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Abstract
The traditional client-based HTTP adaptation strategies do not explicitly coordinate
between the clients, servers, and cellular networks. A lack of coordination leads to
suboptimal user experience. In addition to optimizing Quality of Experience (QoE), other
challenges in adapting HTTP adaptive streaming (HAS) to the cellular environment are
overcoming unfair allocation of the video rate and inefficient utilization of the bandwidth
under the high-dynamics cellular links. Furthermore, the majority of the adaptive strate-
gies ignore important video content characteristics and HAS client information, such as
segment duration, buffer size, and video duration, in the video quality selection process.
In this paper, we present a content-aware hybrid multi-access edge computing (MEC)-
assisted quality adaptation algorithm by taking advantage of the capabilities of edge cloud
computing. The proposed algorithm exploits video content characteristics, HAS client
settings, and application-layer information to jointly adapt the bitrates of multiple clients.
We design separate strategies to optimize the performance of short and long duration
videos. We then demonstrate the efficiency of our algorithm against client-based solu-
tions as well as MEC-assisted algorithms. The proposed algorithm guarantees high QoE,
equitably selects video rates for clients, and efficiently utilizes the bandwidth for both
short and long duration videos. The results from our extensive experiments reveal that the
proposed long video adaptation algorithm outperforms state-of-the-art algorithms, with
improvements in average video rate, QoE, fairness, and bandwidth utilization of 0.4%–
12.3%, 8%–65%, 3.3%–5.7%, and 60%–130%, respectively. Furthermore, when high
bandwidth is available to competing clients, the proposed short video adaptation algo-
rithm improves QoE by 11.1% compared to the long video adaptation algorithm.
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1 Introduction

Multimedia content accounts for the majority of Internet traffic. According to the Cisco Visual
Networking Index, 82% of global mobile data traffic will be video traffic by 2022 [8]. To
handle traffic demand related to multimedia, HTTP adaptive streaming (HAS) solutions are
often used. These solutions include Apple’s HTTP Live Streaming (HLS), Adobe’s HTTP
Dynamic Streaming (HDS), Microsoft’s ISS Smoothing Streaming, and Dynamic Adaptive
Streaming over HTTP (DASH) developed under MPEG and standardized by the ISO/IEC.

In HAS, video content is encoded at multiple video rates and is stored on an HTTP server.
The video content is fragmented into segments of fixed durations. The adaptive bitrate
(ABR) algorithms run on the HTTP clients and adapt the video quality according to the
network conditions. The HAS clients download the segments into the playback buffer
before they are sent to the video player. The objective of the adaptation algorithms is to
optimize the user experience by meeting conflicting video quality objectives. These
objectives include selecting the highest feasible set of video bitrates, avoiding unneces-
sary video bitrate switches, and preserving the buffer level to avoid playback interrup-
tions [10, 11, 24, 29, 39].

Traditionally, the ABR algorithms run on the HTTP client, and the clients are unaware of
competing clients and radio channels. It has been shown that competing clients cannot achieve
fair performance when the air interface is a bottleneck [6]. Furthermore, the unfairness
increases as the number of competing clients increase. Similarly, competing clients cannot
coordinate with each other to efficiently utilize the bandwidth. Recently, a multi-access edge
computing (MEC) paradigm has emerged that offers computation capabilities at the edge of a
mobile network by deploying servers within the radio access networks. In addition, MEC
provides real-time access to application and radio access network (RAN) information. The
computational capabilities of MEC allow for cell-wide central adaptation of multiple clients
competing for bandwidths.

In our previous work [36], we analyzed the performance of MEC-assisted and client-based
rate-adaptation algorithms under varying client, server, dataset, and network settings. The
existing algorithms developed fixed control rules to select the video quality based on the
estimated throughput [18, 42], the playback buffer level [14], or a combination of the two
parameters [15, 28, 33, 34]. The results in [36] revealed that the algorithms require significant
tuning, and performance fluctuates from one network setting to the other. This leads to the
algorithms providing inconsistent QoE in different environments. The video streaming
services deploy segment durations differently. Microsoft’s Smooth Streaming and
Adobe’s HTTP Dynamic Streaming offer segment durations of 2 seconds and 4 seconds,
respectively [1, 47]. With the shorter segment duration, the client has more opportunities
to adapt the video rate, compared to the longer duration. In a highly unstable network,
the client could adjust the video rate quickly, downloading smaller segments. Similarly,
different video players offer different buffer sizes. The buffer-based algorithms adapt the
video rates aggressively or conservatively based on the playback buffer level. As the
buffer level increases, the algorithms select the video rate aggressively. A smaller buffer
would fill up quickly, compared to a larger buffer. This would allow the adaptation
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algorithms to aggressively increase the video rate. However, a larger buffer decreases the
risk of playback interruption in case of a mismatch between the selected video rate and
the available bandwidth. The ABR algorithms should be able to guarantee QoE under
different settings. However, the existing adaptation algorithms do not consider buffer
sizes and segment durations to adapt the video quality [36]. In this work, in addition to
the playback buffer level, we also consider clients’ buffer sizes and segment duration to
decide video quality.

The results in [36] also reveal that the existing algorithms give precedence to one specific
video quality objective over others. This trend is observed in both MEC-assisted and client-
based algorithms. It is easier to meet just one of the conflicting video quality objectives. For
example, the video can be streamed at the highest available video rate throughout the
streaming session. This would increase the risk of playback interruptions in an unstable
environment. Similarly, the video can be streamed at the lowest available video rate to
minimize the risk of playback interruption. However, this would lead to poor video quality.
The aim of this work is to propose an adaptive algorithm that optimizes the QoE by
simultaneously maximizing all metrics.

Trends in video content have changed drastically since the advent of social media. The
durations of video content from online video-sharing platforms such as YouTube have been
drastically reduced over the years [2]. The average duration of the top 10 videos on Facebook
was 128 s in 2018 [17]. Similarly, the average duration of movie trailers for over 20,000
movies released between 2000 and 2016 was 114.2 s [13]. In a mobile network, the bandwidth
for HAS clients depends on multiple factors, including propagation distance, fading, interfer-
ence, and user mobility. The throughput may change drastically while downloading the
segments. Therefore, the existing ABR algorithms strive to keep the buffer filled to a
predefined threshold to minimize the risk of playback interruption [26, 33, 34]. To keep the
buffer above a predefined threshold, the algorithms compromise on video quality. This
strategy is understandable while streaming a long video, such as a complete movie. However,
with a short video, such as a movie trailer, the user expects to watch the complete video at the
most feasible video quality. Therefore, to select video rates, it makes sense to design different
strategies for short and long videos. To this end, we design separate quality adaptation
algorithms for short and long duration videos.

The understanding of MEC-assisted ABR strategies is still in the early stages. In this paper,
we present a content-aware edge computing-assisted rate adaptation method for a single cell
with multiple clients to centrally optimize the QoE of competing clients. The contributions of
this research are as follows.

& We design an integer non-linear programming (INLP) optimization model that jointly
optimizes the QoE, fairness, and bandwidth utilization of HAS clients in a cellular network
with MEC capabilities.

& Due to the NP-Hardness of the problem, we designed content-aware greedy heuristic
algorithms that solve the rate adaptation optimization problem for short and long duration
videos. The algorithms consider video duration, segment duration, clients’ playback buffer
size, estimated throughput, and playback buffer level to jointly select the video rates for
HAS clients.

