
Computers & Security 133 (2023) 103388

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Towards a robust, effective and resource efficient machine learning

technique for IoT security monitoring

Idris Zakariyya a,∗, Harsha Kalutarage b, M. Omar Al-Kadri c

a School of Computing Science, University of Glasgow, UK
b School of Computing, Robert Gordon University, UK
c School of Computing and Digital Technology, Birmingham City University, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Internet of things

Deep neural networks

Cybersecurity

Resource constrained

Attack detection

Federated learning

The application of Deep Neural Networks (DNNs) for monitoring cyberattacks in Internet of Things (IoT) systems
has gained significant attention in recent years. However, achieving optimal detection performance through
DNN training has posed challenges due to computational intensity and vulnerability to adversarial samples. To
address these issues, this paper introduces an optimization method that combines regularization and simulated
micro-batching. This approach enables the training of DNNs in a robust, efficient, and resource-friendly manner
for IoT security monitoring. Experimental results demonstrate that the proposed DNN model, including its
performance in Federated Learning (FL) settings, exhibits improved attack detection and resistance to adversarial
perturbations compared to benchmark baseline models and conventional Machine Learning (ML) methods
typically employed in IoT security monitoring. Notably, the proposed method achieves significant reductions
of 79.54% and 21.91% in memory and time usage, respectively, when compared to the benchmark baseline in
simulated virtual worker environments. Moreover, in realistic testbed scenarios, the proposed method reduces
memory footprint by 6.05% and execution time by 15.84%, while maintaining accuracy levels that are superior or
comparable to state-of-the-art methods. These findings validate the feasibility and effectiveness of the proposed
optimization method for enhancing the efficiency and robustness of DNN-based IoT security monitoring.
1. Introduction

The Internet of Things (IoT) has witnessed significant growth, con-

necting physical devices through diverse protocols to perform specific
tasks. These devices utilize embedded systems such as processors, sen-

sors, and communication hardware to collect and exchange data. Pro-

jections indicate that the global data collected by IoT devices will reach
73.1 zettabytes by 2025 (Bojan, 2022). Advancements in affordable
computer chips and wireless networks have enabled the realization of
IoT technology, fostering unprecedented connectivity among devices.
This technology has facilitated the development of smart homes, smart
cities, and various intelligent automation systems. It is estimated that
approximately 125 billion devices will be interconnected by 2030 (Je-

nalea, 2017).

However, the proliferation of IoT devices has exposed them to cy-

berattacks, as attackers exploit vulnerabilities to execute various attacks
when devices connect to the external world. The Mirai botnet, a well-

known example, demonstrates the consequences of such attacks (An-

* Corresponding author.

tonakakis et al., 2017). To counter these threats, integrating Artificial
Intelligence (AI) with IoT systems has emerged as a solution. By lever-

aging AI, whether in a centralized or decentralized approach, malicious
activities can be detected and thwarted effectively. However, resource-

constrained IoT devices typically have limited hardware capabilities,
including 32 KB to 128 KB units of Random Access Memory (RAM)
and a 256 KB to 512 KB embedded flash memory footprint (Zandberg
et al., 2019). These constraints pose challenges for deploying resource-

intensive AI models. Consequently, it is crucial to address security
challenges in IoT networks through effective and efficient detection
techniques.

Recent research has demonstrated the potential of AI-based tech-

nologies, specifically Machine Learning (ML) and Deep Neural Net-

work (DNN) approaches, for cybersecurity monitoring (Merenda et al.,
2020; Vinayakumar et al., 2018). DNN-based methods have garnered
particular interest due to their ability to detect attacks on various tar-

gets, including IoT devices, endpoint devices, and the cloud (Kshetri,
2021). However, a significant limitation of DNN-based approaches is
Available online 20 July 2023
0167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access

E-mail addresses: Idris.Zakariyya@glasgow.ac.uk (I. Zakariyya), h.kalutarage@rg

https://doi.org/10.1016/j.cose.2023.103388

Received 29 September 2022; Received in revised form 3 June 2023; Accepted 16 Ju
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

u.ac.uk (H. Kalutarage), omar.alkadri@bcu.ac.uk (M.O. Al-Kadri).

ly 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:Idris.Zakariyya@glasgow.ac.uk
mailto:h.kalutarage@rgu.ac.uk
mailto:omar.alkadri@bcu.ac.uk
https://doi.org/10.1016/j.cose.2023.103388
https://doi.org/10.1016/j.cose.2023.103388
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103388&domain=pdf
http://creativecommons.org/licenses/by/4.0/

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

their substantial computational resource requirements for construct-

ing models capable of providing an improved threat detection system
with a multi-dimensional network security feature set (Aggarwal et al.,
2018). Consequently, deploying such resource-intensive models in en-

vironments with limited computing resources, such as IoT, becomes
challenging. This issue is further exacerbated in Federated Learning
(FL) contexts, where on-device model learning facilitates collaborative
learning among edge devices without exposing their data to the cloud
or fog (Yang et al., 2019). Additionally, DNN-based detection methods
can be vulnerable to adversarial samples, which pose a significant secu-

rity threat.

To address these limitations and enhance the efficiency and robust-

ness of DNN-based IoT security monitoring, this paper investigates the
challenges associated with employing DNN methods in this context. The
main aim of this research is to create a Resource-Efficient Deep Neu-

ral Network (REDNN) model that can effectively detect attacks on IoT
networks. The objective is to achieve a comparable or improved level
of accuracy compared to existing models while maintaining a desired
level of resource efficiency. The study also focuses on evaluating the
resilience of the proposed REDNN method against adversarial attacks.
Additionally, the research aims to showcase the efficiency and accuracy
of REDNN in real-time attack detection within a decentralized federated
scenario. Specifically, we address the following research questions:

RQ1: How can an existing DNN be trained to create a REDNN model
capable of detecting attacks on IoT networks with comparable
or improved accuracy compared to baseline models, while also
achieving a desired level of resource efficiency? (sections 3.2

and 5.1).

RQ2: Is the proposed REDNN method robust against adversarial attacks
compared to baseline and other conventional ML models? (sec-

tions 5.2 and 5.2.3).

RQ3: Does the resulting REDNN exhibit both efficiency and accuracy
in real-time detection of attacks on IoT networks within a decen-

tralized federated scenario, showcasing better or state-of-the-art
performance? (section 5.3).

To address these research questions, this study introduces the
REDNN methodology, which optimizes DNN models for resource effi-

ciency while maintaining or improving accuracy performance. Addi-

tionally, we explore the resilience of REDNN against adversarial attacks
and evaluate its performance in a decentralized federated scenario. We
conduct experiments using a Fully Connected Neural Network (FCNN)
and eleven benchmark datasets specific to IoT environments. The ex-

perimental results demonstrate the effectiveness of REDNN in terms
of attack detection and resource efficiency. Consequently, this paper
presents the following contributions:

1. Introducing the REDNN methodology as a solution to the chal-

lenges associated with deploying DNN technologies efficiently in
IoT environments.

2. Evaluating the resilience of REDNN against adversarial attacks, of-

fering robust security measures for IoT devices.

3. Introducing the Resource Efficient Federated Deep Neural Network
(REFDNN) methodology for training DNN models in a federated
IoT security monitoring environment, providing accurate security
monitoring while ensuring data privacy and reducing memory foot-

print and execution time.

To the best of our knowledge, this is the first attempt to examine
the capabilities of DNN models for resource efficiency, robust detec-

tion, and on-device learning in the context of IoT security, utilizing a
large number of benchmark datasets generated by hostile attacks on
commercial IoT devices.

Throughout the paper, the term “resource-efficient” is employed to
2

describe models that exhibit reduced memory consumption and require
Computers & Security 133 (2023) 103388

Table 1

List of acronyms.

Acronym Meaning

Acc/acc Accuracy

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

BFDNN Baseline Federated Deep Neural Network

B Byte

CPSs Cyber-physical Systems

CNN Convolutional Neural Network

DNN Deep Neural Network

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

FCNN Fully Connected Neural Network

FedAvg Federated Averaging

FGSM Fast Gradient Sign Method

FL Federated Learning

GB Gradient Boosting

IoT Internet of Things

LSTM Long Short Term Memory

MB Megabyte

mins Minutes

ML Machine Learning

ms Milliseconds

NS2 Network Simulator Version 2

OS Operating System

PGD Projected Gradient Descent

RAM Random Access Memory

REDNN Resource Efficient Deep Neural Network

REFDNN Resource Efficient Federated Deep Neural Network

SVM Support Vector Machine

TFLite TensorFlow Lite

WS Websocket

less time in comparison to their baseline benchmarks. Hence the term
is defined in relative terms rather than absolute measurements.

The remaining sections of this paper are structured as follows. Sec-

tion 2 provides a thorough review of the related literature. Section 3

outlines the proposed methodology and describes the FL technique uti-

lized, while Section 4 elaborates on the evaluation process. The findings
and analysis are presented in Section 5. Finally, Section 6 provides
concluding remarks and identifies avenues for future research. The
acronyms used throughout the paper are listed in Table 1.

2. Related work

The following section presents a comprehensive review of relevant
studies that delve into the exploration of AI-based detection algorithms
employed for IoT security monitoring with the aim of resolving secu-

rity and privacy issues that arise during the deployment of AI-based
solutions in environments with limited resources. Additionally, it inves-

tigates contemporary FL approaches utilized in IoT environments with
the primary objective of addressing data privacy, security, and resource
efficiency concerns in realistic decentralized IoT network environments.

2.1. AI techniques for IoT security monitoring

The literature provides ample evidence of the widespread use of AI
techniques to address security challenges within the IoT (Sánchez et al.,
2021). Elrawy et al. (2018) recommended the development of ML and
DNN-based intrusion detection systems for IoT, which have shown sig-

nificant potential in the field of IoT security monitoring research. Hsu
et al. (2019) proposed a framework that utilizes Support Vector Ma-

chine (SVM) to monitor IoT network security by detecting anomalous
behavior. The SVM approach achieved a detection accuracy of 92.30%
using simulated IoT smart homes data. Similarly, (Lopez-Martin et al.,
2020) proposed an IoT network traffic forecasting technique using the
stochastic Gradient Boosting (GB) classifier, which exhibited superior
performance in detecting active connections compared to inactive traf-
fic flow. In addition, (Tang et al., 2020) enhanced the Adaboost algo-

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

rithm to detect low-rate Distributed Denial-of-Service (DDoS) attacks in
an IoT environment, achieving a detection rate of 97.06% using Net-

work Simulator Version 2 (NS2) for model performance assessment.
Furthermore, (Zhang et al., 2019) developed a DNN-based framework to
detect cyber-attacks in various Cyber-physical Systems (CPSs). Finally,
(Li et al., 2022) explored the use of DNN for accurate classification
and analysis of IoT smart cities data, achieving a prediction accuracy of
97.80%.

Several studies have investigated the use of DNN on resource-

constrained mobile devices for device-level applications. For instance,
(Tang et al., 2017) conducted an investigation into the suitability of a
compiler-based platform for benchmarking DNN inference on mobile
devices. Meanwhile, (Iandola and Keutzer, 2017) focused on minimiz-

ing the computational resources required for deploying DNN in such
environments by proposing various procedures for creating a smaller
DNN architecture. However, their work lacked empirical evaluations.
In contrast, (Shen et al., 2020) proposed a technique for compressing
CNN to enable structure learning in IoT resource-constrained environ-

ments. Their approach demonstrated promise on benchmark datasets
such as CIFAR-10 and Imagenet, but failed to consider memory usage
and lacked evaluation on IoT benchmark datasets. Similarly, (Kodali
et al., 2017) utilized FCNN for classification tasks on resource-limited
devices. However, their approach may not be scalable for constrained
IoT devices due to the lack of consideration for model complexity dur-

ing FCNN architecture selection.

