
Research Article
HOVA-FPPM: Flexible Periodic Pattern Mining in Time Series
Databases Using Hashed Occurrence Vectors and
Apriori Approach

Muhammad Fasih Javed,1 Waqas Nawaz ,2 and Kifayat Ullah Khan 1

1IKMA Lab, Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan
2Department of Computer and Information Systems, Islamic University of Madinah, Al-Madinah, Saudi Arabia

Correspondence should be addressed to Waqas Nawaz; wnawaz@iu.edu.sa

Received 25 August 2020; Revised 26 November 2020; Accepted 21 December 2020; Published 4 January 2021

Academic Editor: Jiwei Huang

Copyright © 2021 Muhammad Fasih Javed et al. ,is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Finding flexible periodic patterns in a time series database is nontrivial due to irregular occurrence of unimportant events, which
makes it intractable or computationally intensive for large datasets.,ere exist various solutions based on Apriori, projection, tree,
and other techniques to mine these patterns. However, the existence of constant size tree structure, i.e., suffix tree, with extra
information in memory throughout the mining process, redundant and invalid pattern generation, limited types of mined flexible
periodic patterns, and repeated traversal over tree data structure for pattern discovery, results in unacceptable space and time
complexity. In order to overcome these issues, we introduce an efficient approach called HOVA-FPPM based on Apriori approach
with hashed occurrence vectors to find all types of flexible periodic patterns. We do not rely on complex tree structure rather
manage necessary information in a hash table for efficient lookup during the mining process. We measured the performance of
our proposed approach and compared the results with the baseline approach, i.e., FPPM. ,e results show that our approach
requires lesser time and space, regardless of the data size or period value.

1. Introduction

Data mining allows us to discover useful information from
the data that would otherwise be very hard to uncover. ,e
process of data mining involves various tasks including
classification, clustering, pattern mining, and several others
[1]. Pattern mining is a subfield of data mining that focuses
on discovering useful patterns within a given dataset [2]. It
finds either a single item or a set of items that appear more
than a certain threshold set by the user. A classic example
would be the patterns of frequently bought items together. It
is common for companies to store the transactions, con-
taining the type and name of the items, in their databases.
,e data of these transactions are used to mine the patterns
of frequently bought items together [3]. Traditionally, these
patterns help the stores in deciding which set of items is
required to place together for customers.

Time series datasets are common these days, having some
of the application areas such as economics, social sciences,
epidemiology, medicine, and physical sciences, for instance,
measuring a person’s heart rate after every minute, readings of
air temperature or wind after every hour, stock rates atmid and
end of every day, and so on. Mining the patterns from time
series data is usually referred to as periodic pattern mining
[4–7]. ,e periodic patterns in the mining process are usually
categorized as symbol, sequence (partial), and full-cycle
(segment) periodic patterns [8–11]. Symbol periodicity hap-
pens when there is a single event that reappears in the time
series after a specific time period. Sequence periodicity is the
reoccurrence of multiple symbols after a specific time period.
Full-cycle periodicity is the repetition of the whole data in a
given period. Recently, research focus has been shifted towards
the flexible periodic patternmining [9, 12–15].,e idea behind
flexible pattern mining is to discover a set of events that do not

Hindawi
Scientific Programming
Volume 2021, Article ID 8841188, 14 pages
https://doi.org/10.1155/2021/8841188

mailto:wnawaz@iu.edu.sa
https://orcid.org/0000-0002-9989-6163
https://orcid.org/0000-0002-3916-1659
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8841188

necessarily appear together, but those events are accompanied
by random events in between them periodically, i.e., {eventimp,
eventunimp, eventimp, eventimp}.,e term flexibility refers to the
existence of irregular occurrence of unimportant events be-
tween frequently occurring events at different time periods. Let
us consider the example of bank transactions [12] denoted as
{a, b, c, d} for amounts in millions for 0–5, 5–10, 10–15, and
≥15, respectively. Given a set of transactions {abd, accd, ad,
abbccd} and a manager is interested to analyze the patterns of
transactions having lower a and higher d amounts.We observe
that there is no exact number of transaction types between a
and d. Such a scenario can be formally represented as a {∗ }d,
where 0∗ 0 shows flexibility in the number of options
(transaction types) to consider during mining and we consider
it as a flexible pattern mining problem.

,e use of suffix tree (prefix trie or trie) data structure is
prevalent among state-of-the-art approaches towards flexible
periodic pattern mining. Rasheed et al. [9] constructed suffix
tree from time series data to mine flexible periodic patterns.
Similarly, Chanda et al. [12] introduced an improved ap-
proach based on suffix tree data structure. ,ere exists in-
memory linear time algorithm to construct the suffix tree [16]
and pruning strategy suggested in [12]; however, repeated
traversal over such a tree structure makes the overall mining
process computation intensive. We observe various redun-
dant (unnecessary) patterns kept for a significant amount of
time, and tree size remains constant throughout the mining
process. In our understanding, a better strategy is required to
be space and time efficient while keeping necessary infor-
mation and producing the same patterns.

In this paper, we introduce an efficient strategy based on
hashed occurrence vectors and Apriori approach, which
does not rely on suffix tree data structure [9, 12] rather on
hash table for efficient lookup, to mine periodic patterns
from time series data without compromising on the results.
Our approach comprises of discretization of time series data,
periodicity detection, and pattern mining modules. We
maintain uniquely variable length periodic patterns along
with their occurrence vectors as key-value pairs in a hash
table, where key represents pattern and occurrence vector is
stored as corresponding value. We use arithmetic on oc-
currence vectors of discretized events to compute periodicity
of the underlying patterns. ,e proposed periodicity de-
tection algorithm is different from existing algorithms in
terms of removing the redundant occurrence vector values
and computing periodicity of all patterns at same level in one
pass. We tailor the incremental pattern mining process to
use occurrence vectors of existing patterns in hash table to
explore new patterns and update the hash table once patterns
found at each level.

,e contributions of our work are as follows.
(i) We propose HOVA-FPPM to simplify flexible pe-

riodic pattern mining process through an efficient
key-value pair data structure.

(ii) We maintain necessary information (patterns and
their occurrence vectors) and compute efficiently
(through basic arithmetic on occurrence vectors,

reducing redundant and invalid patterns) to sig-
nificantly improve time and space complexity of our
approach.

(iii) Our approach requires single pass to discover
symbol, partial, and full-cycle periodic patterns at
any periodic level.

(iv) Comprehensive performance analysis on real-world
datasets with the baseline algorithm shows the run
time effectiveness and space efficiency of our ap-
proach while maintaining the same accuracy.

,e rest of the paper is organized as follows. We discuss
related works followed by preliminaries section. ,e pro-
posed methodology with detailed explanation of the algo-
rithm is discussed afterwards. Subsequently, we outline the
experimental analysis of the proposed methodology in
comparison to the baseline approach on real-world datasets.
We also provide a detailed discussion at the end. Lastly, we
conclude the paper along with its future directions.