& We conducted extensive experiments to evaluate the performance of the proposed algo-
rithms with varied segment durations, playback buffer sizes, numbers of competing clients,
clients’ moving speeds, and video durations.
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& The results from our extensive experiments show that the proposed algorithm guarantees
QoE under varying client, server, dataset, and network settings. The proposed algorithm
optimizes QoE by simultaneously enhancing all video quality metrics.

& The results reveal that the proposed long video adaptation algorithm outperforms state-of-
the-art algorithms, with average improvements in video rate, QoE, fairness, and bandwidth
utilization ranging from 7.3%–12.3%, 8%–28%, 3.3%–5.7%, and 60%–130%, respective-
ly. Additionally, when high bandwidth is available to clients, the proposed short video
algorithm downloads 6% higher-quality segments, experiences 45% fewer switches, and
improved QoE by 11.1%, compared to the proposed long video adaptation algorithm.

2 Related work

The ABR algorithms can be divided into three methods: 1) throughput-based, 2) buffer-based,
and 3) hybrids. Throughput-based algorithms select the video quality based on the throughput
observed while downloading segments [36] [5, 23, 27]. It has been shown that they cannot
accurately estimate the bandwidth when multiple clients compete against a network bottleneck
[22]. Therefore, some ABR algorithms suggest observing only the playback buffer to select the
video quality [18, 41]. Multiple researchers have used a combination of playback buffer and
estimated throughput to pick video quality [13, 14, 34, 42]. In [20], the authors used segment
size in addition to throughput and the playback buffer for video rate adaptation. However, all
these algorithms targeted client-side quality adaptation. Moreover, these algorithms do not
target fair selection of the video rates in a multi-client environment. FESTIVE [6] uses an
approach to improve HAS fairness by using a harmonic bandwidth estimator and randomizing
the scheduling of the requested segments. Li et al. [10] presented an algorithm called Probe
and Adapt (Panda) that probes for fair bandwidth sharing and adapts the video rate accord-
ingly. Although these algorithms improve the fairness and stability in a wired network, they
perform poorly under dynamic cellular links due to TCP unfairness. The Panda probing
mechanism follows an additive-increase/multiplicative-decrease (AIMD) strategy. In a cellular
network, a client close to the edge of the base station may observe low throughput due to
propagation distance. When that client moves closer to the base station, it will observe higher
throughput. However, due to Panda’s AIMD strategy, it will take multiple segments to
increase the client’s estimated throughput.

In [9], the authors proposed a server-side scheme using feedback control theory to execute
measurement and control at the HAS server. The clients’ video qualities are jointly adapted at
the server. However, the scheme is not specifically designed for the cellular environment, and
does not impose any constraints on radio resources, which might lead to overestimating or
underestimating the video rates for adaptation. Petrangeli et al. [30] proposed a method to
fairly utilize the bandwidth when multiple clients greedily compete for it. However, their
proposed objective function and adaptation scheme do not consider the trade-off between the
QoE of the clients and fairness. Other researchers [7, 19, 48] have proposed schemes that
combine the designs of quality adaptation and resource allocation in a multi-client cellular
environment. However, these schemes require modification of the standard cellular
infrastructure.

The concept of MEC has been proposed by the European Telecommunications Standards
Institute (ETSI) to satisfy the requirements of 5G. Yang et al. [44] implemented a proof-of-
concept for a MEC-assisted mobile video streaming service. Tran et al. jointly utilized the
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processing capability of MEC along with edge caching to improve a streaming system [43, 45].
However, the focus of these works was to reduce video delivery latency without considering
factors that impact the QoE of the clients. In [25], the authors proposed an MEC-assisted
adaptation algorithm and a client to edge server mapping strategy to quantify the benefits of
network-assisted solution. The authors compared the effect of network topology and inter-
arrival time on the performance of MEC-assisted algorithm and purely client-based adaptation
algorithms. The results in [25] showed that the client to edge server mapping mechanism led to
clients achieving higher throughput. MEC-assisted algorithm utilized the higher available
throughput to download higher quality segments compared to client-based algorithms. The
MEC-assisted algorithm outperformed client-based algorithms in some of the video quality
objectives when the achievable throughput was moderately high. However, the authors did not
discuss the performance of the adaptation algorithms without employing client to serve edge
mapping strategy. In addition, the authors did not use QoE and bandwidth utilization metric to
compare the performance of the algorithms. Authors used a simple mathematical model to
characterize the radio link as a function of distance of client from base station. In cellular
networks, radio link depends on multiple factors, including propagation distance, fading,
shadowing, and interference. The authors ignore factors such as fading, shadowing and
interference in their mathematical model. Moreover, the authors ignored important content
information in the design of the adaptation algorithm. In [46], the authors proposed an edge-
assisted adaptive video streaming scheme based on a dueling deep Q-learning network.
The objective of the video streaming scheme was to optimize QoE by jointly considering
the physical layer transmission bandwidth and playback buffer status. In our previous
work [35], we presented joint throughput estimation that assists an adaptation algorithm
in fairly assigning video rates, as well as MEC-assisted rate adaptation method to
enhance the viewing experience. These works [3, 21, 25, 35, 43, 45, 46] focused on
jointly optimizing the QoE in a cellular environment. However, they do not focus on
efficient utilization of the bandwidth by a HAS client. Moreover, these works do not take
into account the video content and HAS client information. Authors in [12] introduced
an edge- and SDN-assisted video streaming framework that exploited the capability of
Software Defined Network (SDN) and Network Function Virtualization (NFV). This
work focused on improving the user experience by improving playback video rate and
minimizing playback interruptions. In [36], we showed the impact of segment duration,
client buffer size, the number of competing clients, and clients’ arrival times on the
performance of HAS algorithms. The results revealed that the rate adaptation algorithms
must consider these parameters in order to guarantee QoE under different settings.

Different from existing works, the proposed algorithm investigates the impact of content-
aware joint optimization of QoE, fairness, and bandwidth utilization for video streaming in
MEC environments. The proposed algorithm jointly adapts video rates by exploiting cell-wide
HAS clients’ information, video content details, and device features. Furthermore, the pro-
posed method uses different strategies to adapt video rates to stream short and long duration
videos.

3 Multi-access edge computing assisted streaming

In this section, we describe the proposed system.
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3.1 Architecture overview

Traditionally, the adaptation module runs on the HAS client. HAS clients are oblivious to the
decisions made by other competing clients. Moreover, clients unfairly utilize the available
bandwidth in the presence of competing clients [22]. HAS clients rely on the underlying TCP
to fairly and accurately estimate throughput; however, the underlying TCP is inaccurate and
unfair in a cellular environment. The edge cloud can access RAN information and is compu-
tationally far more powerful than HAS clients. It is thus logical to shift the adaptation module
from the client to the edge cloud. The adaptation module at the edge cloud exploits the channel
knowledge of multiple streams to jointly adapt the video quality of the clients.

Figure 1 illustrates the MEC HAS system for adaptive video streaming over a cellular
network. The HAS server stores video content encoded into a set of m video rates R = {R1, R2,
R3,…, Rm}. Each representation of a video is split into multiple fixed-duration segments, τ. A
set of N HAS clients subscribes to HAS services, and each client is indexed by i, where i = 1,
2, …, N. The edge cloud is deployed at the base station to enhance the mobile services, and
cellular entities such as the cellular scheduler operate in the same way as conventional cellular
networks.