Our paper proposes a novel approach that targets effective attack
detection with resource minimization by reducing FCNN computational
complexity. The method employs pruning, simulated micro-batching,
and parameter optimization to regularize the resulting DNN model and
reduce memory and time requirements while increasing accuracy per-

formance. This approach distinguishes itself from existing proposals in
the literature, which typically compress DNN by quantizing weights
and bias parameters. Overall, this study aims to reduce computational
complexity while enhancing the accuracy of FCNN-based models for ef-

fective attack detection in resource-constrained environments.

2.2. Adversarial attacks against AI

Adversarial attacks can significantly degrade the performance of
AI-based models used in IoT security monitoring by exploiting vulner-

abilities in the model. One such attack is the data poisoning attack,
where an attacker modifies the training data by injecting poisonous
instances to manipulate the model’s learning process (Shafahi et al.,
2018). This can cause the model to misclassify legitimate instances, re-

sulting in compromised security (Pitropakis et al., 2019). In addition
to poisoning attacks, perturbation-based attacks such as Fast Gradient
Sign Method (FGSM), and Projected Gradient Descent (PGD) (Kurakin
et al., 2016), semantic (Hosseini et al., 2017), and random noise (Atha-

lye et al., 2018) attacks can be used to generate new adversarial samples
during the testing phase.

The aforementioned perturbation methods employ a white-box ap-

proach, assuming the adversary has full knowledge of the cybersecurity
monitoring model. Therefore, they are commonly used in IoT security
monitoring (Aloraini et al., 2022). Pujari et al. (2022) investigates the
effectiveness of conventional ML-based models against adversarial at-

tacks crafted with IoT network security datasets, while (Abou Khamis
and Matrawy, 2020) examine the robustness of DNN in similar scenar-

ios, but only considering adversarial attacks generated using IP-based
datasets. However, a robust and efficient classification model can with-

stand a wide range of adversarial perturbations achieved by training
the model with perturbed samples to enhance regularization for re-

silience testing (Tramèr et al., 2017). This paper proposes an approach
to counter IoT security attacks without using perturbed samples during
training. The goal is to leverage the optimized REDNN model’s ability
to combat adversarial attacks effectively and efficiently. Furthermore,
3

we investigate the impact of implementing 16 bit Full Precision (FP16)
Computers & Security 133 (2023) 103388

Algorithm 1 FCNN training.

Input: Labelled data 𝑑 , Number of iteration  , Batch size 
Output: Baseline model 𝑏

1: function BASE(𝑑 []) ⊳ Training baseline model

2: for 𝑖 = 1 to  ; do

3: Mini-batch 𝐵 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚} ⊂ 𝑑 ⊳ Size 
4: 𝐹𝑝(𝐵) ⊳ Forward propagation

5: 𝑖 ←𝐿 ⊳ 𝐿 = Base loss

6: 𝐵𝑝(B) ⊳ Backward propagation

7: Compute gradients for parameters update

8: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
9: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖

10: 𝑏 = Trained model that estimate 𝑖 , 𝑡𝑖, 𝑚𝑖

11: end for

12: return (𝑏, 𝑡𝑖, 𝑚𝑖, 𝑖)
13: end function

on the FCNN and REDNN model’s robustness to evaluate the feasibility
of using a lightweight and robust DNN model in a resource-constrained
IoT environment.

2.3. Federated learning (FL) in IoT environment

In the domain of IoT security monitoring, FL is gaining popular-

ity. Preuveneers et al. (2018) investigated FL applications for intrusion
detection in IoT networks, while (Lim et al., 2020) and (Imteaj et al.,
2021) identified open research problems on FL for resource-constrained
IoT devices. Additionally, (Nguyen et al., 2019) proposed a signature-

based FL approach to detect attacks on IoT devices, and (Liu et al.,
2020) leveraged FL capabilities to detect attacks on Industrial IoT (IIoT)
devices by training a DNN model in a federated manner using a labeled
dataset. The authors integrated CNN and Long Short-Term Memory
(LSTM) for better model convergence. However, the MNIST and CIFAR-

10 datasets utilized for estimating the model parameter gradients are
non-IoT data. In contrast, (Jiang et al., 2019) employed model prun-

ing for efficient FL training on edge devices, utilizing an image dataset.
Meanwhile, (Bonawitz et al., 2019) proposed a TensorFlow-based FL
framework for mobile devices, utilizing Android mobile devices for
evaluation. Additionally, (Popoola et al., 2021) utilized FL to detect
a zero-day attack in an IoT network environment, taking advantage of
FL data privacy without considering resource limitations. In their in-

vestigations, they used the N-BaIoT (Meidan et al., 2018) device-centric
dataset.

However, existing proposals in the literature do not take into ac-

count the optimization of FL training specifically for reducing memory
consumption on IoT networks. This paper addresses this limitation in
Section 3.4 by optimizing the federated training process using tech-

niques such as pruning, micro-batching, and parameter regularization,
which are specifically tailored to enhance resource efficiency in the con-

text of FL training on IoT networks.

3. Methodology

To validate the viability of the proposed approach, an evaluation
was conducted using a FCNN on multiple IoT benchmark datasets. The
optimization algorithm of the FCNN was leveraged to generate the
REDNN.

3.1. Fully connected neural network (FCNN)

A FCNN is a type of neural network consisting of multiple layers
of neurons that process input data. Each neuron computes an output
based on its activation function and input values, and these neurons are
connected in a non-linear pattern of layers using weights and bias pa-

rameters. The weights and biases serve as information storage units and
control the flow of operations within the network. In this study, we used
Algorithm 1 to obtain the optimized FCNN model (𝑏) as a baseline for

comparison. The BASE function in line 1 of Algorithm 1 corresponds to

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Algorithm 2 Proposed algorithm to obtain REDNN.

Input: Penalty term 𝜆, (𝑑 ,  and 𝐵 in Algorithm 1)

Output: Efficient model 𝑒

1: function EFFICIENT(𝑑 [])
2: for 𝑗 = 1 to  ; do

3: Micro-batch 𝑀 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂𝐵

4: 𝐹𝑝(𝑀) ⊳ Forward propagation

5: 𝑡 =𝐿 ⊳ L = Initial loss

6: 𝑚𝑡 , 𝑡𝑡 ⊳ 𝑚𝑡 , 𝑡𝑡 estimated memory and time using 𝑡
7: 𝑗 ← 𝑡 + 𝜆 ∑𝑊

𝑗=1
(𝑤2

𝑗
∕𝑤2

0)
(1+𝑤2

𝑗
∕𝑤2

0)

8: 𝐵𝑝(M) ⊳ Backward propagation

9: Compute gradients for parameters update

10: if (𝑗 ≤ 𝑡) then

11: 𝜆 = 𝜆 +△𝜆

12: Estimate 𝑚𝑗 ⊳ Execution memory at epoch 𝑗
13: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
14: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then

15: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory

16: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time

17: 𝑒 = Trained model that estimate 𝑗 , 𝑚𝑡, 𝑡𝑡
18: end if

19: end if

20: end for

21: return (𝑒, 𝑗 , 𝑚𝑡, 𝑡𝑡)
22: end function

mini-batch training with the gradient descent algorithm, which mini-

mizes the objective loss function (𝐿) in Equation (1), specifically the
negative log-likelihood (cross-entropy), to learn from the training set
(𝑑) and map unseen samples. The resulting FCNN approach is a su-

pervised neural network classifier, 𝑏, which takes an input 𝑑 and
outputs a probability class vector 𝑌 . The desired output 𝑌 is rounded
to the closest integer using a specified threshold value 𝑡 as in Equation
(2), representing either a benign (1) or an attack (0) traffic instance.

𝐿 = 1
𝑚

𝑚∑
𝑖=1

−(𝑌𝑖 ∗ log(𝑌𝑖) + (1 − 𝑌𝑖) ∗ log (1 − (𝑌𝑖)) (1)

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛=

{
0 if 𝑌 ≤ 𝑡

1 if 𝑌 > 𝑡
(2)

3.2. Robust effective and resource efficient DNN (REDNN)

As highlighted in section 3.1, training a resource-efficient DNN
model can be an intricate task, particularly in the context of IoT se-

curity monitoring (Abiodun et al., 2018). The intricacy of this task is
due to the numerous rounds of training iterations and the requisite
DNN model parameters needed to design and build an optimal net-

work architecture. This complexity is compounded when building an
efficient threat detection system with supervised DNN for cybersecurity
monitoring, especially when dealing with multidimensional datasets. To
address this issue, the baseline model 𝑏 in Algorithm 1 is used to ob-

tain its resource-efficient counterpart (REDNN). The training procedure,
in Algorithm 2, optimizes a function using 𝑑 to obtain the efficient 𝑀𝑒

equivalent to the REDNN model. To achieve this, the optimization pro-

cedure utilizes micro-batching (Oyama et al., 2018; Huang et al., 2019)
for efficient model training that is suitable for on-device learning as
well.

The function procedure requires 𝑑 in mini-batch and micro-batch
forms and iterates  times repeatedly to return the efficient 𝑀𝑒 repre-

senting the REDNN model. The optimization process utilizes a penalty
function (weight elimination) (Han et al., 2015) represented by 𝐸 in
Equation (3) with a weight threshold parameter 𝑤0. The expression
in line 7 of Algorithm 2 is responsible for pruning the network model
weights to reduce its architectural complexity. This procedure is useful
in distinguishing the sets of relevant weights that can enable efficient
model learning from the irrelevant ones, particularly the insignificant
large weights of the baseline 𝑏 model.

In the process, weight values 𝑊 greater than 𝑤0 can yield a com-
4

plexity cost closer to 1 and require regularization using the penalty
Computers & Security 133 (2023) 103388

Fig. 1. Baseline federated learning procedure.

parameter 𝜆. This is important to reduce the complexity of the model to
enable faster training. As we are more concerned with a less complex,
efficient, and effective model building that can retain its performance,
we consider the set of parameters that can give a training error 𝑗 lower
than 𝑡. The most important parameters are the 𝑤0 and 𝜆, which are the
threshold that controls the learning of the model while reducing its ar-

chitecture.

In line 10 of Algorithm 2, the regularization error 𝑗 is compared
with the initialized error 𝑡 before regularization. This is to examine
the convergence rate of the model during each epoch iteration. Based
on the outcomes of line 10, relaxation of the 𝜆 value using the △𝜆 oc-

curs in line 11. After these steps, the memory footprint and execution
time are estimated in lines 12 and 13 and compared with the initialized
values from line 6 in line 14. This process aims to find a model archi-

tecture with a faster convergence rate and minimal memory and time
requirements for training and testing. Due to the regularization in lines
10 and 11 of Algorithm 2, the returned REDNN model is less complex.

𝐸 = 𝜆

𝑊∑
𝑗=1

(𝑤2
𝑗
∕𝑤2

0)

(1 +𝑤2
𝑗
∕𝑤2

0)
(3)

3.3. Federated deep neural network (BFDNN)

Given the widespread adoption of FL, particularly in cybersecurity
monitoring, its exploration in the context of IoT security monitoring can
be beneficial. FL’s ability to preserve on-device training data can be use-

ful in proposing AI-based security mechanisms for resource-constrained
IoT devices. To this end, the Baseline Federated Deep Neural Network
(BFDNN) training procedure is illustrated in Fig. 1, which utilizes the
function BASE to train a baseline model using stochastic gradient de-

scent in FL settings. Algorithm 3 describes the details of this procedure,
where each client performs iterative rounds of gradient descent weights
for model aggregation, and Device UPDATE distributes a master model

to each client’s subset at each communication round. Using the pro-

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Algorithm 3 BFDNN training on each distributed node.