2. Literature Review

In this section, we briefly discuss various approaches in the
context of periodicity mining, which is subfield of pattern
mining. Patternmining has other subfields depending on the
type of mined patterns such as frequent item sets [3], se-
quential patterns [8, 11, 17, 18], high utility patterns [19–22],
periodic patterns [23–25], as well as flexible periodic pat-
terns [9, 12, 26]. Chanda et al. [12] put forth an algorithm
recently that finds flexible periodic patterns in a time series
by using suffix tree data structure. In their approach, they
first made a suffix tree from the time series and then used
that suffix tree to mine patterns of various lengths.

After an extensive literature review of the periodic
pattern mining algorithms, we noticed that all of these al-
gorithms can be categorized based on the approaches they
used in their algorithmic solutions (refer to the taxonomy of
frequent pattern mining in Figure 1). For instance, some
algorithms use the Apriori approach to find patterns in an
increasing length, whereas others use a tree-like structure to
avoid the memory requirement and mine the patterns from
it. Each approach has its own benefits and drawbacks.
,erefore, instead of categorizing algorithms based on the
types of patterns they were mining, we group them based on
their underlying approaches. ,e key approaches were
Apriori, tree based, projection based, and others. ,e other
category contains algorithms that follow a uncommon
approach.

2.1. Apriori-Based Approaches. ,e earlier works based on
Apriori approaches were not able to mine all types of
patterns at once. However, some important properties,
monotone and anti-monotone, were introduced later that
helped in improving the performance of mining algorithms
[17, 18]. ,e most recent algorithm that could detect flexible
periodic patterns of all types was presented by Nishi et al.
[19]. ,e algorithm used Apriori-based approach to mine all
the valid patterns by using the occurrence vectors.

2 Scientific Programming

Algorithm started by mining one-length patterns and then
moved to the two length patterns and so on. ,e found
patterns are made flexible by inserting “∗” as special
character. As per the authors’ claim, their algorithm is ca-
pable of finding some interesting patterns which was not
possible with previous algorithms. ,ey also claim that it
finds all types of periodic patterns; however, the mining
strategy is computationally expensive because of generating
a lot of excessive patterns.

2.2. Tree-BasedMethods. Many researchers were utilizing an
important notion called “closed patterns” in the context of
periodic pattern mining that has reduced search space to-
wards mining redundant patterns [20, 21, 23]. Majority of
these algorithms involved the usage of tree structures for
pattern mining and ended up reducing the time and space
complexity of the decreased number of patterns with re-
duced tree size. ,e research trend shifted towards mining a
different type of patterns known as the high utility patterns
[24–26]. Rasheed et al. [9] put forth an algorithm that finds
flexible periodic patterns in time series databases using suffix
tree. In this approach, suffix tree is created from the time
series data and then used to mine patterns of various lengths.
Although the authors used a technique of generating pat-
terns incrementally from one-length patterns to two length
patterns and so on, unlike other algorithms, they did not
follow Apriori approach completely of making excessive and
all possible combinations. ,e suffix tree allowed them to
make the combinations with the events that appeared in the
suffix tree. Another distinguishing aspect of their approach
was that the patterns were not made flexible at the end of the
process, rather, it kept attaching the unimportant event
symbols with every mined pattern hoping to become a
pattern at successive depth of the tree. Recently, Chanda
et al. [12] introduced another efficient approach in the same
direction for flexible patternmining using pruned suffix tree.

2.3. Projection-Based Techniques. In this category, unlike
other approaches, researchers used the projection database
to mine the patterns with multiple pruning techniques. ,ey
introduced the concepts of flexible periodic pattern mining
in the domain of closed pattern mining [14, 27]. For in-
stance, Akther et al. [14] presented an algorithm to mining

closed flexible patterns, which was an improvement over the
previously presented paper on flexible closed patterns [27].
,ere were some other works on discovering closed patterns
using projection database and tree structures [28–30].

2.4. Other Approaches. ,ere are other approaches in lit-
erature for pattern mining that includes dynamic time
warping [31], information gain [32], and manipulation of
bitmap representation of data [33, 34]. ,e dynamic time
warping algorithm [31] used a matrix to warp the time
dimension of data for insertion or deletion of noise. ,e
WARP algorithm is not capable of detecting all types of
periodic patterns; however, handling noise in the data makes
it prominent among other approaches. In another work, the
authors proposed an extended version of information gain
measure [32] to detect periodicity. It is focused on flexible
pattern mining with gap penalties, but it only worked for
symbol and partial periodic patterns. Another study [35]
detected partial periodic patterns with the aim of eliminating
the need to know the period lengths before mining. Ayres
et al. and Lucchese et al. [33, 34] worked on long sequential
pattern mining. ,e data are represented in bitmaps where
depth-first search strategy is used tomine the long sequential
patterns.

It is evident from the above discussion that the existing
approaches either employ complex data structure for pattern
mining process or generate excessive redundant or invalid
patterns. For instance, in Apriori-based approaches, ex-
cessive generation of redundant or invalid patterns reduces
time and space efficiency. ,e effect of excessive pattern
generation on tree- and projection-based approaches results
in complex tree structure, which further increases the
memory usage as well as traversal times. ,e approach with
an effective pattern generation strategy and efficient repeated
traversal over data has the potential to overcome the
aforementioned limitations of existing studies.

2.5. Preliminaries. In this section, we explain existing ter-
minologies to understand the problem and its solutions.

Definition 1. (periodicity). In a time series T, T� {a0, a1, a2,
a3, . . ., ...an}, with n events, finding howmany times an event

Frequent
pattern mining

Episodic
pattern mining

Association
rule pattern

mining

Sequential
pattern mining

Periodic
pattern mining

Projection
based Apriori based Tree based Others/hybrid

Subgraph
pattern mining

High utility
pattern mining

Figure 1: Taxonomy of research in frequent pattern mining.

Scientific Programming 3

reoccurs within a specified period of time is known as the
periodicity of that event.

For example, in time series T� {abdbc abdba abdac
acdca} based on daily activities schedule of a working in-
dividual in office, as shown in Figure 2, event “a” is periodic
for period value 5. ,is means if T is divided into pieces of
length 5, “a” will always appear at the same place within
those pieces. In other words, there will always be four events
in between two occurrences of “a.” However, if we look at
the period value 3 and divide T in pieces of length 3, “a”
would not be considered as periodic because “a” does not
appear after every two events.

Definition 2. (perfect periodicity). In a time series T, T� {a0,
a1, a2, a3, . . ., an}, with n events, an event reoccurring within
a specified period of time for the entirety of the time series is
known as perfect periodicity.

Perfect periodicity is denoted by PP and defined as
follows:

PP(period, start, end,Pattern) �
end − start + 1

period
 . (1)

For example, in time series T� {abdbc abdba abdac
acdca}, PP (5, 0, 19, “abd”)� (19 − 0 + 1)/5 results in 4 that
means “abd” would have to appear 4 times in the time series
in order to have perfect periodicity. However, it has an actual
periodicity of 3 in the data.

Definition 3. (periodic pattern). When a pattern repeatedly
occurs for a specific period of time and satisfies the support
threshold, we call it periodic pattern.