The client initiates streaming by requesting information about the stored content from the
HAS server. In response, the HAS server sends the media presentation description (MPD) so
the adaptation module at the edge cloud and the HAS client have information on the available
video representations. Then, the HAS client requests a video segment based on the available
application layer information. The request from the HAS client is treated as a suggestion by the
adaptation module for the edge cloud. Under conventional client-side adaptation, the cellular
network forwards the request to the HAS server. In MEC-assisted adaptation, the edge cloud
intercepts the request. The adaptation module overwrites the suggested video rate by the client,
Rc, based on the cell-wide optimization of the clients. In addition to the information available

Base station Edge Cloud Base station Edge Cloud Base station Edge Cloud

Video Server

HTTP GET

Content delivery 
network

Bitrate R1

Bitrate R2

Bitrate R3

Fig. 1 Streaming architecture for multi-access edge computing–assisted video streaming
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in the MPD sent by the server, clients’ playback information for adaptation, such as the
playback buffer level, device capabilities, observed throughput, and QoE status of the clients,
is embedded in the feedback from clients. This is feasible, because the 3rd Generation
Partnership Project standardized QoE reporting for clients by using the HTTP POST request
carrying XML-formatted metadata in the body [32]. The video rate adaptation results of the
adaptation module for the edge cloud are then delivered to the HAS server for streaming the
next segment. In this manner, the edge cloud can jointly optimize the user experience of the
HAS client without modifying the client or server. The list of parameters and their descriptions
have been summarized in Table 1.

The downloaded segments are stored in the playback buffer, which contains the unviewed
video. Let B(t) ϵ [0, Bmax] be the buffer occupancy at time t. Different video players provide
different buffer sizes, Bmax, depending on the service provider and storage limitations on the
player. Figure 2 depicts the dynamics of the playback buffer. At time tk, the client downloads
the kth segment encoded at the ith video rate, Ri

k. The size of the segment is equal to Ri
k × τ. The

download time of the segment will be (Ri
k × τ/Tk) where Tk is the throughput observed by

the client during the download of the kth segment. Once segment k is downloaded, the
client waits for Δtk seconds before sending the request for the kth + 1 segment. Waiting
time is given by:

Δtk ¼ 0; B tð Þ < Bmax

τ ; otherwise

�
ð1Þ

Table 1 Cellular Network Configuration

N, S Number of DASH clients and total number of segments downloaded by the client

R, Ri
k Set of available discrete video rates and kth segment encoded at the ith video rate

Rc Video rate suggested by the client to edge cloud
Rmax, Rmin Maximum and minimum video rate available
Bk, Bmax Buffer occupancy level at the download of kth segment and client’s buffer size
SNR Signal to noise ratio
Tk Throughput during the download of kth segment
Cj jth client’s channel capacity
m Number of available video rates
k Index of the current segment
τ Segment duration
Pr, No Received power and the power spectral density of additive white Gaussian noise
BW, Wj Total bandwidth and the bandwidth allocated to the jth client
PL Path loss
Qj Average video bitrate over downloaded segments by the jth client
QSj Average magnitude of the changes in the quality from one segment to another
Fj Fairness contribution by allocating video rate to client j during its streaming session
IEj Bandwidth inefficiency by allocating video rates to client j during its streaming session
IR Total interruption time
xij Decision variable that defines number of clients streaming the ith video rate stored in the server
tdur,Δtk Video duration and time the client waits before sending request for the next (k+1) segment
ρ, β, φ, θ Adjustable weighting parameters of average bitrate, bitrate switching, fairness, and bandwidth

inefficiency, respectively
δs, δIE, δF Threshold videos for switching level, inefficiency, and fairness

Multimedia Tools and Applications



Throughput Tk at time t is calculated as follows:

tkþ1 ¼ tk þ Rk
i � τ

Tk þ Δtk ð2Þ

Tk ¼ 1

tkþ1−tk þ Δtk
∫t
kþ1

tk−Δtk T tdt ð3Þ

Let Bk be the buffer level before the start of the download of the kth + 1 segment; then, Bk + 1

is expressed as:

Bkþ1 ¼ Bk þ τ− τ � Rk
i

Tk

� �
−Δtk

� �
þ

ð4Þ

The notation (x)+ = max (x, 0) ensures that the term is always positive. Eq. 4 shows that if Bk <
τ× Ri

k /Tk, the buffer will be empty before the video player completely downloads the kth

segment. Note that the segment duration plays an important role in the change in buffer
occupancy during the download of the segment. A longer segment duration increases the risk
of playback interruption in case of a mismatch between the selected video rate and the
throughput.

3.1. Channel Model

We consider a cell that consists of N HAS clients that stream video content and are served by a
base station. The spatial distributions of the base station and the HAS clients are mutually
independent. Ignoring interference among clients, the Signal-to-Noise-Ratio (SNR) of the
HAS client can be calculated with:

SNR ¼ Pr

NoW
ð5Þ

where Pr, No, and W denote the received power, the power spectral density of additive white
Gaussian noise, and the client’s bandwidth, respectively. The received power is related to the
path loss and the transmitted power. The path loss, PL(d), is a function of propagation
distance [31]:

PL dð Þ ¼ 128:1þ 37:6*log10 dð Þð Þ dBð Þ ð6Þ
where d is the distance between the HAS client and the base station. Therefore, (5)
can be expressed as:

Fig. 2 Dynamics of playback buffer
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SNR ¼ PtPL dð Þ
NoW

ð7Þ

where Pt denotes the transmitted power.
Assume the total bandwidth is BW, and the bandwidth allocated to the jth client is ωj.

Ignoring interference among the clients, the jth client’s channel capacity, Cj, can be calculated
according to Shannon’s theorem [31]:

C j ¼ W jlog2 1þ SNRð Þ ¼ W jlog2 1þ PtPL dð Þ
NoW j

� �
ð8Þ

The higher the client’s channel capacity, Cj, the higher the throughput, Tj, observed by the jth

client during the download of a segment. Note that the channel capacity depends on the
propagation distance. HAS clients may be located at different distances from the base station.
A client close to the base station will achieve higher throughput, compared to a client located at
the edge of the cell. On one hand, selecting the highest feasible video rate for both clients
would decrease the fairness. On the other hand, selecting a video rate higher than the available
throughput for the user at the edge of the circle (in order to improve fairness) would lead to
buffer underflow. To this end, selecting a low video rate for the client closer to the base station
would improve fairness, but increases bandwidth inefficiency. Therefore, optimizing both
bandwidth utilization and fairness for the clients in a cellular environment is a challenging task.

3.2. Quality of Experience

A comprehensive survey on QoE under HAS determined the factors that affect user experience
[38]. These factors include selecting the highest feasible set of video bitrates, avoiding
unnecessary video bitrate switches, and avoiding playback interruption. Playback interruptions
and selection of video bitrates affect the user experience the most [16]. There is a tradeoff
between selecting the highest feasible video rate and the risk of playback interruption. We aim
to provide optimal QoE based on the abovementioned conflicting criteria.