Input: Labelled data 𝑡𝑟 , Iteration number  , Batch size 
Output: Baseline federated model 𝑛

1: function BASE(𝑡𝑟[]) ⊳ Training baseline model

2: for 𝑖 = 1 to  do ⊳ for each local epoch iterations

3: Mini-batch 𝐵 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂𝐷𝑡𝑟 ⊳ Mini-batch size 𝑆𝑚 ← |𝐷𝑡𝑟|∕∕
4: 𝐹𝑝(𝐵) ⊳ Forward propagation with 𝐵
5: 𝑖 ←𝐿 ⊳ 𝐿 = Base loss

6: 𝐵𝑝(B) ⊳ Backward propagation

7: function DEVICE UPDATE((𝑑, 𝑤)) ⊳ Run on device 𝑑 with weights 𝑤
8: 𝐵𝑠 ← (Split data 𝐵 into batches of size 𝑆𝑚) ⊳ 𝑆𝑚 is a local Mini-batch size

9: for batch 𝑏 ∈ 𝐵𝑠 do

10: 𝑤 ← local weights update ⊳ device local weights update computation

11: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
12: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖
13: 𝑛 = Trained model that estimate 𝑖 , 𝑚𝑖, 𝑡𝑖
14: end for

15: end function

16: end for

17: return 𝑤 to server in Algorithm 5 ⊳ Calls to coordinating server in Algorithm 5

for weights averaging

18: return (𝑛, 𝑖 , 𝑚𝑖, 𝑡𝑖)
19: end function

Algorithm 4 Proposed REFDNN training on each distributed node.

Input: Penalty term 𝜆, (𝑡𝑟,  , 𝐵, 𝐿 and 𝑆𝑚 in Algorithm 3)

Output: Efficient federated model 𝑓

1: function EFFICIENT(𝑡𝑟[])
2: for 𝑗 = 1 to  ; do

3: Micro-batch 𝑀 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂𝐵 ⊳ 𝐵 ⊂𝑡𝑟

4: 𝐹𝑝(𝑀) ⊳ Forward propagation with 𝑀
5: 𝑡 =𝐿 ⊳ Initialized loss

6: Estimate 𝑚𝑡 , 𝑡𝑡 Initialized memory and time based on 𝑡
7: 𝑗 ← 𝑡 + 𝜆 ∑𝑊

𝑗=1
(𝑤2

𝑗
∕𝑤2

0)
(1+𝑤2

𝑗
∕𝑤2

0)

8: 𝐵𝑝(M) ⊳ Backward propagation with 𝑀
9: function DEVICE UPDATE((𝑑)) ⊳ Run on device 𝑑

10: 𝑀𝑠 ← (Split data 𝑀 into batches of size 𝑆𝑚)

11: for batch 𝑏 ∈𝑀𝑠 do

12: 𝑤 ← local weights update ⊳ device local weights update computation

13: if (𝑗 ≤ 𝑡) then

14: 𝜆 = 𝜆 +△𝜆

15: Estimate 𝑚𝑗 ⊳ Execution memory at epoch 𝑗
16: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
17: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then

18: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory

19: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time

20: 𝑓 = Trained model that estimate 𝑗 , 𝑚𝑡, 𝑡𝑡
21: end if

22: end if

23: end for

24: end function

25: end for

26: return 𝑤 to server in Algorithm 5 ⊳ Calls to Algorithm 5 for model weights
averaging

27: return (𝑓 , 𝑗 , 𝑚𝑡, 𝑡𝑡)
28: end function

posed method in Algorithm 4, resource efficient version of this standard
FL approach was obtained.

3.4. Resource efficient federated deep neural network (REFDNN)

Training a resource-efficient DNN model for FL tasks can be a
challenging task, especially in an IoT network environment. This is
due to the FL communication rounds and DNN model parameters re-

quirements in building the desirable network architecture (He et al.,
2022). The complexity of such an approach increases with multidi-

mensional datasets. A FedAvg core model (BFDNN) was examined
with FCNN and CNN model variations against some IoT and non-IoT
benchmark datasets and its optimization algorithm was exploited to
obtain REFDNN. This optimized training procedure is illustrated in Al-

gorithm 4. For better performance, the set of model parameters that
can produce a lower error based on line 7 of Algorithm 4 was utilized.
5

The function procedure in Algorithm 4 is responsible for computing
Computers & Security 133 (2023) 103388

Algorithm 5 Coordination Procedure for Algorithm 3 and 4.

Server Executes:

1: function SERVER WEIGHTS UPDATE

2: initialize weight 𝑤0 ;

3: initialized 𝑗 = 1
4: while 𝑗 ≤ 𝑓 do ⊳ 𝑓 is the number of federated round

5: 𝑚 ←𝑚𝑎𝑥(𝐶.𝐾, 1) ⊳ 𝐶.𝐾 fraction of clients 𝐾
6: 𝑅 ← random set of 𝑆𝑗 ⊳ 𝑆𝑗 ← random set of 𝑓 clients

7: for 𝑘 ∈ 𝑅 in parallel do ⊳ 𝑘 client index, a selected clients from 𝑅
8: Weight update for each client 𝑘 ⊳ Federated model weight update for

Algorithm 3 or 4
9: end for

10: Averaged weights update ⊳ Average weights update based on client 𝐾
weights

11: 𝑤𝑗+1 ←
∑𝐾

𝑘=1
𝑓𝑘

𝑓
𝑤𝑘

𝑗+1 ⊳ 𝑓𝐾 = client 𝑘 sample size, 𝑓 total sample size

12: 𝑗 = 𝑗 + 1
13: end while

14: return Averaged updated weights

15: end function

and updating client device weights at each local epoch iteration before
sending them to the coordinating server. In line 13 of Algorithm 4, the
device model error is compared with the initialized error before model
regularization in line 14. Following this stage, computational memory
footprints and execution time were estimated in lines 15 and 16. Sub-

sequently, in line 17, these estimates were compared to the initialized
values mentioned in line 6 in order to determine the minimal mem-

ory constraint generated by the client device model. Device models
with minimal resource consumption are returned to the coordinating
server in Algorithm 5 together with their weights for model averaging.
Then, the coordinating server can update the client model weights in a
federated setting and perform weight averaging while returning the up-

dated averaged weights for model aggregation. This process can reduce
the client’s communication time and computational complexity while
building the resource-efficient aggregate model of REFDNN. The mem-

ory and execution time savings for each client device at each federated
round and accumulating all these savings can lead to significant savings
when the model is converged.

4. Evaluation

This section outlines the evaluation criteria for the FCNN and
REDNN models and provides information on the datasets used to create
them. The datasets used in this study include N-BaIoT (Meidan et al.,
2018), Kitsune (Mirsky et al., 2018), and WUSTL (Teixeira et al., 2018),
each of which is briefly described.

4.1. Utilized datasets

The N-BaIoT dataset comprises authentic data samples obtained
from nine commercial IoT devices that demonstrate various botnet and
benign network traffic flows (Meidan et al., 2018). These devices in-

clude (i) Danmini Doorbell, (ii) Ecobee Thermostat, (iii) Ennio Doorbell,
(iv) Philips B120N10, (v) Provision PT-737E, (vi) Provision PT-838,
(vii) Samsung SNH-1011-N, (viii) SimpleHome XCS-1002-WHT, and (ix)
SimpleHome XCS-1003-WHT. These devices have either been affected
by BASHLITE or Mirai attacks, or have been operating normally. Each
device has extensive records of attacks and regular instances that com-

prise 115 feature vectors. Consequently, the N-BaIoT dataset is an ideal
benchmark for developing IoT network intrusion detection systems. The
FCNN and REDNN models were trained and tested utilizing device data
from N-BaIoT.

The Kitsune dataset contains various network traffic captured in an
IoT setting (Mirsky et al., 2018). The dataset comprises attacks that
breach confidentiality, integrity, and authenticity, and these attacks are
categorized into (i) reconnaissance attacks, (ii) DoS attacks, and (iii)
Mirai attacks. The subset of the dataset used to evaluate our models
comprises 764,137 instances of Mirai and normal traffic. The dataset

has 115 features and a normal distribution of 121,621 raw traffic data.

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Table 2

Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Output Topology

Danmini Doorbell 49,548 968,750 115 1 128-128-128-128

Ecobee Thermostat 13,113 822,763 115 1 32-64-64-16

Ennio Doorbell 39,100 316,400 115 1 64-128-128-64

Philips B120N10 175,240 923,437 115 1 128-128-128-128

Provision PT-737E 62,154 766,106 115 1 128-128-128-128

Provision PT-838 98,514 729,862 115 1 128-128-128-128

Samsung SNH-1011-N 52,150 323,072 115 1 128-128-128-128

SH XCS-1002-WHT 46,585 816,471 115 1 128-128-128-128

SH XCS-1003-WHT 19,528 831,298 115 1 128-128-128-128

Kitsune 121,621 642,516 115 1 128-128-128-128

Wustl 6,566,438 471,545 6 1 128-128-128-128
WUSTL dataset consists of multiple reconnaissance attacks with nor-

mal traffic that emulate real-world industrial IoT systems for CPSs
security research (Teixeira et al., 2018). This dataset is useful for inves-

tigating the feasibility of ML algorithms for detecting various real-world
attacks. The raw data consists of 7,037,983 data samples with seven (7)
features. It comprised 93.30% benign records with 6.70% attacks data
records.

4.2. Data preprocessing

The datasets were carefully selected for frequent model training and
thorough evaluation. These datasets provide numerical traffic flow in-

formation, which we utilized in our investigations. Each dataset was
split into training and testing samples, with 80% allocated for train-

ing and 20% for testing purposes. The data input vectors underwent
normalization using unity-based normalization and feature scaling. In a
dataset comprising 𝑛 data features, namely 𝑥1, 𝑥2, ..., 𝑥𝑛, normalization
was performed using the formula specified in Equation (4). The nor-

malized value of the 𝑖𝑡ℎ feature is denoted by 𝑥𝑖′, while 𝑥𝑖 represents
its original value. Additionally, 𝑚𝑖𝑛𝑥𝑖 and 𝑚𝑎𝑥𝑥𝑖 represent the minimum
and maximum values of the 𝑖𝑡ℎ feature across the entire dataset, respec-

tively.

𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖

𝑚𝑎𝑥𝑥𝑖
−𝑚𝑖𝑛𝑥𝑖

(4)

Furthermore, in addition to the datasets employed in section 4.1 and
the preprocessing procedures outlined in section 4.2 for technique im-

plementation, we incorporated the MNIST dataset into our study. The
MNIST dataset is an appropriate benchmark for evaluating the model’s
learning capacity over non-IoT cybersecurity datasets. This evaluation
is crucial to investigate whether the proposed model can efficiently de-

tect complex patterns in other datasets. The MNIST handwritten digits
dataset is a subset of the dataset from the National Institute of Standards
and Technology (Baldominos et al., 2019). It comprises 60,000 training
digit samples and 10,000 testing digits, which are size-normalized and
consist of 28*28 images with 256 gray levels.

