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The application of Deep Neural Networks (DNNs) for monitoring cyberattacks in Internet of Things (IoT) systems 
has gained significant attention in recent years. However, achieving optimal detection performance through 
DNN training has posed challenges due to computational intensity and vulnerability to adversarial samples. To 
address these issues, this paper introduces an optimization method that combines regularization and simulated 
micro-batching. This approach enables the training of DNNs in a robust, efficient, and resource-friendly manner 
for IoT security monitoring. Experimental results demonstrate that the proposed DNN model, including its 
performance in Federated Learning (FL) settings, exhibits improved attack detection and resistance to adversarial 
perturbations compared to benchmark baseline models and conventional Machine Learning (ML) methods 
typically employed in IoT security monitoring. Notably, the proposed method achieves significant reductions 
of 79.54% and 21.91% in memory and time usage, respectively, when compared to the benchmark baseline in 
simulated virtual worker environments. Moreover, in realistic testbed scenarios, the proposed method reduces 
memory footprint by 6.05% and execution time by 15.84%, while maintaining accuracy levels that are superior or 
comparable to state-of-the-art methods. These findings validate the feasibility and effectiveness of the proposed 
optimization method for enhancing the efficiency and robustness of DNN-based IoT security monitoring.
1. Introduction

The Internet of Things (IoT) has witnessed significant growth, con-

necting physical devices through diverse protocols to perform specific 
tasks. These devices utilize embedded systems such as processors, sen-

sors, and communication hardware to collect and exchange data. Pro-

jections indicate that the global data collected by IoT devices will reach 
73.1 zettabytes by 2025 (Bojan, 2022). Advancements in affordable 
computer chips and wireless networks have enabled the realization of 
IoT technology, fostering unprecedented connectivity among devices. 
This technology has facilitated the development of smart homes, smart 
cities, and various intelligent automation systems. It is estimated that 
approximately 125 billion devices will be interconnected by 2030 (Je-

nalea, 2017).

However, the proliferation of IoT devices has exposed them to cy-

berattacks, as attackers exploit vulnerabilities to execute various attacks 
when devices connect to the external world. The Mirai botnet, a well-

known example, demonstrates the consequences of such attacks (An-
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tonakakis et al., 2017). To counter these threats, integrating Artificial 
Intelligence (AI) with IoT systems has emerged as a solution. By lever-

aging AI, whether in a centralized or decentralized approach, malicious 
activities can be detected and thwarted effectively. However, resource-

constrained IoT devices typically have limited hardware capabilities, 
including 32 KB to 128 KB units of Random Access Memory (RAM) 
and a 256 KB to 512 KB embedded flash memory footprint (Zandberg 
et al., 2019). These constraints pose challenges for deploying resource-

intensive AI models. Consequently, it is crucial to address security 
challenges in IoT networks through effective and efficient detection 
techniques.

Recent research has demonstrated the potential of AI-based tech-

nologies, specifically Machine Learning (ML) and Deep Neural Net-

work (DNN) approaches, for cybersecurity monitoring (Merenda et al., 
2020; Vinayakumar et al., 2018). DNN-based methods have garnered 
particular interest due to their ability to detect attacks on various tar-

gets, including IoT devices, endpoint devices, and the cloud (Kshetri, 
2021). However, a significant limitation of DNN-based approaches is 
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their substantial computational resource requirements for construct-

ing models capable of providing an improved threat detection system 
with a multi-dimensional network security feature set (Aggarwal et al., 
2018). Consequently, deploying such resource-intensive models in en-

vironments with limited computing resources, such as IoT, becomes 
challenging. This issue is further exacerbated in Federated Learning 
(FL) contexts, where on-device model learning facilitates collaborative 
learning among edge devices without exposing their data to the cloud 
or fog (Yang et al., 2019). Additionally, DNN-based detection methods 
can be vulnerable to adversarial samples, which pose a significant secu-

rity threat.

To address these limitations and enhance the efficiency and robust-

ness of DNN-based IoT security monitoring, this paper investigates the 
challenges associated with employing DNN methods in this context. The 
main aim of this research is to create a Resource-Efficient Deep Neu-

ral Network (REDNN) model that can effectively detect attacks on IoT 
networks. The objective is to achieve a comparable or improved level 
of accuracy compared to existing models while maintaining a desired 
level of resource efficiency. The study also focuses on evaluating the 
resilience of the proposed REDNN method against adversarial attacks. 
Additionally, the research aims to showcase the efficiency and accuracy 
of REDNN in real-time attack detection within a decentralized federated 
scenario. Specifically, we address the following research questions:

RQ1: How can an existing DNN be trained to create a REDNN model 
capable of detecting attacks on IoT networks with comparable 
or improved accuracy compared to baseline models, while also 
achieving a desired level of resource efficiency? (sections 3.2

and 5.1).

RQ2: Is the proposed REDNN method robust against adversarial attacks 
compared to baseline and other conventional ML models? (sec-

tions 5.2 and 5.2.3).

RQ3: Does the resulting REDNN exhibit both efficiency and accuracy 
in real-time detection of attacks on IoT networks within a decen-

tralized federated scenario, showcasing better or state-of-the-art 
performance? (section 5.3).

To address these research questions, this study introduces the 
REDNN methodology, which optimizes DNN models for resource effi-

ciency while maintaining or improving accuracy performance. Addi-

tionally, we explore the resilience of REDNN against adversarial attacks 
and evaluate its performance in a decentralized federated scenario. We 
conduct experiments using a Fully Connected Neural Network (FCNN) 
and eleven benchmark datasets specific to IoT environments. The ex-

perimental results demonstrate the effectiveness of REDNN in terms 
of attack detection and resource efficiency. Consequently, this paper 
presents the following contributions:

1. Introducing the REDNN methodology as a solution to the chal-

lenges associated with deploying DNN technologies efficiently in 
IoT environments.

2. Evaluating the resilience of REDNN against adversarial attacks, of-

fering robust security measures for IoT devices.

3. Introducing the Resource Efficient Federated Deep Neural Network 
(REFDNN) methodology for training DNN models in a federated 
IoT security monitoring environment, providing accurate security 
monitoring while ensuring data privacy and reducing memory foot-

print and execution time.

To the best of our knowledge, this is the first attempt to examine 
the capabilities of DNN models for resource efficiency, robust detec-

tion, and on-device learning in the context of IoT security, utilizing a 
large number of benchmark datasets generated by hostile attacks on 
commercial IoT devices.

Throughout the paper, the term “resource-efficient” is employed to 
2

describe models that exhibit reduced memory consumption and require 
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Table 1

List of acronyms.

Acronym Meaning

Acc/acc Accuracy

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

BFDNN Baseline Federated Deep Neural Network

B Byte

CPSs Cyber-physical Systems

CNN Convolutional Neural Network

DNN Deep Neural Network

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

FCNN Fully Connected Neural Network

FedAvg Federated Averaging

FGSM Fast Gradient Sign Method

FL Federated Learning

GB Gradient Boosting

IoT Internet of Things

LSTM Long Short Term Memory

MB Megabyte

mins Minutes

ML Machine Learning

ms Milliseconds

NS2 Network Simulator Version 2

OS Operating System

PGD Projected Gradient Descent

RAM Random Access Memory

REDNN Resource Efficient Deep Neural Network

REFDNN Resource Efficient Federated Deep Neural Network

SVM Support Vector Machine

TFLite TensorFlow Lite

WS Websocket

less time in comparison to their baseline benchmarks. Hence the term 
is defined in relative terms rather than absolute measurements.

The remaining sections of this paper are structured as follows. Sec-

tion 2 provides a thorough review of the related literature. Section 3

outlines the proposed methodology and describes the FL technique uti-

lized, while Section 4 elaborates on the evaluation process. The findings 
and analysis are presented in Section 5. Finally, Section 6 provides 
concluding remarks and identifies avenues for future research. The 
acronyms used throughout the paper are listed in Table 1.

2. Related work

The following section presents a comprehensive review of relevant 
studies that delve into the exploration of AI-based detection algorithms 
employed for IoT security monitoring with the aim of resolving secu-

rity and privacy issues that arise during the deployment of AI-based 
solutions in environments with limited resources. Additionally, it inves-

tigates contemporary FL approaches utilized in IoT environments with 
the primary objective of addressing data privacy, security, and resource 
efficiency concerns in realistic decentralized IoT network environments.

