BIRMINGHAM CITY UNIVERSITY

DOCTORAL THESIS

A Deep Learning Approach to Business
Process Mining

Author: Supervisors:
Khadijah Muzzammil Dr. Yevgeniya KOVALCHUK
HANGA Prof. Mohamed GABER

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Data Analytics and Artificial Intelligence
School of Computing and Digital Technology

February 24, 2023

https://www.bcu.ac.uk/
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://www.bcu.ac.uk/computing-engineering-and-the-built-environment/research/data-analytics-and-artificial-intelligence
https://www.bcu.ac.uk/computing

iii

Declaration of Authorship

I, Khadijah Muzzammil HANGA, declare that this thesis titled, “A Deep Learning
Approach to Business Process Mining” and the work presented in it are my own. I
confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

07/10/22

“We are what we repeatedly do. Excellence, then, is not an act but a habit.”

Aristotle

vii

BIRMINGHAM CITY UNIVERSITY

Abstract

Faculty of Computing, Engineering and the Built Environment
School of Computing and Digital Technology

Doctor of Philosophy

A Deep Learning Approach to Business Process Mining

by Khadijah Muzzammil HANGA

Competing and evolving markets force organisations to continuously monitor, eval-
uate, and optimise their business processes. To do the task at scale, organisations
often turn to automatic mining of process execution logs constantly generated by
various information systems. Many open-source and commercial tools have been
developed in recent years to help organisations perform various process mining
tasks using process execution logs (often called event logs), such as process discov-
ery, conformance checking, and detecting drifts in processes. Compared to tradi-
tional process mining techniques such as Petri nets and Business Process Model and
Notation (BPMN), deep learning methods such as Recurrent Neural Networks and
Long Short-Term Memory (LSTM) in particular have proven to achieve better per-
formance in terms of accuracy and generalising ability when predicting sequences
of activities performed as part of business processes based on event logs. How-
ever, unlike traditional network-based process mining techniques that can be used
to visually present all activity sequences of the discovered business process, existing
deep learning-based methods for process mining lack a mechanism explaining how
the activity sequence predictions are made. To address this limitation, this thesis
proposes an extensible process mining solution that combines the benefits of inter-
pretable graph-based methods and more accurate but implicit deep learning meth-
ods. The main contributions of this research are: (i) building an LSTM model for
predicting business process activity sequences from event logs that outperforms ex-
isting state-of-the-art deep learning solutions; (ii) proposing a graph-based approach
to explaining the decision-making process of the LSTM model when predicting busi-
ness process activity sequences; and (iii) developing methods for detecting and local-
ising sudden concept drift in event logs (i.e., offline) and event streams (i.e., online)
using deep learning and graph-based approaches. The proposed methods have been
extensively evaluated by conducting experiments using real-life and artificial event
logs and have been demonstrated to outperform existing state-of-the-art solutions
in many cases.

HTTPS://WWW.BCU.AC.UK/
https://www.bcu.ac.uk/computing-engineering-and-the-built-environment
https://www.bcu.ac.uk/computing

iX

Acknowledgements

The research presented in this thesis was funded by the Petroleum Technology De-
velopment Fund (PTDF). Without this financial support, completing this degree
would not have been possible. Words can not express how grateful I am for this
opportunity. A big thank you to the PTDF team. First and foremost, I would like to
express my sincere gratitude to my supervisory team, including, Dr Yevgeniya Ko-
valchuk, and Prof. Mohamed Medhat Gaber, for their continuous support through-
out my PhD study. I am indebted to both of them for their insight, ideas, guidance,
and patience throughout my research. Their feedback, advice, and expertise have
allowed me to shape this thesis. It has indeed been a great pleasure working with
both of them. I am grateful to Dr Atif Azad, Dr Shadi Basurra, and Dr Jason Hock-
man, the members of my PhD progression panel for three consecutive years, for
their constructive feedback. I also thank the Doctoral Research College (DRC) staff
and the Faculty of Computing, Engineering, and the Built Environment (CEBE) of
Birmingham City University for their administrative support during my research.
A special thank you goes out to Dr Mariam Adedoyin-Olowe for her encourag-
ing words and kindness. I must appreciate and thank my colleagues in the Data
Analytics and Artificial Intelligence (DAAI) research group; Amna, Hansi, Zakaria,
Aliyu, Hossein, Besher, and Lorraine, for their friendship and kindness, which has
made my PhD journey at BCU extraordinary. I have to acknowledge Elias Akin,
who has been very supportive. He was my coding wizard, always willing to spare
me some minutes despite his tight schedule, and spotted those bugging bugs in my
codes in the nick of time. My special appreciations go to my parents, Muzzammil
Sani Hanga, and Fatima Batul Mukhtar. No words can truly express my gratitude
for their unrepayable love and support. I sincerely appreciate my husband, Kabiru
Mahmud Yabo, for his constant support and encouragement throughout my stud-
ies. To Muhammad and Fatimah-Batool for sharing my PhD journey accordingly.
Thank you for being such good children and making it possible for me to complete
what I started. Another special appreciation goes to my sisters, Humaira, Nusaiba,
Zainab, and Tayseer, I can’t thank you enough for your support. A big thank you
to Rahina Muhammad for leaving home to offer me support whenever I needed it.
I appreciate my mother and father-in-law, Aisha Mahmud Yabo, Mahmud Shehu
Yabo and my sisters-in-law for their prayers and love. I am very grateful to all my
aunties, uncles, cousins, nieces, and nephews. Thank you all for your prayers, well
wishes, visits, and encouragement. I pray for my aunty, Maryam Musa Suleiman,
who passed away without watching me complete my PhD. She would have been de-
lighted to see the day. I am incredibly grateful to my cousins Ya. Nabilah, Ubaidul-
lah, his wife Zainab, and Abdul-Ilah for their moral support, generosity, advice, and
willingness to help in whatever way. Finally, I owe a great thank you to my long-
term friends, Maryam Awal, Hadiza Aminu, Fati Imam, Zeezah, Zambuk, Anfa,
Hadiza Mahmud, Fathiyyah, Waheeda, Anty Mash. They were of great emotional
support during my journey. I will definitely not forget, Uncle Umaru, his wife Aunty
Hawwa and Aunty Amina, thank you very much for being there, and making my
stay in Birmingham amazing. I must say, I am a person of people. Their love has
surrounded me since the beginning of my PhD. If I have to thank everyone, my list
will be endless. All of them have touched me in one way or another. A massive
thank you to you all.

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction

1.1 Preamble e
1.2 Business Process Management
1.3 ProcessMining
14 Concept Drift Detection
1.5 Problem Statement o L.
1.6 DeepLearning
17 ResearchGaps i i e
1.8 Research Aim and Objectives

181 Aim.

1.82 Objectives
1.9 Contributionso o
1.10 Publications
1.11 Data Availability
112 CodeBase e
1.13 OverviewoftheThesis

State of the Art and Related Work

2.1 Business Process Management
22 ProcessMining e
221 ProcessMining Types
2.2.2 Process Mining Perspectives
2.2.3 Process Mining Applications
224 EventLog
225 ProcessDiscovery
23 DeeplLearning e
23.1 Recurrent Neural Network
232 LongShort-term Memory
2.3.3 Bidirectional Long Short-term Memory
234 Word Embedding o oL
24 Deep Learning in ProcessMining
2.5 Process Discovery versus Process Prediction Methods
2.6 Concept Driftin Process Mining
2.6.1 Approaches to Dealing with Drifts
2.6.2 DPerspectivesof Drift
263 TypesofDrifts

2.7 Concept Drift Detection

Xii

2.8 Concept Drift Localisation 34
29 Discussion 37
210 Summary e 38
Predicting Next Activities in Business Processes 41
3.1 Proposed Approach to Process Mining 41
3.1.1 DataPreparation 41
Event Log Pre-processing 41
Encodingand Padding 42

3.1.2 Proposed Models for Predicting Next Activities in Business
Processes e 43
Model Architectures oL 43
Training LSTM Models 44
Next Activity Prediction 45
3.1.3 Graphs Explaining the Prediction Process of LSTM Models . . . 46
32 Experiments e 48
321 Evaluation 00 .. 48
322 Real-lifeEventLogs 49
3.23 ExperimentalSetup., 49
3.3 Resultsand Discussion 50
3.3.1 Model Predictive Performance 50
3.3.2 Graphical Representation of Model Predictions 52
34 Summary 57
Concept Drift Detection 59
4.1 Approach to Concept Drift Detection 59
41.1 Long Short-term Memory for Predicting Next Activities 60
4.1.2 Directly-follows Graph for Representing LSTM Decisions . . . 61
42 Proposed Methods: PGraphDD-QM and PGraphDD-SS 61
42.1 Offline scenario: Detecting Drift in Event Logs 61
Quality Metrics L oo 66
Measuring the Similarity Score 68
422 Online scenario: Detecting Drift in Event Streams. 68
43 Experiments o 74
43.1 Offline Drift Detection 75
HelpdeskLogs 75
BPIC20151logs 76
Experimental Setup for Offline Drift Detection 76
4.3.2 Online Drift Detection 77
Loan Application Process Dataset 78
BPIC 2015 Dataset 78
Experimental Setup for Online Drift Detection 79
44 Resultsand Discussion 81
441 Offline Drift Detection: PGraphDD-OM 81
442 Offline Drift Detection: PGraphDD-SS 85
4.4.3 Online Drift Detection: PGraphDD-QM 89
Loan ApplicationProcess 89
BPIC2015 90
444 Online Drift Detection: PGraphDD-SS 91
Loan ApplicationProcess 91

BPIC2015 o e 91

Comparison with State-of-the-art Methods
45 Summary 0 L

5 Drift Localisation
51 Change Localisation
52 Proposed method: PGraphDL
53 Experiments

5.3.1 Localising Drifts in Loan Application Process Logs

5.3.2 Localising Drifts in Helpdesk Log
5.3.3 Localising Drifts in BPIC 2015 Logs . . .
54 Summary0 0oL

6 Conclusion and Future Directions
6.1 Summary.0 ..
6.2 Potential Applications
6.3 FutureWork

6.3.1 Predicting Next Activities in Business Processes
6.3.2 Graphs Explaining Decisions of LSTM Models

6.3.3 Concept Drift Detection and Localisation

Bibliography

xiii

93
97

99

99
100
102
103
106
108
111

113
113
116
117
117
117
118

119

XV

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211

3.1
3.2
3.3

34

3.5

3.6

4.1
4.2

4.3
44
4.5
4.6
4.7
4.8

4.9

Process Mining Framework 4
Exampleofaprocess 12
BPM Life-cycle. 13
Graph-based representation of a processmodel 14
Three common types of process mining 15
Graphical representation of a small portion of an event stream 18
Different quality dimensions for process model discovery 19
An example spaghetti-like model adopted from (Suriadi et al., 2013) . 20
The basic recurrent neural network (RNN) architecture 22
The long short-term memory (LSTM) cell 23
Basic unfolded bidirectional LSTM (BLSTM) structure 24
Different typesofdrifts 0. 32
Flow diagram summarising the proposed approach to process mining 42

Deep learning network architectures of the two proposed LSTM models 45
Graph demonstrating the decision-making process of Model 1 when
generating likely event sequences based on the training set of the
Helpdesklog 53
Graph demonstrating the decision-making process of Model 1 when
generating likely event sequences based on the test set of the Helpdesk
log . . . 54
Graph demonstrating the decision-making process of Model 1 when
generating likely event sequences based on the test set of the Helpdesk

log with the probability threshold setto 0.8 54
Single trace process graph generated based on the decisions of Model

1 for the test set of the Helpdesklog 55
Concept drift phenomenon in process mining 62
Proposed approach to detecting concept drifts in event logs of busi-

NESS PIOCESSES . v v v v v v v v e e e e e e 63
Proposed approach to detecting concept drifts in event streams of

business processes oo 70
Base BPMN model of the loan application process 78
Experiment 1: drift introduced at the start of the detection window . . 79

Experiment 2: drift introduced in the middle of the detection window 79
Distribution of accuracy scores achieved by PGraphDD-SS and PGraphDD-
QM across all change patterns and log sizes of the Loan Application

Processdataset 93
Distribution of mean delay scores achieved by PGraphDD-QM per
changepattern. o 94

Distribution of mean delay scores achieved by PGraphDD-SS per change
pattern 95

XVi

4.10 Distribution of mean delay scores per change pattern across all log
sizes of the Loan Application Process dataset

5.1 Concept of drift localisation
5.2 Two process graphs constructed based on two different windows: ref-
erence and detection Lo L L oo oL
5.3 Change localisation according to PGraphDL
5.4 Directly-follows process graphs constructed using the ‘sw’ change pat-
tern log from the Loan Application Process dataset.
5.5 Dirift localisation in the 'sw” process graph
5.6 Dirift localisation in the 're” process graph
5.7 Dirift localisation in the 'rp” processgraph
5.8 Path graphs depicting drift localisation (original Helpdesk process
graph vs Helpdesk_1 process graph)
5.9 Path graphs depicting drift localisation (original Helpdesk process
graph vs Helpdesk_2 processgraph)
5.10 Path graphs depicting drift localisation (original Helpdesk process
graph vs Helpdesk_3 processgraph)
5.11 Path graphs depicting drift localisation (original Helpdesk process
graph vs Helpdesk_4 processgraph)
5.12 Dirift localisation (BPIC 2015 reference process graph vs BPIC 2015
detection processgraph) L o oL
5.13 Path graphs depicting drift localisation (BPIC2015_1 process graph vs
BPIC2015_2 process graph),

xvii

List of Tables

2.1
2.2
2.3
24

2.5
2.6

3.1
3.2
3.3
34
3.5
3.6

3.7

41
4.2
43
44
4.5
4.6
4.7
4.8
49
4.10

4.11
4.12

4.13
4.14
4.15

Review protocol 11
Exampleofaneventlog, 17
Some popular state-of-the-art process discovery methods 21
Summary of RNN- and LSTM-based models for monitoring and pre-
dicting business processes. o o L 27
Common control-flow change patterns in business processes 30
Existing approaches to business process drift detection 35
Example of prepared data for training the proposed LSTM models . . 43
Eventlog description o oL 49
Prediction results over the testsets 51
Case 1: Training matrix created from the graph generated using the

train set of the Helpdesklog. 56
Case 1: Test matrix created from the graph generated using the test set

of the Helpdesklog.. 56
Case 2: Training matrix created from the graph generated using the

train set of the Helpdesklog. 57
Case 2: Test matrix created from the graph generated using the test set

of the Helpdesklog.., 57
Summary of the event logs used in the experiments 75
Change patterns applied to the original Helpdesklog. 76
Control-flow change patterns for synthetic eventlogs 78
Results of offline process drift detection using PGraphDD-QM for
Helpdesk log and its variations 82
Results of offline process drift detection using PGraphDD-QM for
Helpdesk log and its variations using fivefolds 82
Results of offline process drift detection method for Helpdesk log and

its variations using eightfolds 83
Results of offline process drift detection using PGraphDD-QM for
BPIC20151ogs 85
Results of offline process drift detection using PGraphDD-SS for Helpdesk
logs e 86
Results of offline process drift detection method using PGraphDD-SS

for BPIC20151ogs 87
Results across all log sizes for the “cd” change pattern of the Loan
Application Process dataset using PGraphDD-QM 90
Results obtained for BPIC 2015 using PGraphDD-OM 91
Results across all log sizes for the “cd” change pattern of the Loan
Application Process dataset using PGraphDD-SS 92
Results obtained for BPIC 2015 using PGraphDD-SS 92
Average accuracy achieved over the Loan Application Process logs . . 94
Mean delay per change pattern of the Loan Application Process dataset 96

XVviii

5.1 Reasons for the drifts extracted from the graphs generated using PGraphDL
for each change pattern of the loan application process dataset 104

Xix

List of Abbreviations

BPIC Business Process Intelligence Challenge
BPM Business Process Management
CSsv Comma Separated Values
DFG Directly Follows Graph

DL Deep Learning

D-L distance Damerau-Levenshtein distance
ETM Evolutionary Tree Miner

GPS Global Positioning System

HM Heuristic Miner

IM Inductive Miner

IoT Internet of Things

LSTM Long Short Term Memory
MAE Mean Absolute Error

ML Machine Learning

NLP Natural Laguage Processing

PGraphDD-QM Process Graph Drift Detection Quality Metrics
PGraphDD-SS Process Graph Drift Detection Similarity Score

PGraphDL Process Graph Drift Localisation
PM Process Mining

PPM Predictive Process Mining

RFID Radio Frequency IDdentification
RNN Recurrent Neural Network

SM Split Miner

XES eXtensible Event Stream

List of Symbols

>m2rﬁam

-~
~

DA I9NQhS E: RS

L

event

activity

transition probabilities

set of nodes

set of edges

adjacency matrix

prediction probability matrix

trace
trained LSTM model
probability threshold

event log

process model

set of traces

event stream
process graph

set of events

set of attributes

a complete trace
reference window
detection window

xxi

xxiii

This thesis is dedicated to the five people without whom this
journey wouldn’t have been possible. To my loving parents,
Muzzammil Sani Hanga and Fatima Batul Mukhtar, my
husband, Kabiru Mahmud Yabo, and my son and daughter,

Muhammad and Fatimah-Batool, whose unconditional love,
affection, support, and prayers are my strength in everything I

do.

Chapter 1

Introduction

1.1 Preamble

Businesses go through daily processes to accomplish their mission; the better their
processes, the more profitable the organisation. Due to the rapid emergence and evo-
lution of new business models and the increasing complexity of global operations,
management of business processes has become more important. Factors such as the
increase in the number of orders of goods, the need for faster information transfer,
better decision making, international competitors, and the need to adapt to changes
in demand challenge the profitability of small and large companies (Ko, Lee, and
Lee, 2009). To address these challenges, many companies started using information
systems to perform their operations and interact with customers. Some of these in-
clude supply chain management (SCM), Enterprise Resource Planning (ERP), and
Relationship Management system (CRM) systems. SCM systems collect informa-
tion about multiple individuals and tasks related to the production and transport of
goods and services. ERP systems record all transactions that happen in a business
process; they help manage the various steps of a company’s operations, such as pur-
chasing, sales, and marketing. CRM systems keep track of the details of a customer’s
interactions with a company. These information systems collect a huge amount of
event data. Although these data can be used for accounting, auditing, and business
analytics, the challenge is to derive valuable insights from it and to have the ability
to oversee and improve workflows.

This chapter introduces the research problem addressed in this thesis, detailed
in Chapter 2. It also presents the research gaps, the research aim and objectives.
Afterwards, it highlights the main contributions and concludes by setting the thesis
outline.

1.2 Business Process Management

Many modern businesses realise that keeping up with emerging and competing
markets requires developing and using novel ways of managing business processes
(Jokonowo et al., 2018). Business Process Management (BPM) comprises techniques
and tools to identify, analyse and monitor business processes to optimise their per-
formance (Dumas et al., 2013). BPM is considered a continuous cycle comprising
a number of phases (Dumas et al., 2013). With BPM, organisations can ensure that
their processes are efficient and effective, resulting in a profitable organisation.

4 Chapter 1. Introduction

1.3 Process Mining

Process mining (PM) emerged from BPM to help organisations discover, evaluate
and improve workflows using processes recorded in an event log. Since then, PM
has made the BPM cycle more effective and efficient by eliminating manual pro-
cesses and allowing higher-level modelling and reengineering work.

Organisations often use PM to audit their business processes, derive valuable
insight about business operations, and improve their services and customer rela-
tions. In particular, PM is used to automatically extract process models from event
logs to analyse how processes are implemented in reality, providing the avenue for
monitoring and improvement (Figure 1.1). PM exposes how processes are being
executed instead of how they should be executed. A PM model differs from a man-
ually drafted process model because it can accurately account for what is happening
in reality (Lau et al., 2009). It brings about transparency and delivers timely factual
evidence and insights from transaction records. More specifically, PM extracts useful
information by answering the following questions.

e What process are people following?
e Where are the obstacles in the process?

e Where do people/machines drift from the outlined process?

Use of Information

System I_T_JCI) =>

Process Mining

S

[' @ I_> Real Process

Event Logs

FIGURE 1.1: Process Mining Framework

An example use case is retail, where collected data from all stages, i.e., from or-
der placement to delivery, can be used by PM techniques to find gaps in the ongoing
process, which can then be addressed based on organisational goals. These goals can
be customer satisfaction, productivity improvement, or maximising profit. Another
use case is healthcare; PM can improve the accuracy of clinical investigation results
collected worldwide. Other industries where PM is applicable include manufactur-
ing, logistics, accounting, oil and gas, food processing, and distribution. Commonly
performed PM tasks are Process discovery, conformance checking, and process model en-
hancement.

1.4 Concept Drift Detection

Business processes are also prone to constant changes, which are motivated by nu-
merous internal and external factors. Changes can be in response to seasonal trends,

1.5. Problem Statement 5

constantly evolving market conditions and customer preferences, and introducing
new rules and regulations. Changes push organisations to adapt and update their
business processes constantly. For example, adding a quality assurance stage to
comply with a new regulation will require reorganising the process’s sequence flow.
Concept drift occurs when a change is observed in the process while it is being anal-
ysed (Bose et al., 2011; Bose et al., 2013). Concept drifts are planned (for example,
regulatory changes) or unexpected (for example, change in resource capacity) (Seel-
iger, Nolle, and Miihlhduser, 2017) Detecting such changes can help answer a ques-
tion like how to explore the impact of a change on a process regarding temporal and
cost measures?. Traditionally, this question is answered based on the foreknowledge
and expertise of managers and business analysts. However, this only works well if
the number of changes is small or if the impact of the change is not critical. When
the number of changes frequently increases, it is difficult to calculate the impact of
potential changes. In these situations, analysts need a tool that allows them to au-
tomatically explore multiple changes in a short time, making the decision-making
process more manageable.

1.5 Problem Statement

Despite its great potential, PM is hampered by several limitations. Process discovery
is the most studied type of PM. It automatically constructs a process model appro-
priately displaying the observed behaviour as it is captured in an event log with-
out any inferred information. These models enable businesses to evaluate perfor-
mance, check compliance, spot anomalies and suggest improvements. Most pro-
cess discovery algorithms use frequency-based heuristics, genetic-based heuristics,
probabilistic-based approaches, and the theory of regions to produce a process model.
The applicability and effectiveness of these approaches depend on the event log fea-
tures and structure of processes. When applied to real-life event logs, the majority
of existing process discovery methods demonstrate such limitations as:

e Producing broad and spaghetti-like models or models with poor fitness and
precision (i.e., these methods cannot discover process models that would ex-
press the observed behaviour in the best possible way) (Augusto et al., 2018).

e It has not proven easy to achieve a compromise between the four process dis-
covery quality metrics, fitness, precision, generalisation and complexity (Augusto
etal., 2018).

Also, traditional PM techniques assume processes are stable; thus, these tech-
niques are not suitable for analysing modern-day dynamic business processes. State-
of-the-art process drift detection methods are predominantly based on classical sta-
tistical analysis. While many of them were reported to perform well, they have some
limitations. For example,

e The windowing technique used in many concept drift detection algorithms is
highly dependent on the right choice of window size; a wrong window size
can result in a high number of false negatives and false positives.

e Some methods are unable to locate the exact moment of a drift.

e Some methods are not automated; they require human involvement in feature
selection and change point recognition, making them impractical.

6 Chapter 1. Introduction

e Most of the existing methods for detecting concept drifts in business processes
are designed to work offline (requiring the entire event logs featuring cases
before and after a drift has occurred). Some online methods detect drifts with
a long delay and some do not perform well on processes whose logs display
many distinct executions. Thus, detecting drifts in the online scenario (i.e., as
they happen) remains challenging.

Taking into account the limitations of PM described above, this thesis will focus
on building more accurate PM models. For this purpose, it will be assumed that a
model must accurately reproduce the current state of a business process (AS-IS) be-
foreitis applied to solve other PM tasks. We hypothesise that using high-performing
deep learning models for this purpose might help counter several limitations.

1.6 Deep Learning

Deep Learning (DL) is a type of machine learning based on Artificial Neural Net-
works (ANN). DL achieves great power and flexibility by learning to represent the
world as a nested hierarchy of concepts. Each concept is defined with more precise
concepts and abstract representations determined with respect to less abstract ones
(Goodfellow, Bengio, and Courville, 2016; Wani et al., 2020). DL makes use of several
non-linear processing units to perform feature extraction as well as transformation.
The output from each layer is taken as input by each successive layer (Brownlee,
2016).

DL approaches have recently gained popularity in the PM field. In particular,
several Recurrent Neural Network (RNN) architectures, such as Long Short-Term
Memory (LSTM), have been applied to predict subsequent events in business pro-
cesses, time of occurrence and completion, and resources that trigger the events.
Due to its ability to retain information over a long period, LSTM can learn long-term
dependencies in a sequence, preventing prior information from being lost (Hochre-
iter and Schmidhuber, 1997). This quality enables an LSTM model to consider all
process instances when predicting.

1.7 Research Gaps

Compared to the earlier PM techniques, LSTM-based methods have shown better
performance in terms of accuracy and generalising ability. However, some of the
existing proposals have shortcomings, including the following: the models not per-
forming well when making long-term predictions and when used on event logs with
many repeated events (Tax et al., 2017; Tello-Leal et al., 2018); inability to handle
numerical variables, which made generating sequences of timestamped events im-
possible (Evermann, Rehse, and Fettke, 2017).

There are debates in the PM community on which methods to use. Recent stud-
ies such as (Evermann, Rehse, and Fettke, 2017) and (Tax et al., 2017) consider the
DL’s ability to generalise and yield high accuracy more imperative than generat-
ing explicit process models represented using graphical notation such as Petri-nets,
BPMN, and Event-driven Process Chains or UML activity diagrams (Tello-Leal et
al., 2018). Unlike these studies, we argue that accuracy and explainability are crucial
in the field of PM. Process structures are implicitly reflected in models generated by
DL-based methods, and no visually explainable process graphs are produced, which
limits the value of such models.

1.8. Research Aim and Objectives 7

Several techniques have been proposed for detecting business process drifts, e.g.
(Bose et al., 2013; Carmona and Gavalda, 2012; Hassani, 2019; Maaradji et al., 2017;
Manoj Kumar, Thomas, and Annappa, 2015; Martjushev, Bose, and Aalst, 2015;
Zheng, Wen, and Wang, 2017; Seeliger, Nolle, and Miihlhduser, 2017). The main
objective of these techniques is to extract features, such as patterns from the pro-
cess behaviour recorded in event logs, and perform certain analyses to detect drifts.
Although some of these methods have been reported to perform well, they have
several limitations. In particular, most existing methods are designed to detect drifts
that occur in event logs only (i.e. complete process execution); they do not work
in online settings, where streams of events incrementally record the executions of
a business process.Some of the approaches that work in online settings detect drift
with a long delay, as they need to wait for the trace to complete. Furthermore, since
many methods rely on statistical tests over trace distributions, which may not have
sufficient data samples when there is high variability in the log, they tend not to per-
form well on unpredictable processes whose logs contain a high number of distinct
traces compared to the total number of traces.

This research was motivated by the importance of analysing and tracking pro-
cesses in the oil and gas industry supply chain. Detected concept drifts in oil and
gas supply chain processes can indicate fraud or inefficiency, and subsequently are
of paramount importance. However, as a proof of concept, the case studies reported
in this thesis were based on other industries due to the absence and confidentiality
of process data from the oil and gas industry.

1.8 Research Aim and Objectives

1.8.1 Aim

The aim of the thesis is to develop a new approach to PM by combining the benefits
of interpretable graph-based methods and more accurate but implicit DL methods.

1.8.2 Objectives
The main objectives of the thesis are the following:

1. Build an accurate LSTM model for predicting business process event sequences
from event logs;

2. Construct a directly-follows graph (DFG) explaining the decision-making pro-
cess of the LSTM model when predicting business process event sequences;

3. Detect and localise concept drift in business processes;

4. Validate the research using real-life event logs.

1.9 Contributions

This thesis provides the following contributions to the state-of-the-art of the PM
field:

1. Better performing LSTM models for PM. Two LSTM models that achieve higher
accuracy when predicting subsequent events in business processes than that

Chapter 1. Introduction

achieved by state-of-the-art LSTM models were proposed. The improved per-
formance of the proposed LSTM models can be attributed to the different ap-
proaches used to generate inputs for the models and the model network archi-
tectures, which employ an embedding, a dense layer, and an LSTM layer.

. A graph-based approach to interpreting LSTM models. The idea of generating
graphs of different complexity to visually explain the decision-making process
of an LSTM model when predicting the subsequent events in business pro-
cesses was proposed. The graphs can explore the LSTM model’s performance
and identify complex cases as per the model’s decision so that measures could
be taken to improve the model performance in such cases. Furthermore, the
graphs can be used to perform various PM tasks such as model discovery, con-
formance check, and investigation of non-compliance cases.

. Novel methods for detecting sudden concept drift. Two new methods, PGraphDD-
QM and PGraphDD-SS, that can detect sudden concept drift in business pro-
cesses from a control-flow perspective in offline and online scenarios were pro-
posed.

For offline drift detection, process graphs are generated based on two event
logs covering different time periods to detect process drifts that may have oc-
curred between the two logs (or time periods). In particular, an LSTM model
trained on an event log covering one period of time is applied to another
event log covering a different time period. Process graphs representing the
behaviour of the different time periods (i.e. the two different time periods)
are generated using the decisions of the LSTM model about the most probable
business process flow. According to PGraphDD-QM, the model performance
is then separately estimated over the previous and new process graphs using
the F-score metric, and the two sets of measures are compared. The change in
values of the two sets of measures is assumed to indicate a concept drift. Ac-
cording to PGraphDD-SS, the DFGs generated based on the LSTM model de-
cisions for two different time periods are used to verify the drift, both visually
by detecting structural changes and by measuring the similarity score between
the adjacency matrices of the two different graphs to estimate the amount of
changes observed in the business process after the drift has occurred.

For online drift detection, it is assumed that individual graph objects are re-
ceived continuously over time in a graph stream. In particular, the LSTM
model trained on a stream of logged events covering a previous period of time
is applied to a newly generated stream of events as they occur. Graph streams
representing the process behaviour of different time periods (i.e., the previous
and new time periods) are generated using the decisions of the LSTM model
about the most probable business process flow. According to PGraphDD-QM,
an LSTM model trained on a stream of logged events covering a previous pe-
riod of time is applied to a newly generated stream of events as they occur.
Graph streams representing the process behaviour of different time periods
(i.e., the previous and new time periods) are generated using the decisions of
the LSTM model about the most probable business process flow. The model
performance is then separately estimated over the previous and new graph
streams using the F-score metric, and the two sets of measures are compared.
The change in values of the two sets of measures is assumed to indicate a
concept drift. According to PGraphDD-SS, the DFGs generated based on the
LSTM model decisions for two different time periods are used to verify the

1.10. Publications 9

drift, both visually by detecting structural changes and by measuring the sim-
ilarity score between the adjacency matrices of the two different graphs to es-
timate the amount of changes observed in the business process after the drift
has occurred.

4. A method for localising concept drifts. In addition to the drift detection, a method
called PGraphDL, which localises drift and correctly identifies the activities or
fragments involved in each detected concept drift from the graph, thus provid-
ing additional information about the drift, such as which activities have been
added or removed was proposed. This information supports further analysis.
According to the proposed method, two process graphs (graph A and graph
B) from two different windows (i.e. reference and detection) are taken as in-
put. A user selects any path of interest from the base model by specifying an
index. The best matching path is searched in graph B for each possible path in
graph A by computing the positional score for each candidate path in graph B.
The positional score is calculated as the number of activities in graph A located
in the same position in graph B divided by the length of the selected path in
graph A. The candidate path in graph B with the maximum positional score
is selected as the best-matching path in graph A. A maximum positional score
of 1 indicates that the paths in the two graphs are identical (i.e. there is no
drift). At the same time, each activity in graph B that is not found in the same
position as the activity in question in graph A is declared as a positional drift.

1.10 Publications

The following journal papers have been published while working towards this the-
sis:

e Hanga, K.M. and Kovalchuk, Y., 2019. Machine learning and multi-agent sys-
tems in oil and gas industry applications: A survey. Computer Science Review,
34, p.100191.

e Hanga, K.M., Kovalchuk, Y. and Gaber, M.M., 2020. A graph-based approach
to interpreting recurrent neural networks in process mining. IEEE Access, 8,
pp-172923-172938.

e Hanga, K. M., Kovalchuk, Y. and Gaber, M.M., 2022. PGraphD*: methods for
drift detection and localisation using deep learning modelling of business pro-
cesses. Entropy, 24(7), p.910.

1.11 Data Availability

The datasets used in this thesis can be found as follows:

e Loan Application Process logs Maaradji et al., 2017: https://data.4tu.nl/
articles/dataset/Business_Process_Drift/12712436

e Dutch Municipality logs (BPIC 2015) Dongen, 2015: https://data.4tu.nl/
collections/_/5065424/1

e Helpdesklogs Polato, 2017: https://data.4tu.nl/articles/dataset/Dataset_
belonging_ to_the_help_desk_log_of_an_Italian_Company/12675977

https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
https://data.4tu.nl/collections/_/5065424/1
https://data.4tu.nl/collections/_/5065424/1
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977

10 Chapter 1. Introduction

e Road Traffic Fine Management Process Leoni and Mannhardt, 2015: https://
data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249

e BPIC 2012 Dongen, 2012: https://data.4tu.nl/articles/dataset/BPI_Challenge_
2012/12689204

e BPIC 20131 Steeman, 2013b: https://data.4tu.nl/articles/dataset/BPI_
Challenge_2013_incidents/12693914

e BPIC 2013C Steeman, 2013a: https://data.4tu.nl/articles/dataset/BPI_
Challenge_2013_closed_problems/12714476

1.12 Code Base

The source code of the methods presented in this thesis can be found in the following
repository:
https://github.com/dijahanga/DL_Approach_To_Process_Mining.git

1.13 Overview of the Thesis

The rest of this thesis is organised as follows.

Chapter 2: State of the Art and Related Work. This chapter presents the state-
of-the-art related to the core research area of this thesis. It provides a background
on BPM, PM, process discovery, DL in PM (including details on LSTM), and concept
drifts with its different classes and perspectives.

Chapter 3: Predicting Next Activities in Business Processes. This chapter in-
troduces the first contribution of this thesis. It presents the proposed LSTM mod-
els used to achieve higher accuracy when predicting the next events in business
processes and a method for generating graphs representing each model’s decision-
making process. The graphs can be used to understand the performance of the LSTM
models and perform a variety of PM tasks such as process discovery, conformance
checking, and investigating cases of non-compliance.

Chapter 4: Concept Drift Detection. This chapter describes the second contri-
bution of this thesis. It introduces two new methods called PGraphDD-QM and
PGraphDD-SS (where "P’ stands for process, 'DD’ for drift detection, "QM’ for quality
metrics and 'SS’ for similarity score) for detecting sudden concept drifts in business
processes from a control-flow perspective in both offline and online scenarios.

Chapter 5: Drift Localisation. This chapter describes the third contribution of
this thesis. It introduces a new method called PGraphDL (where "P” stands for pro-
cess, 'DL’ for deep learning) for localising sudden concept drifts in dynamic business
processes based on streams of logged events.

Chapter 6: Conclusion and Future Directions. This chapter concludes the re-
search work presented in the thesis. It summarises the experimental results and
discusses possible avenues for future work.

https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://github.com/dijahanga/DL_Approach_To_Process_Mining.git

11

Chapter 2

State of the Art and Related Work

This chapter presents the state of the art and background of this study necessary to
understand the proposed solutions. This includes understanding the basic theory
of BPM, PM, process discovery methods and their limitations (see a summary of the
review protocol in Figure 2.1). It also introduces DL, its place in the PM field, and its
common drawback. Lastly, it discusses business concept drift detection, localisation
in PM, and related topics. The Chapter positions the research presented in this thesis.

TABLE 2.1: Review protocol

‘ ‘ Review phase ‘ Detail ‘
KEYWORDS . . P
‘ 1. ‘ IDENTIEICATION ‘ The research purpose guided the keyword identification. ‘
The following search strings: “process mining”, “business process management”,
2 SEARCH STRINGS “process discovery”, “deep learning”, “RNN”, “LSTM”, “DFG”, “concept drift detection”,
" | CONSTRUCTION and "concept drift localisation" were used and combined to obtain a wider overview of
the specific concept and techniques.
3 IDENTIFICATION OF The search strings led to additional keywords (e.g., “event-stream”, “petri-nets”, “BPMN",
" | ADDITIONAL KEYWORDS | “business process”, “process model”), which are a conceptual subset of the main ones.