4.3. Experimental setup

We employed Python version 3.76 to construct each model on a
desktop computer with Intel Xeon E5-2695 CPUs, containing 4 cores
and running at 2.10 GHz, with 16.0 GB of installed memory. We utilized
the integrated memory usage to profile the model’s memory consump-

tion (Pedregosa and Gervais, 2019). During training, the parameters
remain constant to ensure a fair comparison. This practice is applied to
the baseline FCNN model, the optimized REDNN model, and the adver-
6

sarial process.
4.4. Implementation details

4.4.1. FCNN and REDNN models design

To build the generic sequential (dense) FCNN and REDNN models
for each dataset, we employed the scientific NumPy Python module (Jo-

hansson, 2018). This module enables the creation of a comprehensive
DNN model without any library, providing insights into the underlying
concepts and internal operations within the network. Each model con-

sists of an input layer, four hidden layers, and an output layer, as shown
in Table 2. To determine the topology selection for each dataset, we uti-

lized the best-run Hyperas modules (Komer et al., 2019). This allowed
us to choose the most optimal topology configurations for each dataset,
which minimizes operations while maximizing performance metrics.
These requirements are essential for binary classification tasks. The ar-

chitectural settings remain consistent for evaluating both the baseline
FCNN and the proposed REDNN model. Table 2 provides a detailed de-

scription of the model topology for each tested dataset.

During training, a mini-batch gradient descent optimizer with mo-

mentum was utilized. The weight and bias parameters were randomly
initialized within the range of [0, 1]. For both the baseline and opti-

mized training procedures, a learning rate of 𝑙𝑟 = 0.001 was used across
each dataset, except for the Ecobee and Ennio devices data, which had
a different topology and used a learning rate of 𝑙𝑟 = 0.0001. Both FCNN
and REDNN models used a momentum value of 0.001. The REDNN
model was built using 4 micro-batches, with values of 0.01 for 𝜆, △𝜆,
and threshold 𝑤0 (Bosman et al., 2018). The models were trained with
128 batches within 100 epochs for accuracy to converge. The loss func-

tion was calculated using binary cross-entropy, with ReLu (Ide and
Kurita, 2017) used as the activation function in the input layer and
Sigmoid for the output layer. To efficiently select hyperparameters, an
automatic optimizer search module (Pumperla, 2018) was employed.
This technique required a range of values for each hyperparameter to
be tuned to return an efficient combination. The Numpy.float16 module
was used to implement FP16 for the baseline and optimized models.

We employed TensorFlow Core version (v2.8.0) (David et al., 2021)
to build Keras and TensorFlow DNN models. The TensorFlow Lite
(TFLite) converter module is used to create the TFLite DNN model. To
ensure a fair comparison, Numpy (FCNN and REDNN) is also used, and
both the Keras and TFLite models are trained in 128 mini-batches using
stochastic gradient descent, at 100 epochs iterations. Scikit-learn (Pe-

dregosa et al., 2011) ML python framework is used for the linear SVM,
Adaboost, and GB models. The study codes are publicly available at (Za-

kariyya, 2021) for exploration and reproduction purposes. The GitHub
repository (Zakariyya, 2021) includes both the Jupyter notebook file
and the Python script for the TFLite experimentation.

4.4.2. Adversarial attacks implementation

To generate adversarial samples of FGSM and PGD (Kurakin et al.,
2016), we utilized Equation (6) along with the cleverhans documen-

tation (Papernot et al., 2020). The FGSM involves a one-step gradient

update towards the direction of the gradient sign (see Equation (5)).

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Fig. 2. BFDNN and REFDNN model training testbed with gigabyte devices.
The notation 𝑋𝑜 represents the original data, 𝜖 represents the adjust-

ment step of the original data, 𝑌 is the label, 𝜃 represents the model
parameters, ∇𝑋𝑜 is the backward propagation step for gradient update,
and 𝐽 (𝑙, 𝑋𝑜, 𝑌)) is the loss function used to train the network.

In the PGD attacking method, an initialized noise  (−𝜖, 𝜖) based on
the uniform distribution of 𝜖 is added to the original data sample be-

fore generating and clipping the adversarial samples repeatedly. Then,
Equation (6) is iterated 𝑡 times to generate the perturbed samples, where
Π𝑋𝑜 +𝑆 represents the projection of the perturbation set 𝑋𝑜 + 𝑆 using
the projection operator Π, 𝛼 is the gradient step size, and 𝐽 is the loss
function.

𝑋𝑓𝑔𝑠𝑚 =𝑋𝑜 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌)) (5)

𝑋𝑝 =𝑋𝑡+1 = Π𝑋𝑜+𝑆 (𝑋𝑡 + 𝛼 ∗ 𝑠𝑖𝑔𝑛((∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌))) (6)

The semantic attack (Hosseini et al., 2017) method was generated
by inverting the normalized data 𝑋 = 𝑥𝑖, 𝑖 = 1, 2, ...𝑛 within [0, 1]. For
random noise, the noise data are generated based on the uniform dis-

tribution of the original data. For normalized data within [0, 1], the
introduced noise will be in the form of  (0, 1).

Another perturbation procedure considered in this paper is data poi-

soning attacks described in Algorithm 6. In this scenario, the data is
poisoned by randomly flipping the labels (based on a random split of
data features). The flipping procedure considers label modification for
attack (0s) and benign (1s) samples. This is the all-label modification
technique that changes 1s to 0s and 0s to 1s, respectively. It is a non-

targeted form of adversarial attack method that concentrates on both
the benign and attack traffic classes. The rationale is to mislead the
model by lowering its accuracy value to make it a weaker model. It
achieved this by injecting modified labels for each data feature while
training the model. The trained model used testing data with correctly
assigned labels for validation. We generate this form of attack by con-

sidering the training dataset. During implementation, the data samples
are randomized before splitting to have a fair proportion of attack and
benign samples. All labels of the randomized samples are flipped based
on the specified poisoning proportion, and to increase the chance of
the success rate, we consider the rate to be from 0%–50% by 5% incre-

ment. Each tested perturbation method used the preprocessed datasets
described in section 4.1. These datasets are used to examine the success
rate of each perturbation method to investigate REDNN resilience.

4.4.3. Virtual workers FL setup

The virtual on-device training utilized PyTorch version 1.4.0 (Paszke
et al., 2019) and PySyft version 0.2.9 (Ryffel et al., 2018) frameworks.
The PySyft framework simplified the creation of virtual workers, which
were used to simulate the FL scenario for the BFDNN and the proposed
7

REFDNN. These workers emulate real virtual machines and can run as
Algorithm 6 Label modification perturbation procedure.

Input:  ,  , 𝑛, 𝑝 = data, labels, data length, percent

Output: Poisoned data { ′ ,  ′}
1: for 𝑡 = 1 𝑡𝑜 𝑛; do

2: if 𝑡 ∈ (1, 𝑝 ∗ 𝑛) then ⊳ Random samples selection as the dataset was randomized

3: 𝑦𝑡 = 1 − 𝑦𝑡 ⊳ Labels 0 and 1 modification

4:  ′ = {(𝑥𝑡, 𝑦𝑡)}, 𝑡 = 1 … 𝑛 ⊳ Integrating labels

5: end if

6: end for

7: return { ′ ,  ′}

a separate process within the same Python program with their dataset.
The federation training procedure considered four clients virtual work-

ers and a coordinating server worker receiving computational updates
from each virtual client worker model. Each federated client model
comprised an input layer, four hidden layers, and an output layer. The
topology selection against each dataset utilized the method proposed by
(Komer et al., 2019) to minimize operations and improve performance
metrics. The experimental settings were appropriate for binary classi-

fication, as indicated by the parameter tuning technique employed by
(Komer et al., 2019). The overall architectural settings remained iden-

tical for evaluating the BFDNN and the proposed REFDNN technique.

4.4.4. Testbed FL setup

In order to assess the efficient federated communication of the
REFDNN against BFDNN in a testbed setting, we utilized the PySyft ver-

sion 0.2.9 (Ryffel et al., 2018) python framework over a network (see
Fig. 2 with a client and server-class connected via a WebSocket (WS). As
PyTorch is a compatible library for PySyft, we employed it to develop an
edge computing FL training scenario suitable for resource-constrained
devices. The environmental settings replicated the client-server commu-

nication scenario in a distributed manner, thereby enabling the creation
of realistic testbed settings. To build this network, we employ 4 Giga-

byte Brix (GB-BXBT-2807) mini PCs and a laptop as shown in Fig. 2.
The personal laptop served as the coordinating server in a wireless net-

work, emulating low-frequency connections. The server was responsible
for aggregating and distributing model weights to clients. The client
devices in Algorithms 3 and 4 were responsible for locally training
the model using the server model weights on the client’s dataset and
returning client weights to the server. Therefore, the communication
workload was higher at the client-side containing the edge devices than
the server machine. The installed Operating System (OS) on GB-BXBT-

2807 clients was Ubuntu version 20.04.4 LTS. Each client contained
an installation of the PySyft framework and its dependencies. The Fed-

erated network testbed implementation codes are publicly accessible
(Zakariyya, 2022).

To assess the simulated runtime and real execution time of both

BFDNN and REFDNN, we conducted experiments involving four work-

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Table 3

Testing memory footprint (cumulative).

Dataset Model Mem Mem Test

(MB) save (%) acc (%)

Danmini Doorbell
FCNN 3.742 N/A 95.11

REDNN 1.555 58.44 95.11

Ecobee Thermostat
FCNN 2.804 N/A 93.36

REDNN 1.277 54.46 93.36

Ennio Doorbell
FCNN 2.410 N/A 88.94

REDNN 0.539 77.63 88.94

Philips B120N10
FCNN 3.738 N/A 84.08

REDNN 1.731 53.71 84.08

Provision PT-838
FCNN 3.031 N/A 88.07

REDNN 1.266 58.23 88.07

Provision PT-737E
FCNN 3.008 N/A 92.52

REDNN 1.285 57.28 92.52

Samsung SNH-1011-N
FCNN 2.598 N/A 86.07

REDNN 0.582 77.60 86.07

SH XCS-1002
FCNN 3.004 N/A 94.65

REDNN 1.320 56.06 94.65

SH XCS-1003
FCNN 3.145 N/A 97.72

REDNN 1.305 58.51 97.72

Kitsune
FCNN 2.726 N/A 84.09

REDNN 1.168 57.15 84.09

Wustl
FCNN 491.6 N/A 94.26

REDNN 5.711 98.84 94.26

ers (Alice, Bob, Charlie, and Jane, as illustrated in Fig. 2), each with
their distributed training data. To ensure optimal model convergence,
we employed a federated communication round consisting of 50 itera-

tions with two epochs, using a mini-batch size of 64. We selected a test
batch sample size of 1000 with a learning rate of 0.01 to facilitate effec-

tive FedAvg SGD training. The real-time models used for each federated
client in Algorithm 3 and 4 featured an input layer and four identical
hidden layers (128-128-128-128), along with an output layer, as appro-

priate. This architecture was chosen to promote efficient and effective
model convergence.

To evaluate the effectiveness and generalizability of REFDNN, we
also implemented a CNN DNN variant in realistic settings, with clients
using the MNIST image dataset (Deng, 2012). This CNN architecture
comprised two convolutional layers (Conv-2D). The first 2D convolu-

tional layer required one input to output 20 convolutional features,
using a 5 square kernel (1, 20, 5, 1). The second 2D convolutional layer
required 20 input layers to output 50 convolutional features, using a
5 square kernel (20, 50, 5, 1). The architecture in the first real-time
layer was (800 (4*4*50), 128), with (128, 10) in the second real-time
layer. Max-Pool in 2D was run over the input image without dropout
utilization. The fully connected hidden layers in the convolutional ar-

chitecture were similar to the version described in Table 2.

5. Results and discussion

This section presents an overview of the experimental results. It pro-

vides an in-depth evaluation comparison between the REDNN and opti-

mized FCNN models, with a focus on resource efficiency, effectiveness,
and adversarial robustness across datasets. Furthermore, it elaborates
on the evaluation comparison between REFDNN and BFDNN federated
models in an IoT environment.