2.1. AI techniques for IoT security monitoring

The literature provides ample evidence of the widespread use of AI 
techniques to address security challenges within the IoT (Sánchez et al., 
2021). Elrawy et al. (2018) recommended the development of ML and 
DNN-based intrusion detection systems for IoT, which have shown sig-

nificant potential in the field of IoT security monitoring research. Hsu 
et al. (2019) proposed a framework that utilizes Support Vector Ma-

chine (SVM) to monitor IoT network security by detecting anomalous 
behavior. The SVM approach achieved a detection accuracy of 92.30% 
using simulated IoT smart homes data. Similarly, (Lopez-Martin et al., 
2020) proposed an IoT network traffic forecasting technique using the 
stochastic Gradient Boosting (GB) classifier, which exhibited superior 
performance in detecting active connections compared to inactive traf-
fic flow. In addition, (Tang et al., 2020) enhanced the Adaboost algo-
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rithm to detect low-rate Distributed Denial-of-Service (DDoS) attacks in 
an IoT environment, achieving a detection rate of 97.06% using Net-

work Simulator Version 2 (NS2) for model performance assessment. 
Furthermore, (Zhang et al., 2019) developed a DNN-based framework to 
detect cyber-attacks in various Cyber-physical Systems (CPSs). Finally, 
(Li et al., 2022) explored the use of DNN for accurate classification 
and analysis of IoT smart cities data, achieving a prediction accuracy of 
97.80%.

Several studies have investigated the use of DNN on resource-

constrained mobile devices for device-level applications. For instance, 
(Tang et al., 2017) conducted an investigation into the suitability of a 
compiler-based platform for benchmarking DNN inference on mobile 
devices. Meanwhile, (Iandola and Keutzer, 2017) focused on minimiz-

ing the computational resources required for deploying DNN in such 
environments by proposing various procedures for creating a smaller 
DNN architecture. However, their work lacked empirical evaluations. 
In contrast, (Shen et al., 2020) proposed a technique for compressing 
CNN to enable structure learning in IoT resource-constrained environ-

ments. Their approach demonstrated promise on benchmark datasets 
such as CIFAR-10 and Imagenet, but failed to consider memory usage 
and lacked evaluation on IoT benchmark datasets. Similarly, (Kodali 
et al., 2017) utilized FCNN for classification tasks on resource-limited 
devices. However, their approach may not be scalable for constrained 
IoT devices due to the lack of consideration for model complexity dur-

ing FCNN architecture selection.

Our paper proposes a novel approach that targets effective attack 
detection with resource minimization by reducing FCNN computational 
complexity. The method employs pruning, simulated micro-batching, 
and parameter optimization to regularize the resulting DNN model and 
reduce memory and time requirements while increasing accuracy per-

formance. This approach distinguishes itself from existing proposals in 
the literature, which typically compress DNN by quantizing weights 
and bias parameters. Overall, this study aims to reduce computational 
complexity while enhancing the accuracy of FCNN-based models for ef-

fective attack detection in resource-constrained environments.

2.2. Adversarial attacks against AI

Adversarial attacks can significantly degrade the performance of 
AI-based models used in IoT security monitoring by exploiting vulner-

abilities in the model. One such attack is the data poisoning attack, 
where an attacker modifies the training data by injecting poisonous 
instances to manipulate the model’s learning process (Shafahi et al., 
2018). This can cause the model to misclassify legitimate instances, re-

sulting in compromised security (Pitropakis et al., 2019). In addition 
to poisoning attacks, perturbation-based attacks such as Fast Gradient 
Sign Method (FGSM), and Projected Gradient Descent (PGD) (Kurakin 
et al., 2016), semantic (Hosseini et al., 2017), and random noise (Atha-

lye et al., 2018) attacks can be used to generate new adversarial samples 
during the testing phase.

The aforementioned perturbation methods employ a white-box ap-

proach, assuming the adversary has full knowledge of the cybersecurity 
monitoring model. Therefore, they are commonly used in IoT security 
monitoring (Aloraini et al., 2022). Pujari et al. (2022) investigates the 
effectiveness of conventional ML-based models against adversarial at-

tacks crafted with IoT network security datasets, while (Abou Khamis 
and Matrawy, 2020) examine the robustness of DNN in similar scenar-

ios, but only considering adversarial attacks generated using IP-based 
datasets. However, a robust and efficient classification model can with-

stand a wide range of adversarial perturbations achieved by training 
the model with perturbed samples to enhance regularization for re-

silience testing (Tramèr et al., 2017). This paper proposes an approach 
to counter IoT security attacks without using perturbed samples during 
training. The goal is to leverage the optimized REDNN model’s ability 
to combat adversarial attacks effectively and efficiently. Furthermore, 
3

we investigate the impact of implementing 16 bit Full Precision (FP16) 
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Algorithm 1 FCNN training.

Input: Labelled data 𝑑 , Number of iteration  , Batch size 
Output: Baseline model 𝑏

1: function BASE(𝑑 [ ]) ⊳ Training baseline model

2: for 𝑖 = 1 to  ; do

3: Mini-batch 𝐵 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚} ⊂ 𝑑 ⊳ Size 
4: 𝐹𝑝(𝐵) ⊳ Forward propagation

5: 𝑖 ←𝐿 ⊳ 𝐿 = Base loss

6: 𝐵𝑝(B) ⊳ Backward propagation

7: Compute gradients for parameters update

8: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
9: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖

10: 𝑏 = Trained model that estimate 𝑖 , 𝑡𝑖, 𝑚𝑖

11: end for

12: return (𝑏, 𝑡𝑖, 𝑚𝑖, 𝑖)
13: end function

on the FCNN and REDNN model’s robustness to evaluate the feasibility 
of using a lightweight and robust DNN model in a resource-constrained 
IoT environment.

2.3. Federated learning (FL) in IoT environment

In the domain of IoT security monitoring, FL is gaining popular-

ity. Preuveneers et al. (2018) investigated FL applications for intrusion 
detection in IoT networks, while (Lim et al., 2020) and (Imteaj et al., 
2021) identified open research problems on FL for resource-constrained 
IoT devices. Additionally, (Nguyen et al., 2019) proposed a signature-

based FL approach to detect attacks on IoT devices, and (Liu et al., 
2020) leveraged FL capabilities to detect attacks on Industrial IoT (IIoT) 
devices by training a DNN model in a federated manner using a labeled 
dataset. The authors integrated CNN and Long Short-Term Memory 
(LSTM) for better model convergence. However, the MNIST and CIFAR-

10 datasets utilized for estimating the model parameter gradients are 
non-IoT data. In contrast, (Jiang et al., 2019) employed model prun-

ing for efficient FL training on edge devices, utilizing an image dataset. 
Meanwhile, (Bonawitz et al., 2019) proposed a TensorFlow-based FL 
framework for mobile devices, utilizing Android mobile devices for 
evaluation. Additionally, (Popoola et al., 2021) utilized FL to detect 
a zero-day attack in an IoT network environment, taking advantage of 
FL data privacy without considering resource limitations. In their in-

vestigations, they used the N-BaIoT (Meidan et al., 2018) device-centric 
dataset.

However, existing proposals in the literature do not take into ac-

count the optimization of FL training specifically for reducing memory 
consumption on IoT networks. This paper addresses this limitation in 
Section 3.4 by optimizing the federated training process using tech-

niques such as pruning, micro-batching, and parameter regularization, 
which are specifically tailored to enhance resource efficiency in the con-

text of FL training on IoT networks.

3. Methodology

To validate the viability of the proposed approach, an evaluation 
was conducted using a FCNN on multiple IoT benchmark datasets. The 
optimization algorithm of the FCNN was leveraged to generate the 
REDNN.

3.1. Fully connected neural network (FCNN)

A FCNN is a type of neural network consisting of multiple layers 
of neurons that process input data. Each neuron computes an output 
based on its activation function and input values, and these neurons are 
connected in a non-linear pattern of layers using weights and bias pa-

rameters. The weights and biases serve as information storage units and 
control the flow of operations within the network. In this study, we used 
Algorithm 1 to obtain the optimized FCNN model (𝑏) as a baseline for 

comparison. The BASE function in line 1 of Algorithm 1 corresponds to 
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Algorithm 2 Proposed algorithm to obtain REDNN.

