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Abstract: With the dramatic increase of the global population and with food insecurity increasing,
it has become a major concern for both individuals and governments to fulfill the need for foods
such as vegetables and fruits. Moreover, the desire for the consumption of healthy food, including
fruit, has increased the need for applications in the field of agriculture that help to achieve better
methods for fruit sorting and fruit disease prediction and classification. Automated fruit recognition
is a potential solution to reduce the time and labor required to identify different fruits in situations
such as retail stores during checkout, fruit processing centers during sorting, and orchards during
harvest. Automating these processes reduces the need for human intervention, making them cheaper,
faster, and immune to human error and biases. Past research in the field has focused mainly on
the size, shape, and color features of fruits or employed convolutional neural networks (CNNs) for
their classification. This study investigates the effectiveness of pre-trained deep learning models for
fruit classification using two distinct datasets: Fruits-360 and the Fruit Recognition dataset. Four
pre-trained models, DenseNet-201, Xception, MobileNetV3-Small, and ResNet-50, were chosen for
the experiments based on their architecture and features. The results show that all models achieved
almost 99% accuracy or higher with Fruits-360. With the Fruit Recognition dataset, DenseNet-201
and Xception achieved accuracies of around 98%. The good results exhibited by DenseNet-201 and
Xception on both the datasets are remarkable, with DenseNet-201 attaining accuracies of 99.87% and
98.94%, and Xception attaining 99.13% and 97.73% accuracy, respectively, on Fruits-360 and the Fruit
Recognition dataset.

Keywords: DenseNet; fruit recognition; food security; MobileNetV3; pre-trained models; ResNet;
Xception

1. Introduction

It has become one of the main priorities of many governments globally to provide
enough food, including vegetables and fruits, to all their citizens. Moreover, there is an
increased need for smart solutions in the agricultural field to provide better decisions,
for instance in the applications utilized for fruit sorting and fruit disease prediction and
classification. The concept of fruit recognition refers to the automatic recognition, from their
images, of the exact type and variety of fruits. This classification is a challenging problem
due to the large number of varieties of fruits and vegetables. Though different fruits and
vegetables have distinguishable variations in physical features such as form, color, and
texture, the differences between varieties might not be easily noticeable in images. External
factors which affect the images including lighting conditions, distance, camera angle and
background further add to the complexity. Tang et al. [1] conducted a comprehensive
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review on optimization strategies for addressing the issue of unstructured backgrounds in
fruit detection within field orchard environments. The review outlined the various types
of complex backgrounds typically encountered in outdoor orchards and categorized the
improvement measures into two groups: optimizations conducted before and after image
sampling. The study also compared the test results obtained before and after implementing
these enhanced methods. Another issue affecting classification from an image is the object
being partially or completely obscured. These limitations have resulted in the lack of
automated systems for multi-class fruit and vegetable categorization suitable for real-world
applications. Katarzyna and Paweł [2] acknowledge these limitations in their study in
which a vision-based method with deep convolutional networks was proposed for fruit
variety classification. This study proposes pre-trained deep learning models as an effective
solution for automating fruit recognition.

Automated fruit recognition systems may find applications in many real-life problems,
as listed below:

1. Automatic checkout of fruits in stores: Identification of the different varieties of fruits
and vegetables in supermarkets and fruit stores is often confusing. Even though most
retail establishments use the bar code system for product identification, it cannot be
applied to loose fruits and vegetables sold on the basis of weight. An automated
system for fruit recognition can make the checkout process in stores easier and faster.

2. Automatic sorting: Automated fruit classification systems can be used for automated
industrial sorting and packaging. Traditional food sorting systems rely on the em-
ployees’ ability to make quality judgments using their sense of sight. This method
has the possibility of human error and is a laborious and time-consuming process.
Automated sorting can help reduce the cost and time of labor required for sorting, as
well as reducing the food waste caused by poor sorting procedures.

3. Robotic harvesting: Automated fruit harvesting robots are a viable solution to the
high levels of labor time and cost invested in fruit harvesting. The development of
such robots entails two major tasks: (1) the detection and localization of fruits on
trees and (2) fruit harvesting from the detected position of the fruit using a robotic
arm, without harming the intended fruit or its tree. These tasks were enlisted by
Onishi et al. [3] in their study to develop an automated fruit harvesting robot by using
deep learning. The detection of fruits on trees can be achieved by a system that can
recognize fruits.

4. Robotic shelf inspection: Fruit recognition systems can help achieve the automated in-
spection of fruit shelves and aisles in stores. This was one of the problems
Ghazal et al. [4] tried to address in their study that used an analysis of visual features
and classifiers for fruit classification. This helps reduce the risk of damage to produce
by ensuring that there are no damaged or rotten fruits on the shelves. It can also be
used to confirm that there are no piles of fruits that have been dropped or knocked
over, preventing customers from accidentally walking into them or being injured by
falling debris.

Therefore, this study investigates the performance of pre-trained deep learning
models for fruit classification using two distinct datasets: Fruits-360 and the Fruit
Recognition dataset. The new version of Fruits-360 was used, which features images in
their original size, unlike the old version, which was widely used in previous studies
and contained images sized 100 × 100 pixels. Four pre-trained models, DenseNet-201,
Xception, MobileNetV3-Small, and ResNet-50, were used in the experiments based on
their architecture and features.

The main contributions of this study can be summarized as follows:

• This study addresses a significant gap in the utilization of pre-trained models for fruit
classification, despite their proven benefits, as identified from the survey on the recent
advancements in fruit detection and classification using deep learning techniques by
Ukwuoma et al. [5]. By experimenting with four pre-trained models—DenseNet-201,
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Xception, MobileNetV3-Small, and ResNet-50—the study aims to bridge this gap and
highlight the potential of these models in fruit classification tasks.

• This study overcomes the limitations faced by numerous previous studies that ex-
perimented using the Fruits-360 dataset. The small size (100 × 100 pixels) of the
images in the dataset posed challenges in accurately differentiating visually similar
fruits, such as a red cherry and a red apple, despite their size variations. This study
addresses this limitation by utilizing the new version of the Fruits-360 dataset, which
includes images in their original size, also suggesting the applicability of the results to
real-world scenarios.

