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Abstract—Wireless medical sensor networks (WMSNs) offer
innovative healthcare applications that improve patients’ quality
of life, provide timely monitoring tools for physicians, and support
national healthcare systems. However, despite these benefits,
widespread adoption of WMSN advancements is still hampered
by security concerns and limitations of routing protocols. Routing
in WMSNs is a challenging task due to the fact that some
WMSN requirements are overlooked by existing routing proposals.
To overcome these challenges, this paper proposes a reliable
multi-agent reinforcement learning based routing protocol (RRP).
RRP is a lightweight attacks-resistant routing protocol designed
to meet the unique requirements of WMSN. It uses a novel
Q-learning model to reduce resource consumption combined
with an effective trust management system to defend against
various packet-dropping attacks. Experimental results prove the
lightweightness of RRP and its robustness against blackhole,
selective forwarding, sinkhole and complicated on-off attacks.

Index Terms—Routing, Reinforcement Learning, Trust Man-
agement, Blackhole, Selective Forwarding, Sinkhole, On-off.

I. INTRODUCTION

Wireless Medical Sensor Network (WMSN) offers innovative
applications to the healthcare field ranging from providing
monitoring tools to sense the body’s physiological signs to drug
delivery. This revolutionized technology provides a potential
solution to ease patients’ lives, meet aging population healthcare
needs, and support overloaded medical staff. However, despite
the rapid development of this emerging technology, security
concerns are still holding back the wide adoption [1,2]. Any
security breach may disrupt the network operation and threaten
the patient’s life.

The wireless nature and the critical applications provided
by WMSN make it vulnerable to a variety of security attacks
and misconduct activities, the most important of which are
the packet dropping attacks. These kinds of attacks are called
internal attacks because they are launched by the Sensor Nodes
(SNs) themselves for different reasons. For instance, a SN could
get compromised and start dropping packets with a view to
disrupting the overall network operations. Another example is
when a SN acts selfishly and stops relaying packets for others
to save power or gain extra resources unfairly. In both cases,
the consequences would be detrimental and could endanger

the patient’s life. Moreover, many dropping attacks discussed
in the literature have different characteristics and dropping
patterns, such as selective forwarding [3], blackhole [4].

In addition to the security concerns inherited from Wireless
Sensor Networks (WSNs), WMSN has additional unique char-
acteristics, such as resource constraints, critical applications,
network topology, and low traffic rates. While routing in WSN
is still challenging, with much research is being put forward
constantly to produce an efficient routing protocol [5], designing
a suitable routing protocol for WMSN is even more challenging,
considering its unique characteristics. Reinforcement Learning
(RL) based routing protocols have been introduced in the
literature to address the routing problem in WSN [6–8].
Although this approach allows SNs to learn the optimal path
to the destination, it has few limitations. To the best of our
knowledge, the learning agent in all these proposed schemes
has to receive a reward for each sent packet and then update
its estimation to find the optimal path for future packets. This
mechanism is voracious in terms of resource consumption and
may not fit the resource-constrained SNs of WMSNs. Moreover,
choosing the lowest cost path does not guarantee delivery
reliability as the chosen path may contain one or more malicious
nodes. Therefore, in our proposed RRP, a novel RL model
is used to produce a lightweight, efficient routing protocol.
Moreover, an effective Trust Management (TM) scheme is
integrated with the RRP to ensure high delivery reliability. The
reward function has been redefined as a punishment function
based on the trustworthiness of potential routes.

The main contribution of this paper is fourfold. First, the
unique requirements of designing an efficient and reliable
routing protocol for WMSN are specified. Second, proposing
a resource-conservative RL model to overcome the WMSN
resource limitations. Third, an efficient, lightweight, and
reliable routing protocol based on the proposed RL model
and combined with an effective trust management scheme is
proposed. Fourth, a comprehensive analysis is carried out to
prove the merit of our routing protocol against well-known
dropping attacks.

The remainder of this paper is organized into six sections



as follows. Related work is given in Section II. Section
III overviews WMSN. The proposed routing protocol for
WMSN is presented in Section IV, followed by evaluation
and performance results in Section V. Finally, Section VI
concludes the paper and highlights future work.

II. RELATED WORK

Routing is quite a challenging task in WMSN. The main
challenge is to achieve reliable data delivery with minimum
resource consumption in order to ensure high longevity of
network operation [9]. Various routing protocols have been
proposed in the literature to ensure reliable data transfer in
WSN using different metrics and algorithms. However, only
a few schemes targeted WMSN. Moreover, WMSN has its
unique characteristics and requirements, which makes inherited
routing protocols from WSN do not necessarily fit WMSN.
Therefore, there is still an imperative research gap to design a
routing protocol that fits WMSN and meets its requirements.