Input: Penalty term 𝜆, (𝑑 ,  and 𝐵 in Algorithm 1)

Output: Efficient model 𝑒

1: function EFFICIENT(𝑑 [ ])
2: for 𝑗 = 1 to  ; do

3: Micro-batch 𝑀 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂𝐵

4: 𝐹𝑝(𝑀) ⊳ Forward propagation

5: 𝑡 =𝐿 ⊳ L = Initial loss

6: 𝑚𝑡 , 𝑡𝑡 ⊳ 𝑚𝑡 , 𝑡𝑡 estimated memory and time using 𝑡
7: 𝑗 ← 𝑡 + 𝜆 ∑𝑊

𝑗=1
(𝑤2

𝑗
∕𝑤2

0 )
(1+𝑤2

𝑗
∕𝑤2

0 )

8: 𝐵𝑝(M) ⊳ Backward propagation

9: Compute gradients for parameters update

10: if (𝑗 ≤ 𝑡) then

11: 𝜆 = 𝜆 +△𝜆

12: Estimate 𝑚𝑗 ⊳ Execution memory at epoch 𝑗
13: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
14: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then

15: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory

16: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time

17: 𝑒 = Trained model that estimate 𝑗 , 𝑚𝑡, 𝑡𝑡
18: end if

19: end if

20: end for

21: return (𝑒, 𝑗 , 𝑚𝑡, 𝑡𝑡)
22: end function

mini-batch training with the gradient descent algorithm, which mini-

mizes the objective loss function (𝐿) in Equation (1), specifically the 
negative log-likelihood (cross-entropy), to learn from the training set 
(𝑑 ) and map unseen samples. The resulting FCNN approach is a su-

pervised neural network classifier, 𝑏, which takes an input 𝑑 and 
outputs a probability class vector 𝑌 . The desired output 𝑌 is rounded 
to the closest integer using a specified threshold value 𝑡 as in Equation 
(2), representing either a benign (1) or an attack (0) traffic instance.

𝐿 = 1
𝑚

𝑚∑
𝑖=1

−(𝑌𝑖 ∗ log(𝑌𝑖) + (1 − 𝑌𝑖) ∗ log (1 − (𝑌𝑖)) (1)

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛=

{
0 if 𝑌 ≤ 𝑡

1 if 𝑌 > 𝑡
(2)

3.2. Robust effective and resource efficient DNN (REDNN)

As highlighted in section 3.1, training a resource-efficient DNN 
model can be an intricate task, particularly in the context of IoT se-

curity monitoring (Abiodun et al., 2018). The intricacy of this task is 
due to the numerous rounds of training iterations and the requisite 
DNN model parameters needed to design and build an optimal net-

work architecture. This complexity is compounded when building an 
efficient threat detection system with supervised DNN for cybersecurity 
monitoring, especially when dealing with multidimensional datasets. To 
address this issue, the baseline model 𝑏 in Algorithm 1 is used to ob-

tain its resource-efficient counterpart (REDNN). The training procedure, 
in Algorithm 2, optimizes a function using 𝑑 to obtain the efficient 𝑀𝑒

equivalent to the REDNN model. To achieve this, the optimization pro-

cedure utilizes micro-batching (Oyama et al., 2018; Huang et al., 2019) 
for efficient model training that is suitable for on-device learning as 
well.

The function procedure requires 𝑑 in mini-batch and micro-batch 
forms and iterates  times repeatedly to return the efficient 𝑀𝑒 repre-

senting the REDNN model. The optimization process utilizes a penalty 
function (weight elimination) (Han et al., 2015) represented by 𝐸 in 
Equation (3) with a weight threshold parameter 𝑤0. The expression 
in line 7 of Algorithm 2 is responsible for pruning the network model 
weights to reduce its architectural complexity. This procedure is useful 
in distinguishing the sets of relevant weights that can enable efficient 
model learning from the irrelevant ones, particularly the insignificant 
large weights of the baseline 𝑏 model.

In the process, weight values 𝑊 greater than 𝑤0 can yield a com-
4

plexity cost closer to 1 and require regularization using the penalty 
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Fig. 1. Baseline federated learning procedure.

parameter 𝜆. This is important to reduce the complexity of the model to 
enable faster training. As we are more concerned with a less complex, 
efficient, and effective model building that can retain its performance, 
we consider the set of parameters that can give a training error 𝑗 lower 
than 𝑡. The most important parameters are the 𝑤0 and 𝜆, which are the 
threshold that controls the learning of the model while reducing its ar-

chitecture.

In line 10 of Algorithm 2, the regularization error 𝑗 is compared 
with the initialized error 𝑡 before regularization. This is to examine 
the convergence rate of the model during each epoch iteration. Based 
on the outcomes of line 10, relaxation of the 𝜆 value using the △𝜆 oc-

curs in line 11. After these steps, the memory footprint and execution 
time are estimated in lines 12 and 13 and compared with the initialized 
values from line 6 in line 14. This process aims to find a model archi-

tecture with a faster convergence rate and minimal memory and time 
requirements for training and testing. Due to the regularization in lines 
10 and 11 of Algorithm 2, the returned REDNN model is less complex.

𝐸 = 𝜆

𝑊∑
𝑗=1

(𝑤2
𝑗
∕𝑤2

0)

(1 +𝑤2
𝑗
∕𝑤2

0)
(3)

3.3. Federated deep neural network (BFDNN)

Given the widespread adoption of FL, particularly in cybersecurity 
monitoring, its exploration in the context of IoT security monitoring can 
be beneficial. FL’s ability to preserve on-device training data can be use-

ful in proposing AI-based security mechanisms for resource-constrained 
IoT devices. To this end, the Baseline Federated Deep Neural Network 
(BFDNN) training procedure is illustrated in Fig. 1, which utilizes the 
function BASE to train a baseline model using stochastic gradient de-

scent in FL settings. Algorithm 3 describes the details of this procedure, 
where each client performs iterative rounds of gradient descent weights 
for model aggregation, and Device UPDATE distributes a master model 

to each client’s subset at each communication round. Using the pro-
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Algorithm 3 BFDNN training on each distributed node.

Input: Labelled data 𝑡𝑟 , Iteration number  , Batch size 
Output: Baseline federated model 𝑛

1: function BASE(𝑡𝑟[ ]) ⊳ Training baseline model

2: for 𝑖 = 1 to  do ⊳ for each local epoch iterations

3: Mini-batch 𝐵 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚 )} ⊂𝐷𝑡𝑟 ⊳ Mini-batch size 𝑆𝑚 ← |𝐷𝑡𝑟|∕∕
4: 𝐹𝑝(𝐵) ⊳ Forward propagation with 𝐵
5: 𝑖 ←𝐿 ⊳ 𝐿 = Base loss

6: 𝐵𝑝(B) ⊳ Backward propagation

7: function DEVICE UPDATE((𝑑, 𝑤)) ⊳ Run on device 𝑑 with weights 𝑤
8: 𝐵𝑠 ← (Split data 𝐵 into batches of size 𝑆𝑚) ⊳ 𝑆𝑚 is a local Mini-batch size

9: for batch 𝑏 ∈ 𝐵𝑠 do

10: 𝑤 ← local weights update ⊳ device local weights update computation

11: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
12: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖
13: 𝑛 = Trained model that estimate 𝑖 , 𝑚𝑖, 𝑡𝑖
14: end for

15: end function

16: end for

17: return 𝑤 to server in Algorithm 5 ⊳ Calls to coordinating server in Algorithm 5

for weights averaging

18: return (𝑛, 𝑖 , 𝑚𝑖, 𝑡𝑖)
19: end function

Algorithm 4 Proposed REFDNN training on each distributed node.

Input: Penalty term 𝜆, (𝑡𝑟,  , 𝐵, 𝐿 and 𝑆𝑚 in Algorithm 3)

Output: Efficient federated model 𝑓

1: function EFFICIENT(𝑡𝑟[ ])
2: for 𝑗 = 1 to  ; do

3: Micro-batch 𝑀 = {(𝑥1 , 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂𝐵 ⊳ 𝐵 ⊂𝑡𝑟

4: 𝐹𝑝(𝑀) ⊳ Forward propagation with 𝑀
5: 𝑡 =𝐿 ⊳ Initialized loss

6: Estimate 𝑚𝑡 , 𝑡𝑡 Initialized memory and time based on 𝑡
7: 𝑗 ← 𝑡 + 𝜆 ∑𝑊

𝑗=1
(𝑤2

𝑗
∕𝑤2

0 )
(1+𝑤2

𝑗
∕𝑤2

0 )

8: 𝐵𝑝(M) ⊳ Backward propagation with 𝑀
9: function DEVICE UPDATE((𝑑)) ⊳ Run on device 𝑑

10: 𝑀𝑠 ← (Split data 𝑀 into batches of size 𝑆𝑚)

11: for batch 𝑏 ∈𝑀𝑠 do

12: 𝑤 ← local weights update ⊳ device local weights update computation

13: if (𝑗 ≤ 𝑡) then

14: 𝜆 = 𝜆 +△𝜆

15: Estimate 𝑚𝑗 ⊳ Execution memory at epoch 𝑗
16: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
17: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then

18: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory

19: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time

20: 𝑓 = Trained model that estimate 𝑗 , 𝑚𝑡, 𝑡𝑡
21: end if

22: end if

23: end for

24: end function

25: end for

26: return 𝑤 to server in Algorithm 5 ⊳ Calls to Algorithm 5 for model weights 
averaging

27: return (𝑓 , 𝑗 , 𝑚𝑡, 𝑡𝑡)
28: end function

posed method in Algorithm 4, resource efficient version of this standard 
FL approach was obtained.