5.1. REDNN model effectiveness and resource efficiency

To assess the effectiveness and resource efficiency of the models,
8

Table 3 presents the measured testing results of eleven IoT datasets run
Computers & Security 133 (2023) 103388

Table 4

Training performance evaluation with testing accuracy across frameworks with
Provision PT-737E dataset (per record).

Procedure
Train time Train mem Test set

(ms) (B) acc (%)

FCNN-Keras 13.189 3127.5 92.52

FCNN-TFLite 0.1605 372.29 92.52

FCNN-Numpy 0.0571 16.933 92.52

REDNN-Numpy 0.0196 0.1388 92.52

with both the FCNN and REDNN models. In each case, the models’ test-

ing memory footprint is profiled in megabytes (MB). As anticipated,
the REDNN model demonstrated a non-accuracy degradation perfor-

mance while consuming a minimal memory footprint. Specifically, it
can process the Wustl and Ennio Doorbell datasets with 98.84% and
77.63% memory savings, respectively, compared to the baseline FCNN
model. These resource optimizations position the REDNN model as a
preferred option for IoT security monitoring, as they suggest the po-

tential to reduce computational resources without compromising accu-

racy. Additionally, the findings indicate that deploying the model in a
resource-constrained environment is feasible.

Table 4 provides a detailed comparison of REDNN’s performance
evaluation as implemented in various state-of-the-art technology frame-

works (libraries). This comparison highlights the potential of REDNN in
saving resources across different experimental platforms. During train-

ing, REDNN demonstrates efficient performance with better memory
footprint and time savings for each data record. Specifically, it saves
99.85% and 99.99% of training time and memory footprint, respec-

tively, compared to the baseline model trained with Keras, as computed
based on the reported values in columns Train time (((0.0196∕13.189) ∗
100) − 100) and Train mem (((0.1388∕3127.5) ∗ 100) − 100) from Table 4.
In comparison with the converted FCNN TFLite model, REDNN ex-

hibits better memory usage. This could be attributed to the fact that
the TFLite model inherits the default Keras parameters during model
conversion, resulting in a lighter version of the Keras model. How-

ever, the quantized optimized TFLite model consumes fewer resources,
requiring 0.010 ms of training execution time and 0.0060 B of train-

ing memory footprint. It is worth noting that the use of low precision
in some cases can lead to numerical issues, causing a degradation in
accuracy performance with certain datasets. Therefore, we implement
each framework in 32 bits and compare their performance in Table 4 to
investigate resource savings without low precision integration. The sig-

nificant training resource-saving of the optimized REDNN model could
be beneficial for on-device learning. These compelling results provide a
strong basis for utilizing the optimized REDNN model to evaluate the
hypothesis stated in RQ1.

Table 5 presents the testing resources consumed by each model us-

ing different technology frameworks. The table shows that the NumPy
implementation is the fastest among the tested frameworks. Addition-

ally, REDNN demonstrates more efficient processing of IoT data than
the baseline FCNN model when run in the same framework. The TFLite
model is more efficient than the Keras model but slower than the
Numpy (FCNN and REDNN) models. Interestingly, REDNN outperforms
the other models in terms of processing time savings, achieving sav-

ings of 4.31%, 69.81%, and 80.55% compared to the FCNN, TFLite,
and Keras models, respectively. These results demonstrate the resource-

efficient nature of our training procedure using Numpy and suggest that
it can be an appropriate method for training and building effective mod-

els in a resource-constrained environment, outperforming the currently
available state-of-the-art methods.

Regarding memory consumption in column (Test mem), REDNN
demonstrates better savings with each data record. For FCNN-Numpy,
FCNN-TFLite, and FCNN-Keras models, the memory footprint was re-

duced by 78.91%, 80.12%, and 98.51%, respectively. The TFLite’s
higher resource consumption is due to the data type conversion dur-
ing prediction (TensorFlow, 2022). The conversion can increase the

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Table 5

Testing resource consumption across frameworks with Provision PT-737E
dataset (per record).

Procedure
Test time Test mem Test set

(ms) (B) acc (%)

FCNN-Keras 2.3522 512.64 92.52

FCNN-TFLite 1.5155 38.533 92.52

FCNN-Numpy 0.4781 36.317 92.52

REDNN-Numpy 0.4575 7.6606 92.52

Table 6

Performance evaluation comparison on Provision PT-737E dataset (per record).

Model
Train time Test time Train mem Test mem Test set

(ms) (ms) (B) (B) acc (%)

SVM 909.64 500.87 378.96 923.48 92.52

GB 32.621 0.2242 22.230 20.018 92.58

AdaBoost 31.212 2.6126 4.1910 13.842 92.47

FCNN 0.0571 0.4781 4.2333 7.9685 92.52

REDNN 0.0196 0.4575 0.0347 7.6606 92.52

execution time and memory (intel, 2020) as demonstrated in Table 5.
The higher resource (memory and time) consumption of the TFLite at
the testing stage is a limitation for effective IoT attack detection. The
REDNN algorithm’s minimal resource consumption suggests its poten-

tial efficacy as a mechanism for IoT security monitoring, as well as
for the security monitoring of other cyber-physical devices. Notably,
resource-efficient ML plays a crucial role in IoT security monitoring for
a variety of reasons. For example, as mentioned above, IoT devices of-

ten operate with limited resources, such as memory, processing power,
and battery life, and, thus, optimized algorithms such as REDNN can
be deployed on such devices without an undue expenditure of power
or resources. Also, due to the significant volume of data generated by
IoT devices in real-time, rapid analysis is necessary to detect security
threats. Algorithms like REDNN can perform real-time data analysis
without consuming excessive computational power.

Table 6 presents empirical findings comparing the performance of
the REDNN model against state-of-the-art techniques utilizing the PT-

737E dataset. The results indicate the computational resources required
by each model to process each record in the dataset. The REDNN model
outperforms other methods by achieving better memory and time re-

source savings. Specifically, during training, the REDNN model saves
more than 99.99% and 99.80% of execution time and memory foot-

print compared to the SVM model. This is due to the fact that SVM
is known to be a computationally expensive ML algorithm, particularly
when dealing with large datasets (Catak and Balaban, 2012). Thus, SVM
requires more resources than Adaboost and GB decision tree models. As
expected, DNN models such as FCNN and REDNN outperform tradi-

tional ML models, and this is confirmed by our findings. The results
suggest that optimizing DNN models can create an efficient approach
with more resource savings than conventional ML methods. This is
particularly valuable for building models in an environment with a
multi-dimensional and extensive training dataset that requires signifi-

cant resource savings.

5.2. REDNN model robustness

5.2.1. Robustness against number of epoch

Table 7 illustrates the impact of epoch variation on model robustness
against the SH XCS-1003 dataset. The robustness measure is calculated
by subtracting the adversarial test accuracy from the clean test ac-

curacy. Our findings indicate that the REDNN model is more robust
against each adversarial attack at ten epochs. Specifically, the adver-

sarial accuracy loss of the baseline FCNN is 28.08%, while that of
the REDNN is 20.30% against PGD attacks. Although the resilience of
9

both models improves with each epoch increment, the REDNN model
Computers & Security 133 (2023) 103388

Table 7

Effect of number of epoch against models performance with SH XCS-1003
dataset.

Epoch Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

10
FCNN 97.73 79.51 69.65 89.52

REDNN 97.73 86.70 77.43 89.79

20
FCNN 97.73 86.35 77.07 93.86

REDNN 97.73 86.70 77.43 94.08

40
FCNN 97.73 93.74 86.66 97.08

REDNN 97.73 94.19 87.10 97.17

60
FCNN 97.73 96.48 90.72 97.63

REDNN 97.73 96.84 92.09 97.69

80
FCNN 97.73 97.48 94.82 97.72

REDNN 97.73 97.53 95.34 97.73

100
FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

exhibits slightly better robustness than the FCNN model during each
epoch iteration. This is particularly valuable, as the optimized model
can save more resources while thwarting adversarial attacks with both
lower and higher epoch iterations. Our results demonstrate that the
REDNN model is marginally more robust against adversarial samples
than its FCNN counterparts. Therefore, it may be a better option for IoT
security due to its enhanced robustness.

5.2.2. Robustness with clipped perturbation samples

Table 8 presents a comparison of models’ performance with clipped
and non-clipped adversarial samples against randomly chosen datasets.
Our findings indicate that in all cases, the performance of detecting
FGSM and random noise attacks is better with the clipped proce-

dure compared to the non-clip setting. REDNN outperforms its baseline
benchmark in detecting PGD and FGSM, particularly with the Kitsune
dataset. The adversarial accuracy losses for both REDNN and FCNN in
thwarting non-clipped FGSM adversarial samples of XCS-1003 device
data were 0.41% and 0.45%, respectively, with REDNN showing slight
improvement. With the same procedure to detect random noise attacks
against the Kitsune data, the adversarial accuracy losses of FCNN and
REDNN were 4.86% and 0.93%, respectively. These results highlight the
robustness of REDNN with clipped and non-clipped adversarial samples,
particularly with the Kitsune dataset. Based on these findings, we can
suggest REDNN as a model capable of crafting adversarial attacks that
are generated using various techniques.

5.2.3. Robustness against model variation

Table 9 presents the performance of REDNN and FCNN using three
different hidden layer models architectures. Our results indicate that,
across each tested dataset, REDNN resists adversarial attacks better than
its baseline. For example, when tested against the Danmini Doorbell
dataset, the adversarial accuracy losses of FCNN and REDNN with PGD
attacks are 9.18% and 7.23%, respectively. With the optimized four hid-

den layer model architecture, the adversarial accuracy losses are 1.12%
and 0.54% for the FCNN and REDNN models, respectively. These results
demonstrate that neural network models with four hidden layers can
better detect adversarial attacks. Conversely, models with fewer hidden
layers may not stand robust against adversarial attacks. Our findings
suggest that REDNN can detect adversarial perturbations regardless of
the hidden layers utilized in building the network architecture. As such,
REDNN has the potential to be advantageous in an IoT network environ-

ment that can be dynamic in terms of architectural settings and security
mechanism requirements.

Fig. 3(a) and 3(b) depict the impact of reducing the second hidden
layer neuron of each model by 50% and 25% against resilience using

the Kitsune dataset. In each setting, REDNN provides better detection

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Table 8

Effect of clipping samples against perturbations method.

Dataset Procedure Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

SH XCS-1003-WHT

Clipped
FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

Non-clipped
FCNN 97.73 97.24 97.24 97.56

REDNN 97.73 97.29 97.29 97.58

Danmini Doorbell

Clipped
FCNN 95.11 95.05 93.99 95.11

REDNN 95.11 95.10 94.57 95.10

Non-clipped
FCNN 95.11 93.99 93.99 94.79

REDNN 95.11 94.57 94.57 94.98

Kitsune

Clipped
FCNN 84.09 78.27 70.45 80.67

REDNN 84.09 83.52 80.18 83.84

Non-clipped
FCNN 84.09 70.45 70.45 75.81

REDNN 84.09 80.18 80.18 82.91

Table 9

Variational models perturbations evaluations across datasets.