Reinforcement learning has been widely used in the literature
to find the optimal path with minimum overhead. Researchers
use different metrics to achieve this goal, such as delivery
latency, residual energy and geographical distance [10]. How-
ever, this kind of metrics can not deal with the free will
of other nodes. Relay nodes could get compromised or act
selfishly, and hence stop relaying packets for other nodes,
which results in detrimental consequences. Therefore, there is
a need to incorporate a security measure to avoid malicious
paths. Trust Management System (TMS) provides an effective
and robust measure to evaluate the trustworthiness of other
nodes. To the best of our knowledge, only two schemes [11,12]
are proposed in the literature that combine a TM scheme
with a Q-learning routing model. Authors in [11] provide a
secure, lightweight routing scheme for WSN. However, it is
unclear how the trust relationship is evaluated, which makes
this scheme not reproducible due to missing details. Authors
in [12] proposed QRT, a routing protocol designed for non-
cooperative biomedical mobile wireless sensor networks. It
has been proposed as an extension to RL-QRP [13] to deal
with various kinds of misbehaving activities. The authors
adopted the beta distribution trust scheme and integrated it
with the Q-learning routing engine to produce a reliable routing
protocol. However, proving its merit needs further investigation.
Both ESRQ and QRT have not been thoroughly evaluated
under different dropping attacks, especially on-off attacks.
Moreover, all the proposed RL-based routing protocols in
the literature use the same traditional RL model, which is a
resource-consuming model and is not suitable for deployment
on resource constrained SNs.

III. WIRELESS MEDICAL SENSOR NETWORK

A. Overview

WMSN consists of a set of bio-sensor nodes that could be
placed on the body surface, inside the body, or off the body.
These SNs have the ability to sense the body’s physiological
signals, such as body temperature, glucose levels, Electro-
cardiogram (ECG), and pulse rate. However, SNs have strict

Fig. 1: Network Model

resource limitations that impose further constraints in adopting
security countermeasures. For example, the lithium iodide cell
battery of the pacemaker is meant to last for seven years
before it gets replaced via surgery [14]. Therefore, lightweight
countermeasures and protocols are essential to extend the
battery life and avoid unnecessary surgery complications. All
sensed information is forwarded to the sink node, which in turn
forwards them to the remote medical server where physicians
can monitor, analyze and even intervene when necessary.

B. Network Model

Field hospitals are temporary hospitals set up due to
civil emergencies, such as battlefields, disease outbreaks, and
pandemics. For example, many field hospitals have been
established in many parts of the world during the ongoing
COVID-19 pandemic, especially in developing countries. In
our experiments, the topology of a wireless medical sensor
network of a field hospital ward is adopted. Fig. 1, shows a
ward that is 50m× 10m where patient beds are distributed in
an efficient way to save physical space and provide an adequate
space to care at the same time. A maximum number of 64
SNs can be accommodated in this medical unit in compliance
with IEEE 802.15.6 standard [15]. The network topology is a
multi-hop star topology where SNs sense various bio-signals
and forward them to the sink node. The communication range
of the SNs is 5m; hence, SNs relay frames for other adjacent
nodes. Therefore, an efficient, lightweight, and reliable routing
protocol is required to forward the frames from the sensing
units to the sink node, which in turn forward them to the
medical server.

C. Threat Model

Due to the sensitive nature of the WMSN applications
and the broadcast nature of the wireless communication,
many potential threats may disrupt the network operation
and endanger the patients’ lives. Threats can be classified
into internal and external [16]. External threats could be
defeated by deploying cryptographic security measures, such



as authentication and encryption. Our proposed ecosystem
assumes that secure mutual authentication is achieved and
security keys are established. On the other hand, internal threats
are difficult to defeat as they could be launched by legitimate
nodes that have successfully got authenticated and may have a
copy of the security keys.

Packet-dropping attacks are regarded as one of the most
devastating internal attacks because of their consequences on
the patients’ lives. For instance, a malicious node could drop
a command sent by a physician to an insulin pump to release
the insulin dose into the bloodstream. In addition, dropping
could occur due to malicious activities like when a node got
compromised, selfish behaviour when a node acts selfishly
with a view to saving resources or when packets pass through
overloaded nodes. Adversaries could launch different kinds of
dropping attacks or may change the dropping patterns with
a view to keeping themselves undetected. RRP protocol is
evaluated for various kinds of dropping attacks with different
parameter settings, such as blackhole, selective forwarding, and
on-off attacks. Moreover, it will be evaluated for poisoning
attacks, such as sinkhole attacks.