For example, in time series T� {abdbc abdba abdac
acdca}, pattern “abd” is periodic with a support of 3 for
period value 5 when the threshold support value is 3. In
short, event or a sequence of events will be considered a
periodic pattern if they satisfy the minimum support
threshold for the given period value. ,is should not be
confused by the support measure. For example, consider the
events “ca” in the time series T. If we look at the events in T,
we notice that “ca” appears a total of 3 times, which means it
satisfies the support threshold considering the whole time
series. However, “ca” only appears once if we look at Twith a
period value of 5 if we start at the index 0 of T.

Definition 4. (flexible periodic pattern (FPP)). Any periodic
pattern that contains “do not care” events is called flexible
periodic pattern.

For example, in time series T� {abdbc abdba abdac
acdca}, the pattern “a ∗ d” is a periodic pattern with support
4 and period value 5. It means that event “a” and event “d”
occur after every 4 values with a random event in between
them. Flexible periodic patterns are difficult to mine through
regular pattern mining approaches due to the occurrences of
unimportant events.

Definition 5. (occurrence vector). An occurrence vector is a
list that represents the index positions of a unique element
(event) in the data. Every unique element (event) has one
occurrence vector.

For example, in time series T� {abdbc abdba abdac
acdca}, the occurrence vector of the element “a” is [0, 5, 9, 10,
13, 15, 19], which represents the index positions of the
occurrences of event “a” in T.

Definition 6. (difference vector). Given a pair of occurrence
vectors, the difference vector generates a pattern along with
its frequency count.

,e objective of a difference vector is to obtain a pattern
along with its frequency. It is computed by comparing each
value of the first occurrence vector with every value of the
second occurrence vector. For a given transaction in Figure
3, the pattern ab occurs three times. To generate this pattern,
we need to compute the difference a− b, which provides us
three occurrences of value −1 in Figure 4 in a table titled
“Differences.” Similarly, the pattern a ∗∗ ∗ ∗ b appears two
times; hence, we find the value −5 two times. ,e difference
vector can be positive or negative. A negative value denotes
that an element appears before the other element, i.e., a
appears before b while computing the difference a− b. A
positive value for the said difference denotes that a appears
after b.

Definition 7. (confidence). Confidence of a pattern is the
ratio of actual periodicity and perfect periodicity, as shown
in the following equation:

conf(p, strt, pattrn)
AP(p, strt, end, pattrn)

PP(p, strt, end, pattrn)
. (2)

For example, in time series T� {abdbc abdba abdac
acdca}, the perfect periodicity of pattern “abd” is 4 and the
actual periodicity is 3. ,erefore, the confidence of this
pattern is 75%, i.e., confidence (5, 0, “abd”)� 3/4.

Daily schedule Discretized events Discretized sequence
Coffee
Work
Lunch
Work

Talk break
Coffee
Work
Lunch
Work

Coffee
Talk break

Lunch
Talk break

Coffee

a
b
d
b
c

{a, b, d, b, c}

a
b
d
b
a

{a, b, d, b, a}

a
b
d
a
c

{a, b, d, a, c}

a
c
d
c
a

{a, c, d, c, a}

Coffee
Work
Lunch
Coffee

Talk break

Coffee

Figure 2: Daily activity schedule of a working individual at office.

4 Scientific Programming

3. HOVA-FPPM: Hashed Occurrence Vectors
and Apriori Approach for Flexible Periodic
Pattern Mining

,e goal of HOVA-FPPM is to overcome the limitations of
existing approaches, by eliminating the need of complex data
structure such as suffix tree, through Apriori-like approach
over occurrence vectors maintained in a hash table to mine
flexible periodic patterns. It helps us not only to reduce the
space requirements but also to avoid temporary patterns with
limited calls to periodicity detectionmodule, which eventually
reduces the overall time requirements of the mining process.
In the following passages, we discuss the components of our
strategy and the proposed algorithm for pattern mining.

3.1. Components of HOVA-FPPM Strategy. ,e key com-
ponents involved in our proposed approach are dis-
cretization, event lookup table construction, periodicity
detection, and pattern mining as depicted in Figure 5.

3.1.1. Discretization. ,e discretization process converts
each unique element from the data series to a simplified
unique element. ,e sole purpose of the discretization
process is to make the process of pattern mining easier,
since it is easier to work with a series of data with unique
characters than to work with a series of alphanumeric
product IDs. For instance, if we have a data series t �

{asyt2345, kgjhu6789, enhy4521, enhy4521} containing
product IDs, then the discretizing makes our input as t � {a,
b, c, c}. Once we perform the discretization over actual time
series data, then it produces simplified representation of the
same data.

3.1.2. Events Table Construction. ,e events table consists of
all unique events and their occurrence vectors. Occurrence
vectors are of significant importance because they hold the
index position of each unique element in the input data.
,ey are even more important because our proposed al-
gorithm relies heavily on the occurrence vectors. Each

T {abccabdcacdcabdc} Pattern occ_vec Confidence (%)

a [0, 4, 8, 12] 100

Unique event Occurence vector

a [0, 4, 8, 12]

b 11, 5, 13]
[2, 3, 7, 9, Pattern occ_vecc 11, 15]

d a [0, 4, 8, 12]

Mined pattern
[6, 10, 14]

Figure 3: ,e proposed mining process for one length flexible periodic patterns.

Pattern occ_vec

a [0, 4, 8, 12]

Unique event Occurence vector

b [1, 5, 13]

Pattern Diff

ab [–1, –1, –1]

b∗∗a [3, 3]

a∗∗∗∗b [–5, –5]

b∗∗∗∗∗∗a [7, 7]

b∗∗∗∗∗∗∗∗∗∗a [11]

a∗∗∗∗∗∗∗∗∗∗∗∗b [–13]

a∗∗∗∗∗∗∗∗b [–9]

Diff_vec

0–5
a: [O, 4, 8, 12] – b: [1, 5, 13]

occ_vec Confidence (%)

[0, 4, 12] 75

[1, 5] 50

[0, 8] 50

[1, 5] 50

[1] 25

[O]

[4]

25

25

Differences

Starting at 0: [0-1, 0-5, 0-13] Diff: [–1, –5, –13]

Starting at 4: [4-1, 4-5, 4-13] Diff: [3, –1, –9]

Starting at 8: [8-1, 8-5, 8-13] Diff: [7, 3, –5]

Starting at 12: [12-1, 12-5, 12-13] Diff: [11, 7, –1]

Pattern

ab

b∗∗a

a∗∗∗∗b

occ_vec

[0, 4, 12]

[1, 5]

[0, 8]

Mined pattern

4–5
0–1

Figure 4: ,e proposed mining process for two length flexible periodic patterns.

Scientific Programming 5

unique element in the input data has its own occurrence
vector. ,e values in the occurrence vector are the index
positions of that element where it is located in the input data.
For example, if we have an input data t� {abcdabddabc-
cabdc}, then the occurrence vectors would be a� [0, 4, 8, 12],
b� [1, 5, 9, 13], c� [2, 10, 11, 15], and d� [3, 6, 7, 14].
Occurrence vectors are calculated while scanning the input
data once. During the scanning process, when we find an
element that does not exist in the events table, then we add it
to our hashing-based event table and allocate the corre-
sponding list. If the element already exists in the events table,
then we add the current index position to its occurrence
vector.

