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Abstract
The ability to measure similarity and alignment of motions is a key tool in
motion retrieval and motion editing. Similarity metrics based on distance func-
tions are often utilized when measuring similarity of human motions, however,
metrics based on correlation can also potentially useful for measuring simi-
larity and alignment. This paper evaluates the use of correlation as a method
of measuring the alignment and similarity of human motion and compares
them against more established distance-based metrics. Three correlation meth-
ods and five methods of parameterising rotation are evaluated. The results
show that parameterization based on displacement vectors and Kendall Tau
rank correlation are optimal for measuring the alignment between two motions.
If measuring similarity of motions, however, an approach based on distance
metrics for angular or positional distance should be used.
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1 INTRODUCTION

Many techniques and approaches to re-using and combining motion captured data are dependent on reliable and accu-
rate methods of time warping a motion, to temporally align it with another motion, using techniques such a Dynamic
Time Warping (DTW). In the field of motion synthesis, the temporal alignment of motions allows styles and emotions
to be transferred between captured performances,1 and motions to be accurately blended together.2 While in the field of
interaction, time warping is used in motion training3 and movement analysis.4

To support these applications, an accurate metric is required to measure the temporal alignment of two motions, both
to identify motions in a database with the best alignment, and to evaluate the performance of time warping algorithms.
Existing metrics typically use approaches based on Euclidean distance2,5 to search motion databases for similar motions
which contain matching movements, rather than aligned motions, which temporally match each other. Meanwhile, cor-
relation has been used to evaluate time warping algorithms,6 using it to measure the alignment between the resulting
warped input motion, and the target motion being aligned to.

This paper evaluates correlation as a method for measuring both alignment and similarity, comparing it against more
established distance based similarity metrics. A number of different correlation based similarity metrics are implemented
and tested, using alternative approaches to parameterize joint angles and measure correlation.
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To support this study, statistical and cluster analysis techniques are used to determine which distance or correlation
based similarity metric is optimal for measuring: (i) how accurately the temporal features of a pair a motions are aligned,
and (ii) how similar a pair of motions are to each other.

2 RELATED WORK

Measuring how accurately the temporal features of two motions align is a non-trivial problem. Motion data is multidi-
mensional in nature, for example a simple joint rig of 18 joints, each encoded with 3 parameters, would use 54 dimensions
to define a character’s pose in a given frame. Any measurement of alignment of two motions is therefore based on an
aggregated best fit of multiple time series representing multiple joints, however it is important to focus measurements
on joints which are salient to human motion. Lee et al.7 suggest focusing similarity metrics on joints which have more
impact on the general pose of a motion, such as: shoulders; elbows; hips; and knees, and ignore less significant end
effector joints such hands and feet. Optimal joint weightings determined using regression, agreed with this selection
of joints.8

Metrics for measuring similarity should also take into account both the posture and dynamics of human motion, many
researchers measure similarity using distance functions based on angular, positional and velocity differences between
the two motion’s respective joints. Quaternions are used to measure the geodesic distance between joint angles,9 while
Euclidean approaches are used to measure differences in position and velocity, either in global space10 or relative to the
hip joint.5 An alternative, hip joint invariant approach, plot point clouds of the position of each joint in each frame within
a window of time, then measure the difference between the two set of points.2

Rather than use a distance based metric, Etemad and Arya, used a metric based on linear correlation, utilizing Pear-
son’s Correlation Coefficient (PCC), to measure how well two motions align.6 They also discuss the shortcomings of
distance based metrics, pointing out how they are more affected by signal noise or any offset between the motion sig-
nals being compared, than a correlation based approach. As well as linear correlation this paper considers the use of the
methods Spearman’s and Kendall’s rank correlation coefficients,11 which are more suited to working with non-parametric
data. Although rank based correlation methods have not previously been used to measure the similarity or alignment of
two motions, they have proven effective in recognizing human motions from movement sensors.12

Rather than evaluating the alignment of two motions based on the similarity of the motions performed, Folgado
et al.13 proposes a metric based on the similarity of the alignment paths used to time warp the motions, allowing a given
alignment path to measure against a gold standard. However, this approach relies on an optimal alignment already being
established to compare against.