IV. RRP PROTOCOL DESIGN

In this section, the design requirements are specified and
the proposed RRP is presented.

A. The Multi Agent Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning
that focuses on how intelligent agents interact with an envi-
ronment through a series of state-action pairs to maximize the
cumulative rewards. In Multi-Agent Reinforcement Learning
(MARL), many agents interact with a mutual environment
and with each other to achieve a particular goal [17]. This
interaction could be a collaboration to accomplish a common
task, a competition to accomplish a self-goal, or a mix of both.
At each time step t, the agent in an environment’s state st ∈ S
chooses an action at ∈ A, which causes the environment to
move to state st+1 and the agent to receive a reward rt+1 ∈ R.

In routing applications, the agent learns a routing policy that
chooses the optimal path to the destination by experimenting
different actions and gathering evidence from the environment.
The learning process in such a case must be online and continual
due to the dynamicity of the network. The learned routing
policy specifies the optimal adjacent node for each agent to
forward the frames to. This routing policy is constantly updated
to reflect any change in the network.

Q-learning is an off-policy, value-based, model-free rein-
forcement learning algorithm to evaluate the value of an action
in a particular state [7]. Each agent maintains a Q-values table
of |S| × |A| represents the expected long-term rewards when
the agent takes the action at at the state st.

B. The Proposed Synchronous Q-Routing Model

1) Design Requirements: Various objectives have been
considered when designing RRP. These objectives include
efficiency, lightweightness, scalability and resiliency.

Efficiency is the first objective of designing a routing
protocol. Ensuring a high packet delivery ratio is a must for any
routing protocol. However, choosing the optimal path between
the sender and the receiver determines how efficient is the
routing protocol, which is a crucial requirement for resource-
constrained devices. The lowest cost path must always be
chosen to ensure high efficient routing protocol. RF activities,
especially transmission (TX), constitutes around 80% of the
consumed energy [18]. In order to reduce the consumed energy,
the SNs must always choose the shortest path in order to reduce
the number of transmissions. Therefore, RRP has been designed
to always choose the shortest reliable path regardless of the
network size, nodes deployment or traffic rate.

Lightweightness is a key requirement to fit the strict resource
constraints of the SNs. All proposed Q-learning-based routing
protocols in the literature consider transmitting one packet as
a complete action, which calls for updating the Q-table for
each sent or forwarded packet [8,12,13,19]. This method is a
resource-consuming process, particularly when more packets
are generated or forwarded. Therefore, a novel RL model is
proposed to reduce the computational overhead.

Scalability is another requirement. In a multi-agent en-
vironment, each agent has to consider the actions of the
others, which causes a scalability problem when the number
of agents increases, as the action space grows exponentially
[17]. Moreover, the agents in a networked environment suffer
from a partial observability problem as they do not have a full
view of the network. Therefore, decentralized learning with a
networked agent approach [20] was adopted in RRP to enable
the learning agents to collaborate with their neighbours by
sharing information. This approach is a solution to the poor
scalability of fully centralized learning and centralized training
with decentralized execution approaches [17]. In addition, RRP
has been evaluated for variable traffic rates and the maximum
number of SNs as defined in IEEE 802.15.6 [15].

Resiliency to attacks is the most challenging task in designing
a reliable routing protocol for WMSN. Dropping attacks could
be catastrophic not only for the network operation but also for
the patients. Therefore, RRP has been designed to resist all
kinds of known dropping attacks. Moreover, it is also resilient
to route poisoning attacks.

2) RRP Q-Routing Protocol: With the above design require-
ments in mind, RRP is built using the Q-learning algorithm in
RL, incorporating an effective trust management algorithm to
ensure an efficient, lightweight, and reliable routing protocol.
The learning agent is modelled as 3-tuple (S,A,R). WMSN
network represents the environment E, which includes SNs
that exchange messages where one of them acts as a sink S.
Each state s ∈ S represents a SN. The action a ∈ A is defined
as selecting the next forwarder to relay packets to a destination.
The agent receives a reward rt+1 ∈ R for each action at.

RRP defines Qi
t+1(s

i
t, a

i
t), which is the updated Q value of

node i, given the state sit and the action ait, as the estimated
future rewards. Each learning agents maintains a Q-table, which
gets updated once the agent performs an action at and observes
the reward rt+1 as in Eq. 1.