3.1.3. Periodicity Detection. Once we have gone through the
input data, we should have the occurrence vectors of all the
elements in the data. We now calculate the periodicity of
each element by passing the element and its occurrence
vector to the periodicity detection algorithm. Our period-
icity detection algorithm is slightly modified compared with
the FPPM’s [12] periodicity detection algorithm. ,e orig-
inal periodicity detection algorithm goes through the oc-
currence vector of a particular event n times. It then makes
another iteration for n− 1 times and compares all the values
from the n− 1 values of the occurrence vector to check their
periodicity. At the end, the periodicity detection algorithm
returns a list of occurrence vectors of the periods for which
the event is periodic, where each starting position has
separate list. For example, the output of the periodicity
detection algorithm for a� [0, 4, 8, 12] would be starting
position 0� [0, 4, 8, 12], [0, 8], [0, 12], starting position 4�

[4, 8, 12], [4, 12], and starting position 8� [8, 12]. We can see
that the occurrence vector [0, 4, 8, 12] for starting position 0
and occurrence vector [4, 8, 12] for starting position 4 are
redundant because both point to the same occurrence
vector. Mining and returning such redundant occurrence
vector is unnecessary because superperiodic occurrence
vector mines suboccurrence vectors in successive iteration at
next starting position. We do not compute such redundant
occurrence vector in our modified periodicity detection
algorithm, while rest of the steps remains intact.

3.1.4. Pattern Mining. ,e pattern mining module of our
proposed strategy reduces the time required to discover
flexible periodic patterns compared with its counterpart.,e
mining process is based on Apriori approach and involves
basic arithmetic operations among occurrence vectors, i.e.,
difference vector. ,e occurrence vectors along with the
events are managed effectively using key-value pairs with

inherent hashing strategy to provide quick lookups for time
efficiency. ,e pattern enumeration step is guided through
unique events and polarity of the difference vector values,
while frequencies help in deciding whether the pattern is
frequent or not given the threshold.

3.2. Illustration of HOVA-FPPM with an Example. We il-
lustrate the process of our pattern mining algorithm with the
help of a toy example. For this illustration, we assume the
data T� {abccabdcacdcabdc} with a confidence threshold of
50% and maximum allowable unimportant events as 3. ,e
mining process behaves similarly for all sizes of the datasets.
,e illustration of the process in Figures 3, 4, and 6 does not
reflect complete patterns and combinations due to space
limitation. After the discretization process, our data should
be in the form as given above.

Since we have already passed through the data once, to
discretize it, we have the occurrence vectors of all the unique
elements in the data. ,e unique elements are a, b, c, and d.
,e occurrence vectors of all these unique elements are
available, as shown in Figure 4. Our mining process goes
through each unique element and their occurrence vectors to
mine the patterns. First, we consider the element a and take
its occurrence vector to check the periodicity. It turns out to
be periodic for periods of length 4 and 8; therefore, we
consider it as one length mined pattern.

For two length patterns, we compare the occurrence
vector of one length mined pattern with the occurrence
vectors of all other unique elements in our events table. It
may generate all the patterns involving elements ab, ac, ad,
ba, ca, and da. ,e way our algorithm works allows us to
mine patterns starting from all the elements involved in one
iteration, which almost halves the computation of the it-
eration. We perform difference operation between the oc-
currence vectors of both elements, one is mined pattern a
and second is b, as shown in Figure 5.We compare first value
of the occurrence vector of a element with all the values of
the occurrence vector of b. We repeat this process for all the
values of occurrence vector of a. As a result, wemaintain lists
of difference values for each position.

,e difference operation reveals important information
related to frequency, position, and occurrence of patterns. In
each difference vector, we have positive and negative values.
Since we are performing “a− b” operation, the negative
numbers give us the difference between the positions of the a
and b, whereas a positive difference value indicates the
distance between b and a. For instance, if we have 4 values
from the a occurrence vector and we take the difference with
1 value of the b occurrence vector, then it gives us the
difference of 3. ,e difference value is positive, so we know

Time series
data

Discretization Events table
construction

Periodicity
detection Pattern mining

Ra
w

 d
at

a

D
isc

re
te

 ev
en

ts

H
as

he
d

oc
cu

rr
en

ce

ve
ct

or
s

Pe
rio

di
c e

ve
nt

s

Figure 5: ,e sequentially dependent components of our proposed strategy.

6 Scientific Programming

that this is the distance between b and a. In this particular
instance, b has occurred prior to a.

If we find 1 positive value 4 times in the difference
vectors obtained through the difference operation, then we
can conclude that b occurred 4 times before awith a distance
of 1.,e frequency value 4 of 1 tells us the confidence of that
pattern, distance of 1 reveals event distance between b and a,
and the positive sign shows that b occurred before a instance.
,erefore, the mined pattern from this operation is bawith a
frequency of 4. If we assume the distance value is 2, then it
means a occurred with distance value of 2 after b, which
results in generated pattern b ∗ a.

,e above process is repeated for all successive patterns
to be mined from data without redundant and unnecessary
computations (see Figure 6 for three length patterns).We get
separate difference vectors after the difference operation,
where we count the frequencies of all the unique numbers to
check whether the pattern is frequent or not.,e orientation
of the pattern is determined through polarity of the num-
bers, i.e., ab or ba pattern. ,e difference tells us how many
other events are between a pair of events. Since the maxi-
mum allowable unimportant event limit is 3, any number
greater than 3 is not considered for the pattern generation.

We are able to generate next level patterns based on these
difference vectors. In the current scenario, the patterns ab
and b∗∗ a with occurrence vectors [0, 4, 12] and [1, 5],
respectively, are the only mined patterns. It is important to
notice that we did not perform any explicit iteration to get
the patterns involving b and a because we already mined
these patterns. ,erefore, when we mine patterns starting
from the b element, we do not compare its occurrence
vectors with the a element rather with c element.,e process
is same and generates patterns involving ac and ca. Similarly,
in successive iterations, we do not mine patterns ca when
considering the c and a elements. In this way, we are able to
reduce computations especially when we have a huge
amount of unique elements. We have a hash table similar to
the original one but includes variable length patterns along
with their occurrence vectors. For next level patterns, we
take the ab and b∗∗ a patterns and their occurrence vectors
to compute the difference vectors. ,e remaining process is
the same as that of one length elements (Algorithm 1).

