
Automated Rhythmic Transformation of
Drum Recordings

Maciej Tomczak

29 November 2023

A thesis presented for the degree of

Doctor of Philosophy

Sound and Music Analysis Group

Digital Media Technology Lab

Faculty of Computing, Engineering and the Built Environment

Birmingham City University





Abstract

Within the creative industries, music information retrieval techniques are now being applied in a variety of

music creation and production applications. Audio artists incorporate techniques from music informatics

and machine learning (e.g., beat and metre detection) for generative content creation and manipulation

systems within the music production setting. Here musicians, desiring a certain sound or aesthetic

influenced by the style of artists they admire, may change or replace the rhythmic pattern and sound

characteristics (i.e., timbre) of drums in their recordings with those from an idealised recording (e.g.,

in processes of redrumming and mashup creation). Automated transformation systems for rhythm

and timbre can be powerful tools for music producers, allowing them to quickly and easily adjust the

different elements of a drum recording to fit the overall style of a song. The aim of this thesis is to

develop systems for automated transformation of rhythmic patterns of drum recordings using a subset

of techniques from deep learning called deep generative models (DGM) for neural audio synthesis.

DGMs such as autoencoders and generative adversarial networks have been shown to be effective for

transforming musical signals in a variety of genres as well as for learning the underlying structure of

datasets for generation of new audio examples. To this end, modular deep learning-based systems

are presented in this thesis with evaluations which measure the extent of the rhythmic modifications

generated by different modes of transformation, which include audio style transfer, drum translation

and latent space manipulation. The evaluation results underscore both the strengths and constraints

of DGMs for transformation of rhythmic patterns as well as neural synthesis of drum sounds within

a variety of musical genres. New audio style transfer (AST) functions were specifically designed for

mashup-oriented drum recording transformation. The designed loss objectives lowered the computational

demands of the AST algorithm and offered rhythmic transformation capabilities which adhere to a larger

rhythmic structure of the input to generate music that is both creative and realistic. To extend the

transformation possibilities of DGMs, systems based on adversarial autoencoders (AAE) were proposed

for drum translation and continuous rhythmic transformation of bar-length patterns. The evaluations

which investigated the lower dimensional representations of the latent space of the proposed system

based on AAEs with a Gaussian mixture prior (AAE-GM) highlighted the importance of the structure

of the disentangled latent distributions of AAE-GM. Furthermore, the proposed system demonstrated

improved performance, as evidenced by higher reconstruction metrics, when compared to traditional

autoencoder models. This implies that the system can more accurately recreate complex drum sounds,

ensuring that the produced rhythmic transformation maintains richness of the source material. For

music producers, this means heightened fidelity in drum synthesis and the potential for more expressive

and varied drum tracks, enhancing the creativity in music production. This work also enhances neural

drum synthesis by introducing a new, diverse dataset of kick, snare, and hi-hat drum samples, along

with multiple drum loop datasets for model training and evaluation. Overall, the work in this thesis

increased the profile of the field and hopefully will attract more attention and resources to the area,

which will help drive future research and development of neural rhythmic transformation systems.

i





Acknowledgements

I would like to thank my supervisors Jason Hockman and Ryan Stables for their support, guidance and

encouragement with a special thanks to Jason for his expert knowledge and invaluable feedback on

my research throughout my PhD journey. A huge thanks to the members of the DMT Lab (Cham

Athwal, Carl Southall, Jake Drysdale, Islah Ali-MacLachlan, Alan Do lhasz, Nick Jillings, Sean Enderby,

Matthew Cheshire, Sam Smith, Spyros Stasis, Xiangyu Zhu, Xueyang Wang and Ian Williams) for their

valuable insights and the camaraderie that made my time at the university so enjoyable. I would also

like to thank my co-authors (Carl Southall, Jake Drysdale, Matthew Cheshire, Sean Enderby, Islah

Ali-MacLachlan and Masataka Goto) for the productive discussions about drums and music that helped

shape my thinking. I would also like to extend my thanks to Masataka Goto for offering me the internship

opportunity in the Media Interaction Group (MIG) at AIST Japan and his guidance and encouragement

throughout the duration of my internship. An extra thanks to the members and students of the MIG

(Masahiro Hamasaki, Megumi Sato, Jun Kato, Tomoyasu Nakano, Kosetsu Tsukuda, Yuki Koyama,

Kento Watanabe, Fabrizio Pedersoli, Edward Lin, and Yin-Jyun Luo) who made me feel welcome in

Japan and supported me throughout and after my internship.

Lastly, enormous thanks to my family for their constant support and encouragement in all small and

large parts of my life. Thank you!

iii





Contents

Abstract i

Acknowledgements iii

List of Figures xi

List of Tables xvii

Acronyms xix

Mathematical Notation xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Review of Rhythmic Description and Transformation Literature 9

2.1 Characteristics of Drums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Instruments of the Drum Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Features of Drum Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Rhythmic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Rhythm and Metre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Onset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Beat Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Downbeat Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Automatic Drum Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.6 Rhythmic Pattern Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



vi CONTENTS

2.3 Existing Methods for Automated Rhythmic Transformation . . . . . . . . . . . . . . . 23

2.3.1 Content-based Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Resequencing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Deep Learning and Deep Generative Models for Audio Synthesis 32

3.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Training Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.4 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Generative Moment Matching Networks . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Autoregressive Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 Adversarial Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Transformation Modes of Deep Generative Models . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Drum Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Audio Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Latent Space Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Audio Style Transfer with Rhythmic Constraints 55

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2.1 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2.2 Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.3 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.3.1 Content and Style Loss Functions . . . . . . . . . . . . . . . . . . . 60

4.1.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS vii

4.2.2 Evaluation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Transformation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3.1 Standard Audio Style Transfer Formulation . . . . . . . . . . . . . . 64

4.2.3.2 Mashup Transformation . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3.3 Augmented Mashup Transformation . . . . . . . . . . . . . . . . . . 65

4.2.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4.1 Rhythmic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4.2 Spectral Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4.3 Pearson Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4.4 Onset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Rhythmic Similarity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1.1 Standard Audio Style Transfer: L1 and L2 . . . . . . . . . . . . . . 68

4.3.1.2 Mashup Transformation: L3 . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1.3 Augmented Mashup Transformation: L4 and L5 . . . . . . . . . . . 69

4.3.1.4 Onset Detection: L3, L4, and L5 . . . . . . . . . . . . . . . . . . . 70

4.3.2 Spectral Similarity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2.1 Standard Audio Style Transfer: L1 and L2 . . . . . . . . . . . . . . 71

4.3.2.2 Mashup Transformation: L3 . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2.3 Augmented Mashup Transformation: L4 and L5 . . . . . . . . . . . 73

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Drum Translation for Rhythmic and Timbral Transformation 77

5.1 Drum Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Conditional Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Domain Confusion Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 µ-law Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.6 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Drum Sample Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



viii CONTENTS

5.3.2 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Automatic Drum Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Drum Synthesis and Rhythmic Transformation with AAE 97

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Adversarial Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2.1 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.2.3 Representation of Prior Distribution . . . . . . . . . . . . . . . . . . 102

6.1.2.4 Training and Signal Reconstruction . . . . . . . . . . . . . . . . . . 103

6.1.3 Rhythmic Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.3.1 Representation of Rhythmic Patterns . . . . . . . . . . . . . . . . . 103

6.1.3.2 Clustering of Rhythmic Pattern Styles . . . . . . . . . . . . . . . . . 104

6.1.3.3 Pattern Conditioning and Interpolation . . . . . . . . . . . . . . . . 104

6.1.3.4 Pattern Style Definition via X-means . . . . . . . . . . . . . . . . . 105

6.2 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Baseline Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Latent Space Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Reconstruction Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.3 Latent Space Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 115

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS ix

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123





List of Figures

2.1 The modern Western drum kit equipped with a kick drum, snare drum, hi-hats, rack toms,

floor tom, crash cymbal and ride cymbal. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Waveforms and spectrograms for a kick (left), snare (middle), and a closed hi-hat (right). 11

2.3 Time-unit box representation of a standard eighth note drum pattern. Audio signal of a

drum recording (top) and an eighth note quantised representation of patterns made by kick,

snare and hi-hat (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Drum notation of a rhythmic pattern represented on a music staff. The hi-hat pattern is a

sequence of regular quarter notes interlocked with kick and snare drum backbeat patterns.

The snare drum backbeat is extended with the fourth offbeats (ąąą) instead of the fourth

onbeats and a sixteenth note ghost note (p♩q) pattern. The kick drums are predominantly

placed on the third offbeats. Audio arrangement of this drum notation is available here

https://funklet.com/mother-popcorn/. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Metrical structure locations (black vertical lines) for three levels depicting: (a) audio signal,

(b) bar boundaries, (c) beat locations, (d) onsets representing time markers at positions of

musical events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Audio waveform (top) and idealised envelope (bottom) consisting of attack and decay

sections separated by dashed line. The onset marks the beginning of the attack section. . 17

2.7 Spectral difference onset detection function (i.e., rhythmic envelope) visualisation for a short

audio recording. Vertical dotted lines indicate beat locations. Audio signal (top) was used

to extract rhythmic envelope (bottom) using spectral difference onset detection function. . 18

2.8 Example of percussion detection analysis. Input signal (left) is processed with an automatic

drum transcription system that outputs onset times and drum types (right) with labels: kick

drum (k), snare drum (s), hi-hat (h). Note that each drum segment can contain multiple

overlapped drums (e.g., kick drum and hi-hat playing together). . . . . . . . . . . . . . . 21

xi

https://funklet.com/mother-popcorn/


xii LIST OF FIGURES

2.9 Diagram of a general analysis/synthesis transformation system. Dashed line represents

an additional input option (e.g., for a recording of another style). Additional inputs are

characteristic of automated rhythmic transformation systems that facilitate automatic

remixing or mashup creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Resequencing example of a drum pattern. The pattern is divided into bars with individual

hits, such as kick drums (K), hi-hats (H), and snare drums (S). Some of these hits (as

represented by the boxes at the top) are repurposed to form a new percussion arrangement

shown below. Figure adapted from Hockman and Davies (2015). . . . . . . . . . . . . . . 25

2.11 Rhythmic transformation using signal processing techniques. Source recording segments and

its transformations using time-stretching and segment reordering with the aim of matching

the rhythmic pattern and drum types of the source to those of the target. The ˝ and ‚

symbols denote drum timbre characteristics (e.g., from different drum kits) of source and

target recordings, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Diagram of a transformation system using deep learning model with distinction of three

variants for content manipulation: (1) with input content, (2) with additional content, and

(3) with a latent space of a trained model. Bold lines represent the typical transformation

signal flow. Dashed lines represent additional inputs and dotted-dashed line represents an

independent control over the transformation output with parameter space of the model. . 28

3.1 The left diagram portrays an example of a neuron for inputs x, corresponding weights w, a

bias b, and the activation σ applied to the weighted sum of the inputs. The right diagram

portrays a hypothetical multilayer perceptron network with a fully-connected (i.e., dense)

input, hidden and output layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The diagram shows four activation functions. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 An example of a convolution operation, where multiple filters shifted over the input map

its features onto feature map representations within the network (left). The convolution

operation is shown using a simple example with only a single input and output channels

(right), where an activation σ outputs a value onto a feature map after summing the product

of an element-wise multiplication between the input matrix and the shared weight matrix. 36

3.4 A convolutional neural network architecture consisting of two convolutional layers and a

subsampling (i.e., pooling) layer with two fully-connected layers. The input consists of

a single channel and convolutional layers that output four feature maps each. The last

fully-connected layer consists of two neurons and represents network output. . . . . . . . . 37



LIST OF FIGURES xiii

3.5 In a dilated convolution on the left, the receptive field is larger than in a standard convolution.

This increase is achieved through the insertion of spaces, where the spacing is controlled

by the dilation rate. In a transposed convolution on the right, zeros (i.e., white units) are

inserted between input values and a filter moves over the input (i.e., grey units) to produce

output feature map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Optimal capacity of a network illustrated with training and validation losses. When the

validation loss begins to increase then the model is overfitting and the training is stopped.

The underfitting and overfitting zones are represented with green and red, respectively. . . 41

3.7 A deep generative model g is trained to map samples from a simple distribution z to the

more complex distribution gpzq based on a comparison with the target data distribution

y. An objective function is used during training to quantify the discrepancy between the

generated (i.e., synthetic) x and the target examples y. . . . . . . . . . . . . . . . . . . . 42

3.8 Autoregressive model prediction of an output based on the past inputs. . . . . . . . . . . 46

3.9 Variational autoencoder model with input examples X “ px1, x2, ...q processed by an encoder

network and mapped into a Gaussian distributed latent space qpz|Xq parameterised by µ

and σ. The decoder network samples the latent space z with ppX|zq to output the synthetic

reconstructions X̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Generative adversarial network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Probability distributions for generator pgpxq, target data pdpxq and discriminator Dpxq

distributions. Plot (a) shows an untrained discriminator; in (b) the optimal Dpxq is found;

in (c) pgpxq becomes more similar to pdpxq; and in (d) pgpxq produces data samples that

are indistinguishable from the real target data. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Adversarial autoencoder. Input data X is mapped onto a latent variable z „ qpzq. Encoder E

tries to trick discriminator D with artificially generated latent samples and generator G

outputs x̃. A Gaussian prior distribution z˚ „ ppzq allows the model to juxtapose similar

inputs in the latent space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.13 Rhythmic transformation with a deep generative model: (a) Source rhythmic pattern, (b) tar-

get rhythmic pattern, (c) source pattern with target ‚ drum timbres, (d) target pattern with

source ˝ drum timbres, (e) source pattern with other ‹ drum timbres, (f) target pattern

with mixed ˝‚ timbres, (g) other rhythmic pattern with other ‹ drum timbres from latent

space z, and (h) other rhythmic pattern with source ˝ or target ‚ drum timbres. . . . . . 52



xiv LIST OF FIGURES

3.14 Modes of transformation. In drum translation an input drum sound is transformed (i.e., trans-

lated) to another target drum (black dashed pathway). In audio style transfer two or more

inputs are mixed together in a form of a neural mashup with user defined parameters (orange

dotted and dashed pathway). In latent space manipulation a new arbitrary drum is generated

from the learned representation of a model (blue solid line pathway). . . . . . . . . . . . . 53

4.1 Audio style transfer with rhythmic constraints. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Example of image style transfer. A content image of a dog is transformed to contain style

characteristics from a drawing by Henri Matisse. . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Patterns represented as rhythmic envelopes from 30 drum loops in the dataset (top). Sums

of rhythmic envelopes computed across the dataset (bottom), where bar boundaries (i.e., 4

bars) are represented with vertical blue lines. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Mean rhythmic cosine similarity (RCS) results. Crosses (’x’) indicate means per L objective

and comparison between drum loop pairs: pα,Υq, pβ,Υq, and reference pα, βq. A higher

rhythmic cosine similarity indicates that transformations Υ are more similar to either input

α or β, with the reference for this comparison depicted in brown on the left-hand side. . . 68

4.5 Mean F-measure results calculated from different pairs of inputs (i.e., α and β) and output

transformations Υ. A higher F-measure indicates that the transformations Υ are more similar

to either input α or β, with the reference for this comparison depicted in brown on the

left-hand side (i.e., (α, β)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Mean spectral cosine similarity (SCS) and Pearson correlation (PC) results. Crosses (’x’)

indicate means per L objective and comparison between drum loop pairs: pα,Υq, pβ,Υq,

and pα, βq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Mean Pearson correlation (PC) results. Mean PCs are plotted across Mel bands for different

objectives Lv and different drum loop comparisons PC(α,Υ) (top) and PC(β,Υ) (bottom). 72

5.1 Drum translation overview in three stages. Source audio is transformed to output through

a single shared autoencoder of domain p specialised on domain decoders Dp, where p

represents: kick (k), snare (s), kick and snare (ks), hi-hat (h), kick, snare and hi-hat (ksh),

kick and hi-hat (kh) or snare and hi-hat (sh). Colours illustrate pathways between source

and corresponding Dp trained to synthesise the target instrument (e.g., orange decoder

Ds synthesises snare drums). Solid lines represent information flow during synthesis and

dashed-dotted line represents information flow to a domain confusion network present only

during training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES xv

5.2 Conditional autoencoder architecture for drum translation. Dotted lines present architectures

for the encoder E and domain confusion network C used during training with the WaveNet

decoder for drum domain p. During training, the decoder Dp uses input audio segment and

predicts the next step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Process for creation of the drum sample dataset (top) and a capture of a web interface

(bottom) for data viewing used for removing noisy and erroneous audio examples (i.e., blue

circles). A demo of the web interface used for fine-tuning of the dataset can be viewed on

https://tdsdne.vercel.app/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Patterns represented as rhythmic envelopes from 20 drum loops in the S-DT20 dataset (top).

Sums of rhythmic envelopes computed across the dataset (bottom), where bar boundaries

(i.e., 2 bars) are represented with blue vertical lines. . . . . . . . . . . . . . . . . . . . . . 87

5.5 Percentages of true positive onsets (i.e., those in a dark shade) and false negative onsets

(i.e., those in a light shade) as detected by an automatic drum transcription (ADT) system

are presented. The results reflect the ADT’s performance in translating between kick (blue)

and snare (orange) drum domains using the P3 training configuration, tested on recordings

from the S-AST subset. A successful transformation from kick to snare is indicated by

low automatic detections for kicks and high for snares, whereas a successful snare to kick

transformation would be indicated by the opposite. . . . . . . . . . . . . . . . . . . . . . 89

5.6 Percentages of true positive onsets (i.e., dark shade) and false negative onsets (i.e., light

shade) from an automatic drum transcription (ADT) system for the model trained using

configurations P7 (i.e., horizontal lines) and P3 (i.e., diagonal lines). From left to right,

the first three diagrams correspond to kicks in blue, snares in orange, and hi-hats in red. . 90

5.7 Smoothed mean Pearson correlations between the translated and source audio for k (blue), s

(orange) and h (red) drum domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Smoothed mean Pearson correlations between the translated and source audio for all drum

domains in S-DT20 for system trained with configuration P7. . . . . . . . . . . . . . . . 93

5.9 Example translations generated from two sources (A and B), with spectral difference functions

as solid lines over each waveform. Output colours correspond to target drum domains (e.g.,

blue represents kick drum translations). . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

https://tdsdne.vercel.app/.


xvi LIST OF FIGURES

6.1 Proposed architecture for joint drum synthesis and rhythm transformation. Input data x is

mapped onto a latent variable z „ qϕpz|xq. Encoder E tries to trick discriminator Dz with

artificially generated latent samples and generator G outputs spectrograms x̃. A Gaussian

prior distribution z˚ „ ppzq (star) allows the model to juxtapose similar rhythmic patterns

in the latent space. Solid lines represent deterministic operations of the network and dashed

lines represent stochastic operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Rhythmic transformation of source (left) with intermediate pattern (middle) and resulting

output transformation (right). Rhythmic envelopes (bottom) show changes to the rhythmic

pattern as the latent code is manipulated via parameter α. . . . . . . . . . . . . . . . . . 103

6.3 Bar-length drum pattern definition using three frequency bands (low, mid and high). . . . 104

6.4 Determination of a suitable K with X-Means algorithm. The plot shows sums of mean

squared errors for K “ r5 ´ 50s using Bayesian information criterion (BIC). . . . . . . . . 105

6.5 Rhythmic pattern style representations for patterns labelled from 0 to 11 extracted for the

mid range (120–2500 Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Mean bar-length pattern representations for different datasets (columns): JFRB (Tomczak

et al., 2020), HMX (Nieto et al., 2019), HJDB (Hockman et al., 2012), and DALI (Meseguer-

Brocal et al., 2018). Rhythmic envelopes are averaged over patterns extracted from recordings

filtered using high (2500–11025 Hz), mid (120–2500 Hz), and low (40–120 Hz) frequency

bands (rows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 PCA visualisations of the baseline AAE-ISO (top) and the proposed AAE-GM (bottom) with 2 PCs (left)

and 3 PCs (right) for 11 rhythmic styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Example of interpolation between two rhythmic patterns. . . . . . . . . . . . . . . . . . . 111

6.9 Reconstruction scores for interpolations between source and target rhythmic patterns. . . 112



List of Tables

4.1 Compiled dataset with 30 drum loops and 15 transformation pairs used in system evaluations.

Inputs α and β are represented with an ID indicating different rhythmic rhythmic styles

defined by Logic X Drummer virtual instrument. Rightmost column shows rhythmic cosine

similarities (RCS) calculated for each transformation pair together with the mean RCS of all

examples α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Instrumentation and drum event onset counts in S-AST, S-DT20 and S-DT70 test sets. . 86