Fig. 2: RL Model
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Qi
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i
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i
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where η ∈ [0, 1] is the learning rate where small values
of it cause long learning time and large values may cause
oscillations, γ ∈ [0, 1] is the discount factor for the future
rewards where small values of it make the agent myopic and
cares more about the immediate rewards. In order to ensure
reliable forwarding, trust is incorporated in estimating the
reward. This makes the learning agent chooses the optimal
reliable path. Moreover, the reward calculation is defined as a
punishment to force the learning agent to choose the shortest
path to the destination as shown in Eq. 2.

rit+1(s
i
t+1, j) =


−(1− T ij

t ) if Oij
t ̸= {ϕ}

−(1− T ij
t−δ) if Oij

t = {ϕ} ∧ |Oij | > ϵ

0 Otherwise
(2)

where rit+1(s
i
t+1, j) is the new reward received by node i

which chose node j as a forwarder at the end of the time unit t,
T ij
t is the trust value maintained by node i for node j at time

unit t, δ is a time lag used to get the last evaluated trust value,
Oij

t is the observations maintained by node i for node j at
time unit t, ϵ is the threshold to specify the minimum required
evidence. The trust value T ij

t is computed using algorithm 4
as detailed in IV-C.

The traditional RL model is re-designed to produce a
lightweight RL model that fits WMSN. Therefore, the actions
and rewards of the RL model are re-defined. To the best of our
knowledge, RRP is the first Q-learning model that uses the time
window technique to reduce resource consumption. In RRP,
the agent performs the same action at during the time unit t
and gets its reward rt+τ at the end of the time unit at t+ τ
as illustrated in Fig. 2. Unlike other models [11,12,19] where
the learning agent needs to observe the reward and update its
Q-table for each packet, RRP evaluates the reward and updates
the Q-table after a defined time unit τ . This proposed method is
referred to as synchronous updating. Moreover, asynchronous
updating is also used in RRP to help the algorithm to converge
swiftly, which will be elaborated further in IV-B3.

The routing task must be achieved in a distributed manner
as no agent has a full view of the network states. Therefore,
RRP uses the decentralized learning where the RL agents
exchange their best Q values with their neighbors as detailed
in algorithm 1. The exchanged values are then used to update
the Q-table and determine the best forwarder. Once the next

Algorithm 1: RRP Protocol
Input:
The reward: rit+1(s

i
t+1, j)

The Q table: Qt

The trust table: Tt

Output: The optimal next hop
initialization:

Qi
0(n

i ∈ Ni
t ) =

{
0 if ni ̸= S

1 if ni = S

T i
0(n

i ∈ Ni
t ) = 0.5

a
i
1 =

{
S if S ∈ Ni

ni | ni ∈ Ni (3)

while TRUE do
Wait τ
Broadcast max(Qi

t)
∀j ∈ Ni , update(Qij

t ) using Eq. 1
if ε− greedy > θ then

ai
t+1 ← ni

t | n
i
t ∈ Ni

t

else
ai
t+1 ← argmax

ni
t∈Ni

t

Qi
t(s

i
t, a

i
t)

end
end

action is taken, it changes the environment, making periodic
updates required. Actions should not be greedily selected all
the time for two reasons. First, routing is an online continual
learning task. Second, exploiting the best action prevents the
algorithm from converging to the global optimum. Therefore,
ε−greedy strategy [21] is used to explore the environment
with a probability of θ and exploit the best action with a
probability of (1− θ). During the exploration phase, a random
action ait is selected to search for possible alternative paths. At
the beginning, RRP has no knowledge about the environment;
hence the future rewards are initialized to zero for each neighbor
ni ∈ N i

t , which is more realistic and requires no additional
hardware or pre-configuration like those introduced in [12,13],
where the authors used positioning information.

3) Q-Table Updating Methods: In RRP routing protocol, two
kinds of Q table updating methods are used to reduce resource
consumption, as shown in algorithm 2. The synchronous
updating is used to update the Q table at the end of each
time unit with a view to reducing the processing overhead. As
the action in the proposed RL model consists of multiple sub-
actions on a predefined time unit, the learning agent performs
the same sub-action multiple times during the period τ , which
means all packets will be forwarded to the same next hop.
Meanwhile, the agent is observing the behaviour of its next
hop to evaluate its trustworthiness. By the end of the time unit,
the agent is able to evaluate the trust value at time t and gets its
reward rit+1(s

i
t+1). Each agent broadcasts its best estimation

to adjacent nodes periodically. These broadcasted estimations
are then used to update the Q table using the gained reward
as in Eq. 1. However, as each agent only forward packets to
one node during the time unit, it will not get rewards for other
adjacent nodes, but it could receive an updated estimation from
them. For instance, node i has ait = j at time t and receives
updates from nodes j and k. In this case, RRP updates the
Q value of node j using Eq. 1 and checks how certain it is
about node k by checking the number of recent observations. If