3.3. Proposed Algorithm. In this section, we discuss the
details of our proposed algorithm (see Algorithm 1) for

Pattern occ_vec Differences

ab [0, 4, 12] Starting at 0: [0-2, 0-3, 0-7,
0-9, 0-11, 0-15] Diff: [–2, –3, –7, –9, –11, –15]

b∗∗a [1, 5] Starting at 4: [4-2, 4-3, 4-7,
4-9, 4-11, 4-15] Diff: [2, 1, –3, –5, –6, –11]

a∗∗∗∗b [0, 8] diff vec Starting at 8: [12-2, 12-3, 12-7,
12-9, 12-11, 12-15] Diff: [10, 9, 5, 3, 1, –3]

|0–2|
ab: [0, 4, 12] -c: [2, 3, 7, 9, 11, 15]

Unique event Occurence vector
|4–7|
|0–3|

C [2, 3, 7, 9, 11, 1 S]

Pattern Diff occ_vec Confidence (%)

cab [1, 1] [3, 11] 50

ab∗c [–3, –3, –3] 50

ab∗∗∗∗∗∗∗∗∗∗c [–11, –11] 50

ab∗∗∗∗∗∗c [–7] [1, 5] 25
Pattern occ_vec

cab
ab∗∗∗∗∗∗∗∗∗∗∗∗∗∗c [–15] [0] 25

ab∗c [0, 4, 12]

[3, 11]

ab∗c [–2] [0] 25

ab∗∗∗∗∗∗∗∗c [–9] [0] 25
Mined pattern

c∗ab [2] [2] 25

ab∗∗∗∗c [–5] [4] 25

ab∗∗∗∗∗c [–6] [4] 25

c∗∗∗∗∗∗∗∗∗a b [10] [2] 25

c∗∗∗∗∗∗∗∗ab [9] [3] 25

c∗∗∗∗ab [5] [7]

[9]

25

c∗∗ab [3] 25

[0, 4, 12]

[0, 4]

Figure 6: ,e proposed mining process for three length flexible periodic patterns.

Scientific Programming 7

mining the flexible periodic patterns. ,e prerequisite for
this algorithm is the discretization of the data, and it is
executed initially for each unique element of the dataset. It
takes a unique element along with its occurrence vector, the
hash table containing all the unique elements, maximum
pattern length, and previous keys as input.,e previous keys
refer to a list that holds already mined events. It is critical to
maintain such information because, as we discussed earlier,
once we mine the patterns starting from a, we expect to have
inverse patterns. ,e previous keys list prevents us from
remining the patterns. ,e rest of the input is self-explan-
atory. ,e output of the algorithm is a list of mined patterns.
,e key operations involved in our proposed algorithm are
as follows.

(i) Discretize the events while passing through the
time series data and count the total occurrences,
occurrence vectors, and maximum pattern length
for the entire time series. We also make pairs and
hash their values in the same pass.

(ii) Find the differences in occurrence vectors of each
unique event.

(iii) Make two length pairs of the frequent pairs that
have surpassed the user given support threshold.

(iv) Add the unimportant symbol for each pattern
based on the difference of occurrences.

(v) Find the differences in occurrence vectors of each
consecutive event pair.

Input: event E, Occ_vec All Events S, Max_Pattern_Length, Prev_Keys
Output: a list of mined patterns
NP� {}, New_Events� slice_even (S, Prev_Keys) Periodic� periodicity (E, Occ_vec,lengthofOcc_vec,Confidence) for i in {O1, ...,On}
of Period do

for Key in {K1, ..., Kn} of New_Events do for Item
in {I1, ..., In} of
New_Events(Keys) do
Difference ← Periodic− Item if

continue
end Difference>Max_Pattern_Length

then
if Item> Periodic then if
Difference>KeySize then
star_count�Difference−
KeySize

end
if star_count> star_limit then

end
continue
end

end stars� calculate_stars(star_count) pattern_key� E+ stars +Key
end patterns_with_stars� Periodic[i] NP ∪ pattern_with_star

else
pattern_key�Key +E patterns_without_stars� Periodic[i]
NP ∪ pattern_without_star_count

end if Difference>KeySize then
star_count�Difference−KeySize

else
if star_count> star_limit then
continue

end end
end stars� calculate_stars (star_count) pattern_key�Key + stars + E pattern_with_star

end �Periodic[i] NP ∪ pattern_with_star
pattern_key�Key +Epattern_without_star�Periodic[i] NP ∪
pattern_without_star

end for j in {Key1, ..., Keyn} of New_Events do
NL_Patterns� calc_next (New_Events, NP, Max_Pattern_Length) NP ∪

update (NL_Patterns)
end

end
ReturnNP

ALGORITHM 1: ,e proposed algorithm.

8 Scientific Programming

(vi) ,e frequent events with highest difference count
values are considered in the successive levels.

(vii) Add the unimportant symbol for each pattern
based on the difference of occurrences.

(viii) Repeat for the next level of patterns.

In the subsequent paragraphs, we explain the steps our
proposed algorithm. In line 1, we initialize an empty list to
save the mined patterns, and line 2 generates a list of events
that we have to mine. Line 2 calls the slice_events function
that takes the hash table and previous keys as an input and
slices the previous key hashes along with their occurrence
vectors. It helps us in reducing mining time. ,e repetition
construct at lines 4–6 scans entire hash-table and its oc-
currence vectors to compare the events' occurrences. Line 7
computes the difference of elements, and lines 8 and 9
perform a check on the difference value and maximum
pattern length. At this stage, we eliminate any difference that
is greater than the maximum allowable skippable unim-
portant event.

Since we expect different patterns depending the polarity
of the difference value, we need separate pattern namemaking
sections for it. We perform the operation a− b meaning that
the second element in the difference operation is bigger if the
result of the difference is positive; therefore, we perform
checks on lines 10 and 23. ,ese sections enable us to make
patterns depending on the polarity of the difference value.
Line 11 is a check on the difference and the key size. It is
important because all our mined patterns are represented by
the index of the first element of the pattern. It means that if we
have a pattern abc, then this pattern will have the same
starting position as the a element. If we have to mine a 4
length pattern from this, then we need to consider elements
with a starting position of current key size away. In this case,
the pattern abc has a key size 3. Any element that is not 3 steps
ahead of the starting position of the current pattern would
make it an invalid pattern, which is enforced at line 11. Line 12
calculates the difference from the current key to the next key
under consideration and gives us the star count that we would
have to add if we mine this pattern. Lines 13 and 14 are a
simple check on the maximum skippable event and continue
action, respectively. Line 15 calls a function that returns a
string containing the number of stars we have from line 12.
Line 16 makes a new pattern, and line 17 inserts the oc-
currence vector value in it. Line 18 saves the newly generated
pattern in the pattern list. Lines 20−22 perform the same
operation but for single-length events. Lines 23−35 are similar
to the ones mentioned above but this section mines the re-
verse patterns. Lines 36−38 send the newly mined pattern
along with the full hash table to next level generation function,
which works on more than 2 length patterns. We did not
check for periodicity of the newly generated patterns in this
function yet. It is because we send these to the next level
function, which automatically checks the periodicity itself.
Once the patterns are mined and returned, the return list will
have all the mined patterns related to the specific event that
was passed on to our algorithm function. ,is whole process
will be repeated for every individual unique element.

3.4. Complexity Analysis. We discuss the algorithmic com-
plexity of both approaches based on their key steps. ,e
baseline approach involves three steps that includes suffix tree
construction, periodicity check, and pattern generation to-
wards mining. ,e authors of FPPM algorithm claim that the
pruned suffix tree construction has same time complexity as the
suffix tree contraction, i.e.,O (n), where n is the size of the time
series. ,e periodicity detection relies on the occurrence vector
and length of the periodic pattern, i.e., O (k ∗ n̂2), where k is
the maximum length of periodic pattern and n is size of the
time series. ,e pattern generation involves the levelwise
traversal of the pruned suffix tree rooted at corresponding
events. ,e average depth of the traversal is determined by the
ladder factor computed prior to the mining step for each node.
,e overall complexity of the pattern generation step is log-
arithmic to the number of nodes in a subtree rooted at a
particular event, i.e.,O (m ∗ log(n)̂2), where n is the number of
nodes of a subtree and m is the number of rooted subtrees.

