Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification
Petinrin, Olutomilayo Olayemi and Saeed, Faisal and Salim, Naomie and Toseef, Muhammad and Liu, Zhe and Muyide, Ibukun Omotayo (2023) Dimension Reduction and Classifier-Based Feature Selection for Oversampled Gene Expression Data and Cancer Classification. Processes, 11 (7). p. 1940. ISSN 2227-9717
Preview |
Text
processes-11-01940.pdf - Published Version Available under License Creative Commons Attribution. Download (587kB) |
Abstract
Gene expression data are usually known for having a large number of features. Usually, some of these features are irrelevant and redundant. However, in some cases, all features, despite being numerous, show high importance and contribute to the data analysis. In a similar fashion, gene expression data sometimes have limited instances with a high rate of imbalance among the classes. This can limit the exposure of a classification model to instances of different categories, thereby influencing the performance of the model. In this study, we proposed a cancer detection approach that utilized data preprocessing techniques such as oversampling, feature selection, and classification models. The study used SVMSMOTE for the oversampling of the six examined datasets. Further, we examined different techniques for feature selection using dimension reduction methods and classifier-based feature ranking and selection. We trained six machine learning algorithms, using repeated 5-fold cross-validation on different microarray datasets. The performance of the algorithms differed based on the data and feature reduction technique used.
Item Type: | Article |
---|---|
Identification Number: | 10.3390/pr11071940 |
Dates: | Date Event 24 June 2023 Accepted 27 June 2023 Published Online |
Uncontrolled Keywords: | cancer classification, gene expression, machine learning, microarray data, sampling methods |
Subjects: | CAH11 - computing > CAH11-01 - computing > CAH11-01-01 - computer science |
Divisions: | Faculty of Computing, Engineering and the Built Environment > College of Computing |
Depositing User: | Gemma Tonks |
Date Deposited: | 05 Jul 2023 13:04 |
Last Modified: | 05 Jul 2023 13:04 |
URI: | https://www.open-access.bcu.ac.uk/id/eprint/14552 |
Actions (login required)
![]() |
View Item |