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Thesis summary 

Pain is a pervasive, complex, and subjective phenomenon that can be described by many features and 

researched using many paradigms; chronic pain has a significant impact on the quality of life of patients 

experiencing it and constitutes a large burden on the National Health Service. Discovering neural biomarkers 

for ongoing pain and pain sensitivity has the potential to elucidate underlying mechanisms, evaluate therapy 

effectiveness, and identify regions of interest within the brain for further study or intervention; something that 

is possible with functional imaging of brain activity. Magnetoencephalography (MEG) is a non-invasive 

technique that records brain activity through magnetic fields unobstructed by tissue of the head. This thesis 

utilises modern source reconstruction of MEG data to explore brain activity that characterises tonic pain 

conditions, and explores the future of tonic pain research by evaluating the utility of the PATHWAY Contact 

Heat Evoked Potentials Stimulator (CHEPS) – a tool used both as an experimental pain stimulus, and a clinical 

evaluation method in chronic pain – in current and future MEG research. 

A systematic review of studies exploring the CHEPS and MEG, which highlights the paucity of the literature 

combining the two despite the potential benefits of each, is presented within. 

Study one investigates the brain activity changes resulting from paraesthesia-based Spinal Cord Stimulation for 

chronic pain: significant enhancements in synchrony for theta and delta frequency bands during SCS-on 

resting-state are demonstrated, and a significant reduction in Somatosensory Evoked Potential (SSEP) power 

spectra in the SCS-on condition – providing evidence that conventional SCS influences resting and ascending 

processing in the brain, but does not necessarily suppress the field strength of SSEPs. Study two compared the 

neural activity of participants with high and low pain sensitivity during the Cold Pressor Test, and identifies 

regions of interest for future study. Study three is a methodological chapter which attempts to mitigate the 

methodological challenges involved in utilising the PATHWAY CHEPS in MEG research: The thorough 

exploration of independent component analysis, signal space separation and beamforming parameters 

demonstrates that it is possible to suppress the artefacts generated by the non-fMRI compatible CHEPS’ 

thermode with the application of signal attenuation techniques, but only in an empty room dataset; the 

implications of this for future research are discussed. 
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Thesis outline and background context 

This research initially involved a source localisation exploration of pain sensitivity using the 

Contact Heat Evoked Potential Stimulator (CHEPS; Medoc Ltd., Ramat-Yoshai, Israel) in 

magnetoencephalography (MEG), but – despite best efforts – this was indefinitely postponed 

by the COVID-19 global pandemic at the point of data collection. Consequently, previously 

acquired datasets obtained at Institute of Health and Neurodevelopment were identified for 

additional analysis. Original analyses of those datasets are presented in this thesis, aligned with 

the narrative of the previous project – the exploration of pain using MEG beamforming. An 

outline of the thesis narrative is presented below (Figure 1.1). 

 

Figure 1.1: A diagram outlining the narrative of this thesis. 

 

Exploring the utility of CHEPS in MEG

A thorough exploration of the application of signal cleaning techniques to the non-fMRI compatible CHEPS 
thermode 

MEG imaging of tonic pain

Differences in brain activity between pain sensitivity groups during the Cold Pressor Task and its localisation

MEG imaging of chronic pain

Source reconstruction of brain activity resulting from active spinal cord stimulation for chronic pain

What is the future for tonic pain experimentation in MEG?

A systematic review of the Contact Heat Evoked Potentials System (CHEPS) and Magnetoencephalography (MEG)
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This thesis aims to determine whether MEG beamforming can reconstruct the neural correlates 

of ongoing pain. Primarily this was achieved by using beamforming source reconstruction 

analysis of MEG data in two datasets:   

- Healthy control participants undergoing a tonic pain task 

- Chronic pain patients with a Spinal Cord Stimulator implant experimentally turned on or 

off 

Prior to the experimental chapters, brief introductory summaries and literature reviews are 

presented to describe pain physiology, the proposed anti-nociceptive mechanisms of Spinal 

Cord Stimulation, the research surrounding the brain imaging of the Cold Pressor Test to date, 

and the acquisition and analysis of MEG data. 

Following the initial literature reviews, a systematic review is presented which synthesises the 

literature that combines magnetoencephalography and a promising experimental pain 

stimulator – the PATHWAY CHEPS (Medoc Ltd., Ramat-Yoshai, Israel). Pursual of publishing 

options for this review was ongoing at the time of writing.  

In the first study, patients with spinal cord stimulators were observed in the MEG with their 

stimulators turned on and off. During these conditions, they were stimulated by electrodes to 

acquire somatosensory evoked potentials. The effects of spinal cord stimulation on evoked 

fields and oscillatory activity in the resting state were evaluated using beamforming source 

localisation and virtual sensors: The purpose of this experiment was to use modern MEG 

techniques to observe the effect that spinal cord stimulation has on ascending somatosensory 



16 
 

signals using a novel stimulation paradigm, to determine what frequency effects spinal cord 

stimulation might have on the brain, and to localise those effects.  

In the second study, an ice-pack alternative of the Cold Pressor Test was used to induce pain 

during MEG acquisition – after which participants were grouped into ‘high’ or ‘low’ pain 

sensitivity based on their maximum pain score. These data are then evaluated for differences in 

the localisation of brain activity. The purpose of this experiment was to identify biological 

markers for pain sensitivity as measured by a tonic pain stimulus. 

The final chapter contributing to this thesis follows the conclusions of the systematic review, 

and is a thorough exploration of available signal cleaning methods and their effectiveness in 

removing the electromagnetic artefacts produced by the PATHWAY CHEPS. This methodological 

chapter aims to determine whether or not it is possible to use modern signal cleaning 

techniques to facilitate the combination of magnetoencephalography and the CHEPS without a 

functional Magnetic Resonance Imaging-compatible thermode. This technical analysis was 

achieved using Independent Component Analysis (RUNICA; Bell and Sejnowski, 1995), Signal 

Space Separation (SSS; Taulu et al., 2004), temporal Signal Space Separation (tSSS, Taulu and 

Hari, 2009) and beamforming.  
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1. An introduction to pain 

This chapter provides a brief overview of pain physiology. It includes a description of the neural 

pathways that transduce, transmit and process pain, factors that influence the perception of 

pain, and how what experimental techniques are used to observe brain activity resulting from 

pain. 

1.1 Pain physiology 

Pain, as described by the International Association for the Study of Pain, is an unpleasant 

experience with sensory and emotional components that resemble or are associated with 

actual or potential tissue damage (IASP, n.d.). Pain is a protective mechanism that encourages 

self-preservation when functioning normally (e.g., signalling to remove one's finger from a hot 

stove, or avoiding touching a wound), but pathological chronic pain conditions can have a 

devastating impact on the functioning and quality of life of those it affects (Fitzcharles et al., 

2021). Chronic pain has a prevalence between 35-51% in the UK and constitutes a significant 

societal burden that is expected to increase further (Fayaz et al., 2016). Whilst the physiological 

mechanisms of pain signalling are well understood, the brain activity associated with its 

experience, including characteristics that describe it and interindividual differences in its 

perception, has not been fully elucidated: objective biomarkers for pain and pain sensitivity, for 

example, have been elusive; though their identification could provide targets for therapies, or 

means by which the effectiveness of therapies could be evaluated.  

Though pain itself is widely regarded to be a complex phenomenon that extends beyond the 

simple sensing of noxious stimuli, the primary component of pain perception is nociception: 

The signalling of real or potential damage to physical tissues. Nociception is described by five 
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physiological processes: transduction of noxious stimuli into action potentials at nociceptors 

(unencapsulated nerve endings); conduction of the action potential along thin nerve fibres; 

transmission through the central nervous system by second-order neurons (the transference of 

action potentials from primary nerves to the spine and the brain); conscious perception of the 

experience of pain by processing in the brain, and modulation of ascending signals by activation 

of descending inhibitory systems. Primarily, different members of the Transient Receptor 

Potential (TRP) channel family are responsible for the sensation of thermal, chemical, and 

mechanical nociception (Hudspith, 2016; Jardín et al., 2017), the expression of which dictates 

the type of stimuli that activate nociceptors (Dubin and Patapoutian, 2010). Nociceptors are 

high-threshold mechanoreceptors or polymodal sensory nerves – each of which responds to 

mechanical pressure and deformation, changes in temperature, or extracellular agents 

liberated during real or potential tissue damage and inflammation (Hudspith, 2016; Steeds, 

2016). Specific molecules (such as protein kinases, prostaglandins, histamine, nerve growth 

factor, substance P and calcitonin gene-related peptide) can act on membrane proteins to 

change the membrane potential of the nociceptor directly or indirectly. This modulation lowers 

the threshold for aversive painful signals, thereby deterring further manipulation.  

Sensory nerve fibres (bundles of sensory afferent axons) are divided into four main subtypes: 

Aα, Aβ, Aδ and C. These are responsible for the transmission of sensory signals through the 

peripheral nervous system and are characterised by their varying thickness, conductance 

velocities, degrees of myelination, and where they terminate in the spinal cord. Conveniently, 

these divisions also generally separate the nerve fibres by the information they carry. Aα and 

Aβ fibres have the fastest conductance velocities, greatest myelination, and are referred to as 



19 
 

“thick” fibres; they carry sensory neuron information used in proprioception and low-threshold 

(i.e., innocuous) mechanoreception. Aδ fibres are thin and myelinated; they are the fastest of 

the nociceptive fibres, and carry “first” pain: the term used to define pain that is often 

described as immediate and well localised. C fibres are thin, unmyelinated, and are 

characterised by slow conductance velocities; alongside innocuous temperature stimuli, they 

carry “secondary” pain, slower velocity and poorly localised signals that have large receptive 

fields (Ploner et al., 2002). Nerve fibres can also be divided into peptidergic and non-peptidergic 

based on neurotransmitters they carry, peptidergic nerve ablation has shown abolition of 

noxious heat responsiveness and non-peptidergic ablation has demonstrated reduced 

responsiveness to noxious mechanical stimulation (Hudspith, 2016; Zhang et al., 2013); though 

the majority of nociceptors are recognised to be polymodal, and the differences between 

peptidergic and non-peptidergic nerves have been challenged in human models in recent years 

(Shiers et al., 2021).  

As nociceptors fire on the same ‘all-or-nothing’ principle as all neurons, they cannot fire with 

varying intensity depending on the stimulus: The frequency of their activation codes stimulus 

intensity. Repeated activation of nociceptors can increase pain perception by lowering the 

threshold of post-synaptic central nervous system projections (second-order neurons) through 

the recruitment of N-methyl-D-aspartate (NMDA) receptors, which consequentially permits 

greater frequency of depolarisation (Mendell, 2022). This is referred to as wind-up or temporal 

summation (achieved in experimental pain models by presenting stimuli with between 1-6 

seconds inter-stimulus intervals; Sarlani and Greenspan, 2002). Conversely, repetitive activation 

can also cause fatigue of pain intensity, possibly through neurotransmitter supply exhaustion 
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and desensitisation of attentional systems, with a more pronounced effect and slower 

normalisation in C-fibres (McMahon et al., 2013; Mouraux et al., 2013).  

Nociceptors synapse at second-order neurons in the ipsilateral dorsal horn of the spine. The 

signal from nerve fibres is transferred to second-order neurons before crossing to the 

contralateral spine and ascending to the brain. First-order neurons (primary afferents) 

terminate in different layers of the spine (Laminae I, II and V; Figure 1.2). Second-order neurons 

are nociceptor-specific, wide dynamic range or low-threshold; these receive input from pain 

signalling, mixed, or innocuous sensory neurons respectively (Steeds et al., 2016). Many of the 

neurons in the dorsal horn are inter-neurons that branch locally and allow for excitatory 

(glutamatergic) or inhibitory (GABA-ergic or Glycinergic) interaction between inputs (Todd, 

2010). The complex suppressive and facilitative interactions of primary afferents and second-

order neurons was originally described in the Gate Control Theory of pain, first proposed by 

Melzack and Wall (Melzack and Wall, 1965), whereby incoming signals of nociceptive and 

innocuous origin were integrated by a control centre before projecting to the brain. Though this 

theory failed to accurately describe the complex network of segmental spinal neurons and 

descending antinociceptive paths, it helpfully illuminates the complicated nature of nociceptive 

signalling at the spine, and has informed the development of therapies targeting the 

suppressive components of this network (see SCS, chapter 2.1). 
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Figure 1.2: Lamina terminations of first-order neurons (Todd, 2010) 

 

 

Figure 1.3: The spinothalamic and descending pain pathways (From Steeds, 2016) 
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Second-order neurons ascend through various tracts, eventually terminating in the brainstem 

and the brain. Though there are many subdivisions of these ascending paths depending on 

where they terminate, they are commonly referred to as either spinothalamic or spinoreticular 

tracts. The spinothalamic tract has medial (paleospinothalamic) and lateral (neospinothalamic) 

pathways that project to the cerebrum; the paleospinothalamic tract is responsible for 

projections through the medial nucleus of the thalamus, and the neospinothalamic tract is 

responsible for projections through the ventral posterior lateral nucleus of the thalamus (Figure 

1.3; Steeds, 2016). Spinoreticular tracts project to the reticular formation of the brainstem, and 

from there modulate incoming pain signals. Both carry wide-dynamic range and nociceptor-

specific signals.  

Once sensory information reaches the supraspinal areas of the central nervous system, pain 

perception begins (Dubin & Patapoutian, 2010). The network of brain areas responsible for the 

processing of pain is often referred to as the ‘neuromatrix’, as coined by Melzack (1990), and 

necessitates the inclusion of areas responsible for the processing of cognitive and affective 

components of the pain experience as well as the somatosensory components; it is commonly 

proposed to include the primary and secondary somatosensory cortices, the anterior cingulate 

cortices, the amygdala, insula and prefrontal cortex (Figure 1.4), though many other brain areas 

have been implicated (Bushnell, Lucie and Low, 2013). No singular brain area is thought to 

process all characteristics of nociception or pain specifically, and the search for brain areas that 

are selectively activated during pain is ongoing. 

Excited by ascending spinothalamic signals and modulated by descending cortical projections, 

endogenous antinociceptive systems are innate mechanisms by which the central nervous 
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system interacts with incoming nociceptive signals. Descending neurons terminate at 

interneurons or synaptic terminals in the dorsal horn, inhibiting their activation and resulting in 

a reduced output of nociceptive signal in ascending fibres (Figure 1.3; Steeds, 2016); these 

neurons originate in the periaqueductal grey and the nucleus raphe magnus of the brain stem, 

and can release inhibitory or facilitatory neurotransmitters (e.g., opioids, serotonin). Studies 

have demonstrated that the activity of the descending pathway can be influenced by the action 

of dopaminergic brain areas associated with reward: directly descending projections from the 

hippocampus have inhibitory effects on trigeminal nerves, and ventral tegmental area 

projections to the nucleus accumbens have antinociceptive effects moderated by dopamine 

receptors (Mitsi and Zachariou, 2016; Li et al., 2019). Spinal cord stimulation (See section 2.1; 

Tazawa et al., 2015), age (Edwards, Fillingim and Ness, 2003; Riley III et al., 2010), expression of 

opioid gene polymorphism A118G (Peciña et al., 2015) and sex have also been associated with 

moderating descending pathways (Bulls et al., 2015). Dysfunction of endogenous 

antinociceptive systems has been proposed to be involved in the maintenance or development 

of chronic pain conditions, such as Complex Regional Pain Syndrome (CRPS; Ossipov, Morimura 

and Porreca, 2014), and could explain some differences between how individuals experience 

ongoing pain. 
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Figure 1.4: Brain areas implicated in the processing of pain. Figure from Bushnell, Čeko and Low (2013). 

AMY = Amygdala, ACC = Anterior Cingulate Cortex, BG = Basal Ganglia, PFC = Prefrontal Cortex, PB = Parabrachial 

Nucleus, PAG = Periaqueductal Grey, SI = Primary somatosensory cortex, SII = Secondary somatosensory cortex 
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1.2 Pain sensitivity 

Pain is a complex phenomenon, and as such, there are several facets to its experience. The 

extent to which an individual is considered resilient to the experience of pain is referred to as 

pain sensitivity, and can be observed via multiple other pain metrics: endurance of ongoing 

(tonic) noxious stimuli, the threshold at which a stimulus becomes painful, and maximal 

intensity an individual can comfortably endure are all examples of operationalisations of the 

pain experience. Pain intensity is readily available, and can be measured simply by the 

subjective magnitude of the noxious stimuli as reported by an individual on a discrete or 

continuous visual or verbal rating scale between the values of 1-10 (Hjermstad et al., 2011).  

Enhancement of pain sensitivity can be attributed to gain control mechanisms in pain 

pathways, and can be identified by the location of its sensitisation in the peripheral or central 

nerves. Peripheral sensitisation is marked by increased signalling in response to lower threshold 

stimuli, and is often associated with localised tissue or nerve damage. Central sensitisation is an 

increase in the signalling of central nervous system neurons in the spine or brain, often as a 

result of dysfunction or disease, and can be a result of neuronal plasticity enhanced by 

peripheral stimulation (IASP, n.d.; Mendell, 2022).  

Individual differences in pain sensitivity have been correlated with sex (Bulls et al., 2015; 

Esterlis et al., 2013; Ravn et al., 2012), age (El Tumi et al., 2017; Yezierski, 2012), gender role-

conformity (Alabas et al., 2012), menstrual cycle phase (Iacovides et al., 2015), ethnic identity 

(Ostrom et al., 2017; Rahim-Williams et al., 2007), handedness (Pud et al., 2009), cortical 

density (Emerson et al., 2014; Erpelding et al., 2012), genes (Afari et al., 2011; Nielsen et al., 

2008), and neurotransmitter levels (Zunhammer et al., 2016), as well as stress levels (Timmers 



26 
 

et al., 2018; Vachon-Presseau et al., 2013), depression (Schwier et al., 2010), anxiety and 

anxiety sensitivity (Dodo and Hashimoto, 2017), fear of pain (Timmers et al., 2018), pain 

catastrophising (Banozic et al., 2018) and attention (Miron et al., 1989). 

Whilst pain sensitivity can also be enhanced in pathological pain states like CRPS, fibromyalgia, 

chronic headache syndromes and post-surgical pain syndrome (PSPS), and has been tied to 

long-term opioid usage (Borsook and Becerra, 2011; Buchgreitz et al., 2008; Zahari et al., 2016), 

increased pain sensitivity is also occasionally reported in conditions where pain is not a primary 

feature (Bouin et al., 2002; Bromm and Treede, 1991; Lautenbacher et al., 1999; Sung et al., 

2018). Though its effectiveness as a predictor of treatment outcome is occasionally contested 

(Ruscheweyh et al., 2015), enhanced pain sensitivity has been identified as a marker for post-

surgical acute pain, post-surgical recovery and the chronification of pain (Abrishami et al., 2011; 

Coronado et al., 2015; Kim et al., 2015; Nim et al., 2020). Experimentally measuring pain 

sensitivity can be achieved using subjective reporting of upper and lower pain thresholds across 

any number of modalities, and can be observed using evoked or tonic stimuli whilst recording 

brain activity to evaluate its neural correlates (see chapter 5). Identifying neural biomarkers 

associated with pain sensitivity could have far-reaching implications across many fields, and 

assist in treatment selection, evaluation of treatment effectiveness and responsiveness, and 

evaluation of risk, stage, and progression in disease (Lleó, 2021; Mouraux and Iannetti, 2018). 
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1.3 Pain in the brain 

Evaluating the contribution of specific brain areas to the experience of pain is achieved with 

imaging and reconstruction of brain activity using several methods. Most commonly, 

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies 

record surrogates of brain activity (i.e., electrical potential on the scalp originating from 

electrical currents in the brain and blood oxygenation) in pain populations or during 

experimental pain conditions. Imaging methods with low temporal resolution (such as fMRI, 

SPECT, and PET) give poor estimations of activity over time but have high spatial resolution, 

they provide good candidates for brain areas that are involved in the processing of pain, but are 

limited to activity oscillating at a frequencies far below 1 Hz. EEG and magnetoencephalography 

(MEG) techniques often record 1000-2000 data-points a second, enabling the analysis of real-

time time series, and high-frequency oscillatory components. EEG and MEG are commonly 

combined with 3D models generated using MRIs to facilitate the reconstruction of currents and 

fields associated with specific tasks or conditions. Whilst EEG and MEG methods acquire similar 

measurements, they have key differences in their implications and interpretations: EEG records 

electrical currents as they appear on the scalp, which is influenced by the skin, skull and brain’s 

conductance of electricity; MEG records magnetic fields generated by neural currents in the 

brain that are unaffected by the conductance of the volume, but are invisible when radial to the 

sensors (MEG acquisition and analysis described in more detail in chapter 3). For these reasons, 

MEG is capable of achieving greater spatial resolution than EEG, but is thought to be insensitive 
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to activity limited to gyri of the cortex; and neither have the spatial resolution or accuracy in 

deep brain regions that fMRI can achieve.  

In EEG and MEG literature, brain signal analysis is often performed in the time, frequency, or 

time-frequency domains. In the time domain, signals are often observed as they are at the 

channel (EEG) or sensor (MEG), which appears as a wave that represents ongoing electrical or 

magnetic activity in the brain under the electrode or flux transformer. This time series can be 

time-locked to when a stimulus was applied, and averaged across many trials and sensors to 

observe an “evoked” waveform. The energy attributable to different frequency bands within 

measured brain signals can be estimated using Fourier transformation (a method used to 

deconstruct signals and estimate the power of the underlying frequency components). 

Analysing brain signals acquired using MEG or EEG enables the observation of a broad range of 

frequency bands, most often divided into delta (0-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta 

(14-30 Hz) and gamma (30+ Hz), though their boundaries are rarely consistent (Figure 1.5). 

Synchrony in these bands has been associated with different behavioural, perceptual, and 

processing functions in the brain, and are changes or differences in the frequency 

characteristics of brain signals are thought to reflect underlying differences in brain activity. 

Whilst the functions of frequency bands may be specific to an observed brain area, some 

commonality has been prescribed to them: the delta frequency band has been linked to 

memory and motivation; the theta frequency band has been associated with episodic memory 

and pain; alpha frequency enhancements reflect attention and has been identified as a marker 

of pain sensitivity; the beta frequency band is often associated with movement initiation and 

anticipation, and the gamma band is thought to represent localised processing and cognitive 
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function (Kim and Davis, 2021). Analysis of underlying frequency power in signal data is 

achieved by the use of a Fourier transformation. A Fourier transform decomposes signal data, 

such as M/EEG timeseries, and estimates the contributions of each specified frequency to that 

signal (E.g., How much of the observed signal is 1 Hz, 2 Hz, 100 Hz), and can be achieved using 

most M/EEG analysis software. Repeating a Fourier transform over short segments of 

timeseries data can enable the analysis of changes in the power of frequency bands over time 

(more detail on MEG acquisition and analysis in chapter 3).  

 

Figure 1.5: Frequency bands observed in EEG and MEG (Adapted from Abhang et al., 2016). 

Observing somatosensory activity in the human brain is most often achieved by evoking activity 

with an acute or tonic stimulus, or analysing the brain at rest in individuals with chronic pain 
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conditions. Evoked methodologies often reflect different nociceptive modalities (including heat, 

cold and mechanical), but can also utilise electrodes to recruit nociceptive or sensory nerves 

directly and selectively. Components of various latencies can reflect the processing of acute 

pain transmitted by nociceptive fibres with different conductance velocities (i.e., Aδ and C 

fibres), though their amplitudes and latencies are modulated by the characteristics of the 

stimuli also (Frahm et al., 2020). 

 

Figure 1.6: The N2P2 component of an evoked waveform, as measured by EEG at the Cz channel. Adapted from 

Rosner et al., (2018a). 
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The waveform component most commonly associated with the processing of evoked Aδ pain in 

EEG and MEG is N2P2 (Figure 1.6). N2P2 is a waveform consisting of a clear negative deflection 

followed by a positive deflection, and it is the source of some contention in pain literature. 

Initially, the waveform was thought to represent nociception in the cortex, but comparisons 

with non-noxious stimuli of similar novelty and salience have cast doubt on its specificity, 

instead suggesting that the N2P2 reflects attention: Mouraux & Plaghki (2006) first 

hypothesised that laser-evoked potentials (LEPs) were not fully representative of nociception, 

evidenced by the fact that C-fibre activation does not consistently provoke late or ultra-late LEP 

activity and that N2P2 components can be evoked by many sensory stimulation modalities, and 

that involuntary attentional capture was more likely responsible for the N2P2 waveform. Their 

subsequent research investigated the specificity of the N2P2 waveform and demonstrated a 

significantly reduced magnitude for N1, N2-P2 and event-related synchronisation (ERS) when 

making the stimulus timings predictable, and that randomising or batching trios of stimuli and 

their intensities had no influence on pain perception despite this (Iannetti et al., 2008). They 

concluded that the N2P2 component was reflective of stimulus saliency rather than pain 

processing, though they conceded that evoked waveforms and the synchronisation of 

frequency bands in the time-frequency domain remain useful in exploring nociception. 

Mouraux & Iannetti (2009) further demonstrated this exact phenomenon with a study that 

showed the entire LEP waveform could be explained by the variance introduced by auditory, 

visual or non-nociceptive specific somatosensory stimuli, and Wang et al (2010) reported that 

the inter-stimulus-interval suppression of LEP amplitude was highly dependent on the 

predictability of the stimulus. Regardless of its selectivity, the N2P2 remains an effective marker 
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of stimulus intensity on its merit as a reflection of salience, and is still used to evaluate pain in 

clinical populations (Hüllemann et al., 2019). 

The gold standard for evoking N2P2 waveforms from pain stimuli is an infrared neodymium 

yttrium aluminium perovskite (Nd:YAP) laser: a heat stimulus applied to the skin via radiation 

through superficial layers of the skin. Laser stimuli are highly localised and do not have a long 

ramp-up time, which results in a well synchronised evoked response, providing clearer signal-

to-noise ratio in M/EEG data, and thereby greater amplitudes (Arendt-Nielsen and Chen, 2003). 

However, the equipment is expensive, the stimulus is influenced by skin reflectivity, the heat 

can stimulate only a very small area, and studies require extensive safety protocols to avoid 

injuring the participant or operator (Frahm et al., 2020). An alternative to LEPs are 

Somatosensory Evoked Potentials (SSEPs), which are achieved through electrical stimulation of 

sensory nerves. Carefully controlling the stimulus qualities and utilising selective electrodes, it is 

possible to evoke highly synchronous and selective activity by selectively stimulating only 

nociceptors; though it is well recognised that these techniques circumvent the transduction of 

pain, a key component to nociception, and this limits their ecological validity: they do not fully 

reflect the typical pain experience of a participant. A notable alternative to these is the Contact 

Heat Evoked Potentials Stimulator (CHEPS; Medoc Ltd., Ramat-Yoshai, Israel), a Peltier 

thermode capable of heating at a rate of 70˚C/s (discussed in more depth in chapter 6). The 

CHEPS is capable of achieving noxious temperatures quickly enough to evoke time-locked brain 

activity, but at reduced risk of injury, and with a contact area that better reflects the pain that 

participants might experience in everyday life.  
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Observations of brain activity in pain studies have given rise to a ‘pain neuromatrix’, as 

described by Melzack & Wall (1965; Melzack, 1990, 1999). Despite many brain areas being 

implicated in the processing of pain, few areas of the pain matrix have entirely consistent 

evidence supporting their addition (Apkarian et al., 2005; Peyron et al., 2000; Peyron and 

Fauchon, 2019; Tracey and Mantyh, 2007). Most commonly, the pain neuromatrix is identified 

as the anterior cingulate cortex, primary and secondary somatosensory cortices, the thalamus, 

the insular cortex, prefrontal cortex, and cerebellum (Figure 1.4).  

1.3.1 Thalamus 

Almost all ascending nociceptive neurons from the spine, through the spinothalamic, 

spinoreticular, spinomesencephalic, spinotectal and spinohypothalamic fibres, arrive in the 

thalamus directly (15%) or indirectly (85%, Patestas and Gartner, 2006). Intracortical recordings 

have demonstrated activity in the thalamus in response to experimental stimuli (Pralong et al., 

2004), and Gauriau & Bernard (2004) demonstrated that 41% of posterior thalamic neurons 

responded to cutaneous stimulation, with 45% of those being nociceptive-specific and 19% 

nociceptive non-specific. Though this suggests an association with pain processing, the 

thalamus is a diverse neuronal structure that corresponds with activity in many networks, 

including the default mode, attention, executive, motor, auditory, visual and salience networks 

(Yuan et al., 2016), and is purported to primarily function as a thoroughfare for projections to 

other brain centres. Stimulation of specific nuclei in the thalamus has been shown to reduce 

pain scores in neuropathic pain conditions up to and beyond 50% a reduction even at 4 years 

follow-up, though its efficacy was not equal across all neuropathic conditions (Abdallat et al., 

2021). A recent review has proposed that specific thalamic nuclei act as ascending promoters of 
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pain modulation via descending pathways with nociceptive selectivity, suggesting that it is not 

simply a relay for pain signals, but also involved in both facilitation and suppression of pain by 

controlling which signals are projected to the insular and cingulate cortices (You et al., 2022).  

1.3.2 Primary and secondary somatosensory cortices 

Early lesion studies hypothesised that the primary somatosensory cortex (SI) was not necessary 

for pain perception: Head (1920) identified that individuals with parietal lobe lesions still 

experienced pain. This was explored by Ploner et al. (1999) who identified stroke patients with 

damage of SI and SII who reported they were able to experience pain, but not localise the 

sensation, or the modality of nociceptive stimuli – instead simply reporting a negative affective 

experience. More recently, the functional heterogeneity between SI and SII has been 

highlighted (Worthen et al., 2011), casting doubt over lesion studies that do not differentiate 

between the two.  

In modern literature, SI’s contribution to sensation is recognised ubiquitously; it has been 

consistently validated with several event-related potential electrophysiological imaging studies 

using a variety of stimuli modes (Iwamoto et al., 2021; Okada et al., 2021; Patestas and Gartner, 

2006; Ploner et al., 1999; Tarkka and Treede, 1993; Vierck et al., 2013). Inui et al. (2003) 

demonstrated SI activity as the earliest component in neural activity in response to intra-

epidermal stimulation, a method that avoids Aβ fibre activation, clarifying that SI is capable of 

responding to ascending signals in a pain-specific manner; it is recognised as the primary area 

for processing of Aδ nociceptive inputs and discriminative characteristics of sensation 

(Panchuelo et al., 2020). Studies using painful stimuli have shown painful stimulation recruits 

significant gamma-band oscillatory activity in SI when compared to non-painful stimulation 
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intensities and this power increases with intensity (Gross et al., 2007; Kropf et al., 2018; 

Rossiter et al., 2013; Tiemann et al., 2010). Recent research has also highlighted SI’s influence 

on descending antinociception (Tan et al., 2019), and forward projections to areas that 

contribute to pain anxiety (Jin et al., 2020).  

Unlike SI, SII has been shown to elicit the sensation of pain when stimulated with intracerebral 

electrodes alongside the insula (Mazzola et al., 2006), and its disruption with transcranial 

magnetic stimulation can interfere with the processing of intensity (Lindholm et al., 2015; 

Lockwood et al., 2013). It is suggested that SII is activated primarily during pain, where SI 

activity ramps with stimulus intensity regardless of its innocuous or nociceptive nature 

(Bornhövd et al., 2002; Timmermann et al., 2001). SII has been linked with pain sensitivity by 

studies that have identified reduced mechanical and thermal pain thresholds as a result of its 

disruption (Liu et al., 2018; Valmunen et al., 2009). 

1.3.3 Insular cortex 

Gogolla’s (2017) review of the literature surrounding the insular cortex summarises its function 

as a convergence gateway for bodily sensations, autonomic control, afferents associated with 

emotional processing, and highlights its membership of a network responsible for fear 

association, possibly reflecting its integration of information to influence decision making. 

Gogolla notes that stimulus recognition and valence appear to be a core aspect of the insular 

cortex’s function; it is consistently activated regardless of the mode of salience, whether the 

stimulus is painful or not, and whether the pain is acute or chronic (Uddin, 2015). Lesions of the 

insula cortices show patients and rats experiencing inappropriate emotional responses, 

especially in response to pain (pain asymbolia; Klein, 2015). 