Algorithm 2: Synchronous and Asynchronous Q Table
Updating

Input:
The Q table: Qi

t

The reward: rit+1(s
i
t+1, j)

The trust table: Tt

Output: Updated Q Table: Qi
t+1

if Synchronous Update then
foreach j ∈ Ni

t do
if j == ai

t then
update Qij

t using rit+1(s
i
t+1, j)

else
if |Oij | > ϵ then

update Qij
t using recent rit−δ(s

i
t−δ, j)

else
Qij

t+1 ← Qij
t

end
end

end
end
if Asynchronous Update then

if η == 1 then
rit+1(s

i
t+1, j) = −e−µ(1− T ij

t )
else

rit+1(s
i
t+1, j) = −(1− T ij

t )
end
if RQi

t−1(s
i
t−1, j) then // RQi

t−1(s
i
t−1, j) is last

expected future reward received from j

update Qij
t using rit+1 and RQi

t−1(s
i
t−1, j)

else // ζ is the loop penalising parameter
Qi

t+1(s
i
t, a

i
t = nj)← Qij

t − ζ
end
ai
t ← argmax

ni
t∈Ni

t

Qi
t(s

i
t, a

i
t)

end

node i has adequate observations about node k, it will use the
most recent reward rit−δ(s

i
t−δ, k) to update the Qik

t . Otherwise,
it will ignore the received estimation and keep the Q value
unchanged. This technique immunizes RRP from adopting fake
second-hand information without being certain enough about
the sender’s trustworthiness. Moreover, it allows the protocol
to respond quickly to network dynamicity.

On the other hand, although the proposed synchronous
updating is very resource-efficient, as presented in the next
section, it could be slow to converge and may need more
learning time as the learning agent could keep forwarding
packets to the wrong path for the whole time unit. This usually
happens if loops occur when the learning agent is exploring
the network. Unlike traditional learning models where the
learning agent risks losing one packet for each exploring
step, the synchronous updating model could lose more packets
because it keeps forwarding to one next-hop during one time
unit. Therefore, RRP introduces a loop detection and avoiding
algorithm as shown in algorithm 3. Once a loop is detected,
or there is a possibility for a loop to occur, the asynchronous
update is called as shown in algorithm 2. The updating process
penalizes the corresponding Q value which allows to choose
another promising next hop. This technique enables RRP to
perform efficiently and converge swiftly.

C. Trust Evaluation

RRP incorporates a trust management scheme as a security
measure to ensure reliable data transfer. Several TM schemes

Algorithm 3: Loop Processing
Input: A packet to forward: P sd

t
Output: Updated Routing
while TRUE do

if ∀ i ∈ N receives P id
t+δ then // P id

t+δ is a packet from i
to d after time lag δ

Asynchronous Q table update as in algorithm 2
ai
t ← argmax

ni
t∈Ni

t

Qi
t(s

i
t, a

i
t)

Update P id
t

Send P id
t

end
if ∀ i ∈ N receives P jd

t ∧ ai
t = j then

Asynchronous Q table update as in algorithm 2
ai
t ← argmax

ni
t∈Ni

t

Qi
t(s

i
t, a

i
t)

Forward P jd
t

end
end

have been evaluated to choose the best candidate. LTMS [14]
has been adopted for mainly two reasons. First, it has been
developed to fit WMSN requirements. Second, it is an attack-
resistant TM scheme. LTMS is a distributed trust evaluation
scheme where each node has its trust evaluation engine as
shown in algorithm 4. LTMS evaluates the forwarding service of
adjacent nodes with a view to differentiate between trustworthy
and untrustworthy ones. The trust scheme comprises two parts.
The first is a novel updating algorithm to promptly detect any
changes in forwarding behaviour. It integrates the slopes bt and
dt with beta distribution levels. This technique allows αt to
decrease and may accumulate a negative value during the attack.
At the same time, βt develops a positive value, giving more
weight to any misbehaviour and making it harder to forget. The
second part is an on-off protection module designed to detect
on-off attacks. Trust management schemes are vulnerable to
on-off attacks where smart adversaries change their behaviour
between good and bad with a view to keeping themselves
undetected. The on-off module in LTMS is designed to detect
repeated attack patterns. It incorporates the short and long-term
trust values along with the novel updating mechanism to defeat
on-off attacks. This on-ff protection module is only triggered
when an on-off attack is detected.

V. EVALUATION AND PERFORMANCE RESULTS

This section simulates and analyzes the RRP routing protocol.
Various simulation scenarios have been considered under
different dropping attacks.