On the other hand, the proposed approach consists of
events table construction, periodicity detection, and pattern
mining. ,e event table construction scans the input data and
generates events with corresponding occurrence vectors,
linear in time complexity O (n). ,e periodicity detection
algorithm remains the same as the baseline approach so does
the complexity of this module. However, our approach de-
viates in determining periodicity of the patterns early from
successive iterations and avoiding it later. ,e overall com-
plexity remains the same as that of the baseline approach while
minimizing the total number of computations. ,e proposed
approach has superiority in pattern mining stage, where we
explicitly avoid the traversal of the suffix tree by hashing key-
value pairs for quick lookup for pattern generation, i.e., from
log-scale to constant time. We process the available set of
frequent patterns and their occurrence vectors to generate
patterns at next level; therefore, complexity depends on total
number of patterns p and associated occurrence vectors, i.e.,
O (k ∗ h(p)̂2), where k is the length of the pattern and h (p)
represents hashed patterns. We did not introduce a new
strategy for discretization, which is similar for both ap-
proaches, so we neglected it in our complexity analysis.

3.5. Experiments. In this section, we perform experiments to
evaluate the efficiency of our proposed approach against
baseline approach, i.e., FPPM. In the experimental analysis,
we focus on time and space efficiency of both algorithms (the
proposed HOVA-FPPM and baseline) by varying period
value and data size. Since we use the same settings/pa-
rameters (i.e., confidence 60% and support 50% inspired
from baseline approach) during our experiments, obtained
results are justified as per our claim in this article to prove
the superiority of the proposed approach. However, we
understand that different values of these parameters will
affect the mining results. For instance, increasing the sup-
port threshold will reduce the number of mined patterns.
We assume that both algorithms produce the same results
(no difference in result accuracy), rather, have different
requirements for time and space during execution.

We briefly discuss the datasets used in our experiments
and describe the results followed by discussion.

Scientific Programming 9

3.5.1. Datasets and System. In our experiments, we use two
datasets namely diabetes and bike sharing datasets. Both
datasets are publicly available on the UCLMachine Learning
Repository with the same names. ,e diabetes dataset
contains a total of roughly 8000 records. It contains records
of diabetic patients and their health related results. A total of
20 unique codes are used throughout the dataset to calculate
the health of the patients. All of these 20 codes represent
measurement for the patient. Each of these codes will have a
value for each patient along with a date column to represent
time of the patient history record. On the other hand, the
bike sharing dataset had a total record of 17000 (roughly) for
the hours that the bikes were shared and 730 records for the
same bikes but on a day level. ,e specification of the system
used for the experiments is an i5-3320M 2.6GHz processor
with 8GB RAM and Windows 10 operating system. ,e
algorithms were implemented in Python.

3.6. Performance Based on Time and Space. We analyze the
performance of the proposed algorithm with the baseline
approach, i.e., FPPM, by measuring execution time and
memory space usage.

3.6.1. Performance Based on Varying Data Size. We try to
understand the performance aspect of the proposed algo-
rithm with the baseline approach by varying the size of the
data. If we look at the performance of our proposed algo-
rithm (Figure 7), it is evident that our algorithm outperforms
the FPPM in both time and space requirements. It is worth
noting that the time difference between algorithms is quite
significant as compared to the space difference. ,is is be-
cause of the fact that the number of patterns increases
significantly with more data. ,e output (mined patterns) of
both of the algorithms is the same. Since our proposed
algorithm does not rely on the suffix tree-like data structure,
we do not need to allocate thememory and store the data in a
tree. In our algorithm, the memory requirement increases
with the number of patterns. ,e dataset under consider-
ation is not big; therefore, space requirements did not grow
much for the proposed algorithm. In contrast, the FPPM
algorithm’s memory requirement increases almost linear to
the data growth.

3.6.2. Performance Based on Varying Period Value. Now we
look at the data from varying period value perspective (see
Figure 8). ,is analysis helps us to uncover the effects of
changing the period value while keeping the data size fixed
for both algorithms. ,e patterns mined from the data are
from all starting positions. As we can see, the time per-
formance of our propose algorithm is significantly better
than the FPPM. However, the space requirements start to
favor the FPPM in varying period values. ,is is because of
the fact that the space requirement of our algorithm grows
with the periods unlike the FPPM, whose space requirement
remains fixed.

3.6.3. Performance Analysis on Bike Sharing Dataset. We
also performed experiments on the second dataset, i.e., bike
sharing dataset, which is comparatively bigger than the first
one. It contains 17000 rows of data containing hourly up-
dates of bike sharing information. We performed experi-
ments on this dataset to understand the scalability aspect of
both algorithms. Figure 9 depicts the time performance of
both algorithms on a maximum of 6000 rows of data. ,e
proposed algorithm outperformed the FPPM by cutting the
time into almost half of what is required for FPPM approach.
We performed these experiments with the same settings as
before, i.e., confidence 60% and period value was ≤6, and we
only varied the data size.

,e results of space allocated to both algorithms are
quite interesting in the case of varying dataset, as shown in
Figure 9. ,e settings of the experiment were the same on
bike sharing dataset. It is evident that the space requirements
of FPPM are quite stable and increase slowly with respect to
the input dataset size. However, our proposed approach has
a very variable space allocation. It is also worth noting that
the space used by the FPPM does not change, at least sig-
nificantly, during the mining process, and the space used by
the FPPM is allocated at the start of the algorithm when the
suffix tree is generated. On the other hand, the data shown in
Figure 9 contain the maximum amount of space allocated to
our proposed algorithm during the mining process. ,is is
because our algorithm dynamically changes the space during
the mining process, which usually depends on the number of
patterns per iteration. ,is explains the unstable space used
during the mining process of our proposed approach. Based
on our observations, the number of new patterns generated
is not directly proportional to the new rows of data added to
the input dataset.

4. Discussion

Our discussion revolves around selected related questions.
In those questions, we aim to analyze the effects of Apriori
approach over flexible periodic pattern generation with
varying starting position to identify the factors affecting the
generation of invalid or redundant patterns and to under-
stand the relationship between varying dataset length and
result’s accuracy.

4.1. Effects of Apriori Approach over Flexible Periodic Pattern
Generation with Varying Starting Positions. In order to
analyze the effects of Apriori approach, we performed ex-
periments on two datasets with varying properties and
compared the results with the FPPM performance, which is a
tree-based approach for flexible periodic pattern mining. As
per our knowledge, no other algorithm is designed to mine
flexible periodic patterns with variable starting position
while using an Apriori-based approach. We already dis-
cussed that it is possible to mine patterns just from the
occurrence vectors of the events without using a tree
structure to simplify the process. As per the experiments and
analysis of the results, we concluded that Apriori approach is
better when (i) the available space for mining patterns is not

10 Scientific Programming

an issue and (2) there are no strict restrictions on the space
usage. An Apriori-based approach keeps the occurrence
vectors and patterns in the memory, which can fluctuate
depending on the data and unique elements in the data.