6.1 Numbers of bars ordered from the smallest to the largest (left to right) present in each

rhythmic pattern ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Reconstruction results using rhythmic cosine similarity (RCS), log-spectral difference (LSD)

and root-mean squared error (RMSE) presented per rhythmic pattern for the proposed

AAE-GM and baseline systems AAE-ISO, VAE, and WAE-MMD. Colour strengths correspond

to the results calculated across all rhythmic patterns (0–10) for each metric and system

(i.e., per column). Higher RCS values and lower LSD and RMSE values indicate better

reconstruction performance shown with green shading whereas lower performance is shown

with red shading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xvii





Acronyms

AE autoencoder

AAE adversarial autoencoder

AAE-ISO AAE with isotropic Gaussian prior

AAE-GM AAE with Gaussian mixture prior

ART automated rhythmic transformation

AST audio style transfer

ADT automatic drum transcription

BPM beats per minute

BCE binary cross-entropy

BIC Bayesian information criterion

CNN convolutional neural network

CS cosine similarity

CQT constant-Q transform

DAW digital audio workstation

DGM deep generative model

DFT discrete Fourier transform

DNN deep neural network

DT drum translation

GAN generative adversarial network

LSD log-spectral distance

K-NN K-nearest neighbors

K-means K-means clustering algorithm

xix



xx Acronyms

MIDI musical instrument digital interface

MIR music information retrieval

MMD maximum mean discrepancy

MSE mean-square error

MIREX music information retrieval evaluation exchange

NN neural network

NDS neural drum synthesis

NAS neural audio synthesis

PCA principal component analysis

RNN recurrent neural network

RMSE root-mean-square error

RCS rhythmic cosine similarity

SCS spectral cosine similarity

STFT short time Fourier transform

VAE variational autoencoder

WGAN Wasserstein GAN

WAE Wasserstein autoencoder

WAE-MMD WAE with MMD regularisation

WGAN-GP Wasserstein GAN with gradient penalty

X-means X-means clustering algorithm



Mathematical Notation

x A scalar

xxx A vector

X A matrix

|x| Absolute of x

Mi˚ The i-th row of matrix M

M˚j The j-th column of matrix M

M´1 Inverse of matrix M

MT Transpose of matrix M

maxk,mink Extrema with respect to an integer value

supx, infx Extrema with respect to a real value

I
max
i“0

Xi Maximum value of Xi for 0 ď i ď I

r0, 1s Range with min value of 0 and max value of 1

x P X Set membership, x is an element of X

@x P X For all elements x in X

X P Rm,n X is an m by n matrix containing real numbers

meanpxq Mean value of p 1
i

řI
i“1 xiq

x Ð x ` 1 x becomes x ` 1

x ” y x is equivalent to y

x ¨ y Inner product of x and y

x d y Element-wise multiplication (Hadamard product) of x and y

xxi





Chapter 1

Introduction

Automated rhythmic transformations of musical audio are creative computational approaches for the

manipulation of musical sounds of varying length (e.g., long, short) and accentuation (e.g., loud, soft)

that are grouped into patterns. Taking inspiration from capabilities offered in digital audio workstations

and plugins, along with emerging research in the music and multimedia communities, automated rhythmic

transformations have become entrenched within modern music production workflows. Recent advances

in powerful deep learning (DL) algorithms have given rise to new modalities of neural audio synthesis

and effects processing procedures, which in turn have afforded new musical supportive systems for pitch,

timbre and rhythm manipulation for music arrangement and sound design. Although various advances

in deep learning have been proposed, the majority of these have focused on generation, interaction

and visualisation of pitched instruments, and relatively few have explored generation of percussion

instruments and transformations of the underlying rhythmic patterns.

In this thesis the term rhythm is used in two ways: 1) in reference to the process of analysis of

musical time via computational methods for rhythmic description, and 2) in context of a bar-length

pattern of events referred to as a rhythmic pattern. In the title of this thesis Automated Rhythmic

Transformation of Drum Recordings both meanings are implied, whereas in other instances the usage is

distinct. A distinction is also made between the use of words rhythm and rhythmic in a similar manner

as a distinction between the identification of musical constructs that exist in our minds and extraction

of what would be phenomenally present in the audio signal (Gouyon, 2003). For instance, a recurring

rhythmic pattern of sound events can be phenomenally present in the acoustic signal; however, not

all possible patterns are perceived as different rhythms, thus ascertaining that acoustic realisation of

rhythm and its perception are two separate phenomena. In addition, for automated transformations to

be possible, content processing of music audio signals is commonly employed using signal processing and

deep learning methods. In this context the word content represents any piece of information related to

the audio source that is in any way meaningful (i.e., carries semantic information) to the user (Amatriain

et al., 2003). The term transformation should not be understood in the same way as an effect. For a

transformation the emphasis should be put on the change that a particular sound experiences, rather

1



2 CHAPTER 1. INTRODUCTION

than on the result. Thus, not every sound can undergo a certain transformation but an effect can be

applied on any source.

The history of rhythmic transformation of drum recordings is closely connected with the development

of sampling, the practice of using a recorded sound or sequence of sounds in a new composition. The

French composer Pierre Schaeffer began experimenting with sound manipulation techniques in the 1940s

using turntables and tape recorders. Schaeffer’s use and manipulation of percussion sounds through

tape editing and other techniques is considered to be an important precursor to the use of sampling in

electronic music. An important composition which incorporated sampled percussion sounds can be heard

in his piece named Étude aux Tourniquets (Toy Tops and Percussion Instruments) (Schrader, 1982).

Central to the sonic creation of electronic music is the music producer’s selection process, or sourcing,

which commonly involves percussion recordings. Since the introduction of the ’affordable’ digital sampler

in the late 1980s the most frequently sampled recordings became the percussion solos from 1960s

and 1980s Jazz and Funk and R&B performances—referred to as breakbeats—which soon became

prevalent in popular music such as Hip Hop (Chang, 2007) and electronic music genres (Hockman,

2014; Reynolds, 2012). Following sourcing of percussion recordings, the subsequent transformation

process often involves segmentation of drum events and rearranging them along with further modification

through additional effects and layering. To date, computational analysis of percussion has focused on

tasks such as, automatic drum transcription (Wu et al., 2018), timbre description (Aucouturier et al.,

2005) and rhythm and metre analysis (Klapuri and Davy, 2007; Böck, 2016).

Modern deep generative models for neural audio synthesis are well-suited for automated rhythmic

transformation of drum recordings due to their ability to learn complex patterns and relationships in music

signals (Carney et al., 2021; Dhariwal et al., 2020). Recent advances in deep learning can facilitate the

generation of new drum sounds and rhythms by exploiting learned representations of existing recordings.

Deep learning-based models can learn a compact representations of the training data, and then use this

representation to generate new audio examples. This approach can be used to manipulate percussion

recordings in various ways, such as changing the tempo, pitch, timbre of the drums as well as creating

entirely new breakbeats by interpolating between different rhythmic styles.

The research presented in this thesis explores the capabilities of the deep learning models for leveraging

the rhythmic patterns of percussion recordings learned in the analysis phase to provide interpolation

across the latent space with the objective of transformation of original recording with a given pattern to

another pattern. The implications of different possibilities are presented throughout this thesis, with

research outcomes consisting of the thesis itself, open source rhythmic transformation implementations

and datasets to promote future research in neural drum synthesis for automated rhythmic transformation.



1.1. MOTIVATION 3

1.1 Motivation

Within the creative industries, music information retrieval (MIR) techniques are now being applied in

a variety of music creation and production applications. In addition, musicians and DJs are able to

incorporate techniques from music informatics and deep learning towards the development of systems for

generative content creation and manipulation. Examples of research in this field include content-aware

audio effects (Amatriain et al., 2003; Wilmering et al., 2013), musical expert agents (Knees et al., 2015)

and automatic remixing (Davies et al., 2014a). In each case the decisions are made for the user based

on algorithmic interpretation of the data to perform audio generation and modification (e.g., source

separation, timbre morphing, rhythmic transformation). The automated transformations of musical

audio therefore allow users to focus more on the creative rather than technical aspects of the creation

process and encourage greater experimentation. In contrast, the manual manipulation of audio can be

time consuming and require a high-level knowledge of digital audio workstations. Both automated and

manual transformations operate on the audio signal through the manipulation of perceptual attributes

such as loudness, pitch, timbre, position (i.e., spatial hearing) and duration (i.e., time). While deep

learning systems exist for neural generative synthesis of audio (Dhariwal et al., 2020; Engel et al., 2020),

meaningful control over the intermediate latent space (e.g., between rhythms of source and target

recordings) remains an open research issue for rhythmic and multi-timbral percussion recordings, limiting

the synthesis and transformative possibilities of such systems.

Artificially intelligent technologies have had a significant impact on the music industry. Streaming

services like Spotify and Pandora use deep learning to recommend music to listeners, and deep learning-

based music production tools have become increasingly popular in recent years allowing musicians to

create, manipulate and generate music in new ways (Bittner et al., 2017; Tingle et al., 2010). There is

a wide range of AI-based music production tools available to music producers, each targeting different

stages of the music creation process with different levels of complexity and scope. Some examples

includes sequencing tools like Magenta MelodyRNN and Melody Transformer,1 which can generate MIDI

sequences for use in music production software; effects software like Magenta DDSP Tone Transfer,2

which can manipulate the sound of an existing recording to create new variations; neural audio synthesis

tools like Bytedance Mawf,3 which can generate new sounds and timbres; music composition tools

like AIVA,4 which can generate entire songs without any human input; as well as AI-based mixing

and mastering tools like iZotope Ozone5 and MixGenius Landr,6 which can automatically balance and

enhance audio recordings. These tools are not only used by individual music producers but also by

professionals in the music industry, and are increasingly becoming a standard in music production.

1https://magenta.tensorflow.org/music-transformer
2https://sites.research.google/tonetransfer
3https://mawf.io/
4https://www.aiva.ai/
5https://www.izotope.com/en/products/ozone.html
6https://www.landr.com/

https://magenta.tensorflow.org/music-transformer
https://sites.research.google/tonetransfer
https://mawf.io/
https://www.aiva.ai/
https://www.izotope.com/en/products/ozone.html
https://www.landr.com/


4 CHAPTER 1. INTRODUCTION

While commercial deep learning-based tools specifically for breakbeats have not yet been developed,

there are deep learning-based tools available for working with individual sample percussion recordings.

These tools include sample organisation and sequencing tools like XLN XO7 and Algonaut Atlas,8 which

provide a more efficient and intuitive way to navigate and organise sound samples. Additionally, neural

drum synthesis tools that use generative adversarial networks (GANs), such as Sony CSL DrumGAN,9

which can generate new drum sounds by interpolating between learned representations of existing sounds.

These tools can help musicians to expand the sonic possibilities of their recording collections.

1.2 Aim and Objectives

The aim of this thesis is to develop systems for automated transformation of rhythmic patterns of

percussion instruments using deep generative models. The dissertation has three main objectives:

• To formulate and describe modes of transformation of percussion instruments through the use of

deep generative models. While the topic of neural audio synthesis has been more widely discussed,

an account of neural drum synthesis approaches for the transformation of rhythmic patterns of

percussion instruments does not yet exist.

• To explore and propose systematic methodologies for rhythmic transformation using deep generative

models, ensuring control over the rhythmic patterns and timbral characteristics of drum recordings.

• To develop and optimise modular deep learning-based systems for drum synthesis and rhythmic

transformation with detailed description of architectures and model parameters for reproducibility.

These are achieved through the following contributions.

1.3 Contributions

• Formulation, description and naming of modes of transformation of drum instruments using deep

generative models (Chapter 3)

• Development and optimisation of modular deep learning based systems for rhythmic transformation

(Chapters 4–6)

• An audio style transfer model that incorporates rhythmic constraints for rhythmic transformation

of drums from multiple recordings in a form of a mashup (Chapter 4)

• Creation of new loss functions suited for mashup-oriented drum transformations (Chapter 4)

• Development of drum translation system for timbral and rhythmic transformation drum recordings

(Chapter 5)

7https://www.xlnaudio.com/products/xo
8https://algonaut.audio/
9https://cslmusicteam.sony.fr/prototypes/drumgan/

https://www.xlnaudio.com/products/xo
https://algonaut.audio/
https://cslmusicteam.sony.fr/prototypes/drumgan/


1.4. STRUCTURE 5

• Development of a rhythmic transformation system for continuous transformation of drum recordings,

steered by a latent space representation conditioned on rhythmic pattern styles (Chapter 6)

• Implementation of comprehensive evaluation methodologies, encompassing similarity metrics, onset

detection and automatic drum transcription to rigorously assess and validate the capabilities and

efficacy of the proposed systems (Chapters 4–6).

• Development of new datasets for the study of rhythmic patterns (Chapters 4, 5)

Open Source Implementations and Datasets

• Audio style transfer with rhythmic constraints: An open source command line transformation

system.

https://github.com/maciek-tomczak/audio-style-transfer-with-rhythmic-constraints

• Dataset of drum samples: Dataset of high-quality individual kick, snare and hi-hat samples

used in training of the proposed rhythmic transformation system in Chapter 5.

Web implementation of dataset visualisation available at https://tdsdne.vercel.app/

• Dataset of drum loops (Sonified MIDI): Dataset of sonified MIDI drum loops curated in

preliminary work for Chapter 4.

https://maciek-tomczak.github.io/rppw2017/

• Dataset of drum loops (kicks and snares): Dataset containing kick and snare drums compiled

and used in evaluations of the proposed systems in Chapters 4 and 5.

https://maciek-tomczak.github.io/dafx2018/

• Dataset of drum loops (kicks, snares and hi-hats): Dataset containing kicks, snares and

hi-hat instruments compiled and used in evaluations of the proposed system in Chapter 5.

https://maciek-tomczak.github.io/dafx2019/

• Dataset of drum loops (HJDB, DALI, HMX, and JFRB): Dataset of source-separated drum loops

curated using existing and publicly available datasets for the training and evaluation of the proposed

system in Chapter 6.

https://maciek-tomczak.github.io/acm2020/

1.4 Structure

The remainder of this thesis is structured into six chapters as follows: Chapters 2 and 3 provide

background information and literature reviews, and Chapters 4–6 provide the main research projects.

Chapter 7 reiterates the main findings from Chapters 1–6 and presents suggestions for future work in

this area. The following provides a more detailed explanation of each of the seven chapters.

https://github.com/maciek-tomczak/audio-style-transfer-with-rhythmic-constraints
https://tdsdne.vercel.app/
https://maciek-tomczak.github.io/rppw2017/
https://maciek-tomczak.github.io/dafx2018/
https://maciek-tomczak.github.io/dafx2019/
https://maciek-tomczak.github.io/acm2020/


6 CHAPTER 1. INTRODUCTION

In Chapter 2, the task of automated rhythmic transformation is described in context of musical

rhythm, instrumentation and cultural origins surrounding different transformation types applied to drum

recordings. The relevant literature to the task is reviewed to understand the current state of the field.

This is essential in understanding and placing the contributions of this thesis. First, the background of

research into rhythmic description is presented. It begins with a brief overview of the modern Western

drum kit and ends with discussion of different subtasks and algorithms for the automatic description

of the metrical structure of music signals. Finally, the review of the existing methods for automated

rhythmic transformation of drum recordings is presented, with a particular emphasis on advanced

signal-processing and deep learning techniques. This exploration of the literature lays the groundwork

for the thesis and paves the way for the investigations in the following chapters.

Chapter 3 presents and overview of the deep learning techniques utilised in this thesis. The chapter

starts with a discussion of the approaches for the training process of deep neural networks, following with

a presentation of different modes of transformation specialised on the neural synthesis and rhythmic-

timbral modification of drum recordings using a range of deep learning techniques. The modes of

transformation are presented in the context of deep generative models for neural audio synthesis. These

preliminaries are crucial for comprehending the performance and capabilities of the systems deployed in

this thesis, offering the essential context for the subsequent chapters.

Chapter 4 introduces a system for rhythmically constrained audio style transfer, akin to automatic

remixing and mashup creation of drum recordings. The system facilitates automatic remixing and

mashup creation. In this mode of transformation, the rhythmic and timbral features of two or more input

signals are modified such that the result adheres to the larger metrical structure of the chosen input.

New loss functions for mashup and augmented mashup transformations are proposed and evaluated using

various similarity and onset detection performance metrics. The final section of the chapter highlights

the system’s effectiveness in introducing precise, user-defined rhythmic modifications—as validated

by onset detection results—and provides audio examples that demonstrate its distinctive capability to

modify rhythmic patterns, surpassing existing techniques while preserving rhythmic coherence.

Chapter 5 presents the development of a drum translation system, aiming at both timbral and rhythmic

transformation of drum recordings offered by generative audio synthesis with WaveNet autoencoders.

The system serves as a method for redrumming which facilitates a new musical composition technique,

enabling artists to blend and morph drum sounds within their works. The chapter presents the

methodology behind the translation approach, which allows for the input of variable-length drum

recordings to be adapted, mimicking the performance of different drum instruments. The chapter details

the architecture and parameters that allow a user to exert control over generated rhythmic patterns. A

novel visual web-based method is then introduced for the removal of outliers within a newly curated

dataset of drum samples. The translation results are assessed, noting the improvements and the capacity



1.5. PUBLICATIONS 7

for the system to translate percussion instruments in simple and complex scenarios. Lastly, the chapter

sets the stage for Chapter 6, which merges the drum synthesis and transformation systems into a

continuous framework.

Chapter 6 presents a new method that merges drum synthesis with rhythmic pattern manipulation, us-

ing Gaussian mixture adversarial autoencoders (AAE-GM) conditioned on real-world percussion recordings.

This chapter provides insights into a continuous transformation system, which synthesises individual

drum sounds and enables manipulation of rhythmic patterns within bar-length segments. The method

offers a framework for interactive music applications where drum tracks adapt to user input and musical

context, as well as for generative music systems that enable neural drum synthesis and the alteration of

rhythmic patterns. The chapter begins by introducing the system architecture and elaborating on how

rhythmic patterns are represented and used to condition the AAE-GM during its training phase. The latter

part of the chapter is dedicated to evaluating the new system against established baseline systems, with

a thorough analysis of its performance in creating and transforming drum patterns. This evaluation is

supported by a dataset comprising over 500,000 bars from a diverse selection of audio tracks annotated

for this purpose. The chapter proceeds to explore the multi-dimensional latent space that facilitates the

continuous manipulation of bar-length patterns.

The thesis is concluded in Chapter 7 with a summary of findings across Chapters 4 to 6, and

suggestions for future work in this area.

1.5 Publications

The following is a list of all published papers that are directly associated with this thesis:

• Tomczak M., M. Goto, and J. Hockman, Drum Synthesis and Rhythmic Transformation with

Adversarial Autoencoders. ACM International Conference on Multimedia (ACM-MM), Seattle,

WA, USA, 2020.

• Tomczak M., J. Drysdale and J. Hockman, Drum translation for timbral and rhythmic transforma-

tion. In Proceedings of the International Conference on Digital Audio Effects (DAFx), Birmingham,

United Kingdom, 2019.

• Tomczak M., C. Southall and J. Hockman, Audio style transfer with rhythmic constraints. In

Proceedings of the International Conference on Digital Audio Effects (DAFx), Aveiro, Portugal,

2018.

• Tomczak M., C. Southall and J. Hockman, Rhythm modelling using convolutional neural networks.

In Rhythm Production and Perception Workshop (RRPW), Birmingham, United Kingdom, 2017.

The following papers are associated with neural drum synthesis and audio effects which use deep

generative systems for drum processing that do not directly contribute to this thesis. While these

https://dl.acm.org/doi/10.1145/3394171.3413519
https://dl.acm.org/doi/10.1145/3394171.3413519
https://dl.acm.org/doi/10.1145/3394171.3413519
http://dafx2019.bcu.ac.uk/papers/DAFx2019_paper_25.pdf
http://dafx2019.bcu.ac.uk/papers/DAFx2019_paper_25.pdf
http://dafx2019.bcu.ac.uk/papers/DAFx2019_paper_25.pdf
http://dafx2018.web.ua.pt/papers/DAFx2018_paper_48.pdf
http://dafx2018.web.ua.pt/papers/DAFx2018_paper_48.pdf
http://dafx2018.web.ua.pt/papers/DAFx2018_paper_48.pdf
https://rppw.org/
https://rppw.org/


8 CHAPTER 1. INTRODUCTION

collaborative works primarily delve into specific techniques of synthesis of drum samples, this thesis

articulates a framework centred on the automated transformation of rhythmic patterns of drum recordings.