The following databases were used to gather articles related to our query: Google Scholar,
ScienceDirect, ACM Digital Library, Scopus, IEEE Xplore Digital Library and Web of Science.

4. ‘ DATABASE SELECTION

EXPLOITATION OF The query was orientated towards the highest comprehensiveness to guarantee
THE SEARCH STRINGS a wide coverage of the results.

6. | REVIEW OF THE ARTICLES our research topic and purpose. The selected articles were analysed.

7. ELICITATION OF The results from the analysis led to the identification of the scientific gaps.

The papers’ title, abstract and keywords were carefully read to assess if they fit ‘
THE SCIENTIFIC GAPS ‘

2.1 Business Process Management

A process is a sequence of activities that are completed to achieve a goal. A business
process is thus a process dedicated to achieving a goal for a business. A business pro-
cess consists of a series of events and activities, where events represent things that
happen continuously (Dumas et al., 2013). Businesses go through daily processes to
accomplish their mission. The better their processes, the more influential the busi-
ness will be. Humans carry out many processes without knowing, e.g. getting ready
for school, using an ATM, reading e-mail, etc. However, as processes become more
complex, the need to document arises. Businesses need to document because it of-
fers them control over how activities are carried out in their organisation, allowing
standardisation. The simplest way to document a process is to create a list. The list
outlines each step of the process, which can be easily checked after completion. For
example, Figure 2.1 shows a simple process of how opening a bank account steps
may look.

12 Chapter 2. State of the Art and Related Work

1. Choose a bank

/

2. Visit the bank/bank website

¥

3. Choose a banking product

¥

4. Provide information &
documents

spen

5. Agree to terms & conditions

FIGURE 2.1: Example of a process: how to open a bank account

As organisations begin to document their processes, tracking them becomes an
administrative task. As processes change and improve, it is vital to keep track of
them and manage them so that they can be easily updated. BPM comprises tech-
niques and tools to identify, analyse and monitor business processes to optimise
their performance (Dumas et al., 2013). With BPM, organisations can ensure that
their processes are efficient and effective, resulting in a profitable organisation.

BPM is considered as a continuous cycle consisting of several phases (see Fig-
ure 2.2. The first phase of the life cycle is Process identification, where a collection of
interrelated processes is identified. The second phase is Process discovery, here the
identified processes are depicted as one or several as-is process models. In the third
phase, which is Process analysis, issues related to the as-is process models are gath-
ered and possibly quantified using performance measures. To address the issues
collected in the previous phase (i.e. third phase), the Process redesign which is the
fourth phase, modifies the as-is process model to the to-be process model to meet
the organisation’s desired way of functioning. In the fifth phase, Process implemen-
tation, changes required to transition from the as-is process to the to-be process are
prepared and performed. This involves organisational change management and au-
tomation. The last phase in the life-cycle is the Process monitoring, where relevant
data are collected and analysed from the redesigned to-be process to determine how
well the process performs in terms of its performance measures and objectives. Any
identified issues must be addressed. The BPM cycle may be repeated until no issues
are found (Dumas et al., 2013).

2.2. Process Mining 13

Process

identification

Process architecture

Process

Conformance and discovery

performance insights/'

As-is process
model

-

Process
monitoring and

Process analysis
controlling

1
Executable | Insights on
process \ ;" weaknesses and
1] $ "
model % Fi their impact

Process
implementation

Process redesign

To-be process
model

FIGURE 2.2: BPM life-cycle, reconstructed from (Dumas et al., 2013)

2.2 Process Mining

PM is an emerging research domain that is gaining much interest due to its great
benefits. PM emerged from BPM to help organisations discover, assess, and improve
workflows using event logs of processes. Since then, PM has become a cutting-edge
part of BPM. It has made the BPM life-cycle more effective and efficient by dismiss-
ing manual processes and allowing higher-level modelling and re-engineering work.
It gives organisations a factual picture of their processes to achieve the best out-
comes. The goal of PM is to discover, monitor, and improve real processes from
event data constantly collected by organisations and rarely used in the analysis of
processes. It enables the discovery of sequences of tasks performed in a business
process and also the interplay between participants in that process. Mueller and Ali
in (Mueller and Ali, 2021) likened the PM scenario to a doctor-patient relationship.
The doctor fully examines a patient to become clear about the patient’s current state,
and this helps the doctor provide the best diagnosis or solution.

PM focuses on establishing a solid relationship between a process model and reality
captured from an event log. The terms Discovery/Play-In, Play-Out, and Replay are
used to reflect on this relation. Figure 2.3 illustrates these three concepts on a graph-
based process model representation. Play-Out refers to the general use of process
models, i.e., to generate behaviour. Play-In, referred to as Discovery or inference, is
the opposite of Play-Out, i.e., an example behaviour is taken as input and the goal

14 Chapter 2. State of the Art and Related Work

is to construct a model. Replay takes an event log and a process model as input, and
the event log is “replayed” on top of the process model (Leemans, 2015).

<al b,d,C,e,g><afb,C,d,f,g>
<a'blcld’e,g>
<a,d,c,b,f,g><a c,d,b,fg>

Play-out Discover
i g
b Replay <%
e
@—> a C g
f
d

FIGURE 2.3: Graph-based representation of a process model, adopted
from (Leemans, 2015)

2.2.1 Process Mining Types

PM may be used for different objectives (see Figure 2.4). The three commonly used
PM types are process discovery, conformance checking, and enhancement. Therefore, PM
not only aids process model discovery but ensures conformance with business rules
and regulations and identifies improvement opportunities (Rojas et al., 2016).

Process discovery. This is the first type of PM. A discovery technique constructs
a process model that appropriately imparts the discovered behaviour from an event
log or stream containing cases, activities, timestamps, resources, and other data.
Several process discovery algorithms have been proposed to produce models for
a number of domains, such as healthcare, banking, logistics, government and insur-
ance. (Aalst, 2011b).

Conformance checking. Process models can show what happens in reality and
what should happen. Conformance checking is all about checking compliance by
comparing the extracted model with reality as recorded in the log or vice versa. The
techniques used for the conformance check allow the discovery of dissimilarities
between the modelled process and the discovered behaviour (Aalst, 2011b).

Model enhancement. The enhancement allows analysts to add value to or extend
the original process models using information about the actual process recorded in
event logs (Aalst, 2011b). The information gained from PM can be used to detect
obstacles, predict run times, discover roles, relationships, work allocation processes,
etc.

2.2.2 Process Mining Perspectives

Four main perspectives can be adopted in PM analyses. These perspectives can
either be combined or used alone (Aalst, 2016).

o The control-flow perspective is concerned with the control-flow, i.e., discovering
sequences of activities in a process. The goal of the control-flow perspective is

2.2. Process Mining 15

discovery
(process) D N~ event
model conformance Iogs
enhancement

FIGURE 2.4: Three common types of process mining: (a) discovery;
(b) conformance; (c) enhancement (Van Der Aalst, 2012)

to find a good characterisation of possible paths expressed in terms of a Petri
net or other notation (e.g. BPMN, EPCs or UML ADs).

o Organisational perspective is concerned with information about resources men-
tioned in logs (e.g., people, systems, roles, and departments) and the interplay
and collaborations between them. The goal is to structure the organisation by
classifying people in roles and organisational units or showing the social net-
work.

e Case perspective is concerned with the properties of cases. A case can be dis-
tinguished by its path in the process or by the creators working on it. Cases
can also be distinguished by the values of the related data elements. For ex-
ample, suppose that a case represents an order renewal. In that case, it may be
interesting to know the supplier or the number of products ordered.

o Time perspective is concerned with the timing and frequency of events. If events
carry timestamps, it is possible to discover bottlenecks, monitor resource use,
and predict the remaining processing time of running cases.

The information gained from PM can be used to analyse and gauge the perfor-
mance of an organisation, detect obstacles, predict run times, spot anomalies such
as control flow deviations, discover roles and relationships, and improve the usage
of resources (Ferreira, 2017). PM is applicable to operational processes. Examples
of such applications include analysing treatment processes in hospitals, improving
customer service processes in companies, understanding customer behaviour in cer-
tain processes, analysing failures, and improving interfaces.

16 Chapter 2. State of the Art and Related Work

2.2.3 Process Mining Applications

PM has been highlighted as a potential way of managing organisational challenges.
It has been applied in several sectors such as healthcare, industrial, financial, en-
ergy and materials, consumer goods, consumer services, utilities, and technology
(Zerbino, Stefanini, and Aloini, 2021). Different perspectives of PM have been ex-
plored and, in some cases, combined. Here are some real applications of PM.

Van Der Aalst et al. (Van Der Aalst et al., 2007) used an event log from the Work
Flow Management System (WFMS) of a department in charge of construction and
maintenance of water and road infrastructure in the Netherlands to identify the pro-
cess (i.e., how), organisational (i.e., who) and case (i.e., what) perspectives. They
used the ProM PM framework and a heuristic algorithm to discover the main flow
in invoice handling, which led to the identification of exceptional loops that greatly
affected process performance. The outcome of their analysis supported the man-
agement team in planning and aiming for certain organisational benchmarks. The
authors were also able to spot abnormal behaviours. They got a better picture of the
whole process due to combining different mining perspectives.

Lau et al. (Lau et al., 2009) proposed and developed an iterative PM algorithm
called "i-PM" to support knowledge discovery in a supply chain network and iden-
tify improvement actions using fuzzy rules to maximise customer satisfaction. The
approach was evaluated based on historical process data collected from a few de-
partments in a manufacturing company and customer satisfaction reports collected
to set up some indices stored in a central warehouse. The algorithm effectively iden-
tified the factors that significantly affect customer satisfaction in a supply chain.
However, the authors indicated that relying on experts to determine a fuzzy set is
very slow and subjective. They suggested adding ways to automatically determine
tuzzy sets, such as self-learning Al techniques.

A survey by Rojas et al. (Rojas et al., 2016) shows that PM has gained increased
interest and acceptance in healthcare due to its ability to significantly use stored
data. Some major applications of PM in the health care sector include discovering
process models from event logs, checking for conformity, and analysing social net-
works. Alvarez et al. (Alvarez et al., 2018) combined the time and organisational
perspectives to discover role interaction and collaboration models in the emergency
department of a university hospital. Stefanini et al. (Stefanini et al., 2018) used the
Fuzzy Miner algorithm on an event log retrieved from hospital information systems
to estimate the service time in an emergency department. Ferreira and Alves (Fer-
reira and Alves, 2011) discovered the social networks at different levels of abstrac-
tion within the emergency department of a mid-size hospital.

Roldan et al. (Roldan et al., 2018) used the process, time, and organisational
perspectives to detect bottlenecks and inefficiencies in multi-robot missions, such as
using an unmanned aerial vehicle fleet in an emergency. Syamsiyah et al. (Syam-
siyah et al., 2017) analysed the form handling process within Xerox Services to com-
pare different process variants and to deduce actionable insights regarding the most
common process behaviours. Paszkiewicz (Paszkiewicz, 2013) applied conformance
checking to check the compliance of a warehouse management system of a manufac-
turing company with the picking rules. Repta et al. (Repta et al., 2018) analysed the
event streams from radio-frequency identification (RFID) readers, global positioning
system (GPS) devices, transport vehicles and contact sensors placed on the exit and
entry ramp of a warehouse to rebuild the process model depicting the dynamics of
the monitored environment.

2.2. Process Mining 17

Below, are some key concepts such as event log, event stream and trace, which
are later used as the basis for defining notions related to each method presented in
the next chapters.

2.24 EventLog

Event logs are the foundation of PM. An event refers to a case/process instance, a
task, or a point in time. An event log is thus a collection of cases. The case or process
instance is a specific occurrence or execution of a business process, and the activity is
an operation, part of a case, executed (Aalst, 2016). An event log stores information
about cases and activities, event performers (i.e., the person or device executing the
activity), event timestamps (i.e., the moment when the event is triggered), or data
elements recorded with the event. Event data are available everywhere, e.g. trans-
action logs, ERP systems, message logs, hospital database systems, websites, social
networks, etc. There are three possible types of event logs (Dakic et al., 2018):

1. Real-life logs containing behaviour recorded from a real-life process.

2. Synthetic logs containing behaviour produced automatically from a real-life
process model.

3. Artificial logs containing behaviour automatically extracted from a non-real-
life process model or manually creating events.

A typical event log contains a case identifier (ID), which identifies the process
instance; a task name, which specifies the activity that has been performed; a user
name, which indicates the participant who performed the task; and a timestamp,
which indicates the date and time when the task was completed (Ferreira, 2017). Ta-
ble 2.2 shows a brief example of a simple event log. Each row of the log corresponds
to an event, while each column describes the attribute of the event. Events belonging
to the same process instance are grouped using a case ID. Formally, given the set of
all possible activity names A, the set of all possible case identifiers C and the set of
timestamps T, it is possible to define:

Definition 1: Event. Aneventeisa triplete = (¢, a,t) € C x A x T that describes
the occurrence of activity a for the case c at time t. The set of all possible events is
called event universe £ = C x A x T .

Definition 2: Trace. Let A+ be a set of all non-empty finite sequences of activities
from A. o € A+ is called a trace when ¢ represents a firing activity sequence of a
process model.

TABLE 2.2: Example of an event log

H Case ID Time-stamp Activity Resource ... H
01 30-12-2010 11:02 register request Pete -
01 31-12-2010 11:32 check ticket Sue -
01 05-01-2011 12:00 make decision Sarah -
01 07-01-2011 12:50 reject request Pete -
02 30-12-2010 11:15 register request Mike -
02 30-12-2010 11:30 check ticket Mike -
02 05-01-2011 11:55 make decision Sean -
02 08-01-2011 12:55 pay compensation Ellen -

18 Chapter 2. State of the Art and Related Work

Definition 3: Event stream. Given an eventset £, S € (C x A x IN)* is an event
stream, i.e., a sequence of events that are observed one after the other.

An event stream is an indefinite sequence of events, where each event represents
an occurrence of interest at a time. Figure 2.5 shows a simple graphical representa-
tion of an event stream. Note that two subsequent events of an event stream may
belong to different process instances.

S x E-EEEOE - o B

Time

¥

Case: Cq K L m N o
e - o o

Case: C3 K L M N

FIGURE 2.5: Graphical representation of a small portion of an event

stream. Each box represents an event: the background colours repre-

sent the case id, and the letters inside the boxes indicate the activity

names. The first row depicts the entire stream portion; the following
rows are the single cases in the stream.

2.2.5 Process Discovery

Process discovery is considered the most crucial PM type because all other PM op-
erations depend on it. Process discovery automatically generates a process model
that correctly describes a business process based on its event data (Syring, Tax, and
Aalst, 2019). Process discovery algorithms take an event log as input to output a
process model that should satisfy some properties, which are referred to as the four
quality measures or dimensions of PM (see Figure 2.6):

o Recall: the discovered model should display all the behaviour observed in the
event log (i.e., avoiding “non-fitting” behaviour).

e Precision: the discovered model should not display behaviour not observed in
the event log (i.e. avoiding “under-fitting”).

o Generalisation: the discovered model should generalise the example behaviour
observed in the event log (i.e. avoiding “over-fitting”).

o Simplicity: the discovered model should not be overly complex. Occam’s Razor
refers to the simplicity dimension: “one should not increase, beyond what is
necessary, the number of entities required to explain anything”. In the PM
field, this is often implemented by quantifying the complexity of the model
using the number of nodes, number of arcs, comprehensiveness, etc.

2.2. Process Mining 19

“able to replay event log” “Occam’s razor”

replay fitness simplicity

process
discover

generalization precision
‘not overfitting the log” “not underfitting the log”

FIGURE 2.6: Different quality dimensions for process model discov-
ery adopted from (Aalst, 2011a)

Most process models show only the control-flow of a process; however, addi-
tional perspectives can be added when extending the process model.

The control-flow perspective is an analysis that focuses on discovering the se-
quence of activities in a business process. The output of this type of analysis is a
model that describes the overall behaviour of the process. There exist several al-
gorithms to discover process models such as alpha-algorithm (Aalst, Weijters, and
Maruster, 2004), heuristics miner (Weijters and Ribeiro, 2011), fodina (Broucke and
De Weerdt, 2017), evolutionary tree miner (ETM) (Conforti et al., 2016), fuzzy miner
(Gtinther and Van Der Aalst, 2007) and split miner (Augusto et al., 2018). These al-
gorithms use different approaches to achieve the same goal, a model that shows the
transitions between tasks.

The organisational perspective is an analysis that focuses on discovering inter-
play and collaborations among the participants in a business process. For this pur-
pose, the data to be analysed are the case id and user columns in the event log.

The time or performance perspective is an analysis that focuses mainly on time.
E.g. the average time it takes to perform an activity, the maximum time it takes for
the process to reach a certain point, the average end-to-end duration of each process
instance, etc. It is common to start with a control-flow analysis of the event log
and proceed to performance analysis, the results of which can be displayed on the
control-flow graph.

Most algorithms for process discovery use frequency-based heuristics, genetic-
based heuristics, probabilistic-based approaches, and theory of regions or hybrid
methods to produce a process model (Augusto et al., 2018). The applicability and
effectiveness of these algorithms depend on the event log features and structure of
the processes. Event logs are often incomplete, making process discovery and qual-
ity assessment of the process model to the log challenging. On real-life event logs,
the state-of-the-art process discovery methods are subject to two reoccurring draw-
backs: they produce broad and spaghetti-like models (as shown in Figure 2.7) or
models with poor fitness and precision (i.e. unable to discover process models that
will express observed behaviour in the best possible form). They can not trade-off
the four process discovery quality metrics (i.e. fitness, precision, generalisation, and
complexity). Figure 2.3 lists some popular state-of-the-art process discovery meth-
ods with their pros and cons. This is because many of the algorithms are not effective
against the following challenges (Aalst, 2010):

e Dealing with complex control-flow constructs. Choosing between concurrent
and choice execution cannot be handled by many algorithms.

20 Chapter 2. State of the Art and Related Work

e Handling duplicates. For instance, if multiple activities co-occur, the records
of these activities may be inconsistent.

o Generating consistent models. For example, & — algorithm may yield models
with deadlocks when the log shows certain types of behaviour. The modelling
language has to be severely limited to achieve a sound model using a mod-
elling language such as Petri nets (i.e., free from deadlocks and other anoma-
lies).

e Balancing “overfitting” and underfitting. Overfitting is the problem where a par-
ticular model is generated when it is obvious that the log only holds example
behaviour, i.e. the model explains a particular sample log, while a next sam-
ple log of the same process may produce a completely different process model.
Underfitting is the problem, where the model over-generalises the example
behaviour in the log, i.e. the model allows for very different behaviours from
what was seen in the log. As such, these models cannot reliably predict future

observations.
-'
| T — e
7 E— —-_ 'l
P i
gl
e |
i ' \
A . - L] LY
r ™ \ A Y
- - \ rl_‘l".--
e il B -
o X I —
[+i—y—7 —
/| . | =
i1 g i .
e | e - i
g] 4 "
1 vl ., !
I ! 1] 1 . e -
| TR !
i \ . |
\ h r
1 1 8’ -
VS 0 / m
| i |
L1 LY /
! 5 - — o
" o -
- \ Wt
\ 3\ 4 ur. e
\ \ W W
\ Lt S -
v L} s - ¥
g | e gl
A
Ft o

FIGURE 2.7: An example spaghetti-like model adopted from (Suriadi
etal., 2013)

2.3. Deep Learning 21

TABLE 2.3: Some popular state-of-the-art process discovery methods
with their pros and cons

Cons

Method ‘ Model Language ‘ Pros

Not sound
Simple models
Petri nets Limited
Good fitness

« — Miner
(Aalst, Weijters, and Maruster, 2004)

Not robust
Complex models

Heuristic Miner (HM)

(De Weerdt et al., 2012) BPMN Good F-score Semantic errors
Not sound
High fitness
Inductive Miner (IM) Process trees Simple models Lo precision

(Leemans, Fahland, and Van Der Aalst, 2013)

No semantic errors

Evolutionary Tree Miner (ETM) Process froee High precision Long execution time
(Buijs, Dongen, and Der Aalst, 2012) Simple models Favours certain structures
High fitness

Split Miner (SM) Moderate precision

(Augusto et al., 2019) BPMN Low complexity

Not structured

No semantic errors

2.3 Deep Learning

DL is a type of machine learning that involves constructing and using networks
composed of multiple interconnected layers of neurons to perform non-linear trans-
formations of data (Hao, Zhang, and Ma, 2016). The essence is to allow the network
to learn the patterns or behaviours observed in the data. In theory, the more layers of
neurons in a network, the more likely it is to detect higher-level patterns in the data
due to the composition of complex functions (LeCun, Bengio, and Hinton, 2015). DL
achieves great power and flexibility by learning to represent the world as a nested hi-
erarchy of concepts. Each concept is defined with more precise concepts and abstract
representations determined with respect to less abstract ones (Goodfellow, Bengio,
and Courville, 2016), (Wani et al., 2020). DL has achieved ground-breaking results in
various tasks, including image recognition, speech recognition, anomaly detection,
disease diagnosis, and natural language processing. DL models have also been ap-
plied in several sub-fields of PM, particularly in Predictive Process Mining (PPM).
PPM is a class of PM techniques concerned with predicting some properties about
the future state of a case. For example, predicting the next event in an ongoing case
or predicting the remaining time until a case is completed.

2.3.1 Recurrent Neural Network

Being one of the popular DL architectures, a recurrent neural network (RNN) is ac-
knowledged for its ability to learn and generalise over sequences of inputs rather
than individual patterns (Goodfellow, Bengio, and Courville, 2016). It contains re-
current or repeated connections with hidden states distributed over time, allowing
the network to keep past information effectively. In RNN, the output at the current
time step is the input in the next time step (Figure 2.8). As a result, at each point
in the sequence, an RNN model considers the current input and what it remembers
about the previous points, thus learning the temporal dependence and contextual

22 Chapter 2. State of the Art and Related Work

information in the input data. This memory quality allows the network to learn
long-term dependencies in a sequence, preventing prior information from being lost
(Lewis, 2016). This quality suggests the RNN model’s ability to consider the context
when making a prediction, e.g. when predicting the next word in a sentence, clas-
sifying sentiments, and estimating temperature measurements. At the same time,
the length of contextual information that a typical RNN model can capture is lim-
ited, which can negatively affect the model’s performance. This drawback is due to
the problem of vanishing or exploding gradients during RNN model training using
back-propagation (Hochreiter and Schmidhuber, 1997).

O ONORNO
LoH o -0

ONENONONOIENO

FIGURE 2.8: The basic recurrent neural network (RNN) architecture

h 4
=
]
Y
=
—

2.3.2 Long Short-term Memory

A variation of the RNN architecture called LSTM has been proposed to overcome
the problem of vanishing or exploding gradients. The control flow of LSTM is the
same as that of RNN; the main distinction is in operations within LSTM cells. A cell,
also called a memory block, is the memory of the network that retains information
over random time intervals (Fig. 2.9). Information is updated to or removed from a
cell through three gate units. In particular, Forget gate(f) decides which information
to keep or discard, the Input gate (i) decides what relevant information to update the
cell state, and Output gate(o) determines the output. In each LSTM cell, the activation
function sigmoid (¢) is used to decide which information to keep or ignore, while the
hyperbolic tangent function tanh is used to help regulate the network.

2.3. Deep Learning 23

Vi

Ces ? > C,

h,., | —> > h,

FIGURE 2.9: The long short-term memory (LSTM) cell

The LSTM cell operations can be described using the following formulae:

fi = c(Wp.[ht—1, xi] + by)
it = c(Wi.[hi—1, x¢] + b;)
C; = tanh (W,.[l;_1, x;] + be)
Ci=fixC—1+ixC
o = c(Wy.[hy—1, xt] + b,)
hy = o4 x tanh (Cy)

Using information from the previous hidden state /1;_; and the current input x;,
ft calculates the output of the forget gate, i; calculates the output of the input gate,
C; calculates the eligible candidate, C; calculates the new cell state, o calculates the
output of the output gate, and h; calculates the new hidden state. W and b represent
the weight and bias parameters for each of the Forget(f), Input (i) and Output gates
(0) learnt during training, respectively.

2.3.3 Bidirectional Long Short-term Memory

Bidirectional LSTM (BLSTM) (Schuster and Paliwal, 1997) splits the state neurons of
regular LSTM into two, the forward state (responsible for positive time direction)
and backward state (responsible for negative time direction), both of which are con-
nected to a common output layer. This architecture makes it possible to train a model
using all past and future information of a specific time frame. Figure 2.10 shows a
basic BLSTM structure, with the LSTM net at the bottom indicating the forward state
and the LSTM net at the top indicating the backward state. Without the backward
state, it becomes a regular unidirectional LSTM.

24 Chapter 2. State of the Art and Related Work

() " o
Outputs \\m (yr > LY ry
?) S

Ui S
ry Iy
Ba;.:::::rdq—- LSTM LSTM LSTM oo
Forward LSTM LSTM LSTM
Layer

FIGURE 2.10: Basic unfolded bidirectional LSTM (BLSTM) structure

Depending on the problem domain, the BLSTM structure can give better re-
sults than other network structures. For example, a BLSTM model was reported to
achieve remarkable performance in speech processing tasks, where content is crucial
(Graves and Schmidhuber, 2005).

2.3.4 Word Embedding

The idea of word embedding was first introduced in (Xu and Rudnicky, 2000) and
(Bengio, 2008) with the neural network language model. The motivation behind it
is that words are likely to share similar meanings in the same context (Harris, 1954).
According to the Bayes rule, the probability that a word sequence W occurs is:

N N
P(W) = HP(wt ‘ wl,...,wt_l) = HP(wt ’]’lt),

t=1 t=1
where P(W) is the joint distribution of the sequence W, and h; represents the
context words around the word w;. The goal is to evaluate the probability that the
word w; appears given its context information. Because there are many possible
combinations of a word and its context, it is impossible to specify all P(w; | h;).
As such, a function @ is used to map the context into equivalent classes, where all

words are statistically independent (Srinivasan, 2017):

Other text representation techniques, such as one-hot, generate high-dimensional
vectors, whose length depends on the volume of the vocabulary. In addition, se-
mantics and context are not captured, i.e. the meaning is not modelled effectively.
Embeddings are a more robust representation of corpus and can be used to leverage
massive DL models. An embedding is a dense vector of floating-point values (Li
and Yang, 2018). The values for the embedding are not manually specified. They are
learnt by the model during training, just as a model learns the weights for a dense
layer. When trained on massive datasets, embeddings capture the context of a word
by considering a few other words around it and their order in a sentence.

2.4. Deep Learning in Process Mining 25

Embeddings greatly benefit natural language processing (NLP) problems for two
reasons. First, they help reduce dimensionality as the number of features can be
controlled. Second, the context of a word can be understood since similar words
have similar embeddings. Pre-trained word embeddings such as Word2Vec, GloVe,
and FastText (Brownlee, 2017) can be used when dealing with NLP problems. Al-
ternatively, the embeddings can be trained using the embedding layer of the Keras
library (Gulli and Pal, 2017). The embedding layer is an essential part of neural net-
works, which learn the relationships between words. For example, in a large corpus
that contains all possible English words, the vectors for words like "king", "queen",
"man", and "woman" will show some similarity in the multidimensional embedding
space. When building a word embedding space, the goal is to capture a relationship
in that space, such as meaning, morphology, context, or another relationship. By en-
coding word embeddings in a densely populated space, words can be represented
as vectors with tens or hundreds of dimensions instead of millions (which is the case
with one-hot encoded vectors) (Li and Yang, 2018).

Today, word embedding approaches, represented by DL, have gained attraction
and have been applied with satisfactory results in many tasks, such as text classifica-
tion, semantic similarity estimation between words of different languages, question
answering, parsing and sentiment analysis, recommender systems, knowledge min-
ing (Gutiérrez and Keith, 2018), etc.

2.4 Deep Learning in Process Mining

Due to its popularity, several recent studies have employed DL techniques to mon-
itor and predict business processes. These DL approaches are based on different
types of neural networks. Most of them use LSTM Neural Networks (Tax et al.,
2017; Evermann, Rehse, and Fettke, 2017; Camargo, Dumas, and Gonzélez-Rojas,
2019; Lin, Wen, and Wang, 2019; Tello-Leal et al., 2018; Di Francescomarino et al.,
2017), Gated Recurrent Units (GRUs) (Hinkka, Lehto, and Heljanko, 2018), or Con-
volutional Neural Networks (CNN) (Pasquadibisceglie et al., 2019; Mauro, Appice,
and Basile, 2019). These approaches use different encoding techniques for sequences
and consider different input data to make predictions.

Tax et al. (Tax et al., 2017) used the LSTM approach to build models that could
achieve multi-task learning, namely, predicting the next event of a running case and
its timestamp. The authors used one-hot encoding to transform input events into
feature vectors. The authors presented two methods: one for activity prediction
and the other for timestamp prediction. The Helpdesk and BPIC12 Subprocess W
datasets are used for evaluation. The models could predict the continuation of a case
up to completion and the remaining cycle time of the running cases. However, the
models did not perform well when making long-term predictions and when used
in event logs with many repeated events. They predict long sequences of the same
event when dealing with traces that have similar activities multiple times.

Motivated by the application of RNN to predict the next word in a sentence,
Evermann et al. (Evermann, Rehse, and Fettke, 2017) proposed LSTM networks to
predict the next event of a case from an event log. Unlike (Tax et al., 2017), their
approach uses the embedded dimension of the LSTMs to reduce the input size. The
authors considered the event log as text, traces as sentences, and events in a trace
as words in a sentence. The authors used an RNN architecture with a single hidden
layer of LSTM cells. They evaluated the approach using the datasets of BPIC 2012
and BPIC 2013. The model could predict the most probable remaining sequence of

26 Chapter 2. State of the Art and Related Work

events in an ongoing case. This study acknowledges that the inability of the model
to handle numerical variables made generating sequences of time-stamped events
impossible. Another limitation is to interpret the knowledge encoded by the model.
The authors further present two mechanisms to interpret the model’s results; (i) Hal-
lucinations to predict the suffix and (ii) t-SNE plots to visualise the embedding ma-
trix and the hidden states. The interpretations supplied information about the layers
and cells activated for an input sequence. However, they were still limited in their
ability to explain a prediction.

Francescomarino et al. (Di Francescomarino et al., 2017) also employed the LSTM
architecture proposed by Tax et al. (Tax et al., 2017) and improved its performance
by accounting for a-priori knowledge using A-PRIORI algorithm on the traces of the
test set and dealing with cycles using NOCYCLE algorithm to overcome the problems
encountered when dealing with traces containing a high number of cycles.

Tello-Leal et al. (Tello-Leal et al., 2018) presented an LSTM network applied to
event logs from the Internet of Things (IoT) domain within the context of industry
4.0. Although the network could successfully predict the next activity in a business
process, its performance in predicting continuous traces was not always good.

Lin et al. (Lin, Wen, and Wang, 2019) presented an RNN-based modulated model
for multi-task prediction of event sequences and event attributes. The model (called
MM-Pred) includes an LSTM encoder-decoder and a modulator capable of learning
inter-dependencies among event attributes. The modulator combines the hidden
representations of the LSTM-based encoder to infer the weight vector. The weighted
sum of the encoded vectors is used as input to the decoder layer comprising a two-
layer LSTM network to predict the next activity. The authors compared the MM-
Pred model with two other models. S-Pred for predicting the next events based
on event sequences alone (using the same LSTM encoder-decoder architecture, but
without the modulator) and M-Pred for predicting next events and their attributes
together (employing the modulator). This work suffers the same limitation as (Ev-
ermann, Rehse, and Fettke, 2017): It does not support predicting attributes with
numerical domains, including timestamps and durations.

To overcome the limitations, Camargo et al. (Camargo, Dumas, and Gonzalez-
Rojas, 2019) proposed an LSTM architecture with embedded dimensions to predict
traces of events, time-stamps and the role associated with each event. The phases in
their approach included scaling and extracting n-grams of fixed sizes for each event
log trace to create input and target sequences for training the predictive model and
a post-processing phase, where predicted next events were randomly selected from
the likely ones to generate a greater number of different traces. For the next-event
prediction task, their approach performs similarly to Evermann et al. (Evermann,
Rehse, and Fettke, 2017) and Tax et al. (Tax et al., 2017), but underperforms Lin
et al. (Lin, Wen, and Wang, 2019). However, for suffix prediction, their approach
outperforms (Evermann, Rehse, and Fettke, 2017), (Tax et al., 2017) and (Lin, Wen,
and Wang, 2019). They attribute the good performance to the measures they adopted
for the dimensionality control of the categorical attributes. Table 2.4 summarises
some LSTM-based models for monitoring and predicting business processes.

While many of the methods reviewed above have been reported to have per-
formed well, they have some limitations. The approaches did not perform satisfacto-
rily when dealing with multiple instances of the same activity. In most approaches,
regression problems, such as the remaining time to complete the case, are not ad-
dressed. Also, concept drift and hyper-parameter optimisation are not addressed
in existing approaches. It is also worth noting that the proposed approaches can be

2.5. Process Discovery versus Process Prediction Methods 27

event log-specific when tackling prediction problems. For example, Rama et al. ob-
served when comparing different approaches for next activity prediction that using
the whole set of available attributes is beneficial, as long as the amount of data is
sufficient and the log is not too complex. However, when the log is too complex, a
more straightforward approach, such as (Tax et al., 2017), may capture more effec-
tively the relations among the activities in the trace than more complex approaches,
such as (Hinkka, Lehto, and Heljanko, 2018) and (Camargo, Dumas, and Gonzélez-
Rojas, 2019). Finally, Neu et al. (Neu, Lahann, and Fettke, 2021) have reported the
following factors that contributed to the lack of quantitative comparability of state-
of-the-art DL methods for process prediction:

e absence of common performance measurement;

e imbalanced datasets (which can affect accuracy scores);

e the choice of inputs (which plays a significant role in the maximal attainable

performance scores).

TABLE 2.4: Summary of RNN- and LSTM-based models for monitor-
ing and predicting business processes.

Study Dataset Model Architec- | Prediction | Quality Metric

ture Type
Tax et al. | Helpdesk 2 LSTM Layers Next activ- | Accuracy,
(Tax et al., | BPIC12w A Dense Output | ity, Mean Absolute Error
2017) Layer Remaining | (MAE)

Time

Camargo BPIC12 Input Layer Next event, | Damerau-Levenshtein
et al. (Ca- | BPIC13 2 LSTM Layers Suffixes (D-L) distance,
margo, Du- | Helpdesk A Dense Output Accuracy,
mas, and | BPIC15 Layer Mean Absolute Error
Gonzalez- (MAE)
Rojas, 2019)
Evermann | BPIC12 Embedding Next event | Precision
et al. (Ev- | BPIC13 Layer
ermann, 1 LSTM Layer
Rehse, and
Fettke,
2017)
Lin et al. | BPIC12 Encoder-Decoder | Next activ- | Damerau-Levenshtein
(Lin, Wen, | BPIC14 LSTM ity, (D-L) distance
and Wang, | BPIC17 Modulator Attributes | Accuracy
2019) Helpdesk A Dense Output

Layer

2.5 Process Discovery versus Process Prediction Methods

Process discovery methods are used to improve the comprehensibility of control-
flow relations between tasks, as observed in event logs. The discovered process
models can help to understand how a process should be performed or is performed

28 Chapter 2. State of the Art and Related Work

in reality. More importantly, they provide a foundation for further analysis. Transi-
tion diagrams such as Petri-nets, BPMN diagrams, causal nets, state machines, and
directed acyclic graphs are often used to represent the outcomes of process discovery
methods (Augusto et al., 2018). Using process modelling notation for the visualisa-
tion of business process models ensures that domain experts, who may not have the
technical knowledge to comprehend how different PM methods work, can under-
stand the generated graphs and decide whether the structure of the model reflects
or contradicts the domain knowledge of experts. However, these strategies may lead
to the discovery of complex and incomprehensible process models that conceal the
correct behaviour of the underlying process.