Dataset Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell
FCNN 95.11 91.43 85.93 93.78

REDNN 95.11 92.93 87.88 94.45

Provision PT-737E
FCNN 92.52 90.31 86.31 91.61

REDNN 92.52 90.81 87.20 91.91

SH XCS-1002-WHT
FCNN 94.65 92.48 87.87 93.54

REDNN 94.65 93.21 89.02 93.99

SH XCS-1003-WHT
FCNN 97.73 96.51 92.20 96.98

REDNN 97.73 96.62 92.33 97.03

Kitsune
FCNN 84.09 75.73 70.02 81.72

REDNN 84.09 81.56 77.65 83.88

Fig. 3. REDNN vs FCNN accuracy changes with reduce hidden neurons by (a) 50% and (b) 25% against the Kitsune dataset.
accuracy against adversarial samples. As depicted in Fig. 3(a), reducing
hidden neuron values affects accuracy, reducing FCNN and REDNN ac-

curacy by 14.66% and 0.42%, respectively. For detecting PGD attacks
using the 25% reduced neurons shown in Fig. 3(b), FCNN and REDNN
accuracy is reduced by 24.52% and 5.26%, respectively. These results
suggest that a significant reduction in hidden neurons affects model re-

silience to adversarial samples. In each scenario, REDNN is more robust
to topology variation than its baseline benchmark. As a result, proper
architecture selection can influence the efficient and effective identifi-

cation of adversarial samples.

Label flipping attacks can be detrimental to the performance of a
ML model as they can result in misclassification of data points. Fig. 4
10

shows the impact of a label flipping attack on the accuracy of the FCNN
and REDNN models. Both models were tested against the Kitsune and
PT-737E datasets with varying levels of label flipping rates.

The results show that both models can detect and resist label flip-

ping attacks up to a certain rate. In the case of the Kitsune dataset, both
models can resist up to a 30% flipping rate, with REDNN outperforming
FCNN at a 40% rate. On the other hand, for the PT-737E dataset, FCN-

N’s accuracy reduces significantly at a 50% flipping rate, while REDNN
maintains its performance up to the same rate.

These results demonstrate the robustness of REDNN against label
flipping attacks, especially in the PT-737E dataset. The regularization
properties of the REDNN model can make it less susceptible to slight
changes in the training data, making it more resilient against poisoning

attacks.

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Fig. 4. REDNN vs FCNN accuracy changes with label flip against (a) Kitsune and (b) PT-737E dataset.
Table 10

Performance evaluation comparison with Provision PT-737E dataset.

Model
Clean Noise Poisoned label

acc (%) acc (%) acc (%)

SVM 92.52 70.89 7.48

GB 92.58 61.91 10.01

Adaboost 92.47 53.31 11.05

FCNN 92.52 91.57 9.55

REDNN 92.52 91.87 92.52

Table 11

Model resilience evaluation with Kitsune dataset.

Attacks Model Acc (%) Precision Recall F1 score

FGSM
FCNN 83.60 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

PGD
FCNN 82.34 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

Noise
FCNN 76.67 0.8412 0.8906 0.8652

REDNN 83.73 0.8411 0.9944 0.9113

In addition to its significant resource savings capability, REDNN
demonstrates greater resilience against random noise attacks when
compared to each of the models analyzed as shown in Table 10. Subse-

quently, we examined the impact of poisoning 50% of the training data
through label modification (refer to the Poisoned label column). This
resulted in a reduction in the robustness of the SVM, GB, Adaboost,
and FCNN models, with adversarial accuracy losses of 85.04%, 82.57%,
81.42%, and 82.97%, respectively. The results reveal that REDNN ex-

hibits better resistance to label poisoning attacks, without any loss in
adversarial accuracy. This finding implies that a stable and less com-

plex model may be able to overcome label poisoning attacks, which
are a significant threat in a detection system since attackers can eas-

ily manipulate the data. Furthermore, these results demonstrate the
superior robustness of the REDNN model compared to conventional
ML models and answers RQ2. As such, REDNN may be a suitable so-

lution for IoT security monitoring or efficient ML-based security sys-

tems.

Table 11 illustrates the performance of the models evaluated in
terms of test set accuracy, precision, recall, and harmonic score (F1)
while exploring the impact of FP16 integration on model resilience.
The implementation of FP16 has a significant impact on the robustness
of the FCNN model, particularly in its ability to withstand random noise
attacks, resulting in adversarial accuracy and F1-score losses of 7.06%
11

and 4.61%, respectively, when compared to REDNN. As previously
Table 12

Federated model training memory consumption between REFDNN and BFDNN
(cumulative).

Dataset Model Memory Time Test set

MB mins acc %

Danmini Doorbell
BFDNN 3.783 0.099 95.11

REFDNN 0.857 0.081 95.11

Ecobee Thermostat
BFDNN 3.732 0.091 93.36

REFDNN 0.815 0.071 93.36

Ennio Doorbell
BFDNN 4.147 0.090 88.94

REFDNN 0.805 0.074 88.94

Provision PT-737E
BFDNN 3.463 0.092 92.52

REFDNN 0.853 0.077 92.52

Provision PT-838
BFDNN 3.423 0.085 88.07

REFDNN 0.814 0.074 88.07

Samsung SNH-1011-N
BFDNN 3.783 0.099 86.06

REFDNN 0.858 0.081 86.06

SimpleHome XCS-1002
BFDNN 3.494 0.090 94.65

REFDNN 0.816 0.072 94.65

SimpleHome XCS-1003
BFDNN 3.914 0.085 97.73

REFDNN 0.801 0.071 97.73

Wustl
BFDNN 3.002 0.095 94.26

REFDNN 0.816 0.076 94.26

mentioned in this paper, ML engineers frequently choose low-precision
implementations to reduce computation time and memory usage dur-

ing model training and testing, but this comes at the cost of sacrificing
overall accuracy. The results demonstrate that REDNN exhibits better
resilience in countering each adversarial attack. Furthermore, the find-

ings suggest that FP16 implementation has only a minor impact on the
robustness of the REDNN model, making it a more effective and resilient
IoT security monitoring technique compared to its FCNN counterparts.
The results indicate that REDNN possesses attack resilience capabilities,
even when integrated with FP16, which can potentially degrade model
performance. Overall, resource-efficient ML algorithms like REDNN can
effectively address the unique challenges of IoT security monitoring
by providing scalable, real-time, and efficient analysis of data derived
from multiple IoT devices. IoT security monitoring requires analyzing
data from a large number of devices simultaneously. Resource-efficient
ML algorithms like REDNN can be easily scaled to handle large vol-

umes of data from multiple devices in federated settings to accomplish

this.

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

DN
Fig. 5. Federated model training execution time of REF

Table 13

Simulated federated training performance comparison between BFDNN and
REFDNN with MNIST dataset.

Procedure Model Time Time Test set

mins save (%) acc %

FCNN-MNIST
BFDNN 1.393 N/A 34.64

REFDNN 1.346 3.374 91.03

CNN-MNIST
BFDNN 1.583 N/A 90.59

REFDNN 1.457 7.960 98.28

5.3. REFDNN model training performance (decentralized manner)

5.3.1. Simulated workers FL scenario

Table 12 shows the memory footprint and time usage for each
dataset in a FL setting. REFDNN exhibits lower runtime and memory
footprints across all datasets. Notably, the accuracy of both REFDNN
and BFDNN remained constant across each benchmark dataset. In terms
of client processing runtime, REFDNN is more efficient, indicating
less complexity, faster learning capability, and superior resource sav-

ings performance compared to BFDNN. Due to these resource savings,
REFDNN may be a better option for IoT security monitoring, especially
for on-device learning on a diverse range of resource-constrained edge
devices.

As a generic solution for on-device learning, it is important to assess
the method’s performance on non-IoT datasets (MNIST) (see Table 13).
This can also allow us to leverage REFDNN’s resource-saving capability
with CNN, which provides accurate performance in image classification.
PySyft WS simulated workers were used to examine the performance of
the BFDNN and REFDNN techniques in each federated training. This
was done to assess REFDNN’s performance using a simulated network
with a client and server scenario running on the same machine, un-

like PySft virtual workers counterparts that run as constructs within the
same python program. As expected, with each DNN (CNN and FCNN)
variant, REFDNN demonstrates better accuracy than its BFDNN coun-

terparts. The better performance on the MNIST dataset is due to the
regularization and optimization of REFDNN. Furthermore, it produces
lower training execution time. These results demonstrate the impor-

tance of regularization (Krueger and Memisevic, 2015) and (Lever et al.,
2016) on accuracy against DNN variants and warrant further investiga-

tion in realistic settings.

5.3.2. Network workers FL testbed results

Fig. 5(a) shows that REFDNN has a faster estimated convergence
time than BFDNN when training on the Ennio Doorbell and Sam-

sung SNH IoT datasets on the GB-BXBT-2807 testbed. This indicates
12

that REFDNN is more efficient in detecting IoT attacks in real-time,
N and BFDNN against (a) IoT and (b) MNIST datasets.

Table 14

Federated model accuracy: REFDNN vs BFDNN
against CNN-MNIST training procedure.

Federated rounds Model Test set acc (%)

50 - 1 epoch
REFDNN 97.00

BFDNN 89.00

50 - 2 epoch
REFDNN 99.00

BFDNN 93.00

100 - 1 epoch
REFDNN 97.00

BFDNN 89.00

100 - 2 epoch
REFDNN 99.00

BFDNN 93.00

which is beneficial in resource-constrained environments. Similarly,
Fig. 5(b) shows that REFDNN is more computationally efficient than
BFDNN when training on the MNIST dataset, with the FCNN vari-

ant of REFDNN being particularly appropriate for on-device learning
in resource-constrained IoT environments. These results suggest that
REFDNN is a more suitable method for deployment in IoT resource en-

vironments, where resource savings are a priority.

Table 14 presents a performance comparison between REFDNN and
BFDNN with the federated training procedure CNN-MNIST over 100
and 50 communication rounds. The reported results pertain to the use
of one and two local epoch iterations. Across each epoch of every com-

munication round, REFDNN exhibited superior accuracy compared to
its baseline counterparts. These outcomes imply that REFDNN is profi-

cient in the classification of both IoT and non-IoT datasets in real-time,
exhibiting greater accuracy than its alternatives.

6. Conclusion

This research introduces REDNN, a deep neural network-based ap-

proach specifically designed to detect cyberattacks on IoT devices while
prioritizing resource efficiency. The effectiveness of this approach is
evaluated through experimentation using eleven benchmark datasets.
The results demonstrate that REDNN exhibits robustness against ad-

versarial attacks, accurately detects cyberattacks on IoT networks, and
significantly conserves resources. Furthermore, this study presents a
resource-efficient federated learning model called REFDNN, tailored for
IoT security monitoring. The effectiveness of REFDNN is assessed using
eight IoT datasets and one MNIST image dataset, both in virtual and
real-world testbed setups. Future research endeavors will focus on in-

vestigating the detection capabilities of the proposed algorithms against
real-time attacks and evaluating the resilience of REFDNN in practical
IoT and cyber-physical network environments that involve a large num-
ber of edge devices.

I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

CRediT authorship contribution statement

Idris Zakariyya: Conceptualization, Methodology, Software. Har-

sha Kalutarage: Supervision (principal supervisor). M. Omar Al-

Kadri: Supervision (second supervisor).

Declaration of competing interest

Idris Zakariyya reports financial support was provided by Petroleum
Technology Development Fund.

Data availability

No data was used for the research described in the article.

Acknowledgement

This work was supported by the Petroleum Technology Develop-

ment Fund (PTDF), Nigeria.

References

Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H., 2018.
State-of-the-art in artificial neural network applications: a survey. Heliyon 4, e00938.

Abou Khamis, R., Matrawy, A., 2020. Evaluation of adversarial training on different types
of neural networks in deep learning-based IDSs. In: 2020 International Symposium
on Networks, Computers and Communications. ISNCC. IEEE, pp. 1–6.

Aggarwal, C.C., et al., 2018. Neural Networks and Deep Learning, vol. 10. Springer. 978-3.

Aloraini, F., Javed, A., Rana, O., Burnap, P., 2022. Adversarial machine learning in IoT
from an insider point of view. J. Inf. Secur. Appl. 70, 103341.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Du-

rumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al., 2017. Understanding
the Mirai botnet. In: 26th {USENIX} Security Symposium. {USENIX } Security 17,
pp. 1093–1110.