The performance of a given similarity metric can be evaluated by measuring its ability to distinguish between aligned
and non-aligned motions or between similar and dissimilar motions. Chan et al.3 used a statistical approach to determine
which of the three distance measures: joint position, velocity and angle are best for measuring the similarity of dance
motions. For each measure, the distribution plots of similar and dissimilar motions were visually compared, to identify
which measure produced the least overlap, and therefore discriminated best between similar and dissimilar plots. This
paper proposes using a non-parametric t-test to accurately measure the overlap. Valik et al.14 utilizes a number of search
algorithm evaluation tools, such as Mean Average Precision (MAP), to evaluate the ability of different similarity metrics
to correctly retrieve similar motions from a motion database.

This paper proposes a number of similarity metrics based on different methods of correlation and angle parametriza-
tion. The performance of these metrics will be evaluated and compared with established distance base similarity metrics,
assessing their ability to measure both the similarity and alignment of two motions.

3 MEASURING SIMILARITY

3.1 Preparing motion data

Regardless of the method used to parameterize joint angles, each parameter can be treated as a time series of n data points,
where n is the number of frames as defined by f = 1, … ,n ∈ N. The similarity of two motion sequences (a1, a2, … , an)
and (b1, b2, ..., bn) can be measured using either, a cost based approach measuring the distance between each respective
data point or correlation approach measuring the overall correlation between the two time series.
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To facilitate these similarity measurements both motion sequences must have the same number of frames (n), which
typically requires the length of one the motions to be adjusted. This can be achieved by using Uniform Time Warping
(UTW), to uniformly stretch or squash a motion, or Dynamic Time Warping (DTW) to monotonically align the frames of
an input motion to best match the frames of a target motion.

Both correlation and distance based approaches, can only reliably compare motions applied to the same joint system
or skeletal model. Differences in the joint systems will affect the joint angles used to encode character poses. This means
that an identical pose on two different joint systems can be defined using different joint angles.

3.2 Distance based similarity metrics

Distance based metrics evaluate the similarity of two motions by extracting an identical set of parameters from the joints
of both motions, then measuring the amount of difference between the respective parameters in a cost function. In this
paper four distance based similarity metrics are evaluated based on position, angle, velocity and point cloud parameters.
Although not considered in this study, distance based similarity metrics that combine position, velocity and accelerating
have been proposed.5

A common feature to use in distance base metrics is difference between the orientations of corresponding joints within
the two motions. The distance between the angular rotation of two joints can be determined by representing the rotations
as quaternions and taking the absolute value of their inner product, |qa ⋅ qb|, giving the geodesic distance between them.
The geodesic distance is the length of a curve representing the shortest path between two angles when plotted onto the
surface of a sphere. The angular distance between motion sequences a and b, can be determined using Equation (1),
where both motions contain n frames, and the similarity is based on set of joints m.

c
𝜃
=

n∑

f=1

m∑

j=1

2
𝜋

arccos |q(f )ja ⋅ q(f )jb |. (1)

When measuring the alignment or similarity of two motions using position or velocity, it is often more desirable to
parameterize positions in local space, relative to the hips, than in global space. This eliminates the need to align motions
before measuring the similarity. Moreover, most applications that require aligned or similar motions, such as: motion
blending; motion recognition and translating motion styles, do not have an explicit need for the hip joint to be consid-
ered. To determine the position of a joint with respect to the hip, the transform of the hip joint needs to be removed or
reversed, by multiplying the inverted transform matrix of the hip joint (H−1) by the global position of the joint j, (Gj). The
similarity between motions a and b, based on the positions of their joints relative to their root, can be determined using
Equation (2), where ⃗t(M) is a vector representing the translation element of a given transform matrix M and |v⃗j| is magni-
tude of vector, v⃗j, which represents the positional difference in the local space of joint, j, between motions a and b at a given
frame, f .