This positions the research distinctly within the broader domain of manipulating rhythmic patterns of

drum recordings using deep generative models for neural drum synthesis.

• Cheshire M., J. Drysdale, S. Enderby, M. Tomczak and J. Hockman, Deep Audio FX for Snare

Drum Recording Transformations. In Journal of the Audio Engineering Society (JAES), Special

Issue: New Trends in Audio Effects, 2022.

• Drysdale, J., M. Tomczak and J. Hockman. Style-based Drum Synthesis with GAN Inversion. In

Proceedings of the International Society of Music Information Retrieval Conference (ISMIR), 2021.

• Drysdale J., M. Tomczak and J. Hockman, Adversarial Synthesis of Drum Sounds. In Proceedings

of the International Conference on Digital Audio Effects (DAFx), Vienna, Austria, 2020-21.

https://www.aes.org/e-lib/browse.cfm?elib=21886
https://www.aes.org/e-lib/browse.cfm?elib=21886
https://www.aes.org/e-lib/browse.cfm?elib=21886
http://www.open-access.bcu.ac.uk/13023/1/000041.pdf
http://www.open-access.bcu.ac.uk/13023/1/000041.pdf
https://www.open-access.bcu.ac.uk/13021/1/Adversarial_Synthesis_of_Drum_Sounds.pdf
https://www.open-access.bcu.ac.uk/13021/1/Adversarial_Synthesis_of_Drum_Sounds.pdf


Chapter 2

Review of Rhythmic Description and

Transformation Literature

Rhythmic transformation of drum recordings is inherently connected with the history of sound recording

and sampling technology progressing from the end of 19th century to the digital era of the present day.

In the late 1940s, French composer Pierre Schaeffer, by means of discs, tape recorders, and several kinds

of analogue devices, pioneered the manipulation and sampling of recorded sounds. He was motivated

by the possibilities that this technique introduced for creation of new artistic works. An example of

Schaeffer’s compositional approach to rhythmic transformations of drum recordings can be heard in the

piece named Étude aux Tourniquets (Toy Tops and Percussion Instruments) part of his Cinq Études de

Bruits (Five Studies of Noises) (Schrader, 1982). Several such techniques applied to pre-recorded sounds

using analogue tape were described by Serra (1989) in the context of transformations in electronic music.

More recently, sampling became one leading practice for many DJ-orientated electronic music genres

that evolved with the development of affordable home-based studio equipment. Electronic music genres

are characterised by a high degree of manipulation of drum recordings using techniques such as drum

resequencing, time-stretching and pitch-shifting (Collins, 2001; Hockman, 2007; Hockman, 2014).

Creative manipulations of drum recordings developed along with the early use of hardware samplers

and evolved into sophisticated digital audio effects and support applications with rhythmic transcription

functionalities (e.g., automatic beat and rhythmic pattern detection). Early digital audio effects relied

on digital signal processing (DSP) algorithms (Zölzer, 2011), but in the recent years deep learning (DL)

techniques have emerged as prominent creative tools that have introduced musicians to new modes of

music creation (Knees et al., 2016, 2015). These techniques are capable of sound transformation as well

as generation, and within this dissertation, the title refers to a special use case of deep learning methods

applied to musical signals that target rhythmic transformation of drum recordings. In this chapter, an

overview of components related to rhythmic description and transformation is presented to provide

an understanding of the history and current trends within the field of music informatics. Section 2.1

9



10CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.1: The modern Western drum kit equipped with a kick drum, snare drum, hi-hats, rack toms, floor
tom, crash cymbal and ride cymbal.

presents an overview of characteristics of drums and discusses features of styles related to percussion

instruments. Section 2.2 considers literature on rhythm and covers computational methods for rhythmic

description. Previous approaches to automated rhythmic transformation are discussed in Section 2.3.

2.1 Characteristics of Drums

Within Western popular and traditional music styles such as jazz, rock, pop and dance music, the

drum kit is an important component of the rhythm section that sets the basic tempo as well as the

rhythmic structure for a musical performance. This structure is realised by the means of rhythmic

patterns, often referred to as drum patterns, which contribute to the desired sound for each music

genre. The kick and snare drums—although not exclusively—provide the rhythm in popular music

through interlocking patterns and can be clear indicators to beat locations. These patterns are of

chief interest to music producers (Hewitt, 2009; Snoman, 2012), but are also the subject of research

in several fields related to rhythm and timbre such as rhythmic similarity (Paulus and Klapuri, 2002),

rhythmic style modelling (Maŕın, 2018) and automatic drum transcription (Southall, 2019). In order

to achieve automated systems for rhythmic transformation proposed in this thesis an understanding of

drum instruments together with different styles of playing and production techniques is required.

2.1.1 Instruments of the Drum Kit

The drum kit consists of multiple instruments played by a single musician through the use of their hands

and feet as well as external tools such as drum sticks, brushes and pedals. Figure 2.1 shows the modern

Western drum kit. Percussion instruments can be classed as membraphones (i.e., drums) and idiophones



2.1. CHARACTERISTICS OF DRUMS 11

Figure 2.2: Waveforms and spectrograms for a kick (left), snare (middle), and a closed hi-hat (right).

(e.g., bells, cymbals). The standard drum kit includes membraphones such as the kick drum, snare

drum, and toms, as well as idiophones such as hi-hats and cymbals. Popular additions to the drum kit

are instruments like tambourines, cow bells, and wood- or plastic-blocks. An overview of the primary

instruments from the drum kit is provided below.

Kick Drum: The kick drum (or bass drum) is the largest instrument in the typical drum kit and is

played using a foot pedal with an attached beater. It produces a low pitch sound and is often used to

emphasise the beat locations. Typical frequency ranges of a kick drum are 50–145Hz (fundamentals)

and 1kHz–6kHz (harmonics) (Major, 2014; Rossing et al., 2014). The left part of Figure 2.2 shows the

audio waveform and a spectrogram (i.e., time-frequency representation) of a kick drum.

Snare Drum: The snare drum is a shallow drum with a set of wires (i.e., snare wires) held under its

lower side, which vibrate in sympathy when the drum is struck. It is a versatile instrument capable of

producing a range of timbres with different playing techniques. The snare can be struck with variable

velocities in different locations across the batter head producing different timbres due to different modes

of the membrane being excited (Rossing, 2001; Rossing et al., 2014). For example, snare drums can be

hit lightly producing quiet sound, termed a ghost note, or can be used to accentuate the sound with a

standard drum stroke that applies a greater force (e.g., ghost notes p♩q and snare accents ąąą in Figure 2.4).

In both cases the snare wires augment the produced sound in chaotic ways introducing inharmonic wire

noise to the vibrational modes of the drum (Fletcher and Rossing, 1998). Typical frequency ranges of a

snare drum are 100–200Hz (fundamentals) and 1–20kHz (harmonics) (Owsinski, 2017; Owsinski and

Moody, 2009). The middle part of Figure 2.2 presents an audio waveform and a spectrogram of a snare

drum.

Hi-hat: The hi-hat is built with two cymbals mounted on a stand, where the top cymbal is facing

downwards and the bottom is facing upwards. The hi-hat can be hit with a drum stick or can be

controlled with a pedal. Different combinations of open, closed or in-between (i.e., washy) hi-hats

facilitate various playing techniques and produce different sounds when hit with a stick or when operated

separately through the foot pedal. Typical frequency ranges of a hi-hat are 300–580Hz (fundamentals)

and 1–15kHz (harmonics) (Major, 2014). The right part of Figure 2.2 presents an audio waveform and

spectrogram of a closed hi-hat.

Other drums and cymbals: Other drums of the drum kit include rack and floor toms that are

commonly used in drum solos and sections that diverge from the main rhythmic pattern (i.e., drum fills)



12CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.3: Time-unit box representation of a standard eighth note drum pattern. Audio signal of a drum
recording (top) and an eighth note quantised representation of patterns made by kick, snare and hi-hat (bottom).

characteristic of rhythm & blues (R&B), rock and funk music (Stewart, 2000). The other cymbals used

within the drum kit include: crash, ride, splash and china cymbals. They are typically used to emphasise

particular rhythmic sections, or in the case of the ride cymbal, build momentum in the music piece and

give the drum pattern a sense of continuity and motion (Hewitt, 2009).

2.1.2 Features of Drum Styles

Described below are several of the main rhythmic devices (i.e., swing and syncopation) that characterise

different qualities of rhythmic patterns in various styles of music as outlined by Pressing (2002), while

more detailed definitions of rhythm and metre are presented in Section 2.2. Music styles often rely on

interlocked and repeating rhythmic patterns created by the kick drum, snare drum and cymbals—usually

the hi-hat or ride cymbal. A standard eighth note rhythmic pattern made of three instruments is

illustrated in Figure 2.3. The hi-hat plays a constant eighth note pattern and both kick and snare drums

are played in alternating patterns. There are two aspects to rhythmic patterns that characterise their

role in different styles of music (Desain and Honing, 1989). The first refers to how pattern events can

be aligned to a quantised time grid. Notes represented on a discrete grid can be described by integer

multiples or divisions of a quarter note and can reflect how a pattern would be notated on a score as in

Figure 2.4. The second involves systematic timing deviations between events and their corresponding

positions in the metrical structure. These deviations can be represented when performers use tempo

variation as means of expression or as event shifts at a constant tempo (Bilmes, 1993; Desain and

Honing, 1991).

Jazz, funk and Latin music is characterised by a pattern of deviations called swing in which consecutive

eighth notes are performed as long-short patterns (Friberg and Sundström, 2002). In these patterns the

duration of the first eighth note is extended from the original eighth note ratio of 1:1. Conventionally,

swing in jazz corresponds to notation of a beat that is divided in the ratio of 2:1, where the first eighth

note can be represented by two triplet eighth notes. Friberg and Sundström (1999) have shown that this

ratio decreases at fast tempi, while in practice this ratio varies and depends on the drummer as shown

in analysis on jazz and Cuban recordings by Alén (1995) and Freeman and Lacey (2002). Syncopation

refers to the stressing of normally unstressed beats in a rhythmic pattern via expressively timed events;



2.2. RHYTHMIC DESCRIPTION 13

Figure 2.4: Drum notation of a rhythmic pattern represented on a music staff. The hi-hat pattern is a sequence
of regular quarter notes interlocked with kick and snare drum backbeat patterns. The snare drum backbeat is
extended with the fourth offbeats (ąąą) instead of the fourth onbeats and a sixteenth note ghost note (p♩q) pattern.
The kick drums are predominantly placed on the third offbeats. Audio arrangement of this drum notation is
available here https://funklet.com/mother-popcorn/.

however, it can also refer to the interruption of a repeating pattern (e.g., switching a snare hit with a

hi-hat, thus disturbing the expected pattern). Butler (2006) has described two types of syncopation

catered to instrumental drum performances. In his first, general type the accentuations occur on beats

2 and 4 (commonly referred to as backbeat in Western music (Frane, 2017)). The second type, extends

a model by Temperley (1999) to include forward as well as backward displacement of syncopated events

that define drum patterns specific to funk music. In addition, delayed events can eventually stretch

a rhythmic pattern and create surprise in form of syncopation as discussed in Robertson (2009) with

an example recording from John Bonham of Led Zeppelin. The notion of displacement of events in

relation to the beat is referred to by drummers as playing behind the beat, in front of the beat or in the

pocket (Robertson, 2009). Gouyon et al. (2003) observed that rock and funk drummers play quarter

notes slightly behind the beat. Such deviations occur in many musical styles and rely on the positions in

the metrical structure (Gouyon, 2007). An example can be seen in the top part of Figure 2.3, where

hi-hat events appear slightly before snare drums (e.g., around the 1sec and 4sec). Moreover, various

authors have investigated the theoretical and practical knowledge required for composition of rhythmic

patterns in educational scenarios (Adamo, 2010; Hewitt, 2009; Snoman, 2012). To explain characteristic

features of rhythmic patterns, notations are often used (as in Figures 2.3 and 2.4).

2.2 Rhythmic Description

The previous section has demonstrated the variety of sounds that can be produced by the drum kit

as well as the qualities of rhythmic patterns utilised in different styles of music. Automatic rhythmic

description methods introduced in this section refer to detection of events in the audio signal (e.g., notes

and drum events), synchronisation points (e.g., beats and downbeats) and rhythmic patterns. These

methods are chief for rhythmically-informed music transformations (Gouyon et al., 2003; Hockman

et al., 2008; Ravelli et al., 2007). This section begins with definitions of terminology related to rhythm

and metre (Section 2.2.1) to provide a basis for review of computational methods for analysis and

description of rhythmic information from audio signals utilised in automated transformation of drum

recordings. Section 2.2.2 covers onset detection used in a process of locating events in an audio

signal. Sections 2.2.3 and 2.2.4 review methods for beat and downbeat detection that aim to extract

https://funklet.com/mother-popcorn/


14CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

perceptual synchronisation points in the rhythmic structure of music. Section 2.2.5 presents an overview

of automatic methods for the detection of drums in audio recordings.

2.2.1 Rhythm and Metre

One commonly responds to music through repeated movements such as tapping to the beat or swaying

with the pulse of music. Underlying such motions is a system of perception of time that allows humans

to tap to the perceived beat—an inferred pulse of a succession of events—while cueing subdivisions

of this beat with their hands (Fraisse, 1984). Metre is a counting mechanism defined by the presence

of a regular pattern of accented and unaccented beats. Rhythm defines the grouping of events into

patterns based on the length, pitch and accentuation of these events in sequence. For example, one

may emphasise syncopation of certain events by accentuating them with other body movements that

when synchronised together can represent an overall rhythmic structure of music in a process referred to

as entrainment (Witek et al., 2014). The recognition of events and an inference of beats underlying the

music—that do not need to correspond to any particular sound events (Rosenthal, 1992)—facilitates the

perception of rhythm and metre. The concept of rhythmic, or metrical, structure in rhythm relates to

grouping of beats together. Grouping describes how a series of sounds are perceived to be clustered or

grouped together. Research on rhythm grouping principles shares similarities with work on development

of Gestalt principles of perceptual organisation (Tenney and Polansky, 1980). The formal study of

grouping and metrical structures by Lerdahl and Jackendoff (1983) introduced the concept of alternating

sequence of strong and weak beats in a hierarchy. The set of strong beats forms the metrical level

above the beat level. This grouping of beats creates bars (also known as measures) with the first beat

in a bar referred to as a downbeat. Lerdahl and Jackendoff (1983) used the term tactus to define

the most influential beat level that divides the bar and corresponds to the main quarter note beat

described by a time signature. In music notation, time signature serves a similar purpose to metre

defining two numbers, one stacked above the other (e.g., represented in common binary 2
4 , ternary 3

4 ,

and quaternary 4
4 subdivisions). The lower provides the metrical duration of a beat (e.g., quarter note,

eighth note), and the upper provides the number of such beat durations in a bar. The metrical levels

below the beat are also characterised by strong and weak events, where the strong events correspond

with the beats. Bilmes (1993) termed the lowest metrical level in a musical performance as tatum in

honour of the jazz pianist Art Tatum. This level forms a metrical grid on which most events will occur.

The metrical levels can also develop above the bar level to form hyper-measures that can correspond to

structural segments in music such as the verse and chorus (Allan, 2004).

Research related to our ability to identify rhythmic structures in music has been conducted in fields of

music theory, psychology and cognitive science. The work in these fields ranges from study of structural

hierarchies in symbolic music notation (e.g., Cooper and Meyer, 1963; Lerdahl and Jackendoff, 1983) to

psychological models of listener attention and timekeeping (e.g., Jones and Boltz, 1989; London, 2012;

Temperley, 2004). The intuitive ability of humans to synchronise and remain in synchrony was studied in

sensorimotor research using metronomic and musical stimuli (e.g., Fraisse, 1982; Repp, 2005). This work



2.2. RHYTHMIC DESCRIPTION 15

Figure 2.5: Metrical structure locations (black vertical lines) for three levels depicting: (a) audio signal, (b) bar
boundaries, (c) beat locations, (d) onsets representing time markers at positions of musical events.

contributed to the understanding of limits of human rhythmic perception, memory and reproduction,

suggesting optimal temporal ranges and boundaries for our percept of rhythm, beat and metre.

Computational approaches to rhythm and metre analysis of audio signals are a necessary component

of automated rhythmic transformation systems and rely on transcription of a symbolic list of music

events. Within the field of music information retrieval (MIR), automatic rhythmic description systems

seek to extract rhythmic structure information from a musical recording through localisation of bar

boundaries and characterisation of acoustic events within these boundaries (Gouyon, 2003; Termens,

2004). Rhythmic structure can be automatically detected in audio signals through identification of note

start times (onsets), the inferred pulse of the music (beats), and the bar boundaries (downbeats) in

subtasks of onset detection (Bello et al., 2005), beat tracking (Goto and Muraoka, 1994) and downbeat

detection (Goto, 2001), respectively. These boundaries are illustrated in Figure 2.5 and the corresponding

computational approaches for their detection are described in the following sections. Computational

approaches for rhythmic description can be also used in the detection of rhythmic patterns (Krebs et al.,

2014) and classification of music signals based on their rhythmic similarities (Paulus and Klapuri, 2002)

as well as in the task of automatic drum transcription (Wu et al., 2018).



16CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

2.2.2 Onset Detection

Within the field of MIR, high-level rhythm analysis tasks such as the detection of beats and downbeats

rely on the detection of periodicities in the occurrences of music events. The location of beginnings of

events in an audio signal is assisted by the task of onset detection. Onsets are markers in time that

represent the beginning of events in music signals. In music, onsets are often characterised by transients,

which are associated with very brief periods of time, for instance, the moment a stick comes in contact

with the drum membrane (Bello et al., 2005). Transients are short-lasting sounds of high amplitude that

occur at the beginning of a waveform, where the signal changes abruptly (Crocker, 1998). Transients

are often associated with attack regions—also referred to as attack transients—of drum recordings and

are characterised by energy in a wide-band frequency range. Figure 2.6 illustrates a waveform of a

drum recording together with an onset location marking the beginning of an idealised envelope with the

demarcated attack and decay regions. While the attack transients have been used in percussive onset

detection approaches by Duxbury et al. (2002) and Masri (1996), alternative methods may be necessary

for the detection of more difficult sounds (e.g., snare ghost notes). This section presents a review of

onset detection methods often utilised as a first processing step for many music tasks (e.g., beat and

downbeat detection) and music applications related to automated rhythmic transformation.

The existing methods for onset detection rely on three computational stages: (1) creation of an

audio input representation, (2) creation of an onset detection function, and (3) onset selection. Several

audio representations have been utilised to facilitate the detection of desired signal attributes (e.g.,

transients). Bello et al. (2005) categorised preprocessing techniques applied to input audio representations

into transient identification and modification techniques or sub-band decomposition. The former focused

on extraction or enhancement of transient signal regions with methods such as spectral modelling

synthesis in (McAulay and Quatieri, 1986; Verma et al., 1997), and the latter included methods that

used different filtering (i.e., merging several frequency bins into a single one) techniques. The use of

filtering methods was motivated by the aim to reduce the interference between instruments in different

ranges of the spectrum and can be subdivided by the filterbank type used, such as Mel scale bands,

Bark scale bands, and constant-Q bands. These are perceptually motivated scales that aim to overcome

the linear resolution of the discrete Fourier transform, where all frequency bins are evenly spaced in

each spectral frame. Here, the bins of a spectral frame refer to the frequency axis of a time-frequency

representations (i.e., spectrogram) of an audio signal such as the short-time Fourier transform (STFT)

and the constant-Q transform. The constant-Q transform ensures an identical number of frequency bins

per musical octave and was used in approaches by Böck et al. (2012b) and Lacoste and Eck (2006).

Mel and Bark scales as well as logarithmic filtered magnitude spectrograms were assessed by Böck et al.

(2012a), Eyben et al. (2010), and Schlüter and Böck (2014) for onset detection in a wide range of

musical instruments.