Athalye, A., Carlini, N., Wagner, D., 2018. Obfuscated gradients give a false sense of se-

curity: circumventing defenses to adversarial examples. In: International Conference
on Machine Learning. PMLR, pp. 274–283.

Baldominos, A., Saez, Y., Isasi, P., 2019. A survey of handwritten character recognition
with MNIST and EMNIST. Appl. Sci. 9, 3169.

Bojan, J., 2022. Internet of things statistics for 2022 – taking things apart. https://

dataprot .net /statistics /iot -statistics/.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C.,
Konečnỳ, J., Mazzocchi, S., McMahan, H.B., et al., 2019. Towards federated learning
at scale: system design. arXiv preprint. arXiv :1902 .01046.

Bosman, A., Engelbrecht, A., Helbig, M., 2018. Fitness landscape analysis of weight-

elimination neural networks. Neural Process. Lett. 48, 353–373.

Catak, F.O., Balaban, M.E., 2012. CloudSVM: training an SVM classifier in cloud com-

puting systems. In: Joint International Conference on Pervasive Computing and the
Networked World. Springer, pp. 57–68.

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier, I.,
Natraj, M., Wang, T., et al., 2021. Tensorflow lite micro: embedded machine learning
for tinyML systems. Proc. Mach. Learn. Syst. 3, 800–811.

Deng, L., 2012. The MNIST database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Process. Mag. 29, 141–142.

Elrawy, M.F., Awad, A.I., Hamed, H.F., 2018. Intrusion detection systems for IoT-based
smart environments: a survey. J. Cloud Comput. 7, 1–20.

Han, S., Pool, J., Tran, J., Dally, W., 2015. Learning both weights and connections for
efficient neural network. Adv. Neural Inf. Process. Syst. 28.

He, C., Mushtaq, E., Ding, J., Avestimehr, S., 2022. FedNAS: federated deep learning via
neural architecture search. https://openreview .net /forum ?id =1OHZX4YDqhT.

Hosseini, H., Xiao, B., Jaiswal, M., Poovendran, R., 2017. On the limitation of convolu-

tional neural networks in recognizing negative images. In: 2017 16th IEEE Interna-

tional Conference on Machine Learning and Applications. ICMLA. IEEE, pp. 352–358.

Hsu, H.T., Jong, G.J., Chen, J.H., Jhe, C.G., 2019. Improve IoT security system of smart-

home by using support vector machine. In: 2019 IEEE 4th International Conference
on Computer and Communication Systems. ICCCS. IEEE, pp. 674–677.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., Lee, H., Ngiam, J., Le, Q.V.,
Wu, Y., et al., 2019. GPipe: efficient training of giant neural networks using pipeline
parallelism. Adv. Neural Inf. Process. Syst. 32, 103–112.

Iandola, F., Keutzer, K., 2017. Keynote: small neural nets are beautiful: enabling em-

bedded systems with small deep-neural-network architectures. In: 2017 International
Conference on Hardware/Software Codesign and System Synthesis. CODES+ ISSS.
IEEE, pp. 1–10.

Ide, H., Kurita, T., 2017. Improvement of learning for CNN with ReLU activation by sparse
regularization. In: 2017 International Joint Conference on Neural Networks. IJCNN.
13

IEEE, pp. 2684–2691.
Computers & Security 133 (2023) 103388

Imteaj, A., Thakker, U., Wang, S., Li, J., Amini, M.H., 2021. A survey on federated learning
for resource-constrained IoT devices. IEEE Int. Things J.

intel, 2020. Choose precision. https://software .intel .com /content /www /us /en /develop /
articles /should -i -choose -fp16 -or -fp32 -for -my -deep -learning -model .html.

Jenalea, H., 2017. Number of connected IoT devices will surge to 125 billion by 2030,
IHS markit says. https://news .ihsmarkit .com /prviewer /release _only /slug /number -
connected -iot -devices -will -surge -125 -billion -2030 -ihs -markit -says.

Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tassiulas, L., 2019. Model
pruning enables efficient federated learning on edge devices. arXiv preprint. arXiv :
1909 .12326.

Johansson, R., 2018. Numerical Python: Scientific Computing and Data Science Applica-

tions with Numpy, SciPy and Matplotlib. Apress.

Kodali, S., Hansen, P., Mulholland, N., Whatmough, P., Brooks, D., Wei, G.Y., 2017. Appli-

cations of deep neural networks for ultra low power IoT. In: 2017 IEEE International
Conference on Computer Design. ICCD. IEEE, pp. 589–592.

Komer, B., Bergstra, J., Eliasmith, C., 2019. Hyperopt-sklearn. In: Automated Machine
Learning. Springer, Cham, pp. 97–111.

Krueger, D., Memisevic, R., 2015. Regularizing RNNs by stabilizing activations. arXiv
preprint. arXiv :1511 .08400.

Kshetri, N., 2021. Economics of artificial intelligence in cybersecurity. IT Prof. 23, 73–77.

Kurakin, A., Goodfellow, I., Bengio, S., 2016. Adversarial machine learning at scale. arXiv
preprint. arXiv :1611 .01236.

Lever, J., Krzywinski, M., Altman, N., 2016. Points of significance: regularization. Nat.
Methods 13, 803–805.

Li, X., Liu, H., Wang, W., Zheng, Y., Lv, H., Lv, Z., 2022. Big data analysis of the internet
of things in the digital twins of smart city based on deep learning. Future Gener.
Comput. Syst. 128, 167–177.

Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D., Miao,
C., 2020. Federated learning in mobile edge networks: a comprehensive survey. IEEE
Commun. Surv. Tutor. 22, 2031–2063.

Liu, Y., Kumar, N., Xiong, Z., Lim, W.Y.B., Kang, J., Niyato, D., 2020. Communication-

efficient federated learning for anomaly detection in industrial internet of things. In:
GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE, pp. 1–6.

Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., 2020. IoT type-of-traffic forecast-

ing method based on gradient boosting neural networks. Future Gener. Comput.
Syst. 105, 331–345.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., Elovici,
Y., 2018. N-BaioT—network-based detection of IoT botnet attacks using deep autoen-

coders. IEEE Pervasive Comput. 17, 12–22.

Merenda, M., Porcaro, C., Iero, D., 2020. Edge machine learning for AI-enabled IoT de-

vices: a review. Sensors 20, 2533.

Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A., 2018. Kitsune: an ensemble of autoen-

coders for online network intrusion detection. arXiv preprint. arXiv :1802 .09089.

Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.R.,
2019. Dïot: a federated self-learning anomaly detection system for IoT. In: 2019
IEEE 39th International Conference on Distributed Computing Systems. ICDCS. IEEE,
pp. 756–767.

Oyama, Y., Ben-Nun, T., Hoefler, T., Matsuoka, S., 2018. Accelerating deep learning
frameworks with micro-batches. In: 2018 IEEE International Conference on Cluster
Computing. CLUSTER. IEEE, pp. 402–412.

Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C.,
Sharma, Y., Brown, T., Roy, A., et al., 2020. Technical report on the cleverhans v2.
1.0 adversarial examples library. arXiv 2018. arXiv preprint. arXiv :1610 .00768.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: an imperative style, high-

performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037.

Pedregosa, F., Gervais, P., 2019. Memory profiler (Python). Python Software Foundation.
https://pypi .org /project /memory -profiler/ (Accessed March 25).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., Loukas, G., 2019. A taxon-

omy and survey of attacks against machine learning. Comput. Sci. Rev. 34, 100199.

Popoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O., 2021. Feder-

ated deep learning for zero-day botnet attack detection in IoT edge devices. IEEE Int.
Things J.

Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.,
2018. Chained anomaly detection models for federated learning: an intrusion detec-

tion case study. Appl. Sci. 8, 2663.

Pujari, M., Pacheco, Y., Cherukuri, B., Sun, W., 2022. A comparative study on the impact
of adversarial machine learning attacks on contemporary intrusion detection datasets.
SN Comput. Sci. 3, 1–12.

Pumperla, M., 2018. Hyperas: Hyperopt: a very simple and convenient wrapper for hy-

perparameter optimization. https://github .com /maxpumperla /hyperas.

Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., Passerat-Palmbach,
J., 2018. A generic framework for privacy preserving deep learning. arXiv preprint.
arXiv :1811 .04017.

Sánchez, P.M.S., Valero, J.M.J., Celdrán, A.H., Bovet, G., Pérez, M.G., Pérez, G.M.,
2021. A survey on device behavior fingerprinting: data sources, techniques, appli-

cation scenarios, and datasets. IEEE Commun. Surv. Tutor. 23, 1048–1077. https://
doi .org /10 .1109 /COMST .2021 .3064259.

