monolingual and multilingual 
settings?

The rest of this paper is organised as follows. Section 2 
discusses the previous work on event detection in news 

media, covering sentence and token level tasks. Section 3 
details the problem targeted by this research. Section 4 
introduces transformer-based neural network architectures 
for event detection, the proposed learning strategy (TTL) 
and the involved language-based learning techniques. Sec-
tion 5 describes the experimental setups we used for our 
experiments, including the datasets, pre-trained transformers 
and evaluation metrics. Section 6 comprehensively describes 
the conducted experiments and obtained results along with 
discussions which address the targeted research questions. 
Finally, Sect. 7 summarises the conclusions with aimed 
future work.

2 � Related work

This section outlines the different approaches involved in 
previous research for sentence and token level event detec-
tion from news media text. Sentence level task targets rec-
ognising sentences that describe events, and token level task 
targets extracting event triggers and arguments from the 
event-described sentences. Overall, there was a high focus 
on supervised approaches to extract events from news media, 
mainly due to the less dynamicity of this media. Thus, we 
targeted supervised approaches proposed for sentence and 
token level extractions in our review. Also, we aimed to 
review recent papers, mainly published within the last dec-
ade, to maintain the recency of this review.

2.1 � Event sentence identification

Event sentence identification is mostly considered as a sen-
tence/text classification task. Previous research has proposed 
various approaches for this task, ranging from traditional 
machine learning (ML) to deep learning (DL). Recently, 
more focus has been given to DL-based methods, especially 
transformer-based models considering their effectiveness. 
More details of different approaches and their evolution over 
time are further discussed below.

Traditional machine learning: Early research commonly 
used text feature-based approaches with traditional classifi-
cation algorithms to identify event sentences. For instance, 
[6] proposed using a Support Vector Machine (SVM) model 
trained on a wide range of features, including stemmed 
terms, part of speech (POS) tags, noun chunks, sentence 
length, sentence position and presence/absence of negative 
terms. Another research also utilised an SVM model to make 
predictions in Dutch text using different Bag of Word (BoW) 
features with token n-grams, character n-grams, lemma and 
POS tags, and special indicators such as numerals, sym-
bols and time [20]. Similarly, the Logistic Regression algo-
rithm was also involved in classifying event sentences using 
informative character n-gram and token unigram features 

Fig. 2   Learning strategies involved in this study

1  Our implementation is publicly available on https://​github.​com/​
HHansi/​Multi​Event​Miner.

https://github.com/HHansi/MultiEventMiner
https://github.com/HHansi/MultiEventMiner


	 International Journal of Machine Learning and Cybernetics

1 3

[21]. However, as a major limitation, BoW ignores the word 
semantics and order, losing important information [10]. 
Even though n-grams capture word order to a certain extent, 
they lead to data sparsity issues [22]. Also, the involvement 
of language-based lexical features makes these approaches 
less expandable to different languages. Considering these 
limitations and following the effectiveness of word embed-
ding models, deep learning-based approaches became more 
famous for text classification tasks in later research.

Deep learning: Among different neural networks, Long 
Short-Term Memory (LSTM) [23] and Convolutional Neural 
Network (CNN) [24] models were popularly used for text 
classification by previous research. LSTMs can learn long-
term dependencies using their memory cells more effectively 
than vanilla Recurrent Neural Networks (RNN) [22]. CNNs 
consist of multiple convolutional and pooling layers, which 
can capture local text features such as syntax and semantics 
of words within a sentence [9]. Mostly, word embeddings 
were used to input text to these networks. For instance, [10] 
used pre-trained Word2vec embeddings with an LSTM net-
work to classify sentences. The same approach is followed 
by [12], but they used a modified network with an attention 
layer on top of LSTM layers. Another research proposed a 
joint CNN and LSTM network combining their character-
istics and used Word2vec embeddings for the input layer 
[22]. More modified networks such as Convolutional RNN 
(CRNN), which stacks a convolutional layer on top of an 
RNN and CNN with Attention (CNNA) which has an atten-
tion layer on top of a CNN also suggested by previous work 
[25]. However, one major limitation of deep neural networks 
is the high labelled data requirements to effectively fine-
tune model weights from scratch. Also, the traditional word 
embeddings do not capture contextual details in the text, 
which are essential to understanding sentences. Transformer-
based approaches were proposed recently to overcome these 
limitations.

Transformers: Transformers were designed with the abil-
ity to fine-tune for a downstream task by transferring the 
knowledge gained during the pre-training process [18]. This 
knowledge transfer allows learning the downstream task 
effectively even with fewer training instances, overcoming 
a major limitation in deep neural networks. Also, the trans-
former architecture can preserve contextual details in the 
text while generating representations. Overall, transformers 
recently improved the performance of many NLP applica-
tions with state-of-the-art results [18]. Following this trend, 
transformers are also involved in event sentence identifica-
tion. A simple linear layer is commonly added on top of 
the transformer model to support text classification. Follow-
ing this approach, [26] used pre-trained monolingual and 
multilingual BERT [18] models to classify event sentences. 
Similarly, [27] used RoBERTa [28] English model. Rather 
than using a multilingual model, they suggest translating 

text in other languages to English to make predictions using 
their model. Also, XLM-R [29] model is commonly used for 
multilingual predictions [19, 30]. It generates cross-lingual 
embeddings, which attempt to ensure words with the same 
meaning in different languages map to almost the same vec-
tor. Thus, it showed improved results than other multilingual 
models and translation-based approaches, which could suffer 
from language errors. Deviating from the common approach, 
[31] suggested adding an LSTM layer on top of a transformer 
and getting soft voting of BERT, RoBERTa and DistilBERT 
as the final prediction. Also, another research experimented 
with the weighted ensemble of RoBERTa model and Lex-
Stem: a two-channel CNN with normal and stemmed text 
[32]. Overall, these modified approaches did not outperform 
the simple architecture with a large pre-trained transformer 
and linear output layer, which can consider state-of-the-art 
for event sentence identification [33].

2.2 � Event trigger and argument extraction

Event trigger and argument extraction is commonly consid-
ered as a token classification problem by previous research. 
Similar to event sentence identification, various approaches 
based on traditional machine learning (ML) and deep learn-
ing (DL) have been used in previous research for this extrac-
tion task. A trend to involve transformers is also noticed 
in recent research. We discuss more details about available 
approaches below.