cp =
n∑

f=1

m∑

j=1
|v⃗j|,

where v⃗j = ⃗t(H−1
a Gja) − ⃗t(H−1

b Gjb). (2)

A velocity distance metric can be based on either positional or angular velocity. Equation (3) demonstrates how the
positional distance metric in Equation (2), can be adapted to create a metric measuring the difference in positional velocity,
where ⃗Δj is vector representing the velocity of joint j in local space.

cpv =
n∑

f=1

m∑

j=1
| ⃗Δja − ⃗Δjb|,

where ⃗Δj = ⃗t(H−1
f Gjf ) − ⃗t(H−1

f−1Gj(f−1)). (3)

Point clouds of joint positions at a given frame and its neighboring frames, represent both the pose (position) and
movement (velocity and acceleration) of a motion over a small window of time.
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The distance between two sets of point clouds can be determined using Equation (4), giving a measure of similarity,
where w is the number of neighboring frames to be included each side of the current frame, 𝛼p is the weighting for the
point in the point cloud and pa and pb are points in the point cloud created from motion a and b respectively. Transform
(T)2 is applied to the point cloud of one motion, optimizing the fit (sum of the squared distances) between the two sets of
point clouds.

cpc =
n∑

f=1

m(2w+1)∑

p=1
𝛼p|pa − T

𝜃,x,zpb|. (4)

3.3 Correlation based similarity metrics

A weakness of the distance based approach to measuring similarity, is the way in which it can be overly affected by any
difference in the offset or amplitude of two signals in comparison to correlation based approaches. Figure 1 shows a
normalized signal of a joint parameter with offset, multiplication, gamma and noise applied. Each of these transforms
represent ways in which a repeated action or motion can vary between performance captures. A performer spatially
missing a marked position would result in an offset, while a more exaggerated performance would result in some joint
rotations being extended or amplified. Gamma represents the way in which a movement starts and stops, akin to the
ease-in and ease-out of key-frame animation, this could be considered a pseudo representation of acceleration, which is
also affected by the exaggeration of a performance. Just like any digital recording process, a motion captured performance
will also contain a certain level of noise, this noise will vary between each recording.

Despite the original (blue) and transformed (red) signals being very similar or identical in form, the distance based
approach considers the two signals to be different, whereas the Pearson, Spearman and Kendall Tau correlation based
approaches consider the signals to be very similar. While the distance based approach measures the similarity of each
data point, correlation approaches consider the similarity between the overall forms of the two signals.

F I G U R E 1 A comparison of the effects of different signal transforms on distance and correlation based measurements of similarity.
Despite the original signal (blue) and transformed signal (red) being similar in form, the distance based metric considers them to be dissimilar.
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The distance based metric considers the straight linear regression line to be more similar to the original signal than
the offset or amplified versions of the signal, despite the line being a completely different shape. This is in contrast to
the correlation methods which all gave the offset and multiplied versions of the signal a score of one, which is the same
score two identical signals would achieve. Within this study, similarity metrics utilizing three different commonly used
correlation methods are compared. One linear correlation method, PCC, and two rank based methods Spearman’s and
Kendall Tau.

Unlike PCC, neither of the rank based correlation coefficients are effected by a gamma transform, as shown in Figure 1.
Although a gamma transform results in a non-linear relationship between the original and transformed signal values, the
rankings of these values are unaffected by the transform and are therefore identical for both signals.

The Kendall Tau correlation coefficient is particularly sensitive to changes in direction (i.e. the derivative of a signal
changing from positive to negative or vice versa), occurring in one signal and not the other, as this produces discordant
pairs in the ranked values. This sensitivity can see in the noise plot within Figure 1.