The average video bitrate over downloaded segments by the jth client is given by:

Qj ¼
∑S

k¼1 Rk
ij

� �
S

ð9Þ

where Rk
ij is the ith video rate assigned to the jth client, k is the segment index, and S is the total

number of segments downloaded by the client.
Frequent video rate switches inversely affect the user experience. Abrupt switching impairs

QoE more than smooth switching [11]. Magnitude of the changes in the quality from one
segment to another is given by:

QS j ¼
∑S

k¼2R
k
ij−R

k−1
ij

Number of Switches
ð10Þ

The client experiences playback interruptions if the download time (τ×Rk
ij /Tk) is higher than

the playback buffer occupancy level. The total interruption time, IR, is ∑S
k¼1

τ � Rk
i =T

k−Bk
� �

þ.

Multimedia Tools and Applications



In this study, we used the same QoE metric used by the authors in [45], which is defined as
follows:

QoE j ¼ ∑S
k¼1q Rk

ij

� �
−μIRj−∑S

k¼1jq Rk
ij

� �
−q Rk−1

ij

� �
j ð11Þ

For a video fragmented into N segments, q(Rk
i ) maps the video rate to the quality perceived by

the viewer. IRj represents the total rebuffering time during the download of the video, while the

final term discourages frequent changes in the video rate. The authors in [45] used q(Rk
ij) = Rk

ij

and μ = 3000, signifying that a playback interruption of 1 s receives the same penalty as
reducing the bitrate of a segment by 3000 kbps. We also consider the same values in our
evaluation. In this study, we calculated the average QoE per segment, that is, the total QoE
metric divided by the number of segments. In Section 6, we evaluate the QoE of algorithms
using Eq. (11).

3.2 Fairness and bandwidth efficiency

Rate adaptation algorithms are fairly effective when a client operates alone. When multiple
HAS clients compete for the bandwidth, the clients inefficiently utilize bandwidth and select
low-quality video rates [36].

In order to efficiently utilize the bandwidth, we strive to select for the competing clients
the best suitable video rates such that their sum has the least difference from the total
available bandwidth at the base station. The bandwidth inefficiency at time t is calculated
according to:

IE j ¼ R tð Þ
ij þ ∑v≠ jR

tð Þ
iv −BW

tð Þ
			 			 ð12Þ

where BW(t) is the available bandwidth at time t, R tð Þ
ij is the video rate selected by the jth

client at time t, and ∑v≠ jR
tð Þ
iv is the sum of the video rates of the competing video clients at

time t.
To ensure that the video rates are fairly allocated among the clients, we select for each

client the most feasible video rate which has the least difference from the average of video
rates allocated to other competing clients. The fairness index at time t is calculated
according to:

F j ¼ R tð Þ
ij −Ravg

			 			 ð13Þ

where Ravg = 1
N−1

� �
∑v≠ jR

t
iv is the average video rate of the other active streaming clients.

Low values for inefficiency and fairness are desired. A low inefficiency value signifies that
the client selects the highest feasible bitrates that are lower than the actual throughput,
while a low fairness value signifies that the competing clients achieve equitable video rates.

4 Joint optimization problem

The ultimate goal of video quality adaptation is to enhance the QoE of video clients in order to
achieve higher long-term user engagement [10]. With the abovementioned system, the utility
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maximization problem (jointly maximizing QoE for individual HAS clients, ensuring fairness,
and reducing bandwidth inefficiency) is formulated as the following integer non-linear
programming (INLP) optimization model.

Maximize U j ¼ ρ� Qj−β � QS j−φ� F−θ� IE ð14Þ

Subject to:

tkþ1 ¼ tk þ Rk
ij � τ

Tk þ Δtk ð15Þ

Tk ¼ 1

tkþ1−tk þ Δtk
∫t
kþ1

tk−Δtk T tdt ð16Þ

∑N
j¼1x

tð Þ
ij ≥ 0;∀1 ≤ i ≤ ð17Þ

∑N
j¼1x

tð Þ
ij �W tð Þ

j ≤BW;∀1 ≤ i ≤ m ð18Þ

Bkþ1
j ¼ Bk

j þ τ− τ � Rk
ij

Tk
j

 !
−Δtk

 !
þ

ð19Þ

0 ≤ B tð Þ
j ≤Bmax

j ð20Þ

R tð Þ
ij ≤Rc;∀1 ≤ i ≤ m; 1 ≤ j ≤ N ð21Þ

R tð Þ
ij ∈R;∀1 ≤ i ≤ m; 1 ≤ j ≤ N ð22Þ

We define four weighting parameters, 0 ≤ ρ, β, φ, θ ≤ 1 (ρ + β + φ + θ = 1), to control the
respective video rates, the video-rate switches, fairness, and bandwidth inefficiency. The
decision variable xij defines the number of clients streaming the ith video rate stored on the

server. The only decision variables here are integer variables xij and Rk
ij. Variable Bk is a

dependent variable whose values depend on the values of the decision variables. The values
for the rest of the variables are known in advance.

Objective function (14) aims to jointly optimize the QoE of the jth client, the fairness, and
the bandwidth efficiency, given throughput trace {Tt, t ∈ [t1, tk + 1]}. Constraint (17) specifies
that a specific video rate can be streamed by multiple clients. Constraint (18) ensures that the
total bandwidth allocated to the clients by the base station does not exceed the instantaneously
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available bandwidth at the base station. Constraint (20) guarantees that the clients do not
experience any playback interruptions during the whole streaming duration. Constraint (21)
ensures that the video rate selected for the jth client at the MEC does not exceed the video rate,
Rc, as suggested by the client. And finally, constraint (22) specifies that the discrete video rate
downloaded by the client from the server belongs to the set of available video rates.

5 Proposed online algorithm

In this section, we present the algorithms for solving the optimization problem described in
Section 4. The algorithms are designed for online execution by the edge cloud. The existence
of an integer decision variable in the optimization problem given in Section 4 makes it
computationally intractable to solve the problem using exhaustive search methods. The
complexity of exhaustive search methods grows exponentially with the increase in the number
of clients making it impractical for DASH scheduling at a large scale. Moreover, the
deployment of offline solution is unfeasible, since information about the clients is unknown
in advance. To reduce complexity, we designed a heuristic online algorithm that is executed
using the client data obtained for MEC.

The algorithm selects the ith video rate from set R for the kth segment, denoted as Rnext. The
video rate selected for segment k − 1 is denoted as Rprev. As explained in Section 3.1, the
adaptation module for MEC picks the video quality based on the video rate suggested by the
client, Rc. The proposed MEC-assisted algorithm is unaware of the client’s capabilities.
Therefore, the clients share with MEC the highest video rate they can play back, based on
the observed throughput and buffer occupancy. Pseudo-code for the client-side adaptation
algorithm is given in Algorithm 1, which first checks the current buffer occupancy level. If the
buffer level is within the danger zone (Bk < Bmin), the algorithm cautiously selects the video
rate. The buffer threshold, Bmin, is equal to the minimum segment duration and part of the
buffer size, as follows:

Bmin ¼ min Segment duration; 20%of buffer sizeð Þ ð23Þ

Algorithm 1 Client-side Adaptation

As explained in Section 1, video streaming services offer segments of different durations.
As the segment duration increases, the risk of buffer underflow increases in an unstable
environment, as shown in Eq. (4). Therefore, segment duration should be considered in the
selection of Bmin. However, with a long segment and a small buffer, it is not feasible to select
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Bmin based only on the segment length. For example, if the segment duration is 10 s, and the
buffer size is 20 s, setting Bmin equal to the segment duration means the client cautiously selects
the video rate most of the time. Therefore, buffer size should also be considered in the selection
of Bmin. To this end, we set Bmin equal to the minimum segment duration and 20% of the buffer
size. Once the buffer level increases above Bmin, the client aggressively selects Rc while
ensuring that buffer occupancy does not enter the danger zone. Given the available throughput
and segment duration, the client selects the highest video rate such that the predicted buffer
occupancy level upon download of the next segment does not fall below Bmin. The client then
shares the suggested video rate, Rc, with the MEC adaptation module to jointly adapt the video
rates of the competing clients. Pseudo-code for the MEC-assisted algorithm is given in
Algorithm 2.