An onset detection function (ODF)—also termed novelty function (Foote, 2000) or rhythmic enve-

lope (Roma, 2008)—of an audio signal emphasises attack transients of events as illustrated in Figure 2.7.



2.2. RHYTHMIC DESCRIPTION 17

Figure 2.6: Audio waveform (top) and idealised envelope (bottom) consisting of attack and decay sections
separated by dashed line. The onset marks the beginning of the attack section.

The created ODF is represented with a feature at a lower sampling rate than the original audio signal.

ODF computation approaches can be categorised using design considerations borrowed from the field of

machine learning into: (1) unsupervised methods, (2) supervised non-deep learning, and (3) supervised

deep learning methods.

Early onset detection methods for music were unsupervised and relied exclusively on the time

domain signals (Gordon, 1985; Schloss, 1985). More recent approaches incorporated time-frequency

representations (TFR) of audio signals for computation of different onset detection functions. Multiple

TRF-based methods were reviewed by Bello et al. (2005) and Dixon (2006) and include high frequency

content (Masri and Bateman, 1996), spectral difference (Duxbury, 2005), phase deviation (Bello and

Sandler, 2003) and complex spectral difference (Bello et al., 2004). Some variants, such as SuperFlux

by Böck and Widmer (2013b) were proposed to mitigate the negative effect of loudness variations of

steady tones in non-percussive instruments by utilising phase information from STFT and combining

phase information of several frequency bands into one using local group delay weighting algorithm (Böck

and Widmer, 2013a). Unsupervised approaches have advantages such as not requiring system training

on large amounts of data and computational efficiency.

Supervised non-deep learning methods rely on statistical models and probabilistic inference for

detection of onset change points within a signal (Bello et al., 2005). Jehan (1997) presented a Gaussian

autoregressive (AR) model for creation of an ODF that indicated presence or absence (i.e., changes

in polarity) of an onset in a music signal. Davy and Godsill (2002) created an ODF by combining a

method based on spectral difference with support vector classification (SVC) to improve sharpness of

peaks located at event locations.



18CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.7: Spectral difference onset detection function (i.e., rhythmic envelope) visualisation for a short audio
recording. Vertical dotted lines indicate beat locations. Audio signal (top) was used to extract rhythmic envelope
(bottom) using spectral difference onset detection function.

An alternative approach for ODF creation relies on supervised deep learning models for classification of

STFT frames. Lacoste and Eck (2006) proposed a feed-forward neural network to perform a decision for

spectral frames with onsets and without onsets. A similar approach was proposed by Eyben et al. (2010)

who applied a recurrent neural network (RNN) with a capability to utilise spectral frames from either

side of an onset location. This model used a bidirectional recurrent network (BRNN) that takes into

account both past and future information in detection of onsets. In subsequent works, state-of-the-art

approaches have been established by means of using RNNs (Böck, 2016; Böck et al., 2012b) and

convolutional neural networks (CNN) (Schlüter and Böck, 2013). Deep learning models were recognised

as a significant advancement in onset detection, as evidenced by evaluations in the music information

retrieval evaluation exchange (MIREX) campaign (MIREX, 2018a). These models have since been

extended to include other architectures, such as temporal convolutional networks (TCN) (Fonseca et al.,

2021), and encoder-decoder transformer models (Hawthorne et al., 2021) for the task of onset detection.

In the last stage, peaks in the onset detection function are automatically selected and associated with

with discrete time locations in a peak picking-process. Peak picking can be achieved with techniques

such as local maxima and adaptive threshold calculation as well as probabilistic determination. In simple

local maxima calculation, an onset is selected if the current location in an ODF exceeds both a value

of the neighbouring positions and a value of a preset threshold. To enhance the selection of peaks

from different ODF types, a dynamic threshold based on a weighted median filter calculation may be

used (Bello et al., 2004). Toh et al. (2008) presented a statistical method based on two Gaussian mixture

models for classification of singing voice audio frames into onset or no-onset classes. Additionally, Pons

et al. (2017) proposed a hidden Markov inference approach for onset selection in scenarios where musical

score is provided.



2.2. RHYTHMIC DESCRIPTION 19

2.2.3 Beat Detection

Beat tracking algorithms attempt to estimate a set of beat times from an audio recording, which would

match those given by a trained human musician and correspond with the metrical level of the tactus.

Automatic detection of beats precisely where a listener would tap to music is a nontrivial task, especially

with varying tempi. To achieve this both the beat period and the beat phase must be identified. The

beat period represents the duration between beat events and can be used in the computation of tempo

measured in beats per minute (BPM), while beat phase refers to the temporal locations of beats.

Accurate beat detection provides a range of possibilities for different automated rhythmic transformation

applications, such as time-stretching of audio loops (Hockman et al., 2008), self-adapting digital audio

effects (Reiss and Brandtsegg, 2018) and beat synchronised DJ mixing (Davies et al., 2014a).

Most methods for beat detection in audio signals consist of three stages: (1) feature extraction,

(2) periodicity analysis, and (3) phase detection. Typically these methods use spectral features, onset

detection functions, and onset times. A multiple-agent based induction, autocorrelation, comb filterbank,

and histogram are standard techniques by which periodicity estimation has been performed. Some

methods output beat period and phase information after the periodicity analysis (Dixon, 2001, 2006),

whereas other require an additional phase detection stage to determine the exact locations of beat

pulses (Scheirer, 1998).

The first beat tracking system (BTS) for audio was developed by Goto and Muraoka (1994) and

used a series of inter-onset intervals (IOI) processed by a multiple agent architecture which assessed the

validity of several hypotheses of beat locations. The system learned characteristic frequencies of kick

and snare drums to determine beat period, beat phase and beat type (i.e., strong or weak) using 28

agents for selection of the most likely hypothesis at the current location. Multiple agent approach has

also been proposed for the study of expressive timing by the authors in Dixon (2001). Scheirer (1998)

proposed the use of a comb filter bank for beat period estimation that was capable of simultaneous

extraction of tempo and beat phase. Autocorrelation methods for periodicity analysis have been used by

several authors (Davies, 2007; Ellis, 2007). This approach is computationally less complex than comb

filter bank methods, but requires an additional computation stage for beat phase estimation. Periodicity

analysis has also been performed using an IOI histogram by combining note lengths in bins that represent

discrete time intervals associated with possible periods (Dixon, 2007).

More recent beat detection methods have incorporated deep learning for the determination of beat

period without the need for additional processing required to locate beat locations from onsets. These

techniques typically use supervised classification methods trained on individual spectral frames to output

a beat activation function. In the final stage, a peak-picking algorithm is often used to improve the

accuracy of the system (Böck, 2016). The workflow presented in Böck and Schedl (2011) specifically

employed bidirectional recurrent neural networks (RNN) for tempo and beat detection. This methodology

achieved exemplary performance, as evidenced by its high ranking in the MIREX evaluation of beat

tracking systems (MIREX, 2019). Additionally, temporal convolutional networks have been introduced



20CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

as an alternative to RNN systems and have demonstrated state-of-the-art performance in beat detection

evaluations (Böck and Davies, 2020). Despite the advancements in beat detection methodologies, there

still exists a variety of challenges for automated rhythmic transformation systems, particularly in adapting

to diverse musical genres, complex rhythms, and varying tempi as well as the detection of rhythmic

pattern boundaries which are typically demarcated by downbeats.

2.2.4 Downbeat Detection

The downbeat is the first beat of the bar which often demarcates beginnings of rhythmic patterns

as well as chord changes and harmonic cues in music. Downbeat detection algorithms seek to find

these positions within musical recordings and are crucial for many commercial music applications and

high-level tasks related to automatic music structure analysis. In recent years, multiple computational

approaches to downbeat detection have been proposed in the literature.

Goto (2001) implemented a computational downbeat detection model for audio by combining

knowledge about onset times, chord changes and drum patterns. Davies and Plumbley (2006) presented

a similar method that uses spectral difference of inter-beat intervals for finding downbeats from found

beat positions. Klapuri et al. (2006) performed a joint analysis of the beat, sub-beat and metre periods

at different hierarchical beat levels using a first-order Markov model. Peeters and Papadopoulos (2011)

estimate beat position templates with hidden Markov models (HMM), and then use reverse Viterbi

decoding to associate these positions with the downbeats. Hockman (2014) introduced a genre-specific

system trained with a dataset of drum recordings using support vector regression for detection of most

likely downbeat positions designed for electronic music genres. The dataset consisted of percussion

recordings from HJDB genres with complex rhythmic patterns performed at fast tempi. Krebs et al.

(2014) jointly model downbeats, tempo, and typical rhythmic patterns of ballroom dance music with a

dynamic Bayesian network. This work was later improved in Krebs et al. (2015) by introducing a more

effective state space learned by the model. More recently, classification methods utilising deep neural

networks have achieved best results for downbeat tracking. While the downbeat detection competition in

MIREX (2016) determined that convolutional neural networks (CNN) achieve the highest results (Böck

et al., 2016b; Durand et al., 2016), subsequent research extended this approach to incorporate temporal

convolutional networks (Böck and Davies, 2020; Böck et al., 2019).

2.2.5 Automatic Drum Transcription

Automatic drum transcription (ADT) systems aim to generate a symbolic representation akin to that

shown in Figure 2.4 and have typically put predominant focus on the detection of kick drums, snare drums

and hi-hats (Southall, 2019). Wu et al. (2018) proposed several ADT-related sub-tasks that identify drums

in simple context such as classification of isolated drum recordings to more challenging contexts that

strive to detect drums within polyphonic music with multiple percussion and non-percussion instruments.



2.2. RHYTHMIC DESCRIPTION 21

Figure 2.8: Example of percussion detection analysis. Input signal (left) is processed with an automatic drum
transcription system that outputs onset times and drum types (right) with labels: kick drum (k), snare drum (s),
hi-hat (h). Note that each drum segment can contain multiple overlapped drums (e.g., kick drum and hi-hat
playing together).

Existing ADT approaches can be categorised into: (1) segmentation-based, (2) classification-based, (3)

language model-based and (4) activation-based methods.10

Schloss (1985) proposed an ADT system that categorised between various conga sounds using

amplitude thresholding segmentation and binary classification. The system by Schloss (1985) and other

segmentation-based systems typically consist of an event segmentation and classification tasks, which

utilise feature representations such as the onset detection function described in Section 2.2.2. Tzanetakis

et al. (2005) proposed a system that converted percussive audio input into a new feature representation

that used preset frequency ranges for each instrument with band-pass filtering (ranges 30–280 Hz for

kick and 2.7–5.5 kHz for hi-hat). The classification-based methods rely on a two-stage process of event

segmentation and subsequent classification of the detected events. Classification-based approaches

typically use features such as spectral features (e.g., centroid, flux, flatness), temporal features (e.g.,

zero crossing rate, RMS, rhythmic envelopes), and Mel-frequency cepstral coefficients (Bello et al., 2006;

Gillet and Richard, 2008; Gouyon et al., 2000; Herrera et al., 2002; Pampalk et al., 2008). Multiple

methods in the literature have also used supervised classifiers such as k-nearest neighbours (Herrera et al.,

2002), and support vector machines (Gillet and Richard, 2008). Language model-based methods predict

future drum events based on the past events. Previously proposed language model-based approaches

typically utilised the Viterbi algorithm (Nakano et al., 2005) and hidden Markov models (Paulus and

Klapuri, 2009). The activation-based methods create a type of onset detection function for drum

events referred to as the activation function. ADT approaches based on activation functions can be

classified into two groups. In the first group, systems apply matrix factorisation algorithms to an audio

spectrogram and decompose it into multiple drum specific activation functions. Non-negative matrix

factorisation is typically used (Battenberg et al., 2012; Paulus and Virtanen, 2005; Wu and Lerch, 2015).

The second group uses deep neural networks to create an activation function for each of the investigated

drums. In recent years, the proposed systems have relied on feedforward neural networks (Southall

et al., 2016), recurrent neural networks (Southall et al., 2016), convolutional neural networks (Southall

et al., 2017; Vogl et al., 2017), and convolutional recurrent neural networks (Southall et al., 2018). The

current state-of-the-art approaches to ADT as presented in the MIREX campaign rely on deep neural

networks (MIREX, 2018b).

10Termed design groups in (Wu et al., 2018).



22CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

2.2.6 Rhythmic Pattern Detection

Automatic methods for rhythmic pattern detection in MIR seek to detect repetitive patterns typically

covering temporal scopes of one or a couple of bars, and are closely related to the notion of rhythmic

similarity (Dixon et al., 2004; Paulus and Klapuri, 2002; Toussaint, 2004). While the concept of similarity

is broadly studied outside of MIR (Gärdenfors, 2004), it is also one of the fundamental problems in

computational music theory as it relates to human perception of rhythm (see Section 2.2.1). In the

context of music applications for automated rhythmic transformation, rhythmic similarity serves the

purpose of establishing quantitative relationships between drum patterns and can be used to gain insight

into the affinity between patterns of different styles. In recent years, multiple computational approaches

to automatic rhythmic pattern detection have been proposed; they require prior knowledge of metrical

structure including subsequent detection of beats and downbeats, and are often based on binary (see

Figure 2.3) and rhythmic envelope (see Figure 2.7) representations of rhythmic patterns.

Monophonic rhythmic patterns are commonly represented as a binary sequence of ones and zeros,

where a zero indicates a rest and a one indicates a beat or an event onset (Thul and Toussaint, 2008;

Toussaint, 2004). The time-unit box representation in Figure 2.3 illustrates three monophonic patterns for

different instruments of the drum kit (i.e., kick, snare and hi-hat) as sequences of filled and empty boxes

representing events and rests, respectively. When combined, the three patterns create a typical eighth

note drum pattern core to a variety of genres present in popular music. Alternatively, rhythmic envelopes

illustrated in Figure 2.7 have been utilised in detection and classification of rhythmic patterns (Dixon

et al., 2004; Ellis and Arroyo, 2004; Pikrakis, 2013).

Gabrielsson (1973a,b) presented similarity ratings of rhythmic patterns from an early drum machine

based on several subjective studies. Gabrielsson utilised multidimensional scaling (MDS) for mapping

subject similarity ratings to rhythmic pattern dimensions, termed rhythm spaces in his study, resulting

in two or three axes attributed to characteristics such as metrical pulse, rhythmic complexity and

typical patterns. Bilmes (1993) implemented a similarity-based rhythmic pattern clustering technique

using a modified k-means algorithm that did not require a predefined number of pattern clusters. The

final clusters represented groups of bar-length patterns with drum events quantised to a sixteenth

note grid, which were maximally similar according to the chosen distance metric. Additionally, several

approaches have been proposed for the determination of typical rhythmic patterns in music classification

tasks (Dixon et al., 2004; Paulus and Klapuri, 2002; Peeters, 2005). Typically, after the detection

of beats and downbeats, these approaches extract some types of rhythmic features (e.g., rhythmic

envelopes) from a set of patterns to determine an average rhythmic pattern for the entire musical

piece or a set of pieces that belong to the same genre. Paulus and Klapuri (2002) proposed a method

that utilised a dynamic time warping (DTW) algorithm for the calculation of similarity between two

rhythmic patterns using a rhythmic feature based on the spectral centroid weighted with the log-energy

of the signal. Dixon et al. (2004) proposed to use rhythmic envelopes extracted from the signal using

an root mean squared filter followed by the k-means clustering to determine the prominent rhythmic



2.3. EXISTING METHODS FOR AUTOMATED RHYTHMIC TRANSFORMATION 23

patterns. Peeters (2005) combined features extracted using the discrete Fourier transform and an

autocorrelation function to produce spectral rhythmic patterns for different musical genres. Ellis and

Arroyo (2004) implemented a system for the detection of typical patterns in drum recordings based on

principal component analysis (PCA) for music classification and generation tasks. In their system, the

typical patterns were represented by the means of the top eigenvector bases—termed eigenrhythms—that

explained 90% of the variance. More recently, Krebs et al. (2013) utilised dynamic Bayesian networks

for rhythmic pattern modelling of different ball room dances represented as separate distributions in a

Gaussian mixture model (GMM). The authors proposed to use a rhythmic envelope feature based on the

spectral flux algorithm, which was previously presented in larger evaluations of onset detection algorithms

in Böck et al. (2012b). More recently, Foroughmand and Peeters (2019) incorporated convolutional

neural networks for the modelling of rhythmic pattern classes and tempo estimates. Rhythmic pattern

detection has seen a variety of methods that aim to understand and quantify rhythmic patterns and

their similarities across various musical genres and styles. This pursuit remains central to enhancing

automated rhythmic transformation systems, striving to better align computational approaches with

human understanding of rhythm.

2.3 Existing Methods for Automated Rhythmic Transformation

The previous sections have presented characteristics of drum instruments (Section 2.1) as well as

computational models for rhythmic description (Section 2.2). This section reviews automated rhythmic

transformation systems in the literature. These methods can be achieved through a combination of

techniques from digital signal processing (DSP) and deep learning (DL) fields, and belong to a broader

category of computational transformations of musical content. Section 2.3.1 presents an overview of

a general content-based transformation framework that was first introduced in digital audio effects.

This general framework can be expanded into two methods for automated rhythmic transformation

and is discussed in the subsequent sections. Section 2.3.2 presents resequencing-based methods that

represent one of the earliest approaches for rhythmic transformation of audio signals. Section 2.3.3

covers hybrid-based methods, where the rhythmic transformation is executed as a blend of two or more

audio recordings or by generating a new audio output from a learned representation of a deep generative

model.

2.3.1 Content-based Transformations

Content-based audio effects were distinguished from other types of digital audio effects by Amatriain

et al. (2003) to address transformations that manipulate higher-level information within an audio

signal as opposed to effects that used only simple representation of the sound (i.e., audio samples).

Content-based transformation systems can be seen as part of a larger set of support systems to guide

users when they lack inspiration, technical knowledge, musical capability as it relates to melody, harmony,

rhythm, structure or style (Knees et al., 2015). Content-based effects can be classified according to



24CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.9: Diagram of a general analysis/synthesis transformation system. Dashed line represents an additional
input option (e.g., for a recording of another style). Additional inputs are characteristic of automated rhythmic
transformation systems that facilitate automatic remixing or mashup creation.

the perceptual attribute that is primarily altered by the used method. Amatriain et al. (2003) proposed

six axes of content-based transformation: loudness, duration, pitch, position, quality, and timbre. This

categorisation was condensed to five axes in Zölzer (2011) to loudness, time, pitch, spatial hearing,

and timbre. Ideally, content-based transformation would affect only one dimension without changing

others. This is not always possible and depends on the musical material and transformation technique

used. For example, the rhythmic content of an audio signal can refer to rhythmic attributes discussed in

Sections 2.1 and 2.2 such as tempo, beats, swing ratios, and rhythmic patterns. In this scenario, changing

one rhythmic dimension can also have an effect on others. Amatriain et al. (2003) outlined a three-stage

process—with analysis, transformation, and synthesis stages—for a content-based transformation, where

one or more audio inputs is affected. This general process, visualised in Figure 2.9, borrows from

design of digital audio effects that target perceptual attributes of sound (Verfaille et al., 2006). In this

framework, the analysis stage refers to creation of a sound representation such as STFT from audio

samples and application of some changes (e.g., time-stretching) to it in the transformation stage. The

synthesis stage refers to conversion of the transformed sound representation back into audio samples.

Other transformation scenarios can include various configurations of user and metadata inputs at

different stages of this process (Amatriain et al., 2003). An important characteristic of content-based

rhythmic transformation systems presented in the subsequent sections is the option to add an additional

musical input (see Figure 2.9) that facilitates the blending of rhythmic and other perceptual qualities in

remix and mashup creation that have been explored in a variety of systems. This characteristic can

be motivated by the need for manipulation of the source musical material by characteristics of sound

inspired by an already existing body of work from other musicians (Knees et al., 2016). Often musicians,

desiring a certain sound or aesthetic influenced by the style of artists they admire, replace the rhythmic

pattern of drums in their recordings (i.e., source) with that from an idealised recording (i.e., target).

Multiple automated methods satisfy this transformation scenario (Gouyon, 2003; Hockman et al., 2008;

Ravelli et al., 2007). However, the work presented in Chapters 4, 5, and 6 of this dissertation extends

this transformation scenario to the generation of new drum sounds within the paradigm of user-controlled

rhythmic transformation.

2.3.2 Resequencing Methods

Figure 2.10 showcases drum segment resequencing from a drum recording comprised of two patterns.