• This study aims to propose that DenseNet-201 and Xception are efficient and reliable
models for fruit recognition, owing to the outstanding enhancements accomplished by
them in comparison to previous studies. This contribution not only advances the field
but also aids researchers and practitioners in making informed decisions regarding
model selection and deployment in real-world fruit recognition applications.

2. Related Works

There have been several studies in recent years that have used different machine
learning models for various fruit recognition tasks. Some of them were aimed at classifying
fruits into different levels of ripeness. A particle swarm optimized fuzzy model was
developed by Marimuthu and Roomi [6] to classify bananas as ripe, unripe, and overripe,
using the peak hue value and normalized brown area of the bananas. Castro et al. [7]
developed twelve models to classify Cape gooseberry fruits into different levels of ripeness
by combining four machine learning techniques: artificial neural networks (ANNs), k-
nearest neighbors (KNNs), decision tree (DT), and support vector machine classifiers with
three color spaces: RGB, HSV, and L*a*b*. The best results were obtained when the SVM was
used with the L*a*b* color space. In another study by Pacheco and López [8], tomatoes were
classified into six levels of maturity using color statistical features and KNNs, Multilayer
Perceptron (MLP), and k-means clustering algorithms. While these studies focused on
ripeness classification, their results can be leveraged to augment our research aimed at
classifying fruits for easier identification at store checkouts. Most supermarkets employ a
variable pricing strategy based on the ripeness of fruits (e.g., overripe fruits are priced at
discounted rates) to minimize waste and optimize sales. By integrating these findings with
that of our study, a comprehensive solution to the automated checkout of fresh produce at
supermarkets could be developed.

A few studies have focused on the classification of fruits or vegetables based on their
shape. Kheiralipour and Pormah [9] designed a neural network to categorize cucumbers
into desirable (cylindrical) and undesirable (curved and conical) shapes, using the cen-
troid non-homogeneity and width non-homogeneity of cucumbers, among other features.
Momeny et al. [10] proposed a convolutional neural network (CNN) with hybrid pooling
to classify regularly and irregularly shaped cherries, which outperformed the KNN, ANN,
fuzzy, and Elastic Distributed Training (EDT) algorithms combined with the Histogram
of Oriented Gradients (HOGs) and Local Binary Patterns (LBPs) feature extractors. A
similar study was performed with carrots by Jahanbakhshi and Kheiralipour [11] using
shape-based feature extraction and Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) methods. These studies can complement our research in
developing a system to automate the checkout process of fruits while also considering
factors like imperfect shapes. Some supermarkets offer imperfectly shaped fruits, like
apples, carrots, and strawberries, at a lower price compared to that of perfectly shaped
ones. The integration of these findings expands the scope of our research, allowing for a
comprehensive solution that addresses various aspects of fruit classification and pricing.

The study by de Luna et al. [12] classified tomatoes into three size-based classes,
small, medium, and large, by extracting their area, perimeter, and enclosed circle radius.
The SVM, KNN, and ANN classifiers were used alongside deep learning models VGG-
16, InceptionV3, and ResNet-50. The best results were produced by the SVM classifier.
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Some supermarkets also utilize variable pricing strategies based on the size of fruits. The
integration of these results would enable a more accurate identification and categorization
of fruits, facilitating the implementation of automated checkout processes that account for
variable pricing based on size.

Some studies have attempted to grade fruits according to their quality. Piedad et al. [13]
classified banana tiers into extra class, class I, class II, and reject class using the bananas’
RGB color values and length. For classification, ANN, SVM, and random forests were
used, with the random forests producing the best results. The study by Raissouli et al. [14]
proposed a 6-layer CNN to classify three varieties of dates into different grades that
outperformed the KNN and SVM models. Bhargava and Bansal [15] proposed an SVM
classifier model for the quality evaluation of mono- and bi-colored apples using a com-
bination of statistical, geometrical, Gabor, and Fourier features. The research by Asriny,
Rani, and Hidayatullah [16] employed a 4-layer CNN to classify oranges into five grade
classes, including immature-orange, rotten-orange, and damaged-orange. Another study by
Hanh and Bao [17] used a Yolov4 network to classify lemons as best, good, and bad. Dara-
paneni et al. [18] put forward a MobileNet-based model to classify bananas as good or
bad. This model was also applied to the classification of bananas into their subfamilies
in the study. Incorporating quality assessments into the fruit recognition process allows
for the precise identification and categorization of fruits based on their quality, facilitating
automated checkout processes that account for variable pricing according to fruit grade.
This can improve the efficiency of supermarket checkout systems, ultimately enhancing the
overall customer experience.

Several studies have been focused on classifying fruits and/or vegetables into dif-
ferent types. The study by Katarzyna and Paweł [1] was one of them, which utilized
two nine-layer CNNs with the same architecture but different weight matrices. The
first network classified fruits from their original images with a background, whereas
the second network used images cropped to their regions of interest. The study used the
certainty factor from both the predictions as a reliable indicator of the accuracy of the
classification result. In another study, Ghazal et al. proposed a unique combination of
hue, Color-SIFT, discrete wavelet transform, and Haralick features as a solution to the
variations caused by rotation and illumination effects on the identification of the subcat-
egories of fruits. Vaishnav and Rao [19] used the Orange 3 data mining tool to compare
the fruit classification accuracy of six algorithms—logistic regression, neural networks,
k-nearest neighbors, decision trees, random forests, and naïve Bayes. Among these, logistic
regression was found to obtain the best accuracy and precision of 91% and 92%, respec-
tively. Another study was conducted by Behera, Rath, and Sethy [20] using a support
vector machine (SVM) classifier and deep features extracted from the fully connected layer
of the convolutional neural network (CNN) model for the classification of 40 different
types of Indian fruits. In another study, Nirale and Madankar [21] used algorithms ANN,
SVM, CNN, and Yolo to develop an automatic system for the grading and sorting of fruits.
The accuracy achieved by the CNN, SVM, and KNN in this study was 90%, 80%, and
82%, respectively. The study by Mia et al. [22] attempted to classify six rare local fruits of
Bangladesh. The methodology involved resizing the captured image, followed by contrast
enhancement, a conversion of the RGB color space to a L*a*b color space and image segmen-
tation using k-means clustering. GLCM and statistical features were then extracted before
using an SVM classifier for output recognition. This study achieved an accuracy of 94.79%.
The study by Bhargava, Bansal, and Goyal [23] classified five different vegetables and
four different fruits for the development of an automated type of detection and quality
grading system. Images were first preprocessed using Gaussian filtering and were seg-
mented by fuzzy c-means clustering and grab-cut. PCA was then used to extract statistical,
color, textural and geometrical features, Laws’ texture energy, the histogram of gradients,
and the discrete wavelet transform. Finally, logistic regression, a sparse representation-
based classification, ANN, and SVM were applied for decision making. The SVM achieved
the best accuracy of 97.63% for type detection and 96.59% for grading. A hybrid intelligent