Algorithm 2 MEC-assisted Adaptation

Subroutine 1 Startup Phase

The algorithm enters the startup phase (Subroutine 1) when the playback buffer is empty.
At the start of a streaming session, MEC does not have any information regarding the
throughput observed by the clients during segment download. For the first segment, the
algorithm selects the highest available video rate for the first client (line 4). For the rest of
the clients, the algorithm selects the highest video rate that is less than the average video rate of
the competing clients (line 6). The reason is that as the number of streaming clients increase,
the throughput available to each client decreases. Once the segment is downloaded, the client
calculates the available throughput using Eq. (3). If the client enters the startup phase due to
buffer underflow (line 9), the algorithm picks the highest video rate that is less than the
available throughput for the next segment.
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Subroutine 2 Long Video Adaptation Algorithm

As explained in Section 1, the user expects to watch short videos, such as a movie trailer or
sports highlights, at the highest feasible video rate [40]. However, the available throughput
fluctuates over time in a cellular environment. While streaming a long video (such as a
complete movie or a sports match) in an unstable environment, selecting high-quality video
rates throughout the streaming session would increase the risk of buffer underflow. Therefore,
separate approaches are required to select the video quality for short and long videos. The next
question to answer at this point is how to differentiate between short and long videos in terms
of duration. The answer to this question is not available in literature. Based on the average
duration of movie trailers, the duration of most videos on Facebook, and the average duration
of English Premier League (EPL) highlights, we set the maximum duration of a short video to
120 s [1, 2, 17]. If the video is longer than 120 s, the algorithm runs Subroutine 2 (Long Video
Adaptation Algorithm). Otherwise, the algorithm runs Subroutine 3 (Short Video Adaptation
Algorithm).

5.1 Long video bitrate selection

In this section, we discuss the heuristic adaptation algorithm for long videos. The algorithm’s
objective is to simultaneously optimize QoE, fairness, and bandwidth utilization. Because
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throughput can fluctuate in a cellular network for many reasons, selecting the highest feasible
video rate could lead to buffer underflow. Therefore, when the buffer level is in the danger
zone (Bk < Bmin), we ignore switching, fairness, and bandwidth inefficiency conditions. The
algorithm selects the most feasible video rate that is less than Rc with the highest achievable
utility objective value as the video rate for the current segment (lines 5–9). When the buffer
level increases above Bmin, the proposed algorithm considers three known threshold values, δs,
δF, and δIE, for the switching level, fairness, and the bandwidth inefficiency index, respective-
ly. Switching threshold δS is computed as |max {r ϵ R} < Tk –max {r ϵ R} < Tk-1|, where max
{r ϵ R} is the highest video rate in set R that is less than the throughput. The switching index
associated with the selected rate is computed as |r − Rprev|. Bandwidth inefficiency threshold
δIE is computed as |max {r ϵ R} < Tk − Tk |, and the bandwidth inefficiency index is
computed as |r − Ti|. The fairness index is computed as 1 – (r – Ravg)/(Rmax – Rmin), which
takes a value between 0 and 1, where Ravg is the average video rate of streaming clients.
Utility objective value (14) is computed for all available video rates less than Rc that satisfy
video rate switching, fairness, and bandwidth inefficiency thresholds (lines 11–13). Among
the video rates that satisfy these conditions, the video rate that maximizes the utility
objective function is allocated to the clients for the next segment (line 14). If no such video
rate is available, we compromise on the switching condition. Next, the utility objective
function is evaluated for the set of video rates that satisfy the fairness and bandwidth
inefficiency thresholds (lines 15–18). The candidate video rate that maximizes the utility
objective function is the selected video rate for the next segment (line 19). If no such video
rate is available, we compromise on fairness as well. The objective function is computed for
the set of video rates that only satisfy the bandwidth inefficiency condition (20–23).
Similarly, the most suitable video rate that maximizes the utility value is streamed for the
next segment. If none of the video rates satisfy even the bandwidth inefficiency threshold,
the most feasible video rate with the highest achievable objective value is streamed for the
next segment (lines 16–19).

After the video rate selection, the weighting parameters of the objective function are
dynamically computed. A simplified flowchart of the dynamic tuning of the weighting
parameters is shown in Fig. 3. At the start of the streaming session, the tuning parameters
are set with initial values. Once the streaming session starts, the weighting parameters of the
quality factors (average bitrate (ρ), bitrate switching (β), fairness (φ), and bandwidth ineffi-
ciency (θ)) at the download of each segment are dynamically computed. The scheme monitors
the effect of each video quality factor (video rate, switching magnitude, fairness, and band-

width inefficiency) on the user experience of the jth client, U j, during the download of 5
previous segments.
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where S′ is the index of current segment. Uprev represents the value of U j computed for

previous segment. If U j≥Uprev, the weighting parameters are not changed. If U j < Uprev, the
weighting parameters are adjusted by the algorithm. The weighting parameters (δ, β, φ, θ) are
calculated based on how far the average of the video rates of the last 5 downloaded segments is
from the most feasible bitrates. γQ, γQS, γF, and γIE in Eqs. (25a) to (25d) denote the difference
between the selected video rates, and the most feasible video rates for Qj, QSj, Fj and IEj,

respectively. T denotes the average throughput observed over the download of last 5 segments.
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Next, the weighting parameters are selected according to Eqs. (26a) to (26d):

ρ ¼ γQ
γQ þ γQS þ γ F þ γIE

ð26aÞ

β ¼ γQS
γQ þ γQS þ γ F þ γIE

ð26bÞ

φ ¼ γ F

γQ þ γQS þ γ F þ γIE
ð26cÞ

θ ¼ γIE
γQ þ γQS þ γ F þ γIE

ð26dÞ

After parameters are updated, the algorithm returns the client’s local utility, which was
computed using (14).

5.2 Short video bitrate selection

In this section, we discuss the heuristic adaptation algorithm for short videos. For short videos,
the objective is to optimize QoEwhile efficiently utilizing the available bandwidth. Because the
throughput in a cellular environment depends on multiple parameters, including propagation
distance, client speed, interference, etc., clients located in different regions of the cell would
observe different throughput. Therefore, equitably distributing video rates among competing
clients means compromising video quality and/or QoE. To this end, fairness is ignored for short
videos.