Alternatively, the degree that each segment is altered can vary to accommodate changes in microtiming



2.3. EXISTING METHODS FOR AUTOMATED RHYTHMIC TRANSFORMATION 25

Figure 2.10: Resequencing example of a drum pattern. The pattern is divided into bars with individual hits,
such as kick drums (K), hi-hats (H), and snare drums (S). Some of these hits (as represented by the boxes at
the top) are repurposed to form a new percussion arrangement shown below. Figure adapted from Hockman
and Davies (2015).

of events (Gouyon et al., 2003; Hockman et al., 2008). Resequencing methods rearrange a sequence of

audio segments within a drum recording using an extracted knowledge of rhythmic patterns. The new

arrangement does not need to contain all segments of the original recording as shown in a system for

breakbeat resequencing by Hockman and Davies (2015).11

One of the earliest automated rhythmic transformation systems was proposed by Bilmes (1993) and

focused on manipulation of sequenced prerecorded material. It extracted note onset times from digitised

multitrack recordings of Cuban percussion instruments and recreated their performance by inserting drum

samples with new calculated microtiming deviations. Bilmes’ work emphasised the importance of tatum

analysis for representing expressivity in percussive recordings. Gouyon et al. (2003) used a phase-vocoder

approach, to modify rhythmic performance of polyphonic audio signals based on an input-defined swing

ratio. Their work created a metrically-informed swing modification of the signal but was limited by the

lack of information about affected drum types and more precise rhythmic pattern representation. In

addition, Gouyon et al. (2003) outlined the importance of accurate rhythmic analysis that can otherwise

contribute to unpleasant errors such as phasiness in time-stretching and a wrapping effect in rhythmic

pattern matching. Janer et al. (2006) extended the system from Gouyon et al. (2003) by implementing

transformation of tempo, swing, meter, and accent in a real-time audio plugin. This method performed

well on drum recordings with regular tempo but suffered from octave errors (e.g., BPM incorrectly

detected as half of the true rate) that are a common problem in beat detection algorithms (Janer et al.,

2006). Yoshii et al. (2007) implement a real-time system capable of drum pattern rearrangement, as

well as loudness and timbre transformation of selected audio segments. Each segment in the original

drum arrangement could be automatically replaced with drum segments from other recordings. Ravelli

et al. (2007) presented a system that performed adaptation of source drum loops, based on rhythmic

information extracted from a target loop. In their approach, drum events of different types could

be either time-stretched to suitable target events in the model, or reordered. Figure 2.11 illustrates

these time-stretching and resequencing transformations of drum recordings, where a source recording is

progressively edited to match the rhythmic pattern and drum characteristics (i.e., timbres) of the target

11Breakbeats, or breaks, refer to sampled recordings of solo percussionists generally from Funk or Jazz music of the
1960s to the 1980s. A notable example is the Amen break, originally sampled from The Winstons’ Amen, Brother (1969),
that has since become one of the most sampled song in music history (Reynolds, 2012).



26CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.11: Rhythmic transformation using signal processing techniques. Source recording segments and its
transformations using time-stretching and segment reordering with the aim of matching the rhythmic pattern
and drum types of the source to those of the target. The ˝ and ‚ symbols denote drum timbre characteristics
(e.g., from different drum kits) of source and target recordings, respectively.

recording. An extension of their work was proposed by Hockman et al. (2008) with an aim to analyse

downbeats and intra-measure infrastructure of recordings prior to rhythmic transformation. Similarly,

time-stretching was performed on a sequence of onset times corresponding to the rhythmic pattern of

the source recording to match the pattern onsets of the model recording. In this transformation, if the

ratio between the new and original tempi (scalar ratio) is increased or reduced by too great a factor, then

transient regions of the pattern onsets may become smeared or artificial, resulting in a perceptual loss of

audio quality (Hockman et al., 2008). Cocharro et al. (2014) implement a system for manipulation of

syncopation in drum loops, where the input audio is analysed for drum events and quantised to a binary

pattern prior to a time-stretching transformation illustrated in Figure 2.11. More recently, Sawada et al.

(2019) proposed a system that automatically extracted typical drum patterns from source and target

recordings utilising harmonic-percussive source separation (HPSS) and automatic drum transcription. A

new audio track was then synthesised with automatically rearranged bar-length patterns by mixing the

harmonic source-separated part of the source recording with preset drum samples triggered by onset

events of the target detected patterns.

The advantage of resequencing methods is that they do not require computationally intensive models

and can be often implemented as real-time systems. However, as they rely on signal processing techniques

for sound segmentation, pattern matching (i.e., segment alignment between different metrical levels

such as beats or note onsets), and time-stretching (e.g., using a phase vocoder) to satisfy the target

transformation, the errors in early stages cascade to the later stages of the transformation. Also, initial

analysis is responsible for artefacts such as transient smearing caused by incorrect demarcation of

temporally-relevant event positions or spectral artefacts from source separation.



2.3. EXISTING METHODS FOR AUTOMATED RHYTHMIC TRANSFORMATION 27

Outside of resequencing methods operating directly on audio signals, automated rhythmic transfor-

mation of drums were explored in symbolic music domain (e.g., MIDI). Lattner and Grachten (2019)

proposed to use convolutional gated autoencoders for conditional generation and manipulation of drum

patterns given snare and bass tracks in different music styles. In Gillick et al. (2019), the authors propose

a generative model based on variational autoencoders for user-controlled drum performance generation

in popular music genres performed by different professional drummers. Valenti et al. (2020) propose

to use adversarial regularisation as a flexible mean to imbue recurrent VAEs with information about

different popular music styles. Briot and Pachet (2017) and Ji et al. (2020) provide extensive overviews

of systems for symbolic music generation and transformation with deep generative models.

2.3.3 Hybrid Methods

Hybrid methods refer to transformation systems that mix content characteristics of two or more recordings

by combining them together or by generating an audio output anew. This transformation can be a

result of a combination of two songs in the form of a musical mashup (Shiga, 2007) but can also refer

to generation of new audio material based on an internal representation created within a deep neural

network. Additionally, audio inputs can be resequenced to match the rhythmic timing of another target

audio input and subsequently combined using a cross-synthesis (i.e., a technique of impressing the

spectral envelope of one sound on the flattened spectrum of another), as proposed by Hockman (2007).

Another cross-synthesis method by Collins and Sturm (2011), comes from dictionary-based approaches,

where audio signals are atomically decomposed using scale-time-frequency dictionaries, offering some

control over sound transformations. This atomic decomposition allows for creative manipulations,

including the ability to influence one signal’s decomposition with another, for unique cross-synthesised

sounds. Such hybrid methods span from cross-synthesis, automatic mashups, and remixing, to neural

audio synthesis approaches such as audio style transfer.

Several web applications exist for users that wish to listen to or create mashups by hand, such as

a system developed by Tokui (2008) with an interactive user interface, and a system by Griffin et al.

(2010) capable of beat-synchronous time-stretching of an input song to the target tempo. Ishizaki et al.

(2009) demonstrated that mashup transformations that are not beat-synchronised correlate with user

discomfort. To mitigate this, Davies et al. (2013) proposed a mashability parameter that considered

rhythmic and harmonic similarity scores for one or more audio recordings. These scores were based on

beat-synchronous feature representations that aimed at segmenting the input audio at harmonically

consistent locations that coincided with downbeats. The automated multi-song music mashup system

from Davies et al. (2013, 2014a) has been extended to a real-time audio effect in Davies et al. (2014b).

In this system, time-stretching and pitch-shifting algorithms were used to transform songs at different

tempi and musical keys within preset ranges limiting sonic artefacts in the output.

Upon this past research, the contemporary development of audio style transfer (AST) emerged,

leveraging deep generative models (DGM) to transform high-level musical characteristics. Pioneered



28CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

Figure 2.12: Diagram of a transformation system using deep learning model with distinction of three variants
for content manipulation: (1) with input content, (2) with additional content, and (3) with a latent space of a
trained model. Bold lines represent the typical transformation signal flow. Dashed lines represent additional
inputs and dotted-dashed line represents an independent control over the transformation output with parameter
space of the model.

by Foote et al. (2016) and Ulyanov and Lebedev (2016), it adapted image-based algorithms like the

one from Gatys et al. (2015) to the audio domain. In essence, AST blends timbral characteristics of

two recordings—labelled as ”style” and ”content”. A visual representation of a standard AST model is

detailed in Figure 2.12.

More recently, audio style transfer (AST) has emerged as a method to manipulate the high-level

musical attributes of audio signals using deep generative models (DGM). AST was first attempted

by Foote et al. (2016) and Ulyanov and Lebedev (2016), which directly extended an algorithm proposed

for images by Gatys et al. (2015). In AST, timbral characteristics of two recordings—one termed style

and another termed content—are mixed together in a form of a mashup that allows the transfer of

style characteristics from one to the other. Figure 2.12 shows a diagram for a typical AST, where the

control over the output can be achieved with additional audio inputs (e.g., style recording) as well as

parameters of a trained deep learning model. A new audio signal can be generated and transformed

through an inference process applied to a learned feature space of a trained model in form of latent

space exploration.

For percussion instruments, audio style transfer can resemble a drum replacement process referred to

as redrumming, in which musicians desiring a certain sound influenced by the style of artists they admire,

replace their drum sounds with those from an idealised recording. Typically redrumming describes

functionality of hardware or virtual drum machines and relies on substitution of drum hits in a track

with single (i.e., one-shot) drum sounds from a personal collection. Here, the following methods for

AST make use of a Gram matrix feature representation (i.e., inner product between neural feature maps)

for musical style that has been suggested to represent timbre (Grinstein et al., 2017; Verma and Smith,

2018). Additionally, approaches to AST can be divided into two categories: (1) time-frequency domain

(i.e., spectrogram) based, where log-magnitudes of a short-time Fourier transform (STFT) are used as

inputs to a CNN that performs the style transformation followed by a process of phase reconstruction;

and (2) time-domain (i.e., raw audio) based, where the audio samples are directly optimised, removing

the need for additional phase reconstruction. Grinstein et al. (2017) introduced a spectral filtering

method based on a sound texture model to improve the transformation of timbre from style directly onto

a new audio initialised as content sound using multiple pre-trained neural networks. Similarly, Wyse

(2017) explored the effects of pre-trained weights from a network trained on an audio classification



2.3. EXISTING METHODS FOR AUTOMATED RHYTHMIC TRANSFORMATION 29

dataset for AST. The presented system appears to generate a more integrated transformation of content

and style with the included pre-trained network. In Verma and Smith (2018) the authors provide an

additional loss term that constrains the temporal envelope of the newly generated spectrogram to match

that of the style recording. The motivation for the additional loss function was to better portray the

temporal dynamics of the style recording and diminish the impact of the content recording. Audio style

transfer was also used in the attempt to change the style of prosodic speech by Perez et al. (2017).

The authors report success in transferring low-level textural features of the content but difficulty in

transferring the high-level prosody such as emotion or accent of the style voice recording. Mital (2017)

combines information from multiple discrete Fourier transform parts and presents them as different

concatenated batches (i.e., layers) of a convolutional filter. Concatenated real, imaginary, and magnitude

features produced the best results. Barry and Kim (2018) implemented a parallel architecture with deep

specialised networks to improve the key invariance and increase the temporal memory of the network

through the use of constant-Q transform, and dilated convolutions (see Section 3.1.2), respectively. The

above AST methods utilise two specialised content and style loss functions that require a retraining

or a reoptimisation phase to manipulate the output transformation. More recently, other DGMs have

replaced the need to retrain a network after each transformation by utilising a training strategy that

involves conditioning on the target music characteristic (e.g., rhythmic patterns and drum timbres).

DGMs such as variational autoencoders (VAE) (Kingma and Welling, 2013) and generative adversarial

networks (GAN) (Goodfellow et al., 2014) have seen increasing success in various fields through

targeting the task of learning and manipulation of disentangled feature representations. Disentangled

representations denote techniques that break down each input data feature into narrowly defined variables

to be encoded into separate dimensions. Such features can be linked to different examples of musical

content such as timbre, rhythmic patterns and musical style.

Dieleman et al. (2018) adapted the WaveNet architecture by Oord et al. (2016a) for raw audio

generation of piano performances at timescales across tens of seconds. Engel et al. (2017) proposed a

WaveNet autoencoder that learns codes that meaningfully represent the space of musical instruments

with the ability to model long temporal dependencies. This work was later extended by Engel et al.

(2017) to the NSynth system, a neural synthesiser capable of generating new sound embeddings learned

from a large dataset of musical notes. Dieleman et al. (2018) adapted the WaveNet architecture for the

unconditional generation of piano music that exhibits stylistic consistency at longer timescales across

tens of seconds. In Manzelli et al. (2018), the authors combined audio and symbolic models and use a

long short-term memory recurrent neural network (RNN) to learn melodic structures of different styles

of music, which are used as conditioning input to a WaveNet-based instrument melody generator. Other

AR models include RNN-based architectures such as: VRNN (Chung et al., 2015), SampleRNN (Mehri

et al., 2016) and WaveRNN (Kalchbrenner et al., 2018). Alternatively, the WaveNet architecture has

been used in the context of musical timbre transfer. Huang et al. (2018) adapted an image-based

style transfer method by Zhu et al. (2017) for translation of an image from one domain to another

using a conditional WaveNet synthesiser within the TimbreTron model. Kim et al. (2019) proposed a



30CHAPTER 2. REVIEW OF RHYTHMIC DESCRIPTION AND TRANSFORMATION LITERATURE

music synthesis system with timbre control that learns to generate spectrograms from symbolic music

representations and instrument embeddings, and generates raw audio with a WaveNet vocoder.

Additionally, AST has been proposed using generative adversarial networks. Veire et al. (2019)

incorporated the CycleGAN network architecture by the authors in Zhu et al. (2017) to perform the style

transformation between different electronic music genres. The authors presented a method for generation

of a new output that combined phase information of the input recording with the transformation output

to improve quality as well as a method that relied fully on the Griffin-Lim reconstruction algorithm. Mor

et al. (2018, 2019) introduced a system for timbre and style translations that combined the WaveNet

autoencoder with unsupervised adversarial training. Dhariwal et al. (2020) presented a Jukebox model

based on vector-quantised variational autoencoder by Razavi et al. (2019) for generation of musical

performances in the raw audio domain conditioned on styles learned from different artists and genres.

Wu et al. (2022) extended the Jukebox model to synthesise and add a drum part to a drumfree recording.

Standard audio style transfer methods have highlighted certain inherent limitations. For instance, they

often rely on Gram matrix feature representations. Despite their capabilities in transferring low-level

features, these representations might not fully capture the nuances of comprehensive musical styles and

have not been explored for controlled rhythmic transformation. While DGMs have delved into various

feature representations, the exploration of rhythmic transformation has largely been underrepresented in

neural audio synthesis research. Additionally, a prevalent dependency on continual re-optimisation or

re-training to effectuate output changes posed computational and efficiency challenges. Transformation

of rhythmic patterns specialised on percussive instruments remains an unexplored area. This thesis

bridges these gaps by introducing deep generative models for automated rhythmic transformation.

Building on previous work predominantly focused on pitched instruments, this research explores novel

approaches specifically tailored for transformation of rhythmic patterns of percussion recordings.

2.4 Chapter Summary

This chapter delved into the rhythmic styles that characterise playing techniques of the modern Western

drum kit. In doing so, it described the interconnected nature of rhythmic styles and their significance

in percussion-based music. This exploration also highlighted the challenges and nuances inherent in

the rhythmic analysis of drum recordings. Central to this chapter was a detailed review of the methods

for automated rhythmic transformation, contextualised within broader content-based transformation

systems. These transformation methods predominantly fall into two categories: resequencing-based and

hybrid methods. The former harnesses traditional signal processing techniques, with particular emphasis

on segment reordering and time-stretching—both essential in modern music production. Hybrid methods,

on the other hand, signify a progressive shift towards the use of deep generative modelling, positioning

themselves at the forefront of neural audio synthesis. Especially noteworthy is their innovative application

in redrumming, leveraging the audio style transfer approach. Building on the foundation of hybrid

methods, the chapter discussed two defining feature representation domains: time-frequency domain



2.4. CHAPTER SUMMARY 31

and time-domain. Each domain offers unique methodologies and holds specific implications for the

larger context of rhythmic analysis and transformation. Both are explored in this thesis. As this chapter

concluded, it laid the foundation for subsequent chapters, notably indicating the integration of deep

learning techniques which are presented in Chapter 3. Such techniques are fundamental to the advanced

rhythmic transformation approaches proposed in the upcoming Chapters 4–6.



Chapter 3

Deep Learning and Deep Generative

Models for Audio Synthesis

The previous chapter presented an overview of automated techniques for description and transformation

of rhythm in music signals, outlining advantages and disadvantages of previous rhythmic transformation

methods. To provide an understanding of the fundamental concepts and deep generative models (DGM)

referred to throughout the thesis, a compact introduction to deep learning will be provided in this

chapter together with the proposed transformation modes of DGMs. These fundamentals are necessary

not only to understand the performance and capabilities of the implemented systems that are used for

the analysis and processing of the existing data, but also for generation of new audio examples.

The following sections are summarised as follows: Deep learning concepts are given with regard to

convolutional neural networks in Section 3.1, and an overview of techniques and challenges present

during the training process of deep neural networks is discussed in Section 3.1.3. Section 3.2 presents

deep generative models and Section 3.3 introduces their transformation modes utilised in the following

chapters.

32



3.1. DEEP LEARNING 33

Figure 3.1: The left diagram portrays an example of a neuron for inputs x, corresponding weights w, a bias
b, and the activation σ applied to the weighted sum of the inputs. The right diagram portrays a hypothetical
multilayer perceptron network with a fully-connected (i.e., dense) input, hidden and output layers.

3.1 Deep Learning

Deep learning is a term used to refer to a sub-family of machine learning algorithms that enables the

modelling of complex relationships from data through the use of large neural network architectures. Such

algorithms learn without being explicitly programmed and utilise hierarchical architectures structured into

multiple layers. Deep neural networks (DNN) operate using supervised, semi-supervised and unsupervised

data-driven optimisation approaches. In supervised learning, the user provides a system with labelled

data from which to learn. In unsupervised learning the system groups data into classes without user

input. Semi-supervised methods leverage subsets of labelled and unlabelled data, especially where only

a small proportion of labelled examples exist (Kingma et al., 2014). In the recent years, these methods

have become increasingly more popular, as computation capacity and data has become more accessible,

allowing many practical applications in the areas of audio signal processing and music information

retrieval. Additionally, deep learning has also allowed researchers to extend the typical data analysis and

processing tasks to include the generation of new audio data using deep generative networks. Example

transformations made possible through the use of deep generative models include style transfer by Gatys

et al. (2015) and neural translation transformations by Isola et al. (2017).

In a typical deep learning model, the input observation is first converted into a numerical representation

such as amplitude values of a raw audio signal or an audio spectrogram. These input features are then

processed by the model to satisfy a specifically designed objective (see Section 3.1.3 ). Common learning

objectives consider tasks for discrimination of labelled inputs (i.e., classification), or estimation of a

mapping for a continuous output (i.e., regression), whereas generative models learn to replicate the

statistics of individual categories within the observed data (see Section 3.2).

3.1.1 Multilayer Perceptrons

Figure 3.1 shows a multilayer perceptron (MLP) which is a basic module used in deep neural networks.

MLPs are a type of a feed-forward neural network that consists of a sequence of layers with neurons,

known as fully-connected layers or dense layers. Fully-connected layers can be used to map the input to

another space to perform the target task (e.g., classification), where the last layer outputs the result



34 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.2: The diagram shows four activation functions.

computed by subsequent hidden layers. This supervised neural network uses input features x P Rdin to

calculate the target output yl P Rdout , where d represents the number of used features. The output

vector ỹl P Rdout of a single layer, also referred to as a hidden state or neuron activation, is defined by

an affine transformation computed with a non-linearity function σ per each layer l as follows:

ỹ “ σpWJ
l xlq ` bl, (3.1)

where x, ỹ, and bias bl P Rdout are vectors, and Wl P Rdinˆdout is a weights matrix.