Unlike the distance based metric, all of the correlation methods discussed here provide normalized results, where
r ∈ R ∶ −1.0 ≤ r ≤ 1.0, regardless of how large the data series values are. This is useful when aggregating the results of
many similarity scores, as is often the case when working with motion data, and avoids the need to normalize data across
an entire data-set.

3.4 Parametrising joint angles

Motion data is encoded using joint lengths and joint rotations, rather than joint positions. While joint lengths remain
constant through-out the motion, often only being specified at the beginning of a motion data file, the joint rotations for
each joint are specified for every frame of a motion sequence. Apart from the root joint, joint rotations are specified with
respect to a parent joint in their own local space, rather than all being specified within a single global space.

This study utilizes five different approaches to parameterising joint angles for use with correlation based similar-
ity metrics. Three established approaches: Euler, Quaternions and rotational matrices, and two less commonly used
approaches: displacement vectors and logarithmic maps. The later two methods both express three dimensional angles
as R3 vectors in a form that avoids gimbal lock.

Displacement vectors represent an orientation as unit vector V(x, y, z). A displacement vector, v′ for a given joint, can
be derived by multiplying the joint’s rotation matrix R by unit vector v = [0, 1, 0], as follows v′ = vR. This representation
loses the roll dimension of the angle but has previously been used with PCC to measure the correlation6 between motions.

A number of different approaches have been explored using logarithmic maps to convert quaternions to an R3 vec-
tor representation, that avoids gimbal lock, and still specifies the axis and magnitude of the rotation.15 These angular
representations are considered particularly useful for machine learning or deep learning applications. Logarithmic maps
exploit the fact that when a logarithm is applied to a quaternion, the real component w becomes zero, resulting in the
definition log q ≡

[
0 x y z

]
. Equation (5) uses a natural logarithm as a logarithmic map to convert quaternion q into

a linear vector, where qℜ and qℑ are the respective real and imaginary vector components of q.15

ln q = 1
sinc(arccos(qℜ))

qℑ. (5)

Any given angle can be represented by two quaternions, as q = −q. This double covering or antipodal symmetry can
be visualized as two hemispheres, where all three dimensional angles can be specified within each hemisphere. Before
converting a set of quaternions into a logarithmic map, a hemispherization process needs to be performed to ensure that
all the quaternions for a given joint in both motion a and b, are specified within the same local hemispherical space.15

4 METHODOLOGY

4.1 Sourcing the data-sets

To facilitate this study a number of data-sets, consisting of captured human motions, were required. Each data-set consists
of pairs of motions each containing two motions that were either aligned, similar or dissimilar as described in Figure 2.
In total four data-sets of motion pairs were required as follows:
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Aligned motion pair: two recordings of the same motion with one motion aligned
to the other. This motion pair consists of blue walking motion that has been aligned
to a red walking motion.

Similar motion pair: two recordings of the same motion that have not been
aligned. This motion pair consists of two walking motions.

Dissimilar motion pair: two recordings of different motions. This motion pair
consists of jumping motion (blue) and walking motion (red).

(a)

(b)

(c)

F I G U R E 2 Examples of the three different types of motion pairs used in this study.

• To evaluate the performance of similarity metrics at measuring the alignment of two motions, two data-sets, one con-
sisting of, similar aligned pairs of motions, and the other, similar unaligned pairs of motions, were required. These
data-sets are referred to as Aligned and Non-Aligned respectively.

• To evaluate the performance of similarity metrics at measuring the similarity of two motions, two data-sets, one con-
sisting of similar motion pairs and the other dissimilar motion pairs, were required. These data-sets are referred to as
Similar and Dissimilar respectively.

A set of 63 motions were captured, consisting of 21 different movements each captured three times. The move-
ments consist of common actions such walking, jumping, sitting and picking up objects. Each movement was carefully
choreographed to achieve a high level of similarity between each of the three recordings. Care was taken to match
the number of steps, make sure the motions started and ended on the same foot and markers were set out on the
floor for the actor to hit with each step. The motions were all captured during a single capture session using the
same actor.