3.4. Resource efficient federated deep neural network (REFDNN)

Training a resource-efficient DNN model for FL tasks can be a 
challenging task, especially in an IoT network environment. This is 
due to the FL communication rounds and DNN model parameters re-

quirements in building the desirable network architecture (He et al., 
2022). The complexity of such an approach increases with multidi-

mensional datasets. A FedAvg core model (BFDNN) was examined 
with FCNN and CNN model variations against some IoT and non-IoT 
benchmark datasets and its optimization algorithm was exploited to 
obtain REFDNN. This optimized training procedure is illustrated in Al-

gorithm 4. For better performance, the set of model parameters that 
can produce a lower error based on line 7 of Algorithm 4 was utilized. 
5

The function procedure in Algorithm 4 is responsible for computing 
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Algorithm 5 Coordination Procedure for Algorithm 3 and 4.

Server Executes:

1: function SERVER WEIGHTS UPDATE

2: initialize weight 𝑤0 ;

3: initialized 𝑗 = 1
4: while 𝑗 ≤ 𝑓 do ⊳ 𝑓 is the number of federated round

5: 𝑚 ←𝑚𝑎𝑥(𝐶.𝐾, 1) ⊳ 𝐶.𝐾 fraction of clients 𝐾
6: 𝑅 ← random set of 𝑆𝑗 ⊳ 𝑆𝑗 ← random set of 𝑓 clients

7: for 𝑘 ∈ 𝑅 in parallel do ⊳ 𝑘 client index, a selected clients from 𝑅
8: Weight update for each client 𝑘 ⊳ Federated model weight update for 

Algorithm 3 or 4
9: end for

10: Averaged weights update ⊳ Average weights update based on client 𝐾
weights

11: 𝑤𝑗+1 ←
∑𝐾

𝑘=1
𝑓𝑘

𝑓
𝑤𝑘

𝑗+1 ⊳ 𝑓𝐾 = client 𝑘 sample size, 𝑓 total sample size

12: 𝑗 = 𝑗 + 1
13: end while

14: return Averaged updated weights

15: end function

and updating client device weights at each local epoch iteration before 
sending them to the coordinating server. In line 13 of Algorithm 4, the 
device model error is compared with the initialized error before model 
regularization in line 14. Following this stage, computational memory 
footprints and execution time were estimated in lines 15 and 16. Sub-

sequently, in line 17, these estimates were compared to the initialized 
values mentioned in line 6 in order to determine the minimal mem-

ory constraint generated by the client device model. Device models 
with minimal resource consumption are returned to the coordinating 
server in Algorithm 5 together with their weights for model averaging. 
Then, the coordinating server can update the client model weights in a 
federated setting and perform weight averaging while returning the up-

dated averaged weights for model aggregation. This process can reduce 
the client’s communication time and computational complexity while 
building the resource-efficient aggregate model of REFDNN. The mem-

ory and execution time savings for each client device at each federated 
round and accumulating all these savings can lead to significant savings 
when the model is converged.

4. Evaluation

This section outlines the evaluation criteria for the FCNN and 
REDNN models and provides information on the datasets used to create 
them. The datasets used in this study include N-BaIoT (Meidan et al., 
2018), Kitsune (Mirsky et al., 2018), and WUSTL (Teixeira et al., 2018), 
each of which is briefly described.

4.1. Utilized datasets

The N-BaIoT dataset comprises authentic data samples obtained 
from nine commercial IoT devices that demonstrate various botnet and 
benign network traffic flows (Meidan et al., 2018). These devices in-

clude (i) Danmini Doorbell, (ii) Ecobee Thermostat, (iii) Ennio Doorbell, 
(iv) Philips B120N10, (v) Provision PT-737E, (vi) Provision PT-838, 
(vii) Samsung SNH-1011-N, (viii) SimpleHome XCS-1002-WHT, and (ix) 
SimpleHome XCS-1003-WHT. These devices have either been affected 
by BASHLITE or Mirai attacks, or have been operating normally. Each 
device has extensive records of attacks and regular instances that com-

prise 115 feature vectors. Consequently, the N-BaIoT dataset is an ideal 
benchmark for developing IoT network intrusion detection systems. The 
FCNN and REDNN models were trained and tested utilizing device data 
from N-BaIoT.

The Kitsune dataset contains various network traffic captured in an 
IoT setting (Mirsky et al., 2018). The dataset comprises attacks that 
breach confidentiality, integrity, and authenticity, and these attacks are 
categorized into (i) reconnaissance attacks, (ii) DoS attacks, and (iii) 
Mirai attacks. The subset of the dataset used to evaluate our models 
comprises 764,137 instances of Mirai and normal traffic. The dataset 

has 115 features and a normal distribution of 121,621 raw traffic data.
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Table 2

Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Output Topology

Danmini Doorbell 49,548 968,750 115 1 128-128-128-128

Ecobee Thermostat 13,113 822,763 115 1 32-64-64-16

Ennio Doorbell 39,100 316,400 115 1 64-128-128-64

Philips B120N10 175,240 923,437 115 1 128-128-128-128

Provision PT-737E 62,154 766,106 115 1 128-128-128-128

Provision PT-838 98,514 729,862 115 1 128-128-128-128

Samsung SNH-1011-N 52,150 323,072 115 1 128-128-128-128

SH XCS-1002-WHT 46,585 816,471 115 1 128-128-128-128

SH XCS-1003-WHT 19,528 831,298 115 1 128-128-128-128

Kitsune 121,621 642,516 115 1 128-128-128-128

Wustl 6,566,438 471,545 6 1 128-128-128-128
WUSTL dataset consists of multiple reconnaissance attacks with nor-

mal traffic that emulate real-world industrial IoT systems for CPSs 
security research (Teixeira et al., 2018). This dataset is useful for inves-

tigating the feasibility of ML algorithms for detecting various real-world 
attacks. The raw data consists of 7,037,983 data samples with seven (7) 
features. It comprised 93.30% benign records with 6.70% attacks data 
records.

4.2. Data preprocessing

The datasets were carefully selected for frequent model training and 
thorough evaluation. These datasets provide numerical traffic flow in-

formation, which we utilized in our investigations. Each dataset was 
split into training and testing samples, with 80% allocated for train-

ing and 20% for testing purposes. The data input vectors underwent 
normalization using unity-based normalization and feature scaling. In a 
dataset comprising 𝑛 data features, namely 𝑥1, 𝑥2, ..., 𝑥𝑛, normalization 
was performed using the formula specified in Equation (4). The nor-

malized value of the 𝑖𝑡ℎ feature is denoted by 𝑥𝑖′, while 𝑥𝑖 represents 
its original value. Additionally, 𝑚𝑖𝑛𝑥𝑖 and 𝑚𝑎𝑥𝑥𝑖 represent the minimum 
and maximum values of the 𝑖𝑡ℎ feature across the entire dataset, respec-

tively.

𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖

𝑚𝑎𝑥𝑥𝑖
−𝑚𝑖𝑛𝑥𝑖

(4)

Furthermore, in addition to the datasets employed in section 4.1 and 
the preprocessing procedures outlined in section 4.2 for technique im-

plementation, we incorporated the MNIST dataset into our study. The 
MNIST dataset is an appropriate benchmark for evaluating the model’s 
learning capacity over non-IoT cybersecurity datasets. This evaluation 
is crucial to investigate whether the proposed model can efficiently de-

tect complex patterns in other datasets. The MNIST handwritten digits 
dataset is a subset of the dataset from the National Institute of Standards 
and Technology (Baldominos et al., 2019). It comprises 60,000 training 
digit samples and 10,000 testing digits, which are size-normalized and 
consist of 28*28 images with 256 gray levels.