The nonlinearity functions σ, also referred to as activations, enable neural networks (NN) to learn

solutions for nontrivial problems. Activation functions influence the modelling capabilities of NNs and

are an important hyperparameter in the architecture design of different networks. Multiple non-linearity

functions have been used for training of NNs based on the target application. A widely used activation

is the hyperbolic tangent function (tanh), where the gradient of the line is greater towards the origin

at 0 within the output ranges of r´1, 1s. The output of tanh activation is calculated as follows:

tanhpvq “
1 ´ e´2v

1 ` e´2v
. (3.2)

The sigmoid function normalises any real value into another value in ranges r0, 1s and can be used to

map predictions to probabilities in binary classification tasks. The sigmoid activation is computed as

follows:

sigmoidpvq “
1

1 ` e´v
. (3.3)

Softmax activation considers the hidden state of the whole layer such that values sum to 1 (
řJ

j“1 ỹj).

The function maps values to the range of r0, 1s and can be used in multi-label (e.g., one-hot) classification

problems, where each neuron represents the probability of an individual class. The softmax activation is

calculated as follows:

softmaxpvq “
ev
ř

ev
. (3.4)



3.1. DEEP LEARNING 35

Nonlinearities such as the rectified-linear unit (ReLU) activation function act as a hard limiter for

negative values setting them to 0 as follows:

relupvq “

$

’

&

’

%

v for v ą 0,

0 for v ď 0.

(3.5)

A popular variation of ReLU is the exponential linear unit (ELU) activation:

elupvq “

$

’

&

’

%

v if ą 0,

αpev ´ 1q if v ď 0,

(3.6)

where, the output of the function smoothly approaches ´α in contrast to output of ReLU which does

not produce negative results. Other variations of ReLU include leaky ReLU (LReLU) (Maas et al., 2013)

shown in Figure 3.2 and scaled ELU (SELU) (Klambauer et al., 2017). The LReLU prevents weights of

a NN from being held at 0 by allowing negative values, while the SELU activation uses an additional

scaling parameter to introduce self-normalising properties of outputs at each layer.

3.1.2 Convolutional Neural Networks

Neural networks described in Section 3.1.1 relied on fully-connected layers, akin to the neural connections

present in the human brain, in which every neuron in one layer shares connections with every other

neuron in the subsequent layer. For deep neural networks this can rapidly increase memory requirements

as well as training time. Convolutional neural networks (CNN) were designed to follow visual mechanisms

of living organisms, thus allowing NNs a capability to utilise local structures of the input during training.

While fully-connected networks discard the ordering of the data, given that it is ordered in a consistent

manner, CNNs emphasise the structure of the input by learning spatial relations present within it. These

relations can be learned from images, where individual pixels often represent only a single object in

the context of adjacent pixels, and from audio spectrograms, where musical instrument sources are

distributed on the horizontal axis (i.e., time) and vertical axis (i.e., frequency).

A convolution operation typically uses same-size window patches around sample points to aggregate

raw information, creating a more abstract representation for the next hidden layer. Let, the input

values of xi be represented as a matrix Xi with weights Wij , where i and j indicate input and output

dimensions (i.e., channels), respectively, for the n-th shared MˆM weight template for a certain

feature. The 2D convolution operation between the shared weights and the input layer results in a full

convolutional unit H, which is calculated as follows:

Hcd “ σp

N
ÿ

n“0

M
ÿ

i“0

M
ÿ

j“0

Wij,nXpc`iqpd`jq,n ` Bq, (3.7)



36 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.3: An example of a convolution operation, where multiple filters shifted over the input map its features
onto feature map representations within the network (left). The convolution operation is shown using a simple
example with only a single input and output channels (right), where an activation σ outputs a value onto a
feature map after summing the product of an element-wise multiplication between the input matrix and the
shared weight matrix.

where N represents the number of original channels or the feature maps of the previous layer, Xcd

and Hcd denote the input and output activation at location (c, d), respectively, and B is a shared bias.

For simplification, the notation for layer l from Equation (3.1) is omitted. The output Hj can also be

referred to as a feature map and shares weight and bias matrices from the map of the subsequent input

layer. The left side of Figure 3.3 shows operation procedure of a convolution layer that takes a full

matrix as an input channel and produces a single output channel by shifting a local receptive field (i.e.,

a small window on the input neurons) across the full input. The right side shows calculation of a feature

map, where the convolution operation can be seen as an element-wise multiplication of a filter—also

referred to as kernel—with its corresponding local window (i.e., receptive field) followed by summing.

The step size of the filter is controlled by a stride parameter that also affects the size of the output

channel. The output size of H in Equation (3.7) becomes smaller than the input after the convolution

operation, which can be a desired outcome but can be offset through the use of padding (e.g., zero

padding). The parameter reduction in the network also contributes to reduced memory requirements

and faster training speeds.

The spatial size of feature maps can be downsampled with pooling layers that have a similar operation

mode as convolutional layers but instead of element-wise multiplication and summation, use operations

such as max and average. For example, max pooling and average pooling layers calculate maximum and

average values of the input matrices, respectively. Pooling operations, similarly to convolutions, reduce

the number of parameters in a CNN and can also control overfitting (see Section 3.1.4) in deep learning

models to some extent.

Figure 3.4 shows a standard CNN architecture created as a combination of convolutional, pooling and

fully-connected layers. Multiple types of CNN layers have been used for various applications and data,

and the details about the most often used types are presented below.

1ˆ1 Convolution

1ˆ1 convolutions are used for channel-wise pooling before more computationally-expensive convolutions

that incorporate larger filters (e.g., 3ˆ3 and 5ˆ5). The 1ˆ1 convolution operation convolves the input

with filters of size 1ˆ1, often using zero padding and stride length of 1. This kind of dimensionality



3.1. DEEP LEARNING 37

Figure 3.4: A convolutional neural network architecture consisting of two convolutional layers and a subsampling
(i.e., pooling) layer with two fully-connected layers. The input consists of a single channel and convolutional
layers that output four feature maps each. The last fully-connected layer consists of two neurons and represents
network output.

reduction can be used to reduce the number of feature maps while preserving the salient features of the

input. Additionally, a one-to-one projection can be created from the input feature maps in order to pool

features across channels or to increase the number of feature maps, similarly to a standard pooling layer

(e.g., max pooling).

Dilated Convolutions

Dilated convolutional layers use an additional dilation parameter, referred to as dilation rate, which

defines the spacing of values in a filter (Yu and Koltun, 2016). It is a special case of a standard

convolutional layer, where filters cover a larger area of the input, without increasing the filter size.

Dilations can be useful for detecting large scale structures that span across larger areas of the input.

The left side of Figure 3.5 demonstrates how a 3ˆ3 filter with dilation rate of 2 can have the same

receptive field as a 5ˆ5 filter, while utilising nine values. Hence, a dilation rate of 1 represents a standard

convolution operation and only when dilation rate ě2, the spacing in the filters is introduced.

Transposed Convolutions

The transposed convolution layer (Zeiler and Fergus, 2014), sometimes referred to as deconvolution, is

an inversion of the standard convolutional layer. Transposed convolutions are often used in symmetrical

deep learning architectures, where the reconstruction of the original input is desired (e.g., autoencoders,

generative adversarial networks). The transposed convolution layer performs an upsampling of the input

through zero padding, controlled by the parameters for filter size and stride, and then application of the

standard convolution operation. The filters in transposed convolutions are learnable and therefore can

be used to approximate examples that resemble the original data. The right side of Figure 3.5 shows a

transposed convolution operation that performs upsampling of a zero-padded input.

3.1.3 Training Methods

Training of a neural network refers to the process of updating tunable parameters Θ with regard to the

target output y when provided with input data x. These parameters are updated through minimisation

of an error that is measured with a loss function L, which calculates the difference between target



38 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.5: In a dilated convolution on the left, the receptive field is larger than in a standard convolution. This
increase is achieved through the insertion of spaces, where the spacing is controlled by the dilation rate. In a
transposed convolution on the right, zeros (i.e., white units) are inserted between input values and a filter moves
over the input (i.e., grey units) to produce output feature map.

values y and the actual output values ỹ. The goal of the network is to minimise the single value output

computed by the loss function. Mean squared error (MSE) and cross entropy (CE) are two common loss

functions used in a variety of regression and classification tasks. MSE is a regression loss that represents

the sum of squared differences between y and ỹ, and is calculated using:

LMSEpΘ, x, yq “
1

Nout

Nout
ÿ

n“1

pyn ´ ỹnq2, (3.8)

where Nout represents the number of output neurons and yn represents the n-th element of the

output vector y. MSE is always positive, where larger differences represent a larger relative error. For

classification tasks that concern multiple classes, a softmax output layer (see Equation (3.4)) can be

used together with a categorical cross-entropy loss:

LCEpΘ, x, yq “ ´

Nout
ÿ

n“1

ynlogpỹnq. (3.9)

While MSE penalises larger errors more than small errors, the CE loss penalises larger errors to a greater

extent through the use of the natural log function. Binary cross entropy (BCE) loss is often used in

combination with the sigmoid output layer (see Equation (3.3)) in binary classification tasks (i.e., logistic

regression), and is calculated as follows:

LBCEpΘ, x, yq “ ´
1

Nout

Nout
ÿ

n“1

rynlogpỹnq ` p1 ´ ynqlogp1 ´ ỹnqs. (3.10)

The neural network parameters Θ (Θ “ rW,Bs) are updated using the gradient descent optimisation

algorithm. A gradient G is calculated given the loss and the network parameters as follows:

G “ ∇ΘLpΘ, x, yq. (3.11)



3.1. DEEP LEARNING 39

The layered structure of neural networks introduced in Section 3.1.2, facilitates the process of parameter

adaptation that computes backward propagation of errors, referred to as backpropagation (Rumelhart

et al., 1986). Backpropagation computes partial derivatives by recursively applying the chain rule

through all layers in the backward direction of the network. It is used to calculate the gradient of an

error measure with an automatic differentiation applied to all derivatives from every activation function.

This gradient is then used for updating each individual parameter of the network in incremental updates

termed iterations. Gradient descent is weighted with the learning rate η that controls the degree of

the update. The updated parameters are calculated by subtracting the gradients from the network

parameters as follows:

Θ ð Θ ´ η ¨ G. (3.12)

There exist several ways for the calculation of the gradients with regard to the training data pairs. A

parameter update can be computed from all training example pairs (i.e., batch gradient descent), a

subset of examples (i.e., mini-batch gradient descent), or a single training example (i.e., stochastic

gradient descent). An iteration over the whole training dataset is referred to as an epoch. For example,

in a batch gradient descent an epoch consists of one update, whereas mini-batch gradient descent often

completes an epoch after many iterations, often hundreds or thousands.

The standard gradient descent algorithm has some limitations when applied to complex problems

where it can get stuck in a local minima, instead of the global minima, of the entire domain of the loss

function. Another issue can be caused by the learning slowing down the training progress due to either

too small or too large updates, thus preventing convergence. There exist several methods that have

been proposed to improve the convergence of gradient descent such as momentum and other methods

with adaptive learning rate adaptation. Stochastic gradient descent with momentum V (Sutton, 1986)

incorporates short-term memory of the past gradients to increase the learning rate and accelerate the

updates as follows:

Vi “ λVi´1 ` η ¨ G, (3.13)

Θ “ Θ ´ Vi, (3.14)

where λ controls the weighting of the previous iteration. Thus, the gradients are increased by adding

momentum at each iteration i to overcome strong local minima. Other methods that accelerate

convergence with learning rate adaptation include: Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012),

RMSprop (Tieleman, Hinton, et al., 2012), and adaptive moment estimation (Adam) (Kingma and Ba,

2014). As an example, the Adam method uses the history of the past gradients with a learning rate

adaptation technique that enables the calculation of increased updates on sparse parameters and smaller

updates on abundant parameters. The first and second moment estimates si´1 and ri´1, respectively,

are calculated as follows:

si “ ρ1si´1 ` p1 ´ ρ1qgi´1, (3.15)



40 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

ri “ ρ2ri´1 ` p1 ´ ρ2qgi´1 d gi´1, (3.16)

where ρ1 and ρ2 denote the exponential decay rates, and d is element-wise product between gradients g.

The first and second moment estimates are initialised as zeros. To prevent the decay rates from becoming

biased to zero their decaying averages are corrected as follows:

ŝi “
s

1 ´ ρ1
, (3.17)

r̂i “
r

1 ´ ρ2
. (3.18)

Then the parameter update is computed as:

Θ ð Θ ´ η
ŝi

?
r̂i ` δ

, (3.19)

where δ is a small constant added for numerical stabilisation (e.g., δ “ 10´8). The decay rates ρ1 and ρ2

are typically set to values 0.9 and 0.999, respectively. Alternative neural network training methods have

been proposed such as limited-memory BFGS algorithm (Liu and Nocedal, 1989), genetic algorithms

(Moriarty and Mikkulainen, 1996), and augmented Lagrangian methods (Taylor et al., 2016). The

systems implemented in this thesis, unless stated otherwise, are trained with the Adam optimiser.

3.1.4 Regularisation

An important challenge in training of deep learning networks is the prevention of overfitting. Methods

that counteract this problem are referred to as regularisers. Overfitting occurs when a trained model fits

too closely or exactly to the training data. An overfitted model accurately represents the training data

but is not effective at generalising to unseen data. On the contrary, if a model does not fit the training

data and does not generalise well to unseen data, then it is underfitted. Overffiting and underfitting can

be monitored by splitting the total data into training, validation and testing sets. The validation set is

used to monitor the performance of the model on isolated data but is not used to upgrade gradients G

during training. When the validation loss begins to increase then the model is overfitting and the

training is stopped. This process is illustrated in Figure 3.6, where the optimal capacity of the model

lies between the underfitting and overfitting zones.

A number of methods can be implemented to prevent complex models from overfitting during training.

A straightforward regularisation approach is to lower the complexity of the network architecture by

reducing the number of trainable parameters. This is time consuming and often not computationally

feasible, hence a common approach is to utilise models with more capacity than necessary, and counteract

overfitting with other regularisation techniques presented below.



3.1. DEEP LEARNING 41

Figure 3.6: Optimal capacity of a network illustrated with training and validation losses. When the validation
loss begins to increase then the model is overfitting and the training is stopped. The underfitting and overfitting
zones are represented with green and red, respectively.

ℓ1 and ℓ2 norm Regularisation

ℓ1 and ℓ2 norms are regularisation techniques that prevent overfitting by modifying the loss function to

penalise large absolute weight values in the network as follows:

ℓ1 “ ℓ1 ` λ ¨
ÿ

|w|, (3.20)

ℓ2 “ ℓ2 ` λ ¨
ÿ

w2, (3.21)

where λ controls the weighting of each term. The ℓ1 norm forces the parameters towards 0, while the ℓ2

norm forces the weights w to be small, but not 0. Both norms limit the modelling capabilities of the

network and thus combat overfitting.

Batch Normalisation

Data normalisation is a common technique that prevents imbalances of different features during training.

Input features and features in the subsequent hidden layers are often normalised; however, normalisation

of all features does not guarantee that data within individual mini-batches preserves the normalisation

criteria. Batch normalisation (Ioffe and Szegedy, 2015), is a technique that normalises activations

between each layer of the network during mini-batch training and results in a mean of 0 and a variance

of 1, while adding two learnable scaling and shifting parameters. Batch normalisation accelerates

training and has some regularisation properties. First, the mean µF and the variance σ2
F of features

F “ tx1...xmu is calculated over the mini-batch of size m as follows:

µF “
1

m

m
ÿ

i“1

xi, (3.22)

σ2
F “

1

m

m
ÿ

i“1

pxi ´ µF q2. (3.23)



42 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.7: A deep generative model g is trained to map samples from a simple distribution z to the more
complex distribution gpzq based on a comparison with the target data distribution y. An objective function
is used during training to quantify the discrepancy between the generated (i.e., synthetic) x and the target
examples y.

The batch normalising transform is implemented by subtracting the mean and then dividing by the

variance of each feature in the current mini-batch before scaling and shifting with the learnable parameters

λF and βF :

x̂i “
xi ´ µF
a

σ2
F ` ϵ

, (3.24)

yi “ λF x̂i ` βF , (3.25)

where ϵ is a small constant to avoid dividing by 0 and yi is the mini-batch normalised output. During

inference, the process of running unseen data through the trained model, the mean and variance

calculated from the full training set is used. This leads to deterministic predictions output from the

model, which is a useful property.

Dropout

For each training iteration, dropout disables the chosen connections between two layers in a network by

setting them to 0. The percentage of the disabled neurons is controlled by an additional user-defined

hyperparameter. Dropout improves the generalisability and prevents overfitting by forcing the system to

identify additional paths and relationships throughout the network (Srivastava et al., 2014).

Data Augmentation

Data augmentation counteracts overfitting and improves the generalisability of a deep network by

increasing the training set with a larger variety of examples. Increasing the size of the training set is

especially helpful for small datasets with under-represented data points. In the field of image recognition,

the augmentation techniques often change properties such as brightness, hue, contrast and rotation

of the images in the training set. Augmentation techniques used for music signals are often inspired

by popular transformations used in music production such as pitch-shifting and time-stretching (see

Section 2.3.2). Other techniques include volume changes, addition of noise and sound overlapping.

3.2 Deep Generative Models

Deep generative models (DGMs) are DNNs trained to approximate complex and high-dimensional

probability distributions. A trained DGM can be used to estimate the likelihood of an observation



3.2. DEEP GENERATIVE MODELS 43

and to generate new examples from the underlying distribution. Many deep generative models are

based on differentiable generator networks. This class of models includes networks such as variational

autoencoders (VAEs), which combine the generator network with an inference network (see Section 3.2.3);

generative adversarial networks (GANs), which combine the generator with a discriminator network (see

Section 3.2.4); and methods that train generators in isolation (see Section 3.2.1).

Generative models approximate a probability distribution of the target data pd, provided with a finite

set of samples from this distribution. During training the most plausible network parameters are found

with regard to a distance between the model distribution and the true data distribution. A generative

model pθpXq is trained to closely match an empirical data distribution pdpXq using training examples X.

This optimisation task can be computed as follows:

min
θPM

Dppd, pθq, (3.26)

where θ are parameters of the network, M denotes the chosen generative model type (e.g., VAE), and D

denotes a divergence function that measures the difference between the two distributions. Measuring

differences between probability distributions is challenging and differs from the approach used in typical

loss functions such as MSE from Equation (3.8), used in supervised learning. In the supervised learning

setting, the input values and the output values of the network are typically defined on real-valued vectors

with paired targets. In the case of MSE loss, the elements of the network output are assumed to follow

independent normal distributions. In generative networks, there may be no pairing between the inputs

and outputs, since the training objective is to follow a specific distribution, where either one or both, X

and θ can be random. These two types of modelling can be referred to as discriminative and generative;

the former learns the distribution of y conditioned on individual samples of x in the form of ppy|xq; the

latter maps the distribution of x to the distribution of y in the form of ppx, yq. Generative models can

also be referred to as latent variable models, where an assumption is made that a set of latent (i.e.,

hidden) variables z from a simple distribution can be used to generate samples x from a complex data

distribution. Multiple divergence functions have been used for various applications and additional details

about the most often used functions are presented below.

Many popular divergences are special cases of f -divergence for a particular function f . One popular

instance of f -divergences is the Kullback-Leibler (KL) divergence used in variational inference. Given

two continuous probability distributions px and py that possess, respectively, absolutely continuous

density functions pxpzq and pypzq, the f -divergence is defined as:

Df ppx||pyq “ Ez„py

„

f

ˆ

pxpzq

pypzq

˙ȷ

, (3.27)



44 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

where f is the generator function satisfying fp1q “ 0. Intuitively, f -divergence computes the average of

the odds ratio given by px/py weighted by the chosen function f . Nowozin et al. (2016) present several

choices for f . For example, when fptq = t log t, the Equation (3.27) represents the KL-divergence.