Traditional machine learning: Most early works used lin-
guistic features with classification models to extract event 
triggers and arguments. For example, [8] built separate clas-
sification models using the SVM algorithm, treating trigger 
and argument extraction as separate tasks. They used vari-
ous linguistic features, including tokens, POS tags, depend-
ency paths, and synonyms from semantic dictionaries, for 
their models. Another research proposed using cross-entity 
inference for event extraction, focusing on the possibility 
of missing events by only using the local features [7]. In 
addition to using the knowledge in the training corpus, they 
used information from the Web to understand the back-
ground of entities. They also involved SVM classifiers in 
making final predictions. Rather than treating trigger and 
argument extraction as separate tasks, [34] suggested a joint 
system based on structured perceptron with beam search, 
allowing to improve the predictions of each task mutually. 
This approach also highly depends on linguistic features 
such as POS tags, lemmas, synonyms and dependencies. 
Overall, following the complexities in event extraction, tra-
ditional approaches extensively rely on linguistic features or 
knowledge bases resulting in less generality across different 
languages. Thus, similar to the trend with event sentence 
identification, there was more focus on deep learning-based 
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approaches afterwards, considering their ability to extract 
underlying features in text automatically.

Deep learning: With event token extraction also, LSTM 
and CNN are the most commonly used neural network archi-
tectures by previous research. However, Bidirectional LSTM 
(Bi-LSTM) models were used over LSTM since both past 
and future states of the sequence are important for token 
labelling. Also, rather than using simple linear layers, Con-
ditional Random Fields (CRFs) were used for output genera-
tion since they take context into account. For instance, [11] 
used a Bi-LSTM network with a CRF layer to extract event 
entities. They incorporated Word2vec and GloVe embed-
dings to feed text into the network. Ref. [35] used the same 
architecture with fastText and Multilingual Unsupervised 
and Supervised Embeddings (MUSE) to extract triggers. 
Also, more advanced embeddings such as ELMo, character 
and POS were used with this architecture [21]. Different 
variants of CNNs were also proposed for event extraction. 
Ref. [9] involved separate Dynamic Multi-pooling CNNs 
(DMCNNs) with Word2vec embeddings to extract triggers 
and arguments. Another research used path-aware graph CN 
with BERT embeddings [36]. Like traditional approaches, 
some DL-based approaches also treated trigger and argu-
ment extraction as a joint task to allow mutual learning and 
mitigate error propagation. For instance, [37] trained a joint 
Bi-LSTM model with Word2vec embeddings. Ref. [3] added 
dependency bridges over Bi-LSTM to utilise dependency 
relations for joint learning. A combination of Bi-LSTM and 
DMCNN was also proposed using an advanced embedding 
layer formed by concatenating BERT, GloVe, entity type, 
POS and dependency relation embeddings for joint event 
extraction [2]. Overall, there was a high focus on improv-
ing network architectures to improve event extraction in 
previous research. However, similar to the scenario with 
event sentence identification, these networks require a large 
amount of data for the from-scratch learning limiting their 
usability and performance. Thus, there is a recent trend to 
use transformers, mainly considering their effectiveness and 
transferability.

Transformers: Transformers have been involved with 
event trigger and argument extraction recently, considering 
their effectiveness. Following the DL-based approaches’ 
trends, [35] designed a network with a CRF layer on the 
BERT model to extract event triggers. They used mono-
lingual and multilingual BERT models to analyse the 
performance in different languages. Following the simple 
approach, [38] added linear layers on the BERT model per 
token/word to extract triggers. They used a separate BERT-
based model to extract arguments and occupied its input 
with the identified triggers following a pipelined approach. 
However, there was a comparatively high tendency to build 
joint models for trigger and argument extraction using trans-
formers, considering their computational complexities, the 

interconnections of these tasks and error-propagation in 
pipelined approaches. Ref. [32] proposed a joint model by 
adding a Bi-LSTM and CRF layer on the RoBERTa model 
for event extraction. Targeting multiple languages, the 
XLM-R model was used with linear output layers per token, 
following the same trend noticed with event sentence identi-
fication [19, 39]. Also, this simple architecture outperformed 
other modifications, being the state-of-the-art for event trig-
ger and argument extraction [33].

2.3 � Summary

In summary, we can mention that transformer-based mod-
els have state-of-the-art results for event sentence identifi-
cation and trigger and argument extraction, outperforming 
traditional ML- and DL-based approaches. However, as 
described above, most approaches treated these tasks sepa-
rately without considering their interconnections. Being an 
exception, [21] proposed a bottom-up approach from token 
to sentence level. They used a BERT sequence labelling 
model with linear output layers to extract triggers and argu-
ments and then labelled a sentence as an event sentence if it 
contains a trigger. This approach mainly suffers from error 
propagation and also does not account for the possibility 
of involving sentence level knowledge for token level pre-
dictions. Targeting these gaps, in this research, we aim to 
propose a novel transfer learning strategy with transformers, 
which can learn from sentence to token level and vice versa 
to utilise knowledge from one level to support the predic-
tions at the other level.

Considering the language coverage of available meth-
ods, early research mostly focused only on English. How-
ever, there is an increased focus on different languages with 
transformers, mainly involving multilingual models. A few 
approaches also used translation-based techniques to support 
different languages, but multilingual models can be consid-
ered more effective since translations could suffer from lan-
guage errors. However, to the best of our knowledge, there is 
no comprehensive study that analyses different transformer 
models’ performance involving different learning strategies 
targeting multilingual event sentence, trigger and argument 
extraction available in the literature. Filling this gap, we tar-
get conducting a thorough analysis in this research using the 
commonly used learning strategies and the one we propose.

3 � Problem definition

The problem targeted by this research is automatically 
detecting events in news articles. Different data granulari-
ties are targeted by previous research with event detection. 
At the coarsest level, news articles that contain interesting 
events are filtered [40]. Narrow downing the output, some 
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approaches are focused on identifying events at the sen-
tence level of news articles [12, 20]. Going for a further 
fine-grained level, extracting event details at the token level 
of sentences also targeted [37, 38]. Among these levels, we 
focus on detecting event details at the sentence and token 
levels in this research considering their fine granularity to 
extract more focused or detailed information. Also, we aim 
to preserve multilingualism in our approaches, including the 
ability to process low-resource languages.

Previous research used different definitions for events. For 
example, in [41], an event is considered as something that 
happens at a particular time and place. Automatic Content 
Extraction (ACE) Program2 defined an event as a specific 
occurrence involving participants or something that happens 
or a change of state. Considering the available definitions, 
we generally define an event using the Definition 1.

Definition 1  Event: An incident or activity which happened 
at a certain time and was reported in a data source.

Rather than focusing on general events from different 
domains, mostly, previous research focused on specific 
events such as natural disasters [40], economic events [20] 
and political events [33]. Specific focus allows the algorithm 
to learn the characteristics of the targeted domain and make 
effective predictions. Also, in reality, users mostly need to 
know events in interesting domains more accurately rather 
than knowing all the events from different domains [1]. 
Following this tendency and requirement, we also focus on 
extracting specific event details in this research.