Subroutine 3 Short Video Adaptation Algorithm
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The proposed algorithm considers two known threshold values, δs and δIE, for the switching
level and the bandwidth inefficiency index, respectively. In decreasing order of video rates,
utility objective value (14) is computed for all available video rates less than Rc that satisfy
both switching and bandwidth inefficiency thresholds (lines 3–6). The most feasible video rate
that has the maximum utility value is then selected as the allocated video rate for the current
segment of the client (lines 6–9). If no such video rate is available, the utility objective function
is evaluated for the set of video rates less than Rc that only satisfy the bandwidth inefficiency
threshold. Here, we compromise on the switching threshold as well (lines 10–15). Similarly,
the video rate that maximizes utility objective value (14) is chosen as the video rate for the
current segment. If none of the video rates satisfy even the bandwidth inefficiency threshold,
the most feasible video rate with the highest achievable objective value is selected as the video
rate for the current segment (lines 16–19). After video rate selection, the algorithm updates the
weighting parameters as explained in Section 5.1 and returns the client’s local utility, which
was computed using (14).

5.3 Computational complexity

The computation of estimated throughput during the download of every segment takesO(τ)
time, where τ is the segment duration. Execution of the startup phase results in complexity
O (τ + |R|). The evaluation of switching, and inefficiency thresholds takes O(|R|) units of
time. Similarly, the execution of short/long video adaptation algorithms results in com-
plexity of O(τ + | R|). Putting all the above together gives N competing clients at an overall
complexity of O(N. (τ + |R|)). Hence, the overall time complexity for the heuristic
algorithm shall be in polynomial time.

6 Performance evaluation

In this section, we implement HTTP–based adaptive video streaming in a multi-access edge
computing scenario (as shown in Fig. 1) to evaluate the performance of the proposed
algorithm. We implemented the experiments by utilizing the simulation software ns-3. A
detailed configuration of the underlying LTE cellular network is shown in Table 2. To achieve
adaptive streaming, the HTTP server offers the client 12 presentation levels to adapt video
rates, which are 184, 380, 459, 693, 1270, 1545, 2000, 2530, 3750, 5379, 7861, and
11,321 kbps. We assume that all clients can playback the highest available video rate. We
set fairness threshold δF at 0.6.

We adopted the algorithms proposed in MECA [46], ECAAS [21], AAA [13], DBT [34],
DASH-Google [27], and QLSA [5] as benchmarks in order to demonstrate the efficiency of
the proposed algorithm. Table 3 presents the properties of the HAS algorithms. The proposed,

Table 2 Cellular network
configuration Cell Layout Single hexagonal cell

UE distribution Uniform
Path loss model Hata Model PCS Extension
BS transmission power 38 dBm
UE distance 1~500 m
Scheduler Proportional fairness
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ECAAS, and MECA are an MEC-assisted DASH systems for mobile video streaming; AAA
and DBT are client-side buffer-based algorithms, whereas DASH-Google and QLSA are
client-side throughput-based algorithms. In addition to throughput and buffer level, the
proposed algorithm also takes segment duration and client’s buffer size into consideration to
select the video rate. The motivation is to maintain high QoE, equitably select video rates for
video clients, and efficiently utilize bandwidth under different client and server settings. The
rest of the algorithms do not consider any client or content characteristics to pick video quality.
Since the client-based algorithms are oblivious to the decisions made by other competing
clients, they do not target bandwidth efficiency and fairness. In addition, the proposed greedy
heuristic algorithms solve the rate adaptation optimization problem for short and long duration
videos. To the best of our knowledge, this is the first work to design algorithms for both short
and long duration videos.

6.1 Long videos

In this section, we evaluate the performance of the proposed long video adaptation algorithm.
In our previous work [36], we showed that the performance of existing algorithms struggles to
meet conflicting QoE objectives under different client/server settings. The reason is that
algorithms employ fixed control laws, even though meeting different video quality objectives
requires different strategies. In this work, we evaluated the algorithms under varying client
speeds, network conditions, video durations, buffer sizes, and segment durations. A grid-based
road topology is used to simulate mobility. The clients remain within a single cell
throughput the streaming session. We analyzed the algorithms for the settings mentioned
in Table 4. The experiment was repeated 10 times for each setting and the average of the
results is presented in this section. The average YouTube video in 2018 was 11.7 minutes
[4]. For this section’s experiments, a video was streamed for 12 minutes to evaluate the
algorithms. As the experiments given in Table 2 were repeated 10 times and a video of
12 minutes was streamed during each run, the performance of each algorithm was
analyzed for 120 minutes. The initial values of the tuning parameters for the objective
function in (14) were set to ρ = 0.4, β = 0.4, φ = 0.1, and θ = 0.1. In the following
results, we use Jain’s fairness index [37] to quantify fairness and bandwidth inefficiency

at time t is calculated by

∑
j
R tð Þ
ij −W

					
					

W [6].

Table 4 Experiment settings used to evaluate the algorithms

Experiment Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients

1 15 s 2 s 75 km/h Random 10
2 15 s 4 s 75 km/h Random 10
3 30s 4 s 75 km/h Random 10
4 60s 4 s 75 km/h Random 10
5 15 s 4 s 3 km/h Random 10
6 15 s 4 s 75 km/h Simultaneous 10
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6.1.1 Effect of segment duration

Figure 4 displays the performance of the algorithms when the buffer size was set to 15 s and
the segment duration was set to 2 s and 4 s, respectively. During both experiments, the client
arrival time was uniformly distributed within the first 30 s of the streaming session. In the first
experiment, the segment duration was set to 2 sec. Figure 4a shows that the proposed
algorithm achieved the highest average video rate among the compared algorithms, followed
by ECAAS. Similarly, the proposed algorithm selected video rates fairly while efficiently
utilizing the available bandwidth. Figure 5 shows that the proposed algorithm avoided
unnecessary playback interruptions. The rebuffering per client metric represents the ratio of
clients that experienced a playback interruption to the total number of clients, while average
interruptions is the number of times a client experienced a playback interruption. Figures 4 and
5 also reveal that the selection of high video rates and avoiding playback interruptions led to
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the highest QoE for the proposed algorithm. The DBT and AAA algorithms experienced fewer
video rate switches. The reason is that the algorithms avoided switching video rates unless the
buffer level increased above or decreased below predefined thresholds, irrespective of fluctu-
ations in bandwidth. This led to mitigating unnecessary video rate switches, but also compro-
mised video quality. On the other hand, the ECAAS algorithm downloaded high quality
segment at the expense of high number of video rate switches.