More recently, DL-based sequence modelling techniques have gained popular-
ity across the PM community in the context of predicting next activities in business
processes. Comparative studies such as (Rama-Maneiro, Vidal, and Lama, 2021;
Kratsch et al., 2021; Teinemaa et al., 2019; Di Francescomarino et al., 2018; Tax, Teine-
maa, and Zelst, 2020) have shown that DL approaches for next activity prediction
outperform classical prediction techniques, which use an explicit model representa-
tion such as Hidden Markov Models (Lakshmanan et al., 2015), probabilistic finite
automatons or state-transition (Breuker et al., 2016; Unuvar, Lakshmanan, and Do-
ganata, 2016). Since then, next activity predictions produced by DL models have
been demonstrated to be more accurate than those made through process models
discovered using event logs (Tax et al., 2017; Camargo, Dumas, and Gonzalez-Rojas,
2019; Evermann, Rehse, and Fettke, 2017). At the same time, the reverse interaction,
i.e. employing DL to produce accurate process models, is yet to be evaluated using
appropriate metrics and comparative studies. As a first step towards this goal, this
thesis proposes to combine visually expressive graphs with DL approach to gener-
ate the most probable sequences of activities from event logs that can potentially be
used in place of process models.

2.6 Concept Drift in Process Mining

Another important use of PM techniques is detecting process drifts from business
process executions in event logs. Business processes are subject to unplanned changes
and disruptions that can adversely affect the performance of processes. Many fac-
tors such as seasonal effects, legislation changes, new rules and regulations, tech-
nological advances, and unexpected events (e.g. the coronavirus pandemic) lead
to changes (or drifts) in business processes over time. Event logs recorded over a
certain period can be expected to differ from event logs recorded over another pe-
riod. This behavioural change in process execution occurring at some point in time
is called concept drift. Concept drift is said to occur when a change is observed in
the process while it is being analysed (Bose et al., 2011; Bose et al., 2013).

Process drifts are either planned (e.g. regulatory changes) or unexpected (e.g.
change in resource capacity) (Seeliger, Nolle, and Miihlhduser, 2017). Analysing
such changes is of great importance to developing operational processes and obtain-
ing accurate insight into process executions at any given time. The following main
challenges arise when dealing with concept drifts in PM:

o Change point detection: This involves first and foremost identifying if drift has
occurred in a process. If a change is detected, the next thing to do is identify
the time periods in which the changes occurred. For example, drift should be
detected at the beginning of a season for changes related to seasonal effects.

2.6. Concept Drift in Process Mining 29

e Change localisation: After detecting a change point, the next step is to identify
the region(s) of change in the process model. The change localisation method
should identify the exact point in the model where the drift occurs, e.g., be-
tween activities “A” and 'B’, without requiring a process model as input.

o Change characterisation: Involves defining the perspective of change and deter-
mining the type of drift, e.g. sudden, gradual, or incremental. This challenge is
rarely reported. Most state-of-the-art approaches focus on drift detection and
localisation.

o Change process discovery: After identifying, localising, and characterising the
drifts, it is essential to use them in a broader context. Change process discov-
ery presents the complete change process based on change detection, localisa-
tion, and characterisation. It is done using tools that exploit and relate these
discoveries. This will lead to unravelling the evolution of the process change
and how it affects the model over time. For example, identifying if a process
reoccurs every season. Also, visually showing how the process evolved over
a period with annotations showing several perspectives, such as the perfor-
mance of a process at different time instances.

2.6.1 Approaches to Dealing with Drifts

There are two common approaches to dealing with concept drifts when analysing
event logs:

o Offline analysis refers to a scenario where changes are discovered using histor-
ical data. The entire event log is made available to the analyst in this case.
This is appropriate for future analysis, e.g. designing or improving processes
for later deployment (Zheng, Wen, and Wang, 2017). For example, offline con-
cept drift analysis can take proactive measures, such as hiring more staff or
skipping checks weeks before Christmas.

o Online analysis refers to a scenario, where changes need to be discovered near-
real-time. In this case, the analyst must deal with the incoming data contin-
uously. This type of analysis can be helpful to organisations interested in
learning behavioural changes regarding their customers or changes in demand
as they happen. Such real-time prompts can enable organisations to take im-
mediate corrective measures, thus avoiding undesirable consequences (Zheng,
Wen, and Wang, 2017).

2.6.2 Perspectives of Drift

There are three critical perspectives in business processes, and one or more of these
perspectives may change over time:

o Control-flow/behavioural perspective: This change perspective deals with the be-
havioural and structural changes of a process model. Weber et al. (Weber,
Reichert, and Rinderle-Ma, 2008) outline a list of common control-flow change
patterns, which are classified into three categories: insertion (I), e.g. inserting
or deleting a fragment, resequentialisation (R), e.g. sequentialising two paral-
lel fragments, and optionalisation (O), e.g. placing an existing fragment in a
loop in (Maaradiji et al., 2016). Table 2.5 lists the common control-flow change
patterns and their categories adopted from (Maaradji et al., 2017).

30 Chapter 2. State of the Art and Related Work

For example, an accident insurance company that used to collect payment af-
ter processing and accepting an application can change their process to im-
pose payment before processing. Here, the “reordering” change pattern was
applied to the fragments of the payment and application processing process.
Sometimes, the control-flow structure of a process may remain unchanged, but
its behavioural aspects will change. For example, a mortgage rate of £1,000
classified as “high” last year is classified as “low” this year due to an increase
in the mortgage rate to £3,000. In such a situation, the structure of the process
remains unchanged, but the routing of cases changes.

o Data perspective: This change perspective refers to the changes in the produc-
tion and consumption of data and the effect on the routing of cases. For ex-
ample, having a particular document when applying for car insurance may no
longer be required.

o Resource perspective: This perspective deals with changes in resources, their
roles, organisational structure, and their influence on the execution of a pro-
cess. For example, a person who executes a certain activity could have been
changed, roles may change, and people may change roles. In addition, re-
sources are bound to work in a particular manner, and such working patterns
may change over time.

TABLE 2.5: Common control-flow change patterns in business pro-
cesses: I, R, O stand for Insertion, Resequentialisation, and Optional-
isation.

Change pattern Category
Insert/delete a fragment between two fragments
Insert/delete a fragment in/from parallel branch
Insert/delete a fragment in/from conditional branch
Duplicate a fragment

Substitute a fragment

Swap two fragments

Move a fragment to between two fragments

Move a fragment into/out of conditional branch
Move a fragment into/out of parallel branch

Make fragments mutually exclusive/sequential
Make fragments parallel /sequential

Synchronize two fragments

Make a fragment loopable /non-loopable

Make a fragment skippable /non-skippable

Change branching frequency

2.6.3 Types of Drifts

Process changes can be classified into momentary and permanent based on the du-
ration for which the change is active. Momentary changes are short-lived and affect
only a few cases, whereas permanent changes are persistent and stay for a while
(Schonenberg et al., 2008). Permanent changes are studied more, as momentary
changes often cannot be discovered due to insufficient data. Permanent changes
can be further classified as follows (Fig. 2.11):

2.7. Concept Drift Detection 31

e Sudden drift: The sudden concept drift occurs when dynamic changes occur
during process execution, i.e., a current process is replaced with a new process,
and the new process takes over in subsequent process executions. This class of
drift can occur due to a change in the law, an emergency, etc. In Figure 2.11a,
an existing process P; is replaced by a new process P». P; ceases to exist at the
moment of substitution.

e Gradual drift: The gradual concept drift occurs when two or more versions of a
process coexist, i.e. a new process exists along with an old process over a cer-
tain period of time, making it possible to execute both process versions until
the old process is gradually discontinued. For example, an organisation might
introduce a new delivery process. However, the process is set to apply to fu-
ture orders only. All previous orders must still follow the previous delivery
process. In Figure 2.11b, a current process P; is replaced with a new process
P,. Unlike sudden drift, both processes co-exist for some time, with P; discon-
tinued gradually.

o Recurring drift: The recurring concept drift (Figure 2.11c) occurs when a set of
processes is changed back and forth between each other. These types of drifts
are either periodic or non-periodic and are often induced by changes in the
external environment in which a business process operates. An example is
sales that happen in stores during specific periods of the year.

o Incremental drift: The incremental concept drift (Figure 2.11d) occurs when a
change is introduced incrementally into the running process until the process
reaches the desired version. This drift class is more common in organisations
that follow the agile business process management methodology (Bose et al.,
2013).

2.7 Concept Drift Detection

Most state-of-the-art methods for concept drift detection in business processes use
the windowing technique to select traces from an event log to consider for drift anal-
ysis, together with statistical hypothesis testing as a solution (Maaradji et al., 2017;
Ostovar et al., 2016; Bose et al., 2013; Seeliger, Nolle, and Miihlh&duser, 2017; Car-
mona and Gavalda, 2012; Martjushev, Bose, and Aalst, 2015). Some studies used
clustering-based techniques to find groups of traces that share similar characteris-
tics that can be generalised and used to detect drifts (Yeshchenko et al., 2019; Zheng,
Wen, and Wang, 2017; Hompes et al., 2015a; Bolt, Aalst, and De Leoni, 2017; Sousa et
al., 2021). Other studies used graph-based analysis techniques (Lu et al., 2016; Seel-
iger, Nolle, and Miihlhduser, 2017; Nguyen et al., 2018) or model-to-log alignment
(Buijs and Reijers, 2014; Aalst, 2012).

Bose et al. (Bose et al., 2013) presented a method to detect changes in business
processes and identify change regions. First, the authors extracted feature sets from
event logs and compared their values over different windows. Then, they applied
statistical hypothesis testing to investigate a significant difference between two suc-
cessive windows. Martjushev et al. (Martjushev, Bose, and Aalst, 2015) extended
the method proposed by Bose et al. (Bose et al., 2013) by using an adaptive win-
dow strategy and presented an approach to automatically detect change points by
comparing significant values of two windows produced using hypothesis analysis
against a predefined threshold.

32 Chapter 2. State of the Art and Related Work

~ A

h
P2 I P2 N
g N g BN

time time

(A) Sudden (B) Gradual
A A

Pn .
ZI I

P3
P2
time time
(C) Recurring (D) Incremental

FIGURE 2.11: Different types of drifts. X-axis: time. Y-axis: process
variants. Grey rectangles: process instances

Manoj Kumar et al. (Manoj Kumar, Thomas, and Annappa, 2015) proposed a
similar method for capturing sudden concept drifts in business processes. In par-
ticular, the authors assumed that the representative appearance of feature values
changes before and after the occurrence of drift. They applied a windowing strategy
to select the instances for detecting and localising drifts, taking note of the sequential
order of process instances in the log. The authors used statistical hypothesis testing
to examine differences between successive feature values obtained using the event
class correlation determined by scanning the entire log, beginning with a matrix set
with zero values and then updating for every next relation found while traversing
the log. The size of the look-forward window was used to calculate each event that
followed the reference event.

Maaradj et al. (Maaradji et al., 2017) proposed a method to detect sudden and
gradual drifts from execution traces. The authors tested the statistical hypothesis
over the run distribution in two consecutive time windows. They presumed that
if a drift occurred at a given time, the distribution of runs before and after would
statistically differ and the statistical hypothesis testing could expose the difference.
The authors used an adaptive window technique to adjust the sliding window’s size,
striking a good trade-off between accuracy and drift detection delay.

Similar to Maaradj et al. (Maaradji et al., 2017), Ostovar et al. (Ostovar et al.,,
2016) also used an adaptive window technique but in an online setting. Their ap-
proach involves dividing new observed events into reference and detection win-
dows. The set of events within each window is used to build the corresponding
sublog. A contingency matrix is constructed using relations and frequencies ex-
tracted from the sublog. The G-test of independence (Harremoés and Tusnddy, 2012)
is applied to the matrix to obtain the significance probability (p-value). A p-value
below a predefined threshold suggests a drift.

Carmona et al. (Carmona and Gavalda, 2012) presented an online technique for

2.7. Concept Drift Detection 33

dealing with concept drifts. First, the authors applied the theory of abstract inter-
pretation to learn an internal representation of an event log based on a polyhedron.
Then, they estimated the soundness of the representation using an adaptive window
technique to detect concept drifts automatically.

Li et al. (Li et al., 2017) proposed an extensible feature that uses the sliding-
window technique and the heuristic miner to detect and locate concept drifts in
incomplete event logs. The authors further improved the Genetic Process Mining
(GPM) method (Medeiros, Weijters, and Aalst, 2007) using Weight Heuristic Miner
(WHM) (Kurniati, Kusuma, and Wisudiawan, 2016) and Differential Evolution (DE)
(Storn and Price, 1997) to discover the new process model of evolving processes.

Zheng et al.(Zheng, Wen, and Wang, 2017) presented a three-stage method for
detecting process drifts from event logs. First, the authors represented each trace of
an event log as multiple relations such as direct succession and weak order. Then,
for each relation, they inspected and partitioned the variation trend. Finally, they
clustered all change points revealed by each relation to get the final result.

Yeshchenko et al. (Yeshchenko et al., 2019) proposed a method that involves the
following three steps: (i) splitting an event log into sub-logs based on predefined
window size and mining declarative (DECLARE) process constraints, (ii) extracting
the time-series of the characteristics of the discovered constraints, (iii) clustering the
series and detecting change point over them. The final step involves visualising
drifts using drift maps and charts.

Seeliger et al. (Seeliger, Nolle, and Miihlh&duser, 2017) used an adaptive window
technique to split an event log into a reference window and a detection window.
The authors discovered process models for both windows using the Heuristic Miner
algorithm (Weijters, Aalst, and Ana Karla, 2006). Then, they applied a statistical
significance test on different graph metrics to determine the deviation of both ob-
served process models. Using graph metrics, the authors described changes in the
process model to identify process drifts in the event log. They also performed the
statistical G-test to determine whether the detection window’s process model differs
significantly from the reference window’s.

Hassani et al. (Hassani, 2019) used an adaptive window method and a modular
set of reasonable distance measures to detect drifts in event streams. The authors
proposed the StrProMCDD algorithm that collects a batch of events in a pruning
period, computes the frequency list for these events, and includes the new frequency
list in a temporally ordered list used by ADWIN (Bifet and Gavalda, 2007). The
window increases in size for steady process behaviour and shrinks for diverting
processes, thus indicating a drift.

De Sousa et al. (Sousa et al., 2021) proposed an online trace clustering approach
to detect and localise drifts in online trace streams. According to this approach,
traces are mapped onto a vector representation that is used as input to a trace clus-
tering algorithm. The resulting cluster information is used for drift detection and
localisation. The authors assumed that each feature representing a significant group
of traces should remain stable according to the traces’” process behaviour. Hence,
they verify whether the current value has changed significantly to detect drift. The
method iterates over any of the clustering evolution features over time. The feature
value is compared to an estimated tolerance limit in each iteration. A value outside
the tolerance limit represents a significant change in behaviour from earlier mea-
surements. After each detection, the drift localisation procedure is started, and a list
of the clustering indexes where drifts were detected is returned.

Liu Na et al.(Liu, Huang, and Cui, 2018) presented an online framework to de-
tect concept drift in an event stream based on the relationship between each pair of

34 Chapter 2. State of the Art and Related Work

activities in the process. First, the framework involves initialising the current model,
which is used as a benchmark to compare every event trace of the upcoming event
streams. Then, adjacency and footprint matrices are extracted for each new trace.
The matrix of the new trace is then compared with the matrix of the current model
to identify differences. A metric named process model precision is calculated. The
difference between the matrices indicates a drift. The method returns the activities
and the difference to localise and characterise the drift, indicating whether the drift
is sudden or recurring.

Although many of the methods reviewed above performed well, they have limi-
tations. For example, the windowing technique used in many concept drift detection
algorithms is highly dependent on the right choice of window size; a wrong window
size can result in many false negatives and false positives. Some methods, such as
the one proposed by (Carmona and Gavalda, 2012) cannot locate the exact moment
of a drift. The method reported in (Bose et al., 2013) is not automated; it requires
human involvement in feature selection and recognition of changes, which makes
it impractical. (Sousa et al., 2021) approach is capable of dealing with drifts only
presentable through trace clustering. Thus, the approach is subject to the limitations
of the trace vector representation and clustering algorithms. Finally, most of the
existing methods for detecting concept drifts in a business process are designed to
work offline, i.e. they require the entire event logs featuring cases from both before
and after a drift. Some online methods detect drifts with a long delay and some do
not perform well on processes whose logs display many distinct executions. Thus,
detecting drifts in online scenarios (i.e. as they happen) remains challenging. Ta-
ble 2.6 summarises the existing business process drift detection solutions and their
limitations.

2.8 Concept Drift Localisation

Concept drift localisation is concerned with identifying the parts of control flow
changes that explain the concept drift. Unlike drift detection, whose goal is clear
and common in related work, drift localisation approaches do not have universal
output requirements.

State-of-the-art drift localisation methods generally compare the process behaviour
before and after the drift to report differences. In (Nguyen et al., 2018), relationships
between entities of two variant business processes are used to construct two per-
spective graphs. The common nodes and edges of the two graphs are compared in
terms of weight. The output are statistically significant differences using a differen-
tial graph or a matrix.

Bolt et al. (Bolt, Leoni, and Aalst, 2018) proposed a technique to compare the
behaviour of different variants of the same process based on their executions in
event logs. First, the authors build a transition system from two event logs corre-
sponding to a process variant, annotating each of its states and transitions with the
measurements of the variants for a particular process metric. Then, they perform a
statistical test between every two sets of metric measurements on each state or tran-
sition to identify the statistically significant differences. Finally, they distinguish the
differences identified by thickening the arc corresponding to statistically significant
activity in the transition system. However, the technique can only identify that a
particular activity occurs after a sequence of activities in one process but not in the
other, thus missing the structural differences between the processes. Furthermore,
the technique does not work with event streams.

2.8. Concept Drift Localisation 35

Van Beest et al. (Beest et al., 2016) used two prime event structures to encode the
process behaviour captured by two event logs and compare them. The outcome is a
report of their differences as natural language statements. A downside of the tech-
nique is that it reports many differences, especially when the changes are applied to
process fragments or when they occur in a nested way.

Armas-Cervantes et al. (Armas-Cervantes et al., 2014) proposed a method based
on canonically reduced event structures for diagnosing behavioural differences be-
tween two process models. The idea is similar to (Beest et al., 2016). However, here,
two event structures are built from the process models and compared with each
other to extract a set of natural language statements that report their differences.
The technique trades off between fully capturing the behaviour of the log and over-
generalising that behaviour. As a result, some differences may be lost and some may
be added.

Ostovar et al. (Ostovar, Leemans, and Rosa, 2020) discovered process trees from
a portion of the event stream. They used a process tree transformation technique
to find a minimum-cost sequence of edit operations that transform the process tree
before and after. The results are natural language statements based on common busi-
ness process change patterns (Weber, Reichert, and Rinderle-Ma, 2008). The method
performs well for complex changes with multiple activities, but not so well with
localising simple drifts that involve individual activities in the presence of noise.

Gaspar et al. (Sousa et al., 2021) used trace clustering to analyse differences in
process behaviour. Their method compares the clustering before and after the de-
tected drift to identify the specific entities involved in the control-flow change. They
compare the centroid positions’ variation using MSE for each pair of matching clus-
ters from before and after. A high MSE value in a given dimension of the centroid
indicates that the corresponding activity behaves differently before and after the
drift.

TABLE 2.6: Existing approaches to business process drift detection

Approach Studies Techniques Used Limitations
Model-to-Log Align- | (Buijs and | e Alignment matrix | e The approaches resemble
ment- this group of | Reijers, (Buijs and Reijers, 2014) | conformance-checking tasks,
approaches is based | 2014), e Vertical & horizon- | and conformance-checking is
on the presence of a | (Aalst, tal partitioning (Aalst, | not suitable for detecting con-
process model and an | 2012) 2012). cept drift as it requires the
event log as input to presence of a precise norma-
the analysis process. tive model.
Graph-Based- visuali- | (Lu et al, | e DPerspective graphs | e The approach in (Lu et
sations are created as | 2016), and finding statistical | al., 2016) becomes inaccurate
an intermediate step in | (Nguyen differences ~ between | when detecting an increas-
analysing drifts for this | etal., 2018) | them (Nguyen et al., | ing number of deviations and
group of approaches. 2018). e Backtracking, | when applied to real-life logs.
heuristic function, ¢ The approach in (Nguyen
greedy algorithm, cost | et al.,, 2018) assumes that
function REGs (Lu | an event log follows a basic
et al., 2016). structure that allows the pro-
posed investigation.

36

Chapter 2. State of the Art and Related Work

Clustering-Based- This
group of approaches
clusters traces to detect
changing behaviour in
an event log.

(Yeshchenko
etal., 2019),
(Zheng,
Wen,
Wang,
2017),
(Hompes et
al., 2015a),
(Bolt, Aalst,
and De
Leoni,
2017),
(Sousa et
al., 2021)

and

e Sliding window,
Hierarchical clustering,
Change point detec-
tion using PELT and
Declarative constraints
discovery using MIN-
ERFUL(Yeshchenko
et al.,, 2019). e Re-
cursive Partitioning
by Conditional Infer-
ence (RPCI), points
of interest & event
augmentation(Bolt,
Aalst, and De Leoni,
2017). ¢ MCL & cosine
similarity (Hompes
et al., 2015a; Hompes et
al., 2015b). ¢ DBSCAN
clustering (Zheng,
Wen, and Wang, 2017).

e The approach in (Hom-
pes et al, 2015a) relies on
the distinctions of the clus-
ter sizes and densities to de-
termine the exceptional be-
haviour from the standard.
However, these considera-
tions depend on the similar-
ity matrix, whose sensitivity
to changes depends on the
similarity measurement and
thresholds used. e Users
must define a threshold on
which the relevance of a
point of interest can be de-
cided. e Generally, the
approaches presented in this
category have in common
that they start with defining
a behavioural profile or a fea-
ture set for the activities ex-
ecuted in a process. Most
of these profiles neither rep-
resent any notion of equiva-
lence nor provide a diagnosis
of differences between pairs
of models. They also can
not capture certain process
behavioural patterns, such as
skipping a task, concurrency,
or looping.

2.9. Discussion

37

Windowing and Sta-
tistical Analysis - This
group of approaches
rely on statistical ap-
proaches to detect
changes in event logs
divided into windows
of fixed or changeable
sizes.

(Maaradji
etal., 2017),
(Ostovar
et al., 2016),
(Bose et
al.,, 2013),
(Seeliger,
Nolle, and
Miihlhduser,
2017), (Car-
mona and
Gavalda,
2012),
(Martju-
shev, Bose,
and Aalst,
2015)

° Adaptive win-

dowing, statistical
testing (Chi-Square
test) and oscillation

filter(Maaradji et al.,
2017). e Adaptive
windowing, statistical
testing (G-test of in-
dependence)(Ostovar
et al.,, 2016) e Sta-
tistical hypotheses
testing using Kol-
mogorov-Smirnov
(KS) test,
Mann-Whitney test,
Hotelling T2 test &
windowing(Bose et
al, 2013) e Adap-
tive windowing,
Heuristic mining &
G-Tests(Seeliger, Nolle,
and Miihlhduser,
2017). e Adapta-
tion of ADWIN ap-
proach(Martjushev,
Bose, and Aalst, 2015).
e Abstract interpreta-
tion, Parikh vectors
and Adaptive win-
dowing(Carmona and
Gavalda, 2012).

e The approach in (Carmona
and Gavalda, 2012) is unable
to detect multiple drifts at the
same time and is unable to
pinpoint the exact moment of
the drift. e In (Bose et
al., 2013), there is a need for
user interventions by specify-
ing the features used for drift
detection. The approach is
also unsuitable for identify-
ing certain types of drift, for
example, the insertion of con-
ditional branching in a pro-
cess model.

2.9 Discussion

The chapter comprehensively reviews the literature on PM and other related works.
It outlined problems that can be found in the domain. It also introduced the DL tech-
niques used in PM, including the limitation of their application. Lastly, it introduced
drift detection and localisation in PM.

PM aims to discover, monitor and improve real processes (Van Der Aalst, 2012).
According to the literature review, research in the PM domain is predominantly fo-
cused on process discovery. In (Zerbino, Stefanini, and Aloini, 2021), the following
possible two reasons for this are suggested:

1. Process discovery enables conformance and enhancement. In fact, awareness
of how business processes are actually performed provides reliable process
models to check or improve.

2. Enhancement, unlike discovery, suffers from a shortage of methodologies, al-
gorithms, and plug-ins. This is because (i) its scope is potentially more exten-
sive as it includes resource allocation, business process and information flow

38 Chapter 2. State of the Art and Related Work

redesign, scenario analysis, and so on; and (ii) it is context-bound and not lim-
ited to diagnostic activities.

Process discovery relies on data collected from an information system over a pe-
riod of time or in real-time data output by running processes, commonly known
as an event log. Process discovery methods can automatically construct a process
model that appropriately displays the observed behaviour as it is captured in an
event log without any inferred information. These models enable businesses to eval-
uate performance, check compliance, spot anomalies and suggest improvements.

DL methods such as RNN and LSTM have proven to achieve a better perfor-
mance in terms of accuracy and generalising ability when predicting next events
in business processes compared to traditional process discovery techniques such as
Petri nets and the BPMN. However, existing DL-based PM methods lack a mech-
anism that explains how the predictions of the next events are made, unlike tradi-
tional network-based PM techniques that can be used to visually present the entire
discovered process.

The topic of drift detection and localisation is also introduced in this chapter.
Several methods have been proposed for concept drift detection in business pro-
cesses. Most methods use the windowing technique to select traces from an event
log to consider for drift analysis, along with statistical hypothesis testing as a so-
lution. Some studies used clustering-based techniques to find groups of traces that
share similar characteristics that can be generalised and used to detect drifts. Other
studies used graph-based analysis techniques or model-to-log alignment.

While many of the methods were reported to perform well, they have limita-
tions. For example, the windowing technique used in many concept drift detection
algorithms is highly dependent on the right choice of window size; a wrong win-
dow size can result in many false negatives and false positives. Some methods are
unable to locate the exact moment of a drift (e.g (Carmona and Gavalda, 2012; Sousa
et al., 2021)). Some methods are not automated (e.g (Bose et al., 2013)), they require
human involvement in feature selection and change point recognition, making them
impractical. Finally, most of the existing methods for detecting concept drifts in
business processes are designed to work offline; i.e. they require the entire event
logs featuring cases from both before and after a drift. Some online methods detect
drifts with a long delay, while others do not perform well on processes whose logs
display many distinct executions. Thus, detecting drifts in the online scenario (i.e.
as they happen) remains challenging.

It is also worth noting that most drift detection approaches concentrate on de-
tecting drifts through their effect on the resulting process instances, i.e., cases in the
event log, rather than detecting them by comparing process models depicting differ-
ent process instances before and after the drifts (Elkhawaga et al., 2020).

210 Summary

This chapter discussed the limitations of existing solutions for predicting the next
activities in business processes, as well as the detection and localisation of drift in
business processes. The following chapters will present the proposed solutions to
tackling these challenges with the aim of addressing the discussed limitations. In
particular, Chapter 3 addresses the problem of predicting the next activities in busi-
ness processes by proposing a new approach to PM that combines the benefits of
visually explainable graph-based methods and accurate but implicit DL methods.

2.10. Summary 39

The following chapters present the proposed methods for detecting and localising
drifts in business processes.

41

Chapter 3

Predicting Next Activities in
Business Processes

Chapter 2 discussed that the existing DL-based methods for PM lack a mechanism
explaining how the predictions of the next activities in business processes are made.
To address this limitation, this chapter presents a graph-based approach to explain-
ing the decision-making process of an LSTM model when generating a sequence of
events representing a business process. According to this approach, an LSTM model
is trained on an event log first. This model is then employed to find the probabilities
for each event present in the log to appear in the business process next. Finally, these
probabilities are used to generate a visually explainable process model graph that
represents the decision-making process of the LSTM model. A probability thresh-
old is introduced as a parameter to manage the graph complexity and thus enable
faster and more directed business process analysis, including discovering the most
common event sequences and unusual or suspicious behaviours.

The chapter is structured as follows. Section 3.1 details the proposed approach.
Section 3.2 describes the experimental setup, while Section 3.3 presents and dis-
cusses the results. Finally, Section 3.4 summarises the chapter. The work described
in this chapter has been published in (Hanga, Kovalchuk, and Gaber, 2020).

3.1 Proposed Approach to Process Mining

The proposed PM approach consists of two stages: building an accurate LSTM model
to predict the sequences of events in the business process based on event logs and
generating a DFG explaining the decision-making process of the LSTM model for
predicting the sequences of events in the business process. Figure 3.1 summarises
the steps of the two stages of the proposed approach.

3.1.1 Data Preparation

The proposed approach takes as input an event log defined as follows.

Definition 1 (Event log). An event log L is a set of traces 7 that contain a set of
events £ recorded as the result of each execution of a process instance. Each trace ¢
contains a sequence of events t = ey, ey, ...,¢,, Wheree; € £ and 1 < i < n. Each event
can have a set of attributes P that provide additional event details, e.g. timestamp
or a resource that executes the specified activity.

Event Log Pre-processing

The concept of NLP was used to parse event logs and train the proposed LSTM
model. The model was trained to establish the most likely activity to come next in a

42 Chapter 3. Predicting Next Activities in Business Processes

Predictions
(probability
distribution)

—dde

St 1 J st 5
= aoe) \ 4
| | Preparing | | Building the N — (;enerate
Data Model d Predictive rocess
Model Model

Embedding
Layer

R

Interpretable Process
Model

ot — — — —,

FIGURE 3.1: Flow diagram summarising the proposed approach to
process mining

given sequence of events over time. This problem also resembles a time-series prob-
lem due to sequence dependence among input variables. In NLP, when predicting
the next word to appear in a sentence, the context of the whole sentence is consid-
ered to avoid ambiguity (Brownlee, 2017). The same concept was used to frame the
input sequences for the LSTM model from event logs. Similar to free text, event logs
are also prone to ambiguity because of the varied length of sequences and the ex-
istence of repeated activities. To improve the model’s training process, the context
was broadened by phrasing the problem so that multiple previous time steps were
considered when predicting the next time-step. In particular, the event logs were
pre-processed according to the following protocol and definitions.

The NULL label marks the beginning of each case (or process instance). It be-
comes the first input activity xo at the current time ¢y, and the target activity yo
becomes the activity at time #; (this is the first activity occurring in each case of the
event log). The next sequence of input activity x; becomes the activity at the pre-
vious times {#o, 1 }, and the target y; becomes the next activity at time t,. The next
input activity sequence x, becomes the activity at the prior times {to, t1, 2}, and the
target ¥, becomes the next activity at time f3; and so on. The inputs X build up
for each next input sequence as the prior activities are joined with the current ac-
tivity. Targets Y are always activities in the next time-step t,, 1 until the last input
sequence contains all activities in the previous time steps, including the current ac-
tivity. At this point, the label END is added to mark the end of a case. This procedure
is repeated until all cases in the event log are pre-processed.

Definition 2 (Predicting next activity). Given a trace of activities t = ay, ay, ..., ay,
the output of the predictive model is the next activity {a;11}.

Definition 3 (Predicting complete traces). Given the prefix of a trace t = a1, ay, ..., a;
and the value END to mark the end of each case, the output of the predictive model
is the sequence of activities {a¢11,as12, ..., END/a;}.

Encoding and Padding

The input sequences are encoded using the Tokenizer class from the Keras library
(Gulli and Pal, 2017). The tokenizer maps each activity in an event log to a unique

3.1. Proposed Approach to Process Mining 43

integer, creating a sequence of integers. Next, the prepared sequences are padded us-
ing the pad sequences() function of Keras (Gulli and Pal, 2017). The function first finds
the longest sequence, and then uses the length to pad other sequences to have a uni-
form length. The targets were dummy-encoded using the pd.get_dummies() function
of the Pandas library. The function converts categorical variables into dummy vari-
ables by placing a value of one when a categorical event occurs and zero when it does
not occur. For example, if A = [a, b,], the respective tokens are A — [1,2, 3], where
a=1,b=2and c = 3. Each activity a; € A is encoded as a vector (4;) of length
|A| + 3 such that the first |A| features are all set to zero, except the one occurring at
the index of the current activity 4;, which is set to one. Table 3.1 shows an example of
prepared input sequences, where [1,2, 3,4, 5, 6] are the resulting tokens or integers of
tokenised activities [NULL, a1, a3, a3, as, as]. The target column contains the encoded
dummies (i.e., the converted categorical labels) [a1, a2, a3, a4, as, END], where every
activity is set to zero except the target activity, which is set to one. Whenever the
target is END encoded as [1000000] in the target column, the next process instance is
visited. This procedure is repeated for all process instances in the event log.

TABLE 3.1: Example of prepared data for training the proposed LSTM

models
Time-step (t) \ Input \ Target ‘
to [0,0,0,0,0,0] | [0100000]
t [0,0,0,0,0,1] | [0010000]
tr [0,0,0,0,1,2] | [0001000]
t3 [0,0,0,1,2,3] | [0000010]
ty [0,0,1,2,3,5] | [0000100]
ts [0,1,2,3,5,4] | [0000001]
e [1,2,3,5,4,6] | [1000000]
o [0,0,0,0,0,0] | [0100000]
i [0,0,0,0,0,1] | [0000010]
tr [0,0,0,0,1,5] | [0001000]

3.1.2 Proposed Models for Predicting Next Activities in Business Pro-
cesses

Model Architectures

In addition to the unique way of pre-processing event logs described above, another
distinctive feature of the proposed models compared to other LSTM models for PM
presented in the literature is their architecture. In particular, an additional embed-
ding layer is employed as an interface between the input and LSTM layers of the
network. The embedding layer takes three arguments: the vocabulary size (i.e. the
set of unique activities in a log), embedding vector space size, and length of input
sequences. These parameters are dependent on event log characteristics. The output
of the embedding layer serves as input to the LSTM layer. A single LSTM layer is
followed by an additional fully connected dense layer as the output layer. The out-
put layer uses the softmax activation function to ensure the output takes the form
of probability distributions. While some of the existing LSTM models for PM add
a dense layer on top of the LSTM layer, they either do not use embedding at all or

44 Chapter 3. Predicting Next Activities in Business Processes

implement it differently (e.g. see (Tax et al., 2017; Camargo, Dumas, and Gonzélez-
Rojas, 2019)). Furthermore, the existing LSTM models for PM employ two LSTM
layers, whereas the proposed models have only one LSTM layer. The first model
(Model 1) employs a unidirectional LSTM, while the second (Model 2) employs a
BLSTM. The latter trains two LSTMs instead of one on the input sequence: the first
— on the input sequence as it is and the second — on a reversed version of the in-
put sequence. This gives additional context to the network, resulting in faster and
improved learning.

Figures 3.2a and 3.2b illustrate the network architectures of the proposed DL
models, where the output of each layer is the input to the next layer. In both ar-
chitectures, the first Input Layer contains an activity sequence as constructed during
the log event pre-processing procedure (see the previous section for details). The
size of (ActNum) is determined by the number of unique activities in the event log.
The Embedding Layer encodes the input sequence into a sequence of dense vectors of
dimension (DimSize). While the dimension size can be tuned for better model per-
formance, the choice should be guided by the number of unique activities in the log.
The LSTM Layer in Figure 3.2a and BLSTM Layer in Figure 3.2b are characterised
by the number of neurons (NeuronNum). Here, the vector sequence is transformed
into a single vector of size (NeuronNum), containing information about the entire
sequence. There are no set criteria on how many hidden neurons an LSTM layer
should have; it is problem-dependant. For the problem considered here, the num-
ber of neurons is chosen considering the event log size and the number of unique
activities in the log. A Dropout probability can be added to prevent overfitting and
improve learning. The Dense Layer, which is the last layer, outputs the probability for
each unique activity in a log to appear next in the sequence, including the extra END
activity added to mark the end of the process. Hence, the output takes the form of a
vector of size TargetNum (i.e. the number of expected targets), which is (ActNum +
1).

Training LSTM Models

Providing the multi-class classification problem (i.e. predicting an activity from a list
of activities), the categorical cross-entropy loss function was used during the training
process of each model. The Adam optimisation algorithm (an implementation of
the gradient descent algorithm) was used to track the loss and accuracy at the end
of each epoch. The goal of the training process was to minimise the log loss by
adjusting the trainable parameters (i.e. weights of the network).