36 
 

Garcia-Larrea’s review (2012) suggests the posterior granular insular and the adjacent medial 

operculum are the strongest contenders for a primary pain cortex. This is due to it being the 

brain area that suits pain-specificity criteria to the greatest extent: i.e. a) there is evidence for 

anatomical projections terminating here from the spinothalamic tract (Dum et al., 2009), b) 

there is consistent activation in response to noxious stimuli presentation (Apkarian et al., 2005; 

Garcia-Larrea et al., 2000), c) there is pain experienced by stimulation of the brain area 

(Mazzola et al., 2012, 2006) and d) lesions to the area produce alterations to nociception 

(Garcia-Larrea, 2012). Their evaluation of the research, however, concluded that it has pain-

preferential activation, not pain-specific: Gamma-band oscillatory activity in the insula appears 

to show a preference for nociception, since it is not present in the processing of equally salient 

non-nociceptive stimuli (Liberati et al., 2018, 2019; Peyron and Fauchon, 2019). Many studies 

have associated the insula cortices with the salience of a stimulus and the salience network 

itself (Frot et al., 2008; Iannetti et al., 2005; Seeley et al., 2007; Villemure and Bushnell, 2009; 

Wiech et al., 2010).  

 

1.3.4 Cingulate cortex 

The mid-cingulate cortex (MCC) receives 24% of spino-thalamocortical projections, projects to 

the periaqueductal grey and has been identified as a candidate for the pain neuromatrix by 

several reviews of experimental research (Apkarian et al., 2005; Dum et al., 2009; Peyron et al., 

2000). The MCC appears to be responsible for the cognitive-evaluative stages of pain 

processing, as well as the affective dimension of the pain experience, and a contributor to later 

brain evoked brain signal activity, and the anticipation of noxious stimuli, though its selectivity 
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for pain is not clear ( Gopalakrishnan et al., 2015; Ploghaus et al., 1999). Early research reported 

finding single neurons in the anterior cingulate cortex (ACC) of 4 out of 11 patients that respond 

selectively to contralateral painful thermal and mechanical stimuli, though these were also 

active in the anticipation or observation of painful stimuli and did not elicit pain upon 

stimulation (Hutchison et al., 1999). Other anatomical studies of the cingulate cortex have 

demonstrated an inverse relationship between grey matter density in the posterior cingulate 

cortex (PCC) and pain sensitivity (Emerson et al., 2014), an activation of the ACC in response to 

pain-evoked stimuli using intracerebral electrodes (Lenz et al., 1998) and effectiveness of 

cingulotomies in treating chronic pain (Boccard et al., 2014a). However, ACC lesions do not 

appear to stop the pain response altogether, and do not influence pain sensitivity (Fuchs et al., 

2014). 

Though the cingulate cortices are separated into other areas that can each be associated with 

many different functions (such as motor and cognitive aspects of pain; Kwan et al., 2000), the 

most commonly cited function of the CC is its contribution to pain affect. Vogt et al. (2005) 

posited that the four-region neurobiological model of the CC were effective subdivisions for 

emotion, and that their overlap with pain responses were accurate reflections of their 

contribution to the pain experience: anterior MCC & fear-avoidance; posterior ACC & 

unpleasantness; posterior MCC and dorsal PCC & skeletomotor orientation in response. 

Manipulation of pain unpleasantness by hypnosis by Rainville et al (2002) has increased 

activation in the ACC, and increased unpleasantness associated with repetition of a pain 

stimulus is also associated with this increase (Price, 2000). It is unsurprising, then, that this 

greater activation is also found in chronic pain patients, since pain is defined as an unpleasant 
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experience (Bliss et al., 2016; Gungor and Johansen, 2019; Meda et al., 2019), and targeting the 

ACC with deep brain stimulation has found some success in reducing its unpleasantness and 

intensity in certain neuropathic pain disorders (Boccard et al., 2014b; Levi et al., 2019). 
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2. Literature review 

 

In pathological cases, pain can become dysfunctional and no longer provide a protective 

benefit. Individuals are diagnosed with chronic pain after enduring it for a minimum of three 

months, with a number of underlying aetiologies; most commonly damage to, or disease and 

dysfunction of, neurons involved in signalling pain in the peripheral or central nervous system. 

The prevalence of chronic pain has been reported as high as 35-51% in the UK (Brown et al., 

2021; Fayaz et al., 2016), and is associated with negative impact on the individual beyond the 

scope of injury, including depression, anxiety, lower quality of life, lower job satisfaction, 

reduced sleep, higher levels of opioid consumption, social withdrawal, and suicide risk 

(Fitzcharles et al., 2021). Individuals with chronic pain often find mixed therapeutic relief from 

pharmaceutical methods, and despite broad applications and many potential therapeutic 

targets, many have to live with unacceptable levels of ongoing pain (Majedi et al., 2019). 

Research continues to explore avenues for improving pain relief in chronic pain patients, with 

some promising nervous system stimulation interventions available to those with otherwise 

intractable pain, but much experimental research is difficult to generalise to chronic pain. Many 

studies hoping to identify the neural correlates of pain use stimuli and methods which do not 

reflect the enduring characteristics of chronic pain (i.e., laser and electrical stimuli). Lasting 

(tonic) pain stimuli are the closest experimental analogues, but do not always lend themselves 

to brain imaging due to ferrous metal components, electromagnetic signal generation and 

practical size constraints.  
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Identifying the neural correlates of pain could provide insights into disease, targets for therapy, 

or metrics by which to evaluate them – but few biomarker candidates exist (Lleó, 2021; 

Mouraux and Iannetti, 2018). MEG beamforming (an analysis technique that utilises MEG data 

to produce an image of brain activity in a 3D model of the brain) can be used to reconstruct 

activity using whole-brain analysis and virtual sensors, enabling the analysis of frequency power 

and magnetic field strength whilst suppressing external magnetic fields by using spatial weights: 

filters that selectively reconstruct signals that only originate from each point of interest within 

the brain. Beamforming MEG data can be used to identify differences in brain activity between 

pain conditions, and groups of individuals or patients that experience pain differently without 

suffering from volume conduction distortion or contributions from external noise generators 

such as spinal cord stimulators. Though MEG beamforming has clear advantages, several areas 

of tonic pain research are yet to be explored with it. The research question for this thesis 

follows this narrative: can MEG beamforming reconstruct the neural correlates of ongoing 

pain?  

In chapter four chronic pain states in patients with therapeutic Spinal Cord Stimulation (SCS) 

are observed by comparing brain activity with their generators enabled and disabled. The 

neural activity recorded during these timeframes reflect different levels of pain relief, as 

reported by the participants, but also the supraspinal mechanisms of SCS.  

In chapter five, healthy control participants enduring a Cold Pressor Test (CPT) analogue have 

their neural correlates of pain sensitivity evaluated; self-reported ongoing pain values were 

used to form high-sensitivity and low-sensitivity participant groups, and their brain activity 

during the CPT is compared to a baseline to evaluate their experience of pain.  
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The following subchapters describe SCS and CPT research in M/EEG to date. Subchapter 2.1 

illuminates the literature surrounding conventional SCS, relevant brain imaging studies, and 

how they are informed by theories for its mechanism of action. Subchapter 2.2 describes the 

literature surrounding the CPT and relevant brain imaging findings. 

 

2.1 Spinal cord stimulation and its mechanisms 

Spinal cord stimulation (SCS) is an invasive neuromodulation technique used for the 

management of chronic neuropathic pain. It is achieved by percutaneously implanting 

electrodes in the epidural space adjacent to the dorsal column of the spinal cord (Lundeland et 

al., 2021) (Figure 2.1); those electrodes, powered by an implanted generator, then stimulate 

between 4-60 Hz, with pulse width between 150-500 ms and an amplitude strong enough to 

generate a sense of paraesthesia (an abnormal sensation that usually presents as a tingling in 

the skin; (De Groote et al., 2018; Linderoth and Foreman, 2017). Its concept was initially 

founded on the Gate Control Theory (Melzack and Wall, 1965) on the premise that stimulation 

of Aβ fibres could ‘close the gate’ on the ascending pain projections via inhibitory synapses, and 

was first introduced in 1967 (more on the Gate Control Theory in Chapter 1.1; Shealy et al., 

1967). Primarily this therapy is reserved for intractable chronic pain patients that have had 

limited or no success with alternative therapies; it is most often used to treat chronic pain 

conditions such as PSPS type 2, CRPS, neuropathic pain, visceral abdominal pain, diabetic 

neuropathy, and angina pectoris (Caylor et al., 2019), but has also shown promise in 

ameliorating movement disorders such as Parkinson’s disease, multiple sclerosis and dystonia 

(Sivanesan et al., 2019). The electrodes are implanted in pairs on either side of the spine or 
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individually, located based on anatomy or intraoperative stimulation/collision assessments (De 

Groote et al., 2018; Shils and Arle, 2018). Traditional SCS is often referred to as ‘conventional’, 

‘tonic’ or ‘paraesthetic’ SCS because many patients experience paraesthesia as an intended 

result of the high-charge delivery stimulation of the dorsal column’s Aβ tracts (as opposed to 

burst or high-frequency alternatives; Miller et al., 2016). In this thesis, unless otherwise 

specified, ‘SCS’ will refer to the conventional tonic method. 

 

Figure 2.1: Spinal cord stimulator with an epidural electrode and subcutaneous pulse generator, from Lundeland et 

al., 2021. 

SCS has been shown to improve quality of life, pain, disability index scores, treatment costs, 

opioid dosage, employment and satisfaction, with some studies demonstrating up to 54% of 

patients experience over 50% pain reduction after 24 months (Deer et al., 2014; Harat et al., 

2012; Kay et al., 2001; Kumar et al., 2008; McClure et al., 2021; Meyerson et al., 2006; Visnjevac 

et al., 2017). A recent meta-analysis of randomised control trials confirmed the efficacy is 

greater than that of placebo (Duarte et al., 2020b), though the quality of current SCS 

randomised control trials has been called into question due to the difficulty of blinding 
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participants when stimulations can be sensed in certain stimulation paradigms and calibration 

settings (Duarte et al., 2020a). The most commonly recognised mechanisms of action in SCS are 

supraspinal and segmental, and reflect the orthodromic, antidromic and localised effects of 

stimulation and action potentials elicited by currents generated in the epidural electrode. 

2.1.1 Orthodromic action of SCS 

2.1.1.1 Supraspinal activity during SCS 

Current theories of supraspinal SCS mechanisms rely on the recruitment of the descending 

antinociceptive system (DAS; Figure 2.2b), as elicited by orthodromic action potentials initiating 

Aβ dorsal column signalling. Ascending dorsal column fibres carry Aβ myelinated thick-fibre 

sensory information and decussate in the medulla before projecting through the thalamus to 

the sensory cortices. Ascending dorsal column fibres have excitatory terminals in the 

periaqueductal grey (PAG), which in turn projects to the rostroventral medulla (RVM), an area 

responsible for descending inhibition of pain; this feedback is the mechanism by which 

ascending signals can reduce painful inputs. Dorsal column fibres carry axons of second-order 

neurons that enable our perception of touch, and can additionally modulate ascending pain 

integration with inhibitory synapses at wide dynamic range (WDR) neurons in the spinal cord 

(discussed more in chapter 1). WDR neurons ascend via the anterior spinothalamic tract, and 

have numerous terminals in the RVM, reticular formation and PAG (Irvine and Clark, 2018). In 

this way, both innocuous and noxious sensory pathways can activate the DAS (Caylor et al., 

2019). After terminating in the thalamus, projections from the anterior spinothalamic pathway 

are sent to many brain structures associated with sensory, affective, and motivational 

processing of pain, such as the primary and secondary somatosensory cortices (SI & SII), 
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Anterior Cingulate Cortex (ACC), prefrontal cortex (PFC), amygdala, ventral tegmental area 

(VTA) and the nucleus accumbens (NAc). These cortical areas can additionally facilitate 

antinociception at the dorsal horn by directly or indirectly exciting a locus coeruleus-PAG-RVM 

loop that inhibits second-order projection neurons at the spine, suppressing ascending 

nociceptive signals (Song et al., 2013; Todd, 2010). 

Descending antinociceptive projections release serotonin (5HT), norepinephrine (NE), 

acetylcholine (Ach), γ-aminobutyric acid (GABA) and opioids into synapses in the dorsal horn to 

reduce excitability, inevitably reducing the frequency at which pain signals ascend to the cortex 

for processing. The contribution of descending serotonergic neurons has been documented 

(Song et al., 2011), showing that selectively antagonising 5HT receptor subtypes can attenuate 

SCS effectiveness. Dorsal horn 5HT levels has been shown to increase after SCS, and increased 

presentation of spinal 5HT and 5HT-like receptors have been observed in rats that responded to 

SCS (Song et al., 2009). Similarly, a potential role for GABA with SCS has been observed, with 

antagonists reducing its effectiveness (Rees and Roberts, 1989), reduction in GABA levels after 

SCS (Stiller et al., 1995) and antinociceptive effects observed with the introduction of GABA 

antagonists (McMahon et al., 2013). It is possible the descending fibres themselves are directly 

and orthodromically recruited by SCS, though the columns carrying these fibres are separate 

and distant (i.e., the ventrolateral, dorsal and dorsolateral funiculi), so the effect of stimulation 

would be greatly reduced; indeed, stimulations of the magnitude of SCS’s recruitment of dorsal 

columns themselves have estimated as few as 1% of the fibres being recruited (Holsheimer, 

1998), so recruitment of orthodromic descending signals seems unlikely in conventional SCS.  
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Other studies have evaluated the contribution of orthodromic and antidromic signalling of SCS 

leads by observing antinociception relative to lead placement and cord transection. In Rees & 

Robert’s study (1989) the spine was stimulated above and below a transection of the dorsal 

column to evaluate whether the orthodromic dorsal column pathway was necessary for pain 

relief, and showed that stimulation caudal (inferior) to the lesion only produced very short-term 

suppression in comparison to long-term inhibition from rostral (superior) stimulation of the 

dorsal column; El-Khoury et al. (2002) replicated these findings, demonstrating a reduction of 

allodynia in rats (measured with paw withdrawals) with neuropathic pain when stimulating 

rostral to a transection at the spine. Barchini et al. (2012) elucidated this relationship further, 

showing that transection of the dorsal column does not absolutely halt antinociception 

provided by caudal stimulation of the spinal cord, implicating some localised segmental 

mechanisms – perhaps including recruitment of DAS or local glia. The evidence reviewed here 

strongly implies that descending inhibition as activated by the orthodromic dorsal column 

pathway is a significant component of SCS antinociception, but also demonstrates that it is not 

able to explain its entire mechanism.  
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Figure 2.2: Proposed mechanisms of SCS. A. Spinal and segmental mechanisms: antidromic signalling caused by the 

SCS leads activate inhibitory interneurons and innervate wide dynamic range neurons, whilst localised stimulation 

of microglia may also influence local circuitry. B. Supraspinal mechanisms: orthodromic signalling of dorsal column 

fibres activate brainstem centres that are associated with descending antinociception at the second-order neurons 

in the spine, resulting in a suppression of pain signals along the spinothalamic tract. AP: Action potential. IPG: 

Implantable Pulse Generator. LC: Locus Coeruleus. RVM: Rostroventral Medulla. NE: Norepinephrine. 5-HT: 

Serotonin (5-hydroxytryptamine). Adapted from Sankarasubramanian et al. (2019). 

 

2.1.1.2 Cortical activity during SCS 

With modulation of ascending fibres, it follows that there may be some resulting pattern of 

activity in the cortex. This has been explored across multiple modalities, with convincing 

evidence for the recruitment or suppression of brain areas associated with the processing of 

pain. PET and SPECT imaging studies have identified increased activity in the thalamus, 
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orbitofrontal cortex, parietal cortex, anterior cingulate cortices, cerebellum, and dorsolateral 

prefrontal cortex; these studies also observed decreased activity in the anterior cingulate gyri, 

subcallosal gyri, superior temporal gyri and anterior cingulate gyri as a result of active SCS 

(Kishima et al., 2010; Nagamachi et al., 2006). Rat fMRI studies have demonstrated that SCS 

increases blood oxygen level-dependent signal in the primary somatosensory cortex, premotor 

cortex, anterior cingulate cortex, amygdala, and insula (Meuwissen et al., 2020). Human studies 

have shown activation in the primary somatosensory cortices and insula (Stančák et al., 2008), 

the cingulate gyri, thalamus, and prefrontal cortices (Rasche et al., 2005) and deactivations of 

the parahippocampus, posterior cingulate gyrus, precuneus, secondary somatosensory cortices, 

caudate putamen and superior temporal gyrus (De Groote et al., 2018; Saber et al., 2022). 

These findings show activation of brain areas that are commonly associated with the processing 

of nociceptive aspects of pain and sensation, and suppression of brain areas linked with the 

affective characteristics of the pain experience – but elucidate very little about the nature of 

these changes in anything other than magnitude and location.  

 

2.1.2 Antidromic action of SCS 

2.1.2.1 Segmental action of SCS 

Action potentials generated by SCS electrodes can travel caudally against the usual propagation 

tract of the dorsal columns, and antidromically stimulate terminals at inhibitory and projecting 

neurons (Figure 2.2a). The inhibitory activity of these local connections is a result of glycine and 

GABAergic synapses, though they can be influenced by the descending mechanisms mentioned 

in the previous section (Todd, 2010). In contrast to the reduction of GABA in the brainstem, 
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studies have demonstrated that SCS induces an increase in GABA and GABA receptors in the 

spinal cord (Barchini et al., 2012; Cui et al., 1997, 1996; Song et al., 2011, 2009; Stiller et al., 

1995); these mechanisms are associated with a concurrent reduction in glutamate and 

decreased WDR excitability, as measured by the reduced amplitude of evoked potentials and 

less frequent spontaneous firing (Cui et al., 1997; Yakhnitsa et al., 1999).  

At the spinal level, local microglia and astrocytes are also involved in the moderation of 

circuitry, and SCS has been demonstrated to decrease activation in both (McCarthy et al., 2013; 

Sato et al., 2013). Reduction of inflammatory responses and facilitatory gliosis have been 

proposed as mechanisms of SCS’ antinociceptive effect, though changes in glial mediators 

throughout the central and peripheral nervous system as a result of SCS are not uniform, and 

some of them are pro-nociceptive (Caylor et al., 2019; Kim et al., 2013; Tilley et al., 2015). The 

inactivation of microglia and the resulting antinociceptive effect have been linked to their 

cannabinoid CB1 receptors, which have been thought to mediate SCS-induced reduction in 

mechanical hypersensitivity resulting from the use of CB1 antagonists (Sdrulla et al., 2015). 

With simulations of lead current dispersion estimating that as few as 1% of Aβ fibres are 

effectively stimulated, it is not a surprise that other local structures may be influenced and 

contribute to its antinociceptive effect (Holsheimer, 1998).  

 

2.1.2.2 Antidromic stimulation and collision of SSEPs 

Ascending somatosensory signals propagate along the dorsal columns towards the cortex, but 

have synapses along this pathway that inhibit WDR neurons at the spinal cord. These fibres are 

those targeted by SCS, and are capable of carrying SCS signals antidromically, inhibiting 
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ascending pain signals at the WDR neurons, as naturally ascending somatosensory signals 

might. In an attempt to demonstrate this, research has focused on the collision of 

somatosensory evoked potentials (SSEPs) – action potentials generated by a sensory stimulus – 

with antidromic stimulations originating from the stimulating leads along the dorsal columns. In 

theory, somatosensory signals that ascend the dorsal columns will be extinguished by out-of-

phase collision with antidromic stimulation, and the smaller amplitude orthodromic currents 

generated by the SCS are responsible for the sense of paraesthesia (Fig 2.3) (Caylor et al., 2019). 

This concept has been thoroughly researched, with the majority of electro- and magneto-

physiological recordings studying SCS focusing on this topic. Reduced SSEPs recorded by single-

cell electrodes and EEG during SCS are well documented in rat and human experiments 

(Buonocore et al., 2012; Buonocore and Demartini, 2016; Lang et al., 1989; Larson et al., 1974; 

Poláček et al., 2007; Urasaki et al., 2014; Wolter et al., 2013); though it does not appear to be 

entirely consistent (Doerr et al., 1978; Mazzonea et al., 1994; Weigel et al., 2015). 
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Figure 2.3: The proposed collision of somatosensory evoked potentials (SSEP, or SEP) as a result of antidromic SCS 

signals. Adapted from Urasaki et al. (2014). 

 

The collision of SSEPs has been thought to be a marker for SCS effectiveness (Sindou et al., 

2003), whilst others have remarked that SSEP response could be parameter-specific (Poláček et 

al., 2007). Dorsal horn nuclei have been shown to have reduced excitability during SCS 

(Yakhnitsa et al., 1999), and nociceptive stimuli have also been found to be suppressed by SCS 

patients undergoing stimulation (Bocci et al., 2018; Hylands-White et al., 2016; Pluijms et al., 

2015a; Stančák et al., 2008),  though it is not possible that this is the result of collisions in the 

dorsal column as nociceptive stimuli ascend the spine laterally: instead, it has been suggested 

to be the result of the antidromic inhibition of WDRs by Aβ fibres. Investigating this, Testani et 

al. (2015) used laser stimulation on the arm in conjunction with delayed electrical stimulation of 

Aβ fibres of the second and third fingers of the same limb: They demonstrated that N2P2 

components were only significantly reduced when the Aβ stimulation was between 150-200ms 
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after the laser stimulation, and concluded that the conductance velocities demonstrated that 

the anti-nociceptive mechanism of Aβ stimulation took place in the cortex, perhaps in a ‘first-

come-first-served’ manner. Further support for this comes from the observation that SCS 

suppression of dorsal horn excitability lasts beyond SCS stimulation (Yakhnitsa et al., 1999). 

Though these findings do not rule out simultaneous spinal-level inhibition, it does imply that 

there are additional components contributing to the antinociceptive effect of SCS.  

 

Figure 2.4: An example of the normalisation of thalamocortical dysrhythmia as presented in Caylor et al., (2019), originally 

adapted from Vanneste, Song & De Ridder (2018). The pink boxes show areas of significant differences between healthy 

controls and chronic pain patients, the green arrows added by Caylor et al. demonstrate the suppression of delta, theta, beta, 

and gamma frequency power to ‘normal’ levels by SCS. 

Somatosensory and pain-evoked potential findings, electro- and magneto-physiological studies 

have identified SCS alterations of oscillatory and networking behaviour in the brain as a result 

of ongoing SCS. The normalisation of thalamocortical dysrhythmia has been observed in CRPS 

and PSPS patients (Schulman et al., 2005; Pahapill and Zhang, 2014; Sufianov et al., 2014) 
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(Figure 2.4), and resting-state analyses have elucidated some underlying oscillatory 

components in patients undergoing SCS in active and baseline states (Goudman et al., 2019; De 

Ridder and Vanneste, 2016). Though most of this research has analysed only sensor-level data 

in small patient groups, one EEG study has used source-level data to explore oscillatory power 

in the range of 1-44 Hz, and identified suppression of beta and low gamma in the posterior 

cingulate gyrus and parahippocampus in SCS conditions (De Ridder & Vanneste, 2016).  

It is clear that the effects of SCS are not isolated to one mechanism, and that extracting them is 

not a simple feat; there is evidence for mechanisms at segmental, supraspinal and cortical 

levels. Attenuation of evoked activity seems to reflect the modulation of innocuous and 

nociceptive sensory input, with some areas of the pain matrix being identified as regions of 

interest by indirect blood-flow measurements of neural activity. Evoked waveforms elicited by 

sensory and nociceptive stimuli do appear to be attenuated or abolished, but not in a 

consistent way. This is likely due to the heterogeneous nature of the patients, therapeutic 

coverage of SCS-generated paraesthesia, stimulation parameters and low dispersion of charge 

to spinal cord fibres. Little research has been conducted that explores the localisation of brain 

activity in source-space outside of PET, SPECT, and fMRI – which are only able to follow slow 

changes in brain activity, despite clear evidence of oscillatory power changes as a result of SCS 

in EEG and MEG. These changes likely reflect the orthodromic supraspinal effects of SCS, and 

delineating them could elucidate their antinociceptive mechanisms, and identify therapeutic 

targets, especially for deep brain and transcranial stimulation. 
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2.2. The Cold Pressor Test 

The cold pressor test (CPT) is an experimental tool to induce pain or elicit a physiological stress 

response. It is a cooling water bath that is kept at a consistently cold temperature (most 

commonly 1°, 3°, 5° or 7° Celsius according to a review by Mitchell et al., 2004), that 

participants or patients submerge their hand in. The CPT was originally designed and validated 

by Hines & Brown (1932) as a tool for testing vascular reactivity with the premise that blood 

pressure changes caused by the CPT would screen for high blood pressure. Upon being 

subjected to the stimulus of the CPT, a sympathetic nervous system activation constricts 

capillaries in the skin as a homeostatic mechanism to reduce body temperature loss. This 

reaction to the stimulus can be used to observe blood pressure changes in clinical conditions 

such as hypertension. Though the stimulus is initially non-painful, participants submerging their 

hand will quickly find the cold water painful due to temporal summation, and the cold 

temperatures penetrating the skin and activating more nociceptors (Dubin and Patapoutian, 

2010). 

The CPT is a valid and consistent measure of pain tolerance and pain threshold at different time 

points and temperatures (two weeks apart, 4°C-6°C; Koenig et al., 2014); however, using 

different equipment and laboratory settings can have a significant influence on pain outcomes 

(Vigil et al., 2014)– and very few studies have homogenous parameters (Mitchell, MacDonald 

and Brodie, 2004). This is compounded by differences in equipment, older (and even some 

contemporary studies) use iced buckets of water, whilst the gold standard is a circulating 

cooling water bath: Traditional methods that do not circulate water allow a pocket of warmer 

water to form around the hand and will passively warm up over time.  
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CPT studies have contributed mostly to our understanding of pain tolerance, with the primary 

outcome metric being the duration a participant can endure hand submersion: studies have 

shown that CPT endurance can be influenced by sex (Hellström and Lundberg, 2000; Jasrotia et 

al., 2018; Kowalczyk et al., 2006; Lighthall et al., 2012; Stening et al., 2007), gender (Martin, 

2019), investigator gender (Vigil et al., 2014), menstrual cycle phase and oral contraceptive use 

(Eichhorn et al., 2018; Hellström and Lundberg, 2000; Jasrotia et al., 2018; Stening et al., 2007), 

and ethnicity (Weisse et al., 2005). High scores on psychological variables like pain-related fear 

(George et al., 2006; Hirsh et al., 2008; Patanwala et al., 2019; Sullivan et al., 1995), pain anxiety 

(Jones et al., 2002; Roebuck et al., 2018), anxiety sensitivity (Schmidt and Cook, 1999) are 

associated with lessened CPT endurance and higher pain scores. Lower CPT pain sensitivity has 

been observed in males (Vigil et al., 2014), stress-induced analgesia (Al’absi et al., 2021), those 

listening to music or otherwise distracted (Choi et al., 2018), individuals who exercise (Petkova 

and Nikolov, 2018), those with higher hopefulness and optimism traits (Berg et al., 2008; 

Hanssen et al., 2014; Snyder et al., 2005) and controls in distraction and priming paradigms 

(Dahlquist et al., 2009; Damme et al., 2008; Stephens et al., 2009). The CPT’s utility in clinical 

applications has also been explored, with studies showing validating its effectiveness at 

delineating treatment outcomes in opioid-induced hyperalgesia and fibromyalgia (Compton et 

al., 2022; Oaks et al., 2018), demonstrating increased pain sensitivity in chronic pain patients 

(Butler et al., 2020), identifying opioid responders (Gram et al., 2015), recovery from whiplash 

(Kasch et al., 2005) and predicting postoperative pain (Werner et al., 2010). 

Alternatives to the traditional CPT technique have been validated to varying extents, with 

cooling thermodes (Peckerman et al., 1991; Ruscheweyh et al., 2010), cooling wraps (Porcelli, 
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2014) and gel packs (Lapotka et al., 2017) being shown to replicate the pain and cardiovascular 

effects of the traditional CPT method; these advancements are vital for brain imaging methods 

such as fMRI and MEG, where large buckets of stationary water may be impossible to 

manoeuvre practically, and circulating cool water baths may introduce electromagnetic 

artefacts. Despite these compatible techniques, studies combining them are limited. Using 

alternative fMRI-compatible CPT methods, researchers have observed enhanced BOLD in 

several brain areas including the periaqueductal grey, frontal gyrus, anterior cingulate cortex, 

thalamus, insula, temporal gyrus posterior parietal cortex (La Cesa et al., 2014; Frankenstein et 

al., 2001; Kakeda et al., 2010; Lighthall et al., 2012).  

Much of neuroimaging research in CPT uses electroencephalography (EEG) recording, thanks to 

fewer practical limitations with the equipment. Studies exploring the time course of EEG 

recordings during CPT consistently identified consistent alpha desynchronisation, with evidence 

for increased synchronisation of beta, delta, and theta oscillations across contralateral parietal 

sensors (Backonja et al., 1991; Chang et al., 2002; Chen et al., 1989; Dowman et al., 2008; 

Ferracuti et al., 1994; M. Gram et al., 2015; Shao et al., 2012; Wang et al., 2020). Explorations of 

underlying sources by Shao et al. (2012) and Hansen et al. (2017) identified alpha suppression in 

the central gyri, with increases in prefrontal cortices, insula, temporal, and cingulate regions 

across beta and gamma bands.  

To date, no published studies have combined CPT analogues and magnetoencephalography in 

an exploration of neural dynamics of pain. Few studies have utilised CPT to explore the brain 

biomarkers of pain sensitivity, but none have used modern source reconstruction techniques to 

elucidate their underlying neural generators. Such a study could provide valuable insight into 
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markers of pain sensitivity, and could assist in treatment selection, effectiveness and 

responsiveness or diagnosis, risk, stage, or progression of disease (Lleó, 2021; Mouraux and 

Iannetti, 2018). 
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2.3. The Contact Heat Evoked Potential Stimulator and MEG, a systematic review 

2.3.1 Introduction 

The PATHWAY Contact Heat Evoked Potential Stimulator (CHEPS) (hereby referred to simply as 

the CHEPS; Medoc Ltd., Ramat-Yoshai, Israel) is a method for evoking and assessing 

somatosensory functioning in clinical settings and has been used as a stimulus in 

somatosensory brain imaging research. The CHEPS is a commercially available thermode with 

an external heating foil that is surrounded by an electrically isolated plastic layer to protect the 

skin. It has a standard temperature range of 20-51°C, a rising temperature rate of 70°C/s, and a 

cooling rate of 40°C/s. The CHEPS can ramp and hold targeted temperatures for extended 

durations, but also produce brief pulses of thermal stimuli, which facilitate the recording and 

analysis of event-locked waveform data.  

Pain is a sensory and psychological experience that is cortically processed; methods that evoke 

pain in combination with functional neuroimaging methods that have a high temporal 

resolution, can provide valuable insights into how pain is represented temporally, spectrally, 

and spatially in the brain. Separating nociception from innocuous sensory input can be 

problematic, as often stimuli activate Aβ fibres alongside Aδ and C fibres. Additionally, it is 

important to consider how well a stimulus emulates pain that might be experienced outside of 

a laboratory or in clinical cases. In contrast to some electrical and mechanical techniques, the 

CHEPS does not activate Aβ fibres. It also generates a more ecologically valid pain experience 

via transduction, as opposed to direct electrical stimulation. As an alternative to laser stimuli, 

the CHEPS is more accessible and affordable, does not require special safety precautions for 
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experimenters or participants, poses a significantly reduced burn risk, and is not impacted by 

skin reflectance (Frahm et al., 2020). 

There is a sizeable body of research exploring CHEPS with EEG, but the use of CHEPS in 

conjunction with magnetoencephalography (MEG) has been less explored. MEG and EEG brain 

recordings share similarities in temporal resolution and, it is assumed, their underlying sources, 

but their data are not identical, and have different characteristics due to the way they obtain 

their signal; EEG recordings acquire information about the electrical currents generated by 

neural tissue, which can be distorted by tissue conductivity, resulting in lower spatial resolution 

and smaller signal-to-noise ratios than MEG recordings (Singh, 2014). MEG is more capable of 

accurately localising brain activity, as the magnetic fields it records are less distorted by volume 

conductance; MEG systems also have much-reduced preparation time and up to 320 sensors in 

some models, which is of benefit for high-density recordings. Though the hardware 

specifications of the CHEPS are proprietary, researchers have suggested that thermode 

feedback components likely contribute to significant electromagnetic signal interference that 

MEG sensors are sensitive to (Gopalakrishnan et al., 2013). Advances in temporal signal space 

separation (tSSS; Taulu and Hari, 2009; Taulu and Simola, 2006) and research exploring 

beamforming techniques have demonstrated the ability to reduce this artefact (Adjamian et al., 

2009); despite the potential advantages for the identification of electromagnetic components in 

thermal somatosensory research, studies combining the methods appear sparse.  