Next, we increased the segment duration to 4 s. Figure 4 shows that, like the previous
experiment, the proposed algorithm achieved the highest video rate. However, the proposed
algorithm experienced a high number of video rate switches. Because a longer segment takes
more time to download, the proposed algorithm reacted aggressively to reduce the risk of
playback interruption. This led to a higher frequency of switches. The DBT algorithm
achieved an average video rate similar to the proposed algorithm; however, it achieved the
highest QoE due to a low frequency of video rate switches and avoided playback buffer
underflow. Figure 6 shows that the proposed, DBT, and DASH-Google algorithms were able
to avoid playback interruptions. Furthermore, Fig. 4c and d show that the proposed algorithm
achieved the highest fairness and the lowest bandwidth inefficiency values. The reason is that
the proposed algorithm jointly optimizes fairness and ensures bandwidth is efficiently utilized.
The ECAAS and MECA algorithms achieved better fairness and bandwidth inefficiency,
compared to the client-based algorithms.
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6.1.2 Effect of buffer size

In this section, we describe the effect on the performance of the algorithms from varying the
buffer size. Figure 7 displays the performance of the algorithms when the segment was 4 s long
and the buffer size was 15 s, 30 s and 60 s, respectively. Figure 7 shows that the proposed
algorithm streamed higher-quality video irrespective of buffer size. The ECAAS algorithm
also downloaded high quality segments, however, it also experienced the highest number of
video rate switches. The proposed algorithm equitably allocated video rates to clients, and
efficiently utilized bandwidth. Figure 7d shows that the proposed algorithm had the highest
QoE value when the buffer size was increased to 30 s and 60 s. The MECA algorithm achieved
a similar QoE when the buffer size was 30 s, but its QoE degraded when the buffer size was
60 s, because it downloaded low quality segments. We also observe that the DBT algorithm
achieved low QoE and inefficiently utilized the bandwidth when the buffer size increased. The
reason is that the algorithm downloads low-quality segments when the buffer size increases.
Unlike the proposed algorithm, the DBT algorithm does not adapt the playback buffer
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Fig. 7 The effect of buffer size on the performance of the algorithms
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thresholds as the buffer size changes. The QoE of throughput-based algorithms fluctuated from
one experimental setting to the other.

Figures 6, 8, and 9 show that the proposed algorithm avoided playback interruptions in all
the experiments. Figures 6, 8, and 9 also show that only the ECAAS, MECA, AAA, and
QLSA algorithms experienced playback interruptions, and the ECAAS algorithm had the
most. The reason is that the ECAAS algorithm selects high quality segments at the expense of
depletion of playback buffer. In case of a large drop in the throughput in the middle of a
segment download, this approach increases the risk of playback interruption. The AAA
algorithm also experiences long interruption durations because the algorithm waits for the
buffer level to decrease below a pre-defined threshold before it adapts the video quality.
Because the video rate cannot adapt in the middle of a segment download, the algorithm failed
to protect the buffer when there was a sudden drop in throughput.

6.1.3 Effect of client speed

Here, we compared the algorithms for the following scenarios: (1) the clients moved at
vehicular speed (75 km/h), and (2) the clients moved at pedestrian speed (3 km/h). Figure 10
shows that when clients moved at pedestrian speed, the proposed algorithm achieved the
highest video rate and fairness value, and the lowest inefficiency value. The table also reveals
that the proposed, ECAAS and the MECA algorithms guaranteed high QoE when the clients
operated at pedestrian speed. However, the ECAAS algorithm had a lower value when the
clients operated at vehicular speed. The result shows that the performance of ECAAS
algorithm degrades in case of large fluctuations in throughput. Under stable network condition,
the ECAAS algorithm performs better. Figure 10 indicates that the algorithms achieved higher
QoE and fairness, and efficiently utilized the bandwidth at pedestrian speed, compared to
vehicular speed. Figure also reveals that DBT had the best QoE among the compared
algorithms when the clients moved at vehicular speed; however, it underutilized bandwidth
when the clients moved at pedestrian speed, whereas the proposed algorithm efficiently
utilized bandwidth and downloaded high-quality segments during both experiments. The
proposed algorithm did not experience any rebuffering when the clients moved at pedestrian
speed, as shown in Fig. 11. The DBT algorithm also avoided playback interruptions at the
expense of video quality. The MECA, ECAAS and AAA algorithms experienced buffer
underflow while streaming high-quality videos. If a higher weight is given to playback
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Fig. 9 Comparison of (a) rebuffering per client and average number of interruptions, and (b) average buffering
time of the algorithms when the buffer size was 60 s and the segment duration was 4 s
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interruptions in Eq. (11), the QoE of the ECAAS, MECA and AAA algorithms would decrease
further. The DASH-Google and QLSA algorithms are throughput-based methods that are
unaware of the client buffer levels and competing clients. Therefore, they reacted aggressively
to any changes in throughput, resulting in higher video rate switches and unfair selection of
video rates.

6.1.4 Effect of client arrival time

In this experiment, we compared the performance of the algorithms for the following scenar-
ios: (1) all clients simultaneously start streaming, (2) the client arrival time was uniformly
distributed within the first 30 s of the streaming session. The results of scenarios (1) and (2) are
shown in Fig. 12. Similar to the previous experiment, Fig. 12 shows that the proposed
algorithm achieved the highest video rate and guarantees the highest QoE. Furthermore, the
proposed algorithm equitably selects video rates and efficiently utilizes bandwidth. Figure 12
also reveals that the algorithms achieved slightly higher video rates and fairness when the
clients joined the streaming session randomly. The reason is that when all clients start
streaming at the same time, there is a tug-of-war between greedy clients to obtain bandwidth
share. The comparison also shows that the proposed algorithm achieved similar QoE in both
experiments. However, the QoE of the rest of the algorithms degraded when the clients started
the streaming session simultaneously. Figure 13 shows that the proposed, DBT, and DASH-
Google algorithms were able to avoid buffer underflow. The ECAA and MECA algorithms
downloaded higher quality segments and more efficiently utilized bandwidth, compared to the
DBT algorithm, but they achieved low QoE due to a higher number of playback interruptions
and higher frequency of switches.

6.2 Small videos

In this section, we compare the performance of the algorithms for short and long video bitrate
selection. The initial tuning parameters in objective function (14) were set to ρ = 0.6, β = 0.3,
and θ = 0.1. As explained in Section 5.2, fairness was ignored. For short videos, we gave
more weight to ρ in Eq. (14), since the objective is to select high quality throughout the
streaming session.
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Fig. 11 Comparison of (a) rebuffering per client and average number of interruptions, and (b) average buffering
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Fig. 12 The effect of client arrival time on the performance of the algorithms

(a) (b)

0
1
2
3
4

0
0.2
0.4
0.6
0.8

1

Pr
op

os
ed

E
C

A
A

S

M
E

C
A

A
A

A

D
B

T

Q
L

SA

D
A

SH
-G

oo
gl

e

MEC-Assisted Buffer-Based Throughput-
Based

Rebuffering Per Client Average Interruptions

0
2
4
6
8

Pr
op

os
ed

E
C

A
A

S

M
E

C
A

A
A

A

Q
L

SA

D
A

SH
-G

oo
gl

e

MEC-Assisted Buffer-Based Throughput-
Based

)s(
e

miT
gnireffu

B

Fig. 13 Comparison of (a) rebuffering per client and average number of interruptions, and (b) average buffering
time of the algorithms when the clients joined the streaming session simultaneously
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In a multi-client, bandwidth-constrained environment, a short video adaptation algorithm
does not bring any notable advantage over a long video adaptation algorithm while streaming
short duration videos (less than 120 s). Due to space limitations, we omit the comparison of the
proposed short and long video adaptation algorithms for a bandwidth-constrained environ-
ment. Here, we compare the algorithms for a scenario where four clients compete through a
bottleneck. The experiment settings used to evaluate the algorithms are given in Table 4. As
each experiment was repeated 10 times and a video of 2 minutes was streamed during each
run, the performance of each algorithm was analyzed for 20 minutes. Table 5 shows the initial
tunings parameters used to evaluate the algorithms for experiments given in Table 6. We
compare the following three strategies: (1) short video algorithm, (2) long video algorithm
with same initial tuning parameters as used for short video algorithm (long video(SP)), and (3)
long video algorithm with tuning initial parameters used in Section 6.1.