At the sentence level, we target recognising whether a 
sentence is an event sentence or not. From the computing 
perspective, this is a sequence classification problem with 
binary labels. Following ACE and Global Contentious Poli-
tics Dataset (GLOCON)3 annotation manuals, we define an 
event sentence more comprehensively using the Definition 2.

Definition 2  Event sentence: A sentence that describes an 
event or contains an expression (word or phrase) directly 
refers to an event.

At the token level, we target extracting event triggers and 
arguments from sentences. Previous research treated event 
trigger and argument extraction as separate [9, 38] as well as 
joint [19, 42] tasks. Considering the recent applications and 
resource limitations, we aim to build a joint system in this 
research. Similar to the sentence level, from the computing 
perspective, this task is a token classification problem with 

multiple labels. We define an event trigger and argument 
using Definitions 3 and 4, following ACE and GLOCON 
manuals.

Definition 3  Event trigger: The main word that most clearly 
expresses an event occurrence.

Definition 4  Event argument: An entity, temporal expres-
sion, or value serves as a participant or attribute of an event.

In summary, this research aims to develop approaches for 
event sentence identification and event trigger and argument 
extraction with the ability to support different languages, 
including low-resource languages.

4 � Methodology

This section presents our methodology for news media 
event detection at the sentence and token levels following 
the recent trends in natural language processing (NLP), spe-
cifically the successful applications of transformer-based 
models and their cross-lingual and knowledge transferring 
abilities. Section 4.1 describes the transformer-based neural 
network architectures we used for sentence and token level 
tasks. Following it, in Sect. 4.2, we propose a novel Two-
phase Transfer Learning (TTL) strategy combining the char-
acteristics of traditional transfer learning, multi-task learn-
ing and transformers. Using this approach, we aim to transfer 
knowledge from data at different granularities (i.e. sentence 
and token levels) in this research. Also, to the best of our 
knowledge, this is the first attempt to transfer knowledge 
from different data granularities to identify events in news 
text. Finally, Sect. 4.3 summarises the different language-
based learning strategies we involved to analyse the cross-
lingual capabilities of the proposed architectures.

4.1 � Neural network architectures

We use transformer-based architectures for news media 
event detection following their success in various NLP tasks 
being the state-of-the-art [18, 43, 44]. Apart from provid-
ing strong results than Recurrent Neural Network (RNN)-
based architectures, most transformers such as BERT [18], 
XLM-R [29] provide pre-trained language models on large 
corpora to support effective fine-tuning of downstream tasks. 
These models are composed of multi-layer bidirectional 
transformer encoders using the self-attention mechanism 
[45] to generate linguistically powerful contextual language 
representations. Such an encoder takes a text sequence as 
the input and returns sequence and token representations/
embeddings, which can use to learn downstream tasks while 
preserving the linguistical features of the original text.

2  Details of ACE are available on https://​www.​ldc.​upenn.​edu/​colla​
borat​ions/​past-​proje​cts/​ace.
3  Details of GLOCON are available on https://​glocon.​ku.​edu.​tr/.

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://glocon.ku.edu.tr/
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Transformer input format: Allowing to handle various 
downstream tasks, transformers are designed to take a sin-
gle text sequence or a pair of sequences as the input. Dif-
ferent special tokens such as [CLS] and [SEP] are used to 
indicate the input text’s organisation. [CLS] is added as the 
first token. If there are two sequences in the input, [SEP] 
is placed in between to indicate the separation. Follow-
ing the raw text formatting, the text needs to convert to a 
token embedding using a tokeniser. Additionally, a segment 
embedding that holds boolean values (0 and 1), separating 
the segments and a position embedding with increasing 
numbers from 0, indicating the token positions are required 
to populate the final input. The sum of these three embed-
dings forms the input to a transformer model.

Transformer output format: The final hidden state of a 
transformer encoder provides representations for each token 
in the input. The first token ([CLS])’s output holds a repre-
sentation corresponding to the entire sequence, which can be 
used as a contextual sequence embedding or with sequence-
based predictions. The other outputs contain token repre-
sentations per input token, which can be used as contextual 
word embeddings or with token-based predictions. To use a 
transformer model for a downstream task, an additional layer 
appropriate to the targeted task, like a classification head, 
needs to be put on top of the output layer.

In this research, we target identifying event sentences and 
their triggers and arguments. We consider event sentence 
identification as a sequence classification problem and event 
trigger and argument extraction as a token classification 
problem. Both problems require processing a single sen-
tence per instance. Thus, we only use the [CLS] token while 
formatting the inputs to the transformer without the [SEP] 

token. We add softmax layer(s) on top of the transformer 
model to conduct both classifications. For sequence classifi-
cation, we feed the output of [CLS] to a softmax layer using 
the architecture shown in Fig. 3 since this output represents 
the entire sequence. For token classification, we feed the 
outputs of each token to separate softmax layers, as shown 
in Fig. 4. A softmax layer contains k neurons equivalent to 
the number of classes targeted by the classifier. Each neuron 
follows the softmax activation function in Eq. (1) return-
ing probabilities per class ( Pi ). zi and zj represent input and 
output vectors. After calculating the probabilities per class, 
we pick the class with maximum probability as the final 
prediction of both tasks.

4.2 � Two‑phase transfer learning (TTL)

Transfer learning (TL) is the process of improving a target 
predictive function of task Tt at a target domain Dt using the 
related knowledge gained from a task Ts at a source domain 
Ds where Ds ≠ Dt or Ts ≠ Tt [46]. This knowledge transfer 
also helps mitigate overfitting and underfitting problems 
that arise with deep neural networks due to data limitations, 
allowing to use such network capabilities for a wide range of 
tasks where training data is scarce [43, 47]. Mainly, there are 
two TL types based on the consistency between the source 
and the target feature and label spaces [48]. If both source 
and target feature and label spaces are equivalent ( Xs = Xt 
and Ys = Yt ), it is named homogeneous TL, and if either 

(1)Pi =
ezi

∑k

j=1
ezj

Fig. 3   Transformer-based sentence/sequence classification architec-
ture

Fig. 4   Transformer-based token classification architecture
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feature spaces or label spaces are not equivalent ( Xs ≠ Xt 
and/or Ys ≠ Yt ), it is named heterogeneous TL. Compara-
tively, homogeneous learning is commonly used in previous 
research, but heterogeneous learning is more advantageous 
considering its ability to learn from different feature/label 
spaces [49]. However, most available solutions handle the 
heterogeneity by transforming feature/label spaces into com-
mon spaces with the possibility of losing important informa-
tion in data or original data structure [50, 51].