A. Experimental Setup

A WMSN of 64 SNs has been adopted to comply with IEEE
802.15.6 [15]. The SNs have been distributed randomly in an
area of 50m× 10m mimicking a ward in a field hospital as
shown in Fig. 1. One SN acts as a sink while other nodes have
the ability to relay frames for other SNs. The traffic is generated
using the exponential probability density function. RRP has
been benchmarked with QRT [12], which is an extension to
RL-QRP routing protocol [13] where the authors integrated
reputation and trust scheme to deal with non-cooperative and
misbehaving nodes in biomedical sensor networks. In order



Algorithm 4: Secure Trust Evaluation
Input: Observations & beta shape parameters
Output: Trust value
initialization;
while TRUE do

if bt−1 ≤ 0 && dt−1 > 0 then
αt = λ(αt−1 + bt−1) + st;
βt = λ(βt−1 + dt−1) + ut;
bt = αt − αt−1;
dt = βt − βt−1;

else
αt = λ.αt−1 + st;
βt = λ.βt−1 + ut;
bt = αt − αt−1;
dt = βt − βt−1;

end
if αt ≤ 0 then

Repij
t = 0;

else
Repij

t =
αt

αt+βt
;

end
if T ij

t−1 ≥ thr1 && Repij
t < thr1 then

if malicious > 0 then
cycle = t−malicious;
malicious = 0;

else
malicious = t;

end
end
if cycle > 0 && Trust(t− 1) < thr2 then

ShRepij
t = mean(T ij

t−cycle:t);
T ij
t = min(ShRepij

t , Repij
t );

else
T ij
t = Repij

t ;
cycle = 0;

end
end

TABLE I: Simulation Parameters

Parameter Value
Application Poisson random traffic
Exponential transmission in-
terval µ 1, 2, 4, 8

Radio Range 5m
Propagation loss model Range propagation loss
Number of SN 64
Time unit 1s
Simulation Time 500s
Learning Period 50s
Learning rate η 0.5
Discount factor 0.5
ε−greedy 0.1

to ensure a fair comparison between the two protocols, the
reported parameters setting of QRT have been adopted. Table
I shows the setting of simulation parameters. The learning
rate η and the discount factor γ have been set to 0.5. The
experiments were carried out using a discrete event simulator
based on Simpy [22]. The simulation time is 500s where the
first 50s is regarded as a training period. During the simulation,
the agents adopt the ε−greedy strategy to balance between
exploration and exploitation where ε is set to 0.1 as in QRT.
Each experiment has been repeated 30 times. The results are
averaged out and reported with one standard deviation.

B. Normal Operation

In this experiment, the performance of RRP has been
evaluated, assuming that there are no malicious activities inside
the network. Benign nodes randomly drop around 1% of the
received packets to relay. This experiment aims to ensure that
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Fig. 3: The average delivery ratio and hop counts under normal
operation

RRP chooses the optimal path to the destination with the
highest delivery ratio. Some SNs generate low traffic rates
around 1 packet/s, such as heart rate sensors [23]. Therefore,
the experiment has been run for four different traffic rates
starting at µ = 1p/s and doubling it each time. Fig. 3a and
Fig. 3b show the average delivery ratio and the average hop
counts with one standard deviation, respectively. Results show
that RRP achieves the highest delivery ratio with minimal
variability, while QRT did not work well for the lowest traffic
rate with a delivery ratio of 75%. QRT’s performance shows
a slight improvement for traffic rates starting at µ = 2p/s
to achieve around 90%; however, the high variability of the
delivery ratio confirms that QRT struggles to converge. On
the other hand, Fig. 3b reveals that RRP always chooses the
shortest path to the destination. Moreover, the performance
is slightly enhanced by generating more traffic because the
learning agents get more evidence from the environment to
enhance their routing decisions.

C. Blackhole Attacks

Blackhole attack is a well-known attack in WSN where
compromised nodes drop all the received frames instead
of forwarding them to the destination, which causes severe
detrimental consequences, especially for medical applications
[4]. In this experiment, the delivery ratio and the hop counts
are evaluated under different blackhole attacks. The number of
malicious nodes was doubled each time, starting from one and
up to 50% of the total number of the SNs. The experiment was
run for 30 times for each parameters setting, and then the results
are averaged out and reported with one standard deviation as
shown in Fig. 4a and Fig. 4b. The results reveal an outstanding
performance for RRP in contrast with QRT. Although QRT
performed well when there is only one malicious node, the
delivery ratio sharply dropped by introducing more malicious
SNs to the network. In contrast with QRT, RRP showed a
steady superior performance even when 50% of the SNs are
malicious. It is worth mentioning that the slight decrease in the
delivery ratio of RRP when increasing the number of malicious
SNs is due to ε-greedy strategy where 10% of the actions are
made randomly with a view to exploring the environment.
On the other hand, the hop count results explain how each
protocol responds to the hostile environment. Fig. 4b shows
that RRP performs better when there are up to 8 malicious
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Fig. 4: The average delivery ratio and hop counts under
blackhole attacks