,ere is prominent positive effect of Apriori approach
on the time required to mine patterns because it lacks tree

traversal process. ,e existing Apriori-based algorithms,
being capable of mining the flexible periodic patterns, were
costly in space and time requirements. We overcome the
excessive time requirements of Apriori-based approaches by
introducing an efficient algorithm to mine the patterns. We
achieve this by tweaking our algorithm to take advantage of

Conf = 60%, Supp = 50%, period ≤ 6

Data 600 Data 800 Data 1000 Data 1200 Data 1400

FPPM time
Proposed algorithm time

0

1

2

3

4

5

6

7
Se

co
nd

s h
un

dr
ed

s

(a)

Data 600 Data 800 Data 1000 Data 1200 Data 1400

Conf = 60%, Supp = 50%, period ≤ 6

FPPM space
Proposed algorithm apace

0

50

100

150

200

250

300

350

M
iB

(b)

Figure 7: FPPM vs. proposed algorithm: time and space results on diabetes dataset of varying size.

Conf = 60%, Supp = 50%, data 600

FPPM time
Proposed algorithm time

Period6 Period10 Period14 Period18 Period22 Period26Period6 Period10 Period14 Period18 Period22 Period26

Conf = 60%, Supp = 50%, data 600

FPPM space
Proposed algorithm space

70
80
90

100
110
120
130
140
150
160

M
iB

0
50

100
150
200
250
300
350
400

Se
co

nd
s

Figure 8: FPPM vs. proposed algorithm: time and space results on diabetes dataset of varying period value.

Data 1k Data 2k Data 3k Data 4k Data 5k Data 6k

Conf = 60%, Supp = 50%, period ≤ 6

0

10

20

30

40

50

60

70

Se
co

nd
s t

ho
us

an
ds

FPPM time
Proposed algorithm time

0
10
20
30
40
50
60
70
80
90

100

Data 1k Data 2k Data 3k Data 4k Data 5k Data 6k

Conf = 60%, Supp = 50%, period ≤ 6

FPPM space
Proposed algorithm space

(%
)

Figure 9: FPPM vs. proposed algorithm: time and space results on bike sharing dataset with varying data size.

Scientific Programming 11

the pattern generation process, which can generate patterns
from multiple passes. ,erefore, our proposed algorithm is
able to mine both ab and its inverse patterns in a single pass.
,e pattern generation process also relies on the occurrence
vectors to generate necessary patterns, which reduces the
redundant and invalid patterns.

4.2. Factors Affecting the Generation of Invalid or Redundant
Patterns. In order to identify the factors affecting the
generation of invalid or redundant patterns, we first ana-
lyzed the suffix tree behavior of the FPPM and its effect on
pattern generation.We achieve this by running the FPPM on
varying data size and varying unique values. ,e reason for
focusing on the suffix tree was the way the FPPM mining
process works. FPPMmines patterns level by level by visiting
each immediate descendent nodes from root node. We used
dataset of varying size and number of unique values to
change the size of the suffix tree for analyzing its effect on the
performance of the algorithm and redundant pattern gen-
eration. Varying the data size increases the depth of the suffix
tree, whereas large total number of unique elements in-
creases the breadth of the suffix tree.,e breadth of the suffix
tree has no significant effect on the redundant pattern
generation; however, more redundant patterns were gen-
erated with the increased length of the data with more depth
of the tree. Since FPPM holds the redundant patterns for
each branch, the cost of redundant patterns is a lot higher
with more depth of the suffix trees. On the other hand, more
unique values did not affect the performance of redundant
pattern generation because FPPM keeps patterns in memory
for short period of time. One of the possible reasons is that
the shallow tree allows FPPM to switch to a newer branch
and discard the previous nonfrequent patterns.

4.3. Varying Dataset Length and Results Accuracy. It is ev-
ident from our experiments that there is a relationship
between varying data size and the accuracy of results. ,e
results obtained have accuracy of 33–50% reaching the
lower limit on bigger dataset. It proves that the algorithms
generate large patterns based on the initially generated
patterns. Any mismatched pattern at the beginning leads to
an increased reduction of accuracy. After careful obser-
vation, it was revealed that the unmatched patterns were
produced by both algorithms. Any unmatched pattern at
initial phase results in lowering the accuracy at successive
phases. However, in very few cases, the patterns generated
in the later phases did match. It reveals that in order to
improve the accuracy of the proposed algorithm, the
patterns generated in the initial phase require more at-
tention. If the initial patterns of both algorithms are
similar, then it would increase the accuracy of the mined
patterns significantly because both algorithms use the
initial patterns to generate the next phase patterns.

5. Conclusion and Future Directions

We presented an efficient strategy, i.e., HOVA-FPPM, to
mine flexible periodic patterns from time series database

without using complex data structures. We identified the
limitations of tree-based approaches and discovered vari-
ous factors that cause the redundant or invalid pattern
generation during the mining process. We surpassed those
issues with the help of hashing-based data structure while
minimizing the number of redundant and invalid patterns
through manipulation of occurrence vectors. ,e proposed
solution outperformed the baseline algorithm in terms of
time needed to mine the same patterns. We empirically
justified that Apriori-based approaches are effective for the
mining process without excessive pattern generation. For
small dataset, our algorithm is space efficient compared
with the FPPM. On a larger dataset, the space requirement
of our strategy fluctuates due to incremental growth of
accumulated data in hash table in contrast to baseline
approach. We aim to improve the space complexity of our
proposed algorithm on vary large datasets as an extension
to this work. ,e analysis of combining hashing strategy
with tree-like structure is another aspect to discover in
future.

Data Availability

,edatasets used in this research could be downloaded freely at
UCL Machine Learning Repository (diabetes: https://archive.
ics.uci.edu/ml/datasets/diabetes; bike sharing: https://archive.
ics.uci.edu/ml/datasets/bike+sharing+dataset). However, the
authors are willing to share the used dataset on request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

MFJ was solely responsible for the data curation, software
development, and initial report. WN handled the original
draft preparation, project administration, and funding ac-
quisition. MFJ and KUK were responsible for the concep-
tualization of the idea, methodology, and formal analysis.
WN and KUK reviewed and edited the manuscript.

Acknowledgments

,is study was partially supported by Deanship of Research
at Islamic University of Madinah (IUM), Saudi Arabia
(Tamayuz-1 program of academic year 1439–1440 AH; re-
search project number: 24/40).

References

[1] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and
R. ,omas, “A survey of sequential pattern mining,” Data
Science and Pattern Recognition, vol. 1, no. 1, pp. 54–77, 2017.

[2] C. St-Onge, N. Kara, O. A. Wahab, C. Edstrom, and
Y. Lemieux, “Detection of time series patterns and periodicity
of cloud computing workloads,” Future Generation Computer
Systems, 2020.

12 Scientific Programming

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

[3] T.-c. Fu, “A review on time series data mining,” Engineering
Applications of Artificial Intelligence, vol. 24, no. 1, pp. 164–
181, 2011.

[4] M. Patel and N. Modi, “A comprehensive study on periodicity
mining algorithms,” in Proceedings of the 2016 International
Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), pp. 567–575,
IEEE, Jalgaon, India, December 2016.