The concept of multi-task learning (MTL) is popularly used 
in recent research to handle heterogeneous tasks [52, 53]. MTL 
optimises a model for more than one task simultaneously lev-
eraging the generalisation across all tasks [54]. MTL learns 
the interconnections between tasks rather than transferring 
knowledge from a related task as with TL. Also, this learning 
does not require space transformations similar to heterogene-
ous TL. However, this strategy requires having shared train-
ing instances across all tasks, which are unavailable in many 
scenarios, including low-resource language-based predictions.

Considering the above limitations in heterogeneous TL 
and MTL, we propose a hybrid strategy named Two-phase 
Transfer Learning (TTL) in this research. We mainly uti-
lise the characteristics of transformers for our approach. 

Transformer models are originally designed with the ability 
to fine-tune a pre-trained language model for a downstream 
task by adding an additional output layer [18]. This allows 
transferring the knowledge from the language model to the 
downstream task predictions. Following this idea, we pro-
pose fine-tuning a pre-trained transformer for two related 
tasks in two sequential phases, unlike the simultaneous 
learning that happens with MTL. We add different output 
layers to the model depending on the targeted task at each 
phase but share the transformer weights among the tasks 
allowing the phase-2 task to learn from the phase-1 task in 
addition to the original language model.

We target event detection tasks in two data granularities 
(i.e. sentence and token level) with TTL in this research, 
mainly to analyse how their relationships and data sizes 
affect the learning. These levels have intermediate relation-
ships, specifically from the fine-grained (token) level to the 
coarse-grained (sentence) level, which helps derive the final 
labels. For example, if a sentence has an event trigger, it 
is an event sentence. Considering the data sizes, there is a 
tendency to have more labelled data at the sentence level 
than the token level due to the data annotation complexi-
ties at token data [4]. We use the transformer architectures 

Fig. 5   Two-phase classification 
architecture
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introduced in Sect. 4.1 for sentence and token level classifi-
cations with TTL as shown in Fig. 5.

For the sentence to token level transfer, the transformer 
model is initially fine-tuned for the sentence level predic-
tions by feeding the output of [CLS] to a softmax layer, 
which predicts probabilities per class in the sentence level, 
P0,P1, ...Pk , as illustrated in Fig. 5a. Then, the fine-tuned 
transformer weights are again fine-tuned for the token level 
predictions by feeding the output of each token to separate 
softmax layers, which predicts the token level class prob-
abilities, P′

0
,P

′

1
, ...P

′

k
 , utilising the transformer’s pre-trained 

and phase-1 fine-tuned/sentence level knowledge. The same 
architectures are trained conversely for the token to sentence 
level transfer as shown in Fig. 5b. Initially, the transformer 
model is fine-tuned for the token level predictions by adding 
multiple softmax layers per token and then fine-tuned again 
for the sentence level predictions using a single softmax 
layer over the [CLS] output, transferring the transformer’s 
pre-trained and phase-1 fine-tuned/token level knowledge 
for sentence level predictions.

4.3 � Language‑based learning

To analyse the cross-lingual capabilities of the proposed 
architectures, we involve the following language-based 
learning strategies for fine-tuning. These strategies are used 
in different areas, including event detection [5, 19], transla-
tion quality estimation [43] and word sense disambiguation 
[55], but to the best of knowledge, no comparison covering 
all the strategies for news media event detection is available. 
Furthermore, we analyse the impact of these strategies on 
TTL in this paper. We specifically focus on improving low-
resource language predictions using the knowledge in high-
resource language data. 

1.	 Monolingual learning trains a model using data from a 
single language. This is the common learning strategy, 
and it mostly performs well for high-resource languages 
with the provision of enough data to fine-tune a trans-
former [5, 19].

2.	 Multilingual learning trains a model in multiple lan-
guages simultaneously. This strategy can supply more 
training data to the model, overcoming data scarcity in 
low-resource languages [19]. Also, multilingual learning 
can generally help optimise the model effectively for dif-
ferent languages capturing their interconnections, unlike 
monolingual learning. Additionally, a model that sup-
ports multiple languages is more resource-effective and 
easily manageable than a monolingual model collection. 
However, this learning is only applicable to multilingual 
transformers.

3.	 Language-based zero-shot learning uses a model fine-
tuned for the same task in another language(s) to make 

predictions. It is commonly used when no training data 
are available for a particular language and is especially 
beneficial for low-resource languages [5, 55]. This strat-
egy became more popular in NLP tasks recently follow-
ing the cross-lingual abilities in transformer models.

4.	 Language-based transfer learning is a variant of TL that 
transfers knowledge from one language to another. This 
strategy fine-tunes a model learned in a particular lan-
guage for the same task in another language. Popularly, 
models trained on high-resource languages are fine-
tuned for low-resource languages following this idea 
[43, 56].

5 � Experimental setup

This section presents the experimental setup of our archi-
tectures for event sentence identification and event trigger 
and argument extraction. We used a multilingual news event 
dataset, which is further described in Sect. 5.1 for our experi-
ments. More details about the evaluation metrics we used are 
available in Sect. 5.2. Considering the targeted languages, 
we involved four popular transformer models, including a 
multilingual model, for our experiments, and their details 
are summarised in Sect. 5.3. The hyper-parameter configura-
tions we used for our experiments are available in Sect. 5.4. 
Additionally, we follow a common convention to format 
training data combinations along with learning strategies 
while reporting results, and it is explained in Sect. 5.5. We 
implemented all the neural network architectures in Python 
3.74 using the FARM library.5 All our experiments are con-
ducted on a GeForce RTX 3090 GPU.

5.1 � Dataset

We use the multilingual version of GLOCON gold standard 
dataset [4] which is released along with the workshop on 
Challenges and Applications of Automated Extraction of 
Socio-political Events from Text (CASE) in 2021 [33] con-
sidering its recency, open-availability and coverage. This 
dataset is created targeting socio-political events covering 
demonstrations, industrial actions, group clashes, political 
violence, armed militancy and electoral mobilizations. It has 
data from three languages: English, Portuguese and Spanish, 
at different levels of granularity. Also, multiple news sources 
were used to collect data.

In this research, we target identifying event sentences 
and their trigger and argument spans. Thus, we only use 

4  Our codebase in publicly available on https://​github.​com/​HHansi/​
Multi​Event​Miner.
5  FARM is available on https://​github.​com/​deeps​et-​ai/​FARM.

https://github.com/HHansi/MultiEventMiner
https://github.com/HHansi/MultiEventMiner
https://github.com/deepset-ai/FARM
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sentence and token level data of the GLOCON dataset for 
our experiments. Analysing the original data, we noticed 
some instances shared among training and testing splits 
at different levels. Since such occurrences could affect the 
performance of TTL, we removed those instances from 
the training splits. For example, if an instance in token 
level test data is available in sentence level training data, 
it was removed from the training split. Also, we removed 
URLs and repeating symbols from the sentence level data 
because they are uninformative. However, we did not apply 
any processing for token level data that had already been 
cleaned. The sizes of cleaned datasets are summarised in 
Table 1. Comparatively, English has more instances of 
being a high-resource language than others that can be 
considered low-resource languages. Considering the levels 
of granularity, the token level has less data than the sen-
tence level due to the complexities associated with data 
annotation.