This systematic review aims to identify and critically appraise current literature that explores 

the use of CHEPS in combination with MEG, highlighting findings and methodological 

implications for the study of pain and sensation.  
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2.3.2 Methodology 

This systematic review is reported following Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines, to elucidate the literature combining MEG and CHEPS 

methodologies with a focus on pain research (Page et al., 2021). The protocol for this review is 

registered on PROSPERO as CRD42020178324. 

2.3.2.1 Search strategy 

Electronic databases searched included MEDLINE, The Cochrane Library (CENTRAL), Embase, 

CINAHL, PsycINFO, SportDISCUS, Scopus, and Google Scholar, searched from inception until 1st 

March 2020 (Appendix B.1). An experienced information specialist (Michelle Maden; MM) 

conducted the searches. The search strategy included a combination of free-text and indexing 

terms and was restricted to the English language. Reference lists and literature that cited 

included studies, were hand-searched for additional relevant items. Force-directed graphs 

based on co-citation and bibliographic coupling were then created for all included studies via 

ConnectedPapers (www.connectedpapers.com), and these graphs were scrutinised for possible 

inclusions.  

2.3.2.2 Study selection  

Two reviewers (Thomas Graeme-Drury and Rui Duarte; TGD and RD) independently screened all 

titles and abstracts to identify potentially relevant studies. Any papers with methods that were 

unclear in their abstract were included for assessment of the full text. Full texts of potentially 

relevant studies were retrieved, and the same reviewers evaluated their eligibility, using the 

criteria outlined in Table 2.1. Disagreements at each stage were resolved through discussion, 

with a third author available to consult on any disagreements (Siân Worthen; SW). 
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2.3.2.3 Data extraction 

One reviewer (TGD) extracted data using a piloted data extraction form. A second reviewer 

checked for accuracy (RD), with a third reviewer available to consult where necessary (SW). Due 

to the predicted heterogeneity across studies, a broad style of data extraction was 

implemented. The extraction of data from the included studies focused on any significant 

event-related fields (ERF), time-frequency, and source localisation characteristics in response to 

sensory stimulation; the expected outcomes for which were direct findings or implications for 

pain processing or methodology in clinical or experimental settings. Additional data regarding 

the parameters of CHEPS stimulation, titration, participant sample, study designs, MEG 

acquisition, and analysis were collected and presented to evaluate their consistency and any 

missing information. 

2.3.2.4 Risk of bias assessment 

The risk of bias was evaluated by one reviewer (TGD) and checked by a second (RD). The risk of 

bias was assessed using a version of the National Heart, Lung and Blood Institute Study Quality 

Assessment Tools for Case Series studies that were altered to reflect the studies identified 

Table 2.1: Eligibility criteria 

Inclusion (if all criteria met) Exclusion (if any criteria met) 

Adults (18 years+) Participants under 18 years of age 

MEG used as part of the study Participants unable to communicate pain outcomes 

CHEPS used as part of the study Conference proceedings, case reports, qualitative studies and 

studies that do not present original data (i.e., reviews, letters, 

or editorials) 

 Non-English language 
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(National Heart, Blood and Lungs Institute, 2019)(see Appendix B.2). The alterations refocused 

the questions on experimental procedures and randomisation. A third reviewer was available to 

consult on any disagreements if necessary (SW). 

2.3.2.5 Data synthesis 

Due to heterogeneity across the included studies, a narrative synthesis was conducted. A meta-

analysis was not considered appropriate given the aim for this review and the numerical data 

presented within the studies being inadequate for pooling. The included studies are aligned 

with the type of research (i.e., somatosensory or pain anticipation research) and methods of 

analysis (i.e., ERF or time-frequency analysis). The data has been synthesised by presenting 

expected outcomes for which there were direct findings or implications for pain processing or 

methodology in clinical or experimental settings.  

2.3.3 Results  

2.3.3.1 Study selection 

The database searches produced 646 results. Six additional papers were identified through 

other sources. After the removal of duplicates, 275 abstracts were screened, and 58 studies 

were identified as requiring full-text evaluation. Of these, eight were identified as meeting the 

eligibility criteria (Adjamian et al., 2009; Gopalakrishnan et al., 2013, 2015, 2016a, 2016b, 2018; 

Machado et al., 2014; Fardo et al., 2017). Fifty studies were excluded because they did not use 

MEG in their design. The PRISMA flow chart outlining the process is shown in Figure 2.5. 
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Figure 2.5: PRISMA flow chart for studies identified throughout the review process. 

2.3.3.2 Study characteristics 

Table 2.2 outlines the included study characteristics. Included studies were experimental and 

primarily recruited healthy controls. Two of the eight studies investigated Post-Stroke Pain 

Syndrome (PSPS; or “Central Post-Stroke Pain”) (Gopalakrishnan et al., 2016b, 2018), five used 

the CHEPS as a noxious stimulus to elicit pain anticipation (Machado et al., 2014; 

Gopalakrishnan et al., 2015, 2016a, 2016b, 2018), two papers outlined artefact rejection 

methods to combat the electromagnetic noise generator by the CHEPS (Adjamian et al., 2009; 
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Gopalakrishnan et al., 2013) and one used the CHEPS to induce cold innocuous sensation (Fardo 

et al., 2017). 

CHEPS equipment, stimulation, titration, and trial parameters are outlined in Table 2.3. All 

studies used the Pathway model Contact Heat-Evoked Potential Stimulator (Medoc, Ramat-

Yoshai, Israel). All but one study recorded data using an Elekta Neuromag TRIUX MEG system 

with 204 planar gradiometers and 102 magnetometers; the other used a CTF 275-channel axial 

gradiometer MEG (VSM Medtech, Canada) (Adjamian et al., 2009). Of the seven studies that 

used the systems with planar gradiometers, five chose to use only planar gradiometer data in 

their analysis (Gopalakrishnan et al., 2013, 2015, 2016a, 2016b, 2018), one used both combined 

where possible (Fardo et al., 2017) and one did not report their selection (Machado et al., 

2014). In six of the studies, tSSS was used in the pre-processing of the data, two did not report 

its use or any alternatives (e.g., Signal Space Projection, Signal Space) (Machado et al., 2014; 

Adjamian et al., 2009). Only one study mentioned prewhitening to reintroduce dimensionality 

to the data removed by tSSS (Machado et al., 2014). Results directly linked to CHEPS, 

somatosensory outcomes, or utility in MEG are highlighted. 
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Table 2.2: Characteristics of studies included in this review  

Author (year) Sample Study design focus Control Outcomes Regions of Interest  

(where applicable) 

Adjamian 

(2009) 

HC CHEPS used to elicit an evoked field in response to a painful 

stimulation; investigate the effectiveness of SAM beamforming in 

reducing the noise generated by the stimulator and successfully 

localising the evoked field 

Electrical SEF condition to confirm 

CHEPS accuracy. Sham condition. 

Effectiveness of SAM beamformer in localising 

peak activation in CHEPS data; time-frequency 

profile of primary somatosensory cortex in 

response to CHEPS stimulation 

S1 

Gopalakrishnan 

(2013) 

HC CHEPS electromagnetic artefact in MEG setting, evaluation of the 

effectiveness of preprocessing techniques in its removal 

N/A Effectiveness of artefact removal techniques  

Machado 

(2014) 

HC Oscillatory characteristics in pain neuromatrix and visual cortex 

ROI in anticipation of CHEPS-induced pain during three 

countdown visual cues in HCs. 

Non-painful and no-stimulation 

conditions 

Significant differences in TF power between 

conditions and cues in ROI  

V1, OFC, DLPFC, 

ACC, MCC, PCC, INS 

Gopalakrishnan 

(2015) 

HC Oscillatory characteristics in pain neuromatrix and visual cortex 

ROI in anticipation of CHEPS-induced pain during two countdown 

cues of tactile, auditory, or visual modality 

Non-painful and no-stimulation 

conditions 

Significant differences in TF power between 

conditions and cues in ROI 

V1, S1, A1, DLPFC, 

OFC, INS, ACC, MCC, 

PCC 

Gopalakrishnan 

(2016a) 

HC CHEPS pain anticipation ERFs and their source location as cued by 

three visual cues in HCs, compared to non-pain anticipation. 

Non-painful and non-stimulation 

conditions 

Significant differences between ERFs in each 

condition, the sequential cues, and their 

underlying sources  

 

Gopalakrishnan 

(2016b) 

PSPS Pain anticipation in PSPS patients and its neural correlates 

following three visual countdown cues for CHEPS stimuli on 

affected and non-affected stimuli 

Matched HCs (data from 

Golpalakrishnan (2016a)); Non-

painful, non-stimulation and 

unaffected limb conditions 

Significant differences between ERFs in each 

condition, the sequential cues, and their 

underlying sources; significant differences 

between conditions and cues in TF power in ROI.  

ACC, MCC, PCC, S1, 

V1, PFC, PC, OIC, 

MTC 

Fardo 

(2017) 

HC ERFs generated by Δ3˚C and Δ5˚C cooling sensation using the 

CHEPS in HCs. 

Non-stimulation trials Significant differences in ERF between 

conditions in left, central and right clusters; TF 

and localisation of frequencies of interest 

identified in the signal 

 

Gopalakrishnan 

(2018) 

DBS-

PSPS 

CHEPS pain anticipation ERF characteristics and their source 

locations in DBS-PSPS responders and non-responders; with DBS 

on and off, and in affected vs non-affected extremities 

Non-painful, no-stimulation 

conditions and pre-surgery baseline 

recordings 

Differences in ERF and their underlying sources 

between all conditions; CHEPS pain threshold 

and pain rating between on/off, baseline and 

control conditions 

 

ROI = Region(s) of Interest; TF = Time-frequency; PSPS = Post-stroke Pain Syndrome; HC = healthy control; SEF = Sensory Evoked Field; DBS-PSPS = Deep Brain Stimulation – Post-Stroke Pain Syndrome; 

ERF = Event-Related Field; V1 = Primary visual cortex; S1 = Primary sensory cortex; A1 = Primary auditory cortex; DLPFC = Dorsolateral pre-frontal cortex; ACC = Anterior cingulate cortex; MCC = 

Medial Temporal Cortex; PCC = Posterior Cingulate Cortex; INS = Insula; OFC = Orbitofrontal Cortex; OIC = Operculo-insular Cortex; MTC = Medial Temporal Cortex; PFC = Prefrontal Cortex 
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1Same participants, though the dataset presented is different; *After any participant attrition; ǂ Estimated from Figures; VAS = Verbal Analogue Scale; NR = not reported; NA = not applicable; M = 

Male; F = Female; LP = Low pass; BP = bandpass; SSP = Signal Space Projection; tSSS = Temporal Signal Space Separation; DSM = Damped Sinusoid Model; ERF = Event-Related Field; ICA = Independent 

Component Analysis; DC = Direct Current; TFA = Time-frequency analysis

Table 2.3: CHEPS and MEG parameters of the included studies 

First author (Year) Number of 

participants* and 

age (SD) 

CHEPS stimulation 

location 

Baseline 

temp ˚C 

Target temp C˚ 

(Mean +-SD) 

Titration method Stimulat

ion 

duration 

Number of trials 

(Total) 

MEG data pre-processing 

Data cleaning Filtering Co-register 

MRI 

HPI coils  

Adjamian 

(2009) 

8 

 

NR 

Dorsum of non-

dominant hand 

32 Titrated 

 

(48.1, 1.5) 

Equivalent of 7/10 on a 

VAS; no other details 

reported  

500ms 30 N/A BP 13-20, 20-30 

Hz 

Yes Yes 

Gopalakrishnan 

(2013) 

1  

 

NR 

Palmar surface 30 Titrated 

 

(NR) 

Ramp and hold for 2s 

from 40˚C to 50˚C; 

stopping at “tolerable yet 

painful”, never above 

50˚C. 

2s 36 SSP, tSSS, DSM separately; 

selected gradiometers 

DC offset NR NR 

Machado 

(2014)1 

10 (M =7, F = 3) 

 

45 (15) 

Volar forearm; Left 

vs right 

NR Titrated 

 

(48.4, 1.4) 

Ramp and hold for 2s 

every 1˚C from 40˚C to 

50˚C, stopping at VAS of 

8/10 

2s 240 per condition, 40% of 

which were no-stim 

controls 

(480) 

Temporal prewhitening DC offset; BP 8-

100 Hz. 

Yes Yes 

Gopalakrishnan 

(2015)1 

10 (M = 7, F = 3) 

 

45 (15) 

Dominant volar 

forearm 

30 Titrated 

 

(49.1, 0.7) 

Ramp and hold for 2s 

every 1˚C from 40˚C to 

50˚C, stopping at VAS of 

8/10 

2s 105 per condition (945) tSSS; selected gradiometers DC offset; BP 1-

100 Hz   

Yes NR 

Gopalakrishnan 

(2016a)1 

10 (M = 7, F = 3) 

 

45 (15) 

Volar forearm; Left 

vs right 

NR Titrated 

 

(48.6, 1.5; 

48.6, 1.3) 

Ramp and hold for 2s 

every 1˚C from 40˚C to 

50˚C, stopping at VAS of 

8/10 

NR 240 per condition; 40% of 

which were no-stim 

controls 

(480) 

tSSS; selected gradiometers; 

head-movement 

compensation 

DC offset; BP 1-

70 Hz 

Yes Yes 

Gopalakrishnan 

(2016b) 

7 (M = 4, F = 2) 

51 (6) 

Volar forearm; 

affected extremity 

vs non-affected 

NR Titrated 

(47.5, 1.7; 

47.8, 1.3) 

Ramp and hold for 2s 

every 1˚C from 40˚C to 

50˚C, stopping at VAS of 

8/10 

NR 240 per condition, 40% of 

which were no-stim 

controls. 

(480) 

tSSS; selected gradiometers DC offset; BP 1-

70 Hz 

Yes Yes 

Fardo 

(2017) 

6 (M = 3, F = 3) 

23 (12) 

Dorsum of non-

dominant left hand 

35 32, 30 NA 200ms 80 per condition, plus 40 

blank trials 

(200) 

tSSS; ICA; used combined 

gradiometers in TFA; head-

movement compensation 

ERF data LP 20 

Hz; TF data no 

filter  

Yes Yes 

Gopalakrishnan 

(2018) 

7 (M = 5, F = 2) 

 

52 (5) 

Volar forearm; 

affected extremity 

vs non-affected 

NR Titrated 

 

 

(48ǂ, CD) 

Ramp and hold for 2s 

every 1˚C from 40˚C to 

50˚C, stopping at VAS of 

8/10 

NR 120 of each condition on 

affected and non-affected 

extremity, 

40% no-stim trials 

(480) 

tSSS; selected gradiometers; 

head-movement 

compensation 

DC offset; BP 1-

70 

Yes Yes 
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2.3.3.3 Risk of bias assessment 

Details of the risk of bias assessment are presented in appendix B.2. All studies were judged 

to have a low risk of bias in the domains of clear experimental procedure, research 

questions, statistical methodology, and outcomes. None of the studies identified 

consecutive case samples, and of the experimental studies, only Fardo et al. (2017) and 

Gopalakrishnan et al. (2015) sufficiently counterbalanced or randomised conditions, adding 

a considerable risk of desensitisation of thermoreceptors to four studies, as discussed later 

in this review.  

2.3.3.4 Findings of included studies 

The included studies are divided into methodological (Gopalakrishnan et al., 2013; Adjamian 

et al., 2009), somatosensory (Fardo et al., 2017), and pain anticipation research (Machado 

et al., 2014; Gopalakrishnan et al., 2015, 2016a, 2016b, 2018). The pain anticipation findings 

are grouped by ERF and or time-frequency analyses. 

2.3.3.4.1 Methodological research 

Two studies identified by this review, specifically evaluate the utility of preprocessing and 

analysis techniques in combined MEG and CHEPS research. Adjamian et al. (2009) 

demonstrated significant attenuation of CHEPS artefact by using a 3rd order synthetic 

gradiometer. In addition, the effectiveness of Synthetic Aperture Magnetometry (SAM) 

beamforming in localising CHEPS event-related power change in the 13-20 Hz frequency 

band was evaluated and found to have similar accuracy and greater precision in localisation 

of peak activation in S1 when compared to somatosensory evoked potentials following 

electrical stimulation. Blocking the thermal element of the CHEPS confirmed pain processing 

was responsible for the recorded output. Comparison of virtual sensor time series and 
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beamforming output showed that applying regularisation reduced the effectiveness of the 

spatial filtering, as was evidenced by artefacts in the regularised dataset that were absent 

beforehand.  

Gopalakrishnan et al. (2013) explored different artefact rejection techniques used to 

suppress the electromagnetic noise associated with the CHEPS’ presence in magnetically-

shielded chambers, and with its activation. It was demonstrated that SSP (Uusitalo and 

Ilmoniemi, 1997) failed to adequately remove the CHEPS artefacts using any variety of the 

method in any phase of the stimulus, while tSSS (Taulu & Simola, 2006) performed well in 

removing temporal and spectral artefact components, but reduced the dimensionality of 

the data significantly. The authors piloted a Damped Sinusoid Modelling (DSM) technique in 

which they decomposed the artefact into varying signal components that decrease over 

time, then subtracted the modelled waveform from the dataset; they showed similar 

artefact removal with a lesser reduction of data dimensionality, as well as tighter control of 

the sinusoids being removed; though some of the artefact did remain in all methods, the 

authors concluded that the artefact was sufficiently attenuated. The DSM method is not 

widely available, and this research group did not go on to explore post-stimulus time 

windows. 

2.3.3.4.2 Somatosensory research 

Fardo et al. (2017) is the only identified study that applied the CHEPS at a non-noxious 

temperature. Additionally, their mode of stimulation was that of innocuous cold as opposed 

to heat: a baseline temperature of 35˚C was applied to their right hand and reduced to 30˚C 

and 32˚C (Δ5 and Δ3°C) 80 times each in random order with 40 catch trials dispersed after a 

visual cue. For comparison, 64-channel EEG data were acquired simultaneously. Both MEG 
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and EEG analysis identified N2-P2 peaks with similar latencies; though EEG data did not 

show a significant difference between Δ5 and Δ3°C trials, MEG analysis identified higher 

field strength for N1 (100-304 ms) in Δ3°C and P2 (456-544 ms) in Δ5°C trials across left, 

central, and right frontal sensors. These windows were then explored by time-frequency 

analysis to reveal significant increases in delta (1-4 Hz) and gamma-band (30-90 Hz) activity 

coinciding with these peak differences that were not identified by EEG analysis. Subsequent 

beamforming linked Δ3°C and Δ5°C to delta power increase in bilateral operculo-insular and 

calcarine and dorsolateral prefrontal areas respectively; high gamma (55-90 Hz) power was 

significantly increased in bilateral operculo-insular cortices when comparing cold to no-

stimulation conditions, and in the contralateral motor region when comparing Δ5°C to Δ3°C 

conditions. The findings of activity in the operculo-insular cortices contribute to previous 

evidence implicating their role in cold sensory processing. Their findings of activity in 

frontoparietal areas in MEG analysis are attributable to the superior spatial resolution; the 

frontal delta rhythms were linked to top-down attention required for their sensory 

detection task and evocation of bottom-up attention as a result of cold sensation. The 

authors surmised the gamma synchronisation in operculo-insular and motor cortices were 

responsible for the localised processing of sensory and attentional components of cold 

stimuli. 

2.3.3.3.3 Pain anticipation research 

Six studies were conducted by groups comprised of researchers across institutes at the 

Cleveland Clinic in Cleveland, Ohio (Gopalakrishnan et al., 2013, 2015, 2016a, 2016b, 2018); 

one of these explored the effectiveness of data cleaning methods (Gopalakrishnan et al., 

2013), five were designed to elucidate the mechanisms of processing pain anticipation 

(Machado et al., 2014; Gopalakrishnan et al., 2015, 2016a, 2016b, 2018), and as such, most 
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analyses were focused on the time windows following anticipation cues before painful 

stimulation. The studies published by this group use a consistent protocol: in the first 

paradigm, a participant-titrated noxious CHEPS or innocuous sensory stimulus was 

presented following three visual cues; in the second paradigm an alternative titrated 

innocuous electrical stimulus was presented. Cluster permutation analyses were performed 

on post-cue time windows to evaluate significant between- and within-condition differences 

in time-locked waveform component amplitudes across all sensors. Time-frequency analysis 

was performed using virtual channels in regions of interest. All relevant findings below were 

reported as statistically significant at P<0.05 or P<0.01.  

2.3.3.3.3.1 Event-Related Field (ERF) analysis 

In the first of this series of CHEPS and MEG pain anticipation studies, Machado et al. (2014) 

observed significantly greater power for V1 ERFs time-locked to the first cue in pain stimuli 

(PS) compared to no-pain (NPS) or no-stimulus conditions. Using the same dataset, 

Gopalakrishnan et al. (2016a) performed a non-parametric cluster analysis to test for 

significant differences between conditions across sensors: this analysis identified central and 

frontal sensor groups as determinants for pain-specific between-condition differences in 

first cue visually evoked fields (VEF); additional analysis identified significantly greater 

power in components evoked by the first cue over later cues. These findings demonstrate 

fronto-central areas’ association with pain-specific anticipation in healthy controls. 

Additional studies using this study design and these analysis methods were performed on 

Post-Stroke Pain Syndrome (PSPS) patients, before and after undergoing Deep Brain 

Stimulator (DBS) surgery (Gopalakrishnan et al, 2016b, 2018). Gopalakrishnan et al. (2016b) 

observed cue VEFs in PSPS patients at baseline and found significant differences in frontal 



70 
 

and central sensors only when comparing second and third pain cues to innocuous or no 

stimulation cues in unaffected limbs. In limbs affected by the chronic pain condition, no 

significant differences were found between any cues or conditions, elucidating a lack of cue 

saliency as a result of the chronic pain. After circumventing DBS stimulation artefacts with a 

bipolar configuration, the follow-up DBS study demonstrated restoration of affected limb 

cue saliency in conditions with the DBS turned on and off: greater amplitude in first pain cue 

N1 components were observed, and their differences localised to parietal and midline 

sensors. Further exploration of the role of responder (n= 4) vs non-responder (n= 3), as 

operationalised by a change in their Montgomery Åsberg Depression Rating Scale 

(Montgomery and Asberg, 1979) score, showed responders had significant differences in 

frontal N1 components within both painful and non-painful cues that correlated with 

affective benefits. Non-responders also showed a difference between PS and NPS P2 that 

they claim is a biomarker for the maladaptive hypervigilant attentional processes that are 

not successfully modulated by DBS in these PSPS patients.  

2.3.3.3.3.2 Time-frequency analysis 

Gamma and beta VEF time-frequency representations were explored by three studies within 

this category of anticipatory research. Machado et al. (2014) used virtual channels in 

dorsolateral prefrontal (DLPFC), orbitofrontal (OFC), calcarine, cingulate (CC), and insula 

cortices, and observed increased gamma oscillation power throughout pain cues in the left 

calcarine and right DLPFC, and increased beta oscillation power in the right OFC. A follow-up 

study that compared visual, auditory, and somatosensory methods of cueing stimulations 

showed that visual cues recruited greater high beta and low gamma oscillations in the 

calcarine cortex than any other modality in their associated brain area; cross-modal gamma 
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activations in primary sensory cortices were present only in pain conditions, and to a lesser 

extent in A1. 

The baseline assessment of PSPS patients in Gopalakrishnan et al. (2016b) demonstrated 

significant beta and gamma activity in the supramarginal gyrus and frontal polar region 

during cues two and three when comparing PS to NPS, but no significant effects in the non-

affected extremity, consolidating their previous conclusions about the lack of saliency. 

2.3.4 Discussion 

2.3.4.1 The use of CHEPS in MEG 

The results of this review highlight the scarcity of research combining CHEPS and MEG. 

Using broad search terms, only eight papers were identified. The paucity in this area of 

literature is likely due to challenges associated with the significant electromagnetic noise 

generated by the thermode: This review highlights two papers that specifically aim to 

evaluate analysis techniques that facilitate artefact removal, the results of which 

demonstrated adequate artefact rejection using SAM beamforming (Adjamian et al., 2009), 

tSSS or DSM methods (Gopalakrishnan et al., 2013). Indeed, most studies selected here use 

tSSS to remove external artefacts, though this method is not readily available for all MEG 

systems and some frequency components may remain. Though the following is only 

mentioned in three studies, the manufacturers have recommended the MRI-compatible 

thermode for MEG recording, implying there are possibly unsuccessful research projects 

that have failed to collect useful data because of using the alternative, less expensive MRI 

incompatible thermode.  

Nevertheless, the findings of this review demonstrate the validity of CHEPS in hot or cold 

configurations when cleaned with tSSS or DSM. The success of SAM, MNE, and Bayes source 
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localisation methods implies the possible utility of spatial filtering in other beamformers. 

Source localisation techniques using MEG data are capable of localising frequency and 

power changes associated with CHEPS at beta and gamma frequency bands that could not 

be detected by EEG due to its lower spatial resolution and ability to detect deeper sources; 

this was demonstrated with a direct comparison by Fardo et al (2017), whose study revealed 

temporal characteristics of discriminative sensory processing that were not clear with EEG 

analysis, and beyond the scope of fMRI.  

 

2.3.4.2 Methodological considerations 

The designs of the identified CHEPS studies vary in parameters that are noteworthy in the 

literature and should be considered (Table 2.3). Baseline CHEPS temperature has been 

shown to influence the amplitude and latency of evoked responses in EEG (Kramer et al., 

2012; Rosner et al., 2018b, 2018a), as have stimulation location (Granovsky et al., 2005; 

Rosner et al., 2018b), fixed vs variable placement (Greffrath et al., 2007), hairy vs glabrous 

skin (Granovsky et al., 2005, 2017) and inter-stimulus interval (Granot et al., 2006). Baseline 

temperature in the studies we have reported on ranged from 32-35˚C, though the 

alternative of 42˚C has revealed lower latency and higher amplitude responses over multiple 

stimulation locations (Rosner et al., 2018), and it is possible that baseline temperature 

maintenance could contribute to the noise floor in a MEG environment (Gopalakrishnan et 

al., 2013). The heat stimuli in the studies identified here were most often titrated to 8/10 on 

a Verbal Analogue Scale (VAS), with an average temperature of 48˚C. This variable, however, 

is not comparable across all studies: In at least three of the identified studies the stimulation 

was held for as long as two seconds, as opposed to the range of 200-500 ms for a standard 
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CHEPS pulse, which could significantly influence the experience of pain. In addition, no 

studies in this review reported or mentioned the overshoot control values that can be set 

within the CHEPS software, which can interfere with how the target temperature is reached 

at default settings. It is important to report CHEPS parameters and record pain outcomes 

throughout CHEPS paradigms, and reflect upon study findings with the stimulus parameters 

in mind. Recommendations for designing and reporting on these are found in Table 2.4. 

 

Table 2.4: Recommendations for designing and reporting on combined CHEPS MEG 

studies 

Report and justify CHEPS baseline temperature 

Report CHEPS overshoot value and how often the CHEPS failed to reach the destination 

temperature 

Report and justify CHEPS stimulation location 

Titrate destination temperature and report titration method 

Report CHEPS stimulation peak duration 

Use an inter-stimulus interval of at least 8-12s unless otherwise justified 

Report whether a fixed or variable stimulation was used 

Report artefact rejection techniques implemented, and any attempts to reintroduce 

dimensionality 

 

With each of the five studies that investigated anticipation cues, a minimum of 480 trials 

were collected (one study recorded 945) in one session. To avoid enduring pain effects, four 

of these studies presented non-painful stimuli and painful stimuli (with no-stimulation 

control trials) as separate experiments and did not counter-balance them. This lack of 

randomisation or counterbalancing leaves the data vulnerable to the effects of participant 

exhaustion, which are a considerable concern for the integrity of data in long recording 

sessions, especially in pain research (Gross et al., 2013). Of particular note is the paper by 

Gopalakrishnan et al. (2016a), that compares the no-stimulation control trials from 
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paradigms one and two, identifying a difference between the two and deducing that the 

control linked with the painful condition was more susceptible to vigilance; though this may 

be the case, the authors did not suggest that the difference between the two may be due to 

exhaustion or cue learning after many trials. 

2.3.4.3 Pain anticipation 

Most of the results presented focus on the anticipation of CHEPS pain following visual cues 

in healthy controls. The studies presented consistently identify increases in the relative 

power of gamma and beta oscillations in frontal regions such as the DLPFC and OFC in 

response to cues that signal pain when non-pain stimulation control data is subtracted; 

frontal cortices were associated with the greatest pain specificity in N1 components of ERF 

analyses, whilst central sensors demonstrated differences among cues. PSPS patients did 

not have significant differences between pain and non-pain anticipation when expecting 

pain to be presented to their affected limb, demonstrating a lack of saliency possibly due to 

chronic vigilance even for non-painful stimuli; this saliency was reintroduced by DBS, 

especially in those that scored better on depression scales after the intervention. Presenting 

the CHEPS stimuli for 2s may prove to be more effective at eliciting affective anticipatory 

components, achieving greater saliency in those with restored affective capability; the 

CHEPS’ capability to maintain longer duration, ecologically valid stimulations without injury 

remains an advantage over laser and electrical techniques here. 

2.3.4.4 Limitations 

Some limitations to this review should be noted. First, most of the studies presented in this 

review do not assess CHEPS’ use in generating evoked potentials, instead opting to analyse 

data in an anticipation time window. Though we identified studies discussing the 
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methodology of combined use of MEG and CHEPS, including one experimental study that 

used the cold configuration, no participant studies analysing the post-stimulus time window 

following heat stimulations were identified in the search. Second, though thorough searches 

of adjacent literature, citing papers, and reference lists were conducted, unpublished 

research was not explored.  

The systematic literature search for this review was completed in 2020. Whilst not 

systematic, thorough database searches performed in January 2023 using similar search 

terms have not found any additional eligible journal articles appropriate for inclusion. 

2.3.4.5 Future research 

Though the literature is sparse, the studies identified in this review provide a good overview 

of some available methods of analysis when combining CHEPS and MEG. MEG analysis 

methods with proper preprocessing are capable of localising activity with improved spatial 

resolution in comparison to EEG. Future research would benefit from comparing fMRI and 

MEG methods, as demonstrated with EEG by Roberts et al. (2008); though simultaneous 

recording would not be possible, more precise virtual time series data could more 

accurately elucidate the contribution of cortical subregions to pain processing. The 

capability of the CHEPS to generate long-duration stimulations without harming the 

participant facilitates thermal tonic pain experimentation, which opens doors to exploring 

affective, summative, and sensitisation dynamics (Linde et al., 2020; Staud et al., 2020). No 

studies experimentally analysing post-stimulus noxious CHEPS epochs in MEG currently 

exist, but this avenue of research could elucidate mechanisms previously not detected by 

EEG (Fardo et al., 2017). Utilising this combination to explore treatment response is a 

promising avenue of research (Gopalakrishnan et al., 2016b; 2018), and any additional 
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benefits over standard or single-electrode EEG recordings for clinical diagnostic use should 

be properly explored by further study. 

2.3.4.6 Conclusions 

The CHEPS is well validated as a method to diagnose small fibre pathophysiologies with EEG, 

and is a more accessible and safer alternative to laser methods. Studies demonstrating the 

effectiveness of artefact removal and source localisation techniques in clearing 

electromagnetic noise generated by the CHEPS exist, and though the most effective 

methods are not available as standard for all MEG systems. A portfolio of research was 

presented in this review that demonstrates the utility of MEG in CHEPS research, including 

its improved spatial resolution in comparison to EEG. Though MEG can identify spectral 

components that are not identified by other imaging methods and CHEPS is a commonly 

used clinical evaluative and diagnostic tool, few published studies explore them in 

combination. Future MEG analysis of CHEPS data could improve our understanding of 

spectral correlates underpinning pathophysiological pain and sensory conditions, and 

contribute to contemporary discourse surrounding chronic and neuropathic pain treatment 

response and mechanisms. 

  



77 
 

3. Magnetoencephalography: Acquisition and analysis 

The purpose of this chapter is to provide an overview of magnetoencephalography (MEG). It 

includes a description of the data that is acquired using this technique, that hardware that is 

used to observe and record the magnetic fields produced by activity in the brain, and a 

typical pipeline for the MEG data analysis in the chapters that follow. 