Each model was fitted using training data, a variable number of training epochs,
and batch sizes. Each epoch trained the model on the entire training event log while
maintaining the weights and biases learned from the previous epochs. At the end of
each epoch, test data were run through the model, and the average accuracy across
all possible next event cases in the test set was returned.

3.1. Proposed Approach to Process Mining 45

Logits, y,,, Logits, v, “ee Logits, y, ., [BATCH_SIZE,

) 4 ¢
Dense Dense e [Dense
u; + u?

LSTM LSTM e LSTM [BATCH_SIZE,

Output Output Output LSTM_UNITS]

sse — >
Char [BATCH_SIZE,

Embedding Embedding Embedding EMBEDDING_SIZE]

ees S [BATCH_SIZE]
>
SEQUENCE LENGTH
(A) Model 1.
Logits, ¥,,, Logits, y,,, ces Logits, y,.,_, [BATCH_SIZE,
f T T VOCAB_SIZE]
Dense Dense ces Dense
Layer Layer Layer
BLSTM BLSTM ves BLSTM [BATCH_SIZE,
Output Output Qutput BLSTM_UNIT]
LR]
Char Char Char [BATCH_SIZE,
Embedding Embedding et Embedding EMBEDDING_SIZE]
X X, sae X [BATCH_SIZE]

SEQUENCE LENGTH

(B) Model 2.

FIGURE 3.2: Deep learning network architectures of the two pro-
posed LSTM models: (a) Model 1 - unidirectional LSTM; (b) Model
2 - bidirectional LSTM

Next Activity Prediction

After the training phase, the LSTM models are ready to be used to predict next ac-
tivities and, eventually, complete traces. Algorithm 1 lists the pseudo-code of the
prediction algorithm. The algorithm takes the prefix 7, and the trained LSTM model

46 Chapter 3. Predicting Next Activities in Business Processes

p as inputs and returns the complete trace 7. First, 7, is encoded using tokenizer.
Then, the tokenised prefix is padded to the left with zeros to form a sequence of
the same length and fed into the embedding layer. The resulting vector-matrix from
the embedding layer is fed into the model y, which then generates the probability
distribution over different possible activities that can occur in the next position of
the trace. The activity with the highest probability is returned as the next activity B.
A new trace is obtained by concatenating the current prefix with the new predicted
activity. The procedure is repeated until the model predicts the end activity denoted
as END and until it does the same for all traces in the event log.

Algorithm 1 Next activity prediction

Require: Prefix: 7,, LSTM model: u

1: h+ 0

22 T 7;)

3: while (3 <> END) and (h < Log_End) do
. Ty « tokenize(T,)
7, ¢ pad(Ty)
Ty < embed(T,)
P < Predict(u,T,)
if B < highest_probability then

T < T,-B {concatenate the current prefix with the new next activity}

10: h<h+1
11: Return Complete trace: 7
12: end if
13: end while

4
5
6:
7:
8
9

3.1.3 Graphs Explaining the Prediction Process of LSTM Models

In this thesis, a DFG is used to explain the decision-making process of each LSTM
model when predicting the next activities in a business process. The DFG is gener-
ated according to Algorithm 2 based on the probabilities obtained at each iteration
of Algorithm 1. Each arc (a directed edge) of the DFG is annotated with a prediction
probability based on the following definitions.

Definition 4 (Directly-follows Probability). Given a sequence of activities {a3, a, ..., a, €
£}, the directly-follows probability between a; and a, is the LSTM model’s next ac-
tivity probability assignment for a.

Definition 5 (Directly-follows Graph). Given a directly follows probability ma-
trix, its DFG is a directed graph G = (i,0, N, E), where i is the start event, o is the
end event, N is a non-empty set of nodes and E C (x,y)|x,y € N is the set of edges.

A process is a directed graph if there exists a graph node for each activity of the
process (N = A). The edges of the graph represent the possible transitions between
the activities. For any two parallel activities a, b € A, there will be directed arcs (a,)
and (b, a) between them.

The START and END nodes are introduced to produce sound process graphs.
This is necessary to prevent deadlocks or lack of synchronisation (Aalst, Weijters,
and Maruster, 2004). The prediction probability matrix is generated first and then
used to build a graph from a set of traces. The matrix describes the activities that
succeed other activities in the set of traces. The rows in the matrix represent the
trace prefixes, while the columns represent the activity that directly follows. The
numbers in the matrix cells represent the next activity prediction probabilities.

3.1. Proposed Approach to Process Mining 47

Generating the probability matrix involves feeding the first activity of each trace
a1 to the LSTM model and getting the predictions of each possible activity being the
next in the sequence. The activity with the highest probability is selected as the most
likely next event a,. Next, the combination of the first activity and the next predicted
activity {a1, a2} is fed into the LSTM model to predict the next activity a3; and so on.
For each trace, this continues until the LSTM model predicts that the next activity
will be END, which automatically marks the end of each process instance.

The process graph is generated by traversing each row in the matrix, choosing
the column with the highest probability as the most likely next activity, and creat-
ing a transition between the preceding and succeeding activity (drawing an edge
E between the nodes N). This is repeated until all rows in the matrix are visited.
Algorithm 2 highlights the procedure. To begin with, a set of all start activities (1)
(i.e., activities that appear first in each trace), a set (N) of all established nodes(to
avoid having duplicate activities in the graph), and a set of edges (E) are initialised.
From the START node, a transition is created to the start activity of the first trace.
The start activity is used to determine the next and subsequent activities, creating a
transition between each preceding and succeeding activity f (i.e. from the matrix,
the activity with the highest probability in each row). This is repeated for each case
until the end of the matrix is reached. The activity that appears as the last activity
0 in each trace is joined to the END node. Parallel transitions are observed if two or
more activities have the same prediction probabilities, which indicates that the pro-
cess may be branching (i.e. two or more activities may follow the previous activity
in the process).

The transition probabilities P are appended to its edges to make the graph more
informative. Furthermore, a probability threshold ¢ is introduced as a parameter to
allow tuning the complexity of the graph. Although the main purpose of the graph is
to explain the decision-making process of the LSTM model when predicting the next
events in a business process, it can also be used to perform various PM tasks. For
example, by setting a high probability threshold, one can visualise the most common
way of the business process execution. In contrast, by setting the threshold to a low
value, one can capture less common instances of the business process execution,
potentially indicating cases of non-conformance.

Another benefit of the proposed approach is its ability to generate traces for
building a single process graph for each case by simply specifying the case id. This
can greatly benefit when the interest is in investigating particular cases.

48 Chapter 3. Predicting Next Activities in Business Processes

Algorithm 2 Generating a process graph based on LSTM predictions

Require: Predicted Activities: {{a11,a12,...41x}.-.{an 1, ...anx } }, Threshold: ¢
1: Create START node
2: Create END node
3: 170 < @ {nonempty list of all start events}
4: N < @ {nonempty set of established nodes}
5: fora € Ado
nofi} < aix
E:START — no{i} {Create a transition}
counter <— 0
event_list < @ {event_list C a}
10: o<« no{i}
11: if B < highest_probability and B ¢ N then
12: N < (N, B)
13: elseif P < ¢ then

o 2 N

14: E:o—=p

15: E: Append(P) {add probability to the edge}
16: 0+ P

17: E:o— END

18: Return Process graph: §

19: end if

20: end for

3.2 Experiments

Algorithms 1 and 2 were implemented as a set of Python scripts using Python
3.6. LSTM models were built using the Keras (Gulli and Pal, 2017) and Tensorflow
(Abadi et al., 2016) libraries. Process graphs were generated using the Graphviz
library (Ellson et al., 2001), while trace graphs for each process instance were gener-
ated using the NetworkX library (Hagberg, Swart, and S Chult, 2008). The experi-
ments were carried out using the Google Colab free Tesla K80 GPU.

3.2.1 Evaluation

To evaluate the predictive performance of the proposed LSTM models, they were
applied to the following five real-life logs: Helpdesk (Polato, 2017), BPIC 2012 (Don-
gen, 2012), BPIC 2013I (Steeman, 2013b), BPIC 2013C (Steeman, 2013a) and Road
traffic fine management process (Leoni and Mannhardt, 2015). The details of these
logs are provided in the next section and Table 3.2. The accuracy of the next event
predictions of the two proposed models was compared with that of three other
LSTM models proposed by Tax et al. (Tax et al., 2017), Camargo et al. (Camargo,
Dumas, and Gonzalez-Rojas, 2019) and Lin et al. (Lin, Wen, and Wang, 2019). These
studies used only the Helpdesk and BPIC 2012 logs from the five real-life logs listed
above.

Tax et al. (Tax et al., 2017) used one-hot encoding to encode events as input to
an LSTM model that had two layers and 100 neurons in each layer. Camargo et al.
(Camargo, Dumas, and Gonzélez-Rojas, 2019) extracted n-grams of fixed sizes for
each event log trace, which they used as input to their LSTM model consisting of
two stacked LSTM layers and a dense output layer. Also, Camargo et al. (Camargo,
Dumas, and Gonzalez-Rojas, 2019) used pre-trained embedded dimensions in all

3.2. Experiments 49

their experiments. Lin et al. (Lin, Wen, and Wang, 2019) used a two-layer LSTM-
based encoder-decoder architecture with 32 neurons per layer for each encoder and
decoder cell. Random embedding was established for each event. Only the S-Pred
model proposed by Lin et al. (Lin, Wen, and Wang, 2019) was considered in this
study as it is concerned with predicting the next events based solely on sequences of
events (i.e., without considering additional information such as event attributes).
Being the most popular, the Helpdesk log was used to generate process graphs to
visually demonstrate the ability of the approach presented in this paper to explain
the LSTM decision-making process when predicting event sequences of business
processes. We are the first to propose such an approach to the best of our knowledge.

3.2.2 Real-life Event Logs

The proposed approach was evaluated on the following five real-life event logs. The
original log files were presented in the XES format but, for the purpose of this study,
were converted to CSV files using the ProM tool. The sizes of these event logs vary.
Table 3.2 shows the statistics.

Helpdesk (Polato, 2017): This event log contains records of real-life events from
a ticketing management process of the help desk of an Italian software company.

BPIC 2012 (Dongen, 2012): This event log represents a loan application process
of a German financial institution. It contains three intertwined sub-processes. The
first alphabet of each task name identifies which sub-process this task originated.

BPIC 20131 and BPIC 2013C (Steeman, 2013b) and (Steeman, 2013a): These are
the real-life event logs of the Volvo IT incident and problem management system
called VINST. The first includes Incident cases of the incident management process,
while the second includes Closed cases of closed problems in the problem manage-
ment process, both of which are used in the experiment.

Road Traffic Fine Management Process (Leoni and Mannhardt, 2015): This is a
real-life event log of an information system that manages traffic fines.

TABLE 3.2: Event log description

] Event Log \ Number of Traces \ Number of Events \ Number of Activities
Helpdesk 4,580 21,348 14
BPIC 2012 13,087 262,200 25
BPIC 20131 7,554 65,533 13
BPIC 2013C 1,487 6,660 7
Road Traffic Process | 150,370 561,470 11

3.2.3 Experimental Setup

The following experimental protocol was adopted to closely follow the experiments
conducted by Tax et al. (Tax et al., 2017), Camargo et al. (Camargo, Dumas, and
Gonzélez-Rojas, 2019) and Lin et al. (Lin, Wen, and Wang, 2019) for a fair comparison
with their models:

1. Similar to Tax et al. (Tax et al., 2017) and Camargo et al. (Camargo, Dumas,
and Gonzélez-Rojas, 2019), each event log was divided into two sets: a training
set composed of 70% of traces used as input for training the LSTM models and
a test set composed of the remaining 30% used to evaluate the predictions and
assess the models’ ability to generalise (Lin et al. (Lin, Wen, and Wang, 2019)

50 Chapter 3. Predicting Next Activities in Business Processes

also used 70% of traces for training but only 20% of traces to test their models’
accuracy in predicting next events). The splitting was performed using the al-
gorithm proposed by (Evermann, Rehse, and Fettke, 2017), which is consistent
with the method used by Tax et al. (Tax et al., 2017).

2. For the embedding layer, the vocabulary size was set to the number of unique
activities in the log. The number of embedding dimensions was guided by the
vocabulary size; hence it varied across the event logs.

3. The networks had one hidden LSTM layer with a dropout probability of 0.2.
The dropout technique was used to avoid over-fitting and improve learning
by temporarily removing a cell from the network randomly.

4. The number of training epochs was set to 50 for all logs.

The parameters of the proposed models, namely, the number of embedding di-
mensions and LSTM neurons, were tuned for each event log separately for better
performance. In particular, 32 embedding dimensions were used for the BPIC13
log, and 50 dimensions were used for the three other logs; 100 neurons were used
in the LSTM layer for all logs. For a fair comparison with the other three LSTM
models proposed by Tax et al. (Tax et al., 2017), Camargo et al. (Camargo, Dumas,
and Gonzélez-Rojas, 2019) and Lin et al. (Lin, Wen, and Wang, 2019), each model’s
performance was evaluated based on the average accuracy score achieved across all
possible next event cases in the test set.

3.3 Results and Discussion

3.3.1 Model Predictive Performance

Table 3.3 summarises the performance of the proposed LSTM models on the con-
sidered event logs based on the accuracy of predicting the next activity over the test
set. The results are compared to those achieved by the other three models proposed
by Tax et al. (Tax et al., 2017), Camargo et al. (Camargo, Dumas, and Gonzalez-
Rojas, 2019) and Lin et al. (Lin, Wen, and Wang, 2019). For the comparison, only the
Helpdesk and BPIC2012 event logs were used since they are the only logs out of the
five considered here, for which results are reported in the other three studies.

3.3. Results and Discussion 51

TABLE 3.3: Prediction results over the test sets

| Implementation | Event Log | Next Activity Prediction Acurracy |

Helpdesk 0.912

Model 1: BPIC 2012 | 0.854

Unidirectional BPIC 20131 | 0.694

LSTM BPIC 2013C | 0.640

RTFMP 0.814

Helpdesk 0.907

Model 2: BPIC 2012 | 0.853

Bidirectional BPIC 20131 | 0.698

LSTM BPIC 2013C | 0.644

RTFMP 0.815

Helpdesk 0.712

BPIC 2012 | 0.760
Dt |
’ BPIC 2013C | -
RTFMP -

Helpdesk 0.789

fggj‘;ﬁ;jg‘i‘m b, | BPIC2012 | 0786
and Gonzélez-Rojas, BPIC 20131 | -
2019) BPIC 2013C | -
RTFMP -

Helpdesk 0.808

Lin et al. (Lin, BPIC 2012 | 0.814
Wen, and BPIC 20131 | -
Wang, 2019) BPIC 2013C | -
RTFMP -

It can be noticed from Table 3.3 that the proposed Model 1 and Model 2 outper-
form the other three models on the Helpdesk event log, achieving accuracy scores
of 91.2% and 90.7% compared to 71.2%, 78.9% and 80.8% achieved by Tax’s et al.
(Tax et al., 2017), Camargo’s et al. (Camargo, Dumas, and Gonzélez-Rojas, 2019) and
Lin’s et al. (Lin, Wen, and Wang, 2019) models, respectively. On the BPIC2012 event
log, the proposed Model 1 and Model 2 achieve 85.4% and 85.3%, respectively, com-
pared to 76.0%, 78.6% and 81.4% achieved by Tax’s et al. (Tax et al., 2017), Camargo’s
et al. (Camargo, Dumas, and Gonzéalez-Rojas, 2019) and Lin’s et al. (Lin, Wen, and
Wang, 2019) models, respectively.

The better performance of the proposed models can be explained by the differ-
ence in the event log pre-processing approach and the models” architecture. In par-
ticular, Tax et al. (Tax et al., 2017) encoded activities in event logs using one-hot
encoding. This type of encoding might be suitable for logs with a small number of
activities but becomes inefficient for logs with many activities. Furthermore, while
Camargo et al. (Camargo, Dumas, and Gonzélez-Rojas, 2019) employed the word
embedding technique, they trained an independent network to coordinate the em-
bedded dimension, which they used throughout their experiments as non-trainable
parameters (which is different from our approach of employing an embedding layer
as part of one network architecture). They probably did this to shorten the training

52 Chapter 3. Predicting Next Activities in Business Processes

time while improving the quality of the predictive model. Still, this approach cannot
guarantee the compatible prediction accuracy. Finally, the proposed models employ
only one LSTM layer, compared to the two LSTM layers used by Tax et al. (Tax et
al., 2017), Camargo et al. (Camargo, Dumas, and Gonzalez-Rojas, 2019) and Lin et
al. (Lin, Wen, and Wang, 2019). We believe that this simplification contributes to
the better performance of our models in the case of the Helpdesk log, which has a
simple sequence flow.

Another observation that can be made from Tables 3.2 and 3.3 is that the pro-
posed models perform well on the larger RTFMP log (Model 1: 81.4%; Model 2:
81.5%) but not so well on the smaller BPIC2013I and BPIC2013C logs (Model 1: 69.4%
and 64.0%; Model 2: 69.8% and 64.4%). The latter result can be explained by the rela-
tively small number of traces (e.g. compared to the BPIC 2012 log) and the relatively
large number of events (e.g. BPIC2013C compared to the Helpdesk log) included in
the BPIC2013 logs (i.e., the logs included many repetitive traces). This means that
the models are expected to pick up the sequences of activities that can happen in
reality among many possible combinations of these activities when provided only
with a small number of examples of these combinations that happened in reality.
Model 2 performs slightly better than Model 1 on the BPIC2013I, BPIC2013C, and
RTFMP logs in terms of both training and test accuracy. Thus, forward and back-
ward learning in Model 2 is beneficial in the cases of large logs and complex logs
with repetitive activities. At the same time, it took longer to train Model 2 than
Model 1. Hence, there is a trade-off between the accuracy and training time of the
models. Since Model 2 improves accuracy slightly compared to Model 1, the latter
is preferred because it is both simple and accurate.

3.3.2 Graphical Representation of Model Predictions

In addition to presenting a better performing LSTM model for PM, another contribu-
tion of this study is proposing the idea of generating graphs of different complexity
to visually explain the decision-making process of an LSTM model when predicting
the next events in business processes. These graphs can be used to explore the per-
formance of the LSTM model and identify difficult cases with which the model must
deal so that measures could be taken to improve the model performance in such
cases. Furthermore, the graphs can be used to perform various PM tasks such as
model discovery, conformance checking, and investigating cases of non-compliance.

Figures 3.3, 3.4, 3.5 and 3.6 illustrate the graphs generated using the outputs of
Model 1 for the Helpdesk log. In particular, Figure 3.3 shows the graph generated
based on the predictions of Model 1 on the training set, while Figure 3.4 shows the
same for the test set. The probability threshold was set to 0 for both graphs so that
all transitions present in the log could be represented in the graphs. The numbers on
the edges indicate the probability scores of the respective activities that will be next
in the process as predicted by the LSTM model.

When comparing the two graphs, one can notice their consistency, which indi-
cates a good ability of both the model to generalise and the graph built over the
training set to interpret the model’s behaviour. They were converted to adjacency
matrices to formally verify the similarity between the training and test graphs. Then
the similarity score between the matrices was calculated by taking the sum of the
differences between the values in the corresponding cells of the two matrices and
dividing it by the number of non-zero values in the test matrix. Since we are inter-
ested in evaluating the interpreting ability of the training graph, the training matrix
was reduced to the test matrix size, and the transitions that were captured during

3.3. Results and Discussion 53

the training process but did not appear during testing were excluded from the cal-
culation. A score of 1 obtained this way would mean the two graphs are identical,
whereas a score of 0 would mean they are completely different. Two cases were con-
sidered for the calculation. In Case 1, binary matrices were constructed, where the
value of 1 in a cell corresponded to the transition between the corresponding two ac-
tivities, and the value of 0 represented the fact that there was no transition between
the two activities. In Case 2, the matrices were constructed in the same way as in
Case 1, except that instead of the value 1, the probability of transition was recorded
as predicted by the LSTM model.

Tables 3.4 and 3.5 represent the adjacency matrices built for binary-based Case 1
using the process graphs illustrated in Figures 3.3 and 3.4, respectively. Tables 3.6
and 3.7 represent the same for probability-based Case 2. After dividing the sum of the
difference between the training and test matrices by the number of non-zero values
in the test matrix (41), scores of 0.80488 and 0.81708 were obtained for Case 1 and
Case 2, respectively. Providing that the scores are close to one, it can be concluded
that the two graphs are similar, indicating the model’s ability to generalise and the
training graph to interpret the model’s behaviour.

Figure 3.5 shows a less complex version of the graph presented in Figure 3.3,
which was achieved by setting the probability threshold at 0.8. This means that all
predicted transitions with a probability less than the set threshold are pruned and
not included in the graph, which results in a simpler visualisation. For example,
the probability threshold can be adjusted to any value required by a task at hand
to understand the performance of the LSTM model or perform PM tasks. Finally,
Figure 3.6 shows the graph of a single trace from the Helpdesk log. This type of
graph can be useful for investigating specific instances of LSTM model predictions
or business process execution.

FIGURE 3.3: Graph demonstrating the decision-making process of the
unidirectional LSTM model (Model 1) when generating likely event
sequences representing a business process based on the training set
of the Helpdesk log with the probability threshold set to 0. The graph
nodes represent activities, while the edges represent transitions be-
tween the activities. The numbers on the edges represent the proba-
bilities of the transitions as predicted by the LSTM model.

54 Chapter 3. Predicting Next Activities in Business Processes

098 require upgrade

FIGURE 3.4: Graph demonstrating the decision-making process of the

unidirectional LSTM model (Model 1) when generating likely event

sequences representing a business process based on the Helpdesk log

test set with the probability threshold set to 0. The features of the
graph are the same as in Figure 3.3.

FIGURE 3.5: Graph demonstrating the decision-making process of the

unidirectional LSTM model (Model 1) when generating likely event

sequences representing a business process based on the test set of the

Helpdesk log with the probability threshold set to 0.8. The features of
the graph are the same as in Figure 3.3.

3.3. Results and Discussion 55

TEke in charge tickst

0_92/ 75

Assign seriousness \'ait

0.96

e |ve bcket

g 0.99

FIGURE 3.6: Single trace process graph generated based on the deci-

sions of the unidirectional LSTM model (Model 1) for the test set of

the Helpdesk log. The features of the graph are the same as in Fig-
ure 3.3

56

Chapter 3. Predicting Next Activities in Business Processes

TABLE 3.4: Case 1: Training matrix created from the graph generated
using the train set of the Helpdesk log. The rows and columns repre-
sent activities. The values on the intersections of columns and rows
represent the transitions between the corresponding activities, with 1
indicating the presence of the transition and 0 indicating its absence.

—_

(] Nl Nl Bl Ne] Heo) ool o) Hoo] RHan) Naw)
O RO OoOIOIR—=OoOO
O R OO OO0 O|O
OO OO O R ERROOO
(o]) o] Ne) N o] Hoo) ool Heo) Hov] Na) Naw)
OO OO RO
— O R OO o=

(=l elNeli o) o]l o] ol o] o) o) o) Rl
(el leliel ol ol iel ol B el o] N
k=l il =] leo] o) o) o) o) o) o) o)

OO OO0 IFRIFROO

k=l =l el il Nl Nel Bt Heo)l ol R eo) N aw)

(e}
(@)
—_
(e}
—_
(e}
—_
(e}

TABLE 3.5: Case 1: Test matrix created from the graph generated us-
ing the fest set of the Helpdesk log. The rows and columns repre-
sent activities. The values on the intersections of columns and rows
represent the transitions between the corresponding activities, with 1
indicating the presence of the transition and 0 indicating its absence.

—_

(=] Nl Nl Nl il o) ool o) Heo] N} Heo] Ran)
= OO RO ORO O
= = ORI R OO RO
OO R OO0 OO
R R ORI OO OoOOoOCo
(=] N} N o] Heo) Heo] Heo) Heo] Hen) Heo] N} Hao] Ran)
sl B =l k=R =l Nl N Nl N o Nl N en])
= E=lE =] =] i) o]] o] N) Heo] Ra] Nan)

olololr|oloo~|~lrlo|~
olr|lolr|lololo |~~~

(=l elell o) ol ol ol ol il Nl ol Nl
(=l el el ol o] ol ol Nl i) No) ol Nl

3.4. Summary 57

TABLE 3.6: Case 2: Training matrix created from the graph generated

using the train set of the Helpdesk log. The rows and columns repre-

sent activities. The values on the intersections of columns and rows

represent the probabilities of the transitions between the correspond-
ing activities.

00| 00| 00| 00]00] 00| 00]00fO00]| 00]079]0.86
00| 00| 00| 00]00]00]|00]0O0fO00]|00] 00 O0.69
00 (00|00 {092|092| 00 | 00 [00]092| 0.0 | 092 | 0.92
00 (073} 00 | 0.0 |073| 00 [081|0.0]073| 0.0 |0.73|0.73
00 00 | 00 |054| 00 | 00 | 10 |00]099| 0.0 | 099 | 0.9
00 (00| 00]|00)|00]|00]O001{00|O00F]OCO]| 00]O00
00 (00| 00]|00)|00]|00]O001{00|O00F]O0O]| 00]O00
00 | 00 097|097 097 | 00 | 00 {00| 0.0 | 0.0 | 00 | 0.0
072100 | 00 | 00 072 | 00 | 0.0 0.0 0.0 | 0.0 | 0.72| 0.72
00|00 | 00| 00|00/ 08| 00/{00|00] 00700/ 0.0
00| 00 | 00| 00|08 | 00| 00|00 007|007 00087
00 |00 | 00 {097 097 | 00 |097|00| 00]099| 00 | 0.0

TABLE 3.7: Case 2: Test matrix created from the graph generated us-

ing the test set of the Helpdesk log. The rows and columns represent

activities. The values on the intersections of columns and rows rep-

resent the probabilities of the transitions between the corresponding
activities.

00 00| 00|00]|O00| 00|00/ 00| 001 O0.0/]079|0.89
00 | 00 | 00| 00 |069 00| 00 00| 00 | 0.0 | 0.0 | 0.69
00 | 00 | 00 {092]|092|0.0| 00 [0.0]092]| 0.0 | 092 | 0.92
0731073 00 | 00 |073 00108400073 00 |0.73]0.73
00 | 00 | 00 |054| 00 |0.0| 1.0 [0.0]099 | 0.0 | 0.99 | 0.99
00 (00| 00| 00|00 00|00 0O} O00]O00]O00] 00
00 (00| 00| 10] 000000 00| 001 00]O00] 00
00 | 00 {097 097|097 |00] 00 |00]| 00 | 0.0 | 0.0 | 0.0
048 | 00 | 0.0 | 048|072 00| 1.0 |0.0| 0.0 | 0.0 | 0.72 | 0.54
00 (00|00 }|00]O00|10 0000} 00] 00700/ 00
00 | 00 | 00 | 00O | 085 |0.0|099|00]08 | 00 | 00 |0.97
00 [00 | 00 {097 097 0.0 097 00| 1.0 |099| 0.0 | 0.0

3.4 Summary

This chapter presented a new approach to PM by combining the benefits of widely
used graph-based methods for process discovery and DL methods for predicting
event sequences. The proposed approach consists of two stages: building an accu-
rate LSTM model to predict business process event sequences based on event logs
and generating a DFG explaining the decision-making process of the LSTM model
when predicting business process event sequences. Two model architectures were
proposed, one using a unidirectional LSTM and another using a bidirectional LSTM.
Both outperformed the state-of-the-art LSTM models for PM based on two real-life
event logs. Additionally, three real-life logs were used to demonstrate the advan-
tages and limitations of the proposed LSTM models. The bidirectional LSTM model
achieved slightly better results than the unidirectional LSTM on more complex or
larger logs, but at the cost of training time. The capability of generated graphs to

58 Chapter 3. Predicting Next Activities in Business Processes

explain the LSTM models was demonstrated visually. An approach to determine
the similarity between the graphs was proposed to further validate the generalising
ability of the model, which gave a satisfactory result.

The contribution of this study is two-fold. First, two LSTM models were pro-
posed that achieve higher accuracy when predicting the next activities in business
processes than existing LSTM models. The better performance of the proposed mod-
els can be attributed to a different way of pre-processing event logs to generate in-
puts for the models and the model network architectures that employ an embedding
and a dense layer, in addition to an LSTM layer (unidirectional and bidirectional for
the first and second models, respectively).

Second, a way of generating graphs representing each model’s decision-making
process was proposed. These graphs can be used to explore the performance of the
LSTM model and identify complex cases for the model to deal with so that mea-
sures can be taken to improve the model performance in such cases. Furthermore,
the graphs can be used for various PM purposes such as business process discovery
and conformance checking as an alternative to the existing graph-based methods
that learn process models directly from data rather than through a machine learning
model. The advantage of the proposed approach, in this case, is the ability of the
generated graph to explain the decision process of the accurate LSTM to a degree of
generality set by the user through a probability threshold. While we demonstrate
the predictive performance of the proposed LSTM models through experiments em-
ploying real-life logs, the ability of the resulting graphs to explain the LSTM mod-
els is shown visually. Another advantage of the proposed approach is its model-
agnostic nature. This means that the graph generation part is independent of the
predictive modelling part; any other machine learning model (or DL architecture)
can be used instead of LSTM.

In the next chapter (Chapter 4), we build upon the methods presented in this
chapter to propose two new methods, called PGraphDD-QM and PGraphDD-SS
(where 'P’” stands for process, 'DD’ for drift detection, QM for quality metrics and 'SS’
for similarity score) for detecting sudden concept drifts in business processes from a
control-flow perspective. Since the Bi-directional LSTM model (Model 2) improves
accuracy slightly compared to the uni-directional LSTM model (Model 1), the latter
is used in implementing our future methods because it is both simple, accurate and
has a faster training time.

59

Chapter 4

Concept Drift Detection

Chapter 2 highlighted some benefits of detecting drifts in business processes and
how early detection of drifts can enable organisations to take proactive measures
and avoid adverse effects resulting from random changes in the business process
behaviour. The chapter also mentioned some limitations of the state-of-the-art drift
detection methods, such as not detecting drift in online settings and detecting drifts
with a long delay because some approaches require waiting for the trace to complete.
Furthermore, the majority of existing methods rely on statistical tests over trace dis-
tributions, which means that the methods may have insufficient data samples when
there is high variability in a log. Such a statistical approach also affects the perfor-
mance of the methods when logs exhibit many distinct traces over the total number
of traces, which can be frequently observed, for example, in healthcare processes.

Chapter 3 presented a new approach to PM by combining the benefits of widely
used graph-based methods for process discovery and DL methods for predicting
event sequences. This chapter builds on the methods presented in Chapter 3 to
propose two new methods, called PGraphDD-QM and PGraphDD-SS (where P’
stands for process, ‘DD’ for drift detection, ’'QM’ for quality metrics and 'SS’ for simi-
larity score) for detecting sudden concept drifts in business processes from a control-
flow perspective. Unlike existing methods that perform statistical analysis on fea-
tures extracted from event logs, the proposed methods represent business processes
as graphs. The methods are used to detect drift in both the offline scenario, where
historical data are available to analyse drifts that have already happened (i.e. con-
sidering event logs), and the online scenario, where data are coming in real time (i.e.
considering event streams).

This chapter is structured as follows. Section 4.1 introduces the proposed con-
cept drift detection approach. Section 4.2 presents the proposed methods for offline
and online drift detection. Section 4.3 describes the experiments performed to eval-
uate the proposed methods for offline and online drift detection, while section 4.4
presents and discusses the results obtained. Finally, Section 4.5 summarises the
chapter. Part of the work described in this chapter has been published in (Hanga,
Kovalchuk, and Gaber, 2022).

4.1 Approach to Concept Drift Detection

This chapter presents two new methods, PGraphDD-QM and PGraphDD-SS, for
addressing concept drift detection, and the purpose is to decide whether the new
or recently observed process behaviour shows significant changes compared to the
previously observed process behaviour. The proposed drift detection methods are
based on the approach introduced in Chapter 3. According to this approach, a
unidirectional LSTM model is first trained on an event log, as detailed in Section

60 Chapter 4. Concept Drift Detection

4.1.1. The trained model is then used to find the probabilities that each event present
in the log will appear in the business process next. Finally, these probabilities are
used to generate a DFG, as detailed in Section 4.1.2, representing the likely business
process model as believed by the LSTM model.

The solutions for both drift detection methods depend on properly represent-
ing the process behaviour in consecutive periods. For offline drift detection, the in-
coming event traces are represented as process graphs generated based on two event
logs covering different time periods. To detect drifts, a uni-directional LSTM model
trained on an event log covering one period of time is applied to another event log
covering a different time period. Process graphs representing the behaviour of the
two different time periods are generated using the decisions of the LSTM model
about the most probable business process flow.

For online drift detection, the incoming event traces received continuously over
time are represented as graph streams. To detect drifts, an LSTM model trained on a
stream of logged events that covered a previous period of time is applied to a newly
generated stream of events as they occur. Graph streams representing the process
behaviour of different time periods (i.e., the previous and new time periods) are
generated using the decisions of the LSTM model about the most probable business
process flow.

According to PGraphDD-QM, the model performance, in both offline and online
scenarios, is then separately estimated over the previous and new process/stream
graphs using the F-score metric, and the two sets of measures are compared. The
change in values of the two sets of measures is assumed to indicate a concept drift.
According to PGraphDD-SS, the DFGs generated based on the LSTM model deci-
sions for two different time periods are used to verify the drift, both visually by
detecting structural changes and by measuring the similarity score between the ad-
jacency matrices of the two different graphs to estimate the amount of changes ob-
served in the business process after the drift has occurred.

4.1.1 Long Short-term Memory for Predicting Next Activities

According to the approach proposed in Chapter 3, an LSTM model is trained to es-
tablish the most likely activity to come next in a given sequence of events over time.
The model’s training process was improved by broadening the context and phrasing
the problem so that multiple previous time steps are considered when predicting the
next time-step. Specifically, event logs are pre-processed according to the following
protocol and definitions.

The label NULL is used to mark the start of each case (or process instance). It
becomes the first input activity xo at the current time ¢y, and the target activity yo
becomes the activity at time #; (this is the first activity occurring in each case of
the event log). The next sequence of input activity x; becomes the activity at the
previous times {to, t1 }, and the target y; becomes the next activity at time t,. The
next input activity sequence x, becomes the activity at the prior times {to, t1,t2},
and the target y, becomes the next activity at time f3; and so on. The inputs X build
up for each next input sequence as the previous activities join the current activity.
Targets Y are always activities in the next time step ¢,,;1 until the last input sequence
contains all activities in the previous time steps, including the current activity. At
this point, the END label is added to mark the end of a case. This procedure is
repeated until all cases in the event log are pre-processed.

The input sequences are encoded using Tokenizer class from the Keras library
(Gulli and Pal, 2017). The tokenizer maps each activity in an event log to a unique

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 61

integer creating a sequence of integers.The prepared sequences are padded to the
left using the pad sequences() function from Keras. This function finds the longest se-
quence and uses its length as a standard to pad other sequences for the same length.
The targets are dummy-encoded using the pd.get_dummies() function from the Pan-
das library. The function converts categorical values into dummy numerical values.

Next, a unidirectional LSTM model is defined, compiled, and fitted using the pre-
processed event log. The model is composed of an embedding layer (which serves
as an interface between the input and LSTM layers of the network), a single LSTM
layer, and a fully connected dense layer as the output layer (which uses the softmax
activation function to ensure the output takes the form of probability distributions).
The trained LSTM model is then used to predict each next activity in the business
process. A prediction probability matrix is constructed for the succeeding activity
predictions. These probabilities are used to generate a visually explainable process
model graph in the form of a DFG representing the decision-making process of the
LSTM model on the likely business process.

4.1.2 Directly-follows Graph for Representing LSTM Decisions

A DFG is a directed graph whose nodes represent activities and edges represent
directly-follows relations between these activities. Each edge in the DFG is anno-
tated with a directly-follows probability, denoting the LSTM model’s next activity
prediction.