4.3. Experimental setup

We employed Python version 3.76 to construct each model on a 
desktop computer with Intel Xeon E5-2695 CPUs, containing 4 cores 
and running at 2.10 GHz, with 16.0 GB of installed memory. We utilized 
the integrated memory usage to profile the model’s memory consump-

tion (Pedregosa and Gervais, 2019). During training, the parameters 
remain constant to ensure a fair comparison. This practice is applied to 
the baseline FCNN model, the optimized REDNN model, and the adver-
6

sarial process.
4.4. Implementation details

4.4.1. FCNN and REDNN models design

To build the generic sequential (dense) FCNN and REDNN models 
for each dataset, we employed the scientific NumPy Python module (Jo-

hansson, 2018). This module enables the creation of a comprehensive 
DNN model without any library, providing insights into the underlying 
concepts and internal operations within the network. Each model con-

sists of an input layer, four hidden layers, and an output layer, as shown 
in Table 2. To determine the topology selection for each dataset, we uti-

lized the best-run Hyperas modules (Komer et al., 2019). This allowed 
us to choose the most optimal topology configurations for each dataset, 
which minimizes operations while maximizing performance metrics. 
These requirements are essential for binary classification tasks. The ar-

chitectural settings remain consistent for evaluating both the baseline 
FCNN and the proposed REDNN model. Table 2 provides a detailed de-

scription of the model topology for each tested dataset.

During training, a mini-batch gradient descent optimizer with mo-

mentum was utilized. The weight and bias parameters were randomly 
initialized within the range of [0, 1]. For both the baseline and opti-

mized training procedures, a learning rate of 𝑙𝑟 = 0.001 was used across 
each dataset, except for the Ecobee and Ennio devices data, which had 
a different topology and used a learning rate of 𝑙𝑟 = 0.0001. Both FCNN 
and REDNN models used a momentum value of 0.001. The REDNN 
model was built using 4 micro-batches, with values of 0.01 for 𝜆, △𝜆, 
and threshold 𝑤0 (Bosman et al., 2018). The models were trained with 
128 batches within 100 epochs for accuracy to converge. The loss func-

tion was calculated using binary cross-entropy, with ReLu (Ide and 
Kurita, 2017) used as the activation function in the input layer and 
Sigmoid for the output layer. To efficiently select hyperparameters, an 
automatic optimizer search module (Pumperla, 2018) was employed. 
This technique required a range of values for each hyperparameter to 
be tuned to return an efficient combination. The Numpy.float16 module 
was used to implement FP16 for the baseline and optimized models.

We employed TensorFlow Core version (v2.8.0) (David et al., 2021) 
to build Keras and TensorFlow DNN models. The TensorFlow Lite 
(TFLite) converter module is used to create the TFLite DNN model. To 
ensure a fair comparison, Numpy (FCNN and REDNN) is also used, and 
both the Keras and TFLite models are trained in 128 mini-batches using 
stochastic gradient descent, at 100 epochs iterations. Scikit-learn (Pe-

dregosa et al., 2011) ML python framework is used for the linear SVM, 
Adaboost, and GB models. The study codes are publicly available at (Za-

kariyya, 2021) for exploration and reproduction purposes. The GitHub 
repository (Zakariyya, 2021) includes both the Jupyter notebook file 
and the Python script for the TFLite experimentation.

4.4.2. Adversarial attacks implementation

To generate adversarial samples of FGSM and PGD (Kurakin et al., 
2016), we utilized Equation (6) along with the cleverhans documen-

tation (Papernot et al., 2020). The FGSM involves a one-step gradient 

update towards the direction of the gradient sign (see Equation (5)). 
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Fig. 2. BFDNN and REFDNN model training testbed with gigabyte devices.
The notation 𝑋𝑜 represents the original data, 𝜖 represents the adjust-

ment step of the original data, 𝑌 is the label, 𝜃 represents the model 
parameters, ∇𝑋𝑜 is the backward propagation step for gradient update, 
and 𝐽 (𝑙, 𝑋𝑜, 𝑌 )) is the loss function used to train the network.

In the PGD attacking method, an initialized noise  (−𝜖, 𝜖) based on 
the uniform distribution of 𝜖 is added to the original data sample be-

fore generating and clipping the adversarial samples repeatedly. Then, 
Equation (6) is iterated 𝑡 times to generate the perturbed samples, where 
Π𝑋𝑜 +𝑆 represents the projection of the perturbation set 𝑋𝑜 + 𝑆 using 
the projection operator Π, 𝛼 is the gradient step size, and 𝐽 is the loss 
function.

𝑋𝑓𝑔𝑠𝑚 =𝑋𝑜 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌 )) (5)

𝑋𝑝 =𝑋𝑡+1 = Π𝑋𝑜+𝑆 (𝑋𝑡 + 𝛼 ∗ 𝑠𝑖𝑔𝑛((∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌 ))) (6)

The semantic attack (Hosseini et al., 2017) method was generated 
by inverting the normalized data 𝑋 = 𝑥𝑖, 𝑖 = 1, 2, ...𝑛 within [0, 1]. For 
random noise, the noise data are generated based on the uniform dis-

tribution of the original data. For normalized data within [0, 1], the 
introduced noise will be in the form of  (0, 1).

Another perturbation procedure considered in this paper is data poi-

soning attacks described in Algorithm 6. In this scenario, the data is 
poisoned by randomly flipping the labels (based on a random split of 
data features). The flipping procedure considers label modification for 
attack (0s) and benign (1s) samples. This is the all-label modification 
technique that changes 1s to 0s and 0s to 1s, respectively. It is a non-

targeted form of adversarial attack method that concentrates on both 
the benign and attack traffic classes. The rationale is to mislead the 
model by lowering its accuracy value to make it a weaker model. It 
achieved this by injecting modified labels for each data feature while 
training the model. The trained model used testing data with correctly 
assigned labels for validation. We generate this form of attack by con-

sidering the training dataset. During implementation, the data samples 
are randomized before splitting to have a fair proportion of attack and 
benign samples. All labels of the randomized samples are flipped based 
on the specified poisoning proportion, and to increase the chance of 
the success rate, we consider the rate to be from 0%–50% by 5% incre-

ment. Each tested perturbation method used the preprocessed datasets 
described in section 4.1. These datasets are used to examine the success 
rate of each perturbation method to investigate REDNN resilience.

4.4.3. Virtual workers FL setup

The virtual on-device training utilized PyTorch version 1.4.0 (Paszke 
et al., 2019) and PySyft version 0.2.9 (Ryffel et al., 2018) frameworks. 
The PySyft framework simplified the creation of virtual workers, which 
were used to simulate the FL scenario for the BFDNN and the proposed 
7

REFDNN. These workers emulate real virtual machines and can run as 
Algorithm 6 Label modification perturbation procedure.

Input:  ,  , 𝑛, 𝑝 = data, labels, data length, percent

Output: Poisoned data { ′ ,  ′}
1: for 𝑡 = 1 𝑡𝑜 𝑛; do

2: if 𝑡 ∈ (1, 𝑝 ∗ 𝑛) then ⊳ Random samples selection as the dataset was randomized

3: 𝑦𝑡 = 1 − 𝑦𝑡 ⊳ Labels 0 and 1 modification

4:  ′ = {(𝑥𝑡, 𝑦𝑡)}, 𝑡 = 1 … 𝑛 ⊳ Integrating labels

5: end if

6: end for

7: return { ′ ,  ′}

a separate process within the same Python program with their dataset. 
The federation training procedure considered four clients virtual work-

ers and a coordinating server worker receiving computational updates 
from each virtual client worker model. Each federated client model 
comprised an input layer, four hidden layers, and an output layer. The 
topology selection against each dataset utilized the method proposed by 
(Komer et al., 2019) to minimize operations and improve performance 
metrics. The experimental settings were appropriate for binary classi-

fication, as indicated by the parameter tuning technique employed by 
(Komer et al., 2019). The overall architectural settings remained iden-

tical for evaluating the BFDNN and the proposed REFDNN technique.

4.4.4. Testbed FL setup

In order to assess the efficient federated communication of the 
REFDNN against BFDNN in a testbed setting, we utilized the PySyft ver-

sion 0.2.9 (Ryffel et al., 2018) python framework over a network (see 
Fig. 2 with a client and server-class connected via a WebSocket (WS). As 
PyTorch is a compatible library for PySyft, we employed it to develop an 
edge computing FL training scenario suitable for resource-constrained 
devices. The environmental settings replicated the client-server commu-

nication scenario in a distributed manner, thereby enabling the creation 
of realistic testbed settings. To build this network, we employ 4 Giga-

byte Brix (GB-BXBT-2807) mini PCs and a laptop as shown in Fig. 2. 
The personal laptop served as the coordinating server in a wireless net-

work, emulating low-frequency connections. The server was responsible 
for aggregating and distributing model weights to clients. The client 
devices in Algorithms 3 and 4 were responsible for locally training 
the model using the server model weights on the client’s dataset and 
returning client weights to the server. Therefore, the communication 
workload was higher at the client-side containing the edge devices than 
the server machine. The installed Operating System (OS) on GB-BXBT-

2807 clients was Ubuntu version 20.04.4 LTS. Each client contained 
an installation of the PySyft framework and its dependencies. The Fed-

erated network testbed implementation codes are publicly accessible 
(Zakariyya, 2022).