http://refhub.elsevier.com/S0167-4048(23)00298-5/bib668514A0B9A7D5AFFF0FC9F60D45D22As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib668514A0B9A7D5AFFF0FC9F60D45D22As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBF93FA05F6E97E546C02BEA1889C654As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBF93FA05F6E97E546C02BEA1889C654As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBF93FA05F6E97E546C02BEA1889C654As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2B6F9014FCE4E17681C2D8D3835A2036s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib194D68B5764BC77F38E4326E9D10CB00s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib194D68B5764BC77F38E4326E9D10CB00s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib397338B48817B498E0027F93B8CA9A18s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib397338B48817B498E0027F93B8CA9A18s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib397338B48817B498E0027F93B8CA9A18s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib397338B48817B498E0027F93B8CA9A18s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2717F006E8B74C4CD3CA66938CBF2AA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2717F006E8B74C4CD3CA66938CBF2AA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2717F006E8B74C4CD3CA66938CBF2AA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib074C5453879DC4A97A7B455BD42C1EC0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib074C5453879DC4A97A7B455BD42C1EC0s1
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8BE2918BF2036B2D4206FA308DDAFF6Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8BE2918BF2036B2D4206FA308DDAFF6Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8BE2918BF2036B2D4206FA308DDAFF6Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib833B22A38F04EDCEBDC8CAF8F6F49451s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib833B22A38F04EDCEBDC8CAF8F6F49451s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC9661F8A275B54BD4A8120F16F190CD3s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC9661F8A275B54BD4A8120F16F190CD3s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC9661F8A275B54BD4A8120F16F190CD3s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibDC12BFD197B214633F6DF5BF5A227836s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibDC12BFD197B214633F6DF5BF5A227836s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibDC12BFD197B214633F6DF5BF5A227836s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib19BB43228B30D0E25A61857E84037681s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib19BB43228B30D0E25A61857E84037681s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib002C1B1410590F260040BC4119E6B02Bs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib002C1B1410590F260040BC4119E6B02Bs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib03C8B1855610E0C25C54568C808A5E74s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib03C8B1855610E0C25C54568C808A5E74s1
https://openreview.net/forum?id=1OHZX4YDqhT
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2F9B0F368C952CED0F804A0B2954FF8Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2F9B0F368C952CED0F804A0B2954FF8Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2F9B0F368C952CED0F804A0B2954FF8Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib3AEA7DA23143A7A87FBAE2851063A4A0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib3AEA7DA23143A7A87FBAE2851063A4A0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib3AEA7DA23143A7A87FBAE2851063A4A0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib503BA5454AC45BE8C31D224EE58F54E8s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib503BA5454AC45BE8C31D224EE58F54E8s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib503BA5454AC45BE8C31D224EE58F54E8s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib702BDF0C8B4A4B9303443175933FB99Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib702BDF0C8B4A4B9303443175933FB99Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib702BDF0C8B4A4B9303443175933FB99Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib702BDF0C8B4A4B9303443175933FB99Ds1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib093F439B9F41526DC2FA327FEDA0926As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib093F439B9F41526DC2FA327FEDA0926As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib093F439B9F41526DC2FA327FEDA0926As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibAAED68F479F016DD30682F6885E39482s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibAAED68F479F016DD30682F6885E39482s1
https://software.intel.com/content/www/us/en/develop/articles/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
https://software.intel.com/content/www/us/en/develop/articles/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2088BB288D4A1738ACC9B1D69F386FA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2088BB288D4A1738ACC9B1D69F386FA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2088BB288D4A1738ACC9B1D69F386FA2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib6D246CBA8C005FE2FB54389DDFC40FA8s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib6D246CBA8C005FE2FB54389DDFC40FA8s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF377EACC4DB5B629458539B719CF07C6s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF377EACC4DB5B629458539B719CF07C6s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF377EACC4DB5B629458539B719CF07C6s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibA19727FEFCD645077A7310A07B22EECCs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibA19727FEFCD645077A7310A07B22EECCs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC29AEE6454D8B402E15F031BD93FF1EAs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC29AEE6454D8B402E15F031BD93FF1EAs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib3C1F37939D76F8DCBE57517CB06D806Es1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib36369E390ED56A737DFE0B96E43AA952s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib36369E390ED56A737DFE0B96E43AA952s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibB5ECD01028903995F2A72960982D1FA0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibB5ECD01028903995F2A72960982D1FA0s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib73D18430D6D2ECD5B5434558652FD59Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib73D18430D6D2ECD5B5434558652FD59Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib73D18430D6D2ECD5B5434558652FD59Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC5A16AD760DB6AAA07E5ED07E5D715D2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC5A16AD760DB6AAA07E5ED07E5D715D2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC5A16AD760DB6AAA07E5ED07E5D715D2s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1D17412408FFC46F10B633284C25FFC9s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1D17412408FFC46F10B633284C25FFC9s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1D17412408FFC46F10B633284C25FFC9s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBAB30596D77FD26824919AAD5CFFF298s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBAB30596D77FD26824919AAD5CFFF298s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBAB30596D77FD26824919AAD5CFFF298s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib304512476B582A9ECB9A8BBDF6FCF88As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib304512476B582A9ECB9A8BBDF6FCF88As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib304512476B582A9ECB9A8BBDF6FCF88As1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib9667E453EC44310C800BD5D27D5CE823s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib9667E453EC44310C800BD5D27D5CE823s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibB995E67DDC885F4DA8CFFF301A06D074s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibB995E67DDC885F4DA8CFFF301A06D074s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib49C7E9B1C1F4DFA88675A7DF61015111s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib49C7E9B1C1F4DFA88675A7DF61015111s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib49C7E9B1C1F4DFA88675A7DF61015111s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib49C7E9B1C1F4DFA88675A7DF61015111s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib4E47A7234951D3E261511F9582B88EDEs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib4E47A7234951D3E261511F9582B88EDEs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib4E47A7234951D3E261511F9582B88EDEs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib189685237F04224B557A3F4CCD6CDBAAs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib189685237F04224B557A3F4CCD6CDBAAs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib189685237F04224B557A3F4CCD6CDBAAs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibCF140574EC642AB39D31AC78D8A17FEFs1
https://pypi.org/project/memory-profiler/
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBB5D2E9B32BCE741885BAF0E389D7085s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibBB5D2E9B32BCE741885BAF0E389D7085s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0BA67A9C62B561175A55C1B10F30BE86s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0BA67A9C62B561175A55C1B10F30BE86s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0BA67A9C62B561175A55C1B10F30BE86s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0FB8877A717A3F50BF510A45E0524513s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0FB8877A717A3F50BF510A45E0524513s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0FB8877A717A3F50BF510A45E0524513s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib5245DDEB5F07A7105DC5D15A50FA79E4s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib5245DDEB5F07A7105DC5D15A50FA79E4s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib5245DDEB5F07A7105DC5D15A50FA79E4s1
https://github.com/maxpumperla/hyperas
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0071201A7720823C198342675B0C8355s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0071201A7720823C198342675B0C8355s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib0071201A7720823C198342675B0C8355s1
https://doi.org/10.1109/COMST.2021.3064259
https://doi.org/10.1109/COMST.2021.3064259

Computers & Security 133 (2023) 103388I. Zakariyya, H. Kalutarage and M.O. Al-Kadri

Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Goldstein, T.,
2018. Poison frogs! targeted clean-label poisoning attacks on neural networks. Adv.
Neural Inf. Process. Syst. 31.

Shen, S., Li, R., Zhao, Z., Liu, Q., Liang, J., Zhang, H., 2020. Efficient deep structure
learning for resource-limited IoT devices. In: GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE, pp. 1–6.

Tang, D., Tang, L., Dai, R., Chen, J., Li, X., Rodrigues, J.J., 2020. MF-Adaboost: LDoS
attack detection based on multi-features and improved Adaboost. Future Gener. Com-

put. Syst. 106, 347–359.

Tang, J., Sun, D., Liu, S., Gaudiot, J.L., 2017. Enabling deep learning on IoT devices.
Computer 50, 92–96.

Teixeira, M.A., Salman, T., Zolanvari, M., Jain, R., Meskin, N., Samaka, M., 2018. SCADA
system testbed for cybersecurity research using machine learning approach. Future
Internet 10, 76.

TensorFlow, 2022. float16 quantization. https://www .tensorflow .org /lite /performance /
post _training _float16 _quant.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P., 2017. En-

semble adversarial training: attacks and defenses. arXiv preprint. arXiv :1705 .07204.

Vinayakumar, R., Barathi Ganesh, H.B., Prabaharan, P., et al., 2018. Deep-net: deep neural
network for cyber security use cases. arXiv preprint. arXiv :1812 .03519.

Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H., 2019. Federated learning. Synth.
Lect. Artif. Intell. Mach. Learn. 13, 1–207.

Zakariyya, I., 2021. Resource efficient IoT DNNs algorithm. https://github .com /
izakariyya /R _DNN _IoT.

Zakariyya, I., 2022. Resource efficient federated algorithm with realistic workers. https://

github .com /izakariyya /testbd -fl -iot.

Zandberg, K., Schleiser, K., Acosta, F., Tschofenig, H., Baccelli, E., 2019. Secure firmware
updates for constrained IoT devices using open standards: a reality check. IEEE Ac-

cess 7, 71907–71920.

Zhang, Y., Krishnan, V., Pi, J., Kaur, K., Srivastava, A., Hahn, A., Suresh, S., 2019. Cyber
physical security analytics for transactive energy systems. IEEE Trans. Smart Grid 11,
931–941.

Idris Zakariyya is a highly accomplished individual in the
field of Computer Science (Cybersecurity), holding a B.Sc. de-

gree in Computer Science from Bayero University, Kano, Nigeria
(2011), and an M.Sc. degree in Computer Science from Sultan
Zainal Abidin University, Terengganu, Malaysia (2015). In 2022,
he successfully obtained his Ph.D. in Cybersecurity from Robert
Gordon University in the United Kingdom and has authored nine
technical papers in prominent publications. Idris’s research inter-

ests focus on Internet of Thinsg (IoT) Cybersecurity monitoring,
AI-based IoT network security monitoring, Intrusion detection,
On-device learning, and Adversarial Robustness of AI, thus con-

tributing significantly to the advancement of Cybersecurity.

Harsha Kumara Kalutarage is a lecturer in Cyber Security
in the School of Computing at Robert Gordon University in the
UK. He has 10+ years of research experience in Cybersecurity
and has produced 40+ publications in this area. His research
interests span AI & Security, the use of AI for security applications
and studying the security of AI-enabled systems. Harsha holds
a Ph.D. in Computing (Cyber Security), an M.Phil. in Computer
Science (NLP) and a B.Sc. Special (Hons) degree in Statistics &
Computer Science.

M. Omar Al-Kadri received his B.Eng. in Computer Engi-

neering from IUST, Syria, in 2010, M.Sc. (with distinction) in
Networking and Data communication from Kingston University,
UK in 2013, and Ph.D in Telecommunication engineering from
Kings College London, UK, in 2017. He is now a senior lecturer
in networking and Cybersecurity at Birmingham City Univer-

sity, UK. His current research interests include security of wire-

less communications with application to healthcare, security of
vehicular networks, full-duplex communications, HetNets, and
MAC/routing protocols.
14

http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF45AEE5E387ADE476850DECBC248A928s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF45AEE5E387ADE476850DECBC248A928s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibF45AEE5E387ADE476850DECBC248A928s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib997B187112EC7A973685DE6546D4B7E1s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib997B187112EC7A973685DE6546D4B7E1s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib997B187112EC7A973685DE6546D4B7E1s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib701A45B4D032136D6EA1C5B26B2D1F50s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib701A45B4D032136D6EA1C5B26B2D1F50s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib701A45B4D032136D6EA1C5B26B2D1F50s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2A95FBCF23A22898E60F400AA1AD7619s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib2A95FBCF23A22898E60F400AA1AD7619s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1CBEAA4369258558A4FF55ADBB5AB830s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1CBEAA4369258558A4FF55ADBB5AB830s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib1CBEAA4369258558A4FF55ADBB5AB830s1
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://www.tensorflow.org/lite/performance/post_training_float16_quant
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibE693AA5007EC098C0397F9454407648Bs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibE693AA5007EC098C0397F9454407648Bs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib633B3355C5F41142F395BD4B4575D25Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib633B3355C5F41142F395BD4B4575D25Fs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC3F2613ADE4B5332F8CD9E733AF3A411s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bibC3F2613ADE4B5332F8CD9E733AF3A411s1
https://github.com/izakariyya/R_DNN_IoT
https://github.com/izakariyya/R_DNN_IoT
https://github.com/izakariyya/testbd-fl-iot
https://github.com/izakariyya/testbd-fl-iot
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib26EE727C07424778015049A90052BBBFs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib26EE727C07424778015049A90052BBBFs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib26EE727C07424778015049A90052BBBFs1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8EA2548790DDE71BC8E26AE454E31372s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8EA2548790DDE71BC8E26AE454E31372s1
http://refhub.elsevier.com/S0167-4048(23)00298-5/bib8EA2548790DDE71BC8E26AE454E31372s1

	Towards a robust, effective and resource efficient machine learning technique for IoT security monitoring
	1 Introduction
	2 Related work
	2.1 AI techniques for IoT security monitoring
	2.2 Adversarial attacks against AI
	2.3 Federated learning (FL) in IoT environment

	3 Methodology
	3.1 Fully connected neural network (FCNN)
	3.2 Robust effective and resource efficient DNN (REDNN)
	3.3 Federated deep neural network (BFDNN)
	3.4 Resource efficient federated deep neural network (REFDNN)

	4 Evaluation
	4.1 Utilized datasets
	4.2 Data preprocessing
	4.3 Experimental setup
	4.4 Implementation details
	4.4.1 FCNN and REDNN models design
	4.4.2 Adversarial attacks implementation
	4.4.3 Virtual workers FL setup
	4.4.4 Testbed FL setup

	5 Results and discussion
	5.1 REDNN model effectiveness and resource efficiency
	5.2 REDNN model robustness
	5.2.1 Robustness against number of epoch
	5.2.2 Robustness with clipped perturbation samples
	5.2.3 Robustness against model variation

	5.3 REFDNN model training performance (decentralized manner)
	5.3.1 Simulated workers FL scenario
	5.3.2 Network workers FL testbed results

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