Electronics 2023, 12, 3132 5 of 23

system that combines genetic algorithms and artificial neural networks was proposed by
Farooq [24] for vegetable grading and sorting in another study. It used the Wiener filter
for image enhancement and the Otsu threshold-based method for segmentation. Color
and shape-based features were the focus of feature extraction. A genetic algorithm-based
neural network was then used, achieving an accuracy of 93.3%.

The study by Zeng [25] used image saliency to identify the region of the object in
the image, followed by a VGG model, for fruit and vegetable classification. This method
obtained an accuracy of 95.6%. A 13-layer deep CNN was used by Zhang et al. [26]
along with three types of data augmentation methods: image rotation, Gamma correction,
and noise injection. The overall accuracy of this method was 94.94%. Kausar et al. [27]
proposed a Pure Convolutional Neural Network (PCNN) with seven convolutional layers
for fruit classification. This study also used a global average pooling layer to reduce
overfitting. The classification accuracy achieved was 98.88%. Another study by Rojas-
Aranda et al. [28] attempted to identify three classes of fruits using a single RGB color,
the RGB histogram, and the RGB centroid obtained from k-means clustering along with a
CNN. This study stands out from others attempting fruit classification due to its inclusion
of images featuring fruits within plastic bags, making it more applicable to real-world retail
store scenarios. The results revealed an overall classification accuracy of 95% for fruits
without plastic bags and 93% for fruits within plastic bags. This study’s integration of
plastic bag images adds practical relevance and broadens the scope of fruit classification
research. In another study, Zhu et al. [29] proposed an AlexNet-based deep learning model
for vegetable classification. They used a rectified linear unit (ReLU) output function and
dropout along with image data extension to reduce overfitting. The model obtained an
accuracy of 92.1%, which was a significant improvement when compared with a back
propagation neural network and SVM. In another study conducted by Wang and Chen [30],
a deep convolutional neural network (CNN) with eight layers was employed for fruit
category classification. The CNN architecture incorporated a parametric rectified linear
unit function and dropout layers to enhance its performance. To mitigate overfitting,
data augmentation techniques were utilized. The results showed an accuracy of 95.67%.
Hossain, Al-Hammadi, and Muhammad [31] conducted another study with two different
deep learning architectures for fruit classification for industrial applications. The first
is a light model with six convolutional neural network layers, whereas the second is a
fine-tuned visual geometry group-16 pre-trained deep learning model. The suggested
framework was assessed using two datasets of colored images. The first and second models
each have a classification accuracy for dataset 1 of 99.49% and 99.75%, respectively. For
dataset 2, the accuracy was 85.43% and 96.75%, respectively.

Steinbrener, Posch, and Leitner [32] conducted a distinctive study focusing on the
classification of fruits and vegetables using hyperspectral images. In their approach, a
fine-tuned ImageNet-based convolutional neural network (CNN) was utilized for classifi-
cation. An additional data compression layer was also incorporated into the network. To
assess the impact of increased spectral resolution on the classification accuracy, the same
analysis was also conducted using pseudo-RGB images derived from the hyperspectral
data. The results revealed that the utilization of hyperspectral image data significantly
improved the average classification accuracy, increasing it from 88.15% to 92.23. In their
research, Alzubaidi et al. [33] utilized a deep convolutional neural network (CNN) that
integrated both traditional and parallel convolutional layers. The inclusion of parallel
convolutional layers with diverse filter sizes aimed to enhance feature extraction capabil-
ities, thereby contributing to an improved performance in backpropagation. To address
the challenge of gradient vanishing and to enhance feature representation, the study in-
corporated residual connections within the model architecture. The model achieved an
accuracy of 99.6%. The study conducted by Xue, Liu, and Ma [34] introduced a fruit image
classification framework called attention-based densely connected convolutional networks
with convolution autoencoder (CAE-ADN). This hybrid deep learning approach utilized a
convolutional autoencoder for pre-training the images and an attention-based DenseNet
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for feature extraction. The first phase of the framework involved unsupervised learning
using a set of images to pre-train the CAE layer by layer. The weights and bias of the ADN
were initialized using the CAE structure. In the second phase, the supervised ADN was
trained using ground truth labels. The effectiveness of the proposed model was evaluated
on two fruit datasets, Fruit 26 and Fruit 15, and the results showed accuracies of 95.86% and
93.78%, respectively. In another study by Liu [35], a deep learning network called Interfruit
was introduced for the classification of different types of fruit images. The Interfruit model
employed a stacked architecture that combined a convolutional network, ResidualBlock,
and Inception structure. The architecture of the Interfruit model can be visualized as an
inverted trigeminal tree, with intermediate branch layers comprising the AlexNet net, the
ResidualBlock structure, and the Inception structure. The model achieved an accuracy
of 93.17%.

Lin et al. [36] conducted a study on obstacle avoidance path planning for robots using
a new instance of segmentation architecture called “tiny Mask R-CNN”. They replaced the
backbone of the Mask R-CNN with a smaller network and trained it with a limited number
of images to detect guava fruits and branches. The results showed that the detection F1
score of the tiny Mask R-CNN was 0.518. Additionally, the F1 scores for fruit reconstruction
were approximately 0.851 and 0.833 according to the 2D- and 3D-fruit metrics, respectively.
The F1 scores for the branch reconstruction were approximately 0.394 and 0.415 based on
the 2D- and 3D-branch metrics, respectively.