[5] Q. Yuan, J. Shang, X. Cao, C. Zhang, X. Geng, and J. Han,
“Detecting multiple periods and periodic patterns in event
time sequences,” in Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
pp. 617–626, Singapore, November 2017.

[6] H. Yuan, Y. Qian, and M. Bai, “Efficient mining of event
periodicity in data series,” in Proceedings of the International
Conference on Database Systems for Advanced Applications,
pp. 124–139, Springer, Chiang Mai, ,ailand, April 2019.

[7] R. A. Rizvee, M. S. H. Shahin, C. F. Ahmed, C. K. Leung,
D. Deng, and J. J. Mai, Sliding Window Based Weighted Pe-
riodic Pattern Mining over Time Series Data, IBAI Publishing,
Fockendorf, Germany, 2019.

[8] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying
representative trends in massive time series data sets using
sketches,” in Proceedings of the 26th International Conference
on Very Large Data Bases, VLDB 2000, pp. 363–372, Cairo,
Egypt, September 2000.

[9] F. Rasheed, M. Alshalalfa, and R. Alhajj, “Efficient periodicity
mining in time series databases using suffix trees,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23,
no. 1, pp. 79–94, 2010.

[10] S.-S. Chen, T. C.-K. Huang, and Z.-M. Lin, “New and efficient
knowledge discovery of partial periodic patterns with multiple
minimum supports,” Journal of Systems and Software, vol. 84,
no. 10, pp. 1638–1651, 2011.

[11] K. Xylogiannopoulos, Data structures, algorithms and appli-
cations for big data analytics: single, multiple and all repeated
patterns detection in discrete sequences, Ph.D. dissertation,
University of Calgary, Calgary, AB, USA, 2017.

[12] A. K. Chanda, S. Saha, M. A. Nishi, M. Samiullah, and
C. F. Ahmed, “An efficient approach to mine flexible periodic
patterns in time series databases,” Engineering Applications of
Artificial Intelligence, vol. 44, pp. 46–63, 2015.

[13] A. K. Chanda, C. F. Ahmed, M. Samiullah, and C. K. Leung,
“A new framework for mining weighted periodic patterns in
time series databases,” Expert Systems with Applications,
vol. 79, pp. 207–224, 2017.

[14] S. Akther, M. R. Karim, M. Samiullah, and C. F. Ahmed,
“Mining non-redundant closed flexible periodic patterns,”
Engineering Applications of Artificial Intelligence, vol. 69,
pp. 1–23, 2018.

[15] J. Chen, K. Li, H. Rong, K. Bilal, K. Li, and S. Y. Philip, “A
periodicity-based parallel time series prediction algorithm in
cloud computing environments,” Information Sciences,
vol. 496, pp. 506–537, 2019.

[16] E. Ukkonen, “On-line construction of suffix trees,” Algo-
rithmica, vol. 14, no. 3, pp. 249–260, 1995.

[17] L. Ma and Y. Qi, “An efficient algorithm for frequent closed
itemsets mining,”vol. 4, pp. 259–262, in Proceedings of the
2008 International Conference on Computer Science and
Software Engineering, vol. 4, pp. 259–262, IEEE, Wuhan,
China, December 2008.

[18] H. Duong, T. Truong, and B. Vo, “An efficient method for
mining frequent itemsets with double constraints,”

Engineering Applications of Artificial Intelligence, vol. 27,
pp. 148–154, 2014.

[19] M. A. Nishi, C. F. Ahmed, M. Samiullah, and B.-S. Jeong,
“Effective periodic pattern mining in time series databases,”
Expert Systems with Applications, vol. 40, no. 8, pp. 3015–
3027, 2013.

[20] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han, “Comine: ef-
ficient mining of correlated patterns,” in Proceedings of the
ICDM, vol. 3, pp. 581–584, Melbourne, FL, USA, November
2003.

[21] S. Ma and J. L. Hellerstein, “Mining partially periodic event
patterns with unknown periods,” in Proceedings 17th Inter-
national Conference on Data Engineering, pp. 205–214, IEEE,
Heidelberg, Germany, April 2001.

[22] U. Suvarna and Y. Srinivas, “Efficient high-utility itemset
mining over variety of databases: a survey,,” in Soft Computing
in Data Analytics, pp. 803–816, Springer, Berlin, Germany,
2019.

[23] M. J. Zaki and C.-J. Hsiao, “Efficient algorithms for mining
closed itemsets and their lattice structure,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 4, pp. 462–
478, 2005.

[24] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and H.-J. Choi, “A
framework for mining interesting high utility patterns with a
strong frequency affinity,” Information Sciences, vol. 181,
no. 21, pp. 4878–4894, 2011.

[25] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and H.-J. Choi,
“Interactive mining of high utility patterns over data streams,”
Expert Systems with Applications, vol. 39, no. 15, pp. 11979–
11991, 2012.

[26] J. Venkatesh, R. U. Kiran, P. K. Reddy, and M. Kitsuregawa,
“Discovering periodic-correlated patterns in temporal data-
bases,” in Transactions on Large-Scale Data-And Knowledge-
Centered Systems XXXVIII, pp. 146–172, Springer, Berlin,
Germany, 2018.

[27] H.-W. Wu and A. J. Lee, “Mining closed flexible patterns in
time-series databases,” Expert Systems with Applications,
vol. 37, no. 3, pp. 2098–2107, 2010.

[28] P. Tzvetkov, X. Yan, and J. Han, “Tsp: mining top-k closed
sequential patterns,” Knowledge and Information Systems,
vol. 7, no. 4, pp. 438–457, 2005.

[29] R. U. Kiran, H. Shang, M. Toyoda, and M. Kitsuregawa,
“Discovering partial periodic itemsets in temporal databases,”
in Proceedings of the 29th International Conference on Sci-
entific and Statistical Database Management, pp. 1–6, Chicago
IL USA, June 2017.

[30] P. Fournier-Viger, C.-W. Lin, Q.-H. Duong et al., “Pfpm: dis-�
covering periodic frequent patterns with novel periodicity
measures,” in Proceedings of the 2nd Czech-China Scientific
Conference 2016, pp. 27–38, IntechOpen, Ostrava, Czech
Republic, June 2017.

[31] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Warp: time
warping for periodicity detection,” in Proceedings of the Fifth
IEEE International Conference on Data Mining (ICDM’05),
p. 8, IEEE, Houston, TX, USA, November 2005.

[32] R. Yang, W. Wang, and P. S. Yu, “Infominer+: mining partial
periodic patterns with gap penalties,,” in Proceedings of the
2002 IEEE International Conference on Data Mining,
pp. 725–728, IEEE, Maebashi City, Japan, December 2002.

[33] C. Lucchese, S. Orlando, and R. Perego, “Fast and memory
efficient mining of frequent closed itemsets,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 18, no. 1,
pp. 21–36, 2005.

Scientific Programming 13

[34] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern
mining using a bitmap representation,” in Proceedings of the
Eighth ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining, pp. 429–435, Edmonton, Canada,
July 2002.

[35] C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, and
A. K. Elmagarmid, “Multiple and partial periodicity mining in
time series databases,” in Proceedings of the 15th Eureopean
Conference on Artificial Intelligence, vol. 2, pp. 370–374, Lyon,
France, July 2002.

14 Scientific Programming