To assess the simulated runtime and real execution time of both 

BFDNN and REFDNN, we conducted experiments involving four work-
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Table 3

Testing memory footprint (cumulative).

Dataset Model Mem Mem Test

(MB) save (%) acc (%)

Danmini Doorbell
FCNN 3.742 N/A 95.11

REDNN 1.555 58.44 95.11

Ecobee Thermostat
FCNN 2.804 N/A 93.36

REDNN 1.277 54.46 93.36

Ennio Doorbell
FCNN 2.410 N/A 88.94

REDNN 0.539 77.63 88.94

Philips B120N10
FCNN 3.738 N/A 84.08

REDNN 1.731 53.71 84.08

Provision PT-838
FCNN 3.031 N/A 88.07

REDNN 1.266 58.23 88.07

Provision PT-737E
FCNN 3.008 N/A 92.52

REDNN 1.285 57.28 92.52

Samsung SNH-1011-N
FCNN 2.598 N/A 86.07

REDNN 0.582 77.60 86.07

SH XCS-1002
FCNN 3.004 N/A 94.65

REDNN 1.320 56.06 94.65

SH XCS-1003
FCNN 3.145 N/A 97.72

REDNN 1.305 58.51 97.72

Kitsune
FCNN 2.726 N/A 84.09

REDNN 1.168 57.15 84.09

Wustl
FCNN 491.6 N/A 94.26

REDNN 5.711 98.84 94.26

ers (Alice, Bob, Charlie, and Jane, as illustrated in Fig. 2), each with 
their distributed training data. To ensure optimal model convergence, 
we employed a federated communication round consisting of 50 itera-

tions with two epochs, using a mini-batch size of 64. We selected a test 
batch sample size of 1000 with a learning rate of 0.01 to facilitate effec-

tive FedAvg SGD training. The real-time models used for each federated 
client in Algorithm 3 and 4 featured an input layer and four identical 
hidden layers (128-128-128-128), along with an output layer, as appro-

priate. This architecture was chosen to promote efficient and effective 
model convergence.

To evaluate the effectiveness and generalizability of REFDNN, we 
also implemented a CNN DNN variant in realistic settings, with clients 
using the MNIST image dataset (Deng, 2012). This CNN architecture 
comprised two convolutional layers (Conv-2D). The first 2D convolu-

tional layer required one input to output 20 convolutional features, 
using a 5 square kernel (1, 20, 5, 1). The second 2D convolutional layer 
required 20 input layers to output 50 convolutional features, using a 
5 square kernel (20, 50, 5, 1). The architecture in the first real-time 
layer was (800 (4*4*50), 128), with (128, 10) in the second real-time 
layer. Max-Pool in 2D was run over the input image without dropout 
utilization. The fully connected hidden layers in the convolutional ar-

chitecture were similar to the version described in Table 2.

5. Results and discussion

This section presents an overview of the experimental results. It pro-

vides an in-depth evaluation comparison between the REDNN and opti-

mized FCNN models, with a focus on resource efficiency, effectiveness, 
and adversarial robustness across datasets. Furthermore, it elaborates 
on the evaluation comparison between REFDNN and BFDNN federated 
models in an IoT environment.

5.1. REDNN model effectiveness and resource efficiency

To assess the effectiveness and resource efficiency of the models, 
8

Table 3 presents the measured testing results of eleven IoT datasets run 
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Table 4

Training performance evaluation with testing accuracy across frameworks with 
Provision PT-737E dataset (per record).

Procedure
Train time Train mem Test set

(ms) (B) acc (%)

FCNN-Keras 13.189 3127.5 92.52

FCNN-TFLite 0.1605 372.29 92.52

FCNN-Numpy 0.0571 16.933 92.52

REDNN-Numpy 0.0196 0.1388 92.52

with both the FCNN and REDNN models. In each case, the models’ test-

ing memory footprint is profiled in megabytes (MB). As anticipated, 
the REDNN model demonstrated a non-accuracy degradation perfor-

mance while consuming a minimal memory footprint. Specifically, it 
can process the Wustl and Ennio Doorbell datasets with 98.84% and 
77.63% memory savings, respectively, compared to the baseline FCNN 
model. These resource optimizations position the REDNN model as a 
preferred option for IoT security monitoring, as they suggest the po-

tential to reduce computational resources without compromising accu-

racy. Additionally, the findings indicate that deploying the model in a 
resource-constrained environment is feasible.

Table 4 provides a detailed comparison of REDNN’s performance 
evaluation as implemented in various state-of-the-art technology frame-

works (libraries). This comparison highlights the potential of REDNN in 
saving resources across different experimental platforms. During train-

ing, REDNN demonstrates efficient performance with better memory 
footprint and time savings for each data record. Specifically, it saves 
99.85% and 99.99% of training time and memory footprint, respec-

tively, compared to the baseline model trained with Keras, as computed 
based on the reported values in columns Train time (((0.0196∕13.189) ∗
100) − 100) and Train mem (((0.1388∕3127.5) ∗ 100) − 100) from Table 4. 
In comparison with the converted FCNN TFLite model, REDNN ex-

hibits better memory usage. This could be attributed to the fact that 
the TFLite model inherits the default Keras parameters during model 
conversion, resulting in a lighter version of the Keras model. How-

ever, the quantized optimized TFLite model consumes fewer resources, 
requiring 0.010 ms of training execution time and 0.0060 B of train-

ing memory footprint. It is worth noting that the use of low precision 
in some cases can lead to numerical issues, causing a degradation in 
accuracy performance with certain datasets. Therefore, we implement 
each framework in 32 bits and compare their performance in Table 4 to 
investigate resource savings without low precision integration. The sig-

nificant training resource-saving of the optimized REDNN model could 
be beneficial for on-device learning. These compelling results provide a 
strong basis for utilizing the optimized REDNN model to evaluate the 
hypothesis stated in RQ1.

Table 5 presents the testing resources consumed by each model us-

ing different technology frameworks. The table shows that the NumPy 
implementation is the fastest among the tested frameworks. Addition-

ally, REDNN demonstrates more efficient processing of IoT data than 
the baseline FCNN model when run in the same framework. The TFLite 
model is more efficient than the Keras model but slower than the 
Numpy (FCNN and REDNN) models. Interestingly, REDNN outperforms 
the other models in terms of processing time savings, achieving sav-

ings of 4.31%, 69.81%, and 80.55% compared to the FCNN, TFLite, 
and Keras models, respectively. These results demonstrate the resource-

efficient nature of our training procedure using Numpy and suggest that 
it can be an appropriate method for training and building effective mod-

els in a resource-constrained environment, outperforming the currently 
available state-of-the-art methods.

Regarding memory consumption in column (Test mem), REDNN 
demonstrates better savings with each data record. For FCNN-Numpy, 
FCNN-TFLite, and FCNN-Keras models, the memory footprint was re-

duced by 78.91%, 80.12%, and 98.51%, respectively. The TFLite’s 
higher resource consumption is due to the data type conversion dur-
ing prediction (TensorFlow, 2022). The conversion can increase the 
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Table 5

Testing resource consumption across frameworks with Provision PT-737E 
dataset (per record).

Procedure
Test time Test mem Test set

(ms) (B) acc (%)

FCNN-Keras 2.3522 512.64 92.52

FCNN-TFLite 1.5155 38.533 92.52

FCNN-Numpy 0.4781 36.317 92.52

REDNN-Numpy 0.4575 7.6606 92.52

Table 6

Performance evaluation comparison on Provision PT-737E dataset (per record).

Model
Train time Test time Train mem Test mem Test set

(ms) (ms) (B) (B) acc (%)

SVM 909.64 500.87 378.96 923.48 92.52

GB 32.621 0.2242 22.230 20.018 92.58

AdaBoost 31.212 2.6126 4.1910 13.842 92.47

FCNN 0.0571 0.4781 4.2333 7.9685 92.52

REDNN 0.0196 0.4575 0.0347 7.6606 92.52

execution time and memory (intel, 2020) as demonstrated in Table 5. 
The higher resource (memory and time) consumption of the TFLite at 
the testing stage is a limitation for effective IoT attack detection. The 
REDNN algorithm’s minimal resource consumption suggests its poten-

tial efficacy as a mechanism for IoT security monitoring, as well as 
for the security monitoring of other cyber-physical devices. Notably, 
resource-efficient ML plays a crucial role in IoT security monitoring for 
a variety of reasons. For example, as mentioned above, IoT devices of-

ten operate with limited resources, such as memory, processing power, 
and battery life, and, thus, optimized algorithms such as REDNN can 
be deployed on such devices without an undue expenditure of power 
or resources. Also, due to the significant volume of data generated by 
IoT devices in real-time, rapid analysis is necessary to detect security 
threats. Algorithms like REDNN can perform real-time data analysis 
without consuming excessive computational power.