A DFG is generated on the basis of the probabilities output by the LSTM model.
In Chapter 3, a DFG is used to explain the decision-making process of the LSTM
model when predicting the subsequent events in a business process. The DFG is
constructed by traversing each row in the prediction probability matrix, picking the
column with the highest probability, which becomes the most likely next activity,
and then creating a transition between each preceding and succeeding activity by
drawing an edge between the nodes. The procedure is repeated until all rows in the
matrix are visited. The outcome is a process graph, which can be used to analyse
the performance of the LSTM model and to identify difficult cases with which the
model must deal so that measures can be taken to improve the model performance
in such cases. A probability threshold is introduced as a parameter to allow tuning
the complexity of the graph, making it possible for the level of detail in the graph
to be adjusted. The graphs generated this way can also be used to perform various
PM tasks such as model discovery, conformance checking, and investigating cases
of non-compliance. This chapter extends the work in Chapter 3 by demonstrating
how the graphs constructed based on LSTM predictions can also be used to detect
concept drifts in business processes.

4.2 Proposed Methods: PGraphDD-QM and PGraphDD-SS

This section presents some preliminaries and discusses the steps involved in offline
and online drift detection methods. The proposed methods are called PGraphDD-
QM and PGraphDD-SS (where P’ stands for process, ‘DD’ for drift detection, QM for
quality metrics and 'SS’ for similarity score).

4.2.1 Offline scenario: Detecting Drift in Event Logs

An event log is a set of traces, each capturing the sequence of events observed for
a given case or process instance, ordered by timestamp. For example, the event log

62 Chapter 4. Concept Drift Detection

L = [oy,02,01,01,02,01], where o1 = (a,b,c,d) and 0» = (a,c,b,d), defines a log
containing six traces (four occurrences of ¢y and two of 0,) and a total of 24 events.
Formally:

Definition 1 (Trace, Event log). Let A be a set of activities. A+ is the set of all
finite non-empty sequences of activities from A. ¢ € A+ is called a trace when ¢
represents a firing activity sequence of a process model. An event log L is a multi-set
of traces from A+-.

The problem of business concept drift detection can be formulated as locating a
point in time when there is a difference between the observed behaviour before and
after the point, if any. The basic idea in handling concept drift is that the characteris-
tics of the traces before the change point differ from the characteristics of the traces
after the change point.

Definition 2 (Concept drift). Let G be a process graph, and let Gy, G, ..., G, be
n + 1 different process models and Ty < Ty < ... < T, be n+ 1 time periods. G(T;) =
G; represents the graph used in T;. G(Tp) = G is the initial graph. When the time
period T;(0 < i < n) arrives, the current graph will change into G; instantly, and the
traces are still recorded in the same event log. Such a phenomenon is referred to as
concept drift, with T7, ..., T, being change points.

= Process Model
H ,'@ before drift

e

A
1

To T1 Time (t)

- — Process Model
. ,'@ after drift
[- -@

FIGURE 4.1: Concept drift phenomenon in process mining

Given an eventlog L = (01,02, .., 0,,), the aim is therefore to find out the moments
when the changes occurred in the log. From Definition 4.2.1, it can be observed that
the model behaviour before a change is not the same as after a change. Consider the
example in Figure 4.1. If the traces for Ty and T; are collected, it will be observed
that they differ. Therefore, to detect a drift, a natural idea is to compare a number
of traces before and after a candidate change point. Bose et al. (Bose et al., 2013),
Maaradj et al. (Maaradji et al., 2017), Martjushev et al. (Martjushev, Bose, and Aalst,
2015) all adopted this solution, which is, however, susceptible to two challenges: (i)
how to measure the differences between two sets of traces and (ii) how many traces
to collect for testing (i.e. deciding the window size). These authors used feature
extraction and statistical hypothesis testing as a solution for the first challenge, while
for the second challenge, they introduced fixed and adaptive window size strategies.
However, the actual performance heavily depends on the choice of the window size,
which is not quite satisfactory: a wrong window size can lead to false negatives and
false positives, as well as difficulty in locating the exact point of the drift. We propose
an entirely different idea to avoid such disadvantages.

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS

Event Log One Event Log Two
Prepare Data — Prepare Data
v Apply to
Train LSTM
Model @}

A 4 \ 4
Generate Next Generate Next
Activity Activity
Predictions Predictions
) A

‘,,'—J-LI x ";_M .
ST SHFEHEHEHERE
P L
Construct Graph Construct Graph
- Calculate Fitness, >
71 [Precision and F-score] [
\ 4
Analyse Changes
(4)
Event Log One Event Log Two
Prepare Data Prepare Data
Train LSTM Train LSTM
Model @ Model ;f%
Generate Next Generate Next
Activity Activity
Predictions Predictions
frere)
S LA
1,0, 0}
Construct Graph
Construct Construct
Adjacency Matrix JAdjacency Matrix

—> Calculate Similarity <«
Score

v

Analyse Changes

(B)

FIGURE 4.2: Proposed approach to detecting concept drifts in event
logs of business processes: (A) PGraphDD-QM (B) PGraphDD-SS

64

Chapter 4. Concept Drift Detection

Figure 4.2 summarises the proposed methods PGraphDD-QM and PGraphDD-
SS for detecting concept drifts in business processes in the offline scenario. Algo-
rithm 3 lists the pseudo-code of PGraphDD-QM (Figure 4.3(a)) for offline concept
drift detection, which includes the following steps:

1.

Divide the event log into two sub-logs representing two time periods (lines
3 — 4): reference sub-log L; and detection sub-log L;, .

. Pre-process the sub-logs (line 6). This involves encoding and padding the

traces from both the detection and reference sub-logs (L1 and L,) as described
in Section 4.1.1.

. Define, compile and train an LSTM model y on the pre-processed traces from

the reference sub-log L; (line 7) as described in Section 4.1.1 and in Chapter 3
to obtain the fitted model p.

. Apply the LSTM model yu/ trained on the traces of reference sub-log L; to both

reference sub-log L and detection sub-log L, (lines 9) to make predictions of
the complete trace of each process instance.

. Construct prediction probability matrices P! and Pz-l]? for reference and detec-

1
tion windows respectively (lines 13 — 14), as described in Section 4.1.1 and in

Chapter 3 .

. Generate two DFG process models G'* and G using Pl-l].l and Pl.l]-2 respectively

(lines 15 — 16), as described in Section 4.1.2 and in Chapter 3.

Calculate two sets of performance metrics (fitness, precision and F-score) based
on the predictions (lines 18 — 21).

. Compare metrics of the detection window with the threshold ¢ (line 22). The

threshold is set based on the F-score values obtained for the reference window.
An F-score below a threshold signals a drift presence.

. Analyse the change by inspecting the detection window (lines 23 — 34).

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 65

Algorithm 3 PGraphDD-QM: Offline Concept Drift Detection using Quality Mea-
surements

Require: Eventlog: L, LSTM model: y, Threshold: ¢
1: fScoreLog < |]

N

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

R A

{split event logs into sub-logs L; and L; 1}

: Lj, Liyq < splitLog(L)
: L1 — Ll', Lz — Li+1
while L1, L, # 0do

prepare(Ly, Ly)
{compile and train an Istm model on the L; sub-log}
wy < (1, La)
{Apply the trained model to both L; and L}
Liprea 4 predict(p’, L1)
Lyprea < predict(p’, Lo)
{build next event prediction probability matrices, construct graphs}
Pl.lj1 < generate(Pred_Prob_Mat, lpyeq)

Pl.l]? < generate(Pred_Prob_Mat, Ly ,yeq)
G « drawGraph(i,o,N, E, P! liprea)

r Lij s
G" « drawGraph(i,o,N,E, Pl-l]?, Lpred)
{calculate the quality metrics}
p < per formance()
fitness < p.fitness()
precision <— p.precision()
fScore < p.fScore(fitness, precision)
if fScore < ¢ then
Drift detectected in Ly
{change point detected and reported}
end if

26: end while

66 Chapter 4. Concept Drift Detection

Algorithm 4 PGraphDD-SS: Offline Concept Drift Detection using Similarity Score

Require: Eventlog: L, LSTM model: y, Threshold: ¢
1: simScore < |]
2: {split event logs into sub-logs L; and L1}
: Li, Liyq < splitLog(L)
: Ly < L;, Ly < Li+1
while L1, L, # 0 do
prepare(Lq, L)
{compile and train two Istm model on the two sub-logs L1 and L,}
wi = (o La), py = (1, Lo)
{Make predictions for both}
10: lipreq < predict(p}, L1)
11 Lypreq < predict(ps, Lo)
12: {build next event prediction probability matrices, construct graphs}
13: Pilj1 < generate(Pred_Prob_Mat, I pyeq)

D A

14: Pil].z < generate(Pred_Prob_Mat, lypye)
15: Gh «+ drawGraph(i,o,N,E, PZ?}, lipred)

16: G"2 «+ drawGraph(i,o,N,E, Pl.l]?, Dypred)

17: {generate adjacency matrices, measure similarity score}
18: Af; <+ generate(adjacency_matrix, Gh)

19: Af; <+ generate(adjacency_matrix, G?)

20: p < performance()

21: simScore < p.getScore()

22: M <+ 0 {set a counter of non-zero values}
2 M« getM(A}, A%)

24: absoluteVal <+ (Af},AijZ)

25: sumVal < absoluteVal.abs().sum().sum()
26: simScore <— 1 —sumVal/M

27: if simScore < ¢ then

28: Drift detectected in Ly
29: {change point detected and reported}
30: end if

31: end while

Quality Metrics

The quality dimensions considered are Fitness, Precision and F-score:

Fitness is a model’s ability to reproduce the behaviour contained in the log. This
study uses the fitness measure proposed in (Augusto et al., 2019). It indicates the
degree to which each trace in the log can be aligned with a corresponding trace
produced by the process model (DFG in our case). A fitness score of 1 means that
the model (DFG) can reproduce all traces in the log.

Definition 3: Fitness. A Fitness or recall measure fitness € L x M — [0,1] aims
to quantify the fraction of observed behaviour that the model allows. Let [€ L and
m € M be an event log and a process model, and T be a set of traces. Then,

[T() N T(m)|

4.1
()] @1

Fitness =

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 67

Precision is a model’s ability to generate only the behaviour found in the log.
This study uses the precision measure proposed in Augusto et al., 2019. A precision
score of 1 indicates that any trace produced by the process model (DFG in our case)
is contained in the log.

Definition 4: Precision. A precision measure precision € L x M — [0, 1] quanti-
fies the fraction of behaviour allowed by the model that was actually observed. Let
| € Land m € M be an event log and a process model, and T be a set of traces. Then:

[T(1) N T(m)]
T(m)|

F-score is a single measure of accuracy; it is the harmonic mean of fitness and
precision, calculated as

Precision = (4.2)

2 x Fitness x Precision
Fitness + Precision

To complement PGraphDD-QM, PGraphDD-SS (Figure 4.2(b)) compares the
structure of the DFGs generated based on the prediction output of two LSTM mod-
els, one trained on traces from the reference window and the other trained on traces
from the detection window covering two different periods. Algorithm 4 lists the
pseudo-code of PGraphDD-SS, which includes the following steps:

F-score =

1. First, divide the event log into two sub-logs representing two time periods
(lines 3 — 4): reference sub-log L; and detection sub-log L;,.

2. Pre-process the sub-logs (line 6). This involves encoding and padding the
traces from both the detection and reference sub-logs (L and L;) as described
in Section 4.1.1.

3. Define and compile an LSTM model u# and train it first on preprocessed traces
of reference sublog L; (line 8) as described in Section 4.1.1 and in Chapter 3 to
obtain the fitted model y1/ and then on the pre-processed traces of detection
sub-log L, to obtain the fitted model /.

4. Use each of the trained LSTM models to predict the complete trace of each
process instance of the sub-log it has been trained on (lines 10 — 11).

5. Construct prediction probability matrices Pl.l].1 and Pil]? for the reference and de-
tection windows, respectively (lines 13 — 14), as described in Section 4.1.1 and
in Chapter 3.

6. Generate two DFG process models G"' and G” using the Pil]? and Pil]?, respec-

tively (lines 15 — 16), as described in Section 4.1.2 and in Chapter 3.

7. Build two adjacency matrices Afjl and Afi for each of the constructed DFG pro-
cess models, respectively (lines 18 — 19).

Definition 5: Adjacency matrix. Let G be a DFG with a vertexset V = vy, ..., vy,.
G can be transformed into an adjacency matrix A, where A is a square n X n
matrix, such that its element A;; = 1 when there is an edge from vertex v; to
vertex v;, and Ajj = 0 when there is no edge.

8. Calculate the similarity score simScore using the adjacency matrices of the two
DFG process models generated (lines 20 — 26).

68 Chapter 4. Concept Drift Detection

9. Compare the similarity score with the threshold ¢. The threshold is set based
on the highest similarity score values obtained. A similarity score below the
set threshold signals a drift presence (line 27).

10. Analyse the change by inspecting the detection window (lines 28 — 29).

Measuring the Similarity Score

In addition to visually comparing the similarity between the two graphs represent-
ing two snapshots of a business process taken over different windows, the similar-
ity is also verified formally in PGraphDD-SS. The two graphs are first converted
into two adjacency matrices to achieve this. Then, the similarity score between the
matrices is calculated by taking the sum of the differences between the values in
corresponding cells of the two matrices and dividing it by the number of non-zero
values in the matrix with the least number of activities. If the two graphs, namely,
the first graph representing the reference window and the second graph represent-
ing the detection window, happen to differ in size (i.e. one has more transitions than
the other), the transitions present in one window but absent in the other are intro-
duced when constructing the adjacency matrix of the latter to enable the calculation
of the similarity score. These additional transitions are initialised to zeros since they
have not occurred in reality. A similarity score of 1 indicates that the two graphs are
identical (i.e. there is no drift). In contrast, a similarity score of 0 indicates that they
are entirely different (i.e., represent different business processes). A similarity score
between 0 and 1 indicates the presence of drift. For the calculation of the similarity
score, binary matrices are constructed. A value of 1 in a cell indicates that there is
a transition between the corresponding two activities. On the contrary, a value of 0
represents the fact that there is no transition between the two activities.

4.2.2 Online scenario: Detecting Drift in Event Streams.

An event stream is an indefinite sequence of events, where each event represents an
occurrence of interest at a certain period of time.

Definition 6: Trace, event stream. Let A be a set of activities and A+ be a set of
all non-empty finite sequences of activities from A. o € A+ is called a trace when
o represents a firing activity sequence of a process model. An event stream S is a
multi-set of infinite event traces from A+

In PM, a business process can be represented as a graph built using an event
stream, with nodes representing activities and edges representing the transitions
between the activities. The dynamism of a business process (i.e. changes in the
activities and transitions between them) can be represented as a graph stream.

Definition 7: Graph Stream. A graph stream G; is a sequence of elements ¢ =
(x,y;t), where x and y are node labels, and edge (x,y) occurs in a time period t. A
stream Gs = (ey, €y, ..., em) typically defines a graph G = (V, E), where V denotes a
set of nodes (or vertices) and E denotes a set of edges.

The problem of detecting a concept drift in a graph stream can be formulated as
locating a point when there is a difference between the observed behaviour before
and after the point. The basic idea behind detecting concept drifts is that the charac-
teristics of the graph stream before the change point differ from those of the graph
stream after the change point.

Definition 8: Concept drift in Graph Stream. Let G; = (01,02, .., 0,) be a graph
stream, Sy, Sy, ...00 be an indefinite number of different graph streams and Tp < Ty <
... < oo be an indefinite number of time periods. Gs(T;) = G, represents the graph

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 69

used in T;. S(Ty) = Sp is the initial graph. When a time period T;(0 < i < o0)
arrives, the current graph will change into G;, instantly, and the traces will continue
to be updated in the same event stream. This phenomenon is called concept drift.
Ty, ..., T are called change points. Figure 4.1 illustrates a concept drift that occurred
at the change point T;.

Given a graph stream G; = (01,02, ..,0,), the aim is thus to detect the moments
when changes occur in the stream.

70 Chapter 4. Concept Drift Detection

Stream T; o +n op+n+t1 a; + 2n e
of === s st s s s == === T
traces . . o - s Time
Reference etection
Train LSTM
%, Model
A4 A 4
Generate Next Generate Next
Activity Activity
Predictions Predictions
Construct Graph Construct Graph
Calculate
Fitness,
Precision
and F-score
(A)
Stream O ogi+n o +n+1l a; + 2n e
of —=-=------- e e mmm s m e - - >
traces . - - - > Time
Reference Detection
Train LSTM Train LSTM

Model
[

Model

Generate Next
Activity
Predictions

Generate Next
Activity
Predictions

v

v

Construct Graph

Construct Graph

!

!

Construct
|Adjacency Matrix

Construct
Adjacency Matrix

Calculate
Dissimilarity
Score

(8)

FIGURE 4.3: Proposed approach to detecting concept drifts in event
streams of business processes: (A) PGraphDD-QM (B) PGraphDD-SS

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 71

Figure 4.3 summarises the proposed methods to detect concept drifts in graph
streams that represent changing business processes. According to the first method
(PGraphDD-QM) illustrated in Figure 4.3(a), an LSTM model is first trained using
reference traces (i.e., traces from the previous time period or stream). This LSTM
model is then applied to a newly generated stream of traces. The model’s perfor-
mance over the old and new streams is compared in terms of the F-score metric,
which is the harmonic mean of fitness and precision. Fitness or recall is the ability
of the model to reproduce the behaviour contained in the stream of traces. Preci-
sion is the ability of the model to generate only the behaviour found in the stream of
traces. Intuitively, if a change were introduced to a process, an LSTM model trained
on traces representing the old process (i.e., process before the change) would per-
form poorly on traces representing the new process (i.e., process after the change).
To quantify this performance deterioration, a threshold is introduced. The value of
the F-score performance metric on the newly generated stream of events below this
threshold indicates the presence of drift. In contrast, those above the threshold in-
dicate that there is no drift. Algorithm 5 lists the pseudo-code of PGraphDD-QM,
which includes the following steps:

1. Split the recently observed stream of traces into two windows (lines 6 — 13): the
detection window D (most recent traces) and the reference window R (older
traces).

2. Preprocess the traces (i.e., encode and pad) the traces from both the detection
and reference windows as described in Section 4.1.1 (line 13).

3. Define and compile an LSTM model i and train it on the preprocessed traces of
the reference window R (line 14) as described in Section 4.1.1 and in Chapter 3
to obtain a fitted model p/.

4. Apply the LSTM model p/ trained on the traces from the reference window R
to both the reference window R and the detection window D to make predic-
tions of the complete trace of each process instance (lines 16 — 17).

5. Construct prediction probability matrices P§ and Pilj) for reference and detec-
tion windows respectively (lines 19 — 20), as described in Section 4.1.1 and in
Chapter 3.

6. Generate two DFG process models GX and GP using PiI]-{ and Pilj) respectively
(lines 21 — 22), as described in Section 4.1.2 and in Chapter 3.

7. Calculate two sets of performance metrics (fitness, precision and F-score) based
on the predictions (lines 24 — 27).

8. Compare the F-score value of the detection window with the threshold ¢. The
threshold is set based on the F-score values obtained for the reference window.
An F-score below a threshold signals a drift presence (line 28).

9. Analyse and report concept drift by inspecting the detection window (lines
29 — 30).

10. Repeat the process for each new run read from the stream by sliding both the
reference and detection windows to the right until the end of the stream is
reached.

72

Chapter 4. Concept Drift Detection

Algorithm 5 PGraphDD-QM: Online Concept Drift Detection using Quality Metrics

Require: Event stream: S, LSTM model: y, Threshold: ¢
1: fScoreLog <[], DriftLog < |]

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

D A L

{read event stream, split windows, prepare data, train LSTM model and make
predictions}
e < fetch(eventStream)
w <+ WinSize {the window size}
. parts < splitLog(e, w)
: for all 7 in range(0, parts) do
ji+1
if i = parts — 1 then

j<0
R < part(i) , D < part(j)

end if
while w # 0 do

prepare(R, D)
« (1, R) {train an LSTM model on the reference window}
{Apply the trained model to both reference and detection windows}
Rypeq 4 predict(p', R)
Dpyreq < predict(y', D)
{build next event prediction probability matrices, construct graphs}
Pg < generate(Pred_Prob_Mat, R.q)
Pl-? <« generate(Pred_Prob_Mat, Dpyeq)
GR « drawGraph(i,o, N, E, P}f, Rpreq)
GP «+ drawGraph(i,o, N, E, Pi?, Dypyea)
{calculate the quality metrics}
p < performance()
fitness < p.fitness()
precision < p.precision()
fScore < p.fScore(fitness, precision)
if fScore < ¢ then
print("drift found in window” + str(j))
Report < (i,], fScore)
end if

end while

33: end for

4.2. Proposed Methods: PGraphDD-QM and PGraphDD-SS 73

Algorithm 6 PGraphDD-SS: online concept drift detection using similarity score

Require: Event stream: S, LSTM model: y, Threshold: ¢
1: simScore < [], DriftLog < ||
2: e < fetch(eventStream)
3: w < winSize {the window size}
4: parts < splitLog(e, w)
5: for all i in range(0, parts) do

6: ji+1

7. ifi = parts — 1 then

8: j<0

9: R < part(i), D <+ part(j)
10: end if

11: whilew # 0 do
12: prepare(R, D)

13: {compile and train two Istm model on the reference and detection win-
dow}

4 = (W R), Hy < (1 D)

15: {Make predictions for both}

16: Ryreq < predict(py, R)

17: Dypyeq < predict(uy, D)

18: {build next event prediction probability matrices, construct graphs}

19: P§ < generate(Pred_Prob_Mat, R yeq)

20: PZ-]]-D « generate(Pred_Prob_Mat, D,yeq)

21: GR « drawGraph(i,o,N, E, Pl?, Rpreq)

22 GP « drawGraph(i,o, N, E, Pi?, Dpred)

23: {generate adjacency matrices, measure similarity score}

24: Af} + generate(adjacency_matrix, GR)

25: Ap «+ generate(adjacency_matrix, GP)

26: p < per formance()

27: simScore <— p.getScore()

28: M + 0 {set a counter of non-zero values}

29: M getM(Af},Af]-’)

30: absoluteVal + (Af — AP)

31: sumVal < absoluteVal.abs().sum().sum()

32: simScore <— 1 —sumVal /M

33: if simScore < ¢ then

34: print("drift found in window” + str(j))

35: {change point detected and reported}

36: end if

37: Report < (i,], simScore)

38: end while

39: end for

To complement PGraphDD-QM, PGraphDD-SS (Figure 4.3(b)) compares the
structure of the DFGs generated based on the prediction output of two LSTM mod-
els, one trained on traces from the reference window and the other trained on traces
from the detection window covering two different periods (i.e., reference and de-
tection). Algorithm 6 lists the pseudo-code of PGraphDD-SS, which includes the
following steps:

74

Chapter 4. Concept Drift Detection

10.

11.

4.3

. Split the recently observed stream of traces into two windows (line 5 — 10): the

detection window D (most recent traces) and the reference window R (older
traces).

. Pre-process (i.e., encode and pad) the traces from both the detection and refer-

ence windows as described in Section 4.1.1 (line 12).

. Define and compile an LSTM model y and train it first on the pre-processed

traces from the reference window R (line 14) as described in Section 4.1.1
and in Chapter 3 to obtain the fitted model 4/ (line 15) and then on the pre-
processed traces from the detection window D to obtain the fitted model /.

. Use each of the trained LSTM models to predict the complete trace of each

process instance of the window it has been trained on (lines 16 — 17).

. Construct prediction probability matrices for each of the two windows, respec-

tively (lines 19 — 20), as described in Section 4.1.1 and in Chapter 3.

. Generate two DFG process models (lines 21 — 22) as described in Section 4.1.2

and in Chapter 3 using the respective prediction probability matrices of each
window.

. Build adjacency matrices for each of the DFG process models constructed, re-

spectively (lines 24 — 25).

Definition 9: Adjacency matrix. Let G be a DFG with a vertexset V = vy, ..., v,.
G can be transformed into an adjacency matrix A, where A is a square n x n
matrix, such that its element A;; = 1 when there is an edge from the vertex v;
to the vertex v; and A;; = 0 when there is no edge.

. Calculate the similarity score of the two DFG process models using the adja-

cency matrices generated (lines 26 — 32).

. Compare the similarity score with the threshold ¢. The threshold is set based

on the highest similarity score values obtained. A similarity score below the
set threshold signals the presence of drift (line 33).

Analyse and report concept drift by inspecting the detection window (lines
34 — 35).

Repeat the process for each new run read from the stream by sliding both refer-
ence and detection windows to the right until the end of the stream is reached.

Experiments

This section presents the datasets used for the experiments and the experimental
setup to evaluate the two methods in both offline and online scenarios. The ex-
periments were carried out using the Google Colab free Tesla K80 GPU. All stages
depicted in Figures 4.2 and 4.3 were implemented as a set of Python scripts us-
ing Python 3.6. LSTM models were built using the Keras (Gulli and Pal, 2017) and
Tensorflow (Abadi et al., 2016) libraries. Process graphs were generated using the
Graphviz library (Ellson et al., 2001). The original log files are in XES format. For
the purposes of this study, they were converted to CSV files using the ProM tool
(Van Dongen et al., 2005).

4.3. Experiments 75

4.3.1 Offline Drift Detection

Two publicly available real-life event logs were used to evaluate both PGraphDD-SS
and PGraphDD-QM: BPIC 2015 (Dongen, 2015) and Helpdesk (Polato, 2020). The
BPIC 2015 dataset already includes five variations of the same process. However,
for the Helpdesk log, four different modifications (labelled 'Helpdesk_N’, where N
is the modification number) were artificially created to explore the impact of differ-
ent process changes on the performance of the proposed methods. All the logs are
detailed in the next subsections and summarised in Table 4.1.

TABLE 4.1: Summary of the event logs used in the experiments

Event Log | Numder of Events | Number of Traces | Number of Activities
Helpdesk 21,348 4,580 14
Helpdesk_1 | 23,938 4,580 15
Helpdesk_2 | 19,442 4,580 13
Helpdesk_3 | 20,533 4,582 14
Helpdesk_4 | 25,027 4,582 14
BPIC2015_1 | 52,217 1,199 398
BPIC2015_2 | 44,354 832 410
BPIC2015_3 | 59,681 1,409 383
BPIC2015_4 | 47,293 1,053 356
BPIC2015_5 | 59,083 1,156 389
Helpdesk Logs

The original Helpdesk log (Polato, 2020) contains records of real-life events from a
ticketing management process of the help desk of an Italian software company. To
simulate the presence of concept drifts, the log is systematically altered by apply-
ing simple change patterns to the log in turn (Table 4.2). As a result, the follow-
ing four additional logs were obtained, each capturing different change operations
commonly identified in business process models, namely addition, removal, and
re-positioning of events in a process:

1. Helpdesk_1: an activity is added. For the first variant of the Helpdesk log, a
new activity, ‘TEmergency’, was added to the log.

2. Helpdesk_2: an activity is removed. For the second variant of the Helpdesk
log, the activity ‘Duplicate’ was removed from the log. This should result in a
graph with one less node and thus zero probabilities in the second adjacency
matrix, leading to a drop in the similarity score between the original and mod-
ified process.

3. Helpdesk_3: change in flow. For the third variant of the Helpdesk log, some
changes were applied at the location of a branching node in the process graph.
In particular, all traces following “Assign seriousness — Take in charge ticket —
Wait — Resolve ticket — Closed” and *Assign seriousness — Take in charge ticket —
Require upgrade — Resolve ticket — Closed” were replaced with ‘Assign serious-
ness — Take in charge ticket — Wait — Require upgrade — Resolve ticket — Closed’
(i.e. both “‘Wait” and ‘Require upgrade’ take place before moving to ‘Resolve
ticket” and eventually ‘Closed” in the new variation).

76 Chapter 4. Concept Drift Detection

4. Helpdesk_4: incorporating all changes. For the fourth variant of the Helpdesk
log, all three change patterns (addition, removal, change in the flow) were in-
cluded in the event log. This case allows testing the sensitivity of the proposed
methods to the number of changes in the control flow present in the new log
compared to the old one.

TABLE 4.2: Change patterns applied to the original Helpdesk log.

Event Log | Change Pattern

Helpdesk_1 | Add activity

Helpdesk_2 | Remove activity

Helpdesk_3 | Alter a parallel branch

Helpdesk_4 | Incorporate all three change patterns

BPIC 2015 logs

BPIC 2015 is a real-life dataset that contains cases of building permit applications
provided by a Dutch municipality. This log collection was originally used in the
Business Process Intelligence Contest (BPIC 2015) (Dongen, 2015). Five log files are
available in the collection, each provided by one of the five Dutch municipalities.
The logs contain many different activities, each labelled with a code and a Dutch and
English label. Although the processes in the five municipalities should be identical,
they differ in reality. A large behaviour in each municipality is not observed in the
other municipalities. There are distinctions in sub-processes between the municipal-
ities regarding the frequency of occurrence and behaviour within the sub-processes.
This may have resulted from the changes to procedures, rules, or regulations. As
there are about 1,170; 828; 1,349; 1,049 and 1,153 different execution paths for the
BPIC2015_1; BPIC2015_2; BPIC2015_3; BPIC2015_4 and BPIC2015_5 logs, respec-
tively, almost all cases are unique from the control-flow perspective.

Experimental Setup for Offline Drift Detection

The following experimental protocol was adopted to evaluate the proposed methods
for detecting concept drift in business processes in offline scenarios:

1. For PGraphDD-SS, the similarity score between each pair of process graphs
covering two different time periods (1%t and 2"? graph, 1%t and 3, 2" and 4,
4™ and 5%, etc.) was measured.

The following two cases were considered for calculating the similarity score:

e Case 1: constructing binary matrices, where a value of 1 in a cell corre-
sponds to the fact that the transition between the two corresponding ac-
tivities exists, whereas a value of 0 represents the fact that there is no
transition between the two activities.

e Case 2: constructing matrices in the same way as in Case 1, except tak-
ing the probability of transition was recorded as predicted by the LSTM
model instead of the value of 1.

Taking into account the size and complex structure of the process graphs con-
structed from the BPIC 2015 logs, unlike those constructed from the Helpdesk
log, different probability thresholds, namely, 0.0,0.2,0.6,0.8,1.0, were used in

4.3. Experiments 77

turn during the experiment. The higher the threshold set, the less complex
the process graph constructed, and vice versa. The idea is to allow for ease of
analysis and to observe the effect of different thresholds on similarity scores.

2. For PGraphDD-QM, two event logs covering two different time periods were
used: one representing an old event log (for Helpdesk, the same base log) and
the other a new event log (for Helpdesk, each of the modified versions). An
LSTM model was trained on the old log and then applied to both the old and
new logs to make the next activity predictions. Two sets of performance met-
rics (fitness, precision, and F-score) were calculated based on the predictions
and compared between the two event logs.

3. For the embedding layer of the LSTM model, the vocabulary size was set to
the number of unique activities in the considered log. The number of embed-
ding dimensions was guided by the vocabulary size; hence, it varied across the
event logs.

4. The network architecture of the LSTM model included one hidden LSTM layer
with a dropout probability of 0.2 set based on preliminary experiments. The
dropout technique was used to avoid over-fitting and improve learning by
temporarily removing a cell from the network randomly.

5. The number of training epochs was set to 50 for all logs based on preliminary
experiments.

6. The parameters of the LSTM model, namely, the number of embedding dimen-
sions, batch size, and LSTM neurons, were tuned for each event log separately
for better performance. In particular, 32 embedding dimensions were used for
Helpdesk logs, and 415 embedding dimensions were used for BPIC 2015 logs;
a batch size of 20 was used for the Helpdesk log and a batch size of 1500 was
used for the BPIC 2015 logs; 100 neurons were used in the LSTM layer for all
logs.

4.3.2 Online Drift Detection

Two publicly available event logs were used to evaluate the performance of the on-
line concept drift detection methods. Namely, the loan application process (Maaradji
et al., 2015) and Dutch municipality (BPIC 2015) (Dongen, 2015) logs. The details of
the two datasets are presented in turn below. Accuracy (calculated as a harmonic
mean of precision and recall) and mean delay (calculated as the average number
across all windows of log traces between the point when a drift occurred and when
it was detected) were used as performance metrics (Ho, 2005). The binary case (i.e.
Case 1) was considered to calculate the similarity score in online drift detection. For
both methods, the threshold was tuned for each dataset according to the values ob-
tained over the first reference windows (which contain no drift by default). In par-
ticular, for the Loan Application Process dataset, the thresholds were set to 0.9 and
1.0 for PGraphDD-QM and PGraphDD-SS, respectively, while for the municipality
dataset of BPIC 2015, the thresholds were set to 0.9 and 0.3 for PGraphDD-QM and
PGraphDD-SS, respectively. The results obtained for the loan application process
logs (Maaradji et al., 2015) were compared to those reported in (Maaradji et al., 2017;
Seeliger, Nolle, and Miihlhduser, 2017; Sousa et al., 2021). Although there exists a
study using the BPIC 2015 logs for drift detection (Hassani, 2019), the results re-
ported cannot be directly compared with ours.

78 Chapter 4. Concept Drift Detection

Loan Application Process Dataset

The loan application process dataset comprises 72 synthetic event logs generated
from a base model comprising 15 activities, one start, and three end events. The logs
exhibit different control-flow structures, including loops and parallel and alterna-
tive branches (Figure 4.4). To generate the logs, the base model was systematically
modified applying, in turn, one of the twelve simple change patterns described in
(Weber, Reichert, and Rinderle-Ma, 2008) (Table 4.3). These modifications reveal dif-
ferent change patterns, which are categorised into insertion (“I”), resequentialisation
(“R”) and optionalisation (“O”). More complex drifts were created by combining the
simple change patterns; This involved randomly applying a pattern from each cate-
gory in a nested way, thus resulting in additional event logs: “IOR”, “IRO”, “OIR”,
“ORI”, “RIO”, and “ROI".

FIGURE 4.4: Base BPMN model of the loan application process

To vary the distance between the drifts, four event logs of sizes 2500, 5000, 7500
and 10000 were generated for each of the change patterns by combining a fixed num-
ber of alternating instances from the base model, then a fixed number of instances
from the modified model, leading to a total of 72 logs. Each event log generated in
this way contains precisely nine process drifts.

TABLE 4.3: Control-flow change patterns for synthetic event logs
adopted from (Maaradji et al., 2015). "I'": insertion; “R”: resequen-
tialisation; “O”: optionalisation.

Code | Simple change pattern Category
re Add/remove fragment I
cf Make two fragments conditional /sequential R
Ip Make fragment loopable /non-loopable @)
pl Make two fragments parallel /sequential R
cb Make fragment skippable/non-skippable @)
cm Move fragment into/out of conditional branch | I
cd Synchronise two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
BPIC 2015 Dataset

The same BPIC 2015 municipality dataset introduced in 4.3.1 was used. However,
here, similar to Hassani, 2019, the five logs were merged for the experiments to get

4.3. Experiments 79

one log with four reliable concept drifts.

Experimental Setup for Online Drift Detection

Experiment 1 [- old process B - new process
drift point drift point drift point
/ . / /
. . [N |
iteration 1 [| r !
reference detection
r - A
iteration 2 Py
L reference Edetectlong
iteration 3 '
L reference detection
y
iteration N reference detection

FIGURE 4.5: Experiment 1: drift introduced at the start of the detec-
tion window

Experiment 2 [- old process Bl - new process
drift point drift point drift point
_/ / /

EEEEE——— e |
iterationl[\ e }
reference | !
iteration 2 - Y
- | detection
_ l _
iteration 3 ; Y 4

e reference
_ _ p—
iterationN] detection

FIGURE 4.6: Experiment 2: drift introduced in the middle of the de-
tection window

The two proposed drift detection methods were tested in two experiments: (1) drift
introduced at the beginning of the detection window (Figure 4.5) and (2) drift intro-
duced in the middle of the detection window (Figure 4.6). In the first experiment, all
the traces in the detection window were generated by a process model different from
that used to generate traces for the reference window. In the second experiment, the
detection window contained traces generated by two different process models: an
old one used for the reference window and a new one. The point of the switch from
the old to the new process in the detection window (i.e. the ratio between the num-
ber of traces generated by the old and new process models) was varied in the second
experiment to assess the sensitivity of the proposed drift detection methods to the
number of traces generated by the old process model still present in the analysed
window containing a drift.