Sentence level data have binary labels indicating whether 
a sentence describes an event or not. Positive sample ratios 
for English, Portuguese and Spanish are 18%, 10% and 12%, 
respectively. There are many non-event sentences because 
full documents were sampled to get sentences without apply-
ing any filtering. Since this imbalance illustrates the real sce-
nario and provides more training samples from the targeted 
domain to the models, we directly experimented with these 
data without pruning them. Token level data are provided 
with labels indicating event triggers and arguments. Overall, 
there are six argument types, and the details of their distribu-
tions over different languages are given in Table 2.

5.2 � Evaluation metrics

Each architecture we experiment with has its own goal, fol-
lowing the SOTA approach [57]. However, these goals are 
fixed and do not depend on a state/condition as in self-adap-
tive systems, described in the SOTA approach. The sentence 
and token level architectures target accurate predictions at 
each respective level. The two components of the two-phase 
architecture have local goals of learning each task well, cap-
turing the knowledge (i.e. statistical regularities) at the given 
granularity (token or sentence), which leads to a global goal 
of making accurate predictions for the final task using both 
tasks’ knowledge.

To evaluate the achievement of these goals and compare 
architectures, we use different variants of the F1 score, 
which are appropriate for sentence and token levels, follow-
ing CASE 2021 event detection shared task [33]. Generally, 
F1 is calculated as the weighted harmonic mean of precision 
and recall. In the below equations, TP, FP and FN refer to 
the true positive, false positive and false negative counts, 
respectively.

For the sentence level evaluations, we use macro averaged 
F1. It is the unweighted mean of F1 scores calculated per 
label/class as in Eq. (5). n represents the total number of 
classes, and F1i represents the per-class F1.

For the token level evaluations, we use the F1 measure intro-
duced with CoNLL 2003 shared task [58]. This score also 
follows the Eq. (4) but considers text spans and their labels 
to compute TP, FP and FN values. It marks a span correct 
only if it exactly matches the actual label.

5.3 � Pre‑trained transformers

We use three monolingual and one multilingual pre-trained 
transformer models based on the targeted languages for 
our experiments. As monolingual models, BERT (bert-
large-cased) [18], and its variants, BERTimbau (BER-
Timbau large) [59] and BETO (BETO cased) [60] models 
trained in English, Portuguese and Spanish are used. As the 

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2 × Precision × Recall

Precision + Recall

(5)Macro F1 =

∑n

i=1
F1i

n

Table 1   Number of sentences in sentence and token level datasets

Language Sentence level Token level

Train Test Train Test

English (En) 22481 1290 3248 311
Portuguese (Pt) 1001 1445 87 192
Spanish (Es) 2613 686 87 190

Table 2   Label distribution of 
token level data

Label Number of spans

En Pt Es

Trigger 4595 122 127
Participant 2663 73 79
Place 1570 61 14
Target 1470 32 52
Organizer 1261 19 23
Etime 1209 41 32
Fname 1201 48 39
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multilingual model, XLM-R (xlm-roberta-large) [29] model 
trained in 100 languages, including the targeted languages 
is used. Multilingual BERT (mBERT) and XLM-R models 
were commonly used as multilingual transformers by previ-
ous research, but mostly the XLM-R model outperformed 
the mBERT model, considering its cross-linguality and 
larger training corpus [5, 29]. Therefore, we only use the 
XLM-R model for this research. We used HuggingFace’s 
model repository [61] to obtain the pre-trained transformers. 
Table 3 summarises more details about these models.

5.4 � Hyper‑parameters

To maintain consistency among architectures to gener-
ate comparable results, we used a common set of hyper-
parameters for our experiments. For all models, we fixed the 
maximum sequence length to 128, considering the sequence 
length distribution of targeted data. Considering the compu-
tational complexities associated with transformers, we used 
the batch size of eight, the learning rate of 1e−5 with Adam 
optimiser and epochs of three with early stopping patience 
of 10. We set evaluation steps allowing 6–13 evaluations 
per training epoch depending on the size of the training 
dataset. A split of 10% from training data is used for these 
evaluations, and the rest is used for training. To mitigate the 
impact on results by the randomness associated with deep 
neural networks, we used the majority-class self-ensemble 
approach [64], following recent trends [5, 19]. With this set-
ting, per experiment, we trained five models initialised with 
different random seeds and took the majority vote of model 
predictions as the final prediction.

5.5 � Training formats

We involve language-based learning strategies introduced in 
Sect. 4.3 along with the TTL for our experiments. Thus, we 
use a common convention to format training data depending 
on the learning strategy to report our results consistently, as 
described in Table 4.

6 � Results and discussion

This section presents the evaluation results of event sen-
tence identification and trigger and argument extraction 
using our architectures and the proposed learning strate-
gies. While applying language-based learning strategies, 
we only allowed transfer and zero-shot learning from high-
resource to low-resource languages because the other way 
is not sensible. Under one-phase learning (Sect. 6.1), we 
report the results of transformer-based sequence and token 
classification architectures only learning the corresponding 
level of data. Also, we address the research questions: RQ1 
and RQ2 under this section, analysing both sentence and 
token level results. Section 6.2 reports the results of two-
phase architecture, which learns both sentence and token 
level data in a sequential manner and answers the RQ3 based 
on our findings.

6.1 � One‑phase learning

We report and discuss the results of transformer-based 
sequence and token classification architectures by learning 

Table 3   Transformer model details, including the number of trained 
languages (#Lgs.), layers (L), hidden states ( H

m
 ), attention heads (A), 

total parameters (#Params) and the vocabulary size (V). Under token-

isers, SPM refers to Sentence Piece Model, and BPE refers to Byte 
Pair Encoding

 Model  #Lgs.  Tokeniser  L H
m

 A  V  #Params

BERT 1 WordPiece [62] 24 1024 16 30k 335 M
BERTimbau 1 WordPiece [62] 24 1024 16 30k 330 M
BETO 1 BPE [63] 12 1024 16 32k 110 M
XLM-R 100 SPM [63] 24 1024 16 250k 550 M

Table 4   Training data formats with learning strategies

Strategy Format Description

Monolingual learning L1 Learn from data in language L1
Language-based TL L1→L2 Learn the same task from data in language L1 and then from data in language L2
Multilingual learning L1+L2+⋯+L

n
Learn from data in multiple languages L1,L2,…L

n
 simultaneously

TTL L(1) − L(2) Learn the first phase (task 1) from data in language/language combination L(1) 
and the second phase (task 2) from data in language/language combination 
L(2)
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one-phase (sentence or token level data) in Sects. 6.1.1 and 
6.1.2, respectively.