Figure 14 (a) displays the average video bitrate and switching ratio experienced by the
clients while employing the algorithms and tunings parameters given in Table 5. Figure 14a
shows that the short duration adaptation algorithm outperformed the long video adaptation
algorithm in both experiments irrespective of the tuning parameters. Even when an adaptation
algorithm optimizes QoE, it is important to understand the distributions of the underlying
parameters given in Eq. (11). The short video algorithm achieved a higher video rate and
experienced fewer video rate switches. Figure 14b shows the short video achieved higher QoE
when the achievable throughput was high. The short video algorithm is able to achieve higher
QoE as it downloaded high quality video segments, mitigated unnecessary video rate switches
and playback interruption. Figure 14b shows that when segment duration is set to 4 seconds,
the long video(SP) algorithm performs worse than long video algorithm despite assigning
higher weightage to video quality. Because the playback buffer was only 15 s, larger segment
duration increased the risk of playback interruption in case of mismatch between the select
video rate and available bandwidth. It forced the algorithm to conservatively select video rates
to avoid playback interruption. Although the short video adaptation algorithm prioritizes
higher video quality at the expense of fairness, Fig. 14c reveals that the short video algorithm
achieved similar fairness and bandwidth inefficiency values compared to long video algo-
rithms for both experiments.

6.3 Summary

The results in Section 6.1 reveal that the proposed algorithm guaranteed high QoE irrespective
of buffer size, segment duration, client speed, number of clients, and client arrival times.
However, the performance of other state-of-the-art algorithms varied from one setting to the
other. The reason is that these algorithms employ fixed control strategies, even though
optimizing different QoE objectives and experiment settings required different adaptive
strategies. The ECAAS algorithm achieved high QoE under stable network conditions.

Table 5 Initial tuning parameters
used to evaluate the adaptation al-
gorithms for experiments given in
Table 6

Algorithm Initial tuning parameters in objective function (14)

Short video = 0.6, β=0.3, and θ=0.1
Long video(SP) = 0.6, β=0.3, and θ=0.1 (same as short video)
Long video = 0.4, β=0.4, φ=0.1, and θ=0.1
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However, it experienced high number of playback interruptions in an unstable environment,
which degraded its QoE. The DBT algorithm achieved high QoE when the buffer size was
small. However, the performance of the algorithm degraded when the buffer size increased, or
if all clients started a streaming session simultaneously. Similarly, the performance of the AAA
algorithm degraded when the segment duration increased or when all clients joined the
streaming session together. Similarly, the algorithms did not meet all the conflicting video-
quality objectives. The MECA algorithm streamed high-quality video but at the expense of
playback interruptions. The results also indicate that the buffer-based algorithms performed
better than throughput-based algorithms.

Table 7 displays the average performance of the adaptation algorithms over all the
experiments and demonstrates that the proposed algorithm achieved the highest video rate
and the lowest bandwidth inefficiency; and guaranteed the highest QoE among the state-of-
the-art algorithms. Furthermore, the proposed algorithm avoided unnecessary playback inter-
ruptions during all experiments. However, the proposed algorithm experienced slightly more
video rate switches. The reason is that in a highly unstable environment where the users are
moving at a high speed, it is important to quickly react to changes in throughput and buffer
occupancy levels to avoid unnecessary buffer underflow. The ECAAS algorithm streams high
quality video at the expense of high number of switches and playback interruptions. Most of

Table 6 Experiment settings used to compare short and long video adaptation algorithms

Buffer Size Segment Duration Mobility Client’s Arrival Pattern No. of Clients

1 15 s 2 s 75 km/h Random 4
2 15 s 4 s 75 km/h Random 4
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the buffer-based algorithms, including DBT and AAA, waited for buffer occupancy to increase
above (or decrease below) predefined thresholds. That minimized the switching ratio, but
compromised video quality. Furthermore, this approach led to inefficient utilization of band-
width. The throughput-based algorithms do not have information on the playback buffers;
therefore, they did not take the risk of conservatively reacting to changes in bandwidth.

In the following summary, consecutive numbers represent the results from ECAAS,
MECA, AAA, DBT, QLSA and Google-Dash, in that order.

The proposed algorithm

1) increased the average video rate by 0.4%, 7.3%, 12.9%, 18%, 18.1%, and 12.3%
2) outperformed existing schemes in terms of fairness by 3.3%, 3.3%, 9.5%, 5.7%, 6.9%,

and 5.7%
3) improved bandwidth utilization by 60%, 60%, 220%, 170%, 160%, and 130%
4) outperformed other schemes in terms of QoE by 65%, 8%, 15.4%, 9.8%, 25.6%, and 28%

Only the proposed and DBT algorithms avoided experiencing any playback interruptions. In
comparison with the DBT algorithm, the proposed algorithm achieved an 18% higher video
rate, delivered 9.8% better QoE, 5.7% higher fairness, and 170% lower bandwidth inefficien-
cy. In addition, the results showed that when high bandwidth is available to competing clients,
the proposed short video adaptation algorithm streams a 6% higher-quality segment, perform-
ed 45% fewer switches, and improved QoE by 11.1%, compared to the proposed long video
adaptation algorithm.

7 Conclusion

In this paper, we presented a context-aware hybrid MEC-assisted quality-adaptation algorithm
that exploits video content characters, client-side settings, and application-layer information to
achieve multiple objectives including: 1) Jointly optimize the user experience of multiple HAS
clients in a cellular environment; 2) Guarantee QoE under varying client, server, dataset, and
network settings; 3) Simultaneously meet conflicting video-quality objectives to optimize
QoE, while fairly selecting video rates for competing clients, and efficiently utilizing band-
width. To achieve these objectives, we designed a solution for content-aware MEC-assisted
adaptation which considers the joint weighted maximization of QoE, bandwidth utilization,
and fairness. Simulation results revealed that the proposed MEC-assisted algorithm
outperformed state-of-the-art MEC-assisted and purely client-based algorithms. The results
demonstrated that the proposed algorithm guaranteed improved user experience, irrespective
of client playback buffer size, segment duration, the number of competing clients, client

Table 7 Average performance of the adaptive methods over all experiments

Adaptation Algorithms Proposed ECAAS MECA AAA DBT QLSA DASH-Google

Average Video Rate (kbps) 1387.95 1381.79 1292.48 1228.54 1176.76 1174.57 1235.29
Switching Ratio 0.32 0.67 0.29 0.16 0.12 0.34 0.46
Fairness 0.92 0.89 0.89 0.84 0.87 0.86 0.87
Bandwidth Inefficiency 0.10 0.16 0.16 0.32 0.27 0.26 0.23
QoE 1186.91 718.11 1098.67 1028.42 1080.02 944.54 926.01
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movement speed, and client arrival times. The proposed algorithm, on average, improved
video quality by over 11%, fairness by over 6%, bandwidth efficiency by over 57%, and QoE
by over 22%. Moreover, we presented separate strategies for short and long duration video
content based on user expectations. The results showed that the proposed short video adap-
tation strategy achieved higher QoE and utilized bandwidth more efficiently than the long
video strategy when achievable throughput was moderately high.
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