The motions were captured using a Vicon motion capture system consisting of eight 2.2 megapixel Vero 2.2 cameras
recording at 120 frames per second. The system was configured in 7 × 7 m volume with a level floor. None of the motion
captured contained dropped frames and no manipulation or clean-up of the data was performed. This data-set of motions
has been made freely available to the public.16
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4.2 Preparing and generating data-sets

The captured motions were organized into the required four data-sets as follows:

• Aligned data-set: consists of sets of two Aligned motions, in which one motion has been aligned to another simi-
lar motion using DTW. Each unique two way combination of two similar motions was used, with each set of three
recordings of the same motion generating six sets, producing a data-set of 126 pairs of motions.

• Non-aligned data-set: consisting of Non-Aligned pairs of motions. This data-set is made up of each unique combination
of two similar motions, plus the aligned motions from the Aligned data-set above, each combined with the similar
motion that was neither used as the input or target motion for the alignment. Each set of three recordings of the
same motion generated 9 sets, producing a total data-set of 189 pairs of motions. The motivation for including aligned
motions was increase the size of the data-set.

• Similar data-set: consisting of a mixture of Aligned and Similar pairs of motions. For each set of three recorded motions,
each unique combination of the three recorded motions and six aligned motions from the Aligned data-set (9 in total)
was used. For each set of three recordings of the same motion, this generated 36 sets, producing a total data-set of 756
pairs of motions. As with the data-set above, the motivation for including aligned motions was to increase the size of
the data-set.

• Dissimilar data-set: consisting of pairs of recordings of two different Dissimilar movements. Two recordings of each
movement were combined with two recordings from the other 20 movements, to create a data set of 840 pairs of
motions. Only two of the three recordings of each movement were used to avoid an overly large data-set that might
bias results.

4.3 Implementation of DTW

The motions within Aligned data-set were prepared using DTW to align the temporal features of an input motion to match
that of a target motion. The distance between the joint poses in the frames input and target motions were measured based
on rotational distance, determined using Equation (1) populating a cost matrix, C. The costs in matrix C were accumulated
to create matrix T, starting at T0,0 and ending at Tm−1,n−1, using Equation (6), where m and n are the number of frames
in the input and target motions respectively.

An alignment path was then plotted backwards through the accumulated cost matrix T from Tm−1,n−1 to T0,0, enforcing
a boundary condition. Starting at Tm−1,n−1, Equation (7) is used to plot an alignment path through the accumulate cast
matrix, T, where p′ and p represent the coordinates in matrix T of the next and most recent points on the alignment path
respectively. No local continuity or global constraints were applied to constraint the path that could be plotted.

Ti,j = Ci,j +min{Ti−1,j,Ti,j−1,Ti−j,k−j}, (6)

p′(i, j) = arg min{Tpi−1,pj−1 ,Tpi−1,pj ,Tpi,pj−1}. (7)

4.4 Joint weightings

With joint rotations being parameterized in local space within this study, joints at the end of the kinematic chain are
of less significance. Therefore, the time-warping and similarity measurements within this study were performed using a
subset of equally weighted joints as shown in Figure 3. The subset consisted of both the left and right: shoulders, elbows,
hips and knees.

4.5 Measuring motion similarity

The similarity of the motion pairs in every data-set were measured using 19 different similarity metrics (15 correlation
and 4 distance base metrics). The PCC, Spearman’s and Kendall Tau correlation methods were each implemented with
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Right
Shoulder Left Shoulder

Right
Elbow Left Elbow

Right
Hip

Left Hip

Right
Knee

Right Hip

F I G U R E 3 Configuration of joints used in study.

five different joint angle parametrization methods (Euler, quaternion, matrix, displacement vector and logarithmic map)
as described in Section 3.4, giving a total of 15 different correlation based similarity metrics. Four different distance based
similarity metrics were also implemented based on: joint angles, joint position, joint velocity and point clouds as described
in Section 3.2. The point clouds were generated using a window size of seven, encompassing three frames immediately
before and after the frame being sampled. As the focus of this study is to compare different measurements of similarity,
compound approaches which combine multiple different similarity measurements were avoided.