3.1 Theory, hardware, and software 

The objective of MEG is to measure the magnetic fields generated by the current dipoles of 

large populations of neuronal axons: signals that are roughly one billion times weaker than 

the earth’s magnetic field, and orders of magnitude weaker than electromagnetic noise 

generated by passing cars or electronics (Cheyne and Papanicolaou, 2015). Electromagnetic 

fields follow Fleming’s right-hand rule: they propagate anti-clockwise around a dipole, like 

the fingers of a clenched hand (Figure 3.1). They are also not constrained by tissue or bone, 

and do not disperse into nearby tissue (i.e., the problem of volume conduction of 

electrophysiological currents). These two phenomena mean magnetic fields generated by 

neuronal activity can be recorded outside of the head, but also limit the measurement of 

fields that can travel through MEG sensors, namely those generated by currents tangential 

to the surface of the brain (mostly by pyramidal cells). Fortunately, much of the surface of 

the cortex can be accessed by MEG sensors thanks to the sulci of the brain, and the fact that 

there are very few perfectly radial areas of the cortex. 

The recording of magnetic fields is achieved non-invasively by a combination of super-

cooled flux transformers and Superconducting Quantum Interference Devices (SQUIDs) that 

are arranged in a helmet (‘dewar helmet’) close to the head. Because of the super-cooling 

by liquid helium, the magnetic fields generated by neuronal dipoles (Figure 3.2) in the brain 

can induce an electric current in flux transformer pick-up coils. The flux transformers are 
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then coiled in such a way that they induce electrical currents in adjacent SQUIDs with their 

own magnetic fields, which in turn utilise Josephson junctions to measure voltage; this is 

then further amplified and recorded by the MEG system.  

 

 

Figure 3.1: Left: The right-hand rule. I = current, B = magnetic field, from Cheyne & Papanicolau (2017). Right: 

Magnetic field detection in flux transformers. External magnetic fields (Bext) induce an electrical current in the 

flux transformer; the resulting electrical current then generates its own amplified magnetic field, which is 

detected by the SQUID (Bcoupl). From Hari & Salmelin (1997). 

 

There are three types of flux transformers commonly used in MEG: magnetometers, axial 

gradiometers, and planar gradiometers, though other types (such as second- or third-order 

axial gradiometers) exist.  

Magnetometers use one coil to detect magnetic flux, whereas gradiometers use two 

oppositely wound coils to facilitate the calculation of the magnetic field’s spatial change in 

Teslas per meter (T/m; or fT/cm), effectively cancelling out the effect of noise common in 

both pick-up coils (Figure 3.3). Dual coils at different (planar or axial) positions enable the 

measurement of changes in field strength changes over distance, and thus nullify 

environmental signal; noise that is uniform across both coils will induce no fluctuation in 
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field strength, but magnetic fields that are different across both coils (such as brain activity) 

will be measured as a net change.  

 

Figure 3.2: Neuronal dipoles detectable by MEG. Action potentials propagating through networks of at least 100,000 

neuronal cells will generate an electromagnetic field strength of roughly 100 fT, detectable if the source is not radial to the 

sensors. Adapted from Taulu (2008). fT: Femtotesla. B = Magnetic field. 

 

Different flux transformers are most sensitive to fields at different regions depending on 

their configuration (Figure 3.3), and as such, conceptualising this as part of a “lead field” (a 

matrix of sensors by points in the brain that describes the range of sensitivity for each 

sensor) is an important component of MEG analysis. Magnetometers have greater 

sensitivity to deep sources when compared to axial and planar gradiometers, and though 

MEG is occasionally criticised for its low-resolution reconstruction of the subcortex, research 

has demonstrated effective reproduction of activity in deep brain areas (Ioannides et al., 

1995; Korczyn et al., 2013). 
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Figure 3.3: A Figure demonstrating the difference between gradiometers and magnetometers. Top: Axial and 

planar gradiometer configurations and their respective optimal recording zones. Bottom: The topography of 

auditory event-related fields as detected by magnetometers and planar gradiometers. From (Hari and Puce, 

2017). 

In addition to gradiometry, other hardware methods can be implemented to reduce the 

impact of environmental and external noise. MEG systems are typically housed in 

Magnetically Shielded Rooms (MSRs) – chambers that are constructed with a mixture of 

ferromagnetic and highly conductive metals that attenuate external noise with eddy 

currents and passive shielding – and this alone can be very effective (Hari and Puce, 2017). 
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Additional noise cancelling can be achieved by active shielding, with the generation of a 

compensatory opposing magnetic field outside the MSR based on real-time recordings from 

a reference magnetometer inside the chamber – though the active coils can produce 

artefacts of their own if the external noise is not large. Reference sensors inside the dewar 

helmet– but far from the brain – can record and subtract homogenous environmental noise, 

but can potentially interfere with coherence or correlation analyses. 

During data acquisition, participants are fitted with Head Position Indicator (HPI) coils and 

the shape of their head is digitised for later head model construction. The HPI coils are used 

to track head movements for individuals in the scanner; this is achieved by running a small 

current through these coils that the MEG system can track online. Recording the position of 

these coils enables post hoc correction with offline interpolation techniques, though these 

methods are not suitable for large movements (Hari and Puce, 2017). Additional electrodes 

can be fitted for electrooculogram and electromyogram that can complement later data 

cleaning or analysis. 

3.1.1 Data cleaning 

Because of the sensitive nature of the acquisition hardware and the scale of the neuronal 

sources that are being recorded, raw MEG data is often contaminated with signals that are 

not of interest to investigators: The magnetic fields generated by eyeblinks, eye 

movements, scalp muscle contraction, heartbeats and metal tooth fillings can negatively 

impact the quality of the recorded data. Because of this, an essential part of MEG data 

analysis is the ‘cleaning’ of acquired data, thereby removing, or suppressing these signal 

artefacts. To complement hardware noise reduction, software artefact rejection methods 

are also effective in reducing extraneous signals. Neuromag (ElektaTM Neuromag, Oy) MEG 
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systems have the option of using Signal Space Separation (SSS; Taulu, Simola and Kajola, 

2004) or temporal SSS (tSSS; Taulu and Simola, 2006): both of these methods use Maxwell’s 

equations of the physical properties of magnetic fields to mathematically construct 

subspaces that represent the inside and outside of the dewar helmet. SSS uses the 

estimations of internal and external components to reconstruct the data at the sensor level 

whilst discarding the external components; tSSS uses this information to remove any 

components identified inside the signal space that also correlate significantly with external 

signals over time. SSS and tSSS applied through MaxFilter software (Elekta Neuromag Oy) 

are especially effective at removing noise that originates inside the MSR, though tSSS is 

more effective at removing artefacts that are temporally consistent, such as magnetic fields 

from piercings, it could potentially influence brain data if there is a low signal-to-noise ratio. 

The application of SSS or tSSS through MaxFilter software can also include Maxwell Filtering, 

a process which identifies components of the signal that originate from the sensors 

themselves, and projects them out of the dataset. 

Signal Space Projection (SSP; Uusitalo and Ilmoniemi, 1997) uses empty-room recordings to 

identify the “interference” dimensions that can be attributed to non-brain activity, 

separates the data into individual components, then projects the components with the 

greatest eigenvalues (i.e. a value that represents the magnitude of variance in a component; 

components with large eigenvalues in an empty room represent environmental noise) out 

of the participant data. Independent Component Analysis (ICA) identifies components of the 

data that are statistically independent of each other, and can be used to identify artefacts 

generated by phenomena like blinks and eye movements with no a priori information. Using 

any of these methods makes the data rank deficient (i.e., there are fewer unique 

components than there are sensors that recorded the original data), which must be 
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acknowledged in later source reconstruction analysis steps. Haumann et al. (2016) 

compared the external and internal artefact noise suppression qualities of SSS against tSSS, 

and SSP against ICA respectively, and demonstrated that greater noise reduction was 

achieved by ICA and tSSS against their respective comparators – but with the additional 

note that low signal-to-noise data, such as those from magnetometers, are at risk of 

attenuating artefacts whilst also increasing baseline noise. An essential step in data cleaning 

is simply removing trials with artefacts that were not successfully suppressed, and excluding 

sensors that were identified as ‘bad’ because of sensor-level artefacts. 

3.1.2. MEG data 

MEG data is initially represented as a time series of T/m or fT/cm over time at each sensor 

(Figure 3.4), in epochs around a stimulus trigger or in continuous segments. The time 

resolution of MEG can be very high, though often systems sample between 1000-2000 Hz. 

Many types of analysis are possible, and are broadly classified as sensor-level, or source-

level techniques: sensor-level analyses process the data as they are recorded at the 

magnetometers or gradiometers, and are often performed based on select sensors or the 

topography of the scalp; source-level methods attempt to reconstruct activity in the brain 

based on models of the head and lead fields of the sensors, or reconstruct activity based on 

weights attributed to three-dimensional points (voxels) within a source model. This 

subchapter will go on to describe some of the most popular techniques within these 

categories, then the steps required to perform the analyses performed in this thesis. 
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Figure 3.4: Time series data for four gradiometer pairs in locations as indicated on the dewar helmet, recording 

a participant at rest. From Parkkonen & Salmelin (2010). 

 

3.1.3 Sensor-level analysis 

Analyses at the sensor level are most commonly performed to observe differences between 

event-related field characteristics or (time-) frequency power. Averaging trials around a 

time-locked stimulus creates an Event-Related Field (ERF) waveform that is a summary of 

evoked brain activity. This averaging can be performed with select sensors to characterise a 

particular area of the scalp, or performed on virtual sensors extracted using source 

reconstruction techniques. These waveforms are attributed to the synchronous firing of 

large neuronal structures and have peak and trough components that are characterised by 

their timepoint (e.g., 20ms), positivity/negativity (i.e. N or P), position (e.g. cZ for central 

electrode on the Z-axis) on the scalp or number in the series (e.g. N1 is the first negative 

component). The location, amplitude and latency of these waveforms and their components 

reflect underlying phase-locked (‘evoked’) brain activity, as the nature of averaging removes 

any non-phase-locked data. 

Frequency analysis involves the use of Fourier transformations (a method to decompose 

signal data into frequency components) to calculate the contributions of frequency bands in 
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a signal. This analysis is performed on an epoch or in a small, sliding time-window to 

interrogate frequency power changes over time, and can be achieved in most M/EEG 

analysis software. The result of a Fourier analysis is an estimation of the power of specified 

frequencies across a spectrum, often a frequency band that was selected a priori. When 

compared against a baseline window, time-frequency analysis can outline changes in 

synchronisation after an event, which may illuminate underlying functional activity (Figure 

3.5). 

 

Figure 3.5: Time-frequency analysis of EEG data of a laser-evoked potential, with baseline-relative 

synchronisation of gamma and theta, and desynchronisation of alpha and beta frequency bands. Adapted from 

Peng and Tang (2016). 

Sensor-level analysis is the most commonly performed type of M/EEG analysis: it is simpler 

to perform, and can utilise more powerful statistical methods. However, recent research has 

evidenced the spatial mixing of brain signals, and demonstrated that volume conduction 

and superposition of neural generators can significantly confound sensor-level analysis; up 

to 75% of the activity detected on frontal sensors was associated with central components 
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in simulated datasets (Schaworonkow and Nikulin, 2022). The most accurate use of sensor-

level analysis is achieved using reconstruction of virtual sensors in the brain using spatial 

weights constructed during source analysis.  

3.1.4 Source space analysis 

Sensor space analyses are limited in their ability to accurately estimate underlying brain 

activity due to the superposition of magnetic fields – the contribution of fields from nearby 

brain areas, or at varying depths, which can lead to inaccurate detection of sources (Cheyne 

& Papanicolau, 2017). The ideal outcome of MEG imaging is to be able to accurately identify 

and recreate the position, field strength, and time course of brain activity in a 3d model of 

the brain (source space). To achieve this, one must attempt to solve the “inverse problem” – 

the estimation of underlying sources based on recorded magnetic fields. This is difficult, or 

“ill-posed,” because there could be a near-infinite number of varying current generators 

that explain the magnetic fields measured by the MEG sensors. To solve this problem, one 

must create constraints to limit the estimations. This inverse solution is the creation of a 

source model based on the shape of the head and boundaries of the brain that put physical 

limitations on where the sources can reside. 

Source space analyses (“inverse modelling”) can be performed in the time or frequency 

domain to reconstruct underlying activity in the brain. A popular technique for source 

analysis is beamforming: a spatial filtering method that uses mathematical operators as 

weights for signals recorded in sensor space. Spatial weights define the contribution of each 

sensor to a given voxel, ensuring that sensor-level data is accurately passed or suppressed. 

The beamformers used throughout this thesis operate by utilising these spatial weights with 

a unit-gain constraint, enabling the signal at each location to be reconstructed without 
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attenuation, whilst suppressing the contribution of nearby points in the brain under the 

assumption that they are temporally uncorrelated.  

Weights are calculated with the MEG lead field and a matrix that describes the relationship 

in field strength between pairs of sensors (a “covariance matrix”) for each channel-by-

channel pair, then data is multiplied by the weights for each voxel in the grid; this enables 

the suppression of extracranial, environmental noise and signals from spatially distant 

sources in the brain. Because of this, the time series for any voxel can be reconstructed, 

simulating a virtual sensor that can be comparable to intercranial electrodes (Korczyn et al., 

2013)(Figure 3.6), which can then be analysed as described above. Common methods of 

beamforming include the Dynamic Imaging of Coherent Sources (DICS; Gross et al., 2001) 

and Linearly Constrained Minimum Variance (LCMV) as techniques to analyse the power of 

oscillatory components or averaged waveforms respectively. These techniques can be 

calculated with vector or scalar metrics, facilitating measurements of field strength in three 

directions (vectors) simultaneously from each point of the grid or just the signal orientation 

with the greatest variance at that point.  

 

 

Figure 3.6: An approximate virtual sensor time series in the hippocampus estimated with beamforming 

weights, plotted with the same time series recorded directly by intercranial electrode (Korczyn et al., 2013). 
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3.2 Analysis pipeline  

FieldTrip (Oostenveld et al., 2011) is an open-source toolbox for MATLAB that facilitates 

M/EEG data analysis with high-level functions for reading, processing, sensor and source-

level mapping, and statistical inference. It forgoes a graphical user interface for scriptwriting 

that facilitates batching and nuanced analysis protocols. Functions are named using the 

format “ft_xxx” to designate their purpose, and a configuration variable structure “cfg.xxx” 

is used to designate parameters for specific FieldTrip functions (Figure 3.7). In figure 3.7 a 

configuration variable is made, filled with parameters for the “ft_definetrial” function; the 

output of the function is then saved in the configuration variable for the next function to 

use. The following subsection explains the pipeline followed for both ElektaTM Neuromag 

and CTFTM datasets used in this thesis, though specific parameters are described in the 

respective experimental chapters. 

 

Figure 3.7: An excerpt of a FieldTrip script that demonstrates the configuration-function relationship. Here a 

variable containing the information for an SCS-off dataset is called into the configuration and the trial 

parameters are set. The output of ft_definetrial will be stored in the configuration variable to be called again 

later. 
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3.2.1 Cleaning the data 

The first step in cleaning ElektaTM Neuromag data is ascertaining whether the application of 

SSS or tSSS is necessary by visually browsing the dataset. Artefacts in M/EEG data are similar 

across both methodologies and are well-documented (Burgess, 2020); SSS or tSSS should be 

applied to attenuate or remove noise or artefacts that originate outside of the dewar 

helmet, but should be used sparingly if possible due to its impact on the data’s 

dimensionality. At this point data is checked for its quality, including identifying any bad 

channels to be removed due to regular artefacts introduced by the equipment, line noise, 

and whether movement correction is required (possible with ft_qualitycheck). Channels 

removed due to consistent signal artefacts can be interpolated from neighbouring sensors 

by using the FieldTrip function ft_channelrepair. 

The next step in a FieldTrip pipeline is to filter the data; filtering is a crucial component of 

pre-processing that enables additional attenuation of particular frequency bands, or 

enhancement of waveforms for visualisation. Filtering can be high-pass, low-pass, band-

stop, and band-pass – subtraction of frequencies below, above, within and outside of 

certain parameters, respectively. Primarily done as a way to remove DC line components, 

filtering can also achieve a baseline correction effect by applying a high-pass filter of from 

<1Hz, reducing the impact of slow drifts introduced by SQUIDs and ambient noise (Gross et 

al., 2013). The shape of the filters applied, as well as their phase response, stability and 

computational efficiency should be considered before application, and they should be 

applied before defining trials where possible to avoid edge-artefacts. It is advised as good 

practice in MEG analysis to apply an anti-aliasing low-pass filter of 1/3 or 1/4 of the 

sampling frequency (Gross et al., 2013). At this stage, data can also be detrended and 
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demeaned – correcting drifts and removing the average of the baseline from the epochs to 

correct for environmental effects and noise. 

Following cleaning of the data using MaxFilter and preprocessing, trials are read into 

FieldTrip and the epochs in the time series data are defined using the function ft_definetrial, 

where the pre- and post-stimulus windows are set on either side of a trigger within the data. 

For data that does not have triggers (‘continuous’ data), data is split into trials of a few 

seconds each, with some overlap. 

After pre-processing, ICA is performed to identify any components associated with internal 

artefacts (e.g., blinks, heartbeat, eye movements; ft_componentanalysis). This can be 

performed by several techniques; the default in FieldTrip is RUNICA (Bell and Sejnowski, 

1995), though other algorithms exist to perform ICA, their objective is the same: the 

separation of linearly mixed sources, i.e., components within signal space that are unique 

but combined on the same scale at the sensor. The algorithm will automatically calculate 

the number of components within the signal after whitening, though this can be erroneous 

when applied to data that has been cleaned with MaxFilter; it is recommended to restrict 

the analysis to roughly 64 components in MaxFilter-cleaned Neuromag data to account for 

its rank-deficiency. It is here that downsampling the data from 1000 or 2000 Hz to 200 Hz is 

helpful, as performing ICA takes a long time and the components can be removed from the 

data in its previous state. ICA will extract component time series that can be plotted 

alongside their topography to assist with the appropriate rejection of artefacts 

(ft_rejectcomponent). After ICA, trials that still contain errors (such as muscle artefacts) are 

removed using the ‘summary’ option of ft_rejectvisual that plots trial variability. 
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3.2.2 Forward modelling 

To create a volume and grid that can be used to model activity in a participant’s brain, it is 

best if the prerequisite components are participant-specific – though this is not always 

possible. In MEG, forward modelling can be achieved with the extraction of boundaries from 

MRIs. The models that most precisely match an individual’s brain for MEG in FieldTrip are 

single-shell or boundary element models that use segmented MRIs (ft_volumesegment) to 

generate mesh “head models” of the cortex (ft_prepare_headmodel). A standard source 

model is loaded and prepared for further analysis by combination with the individual’s MRI 

(ft_prepare_sourcemodel) and warped to standardised positions defined by the Montreal 

Neurological Institute (MNI; Evans, Collins & Milner, 1992)(Figure 3.8) to facilitate group 

analysis later; this is then used in combination with the head model and sensor descriptions 

to compute the lead field (ft_prepare_leadfield). Where an individual’s MRI is unavailable, 

head models are generated by using standard open-source MRIs and realigning them to the 

coordinate system being used during analysis. It is important to ensure the head shape 

(obtained from digitised head shape or other software) for the participant is aligned with 

the lead field and sensors after the fact, for the most accurate forward model.  

 

Figure 3.8: A figure produced in MATLAB demonstrating a standard 3d source model with 5mm resolution 

tailored to a head shape (tilted for depth perspective). 
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3.2.3 Inverse modelling 

Once the forward model has been made, the inverse solution is computed. This is achieved 

using FieldTrip LCMV and DICS beamforming in this thesis (ft_sourceanalysis). LCMV and 

DICS use the previously generated lead field and head models, whilst the LCMV beamformer 

also requires a matrix that contains the covariance of each channel (obtained from 

ft_timelockanalysis). A covariance matrix is a sensor-by-sensor matrix that reflects signal 

amplitude and distribution, and a key ingredient for creating spatial beamformer weights. It 

is important to generate a covariance matrix that accurately reflects the data. If the signal-

to-noise ratio is low, or there is little data to compare, the covariance matrix can give 

inaccurate beamformer reconstructions. This is often solved with regularisation. LCMV and 

DICS beamformer outputs can be analysed at the group level in statistical analysis.  

3.2.4 Beamformer considerations 

These methods can be configured with additional options, such as fixed orientation output 

(one direction of greatest strength, as opposed to a vector of three directions), and kappa or 

lambda regularisation. The latter is an injection of signal noise (Woolrich et al., 2011), which 

is commonly used to whiten data that is too short to provide a good estimation of 

covariance (Brookes et al., 2008); as regularisation can have a significantly negative effect 

on accurate source reconstruction, it is recommended its parameters are data-driven and 

avoided entirely if possible (Adjamian et al., 2009; Brookes et al., 2008; Jaiswal et al., 2020). 

Rank-deficient data (such as data that has been cleaned with MaxFilter) will also require its 

lead field matrix to be truncated based on the number of retained components (roughly 60, 

referred to as Kappa regularisation; Westner et al., 2022), to ensure the covariance matrices 

meet the component number assumptions of the beamformer equations (Jensen and Hesse, 
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2010). The covariance matrix can be erroneous if its dimensions do not accurately reflect 

the data (i.e., rank deficiency). An example of this is a matrix of 204 gradiometers that has 

been cleaned with tSSS: when applied to suppress external signal noise, tSSS effectively 

reduces dimensionality of the data from 204 to closer to 60 (Westner et al., 2022). The 

covariance matrix can be truncated at 60 by defining κ=60 in FieldTrip, thereby avoiding 

erroneous beamformer output. 

Due to the equations that generate spatial weights, signal noise that is unaccounted for 

contributes to poor localisation in beamform analysis (Quraan, 2011) – often with a bias to 

the centre of the head – and distorts source estimations. It is possible to avoid this by 

estimating the Neural Activity Index (NAI) – average power divided by average noise – and 

using that to project noise from the data; most commonly, however, this is simply achieved 

by performing the source analysis on two contrasting time windows (such as a baseline 

condition or pre-stimulus window against a window of interest) and calculating the ratio of 

change (i.e. window of interest minus the baseline, divided by the baseline; Quraan, 2014) 

(Fig 3.9). Beamformers can also suffer from leakage when presented with strong signals 

outside of their region of interest, which can eventually dominate over weaker sources that 

might be of interest, and they can be biased by strong correlations across space (Quraan, 

2011). 

 

Figure 3.9: Calculation of relative difference for source reconstructions, performed separately for CPT-max and 

CPT-late. The relative difference for each time window was then compared between high pain sensitivity and 

low pain sensitivity groups. 
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3.2.5 Virtual sensors 

The weights generated by the beamformer inverse solution can be used to reconstruct the 

time course of a virtual sensor for a particular voxel, but vector beamformers reconstruct 

fields in 3 dimensions at each voxel, resulting in three sets of timeseries data. Singular value 

decomposition, a process by which the vector dimension with the greatest variability is 

identified, enables analysis of the single timeseries that is most likely to explain brain 

activity. This is achieved by performing an LCMV beamformer analysis on an appropriate 

dataset with fixed orientation output (using ‘cfg.fixedori = yes’ in the FieldTrip function 

ft_sourceanalysis), saving the filters computed during this step, and then multiplying the 

time series data by these filters for every trial; the output of which is a single channel of 

time series data that resembles sensor-space data. This virtual sensor can then be analysed 

for frequency (ft_freqanalysis) or ERF (ft_timelockanalysis) outcomes, and then interrogated 

using inferential statistics. 

3.2.6 Statistical analysis 

Inferential statistics performed at the source or sensor level can both be evaluated by the 

use of classical statistical methods for interval data in FieldTrip (ft_xxxxstatistics). 

Conventional statistical analysis can be as simple as peak amplitude or mean values across a 

particular time window or frequency band, though this requires prior knowledge of 

component latencies and can miss more nuanced data (Huang and Zhang, 2017). Point-wise 

comparison of larger time/frequency windows enables greater detail in the output, but 

requires each point to be tested for statistical significance, which falls prey to the multiple 

comparisons problem. This is exacerbated by the analysis of this data over many voxels or 

sensors. 
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MEG statistical analysis can solve the multiple comparisons problem with traditional 

methods such as Bonferonni and False Discovery Rate corrections, though these are often 

overly harsh – especially when used with time series data that have high sample rates 

(Maris and Oostenveld, 2007). Cluster permutation provides effective control of the false 

error rate when comparing between groups (or conditions) without over-correcting for 

multiple comparisons. To define clusters, every sample of interest (time point, frequency, 

voxel etc.) has its test statistic calculated by T-test with another condition or group. All 

samples that meet significance at α = 0.05 (or 0.025 depending on the tailing of the study 

design) are grouped by adjacency in time, spectra, or location. These clusters have their 

statistic values summed, which is referred to as their cluster-level statistic (they can also be 

clustered by size, sum, or a weighting of both). The Monte Carlo method is then used to 

identify the significance probability of the largest cluster statistic in this original test statistic 

by comparing it to a random distribution generated by permuting the data. Samples are 

randomly assigned (permuted) between one of two groups, after which a statistical test is 

performed. This is repeated many times (‘cfg.numrandomization = 2000’) to generate a 

normal distribution of cluster statistics, against which the original cluster statistic is 

compared. If the original cluster statistic is within the bounds defined by the α threshold   

the null hypothesis can be rejected. This type of analysis can be computationally expensive, 

but requires no prior knowledge of the distribution of the data or whether it meets 

assumptions for specific statistical tests (and can therefore be referred to as non-parametric 

(Maris & Oostenveld, 2007; Chaumon, Puce and George, 2021)). Cluster-based permutation 

analysis is considered the most powerful method for correcting for multiple comaprisons, 

though it is limited by its potential insensitivity to smaller clusters (Huang & Zhang, 2017). 

Once performed in FieldTrip, these measures create masks that can be applied to plots to 
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visualise the clusters that contributed to the outcome of the test; these clusters must be 

interpreted by the investigator, as with all statistical testing, as permutation analysis is 

principally a test of whether or not a null hypothesis can be rejected, not at which data 

points the difference is significant (Maris and Oostenveld, 2007; Sassenhagen and 

Draschkow, 2019).   
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4. Study 1: Spinal Cord Stimulation in MEG 

  

4.1 Introduction 

Conventional Spinal Cord Stimulation (SCS) (also known as ‘tonic’ or ‘paraesthesia-based 

SCS’) is an invasive therapy, most commonly used for intractable neuropathic pain 

conditions, such as Persistent Spinal Pain Syndrome (PSPS) and Complex Regional Pain 

Syndrome (CRPS; Visnjevac et al., 2017; Rigoard et al., 2021), in which patients have 

electrical pulses applied to the dorsal column of their spinal cord by leads surgically 

implanted in the epidural space. To be eligible for the surgery, patients must undergo a trial 

period using a percutaneous lead and external generator, during which their quality of life, 

activities of daily living and pain relief are tracked; patients for which SCS achieves a 

reduction in pain of at least 50% are considered for permanent implants (alongside 

anatomical and technical considerations; Deer et al., 2022), though the utility of these trials 

is contested and can introduce an additional risk of infections (Eldabe et al., 2020; Jeon and 

Huh, 2009). Patients receiving SCS have reported significantly improved pain relief when 

compared to conventional medical management for intractable pain at 6, 10 and 12 months 

of follow-up (Duarte et al., 2021; Kumar et al., 2006). 

The dorsal columns stimulated by SCS are comprised primarily of Aβ neuronal fibres, thick 

myelinated fibre tracts that carry action potentials for innocuous somatosensory inputs to 

the cerebrum; external stimulation of these fibres coincides with suppression of evoked 

potentials recorded in the brain, which has led to theories that incoming nociceptive signals 

are attenuated by way of antidromic activation of inhibitory interneurons connected to 

Wide Dynamic Range (WDR) projecting neurons (Caylor et al., 2019). These dorsal column 

fibres also propagate signals in an orthodromic manner to the thalamus before projecting to 
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the somatosensory cortices. This means that stimulation of the dorsal column can influence 

brain activity directly and indirectly through two neural pathways (a thorough description of 

SCS mechanisms is provided in chapter 2.1). The full picture of how SCS achieves its 

antinociceptive effect is not well elucidated, it is especially unclear why some patients 

receive greater pain reduction than others, why some patients receive no benefits, why it is 

not effective in all pain conditions, and where any cortical modulation occurs in the time 

and frequency domains.  

Identifying the effects of SCS on the brain is crucial to understanding its supraspinal 

mechanisms. The majority of functional brain imaging studies in humans have used methods 

with a low temporal resolution, such as functional Magnetic Resonance Imaging (fMRI)– 

which are only able to observe very low-frequency fluctuations (0-0.75 Hz) in brain activity 

as a function of blood oxygenation or cerebral blood flow. Most oscillatory components are 

thought to range within the boundaries of 1-100 Hz, much higher than is obtainable by 

fMRI. Electromagnetic imaging techniques such as electroencephalography (EEG) and 

magnetoencephalography (MEG) use sensors around the head to record electric or 

magnetic activity, and can do so at very high temporal resolutions, enabling the sampling of 

data that reflects high-frequency brain oscillations. MEG is evidenced as having a greater 

spatial resolution, the ability to delineate temporal characteristics that are otherwise absent 

in EEG recordings (Fardo et al., 2017), and some systems benefit from advanced artefact 

rejection techniques. MEG is less accessible due to its required magnetic shielding, high 

initial price, and price per session, but boasts vastly reduced set-up time. In addition, 

movement compensation methods support data collection in clinical populations where 

protracted recording sessions may be uncomfortable (Stolk et al., 2013). 



99 
 

To observe brain activity, EEG or MEG data is acquired during tasks or whilst participants are 

at rest. In SCS research, participants have an innate experimental resting-state condition as 

the ability to switch on/off the implantable pulse generator facilitates the exploration of its 

short-term, long-term, and residual mechanisms. Painful stimuli have been used to 

demonstrate a suppression of nociceptive inputs by SCS (Bocci et al., 2018; Hylands-White 

et al., 2016; Pluijms et al., 2015b), though the majority of SCS research using time-locked 

stimuli has focused on somatosensory evoked potentials (SSEPs). SSEPs are effective as a 

mode of exploring the alleged suppressive effect of SCS on ascending somatosensory signals 

as they propagate through Aβ fibres, where the antidromic effect of SCS should be most 

acutely observed. Systematic reviews performed by Bentley et al. (2016), Sivanesan et al, 

(2019) and Caylor et al. (2019) have documented the suppressive effect of SCS on SSEPs and 

other evoked waveforms in electromagnetic recordings, with the majority of identified 

studies showing a decreased amplitude as a result of therapeutic stimulation (de Andrade et 

al., 2010; Buonocore et al., 2012; Buonocore and Demartini, 2016; Lang et al., 1989; Larson 

et al., 1974; Stančák et al., 2007; Theuvenet et al., 1999; Urasaki et al., 2014; Weigel et al., 

2015; Wolter et al., 2013), with only a few studies finding no effect (Doerr et al., 1978; 

Mazzonea et al., 1994; Niso et al., 2021). Median nerve SSEPs do not collide with antidromic 

dorsal column stimulations at the lower thoracic spine, and would instead reflect general 

somatosensory processing; evidence of altered median nerve SSEPs in the cortex as a result 

of SCS in the lower spine would demonstrate a supraspinal modulatory action of ascending 

SCS, or possible “first-come, first-served” collateral processing, in which ascending 

somatosensory afferents compete with, and diminish ascending nociceptive afferent 

processing (Testani et al., 2015). 
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Few studies combining SCS and MEG analysis exist (Witjes et al., 2022), and none of them 

adequately evaluate the source characteristics of spectral features of resting-state (Pahapill 

and Zhang, 2014; Schulman et al., 2005; Theuvenet et al., 1999). Only one MEG study 

explored SSEPs, and did so using only sensor-level topography analysis of collisions 

(Theuvenet et al., 1999); since this article was published, more advanced techniques have 

been developed with vastly improved spatial resolution. No whole-brain source 

reconstruction analyses of SSEPs exist using EEG or MEG, despite the limitations of sensor-

space analysis (Schaworonkow and Nikulin, 2022). 