6.1.1 � Event sentence identification

For one-phase learning of event sentence identification, we 
conducted experiments using transformer-based sequence 
classification architecture (Fig. 3), involving the language-
based learning strategies introduced in Sect. 4.3. To build 
classifiers, we used monolingual transformers: BERT, 
BERTimbau and BETO and the multilingual transformer: 
XLM-R. We refer to the models based on monolingual 
transformers as monolingual models and the models based 
on multilingual transformers as multilingual models in 
the below content for simplicity. The obtained results are 
reported in Table 5.

According to results in Table 5, monolingual models 
trained in a particular language outperformed the multi-
lingual models trained in that language for high-resource 
(En) and low-resource (Pt and Es) languages. However, with 
zero-shot learning, the multilingual model trained on the 
high-resource language made more accurate predictions for 
low-resource languages than monolingual models. A similar 
trend is also noticed with the multilingual models, which 
transfer learned a low-resource language after the high-
resource language. The multilingual model performance 
could be further improved with multilingual learning than 
with monolingual and multilingual models trained using 
other learning strategies.

Based on our results, we answer RQ1 and RQ2, focusing 
on event sentence identification below.

RQ1: Can an event detection model based on a multilin-
gual transformer, which is only fine-tuned for a particular 

language, outperform a model based on a monolingual 
transformer of that language?

During our experiments, we analysed the performance of 
models based on monolingual and multilingual transformers 
for identifying event sentences in three languages (En, Pt 
and Es). Comparatively, the monolingual transformers we 
used (i.e. BERT, BERTimbau and BETO) are pre-trained 
on fewer data than that particular language data used by the 
multilingual transformer (i.e. XLM-R). However, the larger 
the vocabulary size, the transformer has a high number of 
parameters to learn during the fine-tuning (Table 3). Thus, 
as can be seen in our results in Table 5 under monolingual 
learning, when a few training instances are available for 
fine-tuning, monolingual models can learn better in iden-
tifying event sentences than the multilingual models, even 
though the monolingual transformers have seen fewer data 
during language modelling. For the high-resource language 
(En) with 22.5k training instances, the monolingual model 
improved the macro F1 by 3.5% more than the multilingual 
model. Smaller the training data size, monolingual models 
showed more improvements than the multilingual model. 
For Pt, the XLM-R-based model did not converge (behaved 
as a majority class classifier), but BERTimbau returned 71% 
macro F1, and for Es, BETO returned 31.4% higher macro 
F1 than XLM-R.

In summary, multilingual transformer typically requires 
more training data to fine-tune for the event sentence iden-
tification task than the monolingual models, considering 
the parameter counts. Thus, if data are insufficient for fine-
tuning, multilingual models cannot perform better than 
monolingual models. This claim is further supported by the 
variations in F1 gaps between multilingual and monolin-
gual models for different languages with different training 
data sizes mentioned above. Higher the data size, a low gap 

Table 5   Sentence level 
results: macro F1 values using 
transformer-based sequence 
classification architecture

Strategy and Language indicate the language-based learning strategy and language of test data. NT shows 
the models which were not trainable due to data limitations. Zero-shot learning scenarios are marked with 
‡ , and the best results per language are in bold

Strategy Transformer Training data Language

En Pt Es

Monolingual learning BERTimbau Pt – 0.7068 –
BETO Es – – 0.7958
BERT En 0.8253 – –
XLM-R Pt – NT –
XLM-R Es – – 0.4814
XLM-R En 0.7900 0.8518‡ 0.8121‡

Transfer learning XLM-R En→Pt 0.7991 0.8429 0.7547‡

En→Es 0.8174 0.8871‡ 0.8199
Multilingual learning XLM-R En+Pt 0.8307 0.8585 0.7547‡

En + Es 0.8265 0.8596‡ 0.8305
En + Pt + Es 0.8127 0.8665 0.8448
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is returned, indicating that the multilingual model can per-
form on par or better than the monolingual models if enough 
training data exists, agreeing with the conclusions made by 
the XLM-R model’s original study [29].

RQ2: Can a high-resource language improve the event 
detection performance of a low-resource language using the 
cross-linguality in transformer models?

Targeting this question, we involved different learning 
strategies to analyse the cross-lingual capabilities of the 
multilingual transformer model we chose (XLM-R). With 
zero-shot learning, the multilingual sentence classification 
model, which only learned the high-resource language (En), 
outperformed the monolingual models that learned corre-
sponding low-resource languages (Table 5). Agreeing with 
our findings for RQ1, the XLM-R model fine-tunes well 
when sufficient training instances are provided. Utilising 
its cross-linguality, effective predictions can make for low-
resource languages, learning high-resource languages.

Also, we obtained improved sentence classification 
results for low-resource languages from multilingual mod-
els, which transfer learned the low-resource language (Pt or 
Es) after the high-resource language (En) (Table 5). As can 
be seen in Fig. 6, with transfer learning (TL), multilingual 
models return high macro F1 values from the beginning of 
evaluation steps, unlike with direct learning. This indicates 
that even with few training instances, a model can learn well 
following the knowledge obtained during high-resource lan-
guage training and the cross-lingual abilities of the trans-
former. Even for the scenario with Pt where the model did 
not converge with direct learning due to data limitations, 
TL returned macro F1 scores around 80% throughout the 

evaluations emphasising its effectiveness (Fig. 6a). However, 
no notable improvements are recognised, mostly compar-
ing the multilingual models which transfer learned from 
the high-resource language and models which only learned 
the high-resource language. This indicates that if the low-
resource language datasets are very small compared to 
the high-resource language data, they cannot significantly 
impact the model performance via TL.

Furthermore, we experimented with multilingual learn-
ing. Mostly, models fine-tuned using multilingual learning 
outperformed the models which only learned the high-
resource language or transfer learned a low-resource lan-
guage for sentence level predictions (Table 5). Additionally, 
Fig. 7 illustrates how macro F1 values vary over evaluation 
steps with monolingual and multilingual learning. With 
monolingual learnings, the high-resource language (En) has 
a high F1 value from the second evaluation step, but other 
low-resource languages have very low F1 values over all 
steps. However, with multilingual learning, for all combina-
tions, models return high F1 values (approximately ≥80%) 
throughout all evaluations (Fig. 7d–f). These results reveal 
that a cross-lingual model can train well on each language 
(or adjust its parameters appropriate for multiple languages) 
when it sees all language data together rather than seeing 
the languages separately. Also, this way allows the effective 
utilisation of low-resource language data irrespective of the 
data size, unlike the scenario with TL.