To avoid unutilized axes, resulting from joints with limited degrees of freedom affecting the results of correlation
based similarity metrics, any axis containing only low amplitude noise below 1 × 10−5 was given a correlation score of 1.
In order to weight each joint equally, the distance based similarity metrics based on angle, position and velocity, require
the similarity scores (i.e., distance) for each joint to be normalized across the data-set.

4.6 Evaluating similarity metrics

The performance of each similarity metric was evaluated using two different performance tests, Overlap and MAP, which
measure the ability of each similarity metric to distinguish between aligned and non-aligned motions or between similar
and dissimilar motions.

4.6.1 Overlap test

A Mann–Whitney U test17 was used to measure how much the similarity scores of two data-sets overlapped each other.
The Mann–Whitney U was used as the similarity scores within the sample groups failed the Shapiro-Wilk, D’Agostino
Skew and D’Agostino Kurtosis tests for normal distribution, therefore a non-parametric test was required.

The test measures the probability of a randomly selected score from the sample group with the highest mean being
less than a randomly selected score in other sample group using Equation (8). p is the probability of a random pair of
motions from one data-set a with na motion pairs, scoring a lower similarity score than a random pair of motions from
data-set b with nb motion pairs, where U is the test statistic produced by the Mann-Whitney U test. If the distribution
of two sample groups perfectly match, the probability of a score from one sample group being higher than the score of
another sample group is 50%, hence p has a maximum possible value of 0.5, therefore p ∈ R ∶ 0 ≤ p ≤ 0.5.

p = U
nanb

. (8)
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RANDALL et al. 9 of 14

The similarity metrics whose scores have the lowest probability p of overlapping, are considered to differentiate better
between the two data-sets and should be considered more optimal.

4.6.2 Mean average precision test

Mean average precision (MAP) tests are commonly used to evaluate search algorithms. Just like the overlap test, the
MAP test measures how well a metric can distinguish between the motion pairs from two different data-sets, but using a
contrasting approach. Rather than measuring overlap between two sets of scores, the MAP test combines the two sets of
scores into single sorted list, then considers how many of the scores with the closest k values to each score are from the
same data-set.

Given a query score q, precision Pk is the fraction of scores within the k nearest scores, which are from the same
data-set as q. This is determined using Pk = m∪k

k
, where m ∪ k is the number scores from the same data-set as q within

the nearest k neighboring scores.
To determine the average precision AP for a given query score q, the Pk for every value of k is considered in the range

{1 · · ·n} using Equation (9), where n is the total number of scores in the data-set that q belongs to, and relk is an indicator
function which is equal to 1 if the kth nearest neighboring score is from the same data-set as q, or 0 otherwise.

AP =
∑n

k=1Pkrelk

n
. (9)

The mean average precision (MAP) is the average AP for every score within the combined list of scores. This
determined using Equation (10), where Q is to the total number of scores in the combined lists.

MAP =
∑Q

q=1APq

Q
. (10)

The similarity metrics whose scores achieve the highest results in the MAP tests, show that they are able to differentiate
better between the two data-sets and should be considered more optimal.

5 RESULTS

The results of the Overlap and MAP performance tests for each similarity metric can seen in Table 1. The two tests were
used to measure the performance of 19 different similarity metrics when executing two different tasks, measuring either
the alignment or similarity of two motions. The results of each performance test has been color coded to show the best
(green) and worst (red) performing metrics. For the overlap tests the lower the result, the smaller overlap, indicating a
better a performance. For the MAP test the higher the result the better performance.

The correlation method used in each correlation based metric is identified using the following symbols: 𝜌p Pearson, 𝜌s
Spearman’s, 𝜌kt Kendall Tau. The results for performance tests on the correlation based metrics were averaged across each
of the five joint parameterization techniques and three correlation methods used. This allowed the performance impact
of the different approaches to joint parameterization and correlation to be evaluated independently of one another.