It can be noticed that CNNs trained from scratch were a popular choice for the
detection of the type of fruit [26,30,33]. A few of these studies used modified pre-trained
models in their research [28,35]. Models like VGG [25,31], the Yolo algorithm [2], and
techniques like attention [34] were also experimented with in separate studies.

An analysis of the above-mentioned research indicates that gray scaling and the
conversion to RGB color space are the most popular pre-processing methods employed
in fruit recognition. Color, shape, and texture features are the most selected features for
extraction, as the distinctiveness and exclusivity of these features in different fruits make
it easier to distinguish between different types of fruits. The use of pre-trained models
for feature extraction has proven to produce great results when combined with suitable
classifier algorithms [19,20]. In terms of the algorithms used, the SVM is the most popular
as well as effective choice [4,7,20,23].

‘Fruits-360′ is the most extensively used dataset for fruit categorization [27,33]. This
dataset was introduced by Mureşan and Oltean [37]. One significant disadvantage of this
dataset is the small size of the images (100 × 100 pixels), making the classification of fruits
that look similar much more challenging. Most studies utilized only a single dataset with
all images captured under the same imaging conditions, for instance lighting, camera angle,
or background, in their research. This overlooks the possibility of bias in the models caused
by the same imaging conditions.

The current study focused on the classification of different fruits, as the survey con-
ducted by Ukwuoma et al. [4] on the recent advancements in fruit detection and classifica-
tion using deep learning techniques indicates a lack of the usage of pre-trained models for
fruit classification, despite their numerous benefits. This study aims to bridge that gap by
experimenting with four pre-trained models, DenseNet-201, Xception, MobileNetV3-Small,
and ResNet-50, and two datasets: the new version of Fruits-360 and the Fruit Recogni-
tion dataset. DenseNet-201, Xception, and MobileNetV3-Small are new choices for fruit
classification. ResNet-50 was formerly used and proven to be highly accurate for fruit
classification [20] and hence was included in this study for comparison with the other mod-
els. Training the models on more than one dataset will help in determining whether the
models are robust and versatile for real-world applications by overcoming the limitations
and biases that a single dataset might have.
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3. Materials and Methods
3.1. Datasets

The experiments were conducted on two publicly available datasets: ‘Fruits-360’ and
‘Fruit Recognition’. Instead of the widely experimented version of Fruits-360, the new
version was used in this study, which includes the images in their original size. This
will help in overcoming the limitations imposed by the old version’s smaller image size
(100 × 100 pixels). The Fruit Recognition dataset contains realistic images, taking into
consideration the challenges of real-world supermarkets. Hence, experiments with this
dataset will aid in examining the feasibility of its implementation in practical situations,
making the Fruit Recognition dataset an excellent choice for this study. The two datasets
were chosen to include images that differ greatly from one another to ensure the versatility
of input to the model required to produce reliable results.

The Fruits-360 (https://www.kaggle.com/datasets/moltean/fruits, accessed on
1 June 2023) dataset, which is available on Kaggle, was utilized in this study. This version
contains 24 classes of fruits and vegetables, with 6231 images in the training set, 3114 images
in the validation set, and 3110 images in the test set. The larger size of the images allows
for the easier identification of similar items (for example a red cherry and a red apple that
may appear extremely similar in small photos). This dataset is available online on GitHub
and Kaggle’s website.

The Fruit Recognition dataset (https://www.kaggle.com/datasets/chrisfilo/fruit-
recognition, accessed on 1 June 2023) contains 44,406 images of 15 classes of fruits and
their sub-categories. A variety of real-world difficulties that may occur in supermarkets
and fruit shops in recognition scenarios, such as illumination, shadow, sunshine, and pose
variation, were considered when creating the dataset. These variations in image-capturing
conditions increase the dataset’s variability and can help make image classification mod-
els more robust and suited to real-world situations. This dataset is available online on
Kaggle’s website.

3.2. Models

The application of a previously trained model to a new problem is called transfer
learning. Here, the machine leverages the knowledge gained from the previous task to
improve generalizations about another. In other words, it attempts to carry over maximum
knowledge from the task that the model was initially trained on to solve the new problem.
The retained knowledge translates into advantages including saved training time, improved
performance (in most instances), and needlessness of a large amount of data in neural
networks [38].

Dense Convolutional Network (DenseNet), introduced by Huang et al. [39], has
connections from every layer to every other layer. This provides advantages, namely, the
elimination of the vanishing-gradient problem, improved feature propagation, feature
reuse, and a significant reduction in the number of parameters. Some fruits have very
similar features (for example, apples and peaches), making it difficult to distinguish one
from the other after several convolutional layers. The information might fade away prior
to reaching its destination because of the longer route between the input and output layers.
DenseNet was created specifically to combat such vanishing gradient-induced declines in
accuracy in high-level neural networks [40]. This makes DenseNet a promising choice for
fruit recognition in this study.

Xception is a depth-wise separable convolutional neural network architecture pro-
posed by Chollet [41]. As with conventional convolution, there is no need for convolution
throughout all the channels in Xception. This reduces the number of connections and
makes the model lighter.

MobileNetV3, introduced by Howard et al. [42], is a convolutional neural network
tuned to mobile phone CPUs using a combination of a hardware-aware network architec-
ture search (NAS) augmented by the NetAdapt algorithm and then improved by using
novel architecture advances. It includes squeeze and excitation modules that aid in the cre-

https://www.kaggle.com/datasets/moltean/fruits
https://www.kaggle.com/datasets/chrisfilo/fruit-recognition
https://www.kaggle.com/datasets/chrisfilo/fruit-recognition
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ation of output feature maps by assigning unequal weights to distinct channels from the in-
put rather than the equal weight that a standard CNN offers. The main motive of this study
is the feasible implementation of an automated on-device visual recognition of different
fruit classes in real-time environments (fruit stores and sorting machines). For such systems
to be efficient, models must execute quickly and accurately in a resource-constrained
environment using limited computation, power, and space. Hence, MobileNetV3 is
an excellent choice for the experiments in this study as it can run on mobile CPUs or
embedded systems.

Residual Networks, or ResNets, proposed by He et al. [43], is a residual learning
framework that aids in the training of networks that are significantly deeper than those
previously used by addressing the degradation issue. Instead of learning unreferenced
functions, ResNets learn residual functions corresponding to the layer inputs through
shortcut connections. ResNets help in achieving increased depth and hence higher accuracy
gains without increasing the training error or the computational complexity.