80 Chapter 4. Concept Drift Detection

To demonstrate the ability of the proposed methods to detect drifts in the first
experiment, the LSTM model was initially trained on the first half of the reference
window and applied to its second half. In this case, the model is expected to achieve
an F-score close to 1 since the same process model generated traces in both portions.
This F-score value was used to set the threshold for PGraphDD-QM. Next, the model
was trained on the second half of the reference window and applied to the first half
of the detection window. Since the model was trained on traces generated by one
process model but applied to traces generated by another, a drop in the F-score value
below the threshold is expected, indicating a drift. The procedure was repeated by
shifting windows forward until the end of the considered log was reached. For all
the iterations, it was noted whether the F-score value was always above the thresh-
old when the LSTM model was trained and applied to traces generated by the same
process model (i.e., not triggering false alarms) and below the threshold when the
LSTM model was trained on traces generated by one process model but applied
to traces generated by another process model (i.e., detecting drifts when they actu-
ally happened). For PGraphDD-SS, the similarity score was compared across the
windows in the same manner, assuming that a similarity score above the threshold
indicated no drift, and a similarity score below the threshold meant a drift.

The second experiment was designed to explore the behaviour of the proposed
drift detection methods on the stitches of the traces generated by different process
models and obtain the delay metric. In this case, each detection window was con-
structed to include traces before and after the change point (i.e. drift) at different
percentages. Initially, the detection window was set to have 90% of traces generated
by the old process model and 10% of traces generated by the new process model.
The F-score value was checked and a drift was assumed to be detected if the F-score
value was below the set threshold. If drift was not detected, the detection window
was modified to include old and new traces in the ratios of 80%:20%, 70%:30% and
so on until drift was detected. The delay was set to the number of traces generated
by the new process model at the point of the detected drift (i.e., if the drift was de-
tected in a ratio of 30%:70%, the delay was set to the number of traces in the 30%
block). A short delay between a change and its detection is highly desirable.

The following experimental protocol was adopted to evaluate the proposed meth-
ods for detecting concept drifts in business processes in online scenarios:

1. For both methods, the threshold was tuned for each dataset according to the
values obtained over the first reference windows (which contain no drift by
default).

2. For the embedding layer of the LSTM model, the vocabulary size was set to the
number of unique activities in the log considered. The size of the vocabulary
guided the number of embedding dimensions; hence, it varied across the event
logs.

3. The network architecture of the LSTM model included one hidden LSTM layer
with a dropout probability of 0.2. The dropout technique was used to avoid
over-fitting and improve learning by randomly removing a cell from the net-
work.

4. The number of training epochs was set to 50 for all synthetic logs and 10 for
the BPIC 2015 logs based on preliminary experiments.

5. The parameters of the LSTM model, namely, the number of embedding di-
mensions, batch size, and LSTM neurons, were tuned for the different event

4.4. Results and Discussion 81

log sizes for better performance. In particular, 250; 500; 750; 1,000 embedding
dimensions and batch sizes were used for each of 2,500; 5,000; 7,500; 10,000
loan application process logs, respectively; 1,000 embedding dimensions and
a batch size of 1000 were used for the BPIC 2015 logs; 100 neurons were used
in the LSTM layer for all logs.

4.4 Results and Discussion

This section presents and discusses the results of the experiments carried out for the
two methods in both offline and online scenarios.

44.1 Offline Drift Detection: PGraphDD-QM

Tables 4.4-4.7 show the results of drift detection using PGraphDD-QM on the con-
sidered event logs based on the quality metrics (fitness, precision, and F-score) ob-
tained for two different time periods.

Table 4.4 lists the fitness, precision, and F-score values calculated based on the
LSTM model trained using the original (base) Helpdesk log (considered as the old
event log) and applied to each of its modified versions (considered as new event
logs, Section 4.3.1). The values of all the three metrics for the Helpdesk_1 and
Helpdesk_2 logs are 0.99 and 0.97, respectively, implying that the two time periods
(old and new logs) are respectively 99% and 97% similar, i.e., insignificant drifts are
detected in the new log, with only one activity being added or removed, compared
to the old log (it is worth noting that the metric values are all 1.0 when comparing
the original event log to itself, see Table 4.4). Changes to the flow introduced in the
Helpdesk_3 event log resulted in a stronger indication of drift, with precision drop-
ping to 0.85 and thus F-score dropping to 0.90, with fitness remaining at 0.97. The
most significant indication of drift can be observed for the Helpdesk_4 log that in-
corporates all three types of changes, with fitness dropping to 0.94, precision to 0.84,
and F-score to 0.88. From these results, it can be concluded that the more signifi-
cant drop in the values of the quality metrics indicates a more significant drift (i.e.,
a higher number of changes can be observed in the new logged events compared to
the old log).

Tables 4.5 and 4.6 show the results obtained by splitting each of the modified
versions of the Helpdesk log into 5 and 8 portions (or folds), respectively, and then
comparing each fold in turn to the Helpdesk log, thus simulating a more dynamic
offline scenario, where only a small portion of the new event log is available for
analysis. Similar to considering a larger event log, a more significant drift is detected
in the case of Helpdesk_4 folds, as indicated by the lowest fitness scores.

Table 4.7 shows the results of comparing the pairs of the five BPI20C15 logs
against each other, with one log in the pair representing the old log (on which the
LSTM model was trained) and the other log representing the new log (in which drifts
are detected). It can be noticed from the table that the values of the quality measures
are significantly lower across all pairs compared to those obtained for the Helpdesk
log variations, indicating more severe drifts. Indeed, the business processes cap-
tured in the BPIC2015 logs vary much more than those captured in the Helpdesk
variations. To confirm this, the ProM tool was used to view activities, traces, and
the process flows captured in the event logs of the five municipalities. This analysis
revealed that almost all cases follow a unique execution path and there is a unique
variant for almost every case. For example, BPIC2015_1 has 943 cases and only 888

82 Chapter 4. Concept Drift Detection

variants. This explains the low fitness, precision, and F-score values observed across
all pairs of event logs, except in the cases where the event logs were compared with
themselves. For example, the values of 0.0017 for fitness, 0.0024 for precision and
0.0020 for F-score obtained when comparing BPIC2015_1 and BPIC2015_2 logs in-
dicate a high degree of drift, i.e.,, a lot of changes have occurred in the way the
processes were executed between the two time periods. In contrast, the value of
1 across all the metrics obtained when comparing each BPIC2015 log to itself (e.g.
BPIC2015_1 against BPIC2015_1) indicates that the proposed method captured no
drift, which is what one would expect when comparing two identical business pro-
cesses.

The experiments with folds conducted for the Helpdesk log were unnecessary
for the BPIC2015 logs, given their complexity. This is because the performance met-
ric values are already very low, and splitting the logs into folds would result in many
unique traces being captured in each fold, thus returning 0 scores across all the met-
rics due to no overlaps between traces across the folds.

TABLE 4.4: Results of offline process drift detection using
PGraphDD-QM for Helpdesk log and its variations

Event Logs Fitness/Recall | Precision | F-Score
Helpdesk/Helpdesk_1 | 0.9925 0.9913 0.9919
Helpdesk/Helpdesk_2 | 0.9706 0.9706 0.9706
Helpdesk/Helpdesk_3 | 0.9705 0.8462 0.9041
Helpdesk/Helpdesk_4 | 0.9412 0.8421 0.8889
Helpdesk/Helpdesk 1.0000 1.0000 1.0000

TABLE 4.5: Results of offline process drift detection using
PGraphDD-QM for Helpdesk log and its variations using five folds

Event Log Folds | Fitness/Recall | Precision | F-Score
Fold1 | 0.88 0.88 0.88
Fold 2 | 0.90 0.90 0.90

Helpdesk/Helpdesk_1 | Fold 3 | 0.92 0.92 0.92
Fold 4 | 0.90 0.90 0.90
Fold 5 | 0.90 0.90 0.90
Fold1 | 0.88 0.88 0.88
Fold 2 | 0.88 0.88 0.88

Helpdesk/Helpdesk_2 | Fold 3 | 0.90 0.90 0.90
Fold 4 | 0.89 0.89 0.89
Fold 5 | 0.89 0.89 0.89

4.4. Results and Discussion

83

Fold1 | 0.73 0.73 0.73
Fold 2 | 0.72 0.72 0.72
Helpdesk/Helpdesk_3 | Fold 3 | 0.71 0.71 0.71
Fold 4 | 0.74 0.74 0.74
Fold 5 | 0.74 0.74 0.74
Fold1 | 0.62 0.62 0.62
Fold 2 | 0.63 0.63 0.63
Helpdesk/Helpdesk_4 | Fold 3 | 0.62 0.62 0.62
Fold 4 | 0.64 0.64 0.64
Fold 5 | 0.64 0.64 0.64

TABLE 4.6: Results of offline process drift detection method for
Helpdesk log and its variations using eight folds

Event Log Folds | Fitness/Recall | Precision | F-Score
Fold1 | 0.91 0.91 0.91
Fold 2 | 0.90 0.90 0.90
Fold 3 | 0.90 0.90 0.90
Fold 4 | 0.89 0.89 0.89

Helpdesk/Helpdesk_1
Fold 5 | 0.89 0.89 0.89
Fold 6 | 0.92 0.92 0.92
Fold 7 | 0.90 0.90 0.90
Fold 8 | 0.89 0.89 0.89

84

Chapter 4. Concept Drift Detection

Fold1 | 0.90 0.90 0.90
Fold 2 | 0.88 0.88 0.88
Fold 3 | 0.89 0.89 0.89
Fold 4 | 0.87 0.87 0.87
Helpdesk/Helpdesk_2
Fold 5 | 0.88 0.88 0.88
Fold 6 | 0.87 0.87 0.87
Fold 7 | 0.87 0.87 0.87
Fold 8 | 0.89 0.89 0.89
Fold 1 | 0.69 0.69 0.69
Fold 2 | 0.69 0.69 0.69
Fold 3 | 0.69 0.69 0.69
Fold 4 | 0.69 0.69 0.69
Helpdesk/Helpdesk_3
Fold 5 | 0.70 0.70 0.70
Fold 6 | 0.72 0.72 0.72
Fold 7 | 0.68 0.68 0.68
Fold 8 | 0.93 0.93 0.93
Fold1 | 0.63 0.63 0.63
Fold 2 | 0.62 0.62 0.62
Fold 3 | 0.64 0.64 0.64
Fold 4 | 0.67 0.67 0.67
Helpdesk/Helpdesk_4
Fold 5 | 0.65 0.65 0.65
Fold 6 | 0.66 0.66 0.66
Fold 7 | 0.63 0.63 0.63
Fold 8 | 0.66 0.66 0.66

4.4. Results and Discussion 85

TABLE 4.7: Results of offline process drift detection using
PGraphDD-QM for BPIC2015 logs

Event Logs Fitness/Recall | Precision | F-Score
BPIC2015_1/BPIC2015_2 | 0.0017 0.0024 0.0020
BPIC2015_1/BPIC2015_3 | 0.0026 0.0022 0.0024
BPIC2015_1/BPIC2015_4 | 0.0009 0.0010 0.0009
BPIC2015_1/BPIC2015_5 | 0.0017 0.0017 0.0017
BPIC2015_1/BPIC2015_1 | 1.0000 1.0000 1.0000
BPIC2015_2/BPIC2015_3 | 0.0012 0.0007 0.0009
BPIC2015_2/BPIC2015_4 | 0.0012 0.0010 0.0011
BPIC2015_2/BPIC2015_5 | 0.0024 0.0017 0.0020
BPIC2015_2/BPIC2015_2 | 1.0000 1.0000 1.0000
BPIC2015_3/BPIC2015_4 | 0.0029 0.0038 0.0033
BPIC2015_3/BPIC2015_5 | 0.0007 0.0009 0.0008
BPIC2015_3/BPIC2015_3 | 1.0000 1.0000 1.0000
BPIC2015_4/BPIC2015_5 | 0.0000 0.0000 0.0000
BPIC2015_5/BPIC2015_5 | 1.0000 1.0000 1.0000

4.4.2 Offline Drift Detection: PGraphDD-SS

Tables 4.8 and 4.9 show the results of PGraphDD-SS drift detection on the consid-
ered event logs based on the similarity score between each pair of graphs represent-
ing business processes from two different time periods.

In Table 4.8, the process graph generated from the original Helpdesk log is com-
pared against each process graph generated from its modified versions as described
in Section 4.3.1. Two sets of results are presented in Table 4.8: for the binary case
(Case 1) and the probability case (Case 2). First, the process graph of the original
Helpdesk log is compared against the process graph of the same original Helpdesk
log, A similarity score of 1.0 was obtained for Case 1 and 1.0 for Case 2, suggesting
the two graphs are identical (i.e., no change detected). Then, the Helpdesk_1 process
graph was compared with the Helpdesk process graph of the original Helpdesk log.
A similarity score of 0.97 was obtained for Case 1 and 0.98 for Case 2, indicating
a minor change. A similarity score of 0.90 for Case 1 and 0.92 for Case 2 was ob-
tained when the process graph of Helpdesk_2 log was compared against the process
graph of Helpdesk log; the scores still suggest minor changes detected. A decrease
in similarity scores was observed when the Helpdesk log process graph was com-
pared to the Helpdesk_3 and Helpdesk_4, especially the latter, which showed the
lowest similarity score of 0.71 for Case 1, and 0.74 for Case 2. This is expected as
Helpdesk_4 incorporates all three change patterns (Section 4.3.1), hence a greater
change is anticipated. Overall, the similarity score in all the combinations (i.e., the
base Helpdesk log compared to the four modified versions) was high. This indicates
that the detected drifts are insignificant, which is expected given the minor modifica-
tions made to the alternative Helpdesk logs. When comparing the similarity scores
of the two cases obtained across the logs (i.e., Case 1 and Case 2), it can be said that
Case 1 (the binary case) better captures drifts in all modified versions of the original
log. Furthermore, it is observed that the more changes introduced in the original
process, the better the performance of PGraphDD-SS in offline drift detection.

Table 4.9 shows the pairwise comparison of all five BPIC2015 event logs. Given
the complex nature of the logs, each contains a large number of event cases and
lengthy execution paths (Table 4.1). A probability threshold was used to generate

86 Chapter 4. Concept Drift Detection

TABLE 4.8: Results of offline process drift detection using
PGraphDD-SS for Helpdesk logs: Casel: binary; Case2: probabilities

Event Log Similarity Score (%)
Case1 | Case2
Helpdesk/Helpdesk 1.00 1.00
Helpdesk/Helpdesk_1 | 0.97 0.98
Helpdesk/Helpdesk_2 | 0.90 0.92
Helpdesk/Helpdesk_3 | 0.76 0.85
Helpdesk/Helpdesk_4 | 0.71 0.74

the process graphs based on the predictions of the LSTM model to filter out less
probable transitions between activities as predicted by the LSTM model. This im-
plies that the generated graph would appear less complex if the probability thresh-
old is set to a higher value, allowing only highly probable process paths to appear
in the graph, while setting the threshold to 0 would result in a more complex graph
since all transitions with a probability higher than 0 would feature in the graph.
Different threshold values were tested to determine the sensitivity of the similarity
score. It can be seen from the results listed in Table 4.9 that higher threshold values
yield higher similarity scores. For example, when comparing BPIC2015_1 against
BPIC2015_2, using a probability threshold of 0 (i.e., when including all transitions
as predicted by the LSTM model), a similarity score of 0.69 was obtained for Case 1
and 0.45 for Case 2. The scores suggest an average change in behaviour in the pro-
cess graph for the next time period. However, on the same logs, using a probability
threshold of 1 (i.e., when including only the transitions that the LSTM model is 100%
confident about as being the only way of transiting from one activity to another), a
similarity score of 0.00 was obtained for Case 1 and 0.00 for Case 2, suggesting a total
change in behaviour in the process graph for the next time period. The same pattern
was observed in most pairs when playing with the different thresholds.

A factor that may have contributed to the big difference in the observed similar-
ity scores is that, on average, when comparing the BPIC2015 logs, there are about ten
sub-processes covering 30% of the event logs found in all of them. This means that
on average another 70% of the behaviour in each log is not observed in each of the
other logs (Martin et al., 2015). Hence, when all transitions are included (i.e. when a
low probability threshold is used), the possibility of capturing a similar behaviour in
both time periods is high. However, when a higher probability threshold is set, only
the highly likely transitions are included in the graphs, thus making the possibility
of capturing a similar behaviour less likely in the time periods.

In the probability case (Case2), an average similarity score of 0.44 is observed
across all pairs when the threshold is 0.0, 0.40 when the threshold is 0.2, 0.25 when
the threshold is 0.4, 0.15 when the threshold is 0.6, 0.10 when the threshold is 0.8 and
0.0 when the threshold is 1.0.

Just like for the Helpdesk log, a difference is observed between the similarity
scores calculated for the binary case (Casel) and the probability case (Case2). For
the Helpdesk log, the similarity scores for Case 1 are lower than those for Case 2.
However, for the BPIC2015 logs, the similarity scores for Case 1 are higher than
those for Case 2 across all probability thresholds. The difference in results obtained
for the Helpdesk and BPIC2015 logs can be explained by the more complex nature
of the BPIC2015 logs.

4.4. Results and Discussion

87

TABLE 4.9: Results of offline process drift detection method using

PGraphDD-SS for BPIC2015 logs: Casel: binary; Case2: probabilities

Event Log Threshold | Similarity Score (%)
Case 1 | Case?2
0.0 0.69 0.45
0.2 0.65 0.40
0.4 0.49 0.26
BPIC2015_1/BPIC2015_2
0.6 0.33 0.20
0.8 0.12 0.09
1.0 1.00 0.00
0.0 0.69 0.47
0.2 0.66 0.44
0.4 0.50 0.28
BPIC2015_1/BPIC2015_3
0.6 0.33 0.18
0.8 0.20 0.11
1.0 0.88 0.07
0.0 0.68 0.46
0.2 0.66 0.44
0.4 0.50 0.28
BPIC2015_1/BPIC2015_4
0.6 0.34 0.18
0.8 0.20 0.11
1.0 0.00 0.00
0.0 0.69 0.44
0.2 0.66 0.41
0.4 0.50 0.28
BPIC2015_1/BPIC2015_5
0.6 0.32 0.15
0.8 0.18 0.10
1.0 0.00 0.00

88

Chapter 4. Concept Drift Detection

0.0 0.69 0.44
0.2 0.65 0.39
0.4 0.49 0.26
BPIC2015_2/BPIC2015_3
0.6 0.34 0.82
0.8 0.18 0.91
1.0 1.00 1.00
0.0 0.69 0.43
0.2 0.65 0.41
0.4 0.51 0.28
BPIC2015_2/BPIC2015_4
0.6 0.35 0.18
0.8 0.18 0.07
1.0 1.00 0.00
0.0 0.71 0.48
0.2 0.66 0.41
0.4 0.49 0.25
BPIC2015_2/BPIC2015_5
0.6 0.32 0.16
0.8 0.17 0.08
1.0 0.08 0.02
0.0 0.67 0.43
0.2 0.64 0.39
0.4 0.50 0.28
BPIC2015_3/BPIC2015_4
0.6 0.34 0.19
0.8 0.19 0.11
1.0 0.00 0.00

4.4. Results and Discussion 89

0.0 0.69 0.44
0.2 0.65 0.41
0.4 0.50 0.28
BPIC2015_3/BPIC2015_5
0.6 0.34 0.18
0.8 0.19 0.10
1.0 0.00 0.00
0.0 0.66 0.38
0.2 0.62 0.35
0.4 0.47 0.23
BPIC2015_4/BPIC2015_5
0.6 0.29 0.11
0.8 0.13 0.04
1.0 0.00 0.00

The results presented in Tables 4.8 and 4.9 indicate that the proposed method
can be used to effectively detect concept drifts in business processes in the offline
scenario. Comparing the results obtained for the two logs (Helpdesk and BPIC2015),
it can be concluded that the method is sensitive to the number of changes (or drifts)
present in logs representing different time periods: the higher the similarity score,
the more insignificant the difference between the compared business processes. This
means that the method can not only indicate the presence of drifts but also their
severity.

4.4.3 Online Drift Detection: PGraphDD-QM
Loan Application Process

In the first experiment for the loan application process dataset, PGraphDD-QM achieved
an average accuracy score of 99% across all log sizes over 11 out of 17 change pat-
terns. For the remaining change patterns ('cb’, ‘cm’, “ior’, "pl’, 'rio” and ’lp’), the
method achieved an average accuracy of 66%. These results suggest that the effec-
tiveness of PGraphDD-QM depends on the nature of the event log. For example, in
the case of the "cb” change pattern, the fragment "‘Prepare acceptance pack” — ‘Check
application form completeness™ always present in the reference window may be
omitted in the detection window (i.e. the process branches, meaning that the two
activities are executed in some cases but not always, resulting in a portion of traces
containing the two activities and in a portion of traces not containing them). Since
the LSTM model trained on the reference window, where the activities are always
present, would still get points for correctly predicting the case of these activities be-
ing present in the detection window, PGraphDD-QM may fail to detect the drift if
the proportion of the traces containing the activities is greater than the proportion of
the traces not containing these activities.

90 Chapter 4. Concept Drift Detection

TABLE 4.10: Results across all log sizes for the “cd” change pattern of
the Loan Application Process dataset using PGraphDD-QM

] Drift Actual | Correct
Windows | ¢d-2500 | ¢d-5000 | ¢d-7500 | cd-10000 Detected? | Drift? | Detection?
0,1 0.98 0.99 0.99 0.99 No No Yes
1,2 0.53 0.47 0.55 0.50 Yes Yes Yes
2,3 0.50 0.94 0.99 0.99 No No Yes
3,4 0.62 0.49 0.54 0.47 Yes Yes Yes
4,5 0.96 0.99 0.99 0.99 No No Yes
5,6 0.42 0.45 0.50 0.49 Yes Yes Yes
6,7 0.69 0.99 0.99 0.99 No No Yes
7,8 0.56 0.48 0.48 0.63 Yes Yes Yes
8,9 0.94 0.98 0.99 0.99 No No Yes
9,10 0.89 0.51 0.49 0.49 Yes Yes Yes
10,11 0.98 0.97 0.99 0.99 No No Yes
11,12 0.25 0.50 0.48 0.48 Yes Yes Yes
12,13 0.95 1.00 0.99 0.99 No No Yes
13,14 0.37 0.49 0.44 0.49 Yes Yes Yes
14,15 0.65 0.99 0.98 0.99 No No Yes
15,16 0.50 0.45 0.52 0.48 Yes Yes Yes
16,17 0.96 0.99 0.99 0.99 No No Yes
17,18 0.82 0.45 0.48 0.51 Yes Yes Yes
18,19 0.92 0.97 1.00 0.99 No No Yes
19,0 0.33 0.46 0.67 0.49 Yes Yes Yes

Table 4.10 lists F-scores achieved by PGraphDD-QM, over each pair of windows
slid across the “cd” log of sizes 2,500, 5,000, 7,500 and 10,000 as an example to explain
how the decision on whether a drift has occurred or not is derived. F-score values
above the set thresholds indicate absence of drift. In contrast, a drop in the values
below the thresholds indicates the presence of drift. Considering our knowledge of
the event log, we can confirm whether drift happened or not in reality. The Yes/No
answers in the 'Drift detected?” column in the table indicate whether the methods de-
tected a drift or not, respectively. The Yes/No answers in the "Actual drift?” column
indicates whether the drift has actually occurred or not. The Yes/No answers in the
"Correct detection?” column indicate whether PGraphDD-QM detected the drift cor-
rectly or not, respectively. It can be seen that the decisions reported in the "Detected
drift?” column of both tables are confirmed as accurate detections in the "Correct de-
tection?” column. This means that PGraphDD-QM could detect all nine drifts for
the ‘cd” logs of all sizes. Indeed, it can be noticed from the tables that high F-score
values were returned for each window pair containing traces generated by the same
process model and low values for each window pair containing traces generated by
different process models.

BPIC 2015

Table 4.11 lists F-scores obtained for BPIC 2015 using PGraphDD-QM. It can be seen
from the table that PGraphDD-QM was able to find all four concept drifts. However,
it reported two false positives, thus achieving an accuracy score of 80%. The false
positives can be attributed to the complex nature of the five business processes and
the high variability of the traces within each of the five logs.

4.4. Results and Discussion 91

TABLE 4.11: Results obtained for BPIC 2015 using PGraphDD-QM

Windows | F-score Drift Actual | Correct
Detected? | Drift? | Detection?
0,1 0.92 No No Yes
1,2 0.87 Yes Yes Yes
23 088 | Yes o TNo
3,5 0.89 Yes Yes Yes
45 090 | No No e
5,6 0.21 Yes Yes Yes
6,7 0.84 Yes No No
7,8 0.67 Yes Yes Yes

4.4.4 Online Drift Detection: PGraphDD-SS
Loan Application Process

In the first experiment for the Loan Application Process dataset, PGraphDD-SS achieved
an average accuracy score of 98% over 16 out of 17 change patterns in the first exper-
iment. However, over the remaining ‘ior” change pattern, PGraphDD-SS achieved a
low average accuracy score of 58%, which can be explained by the composite nature

of this change pattern, where simple change patterns are nested within each other.
Such a build means that there is a point in time when a new behaviour resembles an
old behaviour from a previous time, which is challenging for the method to handle,

as indicated by the four false negatives made by the LSTM model for each of the log
sizes.

Table 4.12 lists similarity scores achieved by PGraphDD-SS over each pair of
windows slid across the ‘cd” log of sizes 2,500, 5,000, 7,500 and 10,000 as an exam-
ple to explain how the decision on whether a drift has occurred or not is derived.
Similarity values above the set thresholds indicate drift absence. On the contrary,
a drop in values below the thresholds indicates the presence of drift. Considering
our knowledge of the event log, we can confirm whether the drift occurred or not
in reality. The Yes/No answers in the 'Drift detected?” column in the table indicate
whether the methods detected a drift or not, respectively. The Yes/No answers in
the "Actual drift?” column indicates whether the drift has actually occurred or not, re-
spectively. The Yes/No answers in the 'Correct detection?’ column indicate whether
PGraphDD-SS detected the drift correctly or not. It can be observed that the deci-
sions reported in the "Detected drift?” column of the table are confirmed as accurate
detections in the 'Correct detection?’ column. This means that PGraphDD-SS could
detect all nine drifts for the ‘cd” logs of all sizes. It can be observed from the table that
high similarity values were returned for each window pair containing traces gener-
ated by the same process model and low values for each window pair containing
traces generated by different process models.

BPIC 2015

Table 4.13 reports the results achieved by PGraphDD-SS over the BPIC 2015 dataset.
It can be noticed from the table that significantly lower similarity scores were achieved
across all window pairs of the BPIC 2015 dataset compared to the loan application
process dataset, which can again be explained by the much more complex nature of
the BPIC 2015 logs and the higher variability across traces within each log compared

92 Chapter 4. Concept Drift Detection

TABLE 4.12: Results across all log sizes for the “cd” change pattern of
the Loan Application Process dataset using PGraphDD-SS

. Drift Actual | Correct
Windows | ¢d-2500 | ¢d-5000 | ¢d-7500 | cd-10000 Detected? | Drift? | Detection?
0,1 1.00 1.00 0.93 1.00 No No Yes
1,2 0.86 0.86 0.86 0.86 Yes Yes Yes
2,3 1.00 1.00 1.00 1.00 No No Yes
3,4 0.86 0.86 0.86 0.86 Yes Yes Yes
4,5 1.00 1.00 1.00 1.00 No No Yes
5,6 0.86 0.86 0.86 0.86 Yes Yes Yes
6,7 1.00 1.00 1.00 1.00 No No Yes
7,8 0.86 0.86 0.86 0.93 Yes Yes Yes
8,9 1.00 0.93 1.00 0.93 No No Yes
9,10 0.86 0.93 0.86 0.86 Yes Yes Yes
10,11 1.00 1.00 1.00 1.00 No No Yes
11,12 0.86 0.86 0.86 0.86 Yes Yes Yes
12,13 1.00 1.00 1.00 1.00 No No Yes
13,14 0.86 0.86 0.86 0.86 Yes Yes Yes
14,15 1.00 1.00 1.00 1.00 No No Yes
15,16 0.86 0.86 0.86 0.86 Yes Yes Yes
16,17 1.00 1.00 1.00 1.00 No No Yes
17,18 0.86 0.86 0.86 0.86 Yes Yes Yes
18,19 1.00 1.00 1.00 1.00 No No Yes
19,0 0.86 0.92 0.86 0.86 Yes Yes Yes

TABLE 4.13: Results obtained for BPIC 2015 using PGraphDD-55

Windows | Similarity score Drift Actual | Correct
Detected? | Drift? | Detection?
0,1 0.31 No No Yes
1,2 0.27 Yes Yes Yes
2,3 0.36 No No Yes
3,5 0.15 Yes Yes Yes
4,5 0.32 No No Yes
5,6 0.30 No Yes No
6,7 0.39 No No Yes
7,8 0.24 Yes Yes Yes

4.4. Results and Discussion 93

to the Loan Application Process logs. Three drifts were detected correctly, while one
was missed, resulting in an accuracy score of 75%.

Further analysis of the results revealed that PGraphDD-SS is more stable and ac-
curate on average than PGraphDD-QM (Figure 4.7). At the same time, it should be
noted that PGraphDD-SS requires training two LSTM models, whereas PGraphDD-
QM requires training only one. Hence, PGraphDD-QM can be recommended for
resource-constrained environments, while PGraphDD-SS should be used when achiev-
ing accurate and stable results is more critical than efficiency.

1.0

0.9

Accuracy
o
2]

IS
9

0.6
¢

PGraphDD-QM PGraphDD-SS
Methods

FIGURE 4.7: Distribution of accuracy scores achieved by PGraphDD-
SS and PGraphDD-QM across all change patterns and log sizes of the
Loan Application Process dataset

The results obtained for BPIC 2015 indicate that both PGraphDD-QM and PGraphDD-
SS can perform well regardless of the complexity and peculiarities of logs, but re-
quire setting F-score and similarity threshold values on a case-by-case basis. It is
important to note that the thresholds can automatically be set for each case based on
the results obtained over two known covering traces generated by the same process
model.

Comparison with State-of-the-art Methods

Table 4.14 lists accuracy scores for each change pattern averaged over the four event
log sizes achieved by the proposed PGraphDD-QM and PGraphDD-SS methods,
and the existing approaches reported in (Maaradji et al., 2017; Seeliger, Nolle, and
Miihlh&duser, 2017; Sousa et al., 2021). The highest accuracy values for each change
pattern across all compared methods are highlighted in bold.

PGraphDD-QM detected drifts with high accuracy between 90% and 100% in
12 out of 17 change patterns, while PGraphDD-SS detected them in 16 out of 17
change patterns (Table 4.14). PGraphDD-QM outperformed state-of-the-art meth-
ods in some change patterns such as ‘cd’, “ct’, and ‘rio’. However, it did not perform
on par with the other methods in change pattern ‘ior’. PGraphDD-SS outperformed
PGraphDD-QM (Table 4.14) in change patterns ‘cb’, ‘em’, ‘lIp’, and ‘rio’. For exam-
ple, PGraphDD-QM could not find all the drifts in “cb” because it may have been
tricked by the appearance of both skippable and non-skippable fragments in the
detection window. However, according to PGraphDD-SS, these changes were cap-
tured in the adjacency matrices generated from the pair of graphs and thus could not
be missed in the similarity score calculation. Overall, the proposed methods match

94 Chapter 4. Concept Drift Detection

TABLE 4.14: Average accuracy achieved over the Loan Application
Process logs by the proposed and state-of-the-art methods

PGraphDD-QM | PGraphDD-SS | Maaradji et al. | Seeliger et al. | Gaspar et al.
cb | 0.65 0.92 0.92 0.97 0.76
cd | 1.00 0.97 0.88 0.95 0.90
cf | 098 1.00 0.98 0.98 0.98
cm | 0.65 0.92 1.00 0.97 0.91
cp | 1.00 1.00 1.00 0.98 1.00
ior | 0.65 0.58 1.00 0.96 -
iro | 1.00 1.00 1.00 0.94 -

Ip | 0.73 1.00 1.00 0.76 0.76
oir | 1.00 1.00 0.98 0.73 -
ori | 1.00 0.94 1.00 0.98 -

pl | 0.65 1.00 1.00 0.95 0.90
pm | 1.00 1.00 1.00 0.98 1.00
re | 1.00 1.00 1.00 0.90 0.72
rio | 0.95 1.00 0.98 0.97 -
roi | 1.00 0.92 1.00 1.00 -

rp | 1.00 1.00 0.96 0.97 0.98
sw | 1.00 1.00 1.00 1.00 1.00

the performance of state-of-the-art methods, while not requiring generating features
manually.

35

w
o

Mean Delay
N
w

20

2,500 5,000 7,500 10,000

Log Size

FIGURE 4.8: Distribution of mean delay scores achieved by
PGraphDD-QM per change pattern for each of the four log sizes of
the Loan Application Process dataset

4.4. Results and Discussion 95

32.5 .

30.0

N
=
]

IN)
o
o

20.0

Mean Delay
N
N
w

-
=
&

=
Ll
o
-

= 4

125
2,500 5,000 7,500 10,000
Log Size
FIGURE 4.9: Distribution of mean delay scores achieved by
PGraphDD-SS per change pattern for each of the four log sizes of the
Loan Application Process dataset
50
¢

40
>
@
o
a
c 30
@
[]
=

*
20 E
*
10
PGraphDD-SS Maaradiji et al. Seeliger et al.
Method

FIGURE 4.10: Distribution of mean delay scores per change pat-
tern across all log sizes of the Loan Application Process dataset:
PGraphDD-QM and PGraphDD-SS versus Maaradji et al.(Maaradji
etal., 2017) and Seeliger et al. (Seeliger, Nolle, and Miihlhduser, 2017)

For a fair comparison with Maaradji et al.(Maaradji et al., 2017) and Seeliger
et al. (Seeliger, Nolle, and Miihlhduser, 2017), a fixed window size of 100 traces
was used for all log sizes in the second experiment that evaluated the delay of the
proposed methods in detecting drifts. Figures 4.8 and 4.9 show the mean delay per
change pattern for each of the four log sizes for PGraphDD-QM and PGraphDD-
SS, respectively. It can be noticed from the figures that PGraphDD-QM performs
better on reasonably small log sizes (5,000), whereas PGraphDD-SS performs better

96 Chapter 4. Concept Drift Detection

on larger log sizes (7,500 and 10,000). The performance of both methods on very
small log sizes (2,500) is not stable.

Figure 4.10 compares the mean delays per change pattern across the four log
sizes achieved by PGraphDD-QM and PGraphDD-SS with those achieved by the
methods reported by Maaradji et al. (Maaradji et al., 2017) and Seeliger et al. (Seel-
iger, Nolle, and Miihlhduser, 2017). It can be observed from the figure that both
PGraphDD-QM and PGraphDD-SS outperform the state-of-the-art methods, with
PGraphDD-SS achieving the most stable results and the shortest drift detection de-
lays compared to the other three methods.

TABLE 4.15: Mean delay per change pattern of the Loan Application
Process dataset compared to Maaradji et al. (Maaradji et al., 2017) and
Seeliger et al. (Seeliger, Nolle, and Miihlhduser, 2017)

4 Mean delay, d

PGraphDD-QM | PGraphDD-SS | Maaradji et al. (ADWIN) | Seeliger et al.
cb | 255 18.1 54.7 18.9
cd | 277 17.8 324 28.7
cf | 254 16.7 19.1 34.6
cm | 21.0 17.9 40.9 19.2
cp | 244 16.6 18.7 17.6
ior | 21.0 17.5 16.7 13.0
iro | 19.7 16.5 43.8 27.2
Ip | 193 18.8 46.3 48.0
oir | 19.5 17.1 43.7 28.01
ori | 20.5 17.8 12.9 14.3
pl | 325 19.1 36.5 26.3
pm | 20.9 171 12.9 24.8
re | 25.0 14.6 38.1 33.0
rio | 22.2 17.9 251 20.8
roi | 21.9 21.8 19.8 7.3
rp | 255 15.6 16.9 12.7
sw | 25.7 15.9 20.8 29.6

Table 4.15 lists mean delays for each change pattern averaged over the four dif-
ferent event log sizes for PGraphDD-QM and PGraphDD-SS, as well as the state-of-
the-art methods reported in (Maaradji et al., 2017; Seeliger, Nolle, and Miihlhduser,
2017; Sousa et al., 2021). The lowest mean delay values for each change pattern are
highlighted in bold. It can be seen from the table that PGraphDD-SS performs better
than the other methods in 12 out of 17 logs (cb, cd, cf, cm, cp, iro, Ip, oir, p], re, rio,
SW).