5.1 Measuring motion alignment

The Aligned and Non-Aligned data-sets were used to determine the ability of each similarity metric to accurately measure
the temporal alignment of two motions. The metrics which performed best on these data-sets are ideal for applications
which require motions to be identified with temporally aligned features, such as finding motions to blend with existing
motion.

Overall the correlation based metrics performed significantly better than distance based metrics at distinguishing
between aligned and non-aligned pairs of motions. This suggests that correlation based metrics are a better choice when
measuring alignment.
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10 of 14 RANDALL et al.

T A B L E 1 The results of the performance tests for each similarity metric. The ability of metrics to measure alignment
was evaluated by comparing the similarity scores of motion pairs from the Aligned and Non-Aligned datasets. Each metrics
ability to measure similarity was evaluated by comparing the similarity scores of motion pairs from the Similar and
Dissimilar datsets. A continuous linear color grade going from green (best) to red (worst), was applied to each column of
results, to make it easier to identify the best and worst preforming metric in each test. For correlation based metrics the
correlation method used is identified using 𝜌p Pearson, 𝜌s Spearman’s, 𝜌kt Kendall Tau. Rows showing mean scores are
identified by 𝜇.

Kendall Tau was the best performing correlation method in both performance tests, with both rank correlation meth-
ods consistently performing better than Pearson’s linear correlation in all tests. The overlap and MAP tests showed
displacement vectors to be the best method of parameterising joints. The optimal metric for measuring alignment is a
correlation based metric in which joint rotations are parameterized using displacement vectors and the correlation is
measured using Kendall Tau.

The averages of correlation based metrics in both tests show a smaller deviation between metrics that used dif-
ferent approaches to parameterising joint angles, than between those that used different methods of correlation. This
suggests that the choice of correlation method is a more important factor to consider than the choice of joint angle
parameterization.

The angular distance metric also performed well in both tests at distinguishing between aligned and non-aligned
motion pairs. This method would be a good choice where correlation based metrics are hard to implement, such as in
real-time applications.
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Both the overlap and MAP tests were better able to differentiate between the performance of different correlation
based metrics at measuring motion alignment than similarity. However, this is potentially indicative of the unsuitability
of the correlation metrics at measuring similarity.

5.2 Measuring motion similarity

The Similar and Dissimilar data-sets were used to determine the ability of each similarity metric to accurately mea-
sure the similarity of two motions. This identifies optimal metrics to use for tasks such as identifying or classifying
motions.

In general the distance based metrics performed better than the correlation based metrics when measuring motion
similarity. In particular, metrics based on angular and positional distance performed the best in both the overlap and MAP
tests, with a clear performance gap between these and other metrics on the overlap test. The high performance of angular
and positional distance based metrics in the MAP and overlap tests, shows that these metrics are ideal for performing
discrete or Boolean decisions such as identifying a motion as the same or not the same.

Given the marginal difference in performance between angular and positional based distance metrics, the optimal
choice between these two metrics will be dependent on the use case. The angular distance metrics is a better choice for
comparing the overall joint poses within the motions, as it is less affected by any potential differences in joint lengths
between the two motions. However, if the priority is to measure similarities in the positions of end effectors, such as hands
and feet, then a metric based on joint position should still be used.

The results of the performance tests from distance based metrics corroborate the findings of Chan et al.3 which also
found that distance metrics based on joint angle and position performed best at discriminating between similar and
dissimilar motions and that a distance metric based on joint velocity performed poorly. For applications where joint
velocity is important, such as working with dynamic or ballistic motions, a point cloud metric should be considered,
rather than a joint velocity metric.

Across both performance tests there is significantly more variation between the results of the distance based met-
rics than the correlation based metrics. This is to be expected as each distance based metric is based on different
motion features such as velocity, rotation or position, whereas all the correlation based metrics are all based on joint
rotation.