The acquisition of resting-state data facilitates the exploration of underlying oscillatory 

activity that may act as a marker for a condition or participant group. Resting-state analysis 

of SCS at the sensor level in the frequency domain has revealed mixed results: some studies 

have demonstrated a normalisation of spectral power (i.e. suppression of dysfunctionally 

enhanced broad-band frequency power; Pahapill and Zhang, 2014; Schulman et al., 2005), 

showing that moderation of dysregulated cortical activity could be a mechanism by which 

SCS achieves its anti-nociceptive effect; consistent with this, Sufianov et al. (2014) 

demonstrated a relative suppression of delta, theta, and beta band synchrony three months 

after SCS implantation compared to baseline and healthy controls. De Ridder & Vanneste 

(2016) found beta and gamma were suppressed in the posterior cingulate gyrus and 

parahippocampus when SCS was enabled. More recently, Goudman et al. (2019) explored 

frequency power spectrum averaged across 32 EEG sensors during resting-state in no SCS, 

conventional SCS and high-frequency SCS; they observed that conventional SCS suppressed 

delta, theta and beta frequency bands when compared to high-frequency SCS, though 

neither were significantly different from the no-SCS control. Despite heterogeneous study 

design, stimulation parameters and participant conditions (Witjes et al., 2022), there is 
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evidence for the suppression of delta, theta, beta and gamma frequencies during SCS in EEG 

research: Identifying the cortical sources for any significant differences in processing 

underlying SCS during stimulation may highlight therapeutic targets for deep brain 

stimulation, as well as inform us on the contribution of ascending mechanisms and 

characteristics of SCS responders. 

To date, only one of the existing studies that explore the cortical changes associated with 

ongoing conventional SCS has attempted to localise oscillatory power in source-space (De 

Ridder & Vanneste, 2016), using electrophysiological techniques that might be improved 

with whole-head magnetoencephalography. An exploratory analysis of modulation of 

broadband frequency at rest is warranted, as is an investigation into the frequency 

dynamics and field strength of cortical processing of SSEPs following SCS. This study will 

attempt to localise SCS-dependent frequency power across all frequency bands.  

4.1.1 Aims and hypotheses: 

This experiment aims to elucidate changes in the brain that result from conventional SCS in 

chronic pain patients in MEG somatosensory evoked potential and resting-state paradigms.  

It is hypothesised that baseline (SCS-off) and SCS-on datasets will demonstrate significant 

differences in brain activity at rest, producing source reconstructions of locations 

responsible for the supraspinal processing of ascending SCS inputs. It is also hypothesised 

that reconstructions of SSEPs will be suppressed in SCS-on compared to SCS-off, 

representing the suppression of SSEPs by ascending SCS signals. The null hypotheses are 

that the SCS-on condition will result in no statistically significant changes when compared to 

SCS-off. 
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4.2 Methods: 

4.2.1 Objectives 

By performing a DICS beamformer (by using cfg.method = ‘dics’ in the ft_sourceanalysis 

function of FieldTripTM) on resting activity during SCS-on and SCS-off states within-

individuals, differences in global changes in oscillatory power distribution can be localised 

which will elucidate any supraspinal effects of SCS. Performing a Linearly Constrained 

Minimum Variance (LCMV; performed by using cfg.method = ‘lcmv’ in the ft_sourceanalysis 

function of FieldTripTM) beamformer on SSEP data will enable the reconstruction and 

statistical comparison of the waveforms at the voxel with greatest field strength; this will 

demonstrate any suppression of the SSEP waveform by SCS. Additionally, performing a DICS 

beamformer on the SSEP dataset will demonstrate frequency distribution changes in SSEP 

activity as a result of SCS. Statistical analysis of source-level and power spectra will be 

achieved using cluster-based permutation analysis; event-related field strength will be 

tested using average field strength over a specified time window. 

 

4.2.2 Dataset 

This dataset was acquired at the Institute of Health and Neurodevelopment in 2014 by Lisa 

Bentley. This data was acquired for the purposes of a study exploring SCS, SSEPs and 

transcutaneous electrical nerve stimulation. No analyses beyond those reported here have 

been performed upon it. No published studies exist using this dataset. 
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4.2.3 Participants 

Participants were approached and invited to participate in this study during their SCS review 

clinic at the Regional Centre for Neuromodulation Pain Therapies at Russells Hall Hospital, 

Dudley. The inclusion and exclusion criteria were as follows: 

Inclusion criteria: 

- Must be aged 18-70 

- Must have fully implanted SCS for treatment of their chronic pain disorder 

- Evidence from visual analogue or numerical rating scores indicating ≥50% pain relief with SCS 

treatment 

Exclusion criteria: 

- Patient refusal to participate in the study 

- Patients with other implanted metal devices (e.g., pacemakers) 

- Patients suffering from surface hyperalgesia  

Four participants were recruited (2 male), with an age range of 46-52 years (Mean: 50, SD: 

2.5). During screening participants reported, on average, an SCS pain reduction of 4.38 (SD: 

1.52; equivalent to an average reduction of 60%) as measured on a 10-point numerical 

rating score (NRS). Informed consent was obtained from all participants, and the study 

protocol was approved by local ethics committees at Institute of Health and 

Neurodevelopment and Birmingham City University, as well as the Research Ethics 

Committee and Research & Development Office for the Dudley Group of Hospitals NHS 

Foundation Trust. 

Two participants were diagnosed with PSPS, one with cauda equina syndrome and one with 

spinal fusions and disc collapse. Parameters that define the SCS stimulation for each 

individual can be found in Table 4.1. These stimulation parameters describe the 
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characteristics of the electrical current applied to the spine, and are set and adjusted by 

clinicians during check-ups to provide the most pain relief. 

Table 4.1: SCS parameters for included participants 

Participant Pulse width Hz mA Position Coverage Leads 

(contacts) 

Age of 

implant 

(years) 

1 350 40 1.8 T12 100% 1 (8) 6 

2 500 130 2.9 T11 100% 2 (8) 5 

3 340 60 1.9 T10 100% 2 (8) 4 

4 440 40 3 T10 90% 1 (8) 7 

 

4.2.4 Stimulus 

During the recordings, SSEPs were delivered via electrodes on the median nerve. These 

were delivered to their non-dominant hand (three left, one right) in blocks of 50 s; these 

were trains of 100 stimuli with an inter-stimulus interval of 0.5 seconds. The amplitude of 

the stimuli was tailored to be 70% motor threshold, obtained by stimulating the median 

nerve until a finger twitch was observed, facilitating clear sensation without movement or 

pain (Mean: 6.51 mA, SD = 1.88) (Table 2). Stimuli were delivered using a Digitimer Constant 

Current Pulse Stimulator (DS7A; Digitimer Ltd, Welwyn Garden City) at 300V, 7 Hz with a 

pulse duration of 0.2 ms to ensure the stimulus was perceivable but short, and were 

connected to the MEG to mark epochs via trigger. 
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Table 4.2: Side and intensity of median nerve SSEP by participant, at 70% of motor threshold 

Participant Stimulation intensity 

(location) 

1 5.6mA (Right) 

2 9.59mA (Left) 

3 4.55mA (Left) 

4 6.3mA (Left) 

 

4.2.5 MEG acquisition 

MEG data were acquired using an Elekta TRIUX 306-channel MEG system, at a sampling rate 

of 2000 Hz, within an MSR at Institute of Health and Neurodevelopment. Participants were 

recorded at rest and during SSEP stimulation blocks in the two conditions (SCS-on and SCS-

off) whilst in a sitting position (22˚ recline). Participants were asked to turn off their SCS 

generators 12 hours before attending the research session. SCS-off preceded SCS-on as a 

baseline for comparison, but also to avoid any lasting effects of SCS. Participants had their 

head shape digitized by a Polhemus Isotrak System (Kaiser Aerospace Inc.) and had five 

Head Position Indicator (HPI) coils attached to their forehead and bilateral mastoids to track 

head movement. No active online noise reduction techniques were used. Participants were 

asked to report their back pain during MEG acquisition via a Numerical Rating Scale (NRS; a 

scale of 0-10); participants were prompted to report their pain every 1-3 minutes by the 

investigator over an intercom. Participants blinding was impossible due to the nature of 

parasthesia-based SCS. 

4.2.6 MEG data processing 

tSSS was applied using MaxFilter (Elekta Neuromag Oy, version 2.2.10) to clean the data 

before processing and remove any signal noise created by the implanted pulse generators 

or SCS electrodes (0.98 Correlation limit, 9s buffer; Taulu & Hari, 2009). Preprocessing of 
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MEG data was performed offline using the M/EEG MATLAB toolbox FieldTrip (Oostenveld et 

al., 2011; build 20200513), and involved a discrete Fourier transform (DFT) filter of 50 Hz, 

100 Hz and 150 Hz at a width of 0.5 Hz to minimise line noise without reducing the quality of 

the data; a high-pass filter of 1 Hz and a low-pass filter of 200 Hz were applied to remove 

slow and very fast spectra attributable to physiological phenomena outside our frequencies 

of interest, and the data were additionally detrended to control for slow drifts in magnetic 

fields. SSEP epochs were defined by their trigger, affording a 0.25 second baseline and 0.4 

second post-stimulus window. There was an average of 850 SSEP trials in the SCS-on and 

475 trials in the SCS-off condition, and an average of 850s of resting data was acquired for 

SCS-on and 481s for SCS-off. Continuous resting-state data was split into two-second trials 

with 50% overlap. Head movement was checked by performing ft_qualitycheck in the 

FieldTrip MATLAB toolbox. 

Bad channels identified by MaxFilter were removed from all analyses for consistency. ICA 

was performed using the RUNICA method (Bell & Sejnowski, 1995), both magnetometers 

and gradiometers, and an upper limit of 60 components to adjust for reduced 

dimensionality introduced by tSSS. Using ICA, signal components for eye blinks and 

heartbeats were removed (Mean: 3, range: 2-4). Artefact outlier trials were removed 

separately for magnetometers and gradiometers, to avoid bias in trial rejection; further 

analysis used only gradiometers, as is commonplace in MEG analysis due to magnetometers 

and gradiometers recording different metrics (Garcés et al., 2017). 

Datasets were aligned with template T1 MRIs from within the FieldTrip toolbox, which was 

then segmented. Template models of source grids 5 mm in resolution were warped to 

match the MRIs to facilitate group analysis, from which lead field matrices were computed 
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with the sensor configuration. For LCMV beamforming, sensor covariance matrices were 

calculated for averaged epochs, as well as pre- and post-stimulus windows independently; 

these were used to obtain source analysis outputs for both stimulus windows whilst using 

the filters computed for the whole time window. For DICS beamforming of SSEP epochs, 

processed data went through Fourier analysis of delta (0-4 Hz), theta (4-8 Hz), alpha (8-14 

Hz), beta (14-30 Hz) and gamma (30+ Hz) frequency bands from -0.25s to 0.4s with the 

smoothing of 1, 2, 3, 9, and 33 Hz, respectively. In resting-state analysis, the full time 

window of 2s was utilised and compared to a 2s window in SCS-off resting-state recording. 

Beamforming outputs were obtained using a regularisation parameter of λ=5% and a κ value 

set by the rank of the dataset (~58-60; described in more detail in chapter 3.2.4). The λ of 

5% was chosen to account for poor signal-to-noise ratio in participant 2, and applied to all 

participant datasets for consistency. Relative change in the experimental (post-stimulus or 

SCS-on resting) time window was then calculated by subtracting the baseline from the 

experimental time window to remove centre-of-head noise bias innate to beamforming 

spatial weighting, and then dividing by the baseline to estimate the ratio of field strength 

between the baseline and window of interest (Quraan, 2011).  

Virtual sensors were obtained by multiplying the processed time series data by a 

beamformer filter (in the form of an array containing spatial weights for each point in the 

5mm resolution 3D source space, demonstrated previously in Figure 3.8) created specifically 

for the position with the maximal value in the LCMV source analysis output, resulting in time 

series data that is reconstructed for that specific voxel of the source model. This data was 

then averaged over trials to obtain the SSEP event-related field waveform, upon which 
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statistical analysis was performed; this was to circumvent the lack of consistency in the 

stimulation side and facilitate statistical comparisons regardless of handedness.  

4.2.7 Statistical analysis 

Non-parametric cluster-based statistical analysis was performed on virtual sensor power 

spectra: one-tailed within-participant T-tests were used to compare SCS-on and SCS-off 

conditions. This method corrects for multiple comparisons by clustering and permutation 

with the Monte Carlo method to determine significance: data points (individual frequencies) 

that met p≤0.05 when comparing SCS-on and SCS-off were clustered by temporal adjacency, 

and their combined ‘cluster’ T-value summed – which was then used to determine if a 

cluster was significant against a normal distribution generated by permuting and testing 

data points 2000 times (described in more detail in chapter 3.2.6). SSEP ERF statistical 

comparisons were made for the time window of 0.001-0.2s; statistical analysis of power 

spectra was performed on frequencies 1-100 Hz with a 1 Hz step. Timeseries data were 

analysed from an average of data from 0.001-0.2s and required no corrections for multiple 

comparisons (as this time-window encompassed all N2-P2 components and latencies were 

likely to be heterogeneous). 

No group statistical test was possible for source-space data, as one participant’s SSEP 

electrodes were placed on an inconsistent side; cluster-based permutation analysis enabled 

the statistical comparison of source-space reconstructions of resting-state data with a two-

tailed design. Locations were identified using the Automated Anatomical Labelling (AAL) 

atlas (Tzourio-Mazoyer et al., 2002).  
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4.3 Results 

4.3.1 Pain rating during SCS 

The average reported pain during SCS-off was 6.18/10 (SD: 1.35), compared to 3.43/10 (SD: 

1.14) for SCS-on (Figure 4.1). A paired samples t-test found this difference to be significant 

(t(3) = 2.840, p<0.05). It is noteworthy that participant #3 experienced a -22% change in pain 

score during the SCS-on portion of their MEG recording, as opposed to the average of -55% 

in the other three participants (range: -48-73%), which was not near the values reported in 

their screening questionnaire (-50%), and which would not meet initial screening criteria for 

inclusion in the study at recruitment. 

 

4.3.2 MEG data quality 

Quality checks were performed on the data using FieldTrip’s ft_qualitycheck function to 

inspect line noise and head movements; this did not reveal any need to correct or remove 

data from any participants. No participants had head movements greater than 5mm during 

scanning. Two channels (MEG0531 and MEG0111) were removed from the analysis of all 

datasets after being flagged for SQUID jump artefacts by MaxFilter during data cleaning.  
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Figure 4.1: Subjective pain score by individual, as rated on a scale of 0-10 (0 = no pain, 10 = most pain 

imaginable) during SCS-on and SCS-off MEG recordings. Error bars represent standard deviation. 

 

4.3.3 SSEP virtual sensors 

LCMV SSEP outputs for SCS-on and SCS-off conditions are outlined in 4.2. A 5% 

regularisation was necessary to reconstruct data for participant 2, which was then applied 

to all other participants’ source reconstructions. Presented below are reconstructions of 

relative field strength in the 0.001-0.2s time window after removal of and subsequent 

division by pre-stimulus activity in the -0.25s-0.01s time window, and therefore display 

values that express the change in field strength relative to the baseline in arbitrary units 

(Figure 4.2). On average, SCS-off had a mean relative change in field strength (fT/cm) from 

baseline of 67% (SD: 50%), and SCS-on had a mean of 67% (SD: 61%). The average difference 

when SCS was turned on was 0.25% (SD: 12%). No source statistics were performed on the 
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LCMV outcomes, as one participant’s data was acquired with stimulation of the right median 

nerve, in contrast to three participants being stimulated on the left median nerve, though 

their source analysis outputs are displayed below (Figure 4.2). Voxels with maximal values 

for each individual were identified in the somatosensory cortices: these voxels were 

selected for virtual sensor reconstruction. Interindividual variability in magnitude across 

participants (such as the difference between participants 1 and 2) is to be expected, 

especially with individually adapted stimuli that require subjective reporting, and may 

reflect a myriad of physiological or psychological variables.  

4.3.3.1 Virtual sensor evoked waveforms 

Virtual sensors were computed with the LCMV beamformer weights and singular value 

decomposition (determined by defining the parameter ‘cfg.fixedori =yes’ in 

ft_sourceanalysis). This enabled the reconstruction of time series information in the voxel of 

peak magnitude identified in the previous step, though the orientation of the dipole is 

voxel-specific, and as such, can appear inconsistent across individuals. Virtual sensors for 

the peak voxels were reconstructed by multiplying the raw time series data by the spatial 

beamformer weights generated by the beamformer, on which statistical testing could be 

performed (Figure 4.3). 

The majority of literature exploring SSEPs in SCS demonstrates suppression of incoming 

signals and the resulting cortical waveform in the somatosensory cortex. As such, statistical 

hypothesis-testing in this comparison was one-tailed, with the null hypothesis that SSEPs 

would not be reduced in the SCS-on condition. No clusters attained significance (t(3) = -

0.687, p=0.271) when comparing SCS-off to SCS-on SSEP waveforms in the 0.001-0.2s time 

window.  
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Figure 4.2: Peak beamformer plots generated within FieldTrip with the ‘slice’ method, a crossbar highlighting 

the Neuromag coordinates of peak brain activity. The value represents % change vs baseline (i.e. 1.51 is 151%). 

Colour bars are on the same scale for each Figure. 
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Figure 4.3: The difference in SSEP waveforms with SCS turned on and off, by participant and SCS-condition. Virtual sensors were reconstructed by multiplying time series 

data by spatial filters generated by the LCMV beamformer. Singular value decomposition was applied to the lead field matrix; hence the shapes of the different waveforms.
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4.3.3.2 Virtual sensor power spectra analysis  

Fourier analysis of the virtual sensors demonstrated frequency differences between 

conditions: with SCS-on, a clear reduction in oscillatory power is evident across all bands. A 

non-parametric cluster-based permutation analysis with corrections for multiple 

comparisons confirms a notable change: a significant difference was identified by the 

analysis as significant after permutation analysis at p<0.001, with a medium-to-large effect 

size as measured by Cohen’s D at the largest cluster (t=-1.503; d = 0.74). Though cluster-

based permutation analysis in this context does not make any conclusions regarding the 

significance of individual frequencies, the sole cluster that contributed to the rejection of 

the null hypothesis at 3 Hz is highlighted in Figure 4.4, widened in the Figure by 1 Hz for 

visualisation purposes.  

 

Figure 4.4: Power spectrum of the averaged virtual sensor SSEP waveforms of all participants. The grey box 

indicates where the significant cluster was identified by statistical analysis (3 Hz), and is widened by 1 Hz for 

visualisation. 
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4.3.4 Resting DICS 

DICS was performed on all frequency bands by comparing SCS-on and SCS-off resting-state 

data. Grand averages were generated for visualisation, and statistics were performed. Here, 

statistically significant enhancement of synchrony in theta and delta frequency bands are 

observed, as opposed to the desynchronisation seen in SSEPs. 

 

4.3.4.1 Theta resting DICS 

Clusters that met the threshold for significance were identified in the theta frequency band, 

with greater activity in the SCS-on condition, demonstrating a statistically significant 

difference between conditions .Using this method for statistical analysis does not allow for 

spatial conclusions, however; instead, the cluster-based permutation analysis enables the 

rejection of the null hypothesis for the differences between SCS-on and SCS-off. Clusters 

that contributed to this rejection of the null hypothesis were identified in the left superior 

temporal gyrus, bilateral middle cingulate and right anterior cingulate cortices (Figure 4.5; 

greatest cluster t = 2991, p<0.0001), with the largest T-values localised to the right dorsal 

anterior cingulate cortex and left middle cingulate cortex, where theta power was greater in 

SCS-on than SCS-off; though it must not be misunderstood to suggest that only (or primarily) 

these areas were significantly different. The effect size of the greatest significant cluster was 

d = 1.59. 
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Figure 4.5: A statistical map showing T-values for clusters of theta-band activity thresholded at p<0.05. Red 

arrows point to the clusters with the highest T-values. 

 

4.3.4.2 Delta resting DICS 

Clusters that met the threshold for significance were identified in the theta frequency band, 

with greater activity in the SCS-on condition, demonstrating a statistically significant 

difference between conditions (t = 6269, p<0.0001). As described above, cluster-based 

permutation analysis only enables the rejection of the null hypothesis based on differences 

across conditions; Figure 4.6 demonstrates clusters that met a significance threshold for 

visualisation purposes. High-value clusters that contributed to the rejection of the null 
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hypothesis were localised to the left superior temporal gyrus, left insula, and left caudate 

nucleus, where delta power was greater in SCS-on than SCS-off. The largest cluster had an 

effect size of d = 1.6 and was located in the left insula. 

4.3.4.3 Alpha, beta and gamma resting DICS 

Some notable increases in power of frequency bands can be observed in the alpha and beta 

frequency bands in the left somatosensory cortices (Figure 4.7). Weak suppression of 

gamma activity is observable in bilateral somatosensory cortices; none of these changes 

were statistically significant at p<0.05 (Largest gamma cluster: t = 1248; Largest beta cluster: 

t = 951, Largest alpha cluster: t = 3563). 
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Figure 4.6: Statistical map showing T-values for clusters of delta-band activity, thresholded at p<0.05. Red 

arrows point towards the clusters with the greatest T-values. 
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Figure 4.7: Ratio of change in synchronisation between SCS-off and SCS-on conditions averaged across all participants. The colour 

bar represents the % change between the two conditions, with a value of 1 indicating a 100% increase. Increase in alpha and 

beta and suppression of gamma highlighted with red and blue arrows respectively.
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4.4 Discussion 

4.4.1 Resting-state 

The results of this study show a significant difference in resting-state activity at delta and 

theta frequencies when comparing SCS-on and SCS-off conditions in a group of four SCS 

participants. The clusters that contributed to the rejection of the null hypothesis were 

mostly localised to the left hemisphere, most notably the left posterior insula, caudate 

nucleus and superior temporal gyrus; it is likely that the enhancement of power in delta and 

theta frequencies in these areas are a result of ascending stimulation of the dorsal columns 

via the medial pathway, as suggested by de Ridder & Vanneste (2016), and the slowing of 

processing in areas associated with higher pain processing and pain-related memory. The 

current findings fail to replicate the findings of several studies that observed suppressive 

effects of SCS on spectral power in the brain at rest (Schulman et al., 2005; Sufianov et al., 

2014; Goudman et al., 2019); most notably De Ridder & Vanneste (2016), whose 

investigations of conventional SCS versus a control baseline identified suppression in beta 

and gamma frequency bands in the posterior cingulate cortex and the parahippocampus, 

respectively.   

The current study identified localised enhancement of theta band activity in the bilateral 

mid-cingulate cortex (MCC) and right anterior cingulate cortex (ACC). The cingulate cortices 

are regularly associated with pain experience, especially its link to affective, emotional and 

planning processing in pain and pain anticipation (Moseley, 2003; Nevian, 2017). Only the 

ACC and posterior cingulate cortex (PCC) have been identified as locations for altered brain 

activity during SCS so far (De Ridder & Vanneste, 2016; Moens et al., 2012), and not yet in 

MEG; SCS’s interaction with the ACC could correspond to suppression in the otherwise 
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increased baseline activity in chronic pain patients (Bliss et al., 2016; Gungor and Johansen, 

2019; Meda et al., 2019). MCC activation has been implicated in modulating pain sensitivity 

and descending pain facilitation in mice (Nevian, 2017; Tan et al., 2017) and has been 

associated with nociception, negative affect, and cognitive control (Shackman et al., 2011). 

Event-related theta frequency enhancement has been associated with increased pain 

empathy (Mu et al., 2008), and resting-state analysis has demonstrated enhancement of 

theta activity in chronic pain patients in the pain neuromatrix (Fallon et al., 2018; González-

Roldán et al., 2016; Hsiao et al., 2017; Lim et al., 2016; Stern et al., 2006). Previous works 

consider ACC theta enhancement as hallmarks of disturbed thalamocortical networks (Stern, 

Jeanmonod and Sarnthein, 2006), or contributors to ongoing chronic pain neurocircuitry 

(Fallon et al., 2018). In this study, theta enhancement is seen in the MCC and ACC resulting 

from conventional SCS in resting-state; these findings instead suggest that theta 

synchronisation may reflect the slowing of processing in areas responsible for affective pain 

components in the presence of ongoing pain. 

The superior temporal gyrus is not part of the classic pain neuromatrix, but pain-related 

changes in this region are identified in some studies. It has been linked with experimental 

pain (Cleve et al., 2017; Song et al., 2006), chronic pain conditions (Van Ettinger-Veenstra et 

al., 2019; Han et al., 2013; De Pauw et al., 2019), pain anticipation (Palermo et al., 2015), 

and the maintenance of unpleasant pain-related memories (Houde et al., 2020; Luo et al., 

2016), though it has not yet been identified as a candidate for underlying SCS activity. In 

MEG research, delta enhancement in the left superior temporal gyrus was recently 

identified as negatively correlating with subjective pain levels in low back pain patients 

before and after selective nerve root blocks (Shigihara et al., 2021); the current study also 

identified significant delta enhancement in the superior temporal gyrus in resting-state SCS-
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on conditions, which complements Shigihara et al.’s findings. Together, it is apparent that 

greater resting-state delta power is associated with pain relief. Further research is required, 

however, to determine the exact nature of this delta component: it is possible that the SCS-

linked delta enhancement in this region contributes to pain suppression by disrupting 

painful memory exaggeration with slowing of brain activity, a recognised contributor to pain 

sensitivity and chronic pain in this area of the cortex (Houde et al., 2020; McCarberg and 

Peppin, 2019).  

Increased delta synchrony in the insula and the caudate nucleus has not been identified by 

previous SCS studies; though low-gamma suppression has previously been observed, it was 

not found in this study (De Ridder et al., 2013). The insula and caudate nucleus their 

involvement in salience processing and somatosensory processing is well established 

(Garcia-Larrea, 2012), and its ongoing activation likely represents the attentional and 

localisation processes linked to the presence of paraesthesia; though it is noteworthy that 

the insula and cingulate cortices are connected to the PAG and can assert control over 

descending inhibitory projections of the RVM, which are likely candidates for the 

therapeutic effect of SCS.  

The primary difference to note between currently published studies and the presented 

works here is that prior research has almost entirely utilised EEG. It is widely acknowledged 

that MEG and EEG acquire functionally similar data – but also, that EEG suffers from greater 

volume conduction, and less advanced suppression of external electromagnetic noise. It is 

possible that utilising MEG with signal cleaning methods like tSSS (Taulu and Hari, 2009) 

effectively minimised spectral components from the SCS generator that have been found to 

be invested in EEG recordings (Buentjen et al., 2021). It is also worth noting that many 
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studies exploring SCS do so with a relatively small number of participants and a highly 

heterogeneous sample of stimulation parameters and chronic pain conditions, such is the 

nature of the participant population (Mode average = 5; Witjes et al., 2022), and that 

utilising such a small sample is recognised to result in reduced power.  

4.4.2 Beamforming SSEPs in SCS  

This is the first MEG study to contribute to the discourse surrounding the effect of SCS on 

SSEPs since Theuvenet et al. (1999) published their exploration of SSEPs in a sensor-level 

analysis using a system with only 19 magnetometers. In the current experiment, 204 

gradiometers were used to obtain spatial weights by which to multiply the time series, 

thereby reconstructing activity at the location in the brain with the highest field strength, 

rather than at the sensor. Previous studies observing SSEPs in SCS have done so to evaluate 

the hypothesis that SCS pain-relief is due to antidromic stimulations of the Aβ fibres 

inhibiting ascending wide dynamic range (WDR) neurons; any suppression of SSEPs in the 

presence of SCS stimulation is possible evidence for the collision of these antidromic 

stimulations with ascending Aβ activation, and ability of SCS antidromic stimulation to 

inhibit WDR signals. Most studies report significant attenuation following SCS (de Andrade 

et al., 2010; Buonocore et al., 2012; Buonocore and Demartini, 2016; Lang et al., 1989; 

Larson et al., 1974; Poláček et al., 2007; Theuvenet et al., 1999; Urasaki et al., 2014; Weigel 

et al., 2015; Wolter et al., 2013), though it is not a unanimous finding (Doerr et al., 1978; 

Mazzonea et al., 1994), and not necessary for pain suppression (Urasaki et al., 2014). This 

study observes SSEPs generated by median nerve stimulation, an action potential that 

cannot collide at the dorsal column. This experimental design instead evaluates any 

suppressive effect by orthodromic dorsal column stimulation on the processing of 
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somatosensory stimuli. A change in SSEP field strength was not identified in the participants 

recruited for this study at the virtual sensor level, despite three of four participants 

reporting successful pain reductions in the SCS-on condition. Anecdotally, some reduced 

field strength is noticeable in participants one, two and four (and notably not participant 

three, who reported lesser pain relief), but not at group level, and not to the extent of the 

drastic attenuation demonstrated in the studies identified above.  

Virtual sensor comparisons of power spectra of SSEPs in SCS-on and SCS-off conditions 

revealed a significant difference using cluster-based permutation analysis; the 

corresponding cluster was a narrow band at 3 Hz in the delta frequency band. Visual 

inspection suggests a broader difference between the SCS-induced suppression of the 

power spectra in the post-SSEP evoked waveform. This difference in power spectra during 

SSEPs is noteworthy especially because it cannot be explained by any significant differences 

in the overall strength of the ERF, and that it contrasts the enhancement of delta in the 

resting-state analysis above. The power spectra resulting from SSEPs have not yet been 

explored in any of the current literature, and warrants exploration with proper time-

frequency analysis. Evoked delta power in sensation has been linked to relative stimulus 

intensity (Fardo et al., 2017; Hauck et al., 2015), and is thought to be linked to decision 

making and signal detection (Başar et al., 2001); this is perhaps a greater indicator of the 

ascending effect of SCS in the absence of SSEP collision but requires statistical evaluation 

with time-frequency analysis.  

Together, the virtual sensor power spectra and the lack of SSEP field strength attenuation 

somewhat elucidate the somatosensory processing changes as a result of ascending 

orthodromic dorsal column SCS. It is clear from these findings that SCS influences 
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somatosensory processing in the frequency domain, even without attenuation of overall 

field strength. This could be explained by a similar “first-come first-served” mechanism 

described by Tesani et al., (2015) who showed that competing ascending noxious stimuli 

were diminished when processed collaterally with ascending somatosensory stimuli, though 

such a claim would require further study. As the effect of SCS is known to last between 

pulses and beyond stimulation, it is likely that the timing of the stimuli is not the only 

phenomenon responsible for the anti-nociceptive effect, though it is possible that entrained 

rhythms last beyond the initial stimulation. As demonstrated by the resting-state findings, 

ascending SCS can slow the rhythms in the insula, MCC, ACC, caudate nucleus, and superior 

temporal gyrus, which could disrupt somatosensory processes, though their facilitation of 

descending antinociception is unlikely to contribute to the suppression of somatosensation. 

Future research exploring connectivity and networks of these areas during SSEPs unrelated 

to collision could elucidate directionality of the relationships between these brain areas 

responsible for the modulation of SSEPs in the somatosensory cortex. 

It is important to note that the statistical methods used on the source localisation data here 

enable the rejection of the null hypothesis (that the power and location of SCS-on and SCS-

off resting-state brain oscillations are the same), but do not facilitate drawing absolute 

conclusions on the location of the significant differences. That being said, clusters that 

contribute to the rejection of a null hypothesis can be indicators for future research using 

statistical methods that do enable these deductions (Sassenhagen and Draschkow, 2019).  

4.4.3 Limitations 

The primary limitation of this study is the small sample. SCS is reserved for chronic pain 

patients for whose pain is intractable, and for those who respond to the treatment after a 



126 
 

screening trial. The range of participants in conventional SCS M/EEG studies as recorded by 

the Bentley et al. (2016) systematic review of brain activity following SCS is between 1-30, 

with an average of 10 participants. The only MEG studies of SCS conducted thus far had 

between one and five participants (Schulman et al., 2005; Theuvenet et al., 1999), 

demonstrating how difficult it is to recruit in this particular field, and why the results are 

worthwhile contributions to the literature.  

One of the four participants only experienced minimal SCS pain relief during their MEG 

recording. This participants’ dataset was included in the statistical analyses, and thusly the 

results must be interpreted as significant differences in SCS-on and SCS-off conditions, but 

not as significant differences between SCS-off and SCS-analgesic conditions. The participant 

in question reported that their usual SCS-on pain relief was at least 50%, suggesting that 

their SCS implant would usually function adequately; it is possible that the long-term 

suppressive effect of their SCS implant might not have yet begun during their data 

acquisition (as implicated by long-term SCS effects, see chapter 2). Their data still serves to 

inform us as to the ascending effects on the brain, though it is possible that the effects 

identified here would be greater with a stronger responder. 

In the dataset analysed in this chapter, the median nerve was stimulated in blocks of 15, 

with an inter-stimulus interval (ISI) of 0.5s. This limited the potential for time-frequency 

analysis, but also likely diminished the signal-to-noise ratio of ERFs (Theuvenet et al., 1999). 