The complexity of pre-trained models can vary across different architectures, including
DenseNet-201, Xception, MobileNetV3, and ResNet-50. DenseNet-201 is known for its
intricate structure, employing dense connectivity patterns that enhance feature propagation
and facilitate gradient flow throughout the network. With its densely connected layers,
DenseNet-201 can capture complex dependencies between features, making it suitable for
tasks requiring fine-grained discrimination. On the other hand, Xception stands out for its
depth-wise separable convolutions, which significantly reduce computational complexity
while maintaining high accuracy. This makes Xception a lightweight option particularly
suitable for resource-constrained environments. MobileNetV3 takes this further by intro-
ducing a combination of mobile-friendly architectures, including inverted residuals and
linear bottlenecks, to achieve a balance between accuracy and efficiency. Lastly, ResNet-50,
part of the ResNet family, features residual connections that mitigate the vanishing gradient
problem and facilitate the training of deep networks. With its skip connections, ResNet-
50 can effectively handle deeper architectures and capture intricate features, making it a
popular choice for various computer vision tasks. In summary, while 1 excels in capturing
complex dependencies, Xception and MobileNetV3 prioritize efficiency, and ResNet-50
offers the capability to handle deep architectures effectively. A comparison of the key
characteristics of these models is given in Table 1.

Table 1. Comparison of key characteristics.

Model Architecture Overview Features Complexity

DenseNet-201 Multiple dense blocks with direct
connections between layers within blocks

Excellent feature reuse, reduced
vanishing gradient Intricate

Xception Depth-wise separable convolutions with
depth-wise and point-wise stages

High efficiency, reduced
computational complexity Reduced

MobileNetV3-Small Inverted residuals, linear bottlenecks,
point-wise and depth-wise convolutions

High efficiency, suitable for
resource-constrained environments Balanced

ResNet-50 Convolutional layers with skip
connections (residual connections)

Effective for deep networks, mitigates
vanishing gradient problem Moderate

3.3. Methodology

The methodology followed in this study is described in this section. The input images
underwent augmentation to enhance their diversity and were then fed into pre-trained
models. A global average pooling layer was applied to extract essential features from
the images, followed by dense layers and a dropout layer with a rate of 0.2 to mitigate
overfitting. This is depicted in Figure 1.



Electronics 2023, 12, 3132 9 of 23

Electronics 2023, 12, x FOR PEER REVIEW 9 of 23 
 

 

256 images from the training, validation, and test folders. The training images were pre-
processed using the Keras preprocess_input function specific to each pre-trained model. 
The model architecture involved connecting the input layer to the pre-trained model, in-
corporating a global average pooling layer, two dense layers activated by the rectified 
linear unit (ReLU) function, and a dropout layer with a rate of 0.2. The final output layer 
utilized the Softmax activation function. The Adam optimizer was employed for model 
optimization. 

 
Figure 1. Methodology used in this study. 

3.4. Evaluation Metrics 
The evaluation metrics used in this study are as follows: 

• Accuracy: Accuracy is the percentage of correct predictions out of the total number 
of predictions. 

Accuracy = ஊ் ା ஊ்ே∑் ା ∑்ே ା ∑ி ା ிே 

• Precision: Precision is defined as the number of samples from the same class that 
were rightly classified in comparison to the samples predicted as positives by the 
classifier. 

Precision = ఀ்∑் ା ∑ிே 

• Recall: Recall or true positive rate (tpr) is an indicator of a classifier’s capacity to cor-
rectly pick instances of the target class related to the positive samples. 

Recall = ఀ்∑் ା ∑ி 

• F-measure: The f-measure is the harmonic mean of precision and recall. 

F1 Score = ଶ ൈ  ൈ ோ  ା  ோ  

In the above equations, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent the true positive, true negative, 
false positive, and false negative, respectively. Pr represents precision and Re represents 
Recall. 

4. Experimental Results 
4.1. Experiments on Fruits-360 

The models were trained to classify 24 different categories of fruits and vegetables 
with the Fruits-360 dataset. Initially, images of size 75 × 75 pixels were used as the input 
to the models and trained for 50 epochs. The accuracies then obtained by them on the 
training, validation, and test sets are presented in Table 2. 

  

Figure 1. Methodology used in this study.

To handle the image data and to perform data augmentation, the ImageDataGenerator
function available in Keras was utilized. This enabled the efficient batch processing of
256 images from the training, validation, and test folders. The training images were
preprocessed using the Keras preprocess_input function specific to each pre-trained model.
The model architecture involved connecting the input layer to the pre-trained model,
incorporating a global average pooling layer, two dense layers activated by the rectified
linear unit (ReLU) function, and a dropout layer with a rate of 0.2. The final output
layer utilized the Softmax activation function. The Adam optimizer was employed for
model optimization.

3.4. Evaluation Metrics

The evaluation metrics used in this study are as follows:

• Accuracy: Accuracy is the percentage of correct predictions out of the total number
of predictions.

Accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + FN

• Precision: Precision is defined as the number of samples from the same class that were
rightly classified in comparison to the samples predicted as positives by the classifier.

Precision =
∑ TP

∑ TP + ∑ FN

• Recall: Recall or true positive rate (tpr) is an indicator of a classifier’s capacity to
correctly pick instances of the target class related to the positive samples.

Recall = ∑ TP
∑ TP + ∑ FP

• F-measure: The f-measure is the harmonic mean of precision and recall.

F1 Score =
2× Pr×Re

Pr+ Re
In the above equations, TP, TN, FP, and FN represent the true positive, true neg-

ative, false positive, and false negative, respectively. Pr represents precision and Re
represents Recall.

4. Experimental Results
4.1. Experiments on Fruits-360

The models were trained to classify 24 different categories of fruits and vegetables
with the Fruits-360 dataset. Initially, images of size 75 × 75 pixels were used as the input to
the models and trained for 50 epochs. The accuracies then obtained by them on the training,
validation, and test sets are presented in Table 2.
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Table 2. Accuracy of models with image size 75 × 75 pixels on Fruits-360.