In summary, these findings lead to a positive answer 
to RQ2. High-resource languages can improve the event 
sentence identification performance of low-resource 
languages using cross-linguality in transformer models. 

Fig. 6   Macro F1 scores for the validation sets at different evaluation 
steps of the sentence level training processes, which involved direct 
language learning (Pt, Es) and transfer learning from a high-resource 

language (En → Pt, En → Es) with the sequence classification model 
with XLM-R transformer
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Zero-shot learning can be effectively applied using a mul-
tilingual model that is fine-tuned only on high-resource 
language data for a scenario with no training data avail-
able for a low-resource language. When few training 
instances are available for low-resource languages, a mul-
tilingual model can be fine-tuned effectively by combin-
ing all the data using multilingual learning, outperform-
ing the language-based TL approach.

6.1.2 � Event trigger and argument extraction

For event trigger and argument extraction, we utilised trans-
former-based token classification architecture (Fig. 4) along 
with the language-based learning strategies (Sect. 4.3). How-
ever, we had to skip a few strategies due to training data lim-
itations. For low-resource languages (Pt and Es), token level 
data are minimal ( <100 instances), and thus, monolingual 

Fig. 7   Macro F1 scores for the validation sets at different evalua-
tion steps of the sentence level training processes, which involved 
monolingual (En, Pt, Es) and multilingual (En  +  Pt, En  +  Es, 

En + Pt + Es) learning with the sequence classification model with 
XLM-R transformer. During multilingual learnings, a composition of 
samples from each language is used as the validation set

Table 6   Token level results: 
CoNLL 2003 F1 values using 
transformer-based token 
classification architecture

Strategy and Language indicate the language-based learning strategy and language of test data. Zero-shot 
learning scenarios are marked with ‡ , and the best results per language are in bold

Strategy Transformer Training data Language

En Pt Es

Monolingual learning BERT En 0.7517 – –
XLM-R En 0.7511 0.7043‡ 0.6461‡

Multilingual learning XLM-R En+Pt 0.7678 0.7389 0.6587‡

En + Es 0.7540 0.7151‡ 0.6700
En + Pt + Es 0.7616 0.7441 0.6752



International Journal of Machine Learning and Cybernetics	

1 3

and language-based TL experiments could not be conducted. 
Therefore, we only require the English transformer model: 
BERT and the multilingual model: XLM-R for token level 
experiments. Similar to the above section, we refer to the 
models based on BERT as monolingual models and models 
based on XLM-R as multilingual models to maintain con-
sistency and generality of the content. The obtained results 
are available in Table 6.

Comparatively, token level predictions are less accurate 
than sentence level predictions, emphasising the complex-
ity of the token level task. According to Table 6 results, for 
the high-resource language (En), the monolingual model 
performed slightly better than the multilingual model sup-
porting the claim we made with sentence level results. For 
low-resource languages, good F1 scores ( ≥65% ) could be 
obtained with zero-shot learning on the multilingual model 
trained on the high-resource language. The involvement of 
multilingual learning further improved the results of high- 
and low-resource languages, effectively utilising the few 
labelled instances available with low-resource languages.

Following our results, we answer RQ2, focusing on event 
trigger and argument extraction below. Due to training data 
limitations, we could not train monolingual models for low-
resource languages to compare with multilingual models 
and thus skip addressing RQ1 for the token level. However, 

for En, the monolingual model slightly improved over the 
multilingual model, which is only fine-tuned using that lan-
guage, agreeing with our finding for RQ1 based on sentence 
level results.

RQ2: Can a high-resource language improve the event 
detection performance of a low-resource language using the 
cross-linguality in transformer models?

Like sentence level analysis, we used different learning 
strategies with the selected multilingual transformer model 
(XLM-R) to address this question, focusing on event trig-
ger and argument extraction. However, language-based TL 
could not be applied since there are no enough training 
instances from low-resource languages to learn separately. 
With zero-shot learning, the multilingual token classification 
model, which only learned the high-resource language (En), 
returned good results (F1 scores ≥65%) for low-resource lan-
guages, as can be seen in our results in Table 6. These results 
clearly highlight the cross-linguality of the XLM-R model, 
which can effectively utilise for low-resource language token 
level predictions with no training data.

The token level results were further improved with 
multilingual learning (Table 6), similar to our findings 
with event sentence identification. Multilingual learn-
ing allowed the model to learn using the high resource 
language (En) data and the few training instances of low 

Fig. 8   CoNLL 2003 F1 scores for the validation sets at different 
evaluation steps of the token level training processes, which involved 
monolingual (En) and multilingual (En + Pt, En + Es, En + Pt + Es) 

learning with the token classification model with XLM-R trans-
former. During multilingual learnings, a composition of samples from 
each language is used as the validation set
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resource languages (Pt and Es), which are insufficient to 
build separate models or apply language-based TL. We 
also analysed how the CoNLL F1 scores vary over the 
evaluation steps of each learning setting (Fig. 8). However, 
we do not have monolingual models from each language 
to compare with. Also, we cannot see clear distinctions 
in the F1 scores between the En and multilingual models, 
similar to the sentence level analysis. When low-resource 
language data are limited, the validation split at each set-
ting is almost identical to the En validation split. Thus, 
we see nearly constant behaviour of F1 scores across all 
settings. Even though the improvements are not clearly 
visible over the evaluation steps of the training phase, the 
final predictions on test data emphasise the effectiveness 
of multilingual learning.

In summary, we can also provide a positive answer to 
RQ2 based on token level results. High-resource languages 
can improve the event trigger and argument extraction per-
formance of low-resource languages, using the cross-lingual 
capabilities of transformers. Zero-shot learning can be effec-
tively used in scenarios with no training data. It is effective 
to use multilingual learning when few training instances are 
available from low-resource languages, irrespective of their 
count.

6.2 � Two‑phase learning

In this section, we report and discuss the results of the TTL 
approach along with the pre-trained transformer models 
and language-based learning strategies we involved with 

Table 7   Sentence level results: macro F1 values using two-phase classification architecture, which learns the sentence level task following the 
token level task

Strategy and Language indicate the language-based learning strategy and language of test data. Zero-shot learning scenarios are marked with ‡ , 
and the best results per language are in bold. Highlighted cells indicate the improved F1 scores than only learning sentence data

Table 8   Token level results: CoNLL 2003 F1 values using two-phase classification architecture, which learns the token level task following the 
sentence level task

Strategy and Language indicate the language-based learning strategy and language of test data. Zero-shot learning scenarios are marked with ‡ , 
and the best results per language are in bold. Highlighted cells indicate the improved F1 scores than only learning token data
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one-phase learning. For event sentence identification, we 
trained the model for the token level task before the sentence 
level task using the proposed architecture in Fig. 5b. The 
opposite learning sequence is followed for the event trigger 
and argument extraction (Fig. 5a). The obtained results are 
available in Tables 7 and 8. 