Future studies would benefit from allowing for greater ISIs, to enable high-resolution time-

frequency analysis and better elucidation of brain activity.  
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4.4.4 Future directions 

This study has highlighted potential avenues for research in conventional SCS, MEG and 

SSEPs. An exploration of time-frequency changes in peak virtual sensor SSEPs as a result of 

SCS could elucidate the evoked and induced oscillations suppressed in the therapeutic 

condition identified by cluster-based permutation analysis in a way that was not possible in 

this study. Resting-state analysis of virtual sensors specifically observing delta and theta 

oscillations in the left ACC, MCC, insula, and the superior temporal gyrus as a result of SCS 

would enable researchers to evaluate these spectral power enhancements with more 

specific and powerful statistical methods, which is not possible when using cluster-based 

permutation for whole-brain analysis. Directional connectivity analysis of the regions of 

interested highlighted here during collision-free SSEPs could demonstrate any temporally 

correlated networks responsible for the power spectra changes in somatosensory 

processes, or whether the effect is primarily restricted to the processes of the 

somatosensory cortex. Additionally, single-trial analysis of virtual sensor data may reveal 

oscillatory components that are not phase-locked, and otherwise obscured by the averaging 

process. 

When observing the data, participants that responded to the SCS whilst in the MEG showed 

some decreases in SSEP beamformer magnitude, whilst the participant that did not 

demonstrate any real reduction in pain showed no change at all. Future research with a 

larger dataset could consider the responsiveness to SCS in the modulation of non-collision 

SSEP processing in the somatosensory cortex. 

Advanced SCS methods that focus on patterned stimulation and closed-loop systems are 

becoming popular in neurostimulation techniques, as they boost pain relief for a greater 
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number of those implanted (Mekhail et al., 2020); there is evidence to suggest the 

supraspinal effects of new techniques are separate to those of conventional SCS (Bocci et 

al., 2018; Goudman et al., 2019; Telkes et al., 2020), though the extent to which they are 

different is contended (Goudman et al., 2021) and may benefit from future exploration 

using MEG. 

4.4.5 Conclusion 

For the first time, this study reports the effect of SCS on SSEP and resting-state 

electromagnetic brain activity in chronic pain states using MEG data cleaned with temporal 

signal space separation, and MEG beamforming source analysis. This enabled analysis of 

evoked fields and power spectra at virtual sensors, as well as whole-brain source localisation 

of resting-state frequency modulation as a result of SCS. Significant resting-state 

enhancements were identified using cluster-based permutation analysis in delta and theta 

frequencies in source analysis. Virtual sensors identified significant suppression of power 

spectra as a result of SCS stimulation in SSEPs when stimuli were applied without collision in 

the dorsal columns, but no changes were observable in the field strength of ERFs. These 

findings demonstrate slowing of frequencies in the resting state in the ACC, MCC, insula, 

caudate nucleus, and superior temporal gyrus, and also provide evidence for the disruption 

of somatosensory processing in the frequency domain during SCS. 
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5. Study 2: The Cold Pressor Test and pain sensitivity in MEG 

5.1 Introduction 

Pain is a sensory experience that is comprised of cognitive, physiological, and affective 

components; it is a complex phenomenon that changes from person to person. Individuals 

experiencing the same objective stimuli strength, under the same conditions, can 

subjectively report pain starting at different thresholds, and interpersonal variability in the 

amounts of perceived pain from objectively consistent stimuli. The differing thresholds for 

pain and the resulting intensity from a standardised stimulus across individuals is one’s pain 

sensitivity. Much of the research explaining interindividual variability in pain sensitivity has 

focused on genetics: Whilst specific pain modalities can be linked to transduction at the 

nociceptor (Dubin and Patapoutian, 2010), pain pathways are made of many stages, each of 

which can be associated with multiple different genetic variations (Nielsen et al., 2009). 

Nielsen, Staud and Price (2009) studied monozygotic and dizygotic twin pairs to explore the 

genetic influence on cold pressor and heat pain, and concluded that as much as 60% of cold 

pressor pain could be explained by genetic mediation, and 26% in heat pain – whilst as little 

as 5% of the variance was explained by environmental factors. It is clear that genetics is not 

the sole factor in explaining differences between individuals 

Sensitivity to pain can be increased pathologically through the mechanisms of peripheral or 

central pain sensitisation. Peripheral sensitisation is an enhancement of nociceptive signals 

as a result of inflammation or tissue damage, and can result in painful stimuli becoming 

more painful (hyperalgesia) and non-painful stimuli becoming painful (allodynia; 

Gangadharan and Kuner, 2013). Similarly, central sensitisation can elicit these symptoms as 

a result of neuronal changes at the second-order synapse, such as dysfunctional long-term 

potentiation and receptor up-regulation initiated by ectopic or prolonged neuronal firing at 
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wide dynamic range neurons, though this is usually implicated in chronic pain conditions 

(Campbell and Meyer, 2006). Atypical reduced pain sensitivity is demonstrated in congenital 

hyposensitivity to pain, autism spectrum disorder and idiopathic cases of mechanical nerve 

damage, but is also associated with older age, exercise, and stress (Belavy et al., 2021; 

Weingarten et al., 2006; Yasuda et al., 2016). Transiently, pain intensity can be reduced by 

fatigue and reduction in stimulus novelty when presented in short timeframes to Aδ 

nociceptors (Treede, 2016), but augmented by temporal summation in C-fibres (Dengler-

Crish et al., 2011); temporal summation of pain is often observed with tonic thermal stimuli, 

and works to function as a measure of pain sensitivity in experimental settings.  

Research has shown differences in pain sensitivity to be associated with gender (Bulls et al., 

2015; Esterlis et al., 2013; Ravn et al., 2012), age (Yezierski, 2012, El Tumi et al., 2017) 

gender role-conformity (Alabas et al., 2012), menstrual cycle phase (Iacovides et al., 2015), 

ethnic identity (Ostrom et al., 2017; Rahim-Williams et al., 2007), handedness (Pud et al., 

2009), cortical density (Emerson et al., 2014; Erpelding et al., 2012), genes ( Nielsen et al., 

2009) and neurotransmitter levels (Zunhammer et al., 2016). Increased pain sensitivity is a 

possible characteristic of many disorders, including those that are not defined by pain, 

including panic disorder (Lautenbacher et al., 1999), sleep disorders (Sivertsen et al., 2015), 

and Brown-Sequard and Wallenberg syndromes (Bromm and Treede, 1991). Psychological 

factors such as stress (Timmers et al., 2018; Vachon-Presseau et al., 2013), depression 

(Schwier et al., 2010), anxiety and anxiety sensitivity (Dodo and Hashimoto, 2017), fear of 

pain (Timmers et al., 2018), pain catastrophising (Banozic et al., 2018), attention (Miron et 

al., 1989), audience composition (Vigil and Coulombe, 2011) and cognitive inhibition 

(Oosterman et al., 2010) have also been identified as influencing pain sensitivity. Identifying 

common neural markers of pain sensitivity could impact many fields of physiology, 
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psychology, and pathology research, with possible therapeutic applications using deep brain 

or transcranial alternating current stimulators. Neural biomarkers could assist in treatment 

selection, effectiveness and responsiveness or diagnosis, risk, stage, or progression of 

disease (Lleó, 2021; Mouraux and Iannetti, 2018).  

Pain sensitivity has been explored using time-frequency analysis of evoked potentials 

acquired using EEG (Hu and Iannetti, 2019; Schulz et al., 2012), source analysis of evoked 

potentials (Goffaux et al., 2013), tonic and resting-state frequency analyses (Furman et al., 

2018; Nir et al., 2010, 2012; Valentini et al., 2022), and alpha connectivity (Modares-

Haghighi et al., 2021). Notably, alpha and gamma frequency enhancement in laser evoked 

potentials have been implicated as predictors of pain sensitivity (Schulz et al., 2012; Hu & 

Iannetti, 2019), and do so selectively (Valentini et al., 2022). In tonic pain research, Nir et al. 

(2010) observed that peak alpha frequency (PAF) at rest and during noxious heat 

stimulation correlated with subjective pain scores. In a follow-up study, Nir et al. (2012) 

identified significant correlations between numerical pain scores and slow (7-10 Hz) alpha 

during Contact Heat Evoked Potential (CHEP) stimulation and at baseline. PAF in the 

sensorimotor cortex has since been implicated in variation in inter-individual pain sensitivity 

in phasic heat (CHEPS) and tonic capsaicin pain (Furman et al., 2018; Furman et al., 2020), 

but with opposing findings depending on the width of the alpha band (Valentini et al., 2022). 

It is clear that alpha is a component with a strong relationship to pain sensation, and it is 

well implicated in pain sensitivity specifically. Its associations with subjective pain 

experience are well-documented in tonic and evoked pain experiments, and whilst evoked 

pain models have been criticised due to their phase-locked nature and recruitment of 

salience networks not selectively reflecting pain (Mouraux and Iannetti, 2018), tonic pain 

models are more able to emulate the experience of the chronic pain patients; this makes 
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their findings more applicable to clinical cases, and reduces the impact of novelty on the 

stimuli. One experimental stimulus that has been suggested to mimic chronic pain is the 

Cold Pressor Test (Chang et al., 2002; Chen et al., 1989). 

5.1.1 Cold Pressor Test 

Originally designed and validated by Hines & Brown (1932) as a method by which to observe 

blood pressure changes, the Cold Pressor Test (CPT) is a task that requires the participant to 

submerge their hand or arm in chilled water. Submerging one’s limb in cold water quickly 

causes unpleasant and painful sensations in most participants; as the temperature of the 

skin drops, nociceptors signal the painful stimulus, ramping temporal summation of 

nociceptive input signals the intensity of this sensation. After some time, pain intensity 

plateaus, likely due to the recruitment of descending antinociceptive systems (Tesarz et al., 

2013). In experimental pain settings, the task outcome is usually how long the participant 

can endure the low temperature or the time at which the experience becomes painful, and 

is sometimes paired with ongoing pain intensity ratings. Pain intensity outcomes over time 

in these studies can separate high and low pain sensitivity individuals, and their outcomes 

are consistent over time (Koenig, Marc N. Jarczok, et al., 2014; Gram et al., 2015).  

fMRI studies observing participants during CPT have highlighted SI, SII, prefrontal cortex, 

insula and cingulate cortices as brain areas that are active during experimentation, which is 

consistent with the network commonly associated with pain processing (La Cesa et al., 2014; 

Frankenstein et al., 2001; Lapotka et al., 2017). Other studies exploring the power spectra of 

EEG recordings during CPT data have identified consistent alpha desynchronisation in the 

earliest stages, followed by increased synchronisation of beta, delta, and theta oscillations 

(Chen et al., 1989; Backonja et al., 1991; Ferracuti et al., 1994; Chang, Arendt-Nielsen and 
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Chen, 2002; Dowman, Rissacher and Schuckers, 2008; Shao et al., 2012; Gram et al., 2015). 

Shao et al. (2012) and Hansen et al. (2017) used source localisation techniques and 

identified decreased alpha synchronisation in the central gyri, with increases in prefrontal 

cortices, insula, temporal, cingulate regions across beta and gamma bands.  

An overview of CPT-induced pain data compared to resting-state brain recordings in EEG 

published by Wang et al. (2020) demonstrated significant enhancement of delta, theta, 

alpha, beta, and gamma frequency synchrony over central and occipital electrodes – with 

gamma showing enhanced synchrony across all electrodes during pain. Their study 

highlights the primary concern with CPT neuroimaging: participants with higher pain 

sensitivity will endure the pain for a shorter duration, therefore having fewer epochs to 

analyse and reducing the power of the statistical comparisons. In these scenarios, it is 

beneficial to have CPT temperatures that are less painful, but still able to discern differences 

between groups. Fortunately, alternatives to the traditional ice water bath that better suit 

neuroimaging exist – namely cooled gel wraps and contact thermodes – and have been 

validated as analogous to the traditional cold-water bath (Lapotka et al., 2017; Porcelli, 

2014; Ruscheweyh et al., 2010). Though some research has shown that CPT-associated 

muscle activity can confound data analysis, these issues are successfully omitted in 

beamforming analysis.  

No comparisons of the brain activity across pain sensitivity groups during CPT have been 

attempted, and despite demonstrating its ability to delineate the temporal characteristics of 

thermosensation (Fardo et al., 2017), studies using MEG and CPT analogues are lacking. The 

following experiment compares the MEG data of pain-sensitive and pain tolerant 

participants during tonic pain to elucidate any differences in alpha and gamma-band 
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oscillations, and the localisation of these differences in the brain. Regions of interest 

identified here will inform future studies, and enable powerful statistical analyses that could 

identify targets for therapies in conditions with increased pain sensitivity. 

5.1.2 Aims and hypotheses: 

This experiment aims to delineate the neural correlates of pain sensitivity during the cold 

pressor test, specifically within the alpha and gamma frequency bands, in MEG and healthy 

controls. 

It is hypothesised that high pain sensitivity and low pain sensitivity participant groups will 

demonstrate significantly different synchrony in alpha and gamma frequency bands during 

the maximal and late CPT time windows: This will be tested with cluster-based permutation 

analysis of Dynamic Imaging of Coherent Sources beamforming. The null hypothesis of this 

experiment is that there is no significant difference in alpha or gamma synchrony during 

maximal or late CPT pain time windows. 

5.2 Methodology 

5.2.1 Objectives 

This study will use MEG DICS whole-brain beamforming to localise frequency differences 

between pain-sensitive and pain-insensitive participants during the Cold Pressor Test; this 

will be achieved by comparing peak (15s) and late (200-300s) epochs to a control baseline 

window at both frequencies. Primary study outcomes compare the relative difference 

between the baseline and the epoch of interest, which is then contrasted between pain 

sensitivity groups for alpha and gamma bands separately. 
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5.2.2 Dataset 

This dataset was acquired and analysed at the Institute of Health and Neurodevelopment 

for a separate project in 2008. The purpose of the study this data was collected for was to 

compare tonic pain to a resting control condition. No published studies exist using this 

dataset, and the following analysis has not been performed by any others.  

5.2.3 Participants 

Participants were recruited from the Aston University community. The inclusion and 

exclusion criteria were as follows: 

Inclusion criteria 

- Must be aged 18+ 

Exclusion criteria 

- Neurological or pain disorders 

- Taking medication at the time of study 

- Implanted with any metal devices (E.g., pacemakers) 

 

12 healthy participants (five male), with an age range of 24-42 years were recruited. Three 

of the participants were left-handed. Informed consent was obtained from all participants, 

and the study protocol was approved by local ethics committees at Institute of Health and 

Neurodevelopment. Participants were divided into low pain-sensitivity and high pain-

sensitivity groups based on the peak of their numerical rating scores during CPT. Participants 

whose peak pain was above the average of the sample were classified as ‘high pain 

sensitivity;’ all others were ‘low pain sensitivity.’ 
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5.2.4 Stimulus 

An ice pack measuring 20cm x 20cm x 3cm was used as a MEG-appropriate alternative to 

the traditional cold water bath CPT method, similar in effect to the gel packs utilised by 

others (Ruscheweyh et al., 2010; Laptoka et al., 2016; Porcelli, 2014). The ice packs were 

cooled by being placed in a -20˚C freezer before use. In the control condition, a room-

temperature ice pack was used (12cm x 12cm x 3cm). During data acquisition, participants 

rested their right hand on top of the freezer-cooled ice packs, and a room-temperature ice 

pack was placed on top to ensure contact with the stimulus. Participants were briefed, and 

instructed to remove the ice pack from their hand if the pain became unbearable. 

5.2.5 MEG acquisition and MRI acquisition 

MEG data were acquired using a 275-channel CTF whole-head MEG system (CTF Systems 

Inc.) within a magnetically shielded room at Institute of Health and Neurodevelopment, 

using a sampling rate of 600 Hz due to file storage limitations. A MEG-compatible trigger box 

(Lumina LP-300, Cambridge Research Systems) operated by an investigator inside the MSR 

marked the data with triggers reflecting participant self-reported pain states and phases of 

the acquisition protocol (e.g., ‘Control’, ‘maximal’, ‘late’). Participants had Head Position 

Indicator coils attached to them at nasion and bilateral mastoids to record head movement 

during the acquisition. Their head shapes were digitized by a Polhemus Isotrak System 

(Kaiser Aerospace Inc.) for co-registration with MRIs.  

Participants were sat upright in the MEG chair with the investigator in the room, a cold or 

room-temperature icepack placed underneath their right hand. In the baseline condition, 

participants were recorded for three minutes. In the experimental condition, participants 

were recorded for five minutes. During the experimental condition, participants were 
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instructed to verbally rate the pain they were experiencing on a scale of 0-10 (0 = no 

change, 1 = slightly cool, 2 = cool, 3 = cold, 4 = slight pain, 5 = mild pain, 6 = moderate pain, 

7 = moderate-strong pain, 8 = strong pain, 9 = severe pain, 10 = unbearable pain; Chang et 

al., 2002). In the experimental condition, participants were informed that they could move 

their hand away from the ice pack if the pain became intolerable. 

T1 MRIs were obtained for eight of the participants at the Institute of Health and 

Neurodevelopment, and later used for co-registration. Surrogate template brains from the 

FieldTrip toolbox (Holmes et al., 1998) were used for the other four participants. 

5.2.6 MEG data processing 

Data were denoised online by 3rd order synthetic gradiometry obtained during acquisition, 

to remove passive background magnetic fields and SQUID artefacts. Preprocessing was 

performed using the FieldTrip MATLAB toolbox (Oostenveld et al., 2011; build 20200513). A 

4 Hz width discrete band-stop filter was performed at 48-52 Hz and 98-102 Hz to account for 

line noise that was resistant to standard discrete Fourier transforms; data were high-pass 

filtered at 1 Hz and low-pass filtered at 200 Hz to attenuate slow and very fast spectral 

components that are the result of environmental and physiological spectra outside of our 

frequencies of interest. Before the dataset was split into 5-minute continuous baseline and 

5-minute CPT data, ICA was performed to remove eyeblinks and ECG components using the 

RUNICA method (Bell & Sejnowski, 1995). Head movement was checked by performing 

ft_qualitycheck in the FieldTrip MATLAB toolbox. Bad channels were removed from all 

participants’ data for consistency, then fixed using ‘ft_channelrepair’ and ‘cfg.method = 

‘weighted’. 
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Sensor and MRI data were co-registered to individual MRIs for eight of the participants; 

those that had incomplete MRI recordings were co-registered with a template MRI (Holmes 

et al., 1998). All participants had 5 mm resolution template source models warped to their 

segmented MRI and registered to a head model for lead field matrix construction. 

Data were split into control, CPT-late and CPT-max time series. Control data was three 

minutes of resting-state data acquired with a room-temperature ice pack. CPT data was five 

minutes of experimental data. CPT-late was the last 100s of the 5-minute recording, where 

the pain intensity is plateaued for most participants. CPT-max was defined by the 15s time 

window trigger that marked the maximum verbal rating scale score the participant reported 

on the aforementioned scale of 0-10. These continuous data segments were split into trials 

of 2s with 50% overlap. 

DICS beamformers were performed on alpha (7-14 Hz) and gamma-frequency (33-97 Hz) 

Fourier-transformed time series data with a smoothing of 4 Hz and 33 Hz respectively using 

discrete prolate spheroidal sequence tapers with zero-padding of the maximal trial length 

rounded up to the next power of two (cfg.pad = ‘nextpow2’; 4s). Final beamformer source 

reconstructions were computed for CPT-late and CPT-max by determining the relative 

difference between the baseline and time window of interest, as is conventional to remove 

centre-of-head bias: source analysis was performed on the baseline, CPT-late and CPT-max 

windows, then the relative difference between the baseline and active time windows was 

then computed for CPT-late or CPT-max (as discussed in chapter 3; Fig 3.9). λ5% 

regularisation was used, and a κ value for component inclusion was calculated from the rank 

of the dataset (approximately 260). 
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5.2.7 Statistical analysis 

Non-parametric cluster-based permutation analysis was performed on alpha (7-14 Hz) and 

gamma-band (33-97 Hz) source reconstructions of maximal pain (15s) and late (last 100s) 

pain CPT epochs, in which a two-tailed between-groups T-test (high pain sensitivity vs low 

pain sensitivity) was performed for each voxel with multiple comparison corrections made 

using the Monte Carlo method (See chapter 3). The data was permuted 2000 times with a 

p≤0.025 alpha threshold for significance.  

5.3 Results 

Pain scores for participants are displayed in Figure 5.2. All participants endured the full 300s 

of the CPT. Median pain scores over 300s were five on a scale of 0-10 (IQR = 3). Participants 

whose pain peaked over the median (>5 in the first 100s) were assigned to the high pain 

sensitivity group, all others were assigned to the low pain sensitivity group. One 

participant’s pain score was identified as an outlier upon visual inspection (Pt2), as can be 

seen in Figure 5.2: low pain values that slowly increased over time, without the ‘peak’ that 

characterises all other participants’ pain scores. Another participant’s dataset (Pt4) was 

confounded with a steadily worsening head movement of over 5mm that could not be 

resolved with available offline techniques, hence their dataset was not included in further 

analyses; head movements over 5mm negatively impact the quality of the beamformer and 

statistical analyses (Messaritaki et al., 2017).  

5.3.1 Analysis of maximal pain epoch (15s) 

Visualisation of the relative difference of frequency by group in the maximal pain epoch in 

comparison to baseline activity is shown in Figure 5.3.  
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5.3.1.1 Alpha band  

To show the contrast between groups, the actual differences between high and low pain 

sensitivity final source reconstructions are visualised in Figure 5.4: By subtracting the source 

reconstruction of the low pain sensitivity group from the high pain sensitivity group, we can 

observe the actual difference between their relative difference values in the maximal pain 

CPT epoch. The high pain sensitivity group has an observably greater alpha change in the 

ipsilateral temporal lobe and cerebellum (Values: 0.6 and 1.18 respectively). No statistically 

significant clusters were identified after multiple corrections when comparing high and low 

sensitivity groups in the alpha band in the maximal pain epoch (Largest positive cluster 

statistic, t = 167.429, p = 0.825; largest negative cluster statistic = -60.6893, p = 1).  
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Figure 5.2: Subjective pain ratings as reported by participants during Cold Pressor Test MEG acquisition, as scored by a Verbal Rating Scale over time in seconds. Pain scores are 

displayed by the individual (left) and pain sensitivity groups minus removed participants (right). HPS = High Pain Sensitivity. LPS = Low Pain Sensitivity. 
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Figure 5.3: Ratio of change in frequency band synchronisation in the maximal pain epoch when compared to the 

control baseline. Displayed by frequency of interest (alpha, gamma) and pain sensitivity group averages. The colour 

bar indicates the ratio of change (%) relative to the baseline. These figures are for visualisation of the brain activity 

in the maximal window compared to baseline by group membership and frequency. Between-group comparison in 

figures 5.4 and 5.5. 
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Figure 5.4: Source analysis of the relative difference between high and low pain sensitivity groups in alpha 

synchronisation in the maximal pain time window. The colour bar indicates the ratio of change (%) relative to the 

baseline. 

5.3.1.2 Gamma band  

Subtracting the source reconstruction of the low sensitivity group grand average from the high 

sensitivity grand average facilitated the visualisation of actual differences in relative synchrony 

change: lesser synchronisation can be observed in the contralateral temporal cortex (absolute 

difference value = -1.1) in the high pain sensitivity group, and a greater synchronisation is 

observable in the midline cerebellum (absolute difference value = 0.68; Fig 5.5). In the gamma 

band, no clusters were identified as statistically significant in the maximal pain epoch following 

cluster-based permutation analysis and corrections for multiple comparisons (Largest positive 

cluster statistic t = 524.2865, p = 0.2779; No negative clusters were identified).  
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Figure 5.5: Source analysis of the relative difference between high and low pain sensitivity groups in gamma 

synchronisation in the maximal pain time window. The colour bar indicates the ratio of change (%) relative to the 

baseline. 

 

5.3.2 Analysis of late CPT epoch  

Figure 5.6 shows the source reconstructions for alpha and gamma by pain sensitivity group 

separately. 

 

5.3.2.1 Alpha band  

Figure 5.7 demonstrates the relative change in alpha frequency power when subtracting low 

sensitivity reconstructions from high sensitivity. Subtracting the source reconstruction of the 

low sensitivity group grand average from the high sensitivity grand average facilitated the 

visualisation of actual differences in relative synchrony change: the high pain sensitivity group 

displayed a greater enhancement of alpha (absolute difference value = 0.16) across temporal, 
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parietal, and occipital cortices. In the alpha band, no significant clusters were identified in the 

CPT-late epoch by statistical analysis after multiple comparisons (Largest positive cluster, t = 

190.45, p = 0.82; no negative clusters were identified).  

 

 

Figure 5.6: Ratio of change in frequency band synchronisation in the late (last 100s) CPT time window, calculated 

by comparison with the control baseline. Alpha and gamma synchrony are plotted in low pain sensitivity and high 

pain sensitivity groups. The colour bar indicates the ratio of change (%) relative to the baseline. 
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Figure 5.7: Source analysis of the relative difference in alpha power between high and low pain sensitivity groups 

during the late CPT epoch.  

 

Figure 5.8: Source analysis of the difference in gamma synchrony between high and low pain sensitivity groups 

during the late CPT epoch. 
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5.3.2.2 Gamma band  

Subtracting the source reconstruction of the low sensitivity group grand average from the high 

sensitivity grand average facilitated the visualisation of actual differences in relative synchrony 

change: in the high pain sensitivity group a relative increase is observable in the ipsilateral 

temporal lobe (absolute difference value = 0.21; Figure 5.8). In the gamma band, no clusters 

were identified as statistically significant in the maximal pain epoch following cluster-based 

permutation analysis and corrections for multiple comparisons (Largest positive cluster statistic, 

t = 2161.5, p = 0.29; No negative clusters were identified).  

 

5.4 Discussion 

Alpha and gamma oscillations are primary candidates for underlying biomarkers of pain 

sensitivity in EEG analysis, though changes within their frequency bands are most often 

observed in resting-state or evoked potentials (Furman et al., 2018; Hu and Iannetti, 2019; 

Mayhew et al., 2013; Nir et al., 2010, 2012; Schulz et al., 2012; Valentini et al., 2022). In chronic 

pain models, where many conditions are accompanied by increased pain sensitivity, slowing of 

peak EEG alpha oscillations has been identified in comparison to healthy groups (Lim et al., 

2016; de Vries et al., 2013), alongside the regularly reported thalamocortical dysrhythmia noted 

in fibromyalgia (Schulman et al., 2005; Sufianov et al., 2014). In healthy controls, experimental 

observations of healthy controls in fMRI have identified the primary somatosensory, anterior 

cingulate, prefrontal, insula cortices and cerebellum as networks whose connectivity explains 

some variations in pain sensitivity between individuals (Coghill et al., 2003; Sevel et al., 2016; 

Spisak et al., 2020; Veréb et al., 2021).  
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As enhanced synchrony at alpha frequency has been linked with blood oxygenation level 

dependency levels (Jann et al., 2009), regions identified by fMRI research may have been 

expected to demonstrate some changes between pain sensitivity groups at the alpha band in 

MEG. Previous studies exploring the scalp topography of spectral power in the cold pressor test 

have localised suppression of alpha synchrony to the contralateral temporal, the fronto-central 

and central scalp (Chang et al., 2002; Dowman et al., 2008), with some cortical source 

localisation techniques showing decreased alpha synchrony in central gyri (Shao et al., 2012; 

Hansen et al., 2017), and tonic pain stimulus intensity has been negatively correlated with alpha 

synchrony in the contralateral cortex (Nickel et al., 2017). Though the literature exploring the 

localisation of alpha frequency synchronisation changes in tonic pain sensitivity specifically was 

too sparse and poorly localised to enable a one-tailed analysis or region of interest approach, it 

was hypothesised that there would be a significant difference in alpha or gamma frequency 

activity between high and low pain sensitivity participants during tonic pain either due to the 

difference in perceived pain intensity, or a biomarker for the difference in processing at the 

cortical level; and, were these differences present, they might be likely to be localised to one of 

the aforementioned brain areas.  

Gamma band oscillations are recognised to reflect localised processing, and have been shown 

to reflect pain intensity specifically in experimental tonic pain (Nickel et al., 2017) and affective 

pain response in evoked pain EEG research (Lyu et al., 2022). Though some research suggests 

gamma band synchronisation can predict inter-individual pain sensitivity in humans and 

rodents in electrical and laser stimulation paradigms (Schulz et al., 2012; Hu and Iannetti, 2019), 

its role during tonic pain processing had not yet been evaluated as a marker for pain sensitivity. 
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The results in this analysis conclude that, at the source level, gamma oscillatory synchronisation 

does not significantly differ between pain sensitivity groups in a CPT paradigm; this suggests 

that gamma enhancement is a marker for pain sensitivity in evoked stimuli alone, which implies 

that gamma enhancement in pain sensitivity may reflect greater recruitment of attention, as 

opposed to altered processing of nociception.  

In a between-groups analysis of high and low pain-sensitive participant groups, no significant 

source-level differences were identified in alpha or gamma frequency bands during maximal 

pain or plateau windows in any clusters. These findings indicate that the alpha and gamma 

frequencies do not significantly reflect changes associated with pain sensitivity group 

membership during tonic cold pressor pain at either epoch; though the low number of 

participants in the high pain sensitivity group is likely to mean that the statistical analyses 

presented here are under-powered. The results of this study result in the acceptance of the null 

hypothesis that there are no differences in alpha or gamma synchronisation during peak or late 

CPT that are identifiable using MEG beamforming. The findings here imply that alpha and 

gamma oscillations’ ability to predict pain sensitivity biomarkers may be limited to evoked pain 

and connectivity paradigms, when contrasted to gamma synchronisation found in evoked laser 

and electrical stimulation studies (Schulz et al., 2012; Hu and Iannetti, 2019):  this may suggest 

that the gamma synchronisation identified in evoked paradigms are associated with stimulus 

salience and presentation, as opposed to pain or nociception. This highlights the importance of 

elucidating neural biomarkers for pain sensitivity in tonic and evoked models, and an increased 

focus on tonic pain stimuli when aiming to generalise to clinical populations. Grand average 

visualisations highlighted an enhancement of alpha in bilateral temporal and somatosensory 
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cortices, and gamma suppression in the right temporal cortex in pain-sensitive participants that 

future studies with more statistical power may find to be significant.  

5.4.1 Limitations 

This dataset contained two participants that necessitated omission from the analysis: one due 

to head movements, and another due to an abnormal CPT pain response curve. These 

omissions reduced the number of pain-sensitive participants to three, contrasted to a group of 

seven pain-tolerant participants. This disparity likely negatively impacted the power of the 

statistical testing (Groppe et al., 2011). The likelihood of type-II errors is exaggerated by the 

necessity of correction for multiple comparisons when performing statistical analysis across 

every voxel of the brain, and the limited number of participants recruited by this study. Future 

studies should use this study to inform their design and select regions of interest identified by 

the grand average visualisations within, in addition to recruiting larger participant groups to 

avoid these limitations.  

In addition to the above, this study utilised a cold ice pack to emulate the experience of a cold 

pressor test, as the traditional ice water bath or circulated water cooler methods were not 

practical for MEG recording. Whilst this method has been validated in comparison to the 

traditional methods (Hunt, 2008), it would be inaccurate to claim that these results are entirely 

comparable with all other CPT studies. This remains a problem with all CPT studies, as discussed 

by Mitchell, MacDonald & Brodie (2004): many centres investigating CPT use different 

temperatures and methods, which can result in significantly varying participant outcomes. For 

this study it is accurate to report that the participants were subjected to the same tonic cold 
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stimulus for the same duration; but, as with all CPT studies that do not use precisely controlled 

water circulators, it is not possible to determine the precise temperature of the ice packs during 

the recording.  

This analysis focused on the 15s epoch at the maximal pain peak reported by the participants 

and the final 100s of the 300s dataset; the first epoch was chosen to selectively observe 

oscillations during the time window where the most pain was experienced, where classically 

there is a transient peak followed by a reduction in subjective pain, as such, this time window is 

short. The final 100s were selected for their plateau in pain scores (as demonstrated in Figure 

5.2), to ensure a long time window of data with low pain variation. These choices were made to 

ensure the analysis reflected data that had as little between-participant variation as possible, 

avoiding different peak and trough latencies where possible; useful data may lie during these 

larger windows with greater variance. 

A future study might also benefit from a control task that includes active control conditions as 

opposed to a passive resting-state: Dowman, Rissacher & Schuckers (2008) suggest that resting-

state control comparisons fail to control for the additional attentional load that is innate in a 

pain task.  