Table 6 presents empirical findings comparing the performance of 
the REDNN model against state-of-the-art techniques utilizing the PT-

737E dataset. The results indicate the computational resources required 
by each model to process each record in the dataset. The REDNN model 
outperforms other methods by achieving better memory and time re-

source savings. Specifically, during training, the REDNN model saves 
more than 99.99% and 99.80% of execution time and memory foot-

print compared to the SVM model. This is due to the fact that SVM 
is known to be a computationally expensive ML algorithm, particularly 
when dealing with large datasets (Catak and Balaban, 2012). Thus, SVM 
requires more resources than Adaboost and GB decision tree models. As 
expected, DNN models such as FCNN and REDNN outperform tradi-

tional ML models, and this is confirmed by our findings. The results 
suggest that optimizing DNN models can create an efficient approach 
with more resource savings than conventional ML methods. This is 
particularly valuable for building models in an environment with a 
multi-dimensional and extensive training dataset that requires signifi-

cant resource savings.

5.2. REDNN model robustness

5.2.1. Robustness against number of epoch

Table 7 illustrates the impact of epoch variation on model robustness 
against the SH XCS-1003 dataset. The robustness measure is calculated 
by subtracting the adversarial test accuracy from the clean test ac-

curacy. Our findings indicate that the REDNN model is more robust 
against each adversarial attack at ten epochs. Specifically, the adver-

sarial accuracy loss of the baseline FCNN is 28.08%, while that of 
the REDNN is 20.30% against PGD attacks. Although the resilience of 
9

both models improves with each epoch increment, the REDNN model 
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Table 7

Effect of number of epoch against models performance with SH XCS-1003 
dataset.

Epoch Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

10
FCNN 97.73 79.51 69.65 89.52

REDNN 97.73 86.70 77.43 89.79

20
FCNN 97.73 86.35 77.07 93.86

REDNN 97.73 86.70 77.43 94.08

40
FCNN 97.73 93.74 86.66 97.08

REDNN 97.73 94.19 87.10 97.17

60
FCNN 97.73 96.48 90.72 97.63

REDNN 97.73 96.84 92.09 97.69

80
FCNN 97.73 97.48 94.82 97.72

REDNN 97.73 97.53 95.34 97.73

100
FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

exhibits slightly better robustness than the FCNN model during each 
epoch iteration. This is particularly valuable, as the optimized model 
can save more resources while thwarting adversarial attacks with both 
lower and higher epoch iterations. Our results demonstrate that the 
REDNN model is marginally more robust against adversarial samples 
than its FCNN counterparts. Therefore, it may be a better option for IoT 
security due to its enhanced robustness.

5.2.2. Robustness with clipped perturbation samples

Table 8 presents a comparison of models’ performance with clipped 
and non-clipped adversarial samples against randomly chosen datasets. 
Our findings indicate that in all cases, the performance of detecting 
FGSM and random noise attacks is better with the clipped proce-

dure compared to the non-clip setting. REDNN outperforms its baseline 
benchmark in detecting PGD and FGSM, particularly with the Kitsune 
dataset. The adversarial accuracy losses for both REDNN and FCNN in 
thwarting non-clipped FGSM adversarial samples of XCS-1003 device 
data were 0.41% and 0.45%, respectively, with REDNN showing slight 
improvement. With the same procedure to detect random noise attacks 
against the Kitsune data, the adversarial accuracy losses of FCNN and 
REDNN were 4.86% and 0.93%, respectively. These results highlight the 
robustness of REDNN with clipped and non-clipped adversarial samples, 
particularly with the Kitsune dataset. Based on these findings, we can 
suggest REDNN as a model capable of crafting adversarial attacks that 
are generated using various techniques.

5.2.3. Robustness against model variation

Table 9 presents the performance of REDNN and FCNN using three 
different hidden layer models architectures. Our results indicate that, 
across each tested dataset, REDNN resists adversarial attacks better than 
its baseline. For example, when tested against the Danmini Doorbell 
dataset, the adversarial accuracy losses of FCNN and REDNN with PGD 
attacks are 9.18% and 7.23%, respectively. With the optimized four hid-

den layer model architecture, the adversarial accuracy losses are 1.12% 
and 0.54% for the FCNN and REDNN models, respectively. These results 
demonstrate that neural network models with four hidden layers can 
better detect adversarial attacks. Conversely, models with fewer hidden 
layers may not stand robust against adversarial attacks. Our findings 
suggest that REDNN can detect adversarial perturbations regardless of 
the hidden layers utilized in building the network architecture. As such, 
REDNN has the potential to be advantageous in an IoT network environ-

ment that can be dynamic in terms of architectural settings and security 
mechanism requirements.

Fig. 3(a) and 3(b) depict the impact of reducing the second hidden 
layer neuron of each model by 50% and 25% against resilience using 

the Kitsune dataset. In each setting, REDNN provides better detection 
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Table 8

Effect of clipping samples against perturbations method.

Dataset Procedure Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

SH XCS-1003-WHT

Clipped
FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

Non-clipped
FCNN 97.73 97.24 97.24 97.56

REDNN 97.73 97.29 97.29 97.58

Danmini Doorbell

Clipped
FCNN 95.11 95.05 93.99 95.11

REDNN 95.11 95.10 94.57 95.10

Non-clipped
FCNN 95.11 93.99 93.99 94.79

REDNN 95.11 94.57 94.57 94.98

Kitsune

Clipped
FCNN 84.09 78.27 70.45 80.67

REDNN 84.09 83.52 80.18 83.84

Non-clipped
FCNN 84.09 70.45 70.45 75.81

REDNN 84.09 80.18 80.18 82.91

Table 9

Variational models perturbations evaluations across datasets.

Dataset Model Clean FGSM PGD Noise

acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell
FCNN 95.11 91.43 85.93 93.78

REDNN 95.11 92.93 87.88 94.45

Provision PT-737E
FCNN 92.52 90.31 86.31 91.61

REDNN 92.52 90.81 87.20 91.91

SH XCS-1002-WHT
FCNN 94.65 92.48 87.87 93.54

REDNN 94.65 93.21 89.02 93.99

SH XCS-1003-WHT
FCNN 97.73 96.51 92.20 96.98

REDNN 97.73 96.62 92.33 97.03

Kitsune
FCNN 84.09 75.73 70.02 81.72

REDNN 84.09 81.56 77.65 83.88

Fig. 3. REDNN vs FCNN accuracy changes with reduce hidden neurons by (a) 50% and (b) 25% against the Kitsune dataset.
accuracy against adversarial samples. As depicted in Fig. 3(a), reducing 
hidden neuron values affects accuracy, reducing FCNN and REDNN ac-

curacy by 14.66% and 0.42%, respectively. For detecting PGD attacks 
using the 25% reduced neurons shown in Fig. 3(b), FCNN and REDNN 
accuracy is reduced by 24.52% and 5.26%, respectively. These results 
suggest that a significant reduction in hidden neurons affects model re-

silience to adversarial samples. In each scenario, REDNN is more robust 
to topology variation than its baseline benchmark. As a result, proper 
architecture selection can influence the efficient and effective identifi-

cation of adversarial samples.

Label flipping attacks can be detrimental to the performance of a 
ML model as they can result in misclassification of data points. Fig. 4
10

shows the impact of a label flipping attack on the accuracy of the FCNN 
and REDNN models. Both models were tested against the Kitsune and 
PT-737E datasets with varying levels of label flipping rates.

The results show that both models can detect and resist label flip-

ping attacks up to a certain rate. In the case of the Kitsune dataset, both 
models can resist up to a 30% flipping rate, with REDNN outperforming 
FCNN at a 40% rate. On the other hand, for the PT-737E dataset, FCN-

N’s accuracy reduces significantly at a 50% flipping rate, while REDNN 
maintains its performance up to the same rate.

These results demonstrate the robustness of REDNN against label 
flipping attacks, especially in the PT-737E dataset. The regularization 
properties of the REDNN model can make it less susceptible to slight 
changes in the training data, making it more resilient against poisoning 

attacks.
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Fig. 4. REDNN vs FCNN accuracy changes with label flip against (a) Kitsune and (b) PT-737E dataset.
Table 10

Performance evaluation comparison with Provision PT-737E dataset.

Model
Clean Noise Poisoned label

acc (%) acc (%) acc (%)

SVM 92.52 70.89 7.48

GB 92.58 61.91 10.01

Adaboost 92.47 53.31 11.05

FCNN 92.52 91.57 9.55

REDNN 92.52 91.87 92.52

Table 11

Model resilience evaluation with Kitsune dataset.