The integral probability metrics (IPMs) are another class of difference measures on probabilities that

include: total variation distance, Wasserstein distance, and maximum mean discrepancy. Given two

real-valued bounded distributions px and py, the IPM is defined using the supremum (least upper bound

abbr. sup) over a function class F as follows:

IPMpF, px, pyq “ sup
fPF

|Ex„px
rfpxqs ´ Ey„py

rfpyqs|. (3.28)

Intuitively, the statistics extracted by f can be used to differentiate the two distributions. Various

distance metrics can be obtained through the appropriate choice of F given that it is also computationally

tractable (Sriperumbudur et al., 2009). Three popular function classes of F are Ftv, FW and FK :

Ftv “ tf : ||f ||8 ď Iu, (3.29)

FW “ tf : ||f ||L ď Iu, (3.30)

FK “ tf : ||f ||H ď Iu, (3.31)

where the constant I (by default I “ 1) can be any number used to scale each metric by a preset

amount. Ftv results in computation of the total variation distance with bounds between r´1, 1s. FW

is a K-Lipschitz continuous function used in computation of the Wasserstein distance. FK results in

computation of maximum mean discrepancy functions that reside within the unit sphere of a reproducing

kernel Hilbert space (RKHS) defined by a well-behaved kernel function where calculations can be carried

out. Many statistical distances are not proper metrics (e.g., f -divergences); however, IPMs do not

require the computation of px or py, but only an expectation, which can be approximated only through

the use of samples. Although the often intractable detection of supremum over a class of functions results

in IPMs being more computationally expensive, one computationally tractable example is maximum

mean discrepancy.

Maximum mean discrepancy (MMD) is defined when the function class F in Equation (3.28) is

the unit sphere in RKHS H with kernel kpX ,X q Ñ R, where X represents a nonempty compact set.

Since H is an RKHS, there exists a feature mapping, ϕpxq : X Ñ H for each positive definite kernel

function such that kpx, yq :“ xϕpxq, ϕpyqyH without the need to compute ϕ explicitly. The kernel

function can be tractably computed and applied to any learning algorithm using a kernel trick if it can

be entirely expressed in terms of a dot product xx, yy (Muandet et al., 2016). The positive definiteness

property of the kernel function ensures that the dot product will exist within a high-dimensional feature

space H. The standard form of this mapping is represented as ϕpxq “ kpx, ¨q (Steinwart and Christmann,

2008). The notation kpx, ¨q indicates the kernel has one argument fixed at x and the second is free.



3.2. DEEP GENERATIVE MODELS 45

The idea of feature maps is extended to the space of probability distributions through the definition of

each distribution p as a mean function such that the expectation of the feature map ϕppq is defined by

a kernel mean embedding µp :“ Ex„pkpx, ¨q.

An important property of MMD is attaining the supremum through the calculation of the witness

function f˚ that maximises the mean discrepancy in distributions, defined by Gretton et al. (2012) as:

f˚p¨q 9 Ex„px
kpx, ¨q ´ Ey„py

kpy, ¨q. (3.32)

Intuitively, the function f˚ witnesses the MMD by assigning high values on samples from px and low

values on samples from py. f˚ is near zero for samples from regions where px and py have similar

densities. The squared MMD can be calculated in a closed form by inserting Equation (3.32) into

Equation (3.28) as follows:

MMD2pk, px, pyq “ Ex,x1„px,px
kpx, x1q ` Ey,y„py,py

kpy, y1q ´ 2Ex,y„px,py
kpx, yq. (3.33)

A commonly used kernel function is the Gaussian radial basis kernel with a tunable parameter Σ:

kpx, x1q “ exp

ˆ

´
||x ´ x1||2

2Σ2

˙

. (3.34)

Computation of MMD is tractable for a class of kernels, referred to as characteristic kernels, where the

MMD is zero if and only if px “ py. In reality, this will often not be possible as only a finite number of

samples is observed. The choice of an appropriate kernel function varies for different data distributions

and may cause issues for MMD when the sample size is small (Muandet et al., 2016). Additionally, the

kernel function can be parameterised and then learned for a target task with a deep generative network.

In the deep learning setting, the network acts as a feature extractor that maps the input space to a lower

dimensional space, for which a simple kernel function can be used (Chen, 2017). For example, the Σ

parameter in the Gaussian radial basis kernel (3.34) can be learned by the weights of a deep network

without the need to be specified manually.

3.2.1 Generative Moment Matching Networks

Generative moment matching networks (GMMN) (Dziugaite et al., 2015; Li et al., 2015) are an example

of differentiable generator networks that are not required to be paired with any other network. For

example, GMMNs do not require an inference network that is used in variational autoencoders and a

discriminator network used in generative adversarial networks, which are described in the subsequent

sections. The concept of moment matching refers to the way the generator is trained to match the

statistics of the generated data samples, as closely as possible, with the statistics of the examples in the



46 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.8: Autoregressive model prediction of an output based on the past inputs.

training set. GMMNs can be trained by minimising the MMD objective as follows:

min
G

Ex,x1„px,px
rkpx, x1qs ` Ez,z1„pz,pz

rkpGpzq, Gpzqqs ´ 2Ex,z„px,pz
rkpx,Gpzqqs, (3.35)

where G denotes the generator network. The data distribution and the prior distribution imposed on the

latent variables z are denoted by px and pz, respectively.

3.2.2 Autoregressive Networks

Autoregressive (AR) networks have been designed with a focus on modelling sequential data (Bengio

et al., 2000; Uria et al., 2014). AR networks define an explicit and computationally tractable model

based on the chain rule of probability, where the probability of an n-dimensional variable x “ x1, ..., xn

is factorised as follows:

ppxq “ ppx1, ..., xnq “

n
ź

i“1

ppxi|x1, ..., xi´1q. (3.36)

The model predicts the next data sample by multiplying all the probabilities of the samples that came

before it. AR networks can be trained to maximise the log-likelihood of the data with regard to the

parameters of the network to model ppxi|x1:i´1q by minimising the negative log-likelihood as follows:

´ ln ppxq “ ´

n
ÿ

i

ln ppxi|x1, ..., x1:i´1q. (3.37)

Autoregressive models operate on sequential data that is often high-dimensional. A 1-second audio

signal, for example, which is sampled at 16 kHz with 8 bits representing each audio sample contains

25616000 possible sequences. For these reasons, the parameter space can become large and thus slow

down the network during training and inference time. Several techniques have been proposed to improve

speed, as well as the receptive field, and memory capacity of AR models through the use of architectures

such as RNNs with long short-term memory (Hochreiter and Schmidhuber, 1997), and CNNs with dilated

causal convolutions (Oord et al., 2016b). Additionally, the performance of an AR network depends on

the modality of the data as it must be decomposable into a fixed order. While the ordering is clear in

modelling of raw audio, the performance can suffer when modelling other data such as images.



3.2. DEEP GENERATIVE MODELS 47

Figure 3.9: Variational autoencoder model with input examples X “ px1, x2, ...q processed by an encoder
network and mapped into a Gaussian distributed latent space qpz|Xq parameterised by µ and σ. The decoder
network samples the latent space z with ppX|zq to output the synthetic reconstructions X̂.

3.2.3 Variational Autoencoders

Variational autoencoder (VAE) networks (Kingma and Welling, 2013) belong to a family of directed

models referred to as latent variable models that can be trained using gradient-based methods. A

standard autoencoder model learns a compressed representation of the input examples, whereas a

variational autoencoder (see Figure 3.9) learns parameters of a probability distribution in the latent

space z that can be later used for sampling and mixing of data. Let pθpx|zq be a latent based model

parameterised by θ with pθpzq prior and pθpz|xq posterior. An inference model can be derived from an

application of Bayes’ rule:

pθpxq “
pθpx|zqpθpzq

pθpz|xq
. (3.38)

Unfortunately, optimisation of pθpxq directly is not computationally tractable since pθpz|xq is not

known and thus, maximum likelihood can not be used to optimise the model pθpx|zq due to the

integral in pθpxq “
ş

z
pθpx|zqpθpzqdz. Instead, Kingma and Welling (2013) propose to use KL-

divergence to approximate the posterior pθpz|xq through the definition of a new distribution qϕpz|xq

that transforms it as close as possible to pθpz|xq by minimising the KL-divergence such that qϕpz|xq “

argminq DKLpqϕpz|xq||pθpz|xqq. Equation (3.38) can be combined with KL-divergence and rearranged

to estimate an upper-bound of the negative log-likelihood log pθpxq as follows:

´ log pθpxq ď Ez„qϕpz|xqr´ log pθpx|zqs ` DKLpqϕpz|xq||pθpzqq (3.39)

” ´ Lpθ, ϕ, xq. (3.40)

This bound is referred to as the negative evidence lower-bound (ELBO) (Jordan et al., 1999) and can

be denoted by ´Lpθ, ϕ, xq.12 To optimise the negative ELBO objective during training with respect to

θ and ϕ, gradients are backpropagated through the stochastic process that generates new samples from

z̃ „ qϕpz|xq. To that end a differentiable function gϕpϵ, xq of a random variable ϵ „ ppϵq is used in a

12Full derivation of (3.39) is presented in tutorials by Doersch (2016) and Yu (2020).



48 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.10: Generative adversarial network.

reparametrisation of z̃, referred to as a reparametrisation trick (Kingma and Welling, 2013). Figure 3.9

illustrates a VAE model with a normally distributed prior, where ϵ is sampled from N p0, Iq. In practice

pθpx|zq and qϕpz|xq are parameterised with decoder (i.e., generator) and encoder networks, respectively.

The first term on the right side of Equation (3.39) represents the reconstruction loss that affects the

decoder network trained to best reconstruct x based on z. The encoder network is stimulated through

the reconstruction loss to increase the signal-to-noise ratio in z by decreasing ||σ2
ϕpxq|| and increasing

||µϕpxq||. The second term in (3.39) encourages this behaviour through regularisation provided by the

KL-divergence, where pθpzq is typically an isotropic Gaussian distribution.

3.2.4 Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al., 2014) consist of two competing neu-

ral networks termed generator and discriminator as illustrated in Figure 3.10. The discriminator

D : Rn Ñ r0, 1s estimates the probability that a sample comes from a data distribution x „ pdpxq.

The generator G : Rm Ñ Rn uses a latent variable z „ pzpzq to capture pd with an aim of tricking the

discriminator network into classifying its samples as real examples from a training set. New samples are

generated such that x̂ “ Gpz; θgq, where θg denotes parameters of the generator. The discriminator is

trained to classify input samples as either training examples (real) or generated examples (fake) such

that o “ Dpx; θdq, where θd denotes parameters of the discriminator and o is the classification output.

This training process is referred to as adversarial training and can be interpreted as a minimax game

between both networks that optimise the value function V pG,Dq as follows:

min
G

max
D

V pG,Dq “ Ex„pdpxqrlogDpxqs ` Ez„pzpzqrlogp1 ´ DpGpzqqqs. (3.41)

Figure 3.11 illustrates the distributions of the generator pgpxq compared to the data distribution

pdpxq for a one-dimension example of X during adversarial training. Figure 3.11 (d) shows an optimally

trained discriminator D˚ with regard to the generator in a scenario when it can only guess such that

D˚
G “ pdpxq{ppdpxq ` pgpxqq. Additionally, if D distinguishes between the generated and real samples



3.2. DEEP GENERATIVE MODELS 49

Figure 3.11: Probability distributions for generator pgpxq, target data pdpxq and discriminator Dpxq distributions.
Plot (a) shows an untrained discriminator; in (b) the optimal Dpxq is found; in (c) pgpxq becomes more similar
to pdpxq; and in (d) pgpxq produces data samples that are indistinguishable from the real target data.

perfectly, then no information is passed to the generator network. The training can stagnate due to the

vanishing gradient problem if the outputs of D are too close to either 0 or 1. This creates instability

during training and can be counteracted with a careful tuning of both network architectures. Several

stabilisation techniques for GAN training have been proposed by the authors in Arjovsky and Bottou

(2017) as equilibrium between D and G, referred to as Nash equilibrium, is difficult to achieve (Salimans

et al., 2016). One major improvement proposed by Arjovsky et al. (2017) was the use of the Wasserstein

distance instead of KL-divergence. Any f -divergence can be used for GAN training (Nowozin et al.,

2016); however, Wasserstein distance was shown to offer an improved stability over other metrics. Using

the Wasserstein distance during training is analogous to minimising an IPM with a set of F all 1-Lipschitz

functions. The discriminator is then used to approximate the supremum over F . If @f P F ñ ´f P F ,

then the absolute sign in Equation (3.28) can be removed resulting in the following objective function:

min
G

max
D:||D||Lď1

“ Ex„pd
rDpxqs ´ Ez„pz rDpGpzqqs. (3.42)

Intuitively, a Wasserstein GAN (WGAN) does not require classification of examples into real and

generated, but rather learns a function fK (see Equation (3.31)) that helps to differentiate between the

two distributions pd and pg. In practice the 1-Lipschitz continuity of the function fK is enforced through

weight clipping of D to a small interval (e.g., ˘0.01). This technique however can also contribute to

the problem of vanishing gradients when the chosen clipping window is too large. Gulrajani et al. (2017)

propose an improvement to circumvent this problem in form of a gradient penalty (GP) loss that results

in a deep generative model termed WGAN-GP.

3.2.5 Adversarial Autoencoders

While similar in design to VAEs (Kingma and Welling, 2013), adversarial autoencoders (AAE) appropriate

the additional discriminator network from GANs, which aims to distinguish between real and fake (i.e.,

synthesised) samples. Figure 3.12 illustrates an AAE model. Makhzani et al. (2015) observed that

VAEs are largely limited by the Gaussian prior, and relaxed this constraint by allowing ppzq to be any

distribution by replacing the KL-divergence with an adversarial loss imposed on the output of the encoder.



50 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.12: Adversarial autoencoder. Input data X is mapped onto a latent variable z „ qpzq. Encoder E
tries to trick discriminator D with artificially generated latent samples and generator G outputs x̃. A Gaussian
prior distribution z˚

„ ppzq allows the model to juxtapose similar inputs in the latent space.

Thus, the AAE framework makes it possible to leverage any prior knowledge that may be specific to the

studied application. The encoder qϕpz|xq in AAEs defines an aggregated posterior distribution qϕpzq on

the latent variables z as follows:

qϕpzq “

ż

x

qϕpz|xqpdpxqdx. (3.43)

In practice, the decoder pθpx|zq (i.e., generator G) and the encoder E are parameterised with neural

networks. The uniform distribution is imposed on z through Dz (i.e., the discriminator on z). The

distribution of the training data is denoted by pdpxq, and qϕpz|xq is the distribution of the latent

variable z. The random sampling process from ppzq is represented by z˚ „ ppzq and the adversarial

component of an AAE can be interpreted as a minimax game between the encoder E and discriminator

Dz that optimise the value function V pE,Dzq as follows:

min
E

max
Dz

V pE,Dzq “ Ez˚„ppzqrlogDzpz˚qs ` Ex„pdpxqrlogp1 ´ DzpEpxqqqs. (3.44)

The parameters of the autoencoder are optimised by the reconstruction error, while the adversarial

network guides the encoder to match the imposed prior. Thus, the encoder plays the role of the generator

during the adversarial part of training, while the discriminator represents the adversarial network defined

in Equation (3.41). After training, decoder G acts as a generative model that maps the imposed prior

to the data distribution. Training of an AAE is performed in two phases: (1) the reconstruction phase

and (2) the regularisation phase. In the reconstruction phase the reconstruction error of E and G is

minimised together (e.g., using BCE loss (3.10)) and in the regularisation phase, the parameters of

the discriminator Dz are updated by minimising LDz
“ ´V pE,Dzq (i.e., to distinguish true samples

generated by the prior from the generated codes processed by the autoencoder). The adversarial network

then updates the parameters of the encoder to confuse the discriminator.



3.3. TRANSFORMATION MODES OF DEEP GENERATIVE MODELS 51

3.3 Transformation Modes of Deep Generative Models

DGMs generate new examples based on learned parameters of deep neural networks and thus extend

techniques used in rhythmic transformation systems based solely on signal processing techniques, such

as time-stretching and resequencing (i.e., reordering) discussed in Chapter 2. In the process of controlled

manipulation, the latent space is analysed to understand how it correlates with audio characteristics.

Certain directions or dimensions within this space correspond to specific attributes, such as rhythmic

patterns or timbre. Modifying a latent vector—a compact representation in a reduced-dimensional latent

space—in a specific direction and then decoding it results in the generated audio reflecting anticipated

changes. For example, if a particular direction in the latent space is tied to a change in a rhythmic

pattern, adjusting a latent vector in that direction produces audio with drums rearranged to create a

new pattern. Similarly, adjustments corresponding to drum timbre can change the sound from one type

of drum to another. The effectiveness of these associations often depends on factors like the model’s

architecture, the quality of training data, and the complexity of the audio data.

Figure 3.13 presents an analogous transformation to that illustrated in Figure 2.11. Deep generative

model in Figure 3.13 outputs different combinations of rhythmic and timbral transformations of source

and target recordings, as well as transformations generated from the learned latent space of the model.

For example, transformation with time-stretching and with drum segment reordering shown in Figure 2.11

can be represented by a transformation with a DGM shown in Figure 3.13 (d), where the output contains

timbre characteristics of the source and the rhythmic pattern of the target. In both transformations, the

rhythmic pattern and the drum characteristics have been affected either by a digital signal processing

algorithm for time-stretching (e.g., phase vocoder) or by an internal representation of a deep generative

model (e.g., GAN). This internal representation—also referred to as the latent space—of a DGM can also

be used for other transformations such as generation of new drum characteristics (e.g., Figure 3.13 (e))

with new rhythmic patterns (e.g., Figure 3.13 (g)) or generation of a new pattern with the chosen

drum characteristics of audio inputs (e.g., Figure 3.13 (h)). A controlled generation of other drum

characteristics and other rhythmic patterns can be performed through manipulation of the latent space

parameters of a trained model. Additionally, a DGM can be used for mixing of different drum sounds

together in a form of a neural mashup transformation illustrated in Figure 3.13 (f) and introduced in

Section 2.3.3.

The degree of control over different transformations depends on several factors such as model

architecture (see Section 3.2), training strategy (see Section 3.1.3) and model conditioning. The internal

architecture of a DGM cannot be used for manipulation of the output during the generation phase

without an additional retraining or reoptimisation of the model. This can be computationally expensive

and time-consuming but can be counteracted by introducing control of the output through the training

phase of the model. Examples of this include specialised content and style loss functions used in neural

style transfer methods for images (Gatys et al., 2015) and audio (Ulyanov and Lebedev, 2016). An



52 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

Figure 3.13: Rhythmic transformation with a deep generative model: (a) Source rhythmic pattern, (b) target
rhythmic pattern, (c) source pattern with target ‚ drum timbres, (d) target pattern with source ˝ drum timbres,
(e) source pattern with other ‹ drum timbres, (f) target pattern with mixed ˝‚ timbres, (g) other rhythmic
pattern with other ‹ drum timbres from latent space z, and (h) other rhythmic pattern with source ˝ or target ‚

drum timbres.

alternative strategy involves conditioning of a DGM with an auxiliary input (e.g., drum type or rhythmic

pattern style) input into the model during training. This information can provide a more intuitive control

over the output generation that affects only a selected portion of the learned data space represented as z

in Figures 3.13 and 3.14. This strategy has been implemented in a variety of conditional DGMs (Bitton

et al., 2019; Mehri et al., 2016; Oord et al., 2016a).

The abilities of deep generative models for transformation of rhythmic and timbral characteristics of

drum recordings can be explored using the following three transformation modes: drum translation, audio

style transfer and latent space manipulation. These modes utilise DGMs and affect rhythmic and timbral

characteristics in different ways but use the same concepts introduced in Figures 2.11 and 3.13. Rhythmic

patterns can be primarily modified in two ways: (1) through the modification of their temporal positions

(e.g., time-stretching), and (2) through the transformation of different drums to other drum types

within a whole recording (e.g., segment reordering). The timbral characteristics can be modified through

transfer of timbre from one recording to another or generation of new timbre from the representation of

a trained model. Modes of transformation used in systems proposed in this thesis are illustrated using a

simplified example with single drum inputs in Figure 3.14 and a more detailed description of each mode

is provided in the following sections.

3.3.1 Drum Translation

Deep generative models that transform (i.e., translate) a drum recording of some type (also referred

to as domain) to another target type can be referred to as drum translation systems. More broadly,

neural translation methods were first introduced using deep learning in the field of image processing

(Isola et al., 2017; Zhu et al., 2017) and are often based on deep autoencoder architectures (see Section

3.2). Figure 3.14 shows a drum translation example, where an input kick recording is translated to the



3.3. TRANSFORMATION MODES OF DEEP GENERATIVE MODELS 53

Figure 3.14: Modes of transformation. In drum translation an input drum sound is transformed (i.e., translated)
to another target drum (black dashed pathway). In audio style transfer two or more inputs are mixed together
in a form of a neural mashup with user defined parameters (orange dotted and dashed pathway). In latent
space manipulation a new arbitrary drum is generated from the learned representation of a model (blue solid line
pathway).

target snare drum type. A drum translation method applied to a full drum performance can modify

the rhythmic pattern of the input analogously to the rhythmic transformation with segment reordering

shown in Figure 2.11 and resembles the process of redrumming (see Section 2.3.3) in music production.