Model
Accuracy (in %)

Training Validation Test

DenseNet-201 96.70 98.18 97.33

Xception 83.33 85.55 84.34

MobileNetV3-Small 94.28 96.22 95.65

ResNet-50 99.51 99.80 98.36

All models were then trained with images of their default image size. For DenseNet-
201, MobileNetV3-Small, and ResNet-50, this was 224 × 224 pixels, whereas for Xception,
the default size was 229 × 229. The accuracies obtained by the models, in this case, are
given in Table 3.

Table 3. Accuracy of models with default image size on Fruits-360.

Model Image Size (Pixels)
Accuracy (in %)

Training Validation Test

DenseNet-201 224 × 224 99.97 98.18 99.87

Xception 229 × 229 98.28 98.67 98.94

MobileNetV3-Small 224 × 224 99.71 99.84 99.93

ResNet-50 224 × 224 99.85 99.87 100

Resizing the input images to the default image sizes for each model led to a significant
increase in their accuracies, because of which all the remaining results covered for Fruits-360
are from the same image size.

Heatmaps are a valuable visualization tool to evaluate the predictions made by classifi-
cation models by providing a graphical representation of the concentration of the predicted
values for each class. They enhance the interpretability of classification results and provide
a visual aid in analyzing the models’ predictions. Heatmaps for the predictions made by
DenseNet-201, Xception, MobileNetV3-Small, and ResNet-50 on the test set for Fruits-360
are included in Figure 2, Figure 3, Figure 4, and Figure 5, respectively. The class names
corresponding to each class number in the figures are shown in Table 4.
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Table 4. Precision of predictions on Fruits-360.

Class Number Class Names
Precision

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 apple_6 1.00 0.99 1.00 1.00

1 apple_braeburn_1 1.00 1.00 1.00 1.00

2 apple_crimson_snow_1 1.00 0.97 1.00 1.00

3 apple_golden_1 1.00 1.00 1.00 1.00

4 apple_golden_2 1.00 1.00 1.00 1.00

5 apple_golden_3 1.00 0.99 1.00 1.00

6 apple_granny_smith_1 1.00 0.96 1.00 1.00

7 apple_hit_1 1.00 0.99 1.00 1.00

8 apple_pink_lady_1 0.97 1.00 0.99 1.00

9 apple_red_1 1.00 0.97 1.00 1.00

10 apple_red_2 1.00 1.00 1.00 1.00

11 apple_red_3 1.00 1.00 1.00 1.00

12 apple_red_delicious_1 1.00 1.00 1.00 1.00

13 apple_red_yellow_1 1.00 1.00 1.00 1.00

14 apple_rotten_1 1.00 1.00 1.00 1.00

15 cabbage_white_1 1.00 1.00 1.00 1.00

16 carrot_1 1.00 1.00 1.00 1.00

17 cucumber_1 1.00 1.00 1.00 1.00

18 cucumber_3 1.00 1.00 1.00 1.00

19 eggplant_violet_1 1.00 1.00 1.00 1.00

20 pear_1 1.00 0.95 1.00 1.00

21 pear_3 1.00 1.00 1.00 1.00

22 zucchini_1 1.00 0.99 1.00 1.00

23 zucchini_dark_1 1.00 1.00 1.00 1.00
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It can be observed that DenseNet-201 demonstrated mostly accurate predictions,
with only four images from the ‘apple_crimson_snow_1’ class being misclassified as ‘ap-
ple_pink_lady_1’. Aside from this misclassification, the model performed well and made
accurate predictions for the remaining instances.

Despite Xception’s overall strong performance, a few examples highlight the pres-
ence of misclassifications within the results. This suggests that while Xception is gener-
ally reliable, there may still be room for improvement in certain scenarios or for specific
image samples.

MobileNetV3-Small displayed exceptional performance, achieving highly accurate
results in the majority of its predictions. It is noteworthy that the model made only
two misclassifications, incorrectly labeling instances of ‘apple_crimson_snow_1’ as ‘ap-
ple_pink_lady_1’.

ResNet50 exhibited remarkable performance in fruit classification, achieving an out-
standing level of accuracy. It is noteworthy that the model did not make any incorrect
predictions, demonstrating perfect accuracy, 100%.

Table 4 lists the precision of classification predictions attained by the models on the
test set for each class. Table 5 gives the recall and Table 6 shows the f-measure on the same
set for each class.

Table 5. Recall of predictions on Fruits-360.

Class Number Class Names
Recall

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 apple_6 1.00 1.00 1.00 1.00

1 apple_braeburn_1 1.00 0.97 1.00 1.00

2 apple_crimson_snow_1 0.97 0.99 0.99 1.00

3 apple_golden_1 1.00 1.00 1.00 1.00

4 apple_golden_2 1.00 0.99 1.00 1.00

5 apple_golden_3 1.00 0.94 1.00 1.00

6 apple_granny_smith_1 1.00 0.94 1.00 1.00

7 apple_hit_1 1.00 1.00 1.00 1.00

8 apple_pink_lady_1 1.00 0.97 1.00 1.00

9 apple_red_1 1.00 0.99 1.00 1.00

10 apple_red_2 1.00 1.00 1.00 1.00

11 apple_red_3 1.00 1.00 1.00 1.00

12 apple_red_delicious_1 1.00 1.00 1.00 1.00

13 apple_red_yellow_1 1.00 1.00 1.00 1.00

14 apple_rotten_1 1.00 1.00 1.00 1.00

15 cabbage_white_1 1.00 1.00 1.00 1.00

16 carrot_1 1.00 0.98 1.00 1.00

17 cucumber_1 1.00 1.00 1.00 1.00

18 cucumber_3 1.00 1.00 1.00 1.00

19 eggplant_violet_1 1.00 1.00 1.00 1.00

20 pear_1 1.00 1.00 1.00 1.00

21 pear_3 1.00 1.00 1.00 1.00

22 zucchini_1 1.00 1.00 1.00 1.00

23 zucchini_dark_1 1.00 1.00 1.00 1.00
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Table 6. F-measure of predictions on Fruits-360.