5.3 Computational performance

The computation performance of each similarity metric implemented in this study was evaluated using a small subset of
motions, to determine the average time take by each metric to evaluate the similarity of a frame of motion. The computa-
tional efficiency of a similarity metric is an important consideration in real-time applications or when searching through
large data-sets of motions.

The results of this test can be seen in Tables 2 and 3, for the correlation and distance base similarity metrics respec-
tively. Both tables show the average time to process each frame of motion in microseconds (𝜇s). Although in line with

T A B L E 2 The average time taken by each correlation based similarity metric to evaluate the similarity of a frame of motion in
microseconds (𝜇s).

Correlation method

Rotation Parameter Pearson Spearman’s Kendall Tau

Eular 36 50 39

Quaternion 84 93 96

Matrix 50 86 69

Displacement vector 720 740 716

Logarithmic map 1463 1559 1490
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12 of 14 RANDALL et al.

T A B L E 3 The average time taken by each distance based similarity metric to evaluate the similarity of a frame of motion in
microseconds (𝜇s).

Distance metric Time

Angular distance 114

Positional distance 1016

Postional velocity 1017

Point cloud 1769

expectations, these results should be treated as indicative and not conclusive, as the code used to implement the met-
rics has not been fully optimized. Each similarity metric was ran using a single threaded implementation on an Intel i7
processor running at approximately 3.85 GHz.

Correlation metrics based on Eular angles ran the fastest, this is was expected as joint rotations are stored as Eular
angles, therefore no interpretation or conversion of the angle was required to support this. Correlation metrics based
on displacement vectors and the distance metric based on local joint positions, utilize transform matrices to convert or
interpret the joint information, resulting in them running more slowly. Correlation metrics based on logarithmic maps
where also quite computationally inefficient, due to the need make sure that every quaternion is expressed on the same
hemisphere, which involves finding the mean quaternion rotation for each joint. As expected the most computationally
inefficient metric is based on point clouds, due larger number of data points being compared and need to determine an
optimal transformation for one of the point clouds.

6 CONCLUSIONS

This paper compared a variety of similarity metrics based on both distance and correlation. Different methods of
representing angular data and measuring correlation were evaluated, including novel approaches such as the use of dis-
placement vectors, logarithmic maps and rank correlation. The tests revealed that correlation based metrics are better
for measuring the alignment, while distance based metrics are better for measuring similarity. The results also showed
that the alignment and similarity of two motions should not be considered the same, with different similarity metrics
performing best in each use case. Applications concerned with motion alignment, such as motion blending and motion
graphing, should therefore use correlation based metrics, while applications concerned with motion similarity, such as
recognizing or classifying motions should use distance based metrics.

The results showed a correlation metric based on displacement parameterization and Kendall Tau rank correlation to
be the best method for measuring the alignment of two motions. They also showed that distance based metrics based on
angular or positional distance should be used to measure the similarity of two motions. Depending on the application,
angular distance should be used to compare the overall pose of a motion and positional distance should be used to compare
the position of end effectors.

The optimal approaches to measuring alignment identified in this paper, will be particularly useful in identifying
candidate motions in motion synthesis and accurately measuring the performance of time warping algorithms. However,
it is important to keep in mind that no matter how accurately a similarity metric measures alignment, it will not consider
important factors such how much a motion is distorted or the physical plausibility of the output motion, other metrics
could be used to do this.6,18

Although the optimal metrics for measuring the similarity and alignment of two motions have been shown to be differ-
ent, they can be used together. A robust approach to identifying a candidate motion to blend with another motion, could
be to first use a distance metric based on joint position, to identify a short list of candidate motions. Then a correlation
metric would be used to identify which of the short listed motions has the best alignment. This is similar to approaches
implemented by other researchers.10

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in BCU Single Person Actions Dataset at https://
github.com/matRandall/Mocap_SinglePersonActions.
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