SNs. When the number of malicious nodes increases, RRP
needs more hops to reach the destination to avoid malicious
SNs. However, in QRT, the number of hops needed to get to
the destination is decreased unexpectedly by increasing the
number of malicious nodes, which explains the poor delivery
ratio. These results indicate that QRT failed to build reliable
paths that avoid malicious nodes and confirm that RRP chooses
the most reliable shortest paths.

D. Selective Forwarding Attack

In selective forwarding attack, the malicious nodes forward
some frames and drop others selectively [16]. This behaviour is
hard to detect as the same malicious node could be trustworthy
for some nodes and untrustworthy for others. In this experiment,
RRP has been evaluated under selective forwarding attack,
where malicious nodes randomly choose a list of neighbors not
to relay their frames. The malicious node randomly chooses
a list of several neighbors xi

t to drop their frames at the
beginning of the simulation. Fig. 5a shows the delivery ratio
under selective forwarding attack. RRP outperforms QRT and
provides a reliable delivery with minimal variability, while QRT
shows a high variability when the number of malicious nodes
is less than 25% of the total number of SNs, which indicates
a converging difficulty. By increasing the number of malicious
nodes, the delivery ratio of QRT decreases significantly. On
the other hand, the hop counts results shown in Fig. 5b reveals
how each protocol responds to the hostile environment. RRP
performs better when the number of malicious nodes is less
than 25%. Moreover, when the number of malicious nodes
goes up to 50%, the hop counts gradually increase to avoid
any path through malicious nodes with a slight increase in the
variability, which indicates the alternative paths found out by
RRP. In contrast, QRT needs more hop counts for the limited
number of malicious nodes. Furthermore, it fails to find reliable
paths as inferred from its low delivery ratio and hop counts.

E. Sinkhole Attacks

Sinkhole attack is one of the most destructive attacks on
routing protocols. The malicious node attracts the network
traffic by advertising false routing information [24]. This
route poisoning attack is an easy to launch and extremely
hazardous attack. In RL-based routing protocols, the learning
agents exchange routing information to update the Q table and

0 10 20 30
Number of Malicious Nodes

85

90

95

100

De
liv

er
y 

Ra
tio

 (%
)

RRP
QRT

(a)

0 10 20 30
Number of Malicious Nodes

2.8

3.0

3.2

Ho
p 

Co
un

ts

RRP
QRT

(b)

Fig. 5: The delivery ratio and hop counts under selective
forwarding attacks

evaluate the optimal paths as described in algorithm 1. When
the adversary advertises false overestimated information to a
specific destination, it can poison the Q tables of other nodes
and attract all the traffic in order to drop it. In this experiment,
the robustness of RRP is evaluated under different sinkhole
attacks. Four scenarios have been considered in this experiment.
The malicious SNs advertise the actual Q values increased by
25%, 50%, 75% and 100%. In the last scenario, when the Q
values are increased by 100%, the malicious SNs will advertise
the value zero to the network, which is the highest Q value
that could be achieved as the reward function is designed to
penalize dropping activities to ensure that the learning agents
will always choose the most reliable shortest path. Fig. 6a
and 6c show the delivery ratio for only two scenarios 50%
and 100% due to space constraints. What stands out in these
figures is the stable delivery ratio of RRP for different route
poisoning levels, which reveals a high resiliency to sinkhole
attacks. Moreover, Fig. 6b and 6d reveal how RRP finds the
optimal paths through a hostile environment. RRP shows the
same behaviour as previous experiments when the number of
malicious SNs increases. It avoids malicious SNs by choosing
the most reliable path with the minimal achievable hop counts.
It is worth noting that in Fig. 6d when the malicious SNs
advertise the value zero as their best estimation, RRP shows a
slight increase in hop counts even for a low number of malicious
SNs, but with a high delivery ratio. The reason behind this
behaviour is that advertising this level of fake information
affects the Q tables of the surrounding nodes, which makes the
learning agent even tries to avoid the surrounding neighbors
of malicious SNs.