5.4.2 Conclusion 

This was the first analysis to use MEG to explore alpha and gamma oscillations at the source 

level as a method to highlight oscillatory synchronisation differences between pain sensitivity 

groups during the Cold Pressor Test. This study did not find any significant differences in high 

and low pain-sensitive groups’ oscillatory synchronisation at either the maximal peak or the late 
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plateau epoch; this suggests that previous literature that has identified these differences in 

evoked paradigms may in fact be observing attentional processing of salient stimuli. Future 

research should analyse virtual sensors in the contralateral and ipsilateral temporal lobes 

during the maximal pain window and plateau respectively to better evaluate if any differences 

exist there in alpha and gamma frequency bands.  
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6. Study 3: Removal of Non-fMRI Compatible Contact Heat Evoked Potential 

Stimulator Artefact in Magnetoencephalography 

6.1 Introduction: 

The PATHWAY Contact Heat Evoked Potential Stimulator (referred to here simply as CHEPS to 

avoid confusion with the evoked potential sharing the same acronym; Medoc Ltd., Ramat-

Yoshai, Israel) is a computer-controlled Peltier thermode that is most often used in quantitative 

sensory testing for neuropathic pain conditions. In that setting, contact heat is a technique to 

assess thermal sensory functioning: Warmth detection thresholds, heat detection thresholds 

and pain detection thresholds are determined by ramping temperature and self-report; cooling 

and cold configurations are available also, though the latter requires a license. The CHEPS in 

heating configuration is capable of reaching destination temperatures at the speed of 70˚C/s; as 

the name suggests, this speed facilitates the generation of evoked potential waveforms to 

assess amplitude and latency in-clinic as well as in research, potentially identifying exaggerated 

or diminished nerve responses in experimental conditions or patient populations.  

Contact heat is often compared to lasers, as they are both noxious thermal stimuli that have 

been used to evaluate evoked nervous system activity in experimental neuroscience. In one 

study that compared CHEPS and LEP waveforms, significant differences were identified in N1, 

N2 and P2 amplitude and latencies, with mean N2 latencies being almost 200ms later 

(392±37ms and 221±19ms respectively; De Schoenmacker et al., 2021). This is most likely 

because of earlier, more simultaneous recruitment of nociceptors by radiation as opposed to 

contact heat permeation (Iannetti et al., 2006),  but this rapid onset comes at a cost. LEP 

equipment is costly and cumbersome, requires regular movement of the stimulus by the 
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investigator to avoid damage to the skin, necessitates greater safety precautions for 

experimenter and participant, and the most common technique stimulates an area as small as 

4mm in diameter (Schoenmacker et al., 2021). In comparison, the CHEPS thermode covers an 

area of skin that is more representative of pain one might experience outside of a laboratory 

(with a diameter of 27mm), poses a significantly lessened risk to skin health and is not 

influenced by skin reflectance (Frahm et al., 2020).  

The CHEPS has great potential as a stimulus in pain research, as it can be used as a tonic or 

phasic stimulus, and has proven its utility in EEG and fMRI research in experimental and clinical 

settings (Lugo et al., 2018; Opsommer et al., 2021; Sun et al., 2022). As demonstrated in the 

systematic review above (see chapter 2), there is a dearth of literature utilising the CHEPS in a 

MEG environment; this is despite evidence demonstrating its utility in identifying cooling 

CHEPS-related activity that was absent in simultaneous EEG analysis (Fardo, 2017). One 

explanation for this is that the CHEPS thermode generates a significant electromagnetic field 

when active, though others have demonstrated the effective removal of this artefact using tSSS 

and Damped Sinusoid Modelling preprocessing techniques (Gopalakrishnan et al., 2013) and 

unregularized beamforming (Adjamian et al., 2009). For combined use in magneto-sensitive 

environments such as fMRI and MEG, it is recommended to use an fMRI-compatible thermode 

to mitigate signal artefacts, and it is assumed that all studies to date have used these 

thermodes, though few have reported such. However, the fMRI-compatible thermode has a 

greater cost, and signal artefacts remain in the raw data (Gopalakrishnan et al., 2013). Exploring 

the utility of standard CHEPS thermodes in MEG analysis could facilitate the expansion of 
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research into this combination of methods, and test the limits of current signal cleaning and 

spatial filter source reconstruction techniques.  

Gopalakrishnan et al. (2013) have demonstrated that removing signal artefacts associated with 

the fMRI-compatible CHEPS thermode is possible by using bespoke, in-house Damped Sinusoid 

Modelling methods, or the more commonly available temporal Signal Space Separation (tSSS) 

for ElektaTM MEG systems (Taulu & Hari, 2009) (MEGIN UK Ltd, Surrey). Prior to this, Adjamian 

et al. (2009) had found that Synthetic Aperture Magnetometry (SAM) beamforming performed 

on fMRI-compatible CHEPS data balanced with 3rd order synthetic gradiometry sufficiently 

suppressed the CHEPS noise with spatial filtering, and highlighted that omitting regularisation 

provided better spatial accuracy. Beamforming and tSSS techniques separately have shown 

their effectiveness at attenuating the signal artefact. Both methods aim to filter out noise that 

is generated outside of the head (See chapter 3), but it is unclear if their combined or separate 

effects are sufficient to enable the use of the standard, fMRI-incompatible thermodes.  

This chapter will outline attempts at attenuating the artefact generated by the standard fMRI-

incompatible CHEPS thermode in a recording of one healthy control participant. The goal is to 

determine whether any combination of ICA, beamforming and tSSS of varying parameters are 

capable of facilitating the analysis of CHEPS artefact-contaminated MEG data acquired using 

this equipment. It is hoped that the MEG research community may benefit from more 

accessible research equipment, and centres and clinics that have standard CHEPS systems may 

contribute to the collection of, or salvage previously acquired, MEG datasets.  
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6.2 Method 

6.2.1 Datasets 

These datasets were acquired at Institute of Health and Neurodevelopment, using an Elekta TM 

Neuromag TRIUX 306 (MEGIN UK Ltd, Surrey), sampled at 2000 Hz. Three datasets were 

acquired: one using a participant (F, 22, left-handed) stimulated by the CHEPS thermode; one of 

an empty room, with the thermode resting on a cushion to mimic the placement of a 

participant’s arm, recorded whilst the CHEPS was heating and cooling in the identical protocol 

of the participant dataset (Figure 6.1, henceforth the ‘active’ dataset); one recording of the 

thermode powered and in the same position, but not heating and cooling (henceforth the 

‘passive’ dataset). 

 

Figure 6.1: The MEG system with PATHWAY CHEPS thermode positioned to mimic the pilot participant’s resting 

arm 
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6.2.2 Stimulation and acquisition 

The stimulator for this was the PATHWAY CHEPS TM (Medoc Ltd, Ramat-Yoshai, Israel), 

stimulating at an inter-stimulus-interval (ISI) of 8-12s, a peak temperature of 50˚C at 70˚C/s. 

Overshoot attenuation, a feature that can stop the thermode from exceeding the target 

temperature by cooling the thermode by a set variable, was disabled. No holding duration was 

set, with a peak temperature being met at roughly 250ms. No active shielding of the 

magnetically shielded room was applied. For participant data, the head shape was digitised 

using a Polhemus Isotrak SystemTM (Kaiser Aerospace Inc.) and head position was recorded by 

five Head Position Index (HPI) coils attached across the forehead and bilateral mastoids. 

Participant data was recorded from a seated position inside the Magnetically Shielded Room 

(MSR). CHEPS stimulation was applied to the dorsal surface of the left hand. In empty room 

recordings, the CHEPS thermode was attached to an MSR-suitable cushion in a position and 

orientation that matched the participant recording. 

6.2.3 Data cleaning methods 

Attempts to attenuate the electromagnetic artefact were made using Signal Space Separation 

(SSS), temporal SSS, Independent Component Analysis (ICA), and beamforming of the post-

stimulus time window. All processing and analyses were performed using gradiometers only. 

SSS and tSSS (See chapter 2) were applied using MaxFilter (MEGIN UK, version 2.2.10). tSSS 

parameters include correlation limit and buffer size, where 0.98 is the default correlation 

setting and 0.6 is the lowest recommended value (Medvedovsky et al., 2009); correlation limit 
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is the parameter by which signals external to the MEG dewar helmet must correlate with those 

inside the dewar helmet before being projected out of the dataset, and buffer window 

describes the duration of segments that are analysed at a time, controlling for slow drifts. The 

buffer window was set at 30 seconds to ensure that the window contained multiple 

stimulations (as demonstrated by Fardo et al., 2017). Throughout this chapter, ‘raw’ data will 

refer to data that is not cleaned by SSS or tSSS, though in other contexts this might be 

considered data that has not yet been filtered or processed at all. The goal of SSS is to project 

out signals which have an origin outside of the dewar helmet signal space; in tSSS, this process 

is extended to the time domain. 

RUNICA (Bell & Sejnowski, 1995) was the chosen method for ICA (See chapter 3), with a 

component limit set at the rank of the dataset after tSSS to account for its effect on 

dimensionality. The goal of ICA was to decompose the MEG data into unique components; in 

average datasets, this is often reserved for the rejection of ocular movements and heartbeat 

artefacts, but in this dataset the ICA algorithm was used to identify components unique to the 

CHEPS in empty room and pilot datasets. 

The goal of minimum variance beamforming is the reconstruction of activity within source 

space using spatial filtering and unit-gain constraint to suppress activity arising from adjacent 

and distant voxels. Due to the way the spatial weights are computed, voxels near the centre of 

the head are over-represented and present their own artefacts. This is circumvented by 

calculating the ratio of change between a time series of interest and baseline data, at each 

given voxel (Quraan, 2011). This would also minimise any baseline ‘passive’ artefact the CHEPS 

introduces. Regularisation is commonly used in source reconstruction, and involves introducing 
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noise to a dataset by a specified percentage to minimise the effect of rank deficiency, smooth 

source estimates and improve signal-to-noise ratio in cases of poor sensor covariance 

estimates. Beamforming outcomes after tSSS are sensitive to regularisation in CHEPS datasets 

(Adjamian et al., 2009), which reduces spatial resolution as part of its functionality. Without 

prior rationale for a specific regularisation parameter, this study explored beamformer 

outcomes with a broad spectrum of values. Beamformers with regularisation parameters of 0%, 

5%, 10%, 25%, 50%, 75% and 100% values were performed (signified by λ). Rank deficiency can 

also be managed by truncating the covariance matrix at the rank of the data (see chapter 3). In 

this analysis, the truncation value (κ) was set at the rank of the data (60 or 200, depending on 

the preprocessing performed) or at a more conservative value (50). A distant baseline epoch (-5 

-4s) was chosen for comparison against the post-stimulus window (0s 1s) to avoid any 

immediate effects of the CHEPS stimulator ramping in temperature before 0s.  

6.2.4 Pre-processing of data 

All data were pre-processed using the FieldTrip MATLAB toolbox (Oostenveld et al., 2011; build 

20200513). Data were low-pass filtered at 200 Hz and high-pass filtered at 1 Hz. A discrete 

Fourier transform at 50 Hz and 100 Hz at a width of 1 Hz was applied to attenuate line noise. 

Epochs were created around CHEPS triggers with a baseline of 6s and a post-stimulus window 

of 6s. Detrending and demeaning were performed on all epochs.  
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6.3 What does the artefact look like? 

In this section, the electromagnetic signal artefact generated by the CHEPS and recorded by the 

MEG in a passively shielded room is outlined. To properly describe the artefact, the two empty-

room recordings were first analysed. The magnetic field strength (fT/cm) of the passive and 

active datasets were compared. A t-test was performed using the mean field strength values of 

one second of the passive dataset, with one second of the active dataset’s baseline (-5 to -4s); a 

significant difference in mean values over all channels at each time point was found 

(t(1999)=2.5722, p=0.01), demonstrating a greater level of baseline noise in the active dataset, 

even 5s before the stimulation. From this we can deduce that even a distant baseline time 

window has an increased noise field strength when the CHEPS is in an active configuration, 

meaning that comparison of the post-stimulus time window with the passive configuration 

baseline would not adequately reflect the stimulus activity, and that the ongoing mechanisms 

of the CHEPS can contribute to electromagnetic field recordings even when not stimulating: 

This shows that a passive dataset control would not effectively work as an alternative baseline 

if the active dataset includes stimulus artefacts in the pre-stimulus window. 

In sensor space, a timelock analysis was performed to observe the evoked waveform: in a 

perfectly empty room, the evoked waveform should be averaged to 0. To evaluate the 

frequency components over time, time-frequency analysis was performed using the multi-taper 

convolution method implemented in the FieldTrip MATLAB Toolbox (Oostenveld et al., 2011; 

build 20200513). Hanning tapers from -6-6s in steps of 0.01s were applied using a sliding 

window 0.5s long, with a frequency resolution of 2 Hz in the range of 2-100 Hz.  
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6.3.1 Timelocked waveform 

Fig 6.2 shows an average of all sensors over the entire epoch, and fig 6.3 shows a butterfly plot 

of all sensors. As is evident in these images, the time-locked evoked waveform is not limited 

spatially and appears in all sensors. Some sensors demonstrate time-locked components as 

early as -1.2 seconds before the trigger and 2.40s after it. When averaged over all channels, the 

Event-Related field (ERF) is clearly of great magnitude relative to the expected zero average. 

 

Figure 6.2: Evoked waveform of the active empty room recording, averaged over all channels and trials 
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Figure 6.3: A butterfly plot of all sensors, averaged over trials 

6.3.2 Time-frequency representation 

Figure 6.4 shows the average time-frequency representation for all sensors in decibels (dB), 

baseline-corrected against the -5s to -4s time window. It is clear from these Figures that the 

raw artefact is pervasive in time, space and across a broad range of frequencies. When 

averaged, all channels have some form of evoked activity or time-frequency component. Similar 

to Gopalakrishnan et al.’s (2013) work with an fMRI-compatible thermode, it is demonstrated 

that the heating of the standard CHEPS thermode generates an electromagnetic field that has 

can be seen up to 2s before a stimulus trigger. This is possibly due to applied filters, but likely 

represents the ramping of the stimulus temperature. Time-frequency representations 

demonstrate an immediate evoked enhancement across 1-60 Hz that lasts for 200ms, with 

suppression from 5-100 Hz at around 250ms post-stimulation. Low-frequency activity in the raw 
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data appears to precede the stimulus trigger by 1s and continue for 2s after, with a post-

suppression rebound up to 15 Hz. This timeframe is consistent with the activity seen in a 

butterfly plot of all sensors.  

 

Figure 6.4: Averaged time-frequency plot for all sensors over all trials, normalised using a baseline of -5 to -4s. 

Colour bar represents frequency power in dB. 

Stimulus-related activity that is not time-locked is often referred to as ‘induced,’ and is 

occasionally accessed by removing an averaged waveform from a time series trial individually, 

before analysing the time-frequency characteristics. If the empty-room ERF was constant across 
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trials, removing the evoked waveform from each trial should completely remove its presence in 

time-frequency representation. Removing the averaged waveform significantly changed the 

time-frequency characteristics of the empty-room recording (Fig 6.5), but did not entirely 

attenuate it. This is to be expected, as the averaged waveform will reflect components from 

imperfectly opposing dipolar sources. By defining the artefact in an empty room, the efficacy of 

attenuation attempts can be evaluated; and evoked and time-frequency data can be evaluated 

further. 

 

Figure 6.5: Averaged time-frequency plot for all sensors over all trials after removing averaged waveform, 

normalised using a baseline of -5 to -4s. Colour bar represents frequency power in dB. 

6.4 Attenuating the artefact 

In this section, commonly utilised MEG data cleaning methods are used to suppress the artefact 

described above. As outlined in chapter three, there are several techniques available to remove 
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artefacts in M/EEG data. Primarily afforded to Neuromag ElektaTM (MEGIN) MEG acquisition 

hardware, signal space separation and temporal signal space separation (SSS; tSSS; Taulu, 

Kajola & Simola, 2004; Taulu & Hari, 2009) are part of the MaxFilter (Elekta Neuromag Oy) 

software package and attenuate noise by projecting out components that originate from 

outside of the dewar helmet’s immediate signal space; in theory, this should separate signals 

generated by the CHEPS, as the CHEPS thermode was positioned outside of the dewar helmet. 

Independent Component Analysis (ICA) breaks raw data down into separate time series that 

compromise the dataset; it is ideally suited for removing heartbeats and eye blinks. If the 

CHEPS artefact could be isolated as components in an empty-room recording and effectively 

removed from the dataset, it might be possible to achieve that same resolution in a participant 

recording. Beamformer techniques rely on inverse models of source spaces that have weighted 

spatial filters for positions throughout the brain; they reconstruct time series for each voxel in a 

given lead-field using a unit-gain constraint (See chapter 3), minimising the effect of adjacent 

voxels. Beamformers are, by nature, effective at mitigating the effect of outside sources on 

brain activity, and may prove to be capable of suppressing the CHEPS artefact. 

6.4.1 SSS and tSSS 

SSS and tSSS were applied before pre-processing using MaxFilter (Elekta Neuromag Oy, version 

2.2.10), with default expansion order parameters. For tSSS, the buffer limit was set to 30s. This 

is long enough to contain at least two stimulations (as performed in Fardo et al., 2017), and the 

correlation limits were manipulated to observe which was most effective. A lower correlation 

limit of 0.6 has been validated in experimental studies, so was set as the most rigorous limit 
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(Medvedovsky et al., 2009); the higher, default correlation limit of 0.98 was used as an 

alternative control for its effectiveness.  

All forms of signal space separation reduced the raw signal field strength. SSS attenuated it to 

the smallest extent, followed by tSSS with a 0.98 correlation limit. A correlation limit of 0.6 

suppressed the artefact to the greatest extent. Figure 6.6 shows the averaged waveforms for 

raw, SSS, tSSS 0.98 and tSSS 0.6. Figure 6.7 displays the averaged waveforms for tSSS 0.6 and 

0.98, for better visualisation. It is clear that the overall field strength of the evoked waveform is 

attenuated by signal space separation, but as demonstrated in the induced waveform above, 

the induced components are resistant.  

 

 

Fig 6.6: Event-Related fields averaged over all trials and gradiometers for all three data cleaning methods, 

compared to the raw dataset 
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Fig 6.7: Event-Related fields averaged over all trials and gradiometers for all tSSS at 0.6 and 0.98 correlation limit  

 

Figure 6.8 is a time-frequency plot of the cleaned data. In this figure, frequency power is 

plotted for each frequency from 1 to 100 Hz, -5s to 5s, with colours representing power in 

decibels relative to the baseline of -5s to -4s. TFR of cleaned data (Figure 6.8) demonstrates 

that the artefact is pervasive through the time-frequency domain even after cleaning. SSS also 

appears to introduce new characteristics to the data that were not in the raw recordings. SSS 

data cleaning lowers the signal field strength by 5 dB, but also generates a broad-band peak 

from -2.5s to -3s that does not appear in the raw dataset. tSSS with a 0.98 correlation limit 

significantly reduces the magnitude of the artefact to a peak of 7 dB, whilst retaining the 

evoked component of 0-25 Hz at 0-1s, with a broadband suppression at 500ms. A correlation 

limit of 0.6 reduces the field strength one further decibel and removes the pre-trigger delta-
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band enhancement. However, tSSS of any type also appears to suppress the line-noise 

frequency of 50 Hz; something that is not a reported side-effect of tSSS in the literature. It is 

clear that less conservative tSSS can attenuate the CHEPS artefact significantly, demonstrating 

an overall reduction of 30 dB.  Caution is necessary when interpreting results around the 50 Hz 

frequency band. No data cleaning methods alone were sufficient to suppress the artefact fully. 

Even the least stringent correlation limit observed time-frequency components across all 

sensors.  

 

Figure 6.8: Time-frequency plots calculated by averaging all trials over all sensors, baseline-corrected with -5s to -
4s. Synchrony is plotted in decibels (dB), as demonstrated by the colour bar. Top left: ‘Raw’ empty room data. Top 
right: Data cleaned using SSS. Bottom left: Data cleaned using tSSS with a correlation limit of 0.98. Bottom right: 

Data cleaned using tSSS with a more aggressive correlation limit of 0.6. 
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6.4.2 Independent component analysis 

Usually performed to isolate and reject eye movements and heart-beat components, ICA was 

performed on raw, SSS and both tSSS datasets to identify and remove components that 

corresponded to the CHEPS. Components of interest were defined as being time-locked (i.e., 

time series that had apparent peaks centred at 0s), or demonstrating regular deflections above 

noise level (examples in appendix C.1). In the raw dataset, only two components were 

identified that could be attributed to the CHEPS; ICA of SSS data had at least 13 components 

with CHEPS characteristics, and ICA of tSSS had 10 and five components in 0.98 and 0.6 

correlation limit data, respectively. Components in the tSSS datasets were less easily 

identifiable than in SSS and raw datasets, as their magnitude was much closer to that of signal 

noise. Figure 6.9 demonstrates the resulting change in averaged waveform after the removal of 

components identified in ICA. ICA greatly reduced the magnitude of the evoked waveforms in 

raw and SSS-cleaned data: a difference of 1.075E-10 fT/cm is observable between raw and ICA-

raw, and 3.9E-12 fT/cm is observable in between SSS and ICA-SSS. The additional attenuation of 

field strength in both forms of tSSS is less obvious, but still notable.  

In Figures 6.10 and 6.11, time-frequency representations are shown for each stage of data 

cleaning, with the ICA-cleaned form for comparison. In all cases, the maximum field strength of 

the evoked components is reduced. The greatest change is in the raw dataset. Removing 

components with visually apparent time-locked features demonstrated a similar line-noise 

suppression of 50 Hz in the raw and SSS data, suggesting a temporal 50 Hz component in the 

artefact that is being attenuated. Even removing 10 components with time-locked phenomena 
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did not significantly reduce the evoked theta-beta enhancement; in the SSS data, the pre-

stimulus artefact that was generated was comparatively enhanced. 

ICA, much like (t)SSS, demonstrated some attenuation of frequency power, most notably in the 

raw dataset. In raw data, a substantial decrease in field strength is observable, emulating much 

of the effectiveness of tSSS and including the 50 Hz suppression. In SSS, the pre-stimulation 

enhancement at -3s across all frequencies is made more apparent by the relative decrease in 

the power of the evoked components. The effectiveness of ICA in the raw dataset is note-

worthy because it attains a similar level of attenuation as tSSS with a 0.98 correlation limit, but 

the data is not excessively de-ranked, and the components are much easier to identify. 

However, the artefact is evidently not fully removed even by the combination of these 

methods. 
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Figure 6.9: Averaged waveform of all gradiometers and trials before and after ICA, band-pass filtered at 1-30 Hz. A: ‘Raw’ data before and after ICA. B: Data 
cleaned by SSS before and after ICA. C: Data cleaned by tSSS with a correlation limit of 0.98 before and after ICA. D: Data cleaned by tSSS with a more 

aggressive correlation limit of 0.6 before and after ICA. Note the scale of the Y axis between C and D. 
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Figure 6.10: Time-frequency plots generated by averaging all trials over all gradiometers on all datasets before and after ICA for 
comparison. Power is plotted in dB, baseline-corrected with -5s to -4s. ‘Raw’ data before (A) and after ICA (B). Data cleaned 

with SSS before (C) and after ICA (D). Note the plotted dB scales after ICA – with the greatest difference being raw-ICA at -36dB.  
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Figure 6.11: Time-frequency plots generated by averaging all trials over all gradiometers on all datasets before and after ICA for 
comparison. Power is plotted in dB, baseline-corrected with -5s to -4s. Data cleaned by tSSS with correlation limit 0.98 before 

(A) and after ICA (B). Data cleaned by tSSS with the more aggressive correlation limit of 0.6 before (C) and after ICA (D).
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6.5 Beamforming 

In this section, raw and cleaned data from empty room and participant datasets are analysed 

using beamforming; the goal of which is to assess whether the beamformer’s innate 

suppression of source generators outside of a given point can adequately suppress the artefact 

generated by the CHEPs. Beamformers have multiple configuration parameters (See chapter 3) 

that can influence their outputs, and as such they are controlled for here. 

Lead field spatial weights defined in the beamforming process are purposed to suppress 

magnetic fields that originate outside any given source point, which could potentially filter out 

any fields generated by the CHEPS (see chapter 3). Unit-gain minimum-variance beamformers 

are robust in the presence of random noise, and achieve the highest spatial resolution source 

reconstructions (Quraan, 2011). Beamformers have certain limitations, however, that may 

restrict their usefulness in this case: beamformers can suffer from leakage when presented with 

strong signals outside of their region of interest, which can eventually dominate over weaker 

sources that might be of interest, and they can be biased by strong correlations across space 

(Quraan, 2011). These limitations have thus far been described in relation to the brain’s source 

space, however, and not that of an externally generated field. 

Beamformers are often spatially whitened by regularisation of the covariance matrix (λ%, See 

chapter 3). Ranging from 0-100%, a λ of 0.01-5% is common in MEG beamforming, though 

previous research by Adjamian et al. (2009) has demonstrated that using regularisation can 

reduce the accuracy of reconstruction methods. Source analysis can also be limited to a 
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particular number of components (κ, see chapter 3), and as such reduce the dimensionality of 

the data; this is commonplace in fMRI and principal component analysis, but especially 

necessary when using MEG data cleaned with signal space separation. The application of signal 

space separation of any kind reduces the rank of the data to roughly 64 components from 306 

(the number of combined gradiometers and magnetometers, reduced to a greater extent when 

components are removed by ICA; Westner et al., 2022) by removing those that originate 

outside the dewar; this induced rank-deficiency leaves roughly 140 components that do not 

accurately reflect sensor recordings, instead only representing noise. These are included in the 

covariance matrix used in further MEG analysis, and must be accounted for when beamforming 

by pruning the rank of the data by setting a κ value that describes the number of spatial 

components to be included in the source reconstruction. In Elekta Neuromag 306 gradiometer 

data that has not been cleaned, the maximum κ value is 204 (102 of the sensors are 

magnetometers, as described in chapter 2); the maximum κ value of tSSS data can vary, but is 

usually between 60-70 (Westner et al., 2022). It is possible that the higher dimensionality of 

raw data might improve attenuation, or that purposefully limiting the dimensionality may omit 

some of the noisier components. For these reasons, κ and λ parameters were manipulated in an 

empty-room dataset to evaluate whether suppression was possible.  

6.5.1 Beamforming an empty room recording 

Several combinations of datasets and parameters were obtained using the empty-room 

recording (Table 6.1); the purpose of this was to observe the effectiveness of beamforming and 

manipulation of κ and λ parameters in attenuating the CHEPS artefact without the participant’s 

brain activity present. Raw and tSSS-cleaned versions of the same dataset were processed 
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before and after ICA cleaning for comparison. Beamforming of the empty-room dataset was 

source-reconstructed using a standard MRI, and as such beamforming outputs are presented as 

if reconstructed in a brain (see Figure 6.10). Exhaustive Figures are found in appendix C.2. 

Beamforming the raw dataset after ICA resulted in a complete suppression of the artefact, 

resulting in a completely clear beamformer output, but only with nearly-full dimensionality 

retained (i.e., no ICA, SSS or tSSS, κ = 202) and no regularisation (λ = 0). No other combination 

of dataset and beamforming parameter successfully attenuated the CHEPS artefact in the 

empty-room dataset. Figure 6.10 displays the failed attenuation of the artefact by LCMV 

beamforming (κ = 60, λ = 0) in a dataset cleaned using tSSS (0.6) in the FieldTrip LCMV 

beamformer output using the plotting method ‘slice’ for a complete perspective in comparison 

to the effective attenuation of the artefact. This is a promising finding suggesting that it is 

possible to use beamformers to suppress the CHEPS artefact using spatial weights under 

specific circumstances.  

6.5.2 Beamforming a participant dataset 

In this section, the previously identified steps to successfully suppress the CHEPS artefact were 

replicated in a participant dataset. Following the successful attenuation of the CHEPS artefact in 

an empty room dataset, an LCMV beamformer was performed on a dataset acquired from one 

participant whilst they were being stimulated by the CHEPS. The participant was stimulated on 

their left-hand dorsum in the same position as was emulated in the empty-room recording, 

using the same stimulation parameters. The LCMV beamformer was performed using the 

parameters that successfully attenuated the artefact in the empty-room analysis, with the aim 

to suppress the artefact but also reconstruct the expected source activity reflecting the 
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sensation of a painful thermal stimulus. A successful reconstruction should show a minimum of 

a positive peak in the right sensorimotor cortex. The participant dataset required the 

subtraction of eye movement and heartbeat artefacts alongside the CHEPS components  

Table 6.1: All beamformer and data cleaning parameter combinations 

Dataset κ 50 κ 60 κ 200+ 

λ0 λ5 λ15 λ25 λ0 λ5 λ15 λ25 λ0 λ5 λ15 λ25 

Raw x x x x x x x x x x x x 

Raw (ICA) x x x x x x x x S x x x 

tSSS (0.6) x x x x x x x x * * * * 

tSSS (0.6, ICA) x x x x x x x x * * * * 

tSSS (0.98) x x x x x x x x * * * * 

tSSS (0.98, ICA) x x x x x x x x * * * * 

 

A table of all combinations of data types (raw data, tSSS-cleaned data of varying levels, and data that had been 

cleaned by ICA), lambda and kappa values for beamforming. X = no successful elimination of artefact. * = no 

analysis possible due to rank insufficiency at this level. S = Successful elimination. 
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Figure 6.12: LCMV beamformer outputs for empty room recordings, displaying the relative activity in the post-stimulus time 

window (0 to 1s) compared to the baseline (-5 to -4s), interpolated and plotted on a model of a brain (MNI). The colour bar 

represents the ratio of change in field strength when the CHEPS thermode is active, compared to its baseline. Left: Source 

analysis of the tSSS 0.6 dataset, performed using κ = 202 and λ = 0. Right: A beamformer performed on raw data using κ = 202 

and λ = 0. This shows complete suppression of the CHEPS artefact, as demonstrated by a value of 0 in all voxels. 

 

As demonstrated in Figure 6.12, the LCMV beamformer of raw participant data after ICA-

cleaning using the highest possible number of spatial components (κ = 191) and no 
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regularisation (λ = 0) did not successfully reconstruct a classic CHEPS source, despite 

suppressing the artefact in an empty room dataset.  

 

 

Figure 6.13: LCMV beamformer output of a participant, displaying the ratio of change in field strength in the 0-1s 

window, as contrasted against a -5 to -4s baseline. Typically, a sensory or nociceptive stimulus elicits a positive 

peak in the contralateral somatosensory cortex. 

 

6.5.3 DICS beamforming an extended post-stimulus window 

As observed in previous sections, the initial time-frequency components of the CHEPS artefacts 

are limited to the 0-1s time window, but it is well documented that pain processing can last 

beyond this time. This is reflected by alpha suppression well into the 1 to 2s time window 
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(Schulz et al., 2012). Dynamic Imaging of Coherent Source (DICS) beamformers can be used to 

reconstruct frequency-specific activity, and plot the ratio of change between two time windows 

much like the LCMV plots above. In this final analysis, empty-room DICS analyses are performed 

to determine whether alpha is present in the extended post-stimulus time window (1 to 2s), 

and whether it is stronger than the distant baseline (-5s to -4s). Then, the pilot dataset will be 

analysed to attempt to beamform any suppressed alpha. This analysis aims to determine 

whether more distant time series data are unaffected by the artefact we are otherwise unable 

to attenuate.  

Figure 6.14 displays the DICS beamformer performed on the raw participant dataset after the 

removal of time-locked CHEPS components by ICA. The DICS beamformer reconstructs 

suppressed alpha activity in the bilateral sensory cortices and enhanced alpha in the occipital 

lobe, which might be expected in a participant experiencing a painful stimulus. However, this 

reconstruction demonstrates an alpha suppression that is very similar to the negative field 

strength in the frontal lobe seen in Figure 6.13; in fact, the map of the activity is almost 

identical. Because of these similarities, it can be concluded that the source reconstruction has 

not successfully suppressed the CHEPS artefact. This analysis was also performed using the 

previous combinations of κ and λ parameters on the raw data with and without ICA of the time-

locked components (see Appendix C.2), with no reconstructions that convincingly suppress the 

CHEPS artefact. Whilst virtual sensor reconstruction of time series data at the voxels of interest 

is possible, the analysis of the empty room demonstrates that the noise suppression has not 

successfully extended to this timewindow, and that any time series reconstruction in the 

participant data would also be corrupted. 
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Figure 6.14: DICS beamformer outputs for the 1-2s time window, with alpha-frequency synchronisation plotted in 

contrast to a -5 to -4s baseline, the highest respective κ value and zero regularisation. Left: Empty room dataset. 

Right: Participant dataset. 