Class Number Class Names
F-Measure

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 apple_6 1.00 0.99 1.00 1.00

1 apple_braeburn_1 1.00 0.99 1.00 1.00

2 apple_crimson_snow_1 0.99 0.98 0.99 1.00

3 apple_golden_1 1.00 1.00 1.00 1.00

4 apple_golden_2 1.00 1.00 1.00 1.00

5 apple_golden_3 1.00 0.97 1.00 1.00

6 apple_granny_smith_1 1.00 0.95 1.00 1.00

7 apple_hit_1 1.00 1.00 1.00 1.00

8 apple_pink_lady_1 1.00 0.98 1.00 1.00

9 apple_red_1 0.99 1.00 1.00 1.00

10 apple_red_2 1.00 0.98 1.00 1.00

11 apple_red_3 1.00 1.00 1.00 1.00

12 apple_red_delicious_1 1.00 1.00 1.00 1.00

13 apple_red_yellow_1 1.00 1.00 1.00 1.00

14 apple_rotten_1 1.00 1.00 1.00 1.00

15 cabbage_white_1 1.00 1.00 1.00 1.00

16 carrot_1 1.00 0.99 1.00 1.00

17 cucumber_1 1.00 1.00 1.00 1.00

18 cucumber_3 1.00 1.00 1.00 1.00

19 eggplant_violet_1 1.00 1.00 1.00 1.00

20 pear_1 1.00 0.98 1.00 1.00

21 pear_3 1.00 1.00 1.00 1.00

22 zucchini_1 1.00 0.99 1.00 1.00

23 zucchini_dark_1 1.00 1.00 1.00 1.00

4.2. Experiments on the Fruit Recognition Dataset

The Fruit Recognition dataset was used to train the models to identify 15 different
categories of fruits. Due to the large size of the dataset, and the limited memory and
processing power available for computation, only 1000 images from each category were
used. A total of 80% of these images were used for training, 10% for validation, and 10%
for testing. The images were loaded in batches of 32 using the ImageDataGenerator class of
the Keras Python library (version 2.12.0). Augmentation was not used here because of the
sufficient size of the dataset. The input layer with image shape (224, 224, 3) was connected
to the pre-trained model, followed by two dense layers and the output layer. The ReLU
activation function was used for both the dense layers and Softmax for the output layer.
The optimizer used was Adam. The accuracies attained by the models on the training,
validation, and test sets are shown in Table 7.
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Table 7. Accuracy of models on Fruit Recognition dataset.

Model
Accuracy (in %)

Training Validation Test

DenseNet-201 99.72 99.56 99.13

Xception 98.88 96.89 97.73

MobileNetV3-Small 60.22 62.15 62.73

ResNet-50 79.04 76.07 76.47

Heatmaps for the predictions made by DenseNet-201, Xception, MobileNetV3-Small,
and ResNet-50 on the test set for the Fruit Recognition dataset are included in Figure 6,
Figure 7, Figure 8, and Figure 9, respectively. The class names corresponding to each class
number in the figures are referenced in Table 7.
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Figure 9. Heatmap of predictions by ResNet-50 on Fruit Recognition dataset.

It is evident that DenseNet-201 made the majority of its predictions correctly, demon-
strating a high level of accuracy. However, there were a few instances where incorrect
classifications occurred.

Xception also demonstrated a strong performance by correctly predicting the majority of
instances. However, there were a few instances where the model made incorrect classifications.

It is evident that despite the overall performance of MobileNetV3-Small, the model
exhibited a noticeable portion of predictions that did not align with the ground truth labels.

ResNet-50, while generally performing well, also made a considerable number of
incorrect predictions.

The precision of predictions made by each model on the test set for each class is given
in Tables 8–10, showing the recall and f-measure of predictions, respectively.
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Table 8. Precision of predictions on Fruit Recognition dataset.

Class Number Class Names
Precision

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 Apple 0.93 0.96 0.52 0.81

1 Banana 1.00 1.00 0.62 0.50

2 Carambola 1.00 1.00 0.56 0.85

3 Guava 0.99 0.99 0.90 0.91

4 Kiwi 1.00 1.00 0.66 0.88

5 Mango 0.99 0.93 0.47 0.50

6 Orange 1.00 0.99 0.51 0.61

7 Peach 1.00 0.96 0.64 0.84

8 Pear 0.99 0.94 0.43 0.82

9 Persimmon 1.00 0.99 0.72 0.89

10 Pitaya 1.00 0.97 0.75 0.78

11 Plum 0.99 1.00 1.00 0.98

12 Pomegranate 1.00 1.00 0.56 0.81

13 Tomatoes 1.00 0.95 0.57 0.83

14 Muskmelon 0.99 0.97 0.60 0.89

Table 9. Recall of predictions on Fruit Recognition dataset.

Class Number Class Names
Recall

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 Apple 1.00 0.90 0.17 0.30

1 Banana 0.99 1.00 0.32 0.89

2 Carambola 0.99 0.99 0.62 0.68

3 Guava 1.00 0.99 0.55 0.88

4 Kiwi 1.00 0.98 0.80 0.85

5 Mango 1.00 0.99 0.55 0.70

6 Orange 1.00 0.92 0.69 0.84

7 Peach 0.95 1.00 0.73 0.57

8 Pear 1.00 0.96 0.43 0.55

9 Persimmon 1.00 0.97 0.83 0.92

10 Pitaya 1.00 1.00 0.77 0.78

11 Plum 1.00 1.00 0.88 1.00

12 Pomegranate 0.98 0.99 0.92 0.85

13 Tomatoes 1.00 0.98 0.57 0.89

14 Muskmelon 0.96 1.00 0.60 0.71
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Table 10. F-measure of predictions on Fruit Recognition dataset.