One study was found to have carried out experiments using the BPIC 2015 logs
(Hassani, 2019). However, the metrics employed in that study are not comparable
to those reported in this and other studies on drift detection in PM. In particular,
the study presented in (Hassani, 2019) used measures such as dependency, edge,
and routing distances to identify drifts. The authors reported that of the four drifts
resulting from concatenation of the five BPIC 2015 logs, the first three drifts were
detected, but not the fourth when using the distance measure. The edge distance
helped detected all four drifts but with low confidence for the first and last drifts.
Finally, the routing distance also allowed to detect all drifts but with low confidence
for the first drift. As discussed in Section 4.4.3, PGraphDD-QM detected three of
the four drifts, while PGraphDD-SS detected all four drifts. However, the overall

4.5. Summary 97

performance of the two methods was affected by some false positives reported over
pairs of windows taken from the same logs (something not explored in (Hassani,
2019)). At the same time, it is not possible to provide a full evaluation of false posi-
tives due to the absence of the ground truth about the individual municipality logs
(i.e., there could be changes in the business processes of each municipality over time
constituting drifts that are not formally recognised).

4.5 Summary

Modern-day business processes are prone to changes over time as a result of chang-
ing circumstances and conditions. To proactively respond to these changes, also
known as concept drifts, businesses require mechanisms to detect and analyse them.
This chapter introduced two novel methods (PGraphDD-QM and PGraphDD-SS)
for detecting sudden concept drifts in dynamic business processes in offline and on-
line settings. The results of the experiments presented in the chapter demonstrated
that the methods perform well in both settings. Furthermore, in the online setting,
the methods perform on par with state-of-the-art methods, achieving similar accu-
racy in detecting drifts, with shorter delays than the other methods, while offering
the following advantages over existing solutions.

First, unlike existing methods based on the statistical analysis of graphs repre-
senting business processes, the proposed methods employ DL, which does not re-
quire the user to construct features. Second, the proposed methods employ graphs
that explain the decision-making process of the DL models predicting the next ac-
tivities in the sequence of business processes, thus allowing the user to verify what
has changed when a drift is detected. Finally, the relative insensitivity of the LSTM
model to the length of the interval may have contributed to the detection of drifts
with minimal delay.

The next chapter (Chapter 5) presents a new method called PGRaphDL (where
"P’ stands for process, ‘DL’ for deep learning) for localising sudden concept drifts in
dynamic business processes. PGRaphDL is built based on the methods presented in
Chapters 3 and 4 to demonstrate an additional benefit of using the decision-making
ability of the LSTM model when predicting the next activities in business processes
to confirm localised drifts.

99

Chapter 5

Drift Localisation

Previous chapter (Chapter 4) demonstrated the successful ability of the two pro-
posed methods, PGraphDD-QM and PGraphDD-SS, to detect drifts in business pro-
cesses. Another objective in handling concept drifts is drift localisation. The drift
localisation task is concerned with detailing the drift subject, i.e. identifying the
parts of control-flow changes that relate to a concept drift. Early detection and local-
isation of drifts can minimise the gap between intended processes and their actual
execution. It can make monitoring of business processes easy and keeps the results
of process analyses up-to-date. Unlike the goal of the drift detection task, which
is clear and universal over related work, no common definition is established re-
garding the output of a drift localisation approach. State-of-the-art drift localisation
methods generally compare the process behaviour before and after the drift to report
differences.

This chapter introduces a new method called PGraphDL (where 'P” stands for
process, 'DL for deep learning) for localising sudden concept drifts in dynamic busi-
ness processes. Unlike existing methods that find statistically significant changes in
process behaviour and output natural language statements to capture their differ-
ences, the proposed method is based on DL and extends the methods introduced in
Chapters 3 and 4 to demonstrate an additional benefit of using the decision-making
ability of the LSTM model when predicting the next events in a business process to
confirm localised drifts.

The chapter is structured as follows. Section 5.1 details the proposed approach.
Section 5.3 describes the experiments and discusses the results. Finally, Section 5.4
summarises the chapter. Part of the work described in this chapter has been pub-
lished in (Hanga, Kovalchuk, and Gaber, 2022)).

5.1 Change Localisation

Detecting a drift without localising it does not provide a complete picture of the
change that occurred in a process. Change localisation aims to identify the entities
involved in the drift and unravel what has changed in the behaviour of a process.
While drift detection alerts organisations that a process has changed, drift localisa-
tion sheds more light on where the process has changed.

Definition 1: Concept drift localisation. Let G be a process graph and let Gy, Gy, ..

be n + 1 different process models and Top < T1 <,..,< T, be n + 1 time periods.
G(T;) = G; represents the graph used in T;. G(Ty) = Gy is the initial graph. When
the time period T;(0 < i < n) arrives, the current graph will change into G; in-
stantly, and the traces are still recorded in the same event log. Such a phenomenon
is referred to as concept drift, with Ty, ..., T;, being called change points. Drift local-
isation identifies the entities that have changed when a drift has occurred. Figure
4.1 illustrates a concept drift that occurred at the change point T;. In this case, the

/G‘Vl

100 Chapter 5. Drift Localisation

location of the drift is around activities ‘B’ and 'C’: these activities are executed in
parallel before the drift and sequentially after the drift.

Process Model /\ Process Model
before drift after drift

bl @

To T4 Time (t)

>
o

FIGURE 5.1: Concept of drift localisation

Localisation approaches commonly require an additional data structure, thus in-
creasing complexity. As such, the majority of state-of-the-art approaches focus solely
on drift detection. This chapter proposes to use the directly-follows process graphs
constructed based on two different (reference and detection) windows as described
in Section 4.1.2 to identify the locations of process drifts. The proposed change local-
isation method, PGraphDL, allows one to gather details about the structural change
and detected modifications when comparing two process graphs.

5.2 Proposed method: PGraphDL

This section presents a new method called PGraphDL (where P’ stands for process,
DL’ for deep learning) for localising sudden concept drifts in dynamic business pro-
cesses. The method is based on training a uni-directional LSTM model to predict
next activities in business processes and to generate DFGs based on the predictions
of the model as described in Sections 4.1.1 and 4.1.2, respectively.

Algorithm 7 lists the pseudo-code of PGraphDL, which includes the following
steps:

1. Take two process graphs GR and GP constructed based on two different win-
dows (i.e. reference and detection) as input. The graphs can be generated
using Algorithm 4 proposed in Chapter 4.

2. Select any path of interest from the base process model (i.e. G}) by specifying
an index (line 9).

3. Compute the positional score for each candidate path in GP by searching the
best matching path in GP for each possible path in GR (line 10). The positional
score (positional_score) is calculated as the number of activities in GR located
in the same position in GP divided by the length of the selected path in GX.

4. A positional score of 1 indicates that the paths in two graphs are identical, i.e.,
there is no drift (lines 11 — 12).

5.2. Proposed method: PGraphDL 101

5. A positional drift is declared when each activity in GP is not found in the same

position as the activity in question in GR (lines 13 — 14).

6. Construct a process graph of each path and highlight the drift positions with

dotted circles to visualise the drifts (line 16).

7. Display the graph of the selected path also to clarify the explanation (line 15).

8. Repeat the process for each new path of interest selected from the base process

model.

Algorithm 7 PGraphDL: concept drift localisation

Require: Two process graphs: GR and GP {i.e two graphs constructed based on

_
<

11:
12:
13:
14:
15:
16:
17:

reference and detection window}, Threshold: ¢
¢ < 0 {all transitions inclusive}
positional_score <— 0
let GR <« {p1,p2,....pn} {pathsin Gy}
let GP < {p1,p2, -, pm} {pathsin GR}
let A, be activities in a path in GR
let A, be activities in a path in GP
let Pgr denote a path graph in G}
let P;o denote a path graph in GP
select path i from G; {compute the positional score for each candidate path in
GP)
positional _score = no_of_activities_in(gR) /the_length_of_the_selected_path_in(QR)
{the candidate path in GP with the max positional score is selected as the best
matching path}
if positional_score = 1 then
no drift detected!
else if A,, € GR is not in the same positionas A, € G D then
declare positional drift!
return: Pgr
return: Pgp {with drift_position highlighted in dotted circles}
end if

Detected drift

Localise

Drift

Before drift After drift

FIGURE 5.2: Two process graphs constructed based on two different
windows: reference and detection

102 Chapter 5. Drift Localisation

According to Algorithm 5, two process graphs (graph A and graph B) constructed
based on two different windows (reference and detection), respectively, are taken as
input (Figure 5.2). A user selects any path of interest from the base process model by
specifying an index. The best matching path is searched in graph B for each possible
path in graph A by computing the positional score for each candidate path in graph
B. The positional score is calculated as the number of activities in graph A located
in the same position in graph B divided by the length of the selected path in graph
A. For example, if there are five activities in the selected path of graph A and four
matching activities in graph B, then the positional score is 4/5. The candidate path
in graph B with the maximum positional score is selected as the best matching path
in graph A. A maximum positional score of 1 indicates that the paths in two graphs
are identical (i.e. there is no drift). At the same time, each activity in graph B that
is not found in the same position as the activity in question in graph A is declared
as a positional drift. For example, if ‘b’ is an activity on the selected path of graph
A with a positional index of “1’, but there is an activity ‘k” in the positional index
1" of graph B, then ‘k’ is declared as positional drift. In the experiments outlined in
the next section, the probability threshold was set to 0 when identifying candidate
paths (i.e. all transitions in the graph inclusive). The process graph of each path is
constructed with drift positions highlighted in dotted circles to visualise drifts. The
graph of the selected path is also displayed to clarify the explanation (Figure 5.3).

o
=2
o
A
[=}
(1]

Path A
(selected path)

© @

g I o
Path B dr.i'l:'t
(candidate path) position

FIGURE 5.3: Change localisation according to PGraphDL: Path A is
the selected path from graph A, while Path B is the candidate path
from graph B with drift position highlighted

5.3 Experiments

All stages of PGraphDL were implemented as a set of Python scripts using Python
3.6. LSTM models were built using the Keras (Gulli and Pal, 2017) and Tensorflow
(Abadi et al., 2016) libraries. The process graphs were generated using the Graphviz
library (Ellson et al., 2001). The experiments were carried out using the Google Colab
free Tesla K80 GPU.

The same event logs used in the experiments presented in Chapters 4 and 5 were
used to evaluate the performance of PGraphDL: Loan Application Process (Maaradji
et al., 2015), BPIC 2015 (Dutch municipality) (Dongen, 2015) and Helpdesk (Polato,
2020). To localise the drifts, the graphs generated over two different windows were
compared visually and analytically. The accuracy of identified changes for the Loan

5.3. Experiments 103

Application Process and Helpdesk datasets can be validated using knowledge about
the changes injected into the event logs.

5.3.1 Localising Drifts in Loan Application Process Logs

Figure 5.4 shows two DFGs constructed for a reference window before a drift and
a detection window after the drift, respectively, for the Loan Application Process
dataset. In particular, the reference window graph (Figure 5.4(a)) represents the base
BPMN model of the loan application process (Section 4.3.2, Figure 4.4), whereas
the detection window graph (Figure 5.4(b)) represents a modified version of the
base model after introducing the ‘sw’ change pattern. It can be observed that before
the drift (Figure 5.4(a)), activities 'Prepare acceptance pack’ and 'Check if home
insurance quote is requested” occurred before activity "Verify repayment agreement’.
However, after the drift (Figure 5.4(b)), activities 'Prepare acceptance pack’ and
"Check if home insurance quote is requested” swapped places with activity "Verify
repayment agreement’.

Check_application_form_completeness

Check_application_form_completeness

N

Return_application_back_to_applicant | |Appraxse,pruper[}‘ |

N

100.0

Receive_updated_application

9.0

Asses_elegibility

A5.0 \57.0

[reecappicaon | [verty _eprsmenc sgreemen

8.0 f59.0 38.0

| Check_if_home_insurance_quote_is_requested |

7

0
| Send_home_insurance_quote | | Send_acceptance_pack |

| Send_home_insurance_quote | | Send_acceptance_pack

Loan_application_rejected | 99.0 99.0

Loan_application_rejected

| Check_if_home_insurance_quote_is_requested |

43.0 7.0 00.0 9.0 /4,0 §4.0

e I

[conca appicion | [prove sppiaion |

T R

Loan_application_canceled Lom\,ﬂpphmnon,appmcd|

| Loan_application_canceled |

Loan_application_approved |

FIGURE 5.4: Directly-follows process graphs constructed using the
'sw’ change pattern log from the Loan Application Process dataset:
(a) reference window; (b) detection window

104 Chapter 5. Drift Localisation

Table 5.1 lists the reasons extracted from the pair of graphs generated for some
of the change patterns using PGraphDL. A reason is marked as correct if the modi-
fication to the event log corresponds to the activities identified as the reasons for the
process drift. The correct reason for the process drift from the graphs is extracted in
all cases.

TABLE 5.1: Reasons for the drifts extracted from the graphs gener-
ated using PGraphDL for each change pattern of the loan application
process dataset

Change Reason for drift extracted from graphs Reason
pattern correct?
cb ‘Prepare acceptance pack’ and ‘Check application | Correct

form completeness’ are non-skippable before the drift
but skippable after drift.

cd ‘Check credit history” and “Assess loan risk” are se- | Correct
quential before the drift but happen at the same time
after drift.

cf ‘Send home insurance quote” and ‘send acceptance | Correct
pack’ are conditional before the drift but sequential
after drift.

ori ‘Added activity’ is added in-between Send home in- | Correct
surance quote” and ‘send acceptance pack” which are
made sequential and loopable after the drift.

rp ‘Verify repayment agreement’ is always in place be- | Correct
fore the drift but replaced with ‘Replaced activity” af-
ter the drift.

sw ‘Prepare acceptance pack” and ‘Check if home insur- | Correct

ance quote is requested” swapped place with ‘Verify
repayment agreement’ after the drift.

To evaluate PGraphDL, a path selected from the graph representing the base loan
application process was compared with the paths from the graphs representing the
modified versions of the base process. After selecting the candidate path for each
graph based on the positional scores, drift positions were visualised as described in
Section 5.1.

Figure 5.5 shows an example of localising drifts in the "sw’ log, where two frag-
ments are swapped in some specific parts of the log. It can be seen from the figure
that before the drift (path A), activity "Check if home insurance quote is requested” is
executed after activity 'Prepare acceptance pack’, whereas after the drift (path B), ac-
tivities "Prepare acceptance pack” and ‘Check if home insurance quote is requested’
swapped places with activities "Verify repayment agreement” and ‘Send home insur-
ance quote’. Figure 5.6 considers the 're’ log, where a fragment is added or removed
in some specific parts of the log. It can be noticed from the figure that before the drift
(path A), activity "Appraise property’ is followed by activity "Assess eligibility’, then
by activity 'Reject application’, whereas after the drift (path B), activity "Assess eligi-
bility” is removed, while activity ‘Reject application” happens after activity "Appraise
property’. Finally, Figure 5.7 considers the 'rp” log with a substituted activity. It can
be noticed from the figure that before the drift (path A), activity "Verify repayment
agreement’ is executed after activity ‘Send home insurance quote’, whereas after the
drift (path B), the activity "Verify repayment agreement’ is substituted with activity
"Replaced activity’.

5.3. Experiments 105

Path A
|—+ Loan_application_received HCheck_apphcanun_furm_cumpleh:ness H Appraise_property Hched(_ued.ll_h.isu:r}' I
p
—* Asses_loan_risk H Asses_elegibility H Prepare_acceptance_pack H Check_if_home_insurance_quote_is_requested H Send_acceptance_pack }
—.} Verify_repayment_agreement H Approve_application I—.I Loan_application_approved H Finish_process
N—r

Path B

:)—4 Loan_application_received H Check_application_form_completeness H Appraise_property I—.l Check_credit_history |-
N

—4 Asses_loan_nsk H Asses_slegibibty - Venfy_repayment_agresment - - Send_home_insurance_guote ; > Prepare_acceptance_pack

N

: AR
- Check_if home_insurance_guote_is_requested —-I Approve_application I—-l Loan_application_approved I—-l Finish_process I—-‘-.'

FIGURE 5.5: Dirift localisation in the Loan Application Process logs:
Path A —reference path from reference window of 'sw’ process graph;
Path B — candidate path from detection window of "sw’ process graph

)—4 Loan_application_received H Check_application_form_completeness H Retumn_application_back_to_applicant H Receive_npdated_application }

N

7z N
—4 Check_credit_history |—.| Asses_loan_risk H Appraise_property H Asses_elegibility H Reject_application H Loan_application_rejected H Finish_process H@:
\ /4

e

Path B

)

@"_4 Loan_application_received Hrhec)(,ap[:hraunn,mnmcn'npls(eness |—-| Retumn_application_back_to_applicant H Receive_npdated_applicaion I-
N

—_

—.IChack_:.'ed.n_hxswlj!|—.|Asses_lo:n_ns.: HAppmse_prcpeny' » Reject_application -~ Loan_application_rejected » Finish_process »(End)

FIGURE 5.6: Dirift localisation in the Loan Application Process logs:
Path A — reference path from reference window of "re’ process graph;
Path B — candidate path from detection window of ‘re” process graph

106 Chapter 5. Drift Localisation

Path A

AT
\::/5139 '—4 Loan_application_received H Check_application_form_completeness H Retum_application_back_to_applicant H Receive_updated_application |-

—.}Appmﬂ,pmpmy ch.eck,mdiu.inmy H Asses_loan_risk H.‘\gses,aegihm:}— H Prepare_acceptance_pack H Check_if_home_insurance_quote_is_requested I-

AT
_.l Send_home_insurance_quote I_.l Verify_repayment_agreement |_.| Approve_application H Loan_application_approved H Finish_process |._q‘</sna)
N

7N
fj\SmD—* Loan_application_received H Check_application_form_completeness H Retumn_application_back_to_applicant H Receive_updated_application I-
N

—-} Appraise_property |—-| Check_credit_history H Asses_loan_risk H Asses_elegibility H Prepare_acceptance_pack I—-I Check_if_home_insurance_quote_is_requested |-

SSRGS I ooy M romgmgene) BN Eovepes |_...
. N /

FIGURE 5.7: Dirift localisation in the Loan Application Process logs:
Path A —reference path from reference window of 'rp’ process graph;
Path B — candidate path from detection window of 'rp’ process graph

5.3.2 Localising Drifts in Helpdesk Log

A selected path in the DFG generated using the original Helpdesk log was com-
pared with the paths in the DFGs generated using the four modified versions of
the Helpdesk log. After selecting the candidate path for each graph based on the
positional scores, the drift positions were visualised as described in Section 5.1.
Figure 5.8 illustrates an example of localising drifts in the Helpdesk_1 log, where
activity was added compared to the original Helpdesk log. It can be noticed from
the figure that before the drift (path A), activities "Assign seriousness’” and "Take in
charge ticket’ were sequential. After the drift (path B), the activity "Emergency’ is
executed between the two activities. The introduction of this new activity to the se-
quence has pushed forward the occurrence of "Take in charge ticket’, "Resolve ticket’
and "Closed’, which is why these activities are also circled in dotted lines in the fig-
ure. It can thus be concluded that the reason for the drift observed in the new time
period (represented by the modified log) compared to the old one (represented by
the original log) is the addition of an activity to the process.

Figure 5.9 shows an example of the localisation of drifts in the Helpdesk_2 log,
where activity was removed compared to the original Helpdesk log. It can be no-
ticed from the figure that before the drift (path A), activity "Duplicate” is executed
after activity "Verified’, whereas after the drift (path B), activity "Duplicate” does not
appear anymore; activity ‘Resolve ticket” is now executed after the activity "Verified'.
In Figure 5.10, which considers the Helpdesk_3 log with the changed flow, before the
drift (path A), activity "Wait’ is executed before activity 'Resolve ticket’, whereas af-
ter the drift (path B), activity 'Require upgrade” happens after activity "Wait” and
before activity ‘Resolve ticket’. In Figure 5.11, which considers the Helpdesk_4 log
incorporating different changes, before drift (path A), activities "Assign seriousness’,

5.3. Experiments 107

"Create SW anomaly’, "Take in charge ticket’, 'Require upgrade’, "Verified’, "Dupli-
cate’, 'Resolve ticket” and "Closed’ can be seen to happen sequentially. A significant
change can be noticed after the drift (path B), where a new activity "TEmergency’ is
introduced between activities "Assign seriousness” and ‘Create SW anomaly’, while
activity ‘Duplicate” does not appear anymore, and activity "Resolve ticket’ is instead
executed after activity "Verified’.

Assign seriousness (gt Take in charge ticket gt Resolve ticket [—pmt Closed

. L o SRR Y
» Emergency —m Take in charge ticket ~ ——m Resolve ticket - Closed :l

Path B

FIGURE 5.8: Path graphs depicting drift localisation: Path A — refer-
ence path from original Helpdesk log process graph; Path B — candi-
date path from Helpdesk_1 process graph

P

AT o
| sm)_>—+ Assign seriousness l—-l Creats SW anomaly |—>| Take i charze ticket H Require upgrade H VERIFIED |—p| DUPLICATE H Resolve ticket E.nvl
N N

s

Path A

|K§m\;—-| Assign seriousness |—-| Create SW anomaly H Take in charge ficket |—-| Requite upgrade |—-| VERIFIED |—> Resolve ticket ———# Closed | End)|
Ry N

7

Path B

FIGURE 5.9: Path graphs depicting drift localisation: Path A — refer-
ence path from original Helpdesk log process graph; Path B — candi-
date path from Helpdesk_2 process graph

108 Chapter 5. Drift Localisation

Assign seriousness H Take in charge ricket |—.| Wait H Resolve ticket |—.| Closed

Path A

End |

N
§ /‘

A : :
[Start)—4 Assign serfnlisness H Take in charge ticket Wit = Require upgrade —— ¢ Resolve ticket Closed
o : -‘

Path B

FIGURE 5.10: Path graphs depicting drift localisation: Path A — refer-
ence path from original Helpdesk log process graph; Path B — candi-
date path from Helpdesk_3 process graph

Y 7
| sm})»—% Assign senousness l—-l Crest= SW anomaly l—.l Take in charge ticket H Require upgrade H VERIFIED |—p| DUPLICATE H Resolve ticket Closed End ||
N 7 N /

a4

)

Path A

Path B

FIGURE 5.11: Path graphs depicting drift localisation: Path A — refer-
ence path from original Helpdesk log process graph; Path B — candi-
date path from Helpdesk_4 process graph

5.3.3 Localising Drifts in BPIC 2015 Logs

Two examples of drift localisation are presented for BPIC 2015. The drifts can be
easily localised in the same manner for the other pairs of the BPIC 2015 logs.

In Figure 5.12, one path from the graph generated using the BPIC2015_1 refer-
ence window is compared to the closest path detected by the proposed drift local-
isation method in the graph generated using the BPIC2015_2 reference window. It
can be seen from the figure that before the drift (path A), 46 activities were executed
sequentially. After the drift (path B), some of those activities were replaced, while
other new activities were introduced. For example, after the drift (path B), activi-
ties '01_HOOFD_015" and "01_HOOFD_030_2" in the reference graph were replaced
with activities "05_EIND_010" and "03_GBH_005" in the detection graph. It can also
be noticed that after the drift (path B), some activities such as '01_HOOFD_061" and
‘01_HOOFD_510_2" executed in path A happen sporadically.

5.3. Experiments 109

Path A

)
i Stat »—hl 0L_HOOED_010 l—llul HOOFD 01l |—-|u1 HOOFD_020 l—-lw HOUFD 015 HL'J. HOOED_030_2 l—llu.' DRZ_010 |—-IU4 BIT 005 '—-lw HOOFD_065_9 I-
N

-i-m_m»om_asc Hm_ﬂourn_mn_u Hm_Han_m Hm_ﬂmrn_am |—-| 1_HODFD_031_1 H HOOFD_480 l—-lm_ﬂoom_m_? Hm_mmrn_wnl.

.}{-s.mms_oos H{u_ﬂcom_mo |_.| 01_HOOFD_250_0 H 01_HOOFD_330 l_.l 03_AH [010 H 0L_HOOED_380 H-:I_Hmrn_aa-a |_.| LL_AH I 010 I.

HOOFD_480_1 H 01_HOOFD_250_2 H 01_HOOFD_480_4 H Di_HOOFD_375 '-.I 01_HOOFD_480_t= I-

_.} 13_CRD_010 '-.Im_nomrn_uo_n H 01_HOOFD_185 H

—4 OL_HOOFD_ 2501 H OL_HOQFD_500 H 01 _HOOFD_510.0 H 0L_HOOFD_491 H D1_HOQFD_510.4 H QL_HOOFD_310.1 H O1_HOOFD 4944 H 01_HOOFD_ 493 I-

—,l 01_HODFD_510_3 H'ﬂl_HDOFD_Sli '—pl 01_HODED_510._2 H 01_HOOFD_510_%a H 01_HOOFD_480_5 |—.| 11_HOOFD_480_5

Path B

'l—*l)l_l{ﬂOPD_l)lﬂHDIJIDGFD_DILHO]J‘!DOFD_OEI)I = 03_GBH_005 w 05_EIND_010 w16 LGSV 010 ~——w 01 HOOFD_015 -+ - 01_HOOFD_030_1

h-: 01_HOOFD_120_2 = 02_DRZ_010 > 04_BPT_00S » 0L HOOFD 0652 —»: OL_HOOFD_0E5_1 o DI_HOOFD_MOL -

= OI_HOOFD_110_% = O8_AWR5_005 - 01_HOOFD_1%6 = 01_HOOFD_200 = 01_HOOFD_195 = 01_HOOFD_?50_1

— 01_HOOFD_250_2 — 01_HOOFD_330 -—b 0S_AH_I 010 — 0l _HOOFD_380 — 01_HOOFD_430 — 11l _AH 1 010 *~

= 01_HOOFD_494_? - = 01_HOOFD_490_1 - 01_HOOFD_481 ——» 01_HOOFD_490_4

= D1I_HOOFD_480 ~——= OI_HOOFD_370

» 01_HOOFD_810 ~——a Dl_HODFD_500 = 16LGSD 010 = 0L HOOFD_ 455 -~ 0l_HOOFD 5101 =

= 01_HOOFD_450_5

- 01_HOOFD_510_3 - 01_HOOFD_ 515 - I-. 0L_HOOFD_S16

FIGURE 5.12: Dirift localisation: Path A — reference path from BPIC
2015 reference process graph; Path B — candidate path from BPIC 2015
detection process graph

110 Chapter 5. Drift Localisation

)—4 01_HOOFD_010 HUI_HUUI—D_ULI HOI_HUUI—'D_UIS H 02_DRZ_010 H 04_BPT_005 HUL_HUU}L}_U&S_U |—-

*ﬂliHOUFDJJQIJ |—.| 01_HOOFD_100_0 H 01_HOOFD_061 H 01_HOOFD_101 H 01_HOOFD_030_1 HOLHODFDJ}D; |—.

-}oa_-\wms_uoa HUB_A\\-BJE_UIO |—-| 01_HOOFD_330 |—-| D9_AH_L_010 l—-l 01_HOOFD_380 Hm_uuum_ua I—-l 11_AH_I_010 |—.

+H CRD_010 Hlll HOOFD_480 H(il HOOFD_490_2 HLJ\ HOOFD_491 Hil\ HOOFD_180 HIH HOOFD_375 HUI HOOFD_195 |—
—+017HDOFD749071 H 01_HOOFD_430_1a HOLHDDFDiiﬂJD H 01_HOOFD_510_0 H 01_HOOFD_519 H 01_HOOFD_510_3 |—.

4017HOO}'D7495 HOLJ{OOFDJIELJ HOLHOOF[LELS HDLHOOFDﬁElDﬁZa

N

Path A

Start)—4 01_HOOFD_010 HOLHOOFDJ‘!H |—> 01_HOOFD_020 -—u 03_GBH_005 —4 04_BPT_005 HOLHOOFDJ}EEJ I—h

0I_HOOED_030_1 — s OI_HOOFD_061 +—w O1_HOOFD_030_2 +—a OI_HOOFD_180 +—» 08_AWBAS 005

¥ OLHODFD 200 s 01 _HOOED 250 0 .—.Im,HDDFD,nD H 03_AH_I 010 |—.I 01_HOOFD_380 |—.Im,uom:n,un I—.I 11_AH_IL D10 |—|

+1;7[Rn,nmHm,ﬂnomgsoH-JJ,HDGFD,.QD,;I—- 01_HOOFD_110_0 — 01_HODFD_I5 —— 0I_HOOFD_110_1 — 0l_HOOFD 2502 —

-+ 0l_HOOFD_491 >—>‘ 01_HOOFD 300 —m 01_HOOFD_332_0 01_HOOF] 0 - 0I_HOOFD_495 01_HOOFD_510_4 —_—

-Im_Hann_sl; an_mmm_sm_:a l—— 01_HOOFD_430_3 —-I-nl_mom_am_: Hnl_HDnFD_Rlﬂ |—-|01_BB_"5 HG]_HOOFD_-.

401 HOOFD_&14 HD] BB_77

Path B

FIGURE 5.13: Path graphs depicting drift localisation: Path A — ref-
erence path from BPIC2015_1 process graph; Path B — candidate path
from BPIC2015_2 process graph

5.4. Summary 111

In Figure 5.13, one path from the process graph of BPIC15_1 is compared to the
closest path from the process graph of BPIC15_2 as detected by the proposed drift lo-
calisation method. It can be seen from the figure that before the drift (path A), 36 ac-
tivities were executed sequentially, whereas after the drift (path B), some of those ac-
tivities were replaced, while other new activities were introduced. For example, after
the drift (path B), activities '01_HOOFD_010" and "02_DRZ_010" were replaced by ac-
tivities ‘01_HOOFD_020" and "03_GBH_005". Furthermore, before the drift (path A),
the process execution ends after activity '01_HOOFD_510_2a’, whereas seven new
activities were executed after drift (path B) '01_HOOFD_510_2a’. The drifts can be
easily localised similarly to the other pairs of the BPIC2015 logs.

54 Summary

This chapter introduced a new method, called PGraphDL, for localising process
drifts from both event streams and event logs. According to the method, two process
graphs constructed based on two different windows (reference and detection) are
taken as input. A user selects any path of interest from the reference process model
by specifying an index. The best matching path is searched in the detection graph
for each possible path in the reference graph by computing the positional score for
each candidate path in the detection graph. The method can help visually and ana-
lytically localise the parts of a process that have changed from graphs representing
two different periods of that process.

113

Chapter 6

Conclusion and Future Directions

This chapter summarises the contributions of the thesis and suggests future direc-
tions for the current work. The thesis studies the impact of combining DL and
graph-based methods on solving some PM tasks. The objectives identified in the
thesis are mainly concerned with (i) building a high-performing LSTM model for
predicting business process activity sequences from event logs; (ii) explaining the
decision-making process of the LSTM model when predicting the next activities in
business processes via DFGs; (iii) detecting and localising sudden concept drift in
business processes.

6.1 Summary

PM emerged from BPM to help organisations discover, assess, and improve work-
flows using processes recorded in event logs. It is used to automatically extract
process models from event logs to analyse how processes are being implemented
in reality, thereby providing the avenue for monitoring and improvement. Several
approaches to PM have been proposed in the literature. In particular, probabilistic-
based approaches, frequency-based heuristics, genetic-based heuristics, theory of
regions, and hybrid methods have been used for process discovery (Augusto et al.,
2019). The applicability and effectiveness of these approaches depend on event log
features and the structure of the processes. When applied to real-life event logs, the
majority of existing process discovery methods demonstrate limitations such as pro-
ducing broad and spaghetti-like models or models with poor fitness and precision.
In other words, these methods cannot discover process models that would express
the observed behaviour in the best possible way. It has not proven easy to achieve
a compromise between the four process discovery quality metrics; fitness, precision,
generalisation and complexity (Augusto et al., 2019).

DL approaches have recently gained popularity in the PM field. In particular,
several RNN architectures such as LSTM have been applied to predict next activities
in business processes, time of occurrence and completion, and resources that trigger
the activities. LSTM can retain information over a long period of time; as such, it
can learn long-term dependencies in a sequence, preventing prior information from
being lost (Hochreiter and Schmidhuber, 1997). This quality enables an LSTM model
to consider all process instances when making a prediction. Compared to the earlier
PM techniques, LSTM-based methods have shown better performance in terms of
prediction accuracy and generalising ability.

Noise, duplicate tasks, and undetected or missing tasks often found in real-life
event logs are challenging issues for PM algorithms to address. Thus, algorithm per-
formance is highly dependent on event log quality and associated processes (Pérez-
Alfonso et al., 2015). Because of that, PM methods applied to unstructured logs
discover process models that are often purposely unsound representations of the

114 Chapter 6. Conclusion and Future Directions

actual processes, thus compromising the quality criteria. While process models are
visually explainable, their implausibility makes them less reliable for making pre-
dictions (Evermann, Rehse, and Fettke, 2017). As a result, there are debates in the
PM community on which methods to use. Recent studies such as (Evermann, Rehse,
and Fettke, 2017) and (Tax, Teinemaa, and Zelst, 2020) consider the DL’s ability to
generalise and yield high prediction accuracy more imperative than generating visu-
ally explainable process models represented using graphical notation such as Petri-
nets, the BPMN language, Event-driven Process Chains or UML activity diagrams
(Tello-Leal et al., 2018). Unlike these studies, we argue that both predictive accuracy
and explainability are crucial in the PM field. In existing models generated using
DL-based methods, the process structures are implicitly rejected, while no visually
explainable process graphs are produced, which limits the value of such models.

Business processes are also prone to constant changes, motivated by numerous
internal and external factors. The changes can be due to seasonal trends, constantly
evolving market conditions, and customer preferences, and the introduction of new
rules and regulations. Changes push organisations to adapt and update their busi-
ness processes constantly. To proactively respond to these changes, also known as
concept drifts, businesses require mechanisms to detect and analyse them. In this
regard, several techniques have been proposed in the literature to detect process
drifts, i.e. statistically significant changes in the process behaviour. However, the
techniques that are being used currently have some limitations. First, they do not
work with event streams and, as such, cannot detect inter-trace drifts or detect them
with a long delay. Although detecting drifts in an offline setting from historical
event logs is equally important for making investigations, organisations can fully
utilise the benefits of drift detection in an online setting (i.e. over streams of events).
This can enable process stakeholders to take timely corrective measures and avoid
or reduce the impact of unintended consequences. Furthermore, existing techniques
do not perform well with highly variable business processes, e.g. hospital processes,
whose logs feature high trace variability. Finally, they only focus on detecting drifts
in event logs without providing any visual solution for localising process changes
underpinning the drifts.

This thesis fulfils the following four objectives:

1. Build an accurate LSTM model for predicting business process activity se-
quences from event logs;

2. Construct a DFG explaining the decision-making process of the LSTM model
when predicting next activities in business processes;

3. Detect and localise concept drift in business processes;

4. Validate the research using real-life event logs.

To address the first and second objectives, Chapter 3 presented a new approach
to PM that combines the benefits of widely used graph-based methods for process
discovery and DL methods for predicting sequences. The proposed approach con-
sists of two stages: building an accurate LSTM model for predicting business pro-
cess activity sequences based on event logs and generating a DFG explaining the
decision-making process of the LSTM model when predicting the next activities in
business processes. According to the approach, an LSTM model is first trained on
an event log. This model is then employed to find the probabilities for each activity
present in the log to appear in the business process next. Finally, these probabilities

6.1. Summary 115

are used to generate a visually explainable process model graph that represents the
decision-making process of the LSTM model. A probability threshold is introduced
as a parameter to manage the graph complexity and thus enable faster and more
directed business process analysis, including discovering the most common event
sequences and unusual or suspicious behaviours.

In this thesis, two model architectures were tested: one using a unidirectional
LSTM and another using a bidirectional LSTM. Both architectures were demon-
strated to outperform the state-of-the-art LSTM models for PM based on real-life
event logs. The better performance of the proposed models can be attributed to a
different way of pre-processing event logs when generating inputs for the models
and the model network architectures that employ an embedding and a dense layer,
in addition to an LSTM layer (unidirectional and bidirectional for the first and sec-
ond models, respectively). At the same time, the bidirectional LSTM model achieved
slightly better results than the unidirectional LSTM on more complex or larger logs,
but at the cost of training time.