Attacks Model Acc (%) Precision Recall F1 score

FGSM
FCNN 83.60 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

PGD
FCNN 82.34 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

Noise
FCNN 76.67 0.8412 0.8906 0.8652

REDNN 83.73 0.8411 0.9944 0.9113

In addition to its significant resource savings capability, REDNN 
demonstrates greater resilience against random noise attacks when 
compared to each of the models analyzed as shown in Table 10. Subse-

quently, we examined the impact of poisoning 50% of the training data 
through label modification (refer to the Poisoned label column). This 
resulted in a reduction in the robustness of the SVM, GB, Adaboost, 
and FCNN models, with adversarial accuracy losses of 85.04%, 82.57%, 
81.42%, and 82.97%, respectively. The results reveal that REDNN ex-

hibits better resistance to label poisoning attacks, without any loss in 
adversarial accuracy. This finding implies that a stable and less com-

plex model may be able to overcome label poisoning attacks, which 
are a significant threat in a detection system since attackers can eas-

ily manipulate the data. Furthermore, these results demonstrate the 
superior robustness of the REDNN model compared to conventional 
ML models and answers RQ2. As such, REDNN may be a suitable so-

lution for IoT security monitoring or efficient ML-based security sys-

tems.

Table 11 illustrates the performance of the models evaluated in 
terms of test set accuracy, precision, recall, and harmonic score (F1) 
while exploring the impact of FP16 integration on model resilience. 
The implementation of FP16 has a significant impact on the robustness 
of the FCNN model, particularly in its ability to withstand random noise 
attacks, resulting in adversarial accuracy and F1-score losses of 7.06% 
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and 4.61%, respectively, when compared to REDNN. As previously 
Table 12

Federated model training memory consumption between REFDNN and BFDNN 
(cumulative).

Dataset Model Memory Time Test set

MB mins acc %

Danmini Doorbell
BFDNN 3.783 0.099 95.11

REFDNN 0.857 0.081 95.11

Ecobee Thermostat
BFDNN 3.732 0.091 93.36

REFDNN 0.815 0.071 93.36

Ennio Doorbell
BFDNN 4.147 0.090 88.94

REFDNN 0.805 0.074 88.94

Provision PT-737E
BFDNN 3.463 0.092 92.52

REFDNN 0.853 0.077 92.52

Provision PT-838
BFDNN 3.423 0.085 88.07

REFDNN 0.814 0.074 88.07

Samsung SNH-1011-N
BFDNN 3.783 0.099 86.06

REFDNN 0.858 0.081 86.06

SimpleHome XCS-1002
BFDNN 3.494 0.090 94.65

REFDNN 0.816 0.072 94.65

SimpleHome XCS-1003
BFDNN 3.914 0.085 97.73

REFDNN 0.801 0.071 97.73

Wustl
BFDNN 3.002 0.095 94.26

REFDNN 0.816 0.076 94.26

mentioned in this paper, ML engineers frequently choose low-precision 
implementations to reduce computation time and memory usage dur-

ing model training and testing, but this comes at the cost of sacrificing 
overall accuracy. The results demonstrate that REDNN exhibits better 
resilience in countering each adversarial attack. Furthermore, the find-

ings suggest that FP16 implementation has only a minor impact on the 
robustness of the REDNN model, making it a more effective and resilient 
IoT security monitoring technique compared to its FCNN counterparts. 
The results indicate that REDNN possesses attack resilience capabilities, 
even when integrated with FP16, which can potentially degrade model 
performance. Overall, resource-efficient ML algorithms like REDNN can 
effectively address the unique challenges of IoT security monitoring 
by providing scalable, real-time, and efficient analysis of data derived 
from multiple IoT devices. IoT security monitoring requires analyzing 
data from a large number of devices simultaneously. Resource-efficient 
ML algorithms like REDNN can be easily scaled to handle large vol-

umes of data from multiple devices in federated settings to accomplish 

this.
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DN
Fig. 5. Federated model training execution time of REF

Table 13

Simulated federated training performance comparison between BFDNN and 
REFDNN with MNIST dataset.

Procedure Model Time Time Test set

mins save (%) acc %

FCNN-MNIST
BFDNN 1.393 N/A 34.64

REFDNN 1.346 3.374 91.03

CNN-MNIST
BFDNN 1.583 N/A 90.59

REFDNN 1.457 7.960 98.28

5.3. REFDNN model training performance (decentralized manner)

5.3.1. Simulated workers FL scenario

Table 12 shows the memory footprint and time usage for each 
dataset in a FL setting. REFDNN exhibits lower runtime and memory 
footprints across all datasets. Notably, the accuracy of both REFDNN 
and BFDNN remained constant across each benchmark dataset. In terms 
of client processing runtime, REFDNN is more efficient, indicating 
less complexity, faster learning capability, and superior resource sav-

ings performance compared to BFDNN. Due to these resource savings, 
REFDNN may be a better option for IoT security monitoring, especially 
for on-device learning on a diverse range of resource-constrained edge 
devices.

As a generic solution for on-device learning, it is important to assess 
the method’s performance on non-IoT datasets (MNIST) (see Table 13). 
This can also allow us to leverage REFDNN’s resource-saving capability 
with CNN, which provides accurate performance in image classification. 
PySyft WS simulated workers were used to examine the performance of 
the BFDNN and REFDNN techniques in each federated training. This 
was done to assess REFDNN’s performance using a simulated network 
with a client and server scenario running on the same machine, un-

like PySft virtual workers counterparts that run as constructs within the 
same python program. As expected, with each DNN (CNN and FCNN) 
variant, REFDNN demonstrates better accuracy than its BFDNN coun-

terparts. The better performance on the MNIST dataset is due to the 
regularization and optimization of REFDNN. Furthermore, it produces 
lower training execution time. These results demonstrate the impor-

tance of regularization (Krueger and Memisevic, 2015) and (Lever et al., 
2016) on accuracy against DNN variants and warrant further investiga-

tion in realistic settings.

5.3.2. Network workers FL testbed results

Fig. 5(a) shows that REFDNN has a faster estimated convergence 
time than BFDNN when training on the Ennio Doorbell and Sam-

sung SNH IoT datasets on the GB-BXBT-2807 testbed. This indicates 
12

that REFDNN is more efficient in detecting IoT attacks in real-time, 
N and BFDNN against (a) IoT and (b) MNIST datasets.

Table 14

Federated model accuracy: REFDNN vs BFDNN 
against CNN-MNIST training procedure.

Federated rounds Model Test set acc (%)

50 - 1 epoch
REFDNN 97.00

BFDNN 89.00

50 - 2 epoch
REFDNN 99.00

BFDNN 93.00

100 - 1 epoch
REFDNN 97.00

BFDNN 89.00

100 - 2 epoch
REFDNN 99.00

BFDNN 93.00

which is beneficial in resource-constrained environments. Similarly, 
Fig. 5(b) shows that REFDNN is more computationally efficient than 
BFDNN when training on the MNIST dataset, with the FCNN vari-

ant of REFDNN being particularly appropriate for on-device learning 
in resource-constrained IoT environments. These results suggest that 
REFDNN is a more suitable method for deployment in IoT resource en-

vironments, where resource savings are a priority.

Table 14 presents a performance comparison between REFDNN and 
BFDNN with the federated training procedure CNN-MNIST over 100 
and 50 communication rounds. The reported results pertain to the use 
of one and two local epoch iterations. Across each epoch of every com-

munication round, REFDNN exhibited superior accuracy compared to 
its baseline counterparts. These outcomes imply that REFDNN is profi-

cient in the classification of both IoT and non-IoT datasets in real-time, 
exhibiting greater accuracy than its alternatives.

6. Conclusion

This research introduces REDNN, a deep neural network-based ap-

proach specifically designed to detect cyberattacks on IoT devices while 
prioritizing resource efficiency. The effectiveness of this approach is 
evaluated through experimentation using eleven benchmark datasets. 
The results demonstrate that REDNN exhibits robustness against ad-

versarial attacks, accurately detects cyberattacks on IoT networks, and 
significantly conserves resources. Furthermore, this study presents a 
resource-efficient federated learning model called REFDNN, tailored for 
IoT security monitoring. The effectiveness of REFDNN is assessed using 
eight IoT datasets and one MNIST image dataset, both in virtual and 
real-world testbed setups. Future research endeavors will focus on in-

vestigating the detection capabilities of the proposed algorithms against 
real-time attacks and evaluating the resilience of REFDNN in practical 
IoT and cyber-physical network environments that involve a large num-
ber of edge devices.
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