As can be seen in Table 7, TTL (learning token level 
task before sentence level task) improved the performance 
of low-resource language predictions at the sentence level 
in the majority of cases. Multilingual models trained on the 
high-resource language token data before training on low-
resource language sentence data outperformed the multilin-
gual models, which only learned low-resource language sen-
tence data. Also, the multilingual models, which learned the 
high-resource language token and sentence data, returned 
higher F1 values for low-resource languages than the scores 
of monolingual models, which only learned the sentence 
level of that particular language. However, combining lan-
guage-based TL with TTL did not improve the results for 
any language. Contrarily, with multilingual learning, TTL 
performed better in most cases than only learning sentence 
data.

Following the results in Table 8, overall, TTL (learning 
sentence level task before token level task) did not improve 
the token level predictions even though more instances are 
available with sentence data. However, with monolingual 
learning, the multilingual model performance could improve 
for the high-resource language with TTL rather than only 
learning token data. Also, on a few occasions, applying TTL 
with multilingual learning improved the results compared 
to the models that only learned token data. Based on the 
results, we answer RQ3 below.

RQ3: Can two-phase transfer learning (TTL) on trans-
formers using different event detection tasks improve the 
performance of involved tasks in monolingual and multi-
lingual settings?

We analysed the performance of TTL involving the tasks: 
event sentence identification and event trigger and argument 
extraction at two data granularities: sentence and token level. 
Our experiments showed improvements in the sentence level 
predictions in most cases using the models which learned 
token level data beforehand (Table 7). Further analysis on 
variations in macro F1 values over model evaluation steps 
also confirmed that TTL from token level helps sentence 
level learning. As can be seen in Fig. 9, for monolingual and 
multilingual learning, the sentence level learning process 
begins with high F1 scores or achieves high F1 scores in 
a few steps with TTL than the scores obtained by learn-
ing the sentence level task directly. However, in most cases, 
token level predictions were not improved by learning sen-
tence data beforehand, even though more training instances 
are available at the sentence level (Table 8). As shown in 
Fig. 10, during the model training process also, TTL behaves 

similar to learning token data directly. Since token level 
labels directly help resolve sentence level labels, learning the 
token data help the model to improve sentence level predic-
tions. Contrarily, token labels cannot be predicted by seeing 
sentence labels. Thus, learning sentence labels beforehand 
does not help the model much with token level predictions, 
even though the instance count is high.

In summary, TTL can improve the performance of a 
task in monolingual and multilingual settings by learning a 
related task that can help derive the targeted labels during 
the first phase. In other terms, this strategy can mainly be 
used to improve the performance of a coarse-grained task 
based on a related fine-grained task. The task-relatedness is 
more crucial in this learning than the training dataset sizes. 
This strategy is more helpful in scenarios that require mak-
ing predictions for low-resource languages with few or no 
training instances, as data from other languages prepared for 
related tasks can be used.

However, learning two phases requires more training time 
or resources than learning one phase. Yet, the training pro-
cess has no impact on the final model’s size and inference 
time, which are critical for its later usage, as these factors 
only depend on the model architecture. Our analyses fur-
ther confirmed this fact, along with the memory usages and 
inference times reported in Table 9, which are common to a 
particular transformer model without relying on the targeted 
task (i.e. sentence or token level prediction) or the fine-tun-
ing process (i.e. one- and two-phase learning). Overall, all 
built models take less time than a second on a GPU and a 
maximum of 7 s on a CPU to make a prediction. Therefore, 
if the training process helps improve the final predictions, 
the additional time it takes can be neglected, considering the 
model’s later usage for many effective predictions. Addition-
ally, this fast inferencing ability, which can further improve 
by increasing the machine’s computational power, indicates 
the models’ scalability for making predictions on a large data 
volume within a shorter period.

7 � Conclusions and future work

In this paper, we proposed a novel learning strategy named 
Two-phase Transfer Learning (TTL), allowing transformer 
models to learn from different levels of data granularity 
(i.e. sentence and token). Our approach is expandable to 
any related sentence and token-level task irrespective of 
its domain or language, as no domain- or language-specific 
features are involved. Transformers are especially involved 
in our approach, considering their transferability, cross-lin-
guality, context awareness and state-of-the-art performance 
in many NLP applications. We applied TTL to news event 
detection and analysed how it can improve sentence and 
token level tasks by transferring knowledge in this paper. 
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Also, to the best of our knowledge, this is the first effort to 
report a comprehensive experimental study on cross-lingual 
event detection, covering sentence and token level tasks and 
their transferability.

We used the multilingual version of the GLOCON gold 
standard dataset and several monolingual and multilin-
gual pre-trained transformer models for our experiments. 
Our findings show that if sufficient training data exist, a 
multilingual transformer-based model can outperform a 
monolingual model, answering RQ1 of this research. Also, 
our experiments indicate that high-resource languages can 
improve the event detection performance of low-resource 
languages, using cross-linguality in transformer mod-
els, especially with multilingual and zero-shot learning, 
addressing RQ2. These findings will be beneficial from the 

perspective of applications because a multilingual event 
detection model can cover multiple languages effectively 
in a resource-efficient manner than having several mono-
lingual models per language. Following RQ3, with the 
involvement of TTL, we could further improve the model 
performances in monolingual and multilingual settings. 
However, the relatedness of tasks is more crucial in this 
learning than the training data sizes. If the first task can 
help the second task’s predictions, the model can gain 
some knowledge from the first task to improve the second 
task’s performance through TTL. Thus, we noticed more 
improvements by learning the sentence level task after 
the token level task since the token data can help derive 
the labels of sentences. Additionally, the ability to learn 
from different language data at different granularities helps 

Fig. 9   Macro F1 scores for the validation sets at different evaluation 
steps of the sentence level training processes using the sequence clas-
sification model (one-phase learning) and two-phase classification 

model (two-phase learning) with XLM-R transformer. For multilin-
gual learning, a composition of samples from each language is used 
as the validation set
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build effective models for low-resource languages, utilis-
ing available data.

In future work, we plan to extend our research to more 
languages and analyse how the interconnections between 
languages can be utilised to improve the performance of 
event detection tasks. Also, in this work, we only focused on 
the languages which are supported by available pre-trained 
transformer models such as XLM-R. To fill this gap, we 
aim to construct datasets for not supported languages and 
evaluate their performance in future. Considering TTL, we 
designed it in a general manner, which is applicable to any 
related sentence and token level classification tasks, such as 
sentence and token level predictions in sentiment analysis 
or offensive language identification, rather than limiting it to 
event detection. Thus, we also plan to thoroughly investigate 
TTL’s applicability to different domains and research areas.
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