The ability of generated graphs to explain the decision-making process of the
LSTM models was visually demonstrated. An approach was proposed to determine
the similarity between the graphs to further validate the generalising ability of the
models, which gave a satisfactory result. In particular, graphs can be used to under-
stand the performance of LSTM models and perform a variety of PM tasks such as
process discovery, conformance check, and investigation of non-compliance cases.

To tackle the third and fourth objectives, Chapter 4, presented two novel meth-
ods, PGraphDD-QM and PGraphDD-SS, for detecting sudden concept drifts in dy-
namic business processes.

For these tasks, we use the uni-directional over the bi-directional LSTM model
because of its simplicity and faster training time. The first drift detection method in-
volves training an LSTM model on a previous event log (off-line scenario) or stream
of events (on-line scenario) and applying it to a newly generated log/stream. The
model performance on the old and new logs/streams is then compared based on
the F-score metric. Similar F-score values over the two logs/streams indicates that
there is no drift, whereas a drop of the F-score value over the new log/stream below
a set threshold indicates the presence of drift. The more significant the drop in the
F-score value, the more changes are expected in the new log/stream compared to
the old one.

The second drift detection method involves training two LSTM models on event
logs (offline scenario) or streams of events (online scenario) covering two different
periods. These models are then used to generate two graphs representing business
processes for the two analysed periods as believed by the LSTM models. Next, two
adjacency matrices are generated based on the two graphs to measure the similar-
ity between the two business processes. A drop in the similarity score below a set
threshold indicates a drift. The more significant drop in the similarity score, the
more changes are expected to be present in the new log/stream compared to the old
one.

An evaluation of the proposed methods for detecting drifts in business processes
using synthetic and real-life logs demonstrated that the methods performed on par
with state-of-the-art methods, achieving similar accuracy in detecting drifts, with
shorter delays compared to the other methods, while also offering the following
advantages over existing solutions:

e The majority of the existing drift detection approaches concentrate on detect-
ing drifts through their effects on the resulting process instances, i.e. cases in

116 Chapter 6. Conclusion and Future Directions

event logs, instead of detecting drifts by comparing process models depicting
different process instances before and after the drifts have occurred. The latter
approach is adopted in the methods proposed in this thesis. In particular, the
proposed methods use and compare process graph models constructed based
on two windows (or two different time periods), reference, and detection.

e Unlike the methods based on the statistical analysis of graphs representing
business processes, the proposed methods employ DL that does not require
the user to construct features.

e The proposed methods employed graphs that explain the decision-making
process of the DL models trained to predict the next activities in business pro-
cesses, thus allowing the user to verify what has changed in the process when
a drift is detected.

o The relative insensitivity of the DL models with proposed LSTM architectures
to interval length may have contributed to detecting drifts with minimal delay.

Finally, Chapter 5 presented a new method, called PGraphDL, for localising
detected process drifts. According to the method, two process graphs constructed
based on two different windows (or time periods), reference and detection, are taken
as input. The user is asked to select any path of interest from the reference graph by
specifying an index. The best matching path is then searched in the graph generated
for the detection window for each possible path in the reference graph by computing
the positional score for each candidate path in the detection graph. The method can
visually and analytically localise the parts of the process that have changed from
graphs representing two different periods of a business process.

6.2 Potential Applications

The proposed methods can find use in many different application domains. For ex-
ample, adopting methods in healthcare may provide efficient solutions for saving
lives. In particular, the proposed methods can be used to discover disease trajecto-
ries, which can reveal disease correlations and temporal disease progression, thus
equipping clinicians with tools for predicting and preventing future complications
in individual patients (Kusuma et al., 2020). Previous studies have based their so-
lutions for discovering disease trajectories on statistical analysis (Jensen et al., 2014)
and knowledge graphs (Vlietstra et al., 2020). Both approaches have limitations:
While the former approach is prone to statistical bias, the latter is not scalable and
requires significant expert input. Furthermore, both approaches are not designed to
track changes in disease trajectories over time, e.g., to study the implications of the
COVID-19 pandemic on population health and determine the subset of comorbidi-
ties contributing to the death outcome following coronavirus disease. In contrast,
the proposed methods can be easily applied to temporal sequences of diagnoses
extracted from electronic healthcare records at scale and in a continuous manner, al-
lowing clinicians to track changes in disease progression patterns, perform temporal
analysis of comorbidities using the generated graphs, and predict patient outcomes
based on their history.

The oil and gas industry is another complex domain where the proposed meth-
ods can be useful for preventing theft, improving the efficiency of supply chain man-
agement, and adapting to world events promptly. The industry involves many in-
terconnected tasks and parties (Hanga and Kovalchuk, 2019). The actions of every

6.3. Future Work 117

party can be logged, and cases of non-compliance can be identified easily by visual-
ising the intended and actual processes as graphs. Any changes and weaknesses in
supply chain management can be equally efficiently spotted through detecting and
localising drifts in the discovered process graphs evolving over time.

Purchasing and supply chain activities increasingly demand higher transparency,
traceability (Kshetri, 2018) and cyber security (Ivanov, Dolgui, and Sokolov, 2019).
This has led to the adoption of advanced technologies such as RFID, IoT sensors
(Bienhaus and Haddud, 2018) and Blockchain (Centobelli et al., 2021) to cope with
these demands. These technologies are likely to increase the volume and granular-
ity of event data across various supply chains. This is another avenue where the
proposed methods can be helpful.

It should be noted that the proposed methods are designed to detect changes in
business processes rather than predict process outcomes. For example, the methods
can detect changes in the process required from bank staff to follow to approve a
loan, while they are not suitable for predicting whether a specific loan application
will be approved or not.

6.3 Future Work

There are many potential directions for future work to extend the work presented in
this thesis. Some examples of possible extensions of the proposed methods are listed
below.

6.3.1 Predicting Next Activities in Business Processes

In this thesis, the LSTM model is used to predict the next activities in business pro-
cesses. Some identified future research directions are as follows:

e Experiment with other DL architectures, such as encoder-decoder networks.
One advantage of the proposed approach in this thesis is its model-agnostic
nature. This means that the graph generation part is independent of the pre-
dictive modelling part. As such, any model can be used in place of the LSTM.

e Use the proposed approach as a conformance checking method. To achieve
this, the graphs generated according to the proposed methods can be evaluated
using the metrics widely used in the PM community for conformance check-
ing. In particular, conformance comprises several orthogonal dimensions such
as fitness, precision, generalisation, and structure (Rozinat and Aalst, 2008;
Weerdt et al., 2010).

e Evaluate the proposed methods on other real-life event logs.

6.3.2 Graphs Explaining Decisions of LSTM Models

In this thesis, DFGs were used to explain the decision-making process of LSTM mod-
els trained to predict the next activities of business process. These DFGs appear to
be simpler than the models discovered using Petri-nets and BPMN. The potential
extensions of the presented work in this regard include the following:

e Improve the generation process of DFGs, and, in particular, distinguish con-
currency and causality relations by possibly adding symbols or using different
colours for arcs.

118 Chapter 6. Conclusion and Future Directions

e Apply the proposed methods to operational processes, such as analysing hos-
pital treatment processes and improving customer service.

6.3.3 Concept Drift Detection and Localisation

The proposed methods for detecting and localising drifts in business processes can
be extended in the following ways:

o As described in Chapter 2, there are four classes of drifts: sudden, gradual,
recurring, and incremental. The drift detection methods presented in Chap-
ter 4 focus on detecting sudden drifts only. As such, when applied to event
streams containing other classes of drifts, the proposed methods may detect
these drifts as sudden or fail to detect them. Therefore, another avenue for
future work is to extend the methods to detect other classes of drifts. Sev-
eral methods have been proposed in the literature for detecting other classes
of drifts from event streams. For example, the methods proposed in this the-
sis can be easily extended by applying the same strategy used in (Maaradji et
al., 2017) to detect gradual drifts in trace streams. That is, apply PGraphDD-
QM and PGraphDD-SS to two consecutive sudden drifts to determine whether
they represent separate changes or define the start and end of a single gradual
drift.

e Extend the drift localisation method by enumerating all detection paths in de-
scending order of proximity to the reference path.

e Evaluate the proposed methods using other real-life event logs and explore the
ways of applying the methods to analyse chains of events affecting the stock
market, for example.

e Package the proposed methods as a library for existing popular PM software
and provide users with an interactive visualisation tool for extensive explo-
ration of changes in case they are more significant than those considered in
this study.

119

Bibliography

Aalst, MP Wil van der (2011a). “Process Mining. Discovery, Conformance and En-
hancement of Business Processes”. In:

Aalst, Wil van der (2011b). “Using process mining to bridge the gap between Bl and
BPM”. In: Computer 44.12, pp. 77-80.

Aalst, Wil Van der, Ton Weijters, and Laura Maruster (2004). “Workflow mining;:
Discovering process models from event logs”. In: IEEE Transactions on Knowledge
and Data Engineering 16.9, pp. 1128-1142.

Aalst, Wil MP van der (2010). “Process discovery: Capturing the invisible”. In: IEEE
Computational Intelligence Magazine 5.1, pp. 28—41.

— (2012). “Distributed process discovery and conformance checking”. In: Interna-
tional Conference on Fundamental Approaches to Software Engineering. Springer, pp. 1
25.

Aalst, Wil MP Van der (2016). Process mining: data science in action. Springer.

Abadi, Martin et al. (2016). “Tensorflow: A system for large-scale machine learning”.
In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265-283.

Alvarez, Camilo et al. (2018). “Discovering role interaction models in the Emergency
Room using Process Mining”. In: Journal of biomedical informatics 78, pp. 60-77.

Armas-Cervantes, Abel et al. (2014). “Behavioral comparison of process models based
on canonically reduced event structures”. In: International Conference on Business
Process Management. Springer, pp. 267-282.

Augusto, Adriano et al. (2018). “Automated discovery of process models from event
logs: Review and benchmark”. In: IEEE Transactions on Knowledge and Data Engi-
neering 31.4, pp. 686-705.

Augusto, Adriano et al. (2019). “Split miner: automated discovery of accurate and
simple business process models from event logs”. In: Knowledge and Information
Systems 59.2, pp. 251-284.

Beest, Nick RTP van et al. (2016). “Log delta analysis: Interpretable differencing of
business process event logs”. In: International Conference on Business Process Man-
agement. Springer, pp. 386—405.

Bengio, Yoshua (2008). “Neural net language models”. In: Scholarpedia 3.1, p. 3881.

Bienhaus, Florian and Abubaker Haddud (2018). “Procurement 4.0: factors influ-
encing the digitisation of procurement and supply chains”. In: Business Process
Management Journal.

Bifet, Albert and Ricard Gavalda (2007). “Learning from time-changing data with
adaptive windowing”. In: Proceedings of the 2007 SIAM international conference on
data mining. SIAM, pp. 443-448.

Bolt, Alfredo, Wil MP van der Aalst, and Massimiliano De Leoni (2017). “Finding
process variants in event logs”. In: OTM Confederated International Conferences”
On the Move to Meaningful Internet Systems”. Springer, pp. 45-52.

Bolt, Alfredo, Massimiliano de Leoni, and Wil MP van der Aalst (2018). “Process
variant comparison: using event logs to detect differences in behavior and busi-
ness rules”. In: Information Systems 74, pp. 53—66.

120 Bibliography

Bose, RP Jagadeesh Chandra et al. (2011). “Handling concept drift in process min-
ing”. In: International Conference on Advanced Information Systems Engineering. Springer,
pp. 391-405.

Bose, RP Jagadeesh Chandra et al. (2013). “Dealing with concept drifts in process
mining”. In: IEEE transactions on neural networks and learning systems 25.1, pp. 154—
171.

Breuker, Dominic et al. (2016). “Comprehensible Predictive Models for Business Pro-
cesses.” In: Mis Quarterly 40.4, pp. 1009-1034.

Broucke, Seppe KLM vanden and Jochen De Weerdt (2017). “Fodina: a robust and
flexible heuristic process discovery technique”. In: decision support systems 100,
pp. 109-118.

Brownlee, Jason (2016). Deep learning with Python: develop deep learning models on
Theano and TensorFlow using Keras. Machine Learning Mastery.

— (2017). Deep Learning for Natural Language Processing: Develop Deep Learning Mod-
els for your Natural Language Problems. Machine Learning Mastery.

Buijs, Joos CAM, Boudewijn F van Dongen, and Wil MP van Der Aalst (2012). “On
the role of fitness, precision, generalization and simplicity in process discovery”.
In: OTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”. Springer, pp. 305-322.

Buijs, Joos CAM and Hajo A Reijers (2014). “Comparing business process variants
using models and event logs”. In: Enterprise, Business-Process and Information Sys-
tems Modeling. Springer, pp. 154-168.

Camargo, Manuel, Marlon Dumas, and Oscar Gonzélez-Rojas (2019). “Learning ac-
curate LSTM models of business processes”. In: International Conference on Busi-
ness Process Management. Springer, pp. 286-302.

Carmona, Josep and Ricard Gavalda (2012). “Online techniques for dealing with
concept drift in process mining”. In: International Symposium on Intelligent Data
Analysis. Springer, pp. 90-102.

Centobelli, Piera et al. (2021). “Surfing blockchain wave, or drowning? Shaping the
future of distributed ledgers and decentralized technologies”. In: Technological
Forecasting and Social Change 165, p. 120463.

Conforti, Raffaele et al. (2016). “BPMN Miner: Automated discovery of BPMN pro-
cess models with hierarchical structure”. In: Information Systems 56, pp. 284-303.

Dakic, Dusanka et al. (2018). “BUSINESS PROCESS MINING APPLICATION: A
LITERATURE REVIEW.” In: Annals of DAAAM & Proceedings 29.

De Weerdt, Jochen et al. (2012). “A multi-dimensional quality assessment of state-of-
the-art process discovery algorithms using real-life event logs”. In: Information
Systems 37.7, pp. 654—676.

Di Francescomarino, Chiara et al. (2017). “An eye into the future: leveraging a-priori
knowledge in predictive business process monitoring”. In: International Confer-
ence on Business Process Management. Springer, pp. 252-268.

Di Francescomarino, Chiara et al. (2018). “Predictive process monitoring methods:
Which one suits me best?” In: International conference on business process manage-
ment. Springer, pp. 462—479.

Dongen, B.E. (Boudewijn) van (2015). Business Process Intelligence (BPI) Challenge 2015.
URL: https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167alecl.

Dongen, Boudewijn van (Apr. 2012). “BPI Challenge 2012”. In: DOI: 10.4121/uuid:
3926db30 - £712 - 4394 - aebc - 75976070e91f. URL: https : //data . 4tu.nl/
articles/dataset/BPI_Challenge_2012/12689204.

Dumas, Marlon et al. (2013). Fundamentals of business process management. Vol. 1.
Springer.

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204

Bibliography 121

Elkhawaga, Ghada et al. (2020). “CONDA-PM—A Systematic Review and Frame-
work for Concept Drift Analysis in Process Mining”. In: Algorithms 13.7, p. 161.

Ellson, John et al. (2001). “Graphviz—open source graph drawing tools”. In: Interna-
tional Symposium on Graph Drawing. Springer, pp. 483-484.

Evermann, Joerg, Jana-Rebecca Rehse, and Peter Fettke (2017). “Predicting process
behaviour using deep learning”. In: Decision Support Systems 100, pp. 129-140.

Ferreira, Diogo R (2017). A primer on process mining. Springer.

Ferreira, Diogo R and Cldudia Alves (2011). “Discovering user communities in large
event logs”. In: International Conference on Business Process Management. Springer,
pp- 123-134.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT
press.

Graves, Alex and Jiirgen Schmidhuber (2005). “Framewise phoneme classification
with bidirectional LSTM and other neural network architectures”. In: Neural net-
works 18.5-6, pp. 602-610.

Gulli, Antonio and Sujit Pal (2017). Deep learning with Keras. Packt Publishing Ltd.

Giinther, Christian W and Wil MP Van Der Aalst (2007). “Fuzzy mining-adaptive
process simplification based on multi-perspective metrics”. In: International con-
ference on business process management. Springer, pp. 328-343.

Gutiérrez, Luis and Brian Keith (2018). “A systematic literature review on word em-
beddings”. In: International Conference on Software Process Improvement. Springer,
pp- 132-141.

Hagberg, Aric, Pieter Swart, and Daniel S Chult (2008). Exploring network structure,
dynamics, and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States).

Hanga, Khadijah Muzzammil, Yevgeniya Kovalchuk, and Mohamed Medhat Gaber
(2020). “A Graph-Based Approach to Interpreting Recurrent Neural Networks in
Process Mining”. In: IEEE Access 8, pp. 172923-172938.

— (2022). “PGraphD*: Methods for Drift Detection and Localisation Using Deep
Learning Modelling of Business Processes”. In: Entropy 24.7, p. 910.

Hanga, KM and Y. Kovalchuk (2019). “Machine learning and multi-agent systems
in oil and gas industry applications: A survey”. In: Computer Science Review 34,
p- 100191. 1SSN: 1574-0137. DOI: https://doi.org/10.1016/j.cosrev.2019.08.
002.

Hao, Xing, Guigang Zhang, and Shang Ma (2016). “Deep learning”. In: International
Journal of Semantic Computing 10.03, pp. 417-439.

Harremoés, Peter and Gédbor Tusnady (2012). “Information divergence is more x
2-distributed than the x 2-statistics”. In: 2012 IEEE International Symposium on
Information Theory Proceedings. IEEE, pp. 533-537.

Harris, Zellig S (1954). “Distributional structure”. In: Word 10.2-3, pp. 146-162.

Hassani, Marwan (2019). “Concept Drift Detection Of Event Streams Using An Adap-
tive Window.” In: ECMS, pp. 230-239.

Hinkka, Markku, Teemu Lehto, and Keijo Heljanko (2018). “Exploiting event log
event attributes in RNN based prediction”. In: Data-Driven Process Discovery and
Analysis. Springer, pp. 67-85.

Ho, Shen-Shyang (2005). “A martingale framework for concept change detection in
time-varying data streams”. In: Proceedings of the 22nd international conference on
Machine learning, pp. 321-327.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735-1780.

https://doi.org/https://doi.org/10.1016/j.cosrev.2019.08.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2019.08.002

122 Bibliography

Hompes, BFA et al. (2015a). “Detecting changes in process behavior using compara-
tive case clustering”. In: International Symposium on Data-Driven Process Discovery
and Analysis. Springer, pp. 54-75.

Hompes, BFA et al. (2015b). “Discovering deviating cases and process variants using
trace clustering”. In: Proceedings of the 27th Benelux Conference on Artificial Intelli-
gence (BNAIC), November, pp. 5-6.

Ivanov, Dmitry, Alexandre Dolgui, and Boris Sokolov (2019). “The impact of digital
technology and Industry 4.0 on the ripple effect and supply chain risk analytics”.
In: International Journal of Production Research 57.3, pp. 829-846.

Jensen, Anders Boeck et al. (2014). “Temporal disease trajectories condensed from
population-wide registry data covering 6.2 million patients”. In: Nature Commu-
nications 5.4022.

Jokonowo, Bambang et al. (2018). “Process Mining in Supply Chains: A System-
atic”. In: International Journal of Electrical and Computer Engineering (IJECE) 8.6,
pp- 4626-4636.

Ko, Ryan KL, Stephen SG Lee, and Eng Wah Lee (2009). “Business process manage-
ment (BPM) standards: a survey”. In: Business Process Management Journal.

Kratsch, Wolfgang et al. (2021). “Machine learning in business process monitoring: a
comparison of deep learning and classical approaches used for outcome predic-
tion”. In: Business & Information Systems Engineering 63.3, pp. 261-276.

Kshetri, Nir (2018). “1 Blockchain’s roles in meeting key supply chain management
objectives”. In: International Journal of information management 39, pp. 80-89.

Kurniati, Angelina Prima, Guntur Kusuma, and Gede Wisudiawan (2016). “Imple-
menting heuristic miner for different types of event logs”. In: vol 11, pp. 5523—
5529.

Kusuma, G. et al. (2020). “Process Mining of Disease Trajectories: A Feasibility Study”.
In: Proceedings of the 13th International Joint Conference on Biomedical Engineering
Systems and Technologies (BIOSTEC 2020), pp. 705-712.

Lakshmanan, Geetika T et al. (2015). “A markov prediction model for data-driven
semi-structured business processes”. In: Knowledge and Information Systems 42.1,
pp- 97-126.

Lau, Henry CW et al. (2009). “Development of a process mining system for support-
ing knowledge discovery in a supply chain network”. In: International Journal of
Production Economics 122.1, pp. 176-187.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: na-
ture 521.7553, pp. 436—444.

Leemans, Sander J. J. (2015). “Process Discovery and Exploration”. In: Business Pro-
cess Management Workshops. Ed. by Fabiana Fournier and Jan Mendling. Cham:
Springer International Publishing, pp. 582-585. ISBN: 978-3-319-15895-2.

Leemans, Sander JJ, Dirk Fahland, and Wil MP Van Der Aalst (2013). “Discover-
ing block-structured process models from event logs-a constructive approach”.
In: International conference on applications and theory of Petri nets and concurrency.
Springer, pp. 311-329.

Leoni, M. (Massimiliano) de and Felix Mannhardt (Feb. 2015). “Road Traffic Fine
Management Process”. In: DOI: 10 . 4121 /uuid : 270£d440 - 1057 - 4fb9 - 89a9 -
b699b47990£f5. URL: https://data.4tu.nl/articles/dataset/Road_Traffic_
Fine_Management_Process/12683249.

Lewis, Nigel Da Costa (2016). Deep Time Series Forecasting with Python: An Intuitive
Introduction to Deep Learning for Applied Time Series Modeling. ND Lewis.

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249

Bibliography 123

Li, Tianyang et al. (2017). “Unraveling process evolution by handling concept drifts
in process mining”. In: 2017 IEEE International Conference on Services Computing
(SCC). IEEE, pp. 442-449.

Li, Yang and Tao Yang (2018). “Word embedding for understanding natural lan-
guage: a survey”. In: Guide to big data applications. Springer, pp. 83-104.

Lin, Li, Lijie Wen, and Jianmin Wang (2019). “MM-Pred: a deep predictive model
for multi-attribute event sequence”. In: Proceedings of the 2019 SIAM International
Conference on Data Mining. SIAM, pp. 118-126.

Liu, Na, Jiwei Huang, and Lizhen Cui (2018). “A framework for online process con-
cept drift detection from event streams”. In: 2018 IEEE International Conference on
Services Computing (SCC). IEEE, pp. 105-112.

Lu, Xixi et al. (2016). “Detecting deviating behaviors without models”. In: Interna-
tional Conference on Business Process Management. Springer, pp. 126-139.

Maaradji, Abderrahmane et al. (2015). Business Process Drift. DOI: 10 . 4121 /uuid :
aa01a720 - 4616 - 43e9 - af67 - 370942019£48. URL: https : //data . 4tu.nl/
articles/dataset/Business_Process_Drift/12712436/1.

Maaradji, Abderrahmane et al. (2016). “Fast and accurate business process drift de-
tection”. In: International Conference on Business Process Management. Springer,
pp- 406-422.

Maaradji, Abderrahmane et al. (2017). “Detecting sudden and gradual drifts in busi-
ness processes from execution traces”. In: IEEE Transactions on Knowledge and Data
Engineering 29.10, pp. 2140-2154.

Manoj Kumar, MV, Likewin Thomas, and B Annappa (2015). “Capturing the sudden
concept drift in process mining”. In: Algorithms & Theories for the Analysis of Event
Data (ATAED’15, Brussels, Belgium, June 22-23, 2015), p. 132.

Martin, Niels et al. (2015). “An Exploration and Analysis of The Building Permit
Application Process in Five Dutch Municipalities”. In: Report for the BPI Challenge
72,p.73.

Martjushev,], RP Jagadeesh Chandra Bose, and Wil MP van der Aalst (2015). “Change
point detection and dealing with gradual and multi-order dynamics in process
mining”. In: International Conference on Business Informatics Research. Springer,
pp- 161-178.

Mauro, Nicola Di, Annalisa Appice, and Teresa Basile (2019). “Activity prediction of
business process instances with inception CNN models”. In: International confer-
ence of the italian association for artificial intelligence. Springer, pp. 348-361.

Medeiros, Ana Karla A de, Anton JMM Weijters, and Wil MP van der Aalst (2007).
“Genetic process mining: an experimental evaluation”. In: Data Mining and Know!-
edge Discovery 14.2, pp. 245-304.

Mueller, Ronald and Imaan Ali (2021). Process mining vs. Business Process Manage-
ment. URL: https://www.macrosoftinc. com/process-mining-vs-business-
process-management/.

Neu, Dominic A, Johannes Lahann, and Peter Fettke (2021). “A systematic literature
review on state-of-the-art deep learning methods for process prediction”. In: Ar-
tificial Intelligence Review, pp. 1-27.

Nguyen, Hoang et al. (2018). “Multi-perspective comparison of business process
variants based on event logs”. In: International Conference on Conceptual Modeling.
Springer, pp. 449-459.

Ostovar, Alireza, Sander J] Leemans, and Marcello La Rosa (2020). “Robust drift
characterization from event streams of business processes”. In: ACM Transactions
on Knowledge Discovery from Data (TKDD) 14.3, pp. 1-57.

https://doi.org/10.4121/uuid:aa01a720-4616-43e9-af67-370942019f48
https://doi.org/10.4121/uuid:aa01a720-4616-43e9-af67-370942019f48
https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436/1
https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436/1
https://www.macrosoftinc.com/process-mining-vs-business-process-management/
https://www.macrosoftinc.com/process-mining-vs-business-process-management/

124 Bibliography

Ostovar, Alireza et al. (2016). “Detecting drift from event streams of unpredictable
business processes”. In: International Conference on Conceptual Modeling. Springer,
pp. 330-346.

Pasquadibisceglie, Vincenzo et al. (2019). “Using convolutional neural networks for
predictive process analytics”. In: 2019 international conference on process mining
(ICPM). IEEE, pp. 129-136.

Paszkiewicz, Zbigniew (2013). “Process mining techniques in conformance testing
of inventory processes: an industrial application”. In: International Conference on
Business Information Systems. Springer, pp. 302-313.

Pérez-Alfonso, Damian et al. (2015). “Recommendation of Process Discovery Al-
gorithms Through Event Log Classification”. In: Mexican Conference on Pattern
Recognition. Springer, pp. 3-12.

Polato, Mirko (July 2017). “Dataset belonging to the help desk log of an Italian Com-
pany”. In: DOI: 10.4121/uuid:0c60edf1-6£83-4e75-9367-4c63b3e9d5bb. URL:
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_
desk_log_of_an_Italian_Company/12675977.

— (2020). Dataset belonging to the help desk log of an Italian Company. URL: https :
//doi.org/10.4121/uuid:0c60edf1-6£83-4e75-9367-4c63b3e9d5bb.

Rama-Maneiro, Efrén, Juan Vidal, and Manuel Lama (2021). “Deep learning for pre-
dictive business process monitoring: Review and benchmark”. In: IEEE Transac-
tions on Services Computing.

Repta, Dragos et al. (2018). “Automated process recognition architecture for cyber-
physical systems”. In: Enterprise Information Systems 12.8-9, pp. 1129-1148.

Rojas, Eric et al. (2016). “Process mining in healthcare: A literature review”. In: Jour-
nal of biomedical informatics 61, pp. 224-236.

Roldén, Juan Jests et al. (2018). “Analyzing and improving multi-robot missions by
using process mining”. In: Autonomous Robots 42.6, pp. 1187-1205.

Rozinat, Anne and Wil MP Van der Aalst (2008). “Conformance checking of pro-
cesses based on monitoring real behaviour”. In: Information Systems 33.1, pp. 64—
95.

Schonenberg, Helen et al. (2008). “Process flexibility: A survey of contemporary ap-
proaches”. In: Advances in enterprise engineering I. Springer, pp. 16-30.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE transactions on Signal Processing 45.11, pp. 2673-2681.

Seeliger, Alexander, Timo Nolle, and Max Miihlhduser (2017). “Detecting concept
drift in processes using graph metrics on process graphs”. In: Proceedings of the
9th Conference on Subject-Oriented Business Process Management, pp. 1-10.

Sousa, Rafael Gaspar de et al. (2021). “Concept drift detection and localization in
process mining: an integrated and efficient approach enabled by trace cluster-
ing”. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing,
pp. 364-373.

Srinivasan, S (2017). Guide to big data applications. Vol. 26. Springer.

Steeman, Ward (Apr. 2013a). “BPI Challenge 2013, closed problems”. In: DOI: 10 .
4121 /uuid: c2c3b154 - ab26 - 4b31 - a0e8- 8£2350ddac1l. URL: https://data.
4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476.

— (Apr. 2013b). “BPI Challenge 2013, incidents”. In: DOI: 10.4121/uuid:500573e6-
accc - 4b0c - 9576 - aab468b10cee. URL: https : / /data . 4tu.nl/articles/
dataset/BPI_Challenge_2013_incidents/12693914.

Stefanini, Alessandro et al. (2018). “Performance analysis in emergency departments:
a data-driven approach”. In: Measuring Business Excellence.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914
https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914

Bibliography 125

Storn, Rainer and Kenneth Price (1997). “Differential evolution—-a simple and ef-
ficient heuristic for global optimization over continuous spaces”. In: Journal of
global optimization 11.4, pp. 341-359.

Suriadi, Suriadi et al. (2013). “Understanding process behaviours in a large insurance
company in Australia: A case study”. In: International Conference on Advanced In-
formation Systems Engineering. Springer, pp. 449—-464.

Syamsiyah, Alifah et al. (2017). “Business process comparison: A methodology and
case study”. In: International Conference on Business Information Systems. Springer,
pp- 253-267.

Syring, Anja F, Niek Tax, and Wil MP van der Aalst (2019). “Evaluating conformance
measures in process mining using conformance propositions”. In: Transactions on
Petri Nets and Other Models of Concurrency XIV. Springer, pp. 192-221.

Tax, Niek, Irene Teinemaa, and Sebastiaan] van Zelst (2020). “An interdisciplinary
comparison of sequence modeling methods for next-element prediction”. In: Soft-
ware and Systems Modeling 19.6, pp. 1345-1365.

Tax, Niek et al. (2017). “Predictive business process monitoring with LSTM neural
networks”. In: International Conference on Advanced Information Systems Engineer-
ing. Springer, pp. 477-492.

Teinemaa, Irene et al. (2019). “Outcome-oriented predictive process monitoring: re-
view and benchmark”. In: ACM Transactions on Knowledge Discovery from Data
(TKDD) 13.2, pp. 1-57.

Tello-Leal, Edgar et al. (2018). “Predicting Activities in Business Processes with LSTM
Recurrent Neural Networks”. In: 2018 ITU Kaleidoscope: Machine Learning for a 5G
Future (ITU K). IEEE, pp. 1-7.

Unuvar, Merve, Geetika T Lakshmanan, and Yurdaer N Doganata (2016). “Leverag-
ing path information to generate predictions for parallel business processes”. In:
Knowledge and Information Systems 47.2, pp. 433—461.

Van Der Aalst, Wil (2012). “Process mining: Overview and opportunities”. In: ACM
Transactions on Management Information Systems (TMIS) 3.2, pp. 1-17.

Van Der Aalst, Wil MP et al. (2007). “Business process mining: An industrial appli-
cation”. In: Information Systems 32.5, pp. 713-732.

Van Dongen, Boudewijn F et al. (2005). “The ProM framework: A new era in process
mining tool support”. In: International conference on application and theory of petri
nets. Springer, pp. 444—454.

Vlietstra, Wytze J. et al. (2020). “Identifying disease trajectories with predicate infor-
mation from a knowledge graph”. In: Journal of Biomedical Semantics 11.9.

Wani, M Arif et al. (2020). Advances in deep learning. Springer.

Weber, Barbara, Manfred Reichert, and Stefanie Rinderle-Ma (2008). “Change pat-
terns and change support features—enhancing flexibility in process-aware infor-
mation systems”. In: Data & knowledge engineering 66.3, pp. 438—466.

Weerdt, Jochen De et al. (2010). “A critical evaluation study of model-log metrics in
process discovery”. In: International Conference on Business Process Management.
Springer, pp. 158-169.

Weijters, AJIMM, Wil MP van der Aalst, and A Ana Karla (2006). de Medeiros.”Process
Mining with the Heuristics Miner-algorithm”. Tech. rep. BETA Working Paper Se-
ries. Vol. WP 166. 2006 (cit. on pp. 41, 182).

Weijters, AJMM and Joel Tiago S Ribeiro (2011). “Flexible heuristics miner (FHM)".
In: 2011 IEEE symposium on computational intelligence and data mining (CIDM).
IEEE, pp. 310-317.

Xu, Wei and Alexander Rudnicky (2000). “Can artificial neural networks learn lan-
guage models?” In:

126 Bibliography

Yeshchenko, Anton et al. (2019). “Comprehensive process drift detection with visual
analytics”. In: International Conference on Conceptual Modeling. Springer, pp. 119-
135.

Zerbino, Pierluigi, Alessandro Stefanini, and Davide Aloini (2021). “Process science
in action: A literature review on process mining in business management”. In:
Technological Forecasting and Social Change 172, p. 121021.

Zheng, Canbin, Lijie Wen, and Jianmin Wang (2017). “Detecting process concept
drifts from event logs”. In: OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”. Springer, pp. 524-542.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Preamble
	Business Process Management
	Process Mining
	Concept Drift Detection
	Problem Statement
	Deep Learning
	Research Gaps
	Research Aim and Objectives
	Aim
	Objectives

	Contributions
	Publications
	Data Availability
	Code Base
	Overview of the Thesis

	State of the Art and Related Work
	Business Process Management
	Process Mining
	Process Mining Types
	Process Mining Perspectives
	Process Mining Applications
	Event Log
	Process Discovery

	Deep Learning
	Recurrent Neural Network
	Long Short-term Memory
	Bidirectional Long Short-term Memory
	Word Embedding

	Deep Learning in Process Mining
	Process Discovery versus Process Prediction Methods
	Concept Drift in Process Mining
	Approaches to Dealing with Drifts
	Perspectives of Drift
	Types of Drifts

	Concept Drift Detection
	Concept Drift Localisation
	Discussion
	Summary

	Predicting Next Activities in Business Processes
	Proposed Approach to Process Mining
	Data Preparation
	Event Log Pre-processing
	Encoding and Padding

	Proposed Models for Predicting Next Activities in Business Processes
	Model Architectures
	Training LSTM Models
	Next Activity Prediction

	Graphs Explaining the Prediction Process of LSTM Models

	Experiments
	Evaluation
	Real-life Event Logs
	Experimental Setup

	Results and Discussion
	Model Predictive Performance
	Graphical Representation of Model Predictions

	Summary

	Concept Drift Detection
	Approach to Concept Drift Detection
	Long Short-term Memory for Predicting Next Activities
	Directly-follows Graph for Representing LSTM Decisions

	Proposed Methods: PGraphDD-QM and PGraphDD-SS
	Offline scenario: Detecting Drift in Event Logs
	Quality Metrics
	Measuring the Similarity Score

	Online scenario: Detecting Drift in Event Streams.

	Experiments
	Offline Drift Detection
	Helpdesk Logs
	BPIC 2015 logs
	Experimental Setup for Offline Drift Detection

	Online Drift Detection
	Loan Application Process Dataset
	BPIC 2015 Dataset
	Experimental Setup for Online Drift Detection

	Results and Discussion
	Offline Drift Detection: PGraphDD-QM
	Offline Drift Detection: PGraphDD-SS
	Online Drift Detection: PGraphDD-QM
	Loan Application Process
	BPIC 2015

	Online Drift Detection: PGraphDD-SS
	Loan Application Process
	BPIC 2015
	Comparison with State-of-the-art Methods

	Summary

	Drift Localisation
	Change Localisation
	Proposed method: PGraphDL
	Experiments
	Localising Drifts in Loan Application Process Logs
	Localising Drifts in Helpdesk Log
	Localising Drifts in BPIC 2015 Logs

	Summary

	Conclusion and Future Directions
	Summary
	Potential Applications
	Future Work
	Predicting Next Activities in Business Processes
	Graphs Explaining Decisions of LSTM Models
	Concept Drift Detection and Localisation

	Bibliography