6.6 Discussion and conclusion 

The CHEPS artefact is present even when using fMRI-compatible thermodes; though it has been 

demonstrated that the attenuation of the fMRI-compatible thermode artefact is possible with 

the use of temporal signal space separation, beamforming, and bespoke damped sinusoid 

modelling (Gopalakrishnan et al., 2013; Adjamian et al., 2009). fMRI-compatible thermodes for 

the CHEPS are more expensive, and unnecessary for standardised testing that is used by pain 

clinicians. This study aimed to assess the feasibility of using the standard apparatus in MEG 

acquisition, for its improved spatial resolution and clinical utility, and to evaluate the limits of 

MEG signal cleaning methods. Here for the first time, attempts have been made to suppress the 

electromagnetic signal that confounds CHEPS recordings in MEG for thermodes that are not 

specifically shielded for magnetic field recordings.  
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Primary observations described the nature of the stimulation artefact, and demonstrated that 

the noise floor is significantly raised in an ‘active’ state, even in a distant baseline. This is 

consistent with the findings of Gopalakrishnan et al. (2013), who observed increases in noise in 

the baseline, though it was not compared to the passive state. Gopalakrishnan et al. used a 

stimulation with a ramp-and-hold duration of 2s, as opposed to the brief evoked nature of the 

stimulus used in this chapter, which limits the comparisons regarding time-locked waveforms in 

the post-stimulus time window; though it is clear that gradiometers record opposing dipole 

waveforms, as is also evident in Gopalakrishnan’s analysis.  

Initial attempts to reduce the artefact’s influence on the sensor-level data included the 

application of SSS, and two different levels of tSSS. SSS and tSSS suppressed the field strength 

of the evoked waveform, which is consistent with Gopalakrishnan’s findings. Less conservative 

tSSS (using a correlation limit of 0.6 as opposed to the default 0.98) had not yet been explored 

using either CHEPS thermode in heating configuration, and here showed a greater degree of 

artefact suppression in the evoked time domain. ICA of time-locked components attenuated 

the waveform further, but has a greater risk of altering the representation of brain signals when 

applied to a participant dataset.  

This study was the first to explore the time-frequency characteristics of the CHEPS artefact 

regardless of thermode. Time-frequency analysis of raw data showed that pre-stimulus 

enhancements of low frequencies (2-5 Hz) were apparent up to 2s before the stimulus, though 

these were smoothed in the time domain somewhat by the parameters of the filters applied. 

The application of tSSS showed a suppression of the magnitude of these components in time 

and frequency, with a greater attenuation with less conservative methods. SSS suppressed 
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some of the field strength of the primary evoked activity, but introduced a strong broadband 

enhancement at -3s in the pre-stimulus time window that was not present in the raw dataset. 

ICA of datasets cleaned by these methods proved challenging after tSSS: in the raw dataset, 

time-locked components that could be clearly attributed to the CHEPS artefact were few; the 

ICA of tSSS-cleaned data had a much greater distribution of field strength across components, 

and at a lesser field strength. This suggests that the reduced rank of the data or the removal of 

a large amount of the activity via tSSS projection split the remnants of the original component 

into many, which complicated its identification and resulted in further dimensionality reduction 

through the process of ICA. The permeation of the artefact was made clearer by observing the 

time-frequency representation after ICA, where the field strength of the artefact was 

suppressed in all datasets, but not entirely removed at the sensor level. This additional 

complexity was enhanced in the participant dataset, where the introduction of physiological 

data had spread the CHEPS artefact energy across many more components even in the raw 

dataset.  

Beamforming of the evoked waveform was performed by reconstructing the field strength at 

each voxel of the brain and calculating the ratio of change in the activity in the 0 to 1s time 

window with a distant baseline of -5 to -4s. The regularisation and number of spatial 

components were manipulated to evaluate optimum parameters, and raw data, cleaned data, 

and post-ICA datasets were evaluated for the presence of the CHEPS thermode artefact. The 

construction of a lead field for beamforming involves the suppression of magnetic fields that 

originate outside of any given voxel by spatial filtering which, though sensitive to highly 

correlated activity, has been demonstrated to effectively attenuate fMRI-compatible CHEPS 
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artefacts (Adjamian et al., 2009). In the empty room dataset, an LCMV beamformer was able to 

attenuate all activity in the 0-1s epoch and reconstructed no activity; this does support its 

ability to effectively remove the extraneous signal, but only when performed on a raw dataset 

after ICA, with no regularisation and high-rank data. This was not successfully replicated in a 

dataset with a participant present: no brain activity resembling an evoked somatosensory 

stimulus was apparent, demonstrating the failure to successfully reconstruct underlying brain 

activity in the presence of the CHEPS artefact. The inclusion of a participant in the MSR 

introduced additional noise and signal components that thwarted the effective cleaning of the 

electromagnetic signal artefact; indeed, simply identifying the CHEPS artefact in the participant 

dataset was significantly more difficult during ICA, with time-locked waveforms visible across 

many more independent components (See appendix C.1).  

The limitations of unit-gain constrained beamforming likely impacted the effectiveness of the 

artefact suppression. As described by Quraan et al., (2011), beamformers are limited in their 

reconstruction of sources that are smaller in field strength than other more dominant sources, 

and can additionally fail to suppress sources that are highly correlated in the time domain.  

Incidentally, this study identified a significant erroneous broadband frequency component 

produced by applying SSS to the empty room artefact recording, but this was not replicated 

when applying tSSS. It should be noted that SSS may confound signal recordings when used to 

suppress large electromagnetic artefacts, potentially influencing the characteristics of cleaned 

data: tSSS is recommended in its stead. 
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6.6.1 Limitations 

The CHEPS stimulus was recorded using an ISI of 8-12s, but it is possible that a longer ISI would 

have provided a cleaner baseline for comparisons. In the above analyses, a baseline time 

window was chosen that would otherwise be considered extremely distant and adequately long 

for a somatosensory stimulus, and therefore an exemplary reflection of baseline activity. 

However, statistical comparison of the passive empty-room dataset (i.e., with the CHEPS 

powered, but not stimulating) and the active -5 to -4s time window showed significant 

differences. This demonstrates that the noise floor is significantly increased in the baseline of 

the stimulation dataset, even at a distant time window. It is possible, then, that baseline 

correction of time-frequency representations was polluted by a baseline that was not entirely 

stationary despite best efforts. Contrasting the CHEPS stimulations to the active empty-room 

dataset would not have provided appropriate baseline correction, given the significantly 

different baseline activity. 

This study could not explore the effectiveness of synthetic gradiometers, as was done in 

Adjamian et al. (2009), as the MEG system used does not facilitate such a mechanism. It is 

possible that 3rd order or greater synthetic gradiometers would be capable of suppressing the 

CHEPS artefact further.  

A final limitation of this exploration of the CHEPS artefact is the lack of painful control stimulus. 

It is possible, though unlikely, that the brain activity observed in the participant after artefact 

suppression attempts were genuine brain activity. The participant was noted as not finding the 
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stimulation to be remarkably painful, though one would still expect representation of the 

somatosensory processing in the cortex. 

6.6.2 Conclusions 

Ultimately, the outcomes of this study demonstrate that signal space separation, independent 

component analysis and MEG beamforming methods are insufficient for the removal of CHEPS 

artefacts produced by standard CHEPS thermodes, even when combined with a thorough 

exploration of beamforming parameters. These findings complement those of Gopalakrishnan 

et al. (2013) and Adjamian et al. (2009) by highlighting the necessity of an fMRI-compatible 

thermode for combining CHEPS and MEG methodologies, and demonstrate the limitations of 

signal space separation and beamforming methods, but do not draw any conclusions about 

synthetic gradiometry. It is hoped that future research will not be stymied by these 

methodological concerns, and that CHEPS and MEG studies going forward will benefit from the 

clarity provided by a thorough investigation of the methods and parameters herein; it is 

recommended that investigators invest in fMRI-compatible CHEPS thermodes for MEG 

research. It is also recommended that MEG data cleaning should be performed with both tSSS 

and SSS to evaluate any possible signal artefacts generated by the application of SSS. 
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7. Thesis conclusion  

 

The following is a concluding chapter, which provides summaries of the key findings, original 

contributions, and implications of each piece of research presented in this thesis. The primary 

goal of this thesis was to use MEG source reconstruction to identify the neural correlates of 

ongoing pain, and to investigate future avenues for tonic pain research using MEG 

beamforming. In pursuit of this goal, two experimental studies, one systematic review, and one 

technical exploration of signal cleaning methods were performed.  

The first chapter of this thesis explores chronic pain through the therapeutic intervention of 

SCS. Neuroimaging studies are often utilised to explore the underlying mechanisms of the 

antinociceptive effect of SCS, as they are poorly understood, and it is recognised that 

identifying regions involved with the production of pain attenuation may inform future 

therapeutic advances. Many studies record SSEPs to evaluate the modulation of ascending 

signals during SCS, hypothesising that the antidromic dorsal column current suppresses 

nociceptive signalling at the WDR neurons: Most literature has shown the reduction of SSEP 

amplitude at the sensor or channel level, though it is not unanimous. No studies before this had 

used MEG to explore the effect of SCS on somatosensory processing distinct from collision in 

the dorsal column, and no MEG studies have used source reconstruction methods to identify 

the brain areas affected by paraesthesia-based SCS during SSEP or rest.  

4 SCS patients were recruited from Russell’s Hall Hospital, and participated in a MEG recording 

session at rest and during SSEP stimulation of their median nerve, after 12 hours with their SCS 

disabled, and once again after their SCS has been re-enabled. Participants demonstrated 



188 
 

significantly reduced pain scores during the SCS-on condition, indicating that the 

antinociceptive effect had taken effect. Source analysis of resting-state activity identified 

significant clusters of enhanced synchrony in the theta frequency band throughout the left 

superior temporal gyrus, bilateral mid-cingulate and right anterior cingulate cortices, and delta 

enhancement throughout the left superior temporal gyrus, left insula and caudate nucleus, 

implying entrainment by spinal cord stimulation. The involvement of the mid and anterior 

cingulate cortices in pain processing has been identified by previous functional imaging studies, 

and associated with pain unpleasantness, anticipation, and disturbed thalamocortical networks 

in chronic conditions (Caylor et al., 2019), and theta enhancement in these areas especially has 

been tied to chronic pain experience (Fallon et al., 2018; González-Roldán et al., 2016; Stern et 

al., 2006). An enhancement as a result of SCS represents the involvement of these areas in the 

antinociceptive moderation of ascending stimuli, likely through the disruption of local processes 

by entraining slower neural activity. Whilst other studies have observed theta band 

normalisation in SCS research, they have done so using alternative (high frequency, burst) SCS 

that could have shown significantly different patterns of activity in the brain (Caylor et al., 

2019). It is possible that the findings in theta and delta frequency power as identified by this 

study were due to alternative data acquisition techniques (i.e. MEG and EEG) or advanced 

signal cleaning methods, as others have shown an entrainment SCS stimulation frequency 

recorded in sensor space (Buentjen et al., 2021); but it is also worth noting that both studies 

recruited a small number of participants (4-5), as is common in the literature (Witjes et al., 

2022), and are using techniques with limited utility in deep subcortical brain areas. This 

research would benefit from using a more powerful statistical analysis, which could be achieved 
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using the regions of interest identified within this thesis. Delta enhancement in the left superior 

temporal gyrus, insula and the caudate nucleus had not been identified by previous studies, but 

their involvement in memory formation, salience processing and somatosensory processing is 

well established (Garcia-Larrea, 2012; Houde et al., 2020; McCarberg and Peppin, 2019), and its 

activation could represent the disruption of processes related to the recruitment of memory, 

attentional and painful components of ongoing pain, or a contribution to the activation of 

descending inhibitory projections in the PAG and RVM. 

Statistical evaluation of the evoked fields resulting from somatosensory stimulation 

demonstrated no significant reduction in field strength when comparing SCS-on and SCS-off 

conditions. Previous studies have used sensor- or channel-level analysis, in which data is 

analysed superficially, the underlying neural currents or fields superimposed on one another. 

The evoked fields acquired in this thesis were obtained via reconstruction of virtual sensors at 

the voxel with peak field strength during the post-stimulus SSEP window. It is well understood 

that accessing source-level reconstructions is an enhanced perspective of underlying sources, 

with a more accurate representation of underlying neural activity – especially following 

MaxFilter and temporal signal space separation (Taulu and Hari, 2009) –  and virtual sensors 

have demonstrated high levels of accuracy when compared to intracortical recording electrodes 

even deep in the cortex (Korczyn et al., 2013). For the first time, this study uses SSEPs that 

would not be susceptible to collision in the dorsal column to evaluate the cortical effects of SCS 

on ascending somatosensory signals recorded by MEG. Notably, post-stimulus SSEP power 

spectra at the virtual sensor were significantly reduced during SCS, providing evidence of 

disruption of cortical processing in the somatosensory cortex, where clusters contributing to 
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the rejection of the null hypothesis were identified in the delta frequency band. Future analysis 

of frequency changes in the time domain will likely elucidate these differences, with more 

powerful statistical analysis possible due to the identification of this cluster. The present thesis 

was unable to explore the time-frequency domain in adequate resolution because of the short 

ISI of the SSEP stimuli, nor was it able to utilise source-level statistics, as one of the participants 

was stimulated at a heterogeneous stimulus location. 

The second experimental chapter in this thesis explored the frequency correlates of pain 

sensitivity groups as operationalised by pain scores during a cold pressor test analogue. This 

was the first study to analyse the source localisation of the neural correlates of pain sensitivity 

in MEG. Though previous research has identified changes in alpha and gamma frequency power 

during experimental pain and clinical pain groups (Schulz et al., 2012; Hu & Iannetti, 2019), 

most experimental pain studies have used acute pain stimuli and stimuli that do not effectively 

reflect pain experienced day-to-day. Utilising the CPT to access pain sensitivity and ongoing 

pain during data acquisition, participants were divided into high or low pain sensitivity groups 

by their peak pain score during the recording. Time series data were split into peak and late 

epochs, reflecting the first 15 seconds of the greatest pain score and the last 100 seconds, 

where the pain had plateaued.  

Source localisation of gamma and alpha frequencies during CPT did not reveal significant 

differences between sensitivity groups during the peak pain or the late time window, possibly 

due to lack of power in the statistical method and imbalance in final group sizes. Though not 

significant, suppression of alpha and gamma frequencies revealed areas of interest that would 

be worthy of investigation with greater sample sizes and more powerful statistical methods; 
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alpha and gamma suppression were greater in the low pain sensitivity group in bilateral 

somatosensory cortices during the late epoch – but most notably, a relatively large suppression 

of gamma in the contralateral somatosensory cortex was observed during the peak pain epoch.  

The systematic review in chapter six explored the literature combining the Contact Heat Evoked 

Potentials System (CHEPS) and MEG using a systematic search; the CHEPS uses a Peltier 

thermode that is capable of achieving a ramping speed of 70˚C/s, enabling its use in evoked 

potential research, and also holding a temperature of up to 51˚C for an extended duration; it is 

a good candidate for an evoked or tonic pain stimulus in MEG, but few studies combine the two 

methods. A systematic search was performed by accessing records from MEDLINE, The 

Cochrane Library (CENTRAL), Embase, CINAHL, PsycINFO, SportDISCUS, Scopus and Google 

Scholar, in addition to bibliographic coupling graphs generated by the ConnectedPapers search 

engine. Of the initial 646 articles identified, 58 texts were evaluated in their entirety for 

inclusion, and eight were included in a qualitative synthesis. Six of the eight studies identified 

were performed by one group of researchers studying the anticipation of pain. Of the six 

studies from this group, one study investigated the suppression of electromagnetic signals 

generated by the fMRI-compatible CHEPS thermode in MEG, and the other five studied 

anticipation of pain in various healthy control and chronic pain participant groups. Of the 

remaining two studies, one studied the effectiveness of synthetic gradiometry and 

beamforming in the suppression of electromagnetic noise, and the other observed cold 

thermosensation in healthy controls. The findings of the systematic review highlight the paucity 

of the literature combining the two methods: of all CHEPS and MEG studies, only one identified 

in the review aimed to evaluate the post-stimulus time window: all other studies were 
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methodological or observed a distant pre-stimulus time window. This paucity is surprising, 

given that two studies exist to show that the combination of these novel methods is possible 

despite the presence of a strong electromagnetic signal, where they show its attenuation with 

modern signal cleaning methods. A likely explanation for this paucity is the necessity for an 

fMRI-compatible thermode, a more expensive piece of equipment that is not otherwise 

necessary for EEG imaging. Despite this, Fardo et al. (2017) utilised simultaneous EEG and MEG 

with CHEPS to identify the underlying neural generators of cold sensation in sensor-level and 

source-level analyses; even highlighting that MEG is capable of obtaining more precise 

temporal dynamics of sensory processing.  

Informed by the systematic review in the previous chapter, the final chapter of this thesis was 

an extensive methodological study of the suppression of the electromagnetic signal artefact 

produced by the standard CHEPS thermode. Whilst active in the MSR, the standard (i.e., non-

fMRI compatible) thermode produces an electromagnetic field which contaminates MEG data, 

making analysis of brain activity impossible. While some studies have been able to combine 

MEG and CHEPS, most published articles opt to use the pre-stimulus time window where the 

artefact is less prevalent, as was identified in the systematic review above. Others have likely 

attempted the combination of CHEPS and MEG with a standard CHEPS thermode and been 

flummoxed by the challenges this presents. Electrophysiological data is routinely cleaned of 

physiological or external artefacts that might otherwise contaminate the signal presented by 

the brain, and modern source analysis techniques are effective in reducing the contribution of 

external signals. This chapter utilised traditional and advanced data cleaning methods in 

conjunction with modern beamforming analysis to determine whether using the standard 
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CHEPS thermode is possible in an empty room and a pilot participant dataset. A thorough 

evaluation of possible combinations of these methods and their various configurations 

eventually successfully removed the artefact from an empty room dataset, but not that of a 

participant. Incidentally, the analysis identified a large signal artefact that was not identified in 

the raw dataset which was introduced by Signal Space Separation (SSS; Taulu and Simola, 2006) 

alone. Whilst the concluding study of this thesis does not present an exciting climax, its 

contribution to the literature is original, and will inform future researchers hoping to pursue the 

aforementioned paucity in the MEG and CHEPS literature.  

7.1 Concluding statement 

The research presented within this thesis demonstrates the utility of MEG source 

reconstruction in the evaluation of brain activity in ongoing pain. Initially, novel evidence for 

the supraspinal enhancement of theta and delta frequency bands in spinal cord stimulation 

resting-state was presented, alongside statistically significant suppression of power spectra 

during somatosensory evoked fields, elucidating the contribution of SCS to somatosensory 

processing, and demonstrating that SSEP processing is disrupted by its ascending currents even 

without any possible collision in the dorsal column. Whilst comparisons between pain 

sensitivity groups in healthy controls did not find significant source-level differences at gamma 

or alpha frequency, it is possible that the areas identified in the analysis would benefit from 

further study with a greater number of participants and more powerful statistical analysis: 

something possible thanks to the research included here. A systematic review revealed the 

significant paucity in the literature that combines MEG and CHEPS techniques, and not only that 

the combination is possible, but also that it could contribute more effectively to the delineation 
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of neural mechanisms. Finally, a methodological study explored the attenuation of a large 

electromagnetic signal artefact produced by standard (i.e., non-fMRI compatible) CHEPS 

thermodes in MEG data acquisition; it was found to be possible in an empty room dataset, but 

not possible with most modern signal cleaning techniques. It is hoped that this thorough 

examination of the equipment’s limitations will inform future CHEPS-MEG researchers, saving 

time, datasets, and money.  
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9. Appendices 

Appendix A – Frequency power reconstruction of SSEP in SCS-on and SCS-off 

 

Exploratory source visualisation was performed to localise differences in oscillatory power 

across frequency bands during SSEPs. Due to time window limitations, high-resolution time-

frequency analysis was not possible, so a window of 0-0.3s was chosen for comparison with the 

pre-stimulus time window to identify any frequency changes in the SSEP source reconstruction. 

No statistics were performed for comparison. 

In participant 1, delta and theta activity in the contralateral primary and secondary sensory 

cortices, the premotor cortex and temporal lobe were greater during the SSEPs. No changes 

were identified in any other frequency band. These changes are shown in Figure (9.1). 

Figure 9.1: Delta (left) and theta (right) activity in the post-stimulus time window in SCS-on compared to SCS-off. 

 

In participant 2, alpha power increased in contralateral primary and secondary sensory cortices, 

and temporal lobe. In participant 3, gamma power increased over the contralateral 

somatosensory cortex and primary motor area, with diffuse depression of alpha and theta 

power globally. In participant 4, beta power was enhanced in the ipsilateral somatosensory 

cortices, and gamma was enhanced in the ipsilateral secondary somatosensory cortex and 

temporal lobe. Suppression of beta and gamma power was observed in frontal cortices. 
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Appendix B – Systematic review appendices and supplementary table 

Appendix B.1 Search strategy for systematic review: 

 

Databases Date Results 

MEDLINE (Ovid) 01/04/2020 120 

Cochrane 01/04/2020 14 

Embase (Ovid) 01/04/2020 241 

CINAHL (EBSCOhost) 01/04/2020 42 

PsycINFO (EBSCOhost) 01/04/2020 65 

SportDISCUS (EBSCOhost) 01/04/2020 5 

Scopus 01/04/2020 132 

Google Scholar 01/04/2020 27 

 Total 646 

 Unique refs in Endnote 370 

 Duplicate res in Endnote 276 

 

Table 10.1: Search summary for systematic review  
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MEDLINE 

1. "contact heat".af.  

2. "CHEP".af.  

3. "CHEPS".af.  

4. "Medoc Pathway".af.  

5. or/1-4  

6. exp Magnetoencephalography/  

7. "magnetoencephalo*".af.  

8. MEG*.af.  

9. exp Electroencephalography/  

10. "EEG*".af.  

11. electroencephalo*.af.  

12. dipole.af.  

13. "evoked potential*".af.  

14. oscillat*.af.  

15. exp evoked potentials/  

16. or/6-15  

17. 5 and 16  

18. exp Pain/  

19. pain*.af.  

20. nocicept*.af.  

21. or/18-20  

22. 17 and 21  

23. limit 22 to english language 

 

 

Cochrane 

#1 ("contact heat")  

#2 ("CHEP")  
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#3 ("CHEPS")  

#4 ("Medoc Pathway")  

#5 {OR #1-#4}  

#6 MeSH descriptor: [Magnetoencephalography] explode all trees  

#7 ("magnetoencephalo*")  

#8 (MEG)  

#9 MeSH descriptor: [Electroencephalography] explode all trees  

#10 ("EEG*")  

#11 (electroencephalo*)  

#12 (dipole) 

#13 ("evoked potential*")  

#14 (oscillat*) 

#15 MeSH descriptor: [Evoked Potentials] explode all trees  

#16 {OR #6-#15} 

#17 #5 AND #16 

 

 

EMBASE 

1. "contact heat".af.  

2. "CHEP".af.  

3. "CHEPS".af.  

4. "Medoc Pathway".af.  

5. 1 or 2 or 3 or 4  

6. exp magnetoencephalography/  

7. "magnetoencephalo*".af.  

8. MEG*.af.  

9. exp electroencephalography/  

10. "EEG*".af.  

11. electroencephalo*.af.  
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12. dipole.af.  

13. "evoked potential*".af.  

14. oscillat*.af.  

15. exp evoked response/  

16. or/6-15  

17. 5 and 16  

18. exp pain/  

19. pain*.af.  

20. nocicept*.af.  

21. or/18-20  

22. 17 and 21  

23. limit 22 to english language 

 

 

CINAHL 

S1 "contact heat"   

S2  "CHEP"   

S3 "CHEPS"   

S4 "Medoc Pathway"   

S5 S1 OR S2 OR S3 OR S4   

S6 "magnetoencephalo*"   

S7 MEG*   

S8 "EEG*"   

S9 electroencephalo*   

S10 dipole   

S11 "evoked potential*"   

S12 oscillat*   

S13 S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12   

S14 S5 AND S13   
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S15 (MH "Pain+")   

S16 pain*   

S17 nocicept*   

S18 S15 OR S16 OR S17   

S19 S14 AND S18   

 

 

PsycINFO 

S1 "contact heat"   

S2 "CHEP"   

S3 "CHEPS"   

S4 "Medoc Pathway"   

S5 S1 OR S2 OR S3 OR S4   

S6 DE "Magnetoencephalography"   

S7 "magnetoencephalo*"   

S8 MEG*   

S9 DE "Electroencephalography" OR DE "Alpha Rhythm" OR DE "Beta Rhythm" OR DE 

"Delta Rhythm" OR DE "Gamma Rhythm" OR DE "Theta Rhythm"   

S10 "EEG*"   

S11 electroencephalo*   

S12 dipole   

S13 "evoked potential*"   

S14 oscillat*   

S15 DE "Evoked Potentials" OR DE "Auditory Evoked Potentials" OR DE "Contingent Negative 

Variation" OR DE "Error-Related Negativity" OR DE "Mismatch Negativity" OR DE "Olfactory 

Evoked Potentials" OR DE "P300" OR DE "Somatosensory Evoked Potentials" OR DE "Visual 

Evoked Potentials"   

S16     S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15   

S17 S5 AND S16 
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SportDISCUS 

S1 "contact heat"   

S2 "CHEP"   

S3 "CHEPs"   

S4 "Medoc Pathway"   

S5 S1 OR S2 OR S3 OR S4   

S6 Magnetoencephalo*   

S7 MEG*   

S8 EEG*   

S9 electroencephalo*   

S10 dipole   

S11 "evoked potential*"   

S12 oscillat*   

S13 DE "EVOKED potentials (Electrophysiology)" 

S14        S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13   

S15 S5 AND S13 

 

 

Scopus 

( TITLE-ABS-KEY ( "contact heat"  OR  chep  OR  cheps  OR  "Medoc Pathway" )  AND  TITLE-ABS-

KEY ( magnetoencephalo*  OR  meg*  OR  electroencephalo*  OR  eeg  OR  dipole  OR  "evoked 

potential*"  OR  oscillat* )  AND  TITLE-ABS-KEY ( pain*  OR  nocicept* ) )  AND  ( LIMIT-TO ( 

LANGUAGE ,  "English" ) ) 

 

 

Directory of Open Access 

"contact heat"  OR  chep  OR  cheps  OR  "Medoc Pathway 
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Google Scholar 

allintitle: pain chep OR cheps OR "Medoc Pathway" OR "contact heat evoked potentials" 

allintitle: nociceptive chep OR cheps OR "Medoc Pathway" OR "contact heat evoked potentials" 

 

Appendix B.2 Risk of bias assessment table 

Table 10.2: Risk of bias assessment table 
 1 2 3 4 5 6 7 8 9 10 

Adjamian 2009 Y N N CD Y Y Y Y Y N/A 
Gopalakrishnan 
2013 

Y Y N/A Y Y Y Y N/A Y N/A 

Machado 2014 Y Y N Y Y Y Y Y Y N 
Gopalakrishnan 
2015 

Y Y N Y Y Y Y Y Y Y 

Gopalakrishnan 
2016a 

Y Y N Y Y Y Y Y Y N 

Gopalakrishna 
2016b 

Y Y N Y Y Y Y Y Y N 

Fardo 2017 Y Y N Y Y Y Y Y Y Y 
Gopalakrishnan 
2018 

Y Y N Y Y Y Y Y Y N 

 

1. Was the study question or objective clearly stated? 2 Was the study population clearly and fully described, including case 

definition? 3. Were the cases consecutive? 4. Were the subjects comparable? 5. Was the experimental procedure clearly 

described? 6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study 

participants? 7. Was the duration of the experiment appropriate? 8. Were the statistical methods well-described? 9. Were the 

results well-described? 10. Were the conditions sufficiently counterbalanced or randomised? Y = Yes, N = No, N/A = Not 

applicable, CD = Cannot determine. 
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Appendix C – Chapter seven study four, CHEPS artefact attenuation 

 

Appendix C.1 Independent Component Analysis outputs for various stages of data 

cleaning 

 

 

Figure 9.2: FieldTrip output of select raw empty room data components with stimulus-locked characteristics.  
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Figure 9.4: FieldTrip output of select SSS-cleaned empty room components with stimulus-locked characteristics 

 

tSSS 0.98 components 

 

Figure 9.5: FieldTrip output of select tSSS-cleaned empty room components with stimulus-locked characteristics 

(correlation limit 0.98) 
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Figure 9.6: FieldTrip output of select tSSS-cleaned empty room components with stimulus-locked characteristics 

(correlation limit 0.6) 
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Participant components 

 

Figure 9.7: FieldTrip output of select raw participant data components with stimulus-locked characteristics. 

Eyeblink and heartbeat components are also visible (76 and 103). Compared to Fig 10.2, which has had the same 

steps applied to it, it is clear that the artefact has spread its energy over many more components. 

 

 

 

 



228 
 

 

Figure 9.8: FieldTrip output for empty room data averaged over all trials and all gradiometers. Left: Empty room 

dataset before and after ICA (they are identical); Right: Raw data before and after ICA (a reduction of field strength 

is noticeable after ICA). 

 

Appendix C.2 Beamformer outputs 

 

Figure 9.9: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room dataset 

(κ = 202, λ = 0) 
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Figure 9.10: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 202, λ = 5) 

 

Figure 9.11: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 202, λ = 10) 
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Figure 9.11: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 202, λ = 25) 

 

 

Figure 9.12: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 50, λ = 0) 
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Figure 9.13: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 50, λ = 5) 

 

 

Figure 9.14: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 50, λ = 10) 
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Figure 9.15: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 50, λ = 25) 

 

 

Figure 9.16: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 60, λ = 0) 
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Figure 9.17: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 60, λ = 5) 

 

 

Figure 9.18: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 60, λ = 10) 
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Figure 9.19: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset (κ = 60, λ = 25) 

 

 

 

Figure 9.20: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 0). This shows full suppression 

of the artefact. 
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Figure 9.21: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 5) 

 

 

 

Figure 9.22: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 10) 
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Figure 9.23: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 25) 

 

 

Figure 9.24: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 50, λ = 0) 
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Figure 9.25: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 50, λ = 5) 

 

 

Figure 9.26: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 50, λ = 10) 
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Figure 9.27: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 50, λ = 25) 

 

 

 

Figure 9.28: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 0) 
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Figure 9.29: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 5) 

 

 

 

Figure 9.30: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 10) 
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Figure 9.31: FieldTrip LCMV beamformer output for the post-stimulus time window of the raw empty-room 

dataset, performed after removing stimulus-locked components via ICA (κ = 60, λ = 25) 

 

 

 

Figure 9.32: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 50, λ = 0) 
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Figure 9.33: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 50, λ = 5) 

 

 

 

Figure 9.34: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 50, λ = 10) 
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Figure 9.34: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 50, λ = 25) 

 

 

 

Figure 9.35: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 60, λ = 0) 
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Figure 9.36: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 60, λ = 5) 

 

 

 

Figure 9.37: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 60, λ = 10) 
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Figure 9.38: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.98, κ = 60, λ = 25) 

 

 

 

Figure 9.39: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 50, λ = 

0) 
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Figure 9.40: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 50, λ = 

5) 

 

 

 

 

Figure 9.41: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 50, λ = 

10) 
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Figure 9.41: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 50, λ = 

25) 

 

 

 

Figure 9.42: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 60, λ = 

0) 
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Figure 9.43: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 60, λ = 

5) 

 

 

 

Figure 9.44: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 60, λ = 

10) 
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Figure 9.45: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.98, κ = 60, λ = 

25) 

 

 

 

Figure 9.46: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 50, λ = 0) 
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Figure 9.47: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 50, λ = 5) 

 

 

Figure 9.48: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 50, λ = 10) 
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Figure 9.49: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 50, λ = 25) 

 

 

 

Figure 9.50: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 60, λ = 0) 
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Figure 9.51: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 60, λ = 5) 

 

 

 

Figure 9.52: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 60, λ = 10) 
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Figure 9.53: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset (correlation limit = 0.6, κ = 60, λ = 25) 

 

 

 

Figure 9.54: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 50, λ = 0) 
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Figure 9.55: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 50, λ = 5) 

 

 

 

Figure 9.56: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 50, λ = 

10) 
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Figure 9.57: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 50, λ = 

25) 

 

 

 

Figure 9.58: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 60, λ = 0) 
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Figure 9.58: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 60, λ = 5) 

 

 

 

Figure 9.58: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 60, λ = 

10) 
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Figure 9.58: FieldTrip LCMV beamformer output for the post-stimulus time window of the tSSS-cleaned empty-

room dataset, performed after removing stimulus-locked components via ICA (correlation limit = 0.6, κ = 60, λ = 

25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