F. On-Off Attacks

Although trust management schemes are used to detect
malicious activities, they are vulnerable to on-off attacks, where
smart adversaries can change their behaviour alternately with
a view to cheating the TMS and keep themselves undetected
[25]. The failure to detect on-off attacks negatively impacts
the performance of trust-based routing protocols by making
them take wrong routing decisions. The on-off attack cycle
consists of one on and one off periods. During the on period,
the adversary drops packets intentionally, while during the off
period, it behaves well to rebuild its trust score and keep itself
undetected. In this experiment, we evaluate the performance
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Fig. 6: The average delivery ratio and hop counts under sinkhole
attacks
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Fig. 7: The delivery ratio and hop counts for different On-Off
attacks’ cycles

under different on-off attacks’ cycles. The on-off attack’s cycle
varies from 10s to 40s. Fig. 7a and 7c show the delivery ratio
for only two cycles 20s and 40s due to space constraints,
while Fig. 7b and 7d show the hop counts’ results. RRP
shows superior and stable performance for all on-off cycles. It
achieved an average delivery ratio between around 90% and
97% for a variable number of malicious nodes. The average
hop counts ranged between 2.75 and 3.2 with a tendency to
use longer and more reliable paths when increasing the number
of malicious nodes.

G. Network Dynamicity and Convergence

The convergence time is crucial in routing applications
as slow convergence results in more packets to lose, which
could endanger the patient’s life. Moreover, nodes’ mobility
could change the environment and require the algorithm to
re-converge again. In this experiment, the convergence has
been studied for the stationary and non-stationary environment
under blackhole attacks where 50% of the nodes are malicious.
First, stationary SNs have been considered to compare the con-
vergence time of both protocols. Fig. 8a shows the convergence
time of both protocols. RRP is able to converge with less than
20s thanks to its asynchronous updating algorithm. However,
QRT needs around double this time to converge. In the second
scenario, the mobility has been introduced to study how both
protocols re-converge in a dynamic environment. The patients
can change their locations within the hospital ward. Therefore,
in this experiment, two different patients change their locations
at times 50s and 100s. The patient could have up to 3 SNs.
Thus, three simulations have been run for 1, 2, and 3 randomly
chosen SNs. The results show a fast re-convergence in all cases.
Fig. 8b shows the results for 3 SNs randomly chosen to change
their locations at 50s and 100s. RRP shows a slight decrease in
delivery ratio during the movements. However, it recovers fast
and re-converges again. On the other hand, QRT experienced a
noticeable decrease with difficulty in re-converging, especially
after the second movement.
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Fig. 8: The average convergence time

H. Computational Overhead

In this subsection, we compare the average processing time
and memory consumption of both protocols RRP and QRT.
The experiment was carried out on an Intel Core i5-8500T
processor at 2.1GHz and 8GB RAM. The simulation has been
run for 30 times, and then the results are averaged out and
reported with one standard deviation. The network is in normal
operation and no attacks are launched during the simulation.
The traffic rate is set to µ = 4p/s as QRT does not perform
properly for lower traffic rates.

Fig. 9a shows the average processing time of RRP and QRT.
The results show that QRT consumes more processing time
than RRP. Moreover, results show high variability of around
23%. This variability indicates that the algorithm sometimes
takes longer to converge; hence, more packets will loop inside
the network before reaching their destination. On the other
hand, RRP consumes less processing time and saves around



35% of the processing time of QRT. Moreover, RRP shows
almost no variability, indicating the stability of performance
and the ability to converge at approximately the same time for
different simulation runs.

The second important performance metric is memory
consumption. Average memory consumption was calculated
and reported with one standard deviation in Fig. 9b. The
memory allocation has been traced during the simulation using
tracemalloc [26], a trace memory allocation module. Results
show that QRT consumes a considerable amount of memory,
around 128MB, with a high variability of around 52%. On
the other hand, RRP is a memory conservative protocol. It
consumes a decent amount of memory, around 42MB, which
saves around 67% of the memory consumed by QRT. Moreover,
RRP shows almost no variability, indicating that RRP did
not experience any converging difficulties thanks to its novel
updating mechanisms.
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Fig. 9: The average processing time and memory consumption

VI. CONCLUSION AND FUTURE WORK

There is still a persistent need for a lightweight and secure
routing protocol for WMSN. Although many routing protocols
have been proposed for WSN, they are not necessarily suitable
for practically deploying on WMSN due to their different
network operation conditions, network topology, resource
constraints and sensitivity of applications. In this paper, we
proposed a novel hybrid routing protocol that combines a new
RL model design with an effective trust management scheme.
Simulation results show a superior performance even under
complicated attacks coupled with minimal resource footprint,
making it a suitable candidate for WMSNs deployment. RRP
will be further developed to consider more network operation
parameters in the future, such as energy consumption. Moreover,
the learning parameters used in this paper will be deeply
investigated to find the optimal parameters setting.
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