Class Number Class Names
F-Measure

DenseNet-201 Xception MobileNetV3-Small ResNet-50

0 Apple 0.96 0.93 0.25 0.43

1 Banana 1.00 1.00 0.43 0.64

2 Carambola 0.99 0.99 0.59 0.75

3 Guava 0.99 0.99 0.68 0.90

4 Kiwi 1.00 0.99 0.73 0.86

5 Mango 0.99 0.96 0.50 0.58

6 Orange 1.00 0.95 0.58 0.71

7 Peach 0.97 0.98 0.68 0.68

8 Pear 1.00 0.95 0.43 0.66

9 Persimmon 1.00 0.98 0.77 0.90

10 Pitaya 1.00 0.98 0.76 0.78

11 Plum 1.00 1.00 0.94 0.99

12 Pomegranate 0.99 0.99 0.69 0.83

13 Tomatoes 1.00 0.97 0.57 0.86

14 Muskmelon 0.98 0.99 0.60 0.79

5. Discussion

Fruits-360, DenseNet, MobileNetV3, and ResNet were successful in achieving accura-
cies above 95% on the test set when input images of size 75× 75 pixels were used. However,
the accuracies of all models improved significantly when the input images were resized
to the default image size for each model. All the models achieved nearly 99% accuracy
or above in this case. The most noteworthy improvement was demonstrated by Xception
which increased its accuracy from 84% to 99%. The improvement in accuracies of all models
is shown in Figure 10. The highest accuracy was obtained by ResNet for both image sizes,
confirming its effectiveness.
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All models took notably longer times for training with larger images than when
smaller images were used. With larger images, the models were also able to reach optimal
accuracies at a lesser number of epochs than when smaller images were used. When
images are downsized, the number of pixels with important featural information decreases
significantly. This explains the lower performance of the models on the smaller images.
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When the input image size is increased, the images are padded with zero to achieve the
specified image size, if not already attained by the original image. This exposes the models
to more pixels of the fruit, as well as the padding with no information. The availability of
more pixels with vital information helped the models learn better, whereas the need to also
learn the padded portion with no information increased the training time of the models.

The performance of ResNet-50 was the most remarkable. Not only did it achieve 100%
accuracy on the test set but the scores it attained for precision, recall, and f-measure were
also perfect, meaning that not even one prediction made by the model was wrong. The
results of MobileNetV3-Small closely follow behind with only two incorrect predictions
out of the total 3110 predictions made. DenseNet-201 follows with only four incorrect
predictions, and Xception comes last with 25 incorrect predictions. The prediction results
for each model are summarized in Figure 11.
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The Fruit Recognition dataset, DenseNet, and Xception performed remarkably well,
attaining accuracies of 99% and 98%, respectively, on the test set. MobileNetV3, however,
was able to attain only 63% accuracy. Despite exhibiting the highest performance among
all the models on Fruits-360, ResNet was only able to achieve 76% accuracy on this dataset.

The predictions made on the test set of the dataset show that the best predic-
tions were made by DenseNet, correctly classifying 1487 fruit images out of a total of
1500 images. Xception comes second by correctly classifying 1468 images. ResNet fol-
lows with 1117 correct predictions and MobileNetV3 comes last with only 867 correct
predictions. The prediction results for each model are depicted in Figure 12.

The Fruits-360 dataset is relatively simple, with its images containing only a single fruit
closely cropped against a white background. The Fruit Recognition dataset, on the other
hand, is more challenging and closely resembles images likely to be captured in real-world
supermarket scenarios. The fruits in the images are casually placed on a metal tray with no
order. The images may contain one or more fruits which may be found anywhere within
the image. The fruits are also partially hidden by a human hand in some of the images.
The complexity of the dataset may have led to the low performance of MobileNetV3 and
ResNet on this dataset. The accuracies of the models for both datasets are compared
in Figure 13.
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DenseNet and Xception were successful in attaining almost 98% accuracy and above
on both datasets. MobileNetV3 and ResNet, on the other hand, performed well on Fruits-
360, a comparably straightforward dataset, but also struggled to learn when exposed to the
more complicated Fruit Recognition dataset. The Fruit Recognition dataset is a very good
dataset for applications in supermarket scenarios as it also considers various real-world
imaging problems, for instance, different lighting, camera angles, and object occlusion. The
high performance of DenseNet and Xception on both datasets suggests that they may be
potential choices for real-world applications.

6. Conclusions

Four pre-trained deep learning models, DenseNet-201, Xception, MobileNetV3-Small,
and ResNet-50, were investigated to ascertain their ability to classify different types of
fruits from their images in this study. Pre-trained models are easy to work with and train
due to retained knowledge from previous learning. The TensorFlow library allows these
models to be easily downloaded with a single line of code, facilitating the incorporation
of complex neural network architectures into deep learning models effortlessly. All four
models were trained and evaluated on two datasets: Fruits-360 and the Fruit Recognition
dataset. With Fruits-360, the models were trained using two different sizes of input images,
establishing that deep learning models learn more information from larger images than
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small ones, but at the expense of increased training times. All four models achieved above
98% accuracy on Fruits-360 when trained with their default image sizes. However, with the
Fruit Recognition dataset, only DenseNet-201 and Xception were able to achieve similarly
remarkable results. DenseNet-201 attained 99.87% and 99.13% accuracy, respectively, on
Fruits-360 and the Fruit Recognition dataset, whereas Xception attained 98.94% and 97.73%
accuracy, respectively, on the datasets in the same order. The great results achieved by
DenseNet-201 and Xception on both datasets are promising indicators of their applicability
to real-world fruit recognition problems. These results are also higher than those obtained
in previous studies employing more than one dataset. Further training with more datasets
and images capturing the difficult aspects of real-time imaging will aid in determining the
robustness and versatility of these models. The major contributions made by this study can
be summarized as follows. Firstly, three pre-trained models (DenseNet-201, Xception, and
MobileNetV3-Small) that have not been previously employed for fruit classification were
investigated. Secondly, two highly performing pre-trained models for fruit recognition,
DenseNet-201 and Xception, were identified. The superior performance of these models
was confirmed after training and testing them on two different datasets that vary greatly
from each other in terms of the images. There are a few relevant scenarios that have not
been addressed in this study. The fruits presented at the time of checkout in retail stores
may be wrapped in plastic or paper bags. The datasets chosen for this study did not contain
any images pertaining to this situation. Further research is required to investigate the
model performances in this situation. Studies to identify each type of fruit from images
will be useful for application in sorting facilities, or when different types of fruits are
mixed or placed too close to each other on the conveyor belt at retail store checkouts.
Another scenario that may occur is when objects that closely resemble fruits, such as toy
fruits, or even images of fruits, are presented instead of the real fruit. This also requires
further studies which would be much more complex, as the models would not only need
to distinguish between fake fruit and real ones but also the type of fruit.
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