3.3.2 Audio Style Transfer

Deep generative models that mix and mash rhythmic and timbral characteristics of two or more audio

inputs can be categorised as approaches for audio style transfer that resemble functionalities of automatic

mashup systems described in Section 2.3.3. Audio style transfer (AST) was first attempted in Foote

et al. (2016) and Ulyanov and Lebedev (2016), which directly extended an algorithm proposed for

images in Gatys et al. (2015). In AST, a new output is synthesised by minimising the content loss with

respect to the content-contributing audio input and the style loss with respect to one or more audio

examples of a given style. The content loss is based on comparing the network activations of features

derived from an audio spectrogram. The style loss matches the statistics of the Gram matrix (i.e.,

inner product between neural feature maps) activations in the higher levels of the network. While the

original formulation of image style transfer preserves the composition of the input image by affecting its

texture, AST approaches can modify both the timbral characteristics of the input audio as well as longer

temporal scales of rhythmic patterns (Barry and Kim, 2018; Tomczak et al., 2018). A type of neural

mashup transformation that uses AST approach to mix two drum inputs with user-defined parameters is

illustrated in Figure 3.14.



54 CHAPTER 3. DEEP LEARNING AND DEEP GENERATIVE MODELS FOR AUDIO SYNTHESIS

3.3.3 Latent Space Manipulation

Manipulation of characteristics such as pitch, timbre and rhythmic patterns with deep generative models

can be performed through the exploration of the latent space—also referred to as latent codes or vectors.

Blue pathways in Figure 3.14 illustrate that this type of transformation does not require audio inputs

but it can utilise them for the purposes of interpolation transformations. Interpolation between two

points in the latent space is a typical manipulation technique that can be applied to transform between

drum types and rhythmic patterns. Interpolation can be performed without audio inputs using two

random points in the latent space or can resemble any transformation shown in Figure 3.13 (e.g., where

source rhythmic pattern is transformed to the target in 3.13 (d)). Latent space manipulation is also the

primary mode for rhythmic transformation of drum recordings presented in Chapter 5 and 6 (Tomczak

et al., 2019, 2020).

3.4 Chapter Summary

One of the main contributions of this dissertation is the development of automated techniques for

transformation of rhythmic patterns of percussion instruments using deep generative models, and an

evaluation of the extent of how the patterns have been modified. This chapter has presented the deep

learning fundamentals together with deep generative models for neural drum synthesis implemented in

the next chapters. These core principles are essential to understand how different DGMs can be utilised

for the task of neural drum synthesis and rhythmic transformation. Three modes of rhythmic and timbral

transformation of drum recordings proposed in this chapter are drum translation, audio style transfer

and latent space manipulation. In addition to employing deep learning fundamentals, Chapters 4–6

incorporate these modes of transformation to develop new contributions which can also be beneficial

for a broader range of neural drum synthesis tasks. The following chapter utilises audio style transfer

in a rhythmically constrained transformation which overcomes some of the limitations of the original

style transfer algorithm making the transformation computationally feasible on drum recordings, while

generating rhythmically coherent drum patterns at longer timescales.



Chapter 4

Audio Style Transfer with Rhythmic

Constraints

Chapter 2 presented challenges and tasks related to rhythmic description and transformation of drum

recordings. Chapter 3 provided an overview of deep learning and deep generative models (DGM) for

neural audio synthesis and rhythmic-timbral transformation. In this chapter, a rhythmically constrained

audio style transfer (AST) is proposed for the modification of rhythmic and timbral characteristics of

two or more audio signals.

Audio synthesis is the task of guided generation of sound given user-defined parameters. In this thesis,

two audio synthesis tasks are considered in the context of rhythmic transformation of drum recordings

with DGMs. The first task regards learning of an approximate model for the generation of drums and

rhythmic patterns, given a large dataset of examples (e.g., individual drum samples and recordings with

full drum patterns). The second task regards learning a generative model for the transfer of different

music characteristics provided with only a single audio input. The former task can be performed on

different types of audio inputs with a trained DGM. The latter requires more assumptions about the

input, such that the output transformation has consistent style characteristics of one or more audio

examples. This chapter presents an extension of the second task through a rhythmically constrained

audio style transfer technique for automatic mixing and mashing of two audio inputs.

In this transformation the rhythmic and timbral features of two input signals are combined together

through the use of an audio style transfer process that transforms the musical inputs so that they adhere

to a larger metrical structure of the chosen input. This is accomplished by finding beat boundaries of

both inputs and performing the transformation on beat-length audio segments.

The main contents of this chapter can be summarised as follows. In Section 4.1, the rhythmic

segmentation necessary for preservation of the larger metrical structures during the transformation is

introduced along with the architecture of the used deep learning network. In order for the system to

perform a mashup between two signals, the audio style transfer formulation introduced in Section 2.3.3

55



56 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Figure 4.1: Audio style transfer with rhythmic constraints.

is reformulated into five rhythmically constrained transformation objectives to enable them to be

independent of the input. These objectives are introduced in Section 4.2 along with the evaluation

methodology. Section 4.3 presents evaluation results, where different reconstruction metrics of the

transformed input audio signals are measured and compared to investigate the influence of the standard

and proposed AST transformation objectives.

4.1 Method

The presented AST method seeks to take advantage of rhythmic structure and timbral characteristics of

drum recordings. To that end a computational approach was developed which preserves the metre and

the rhythmic structure of the chosen musical signal, while maintaining stylistic elements of both inputs.

The method operates on beat-length audio segments and provides user-defined parameters for fine-tuning

of interchangeable loss terms with regards to both inputs extending the conventional approaches to AST

(Barry and Kim, 2018; Ulyanov and Lebedev, 2016). Figure 4.1 presents an overview of audio style

transfer with rhythmic constraints. The method consists of three stages: (1) segmentation, in which the

two audio files (α and β) are divided into beat-length segments (A and B respectively); (2) feature

representation, in which feature representations (Z, M and X) of A, B and Y are created using a

CNN; and (3) optimisation in which Y —a beat-length audio segment initialised with random noise—is

iteratively transformed to simultaneously match loss functions related to the feature representations of A

and B. The iterative transformation of the noise signal Y dheres to the standard approach documented

in the literature (see Section 3.3.2). In this process, the input can be transformed to encapsulate the

timbral and rhythmic characteristics of a target, which is associated with two audio recordings (α and



4.1. METHOD 57

β). The resultant transformation Υ is a concatenation of the transformed beat-length segments Y . A

solid-line box in the optimisation stage of Figure 4.1 highlights the first transformed segment Y .

4.1.1 Segmentation

Segmentation process in AST ensures that the audio inputs adhere to a larger metrical structure during

the transformation. The segmentation also reduces the memory requirements outlined in previous AST

systems (Barry and Kim, 2018; Grinstein et al., 2017; Mital, 2017). Using the segmentation process the

transformation benefits from being constrained within rhythmic boundaries and reducing the computation

cost of feature creation for the entirety of both inputs, which in turn frees the system to use arbitrarily

long audio inputs.

In order for input audio files to be processed by the system, beat and downbeat positions are first

extracted. The segment boundaries are computed using a downbeat tracking algorithm (Böck et al.,

2016b) included in the madmom Python library (Böck et al., 2016a).13 The detected beat positions,

starting from the first downbeat, are used as segment boundaries denoted as A and B in Figure 4.1.

The new noise segment Y uses the same length as segments A and B.

4.1.2 Feature Representation

The goal of the feature representation stage is to project input audio segments onto neural feature maps,

leading to the creation of content and style matrices. While deep generative models employ various

audio data representations—depending on tasks like rhythmic analysis, model training, transformation,

and audio generation—this stage specifically introduces audio representations tailored to meet the

transformation objectives elaborated on in the following sections. The lowest level audio representation

used in deep generative models for audio synthesis is the sampled raw audio signal a (i.e., mono WAV

file sampled at 22.05 kHz with 16-bit resolution). This uncompressed audio representation is lossless

and can be converted to analogue sound using analogue-to-digital conversion systems. An audio input

of N samples is converted into T frames of ρ samples. To extract framewise features a Hann window

ω of length ρ is applied to each frame, with a hop size δ of ρ
4 samples. The resulting framed audio

features Λ have dimensions ρ ˆ T . All input features are utilised in a fremewise manner. Before the

framed audio can be processed by CNN Block 1 (see Figure 4.1), these raw audio samples must undergo

transformation into a time-frequency representation.

Linear Spectrogram: A linear spectrogram is a time-frequency audio representation that facilitates

access for DGMs to music characteristics such as pitch and timbre. Discrete Fourier transform is used

for conversion of Λ into a frequency representation χ with dimensions ρ
2 ˆ T , where ρ

2 is the number of

13https://github.com/CPJKU/madmom

https://github.com/CPJKU/madmom


58 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

frequency bins. The kth frequency bin in the tth frame is calculated as follows:

χtpkq “

N´1
ÿ

n“0

apnqωpn ´ tδqe
´2πikn

N , (4.1)

where k P r0, N ´ 1s and i is the imaginary number unit. The linear spectrogram S represents the square

of frequency magnitudes in χ and is calculated as follows:

S “ |χ|2. (4.2)

Linear Spectrogram with Learnable Parameters: A linear spectrogram can also be computed

using a convolutional neural network layer, where the Fourier transform kernels can be trained via

backpropagation, benefiting from a storage-efficient input preprocessing optimization (Choi et al., 2017).

Within a convolutional neural network the kth frequency bin is computed with two 1-dimensional

convolutions, each of which is initialised with real and imaginary part of the discrete Fourier transform

kernels, respectively. The convolutions describe the transform from Equation (4.1) as follows:

χpkq “

N´1
ÿ

n“0

apnq ¨

„

cos

ˆ

2πkn

N

˙

´ i ¨ sin

ˆ

2πkn

N

˙ȷ

. (4.3)

Following the representation of linear spectrograms for the three inputs A, B and Y , the neural style

transfer aligns the distribution of activations in the feature maps of a network between a content input

and a style input, resulting in a new output that combines the content of the first with the style of the

second. This process is typically performed by minimising a loss function that compares the activations

of the two inputs in the feature maps of the network.

4.1.2.1 Content

To create the content matrices (i.e., projections of the input rhythmic and timbral characteristics), the

same two-stage process is performed in separate network branches for A, B and Y , where the weights of

signal Y are initialised with random noise and matrices A and B contain input audio data. First, feature

maps are created by projecting the audio onto STFT bases following the formulation in Equation (4.3).

Then, the feature maps are projected further onto a larger number of channels to create the content

representation (Barry and Kim, 2018; Grinstein et al., 2017; Mital, 2017; Ulyanov and Lebedev, 2016).

The input audio (A, B and Y ) is segmented into T frames using a Hann window of n sam-

ples (n = 2048) and n
4 hopsize. A frequency projection of each of the frames is then created with a

single CNN layer that uses filters initialised with real and imaginary parts (see Equation (4.3)) of the

discrete Fourier transform resulting in a n
2 xT spectrogram. The created spectrogram is converted into a



4.1. METHOD 59

Figure 4.2: Example of image style transfer. A content image of a dog is transformed to contain style
characteristics from a drawing by Henri Matisse.

log-magnitude representation. This transformation is represented in CNN Block 1 in Figure 4.1, where

the filter size is nx1x1xn
2 with strides of 1xn

4 x1x1.

CNN Block 2 in Figure 4.1 depicts neural feature computation from the STFT projections that becomes

the content and can be understood as the low-level features of the input. The CNN architecture consists

of a single convolutional layer with a filter size of 1xHxFxQ, where H is the number of time frames

convolved with the filter, F is the number of frequency bins and Q represents the number of frequency

channels onto which the input spectrogram will be projected. The filter size used throughout the

architecture of CNN Block 2 is 1x16xn
2 x2n. The temporal receptive field (i.e., a contextual window

modelled by each hidden state of the network) of 16 frames („370ms) is used to capture acoustic

information about instruments from a context longer than a half-beat length at 120 BPM. Each

network is followed by a SeLU activation layer (see Section 3.1.1), represented as vertical solid-dashed

line in Figure 4.1. The content matrices for A, B and Y are termed Z, M and X respectively.

4.1.2.2 Style

Style can be understood as high-level information of the input neural features, which are decomposed

into patches (e.g., texture patches in images and timbre of sounds). Neural style transform uses these

patches for specifying a complex similarity function between the generated output and the input content.

In this transformation, the content of input audio files is shifted into a new style domain defining a

statistical representation of feature maps generated from previous layers of the network. This feature

space is designed to capture texture or intra-feature map statistics. Figure 4.2 illustrates an example of

image style transfer with a photograph of a sitting dog (i.e., content) which is transformed to contain

style characteristics extracted from the drawing of a woman by Henri Matisse (UMMA, 2017). The

transformed output preserves the content of the sitting dog and applies the line art style of Matisse’s

drawing. Similarly in music, a standard audio style transfer approach will preserve the content of each

sound and affect its timbre acquired from the style recording.

To obtain a representation of the style of an input spectrogram, a Gram matrix G is used as in Gatys

et al. (2015). Let F be any content matrix Z, M and X. For each Fl “ rfl,ks
Ql

q“1 a Gram matrix G is



60 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

calculated using the inner product GrF s :“ FTF P RQlˆQl , where the intra-feature map statistics are

extracted over channels Q at layer l P L. The style reconstruction loss can then be calculated as a sum

over multiple layers of the Gram and content activations (see Equations (4.6) and (4.7)).

4.1.3 Optimisation

Network weights corresponding to the output audio segment Y are updated in the optimisation stage of

the system (see Figure 4.1). The updates are directed by a predefined combination of objective content

and style loss functions.

4.1.3.1 Content and Style Loss Functions

The individual ℓ terms can be added and changed according to the transformation objective with regard

to the inputs A and B. The content loss ℓC is a squared error loss between content matrix X and the

input audio content matrices (Z or M):

ℓAC “
1

2

ÿ

lPL

||Xl ´ Zl||
2, (4.4)

ℓBC “
1

2

ÿ

lPL

||Xl ´ Ml||
2. (4.5)

The style reconstruction loss ℓS is the sum of the squared difference between the transformed Gram

matrix GrXs and the input Gram matrices (GrZs and GrM s):

ℓAS “
1

Q2

ÿ

lPL

pGrXslq ´ GrZslq
2, (4.6)

ℓBS “
1

Q2

ÿ

lPL

pGrXsl ´ GrM slq
2. (4.7)

The motivation for using the style loss as formulated above is to preserve the statistics about the

convolutional representation over the entire input while losing local information about exactly where

different elements are. As shown by Li et al. (2017), the style reconstruction loss can also be interpreted

using a specific maximum mean discrepancy as the similarity function (Equation (3.33)). This reveals

that neural style transfer algorithm can also be seen as a process of distribution alignment of the neural

activations between images.

In order to control the contributions of content and style from the two inputs, the total loss L is

expressed as a sum of content ℓC and style ℓS loss functions for the input audio segments A and B as

follows:

L “ σℓAC ` δℓBC ` θℓAS ` ϕℓBS , (4.8)



4.2. EVALUATION METHODOLOGY 61

where σ, δ, θ and ϕ are proportion parameters that add up to 1 and help configure loss preferences

between the input recordings. The standard AST loss term consists of only ℓAC content and ℓBS style

functions from two inputs. The proposed loss formulation in Equation (4.8) allows for rhythmic

transformation and timbre blending possibilities through the addition of loss interchangeability. Loss

terms can be removed according to their corresponding transformation configuration and user-defined

parameterisation. The standard and proposed AST loss term formulations are described in more detail

in Section 4.2.3.

4.1.3.2 Training

Different combinations of style and content loss functions are used to shape the output of the transfor-

mation. Following Barry and Kim (2018), the magnitudes of the gradients of loss terms are normalised

to 1 to moderate the imbalances in weighting of either function. The limited-memory BFGS (Zhu et al.,

1997) gradient descent-based optimisation algorithm is used due to its appropriateness in non-linear

problems related to neural style transfer (Gatys et al., 2015; He et al., 2016b). Once initialised, the

feature map representations of content and style from inputs A and B do not change throughout the

training stage. In each gradient step the content and style activations are back-propagated all the

way to the network output Y . Hence, only weights originating from Y are being manipulated during

the optimisation process, while all feature representations remain unchanged for inputs A and B. The

optimisation of the concerned weights is stopped after 5000 iterations. With an NVIDIA Tesla M40

computing processor each algorithm iteration takes an average of 280 milliseconds.

The system is implemented using the Tensorflow Python library.14 The processing branches of A, B

and Y are part of the same CNN in one Tensorflow computation graph. This means that the neural

representations of the input time-domain audio Y can be optimised simultaneously in one stage.

4.2 Evaluation Methodology

The following sections introduce the evaluation strategies used to assess the rhythmic and timbral

modification capabilities of the system presented in Section 4.1. The evaluations concern three main

transformation objectives, namely, the standard audio style transfer formulation, the proposed mashup

and the augmented mashup transformations. In addition, a specially curated dataset of drum loops with

different rhythmic pattern styles is presented.

4.2.1 Data

The compiled dataset includes 30 drum loops (mono WAV sampled at 22.05 kHz with 16-bit resolution)

of 4 bars in length, which differ in rhythmic patterns consisting of various types of kick and snare drums.

The top of Figure 4.3 visualises rhythmic patterns present in the dataset using a 3-dimensional image,

where 30 rhythmic envelopes RS (see Equation (4.16)) are plotted over time, where colour intensity

14https://www.tensorflow.org/

https://www.tensorflow.org/


62 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Figure 4.3: Patterns represented as rhythmic envelopes from 30 drum loops in the dataset (top). Sums of
rhythmic envelopes computed across the dataset (bottom), where bar boundaries (i.e., 4 bars) are represented
with vertical blue lines.

in each row represents amplitude of each rhythmic envelope. Darker shades indicate higher peaks and

lighter shades indicate smaller peaks in each envelope. Each RS is normalised to values r0, 1s. The

bottom of Figure 4.3 shows normalised sum of all envelopes present in the dataset over 4 bars. Rhythmic

patterns present in the dataset indicate a strong presence of events (e.g., kicks) on downbeats in most

examples as well as a strong presence of events (e.g., snares) on beats two and four characteristic of

popular music. There are several exceptions such as patterns 5, 6 and 16 shown in top of Figure 4.3

which include more syncopation with less events on downbeats but more events around third beats in

each bar. In addition, pattern 16 is also the only example which does not start with an event on the

first downbeat position.

The tested drum loops were generated with twelve different pattern styles—denoted by the first part of

each file name in Table 4.1. All transformation examples are created from 15 pairs of input drum loops

to spread over a variety of different playing styles defined by the Logic X Drummer virtual instrument.15

Each pair is assigned a file termed α and another termed β. The transformation pairs were chosen such

that there is no overlap between the same rhythmic pattern styles. The rightmost column in Table 4.1

presents rhythmic cosine similarities (see Section 4.2.4.1) calculated between pairs of envelopes. Higher

values indicate more similar patterns with greater overlap of events at different metrical positions while

lower values indicate patterns that exhibit less overlap indicate more dissimilar drum loops. The mean

15https://support.apple.com/kb/PH13070

https://support.apple.com/kb/PH13070


4.2. EVALUATION METHODOLOGY 63

α β RCS

1 hp 02 cl 01 0.84
2 ep 01 ob 02 0.66
3 ee 02 ob 03 0.32
4 gs 02 cl 03 0.79
5 ep 03 hp 03 0.68
6 br 03 km 03 0.89
7 mt 02 cl 02 0.84
8 mt 01 km 01 0.81
9 nk 01 hp 01 0.05

10 ctp 01 nk 02 0.09
11 ctp 02 nk 03 0.29
12 mt 03 br 01 0.85
13 ep 02 br 02 0.76
14 gs 03 ee 01 0.30
15 gs 01 km 02 0.30

mean(α,β) 0.56

Table 4.1: Compiled dataset with 30 drum loops and 15 transformation pairs used in system evaluations.
Inputs α and β are represented with an ID indicating different rhythmic rhythmic styles defined by Logic X
Drummer virtual instrument. Rightmost column shows rhythmic cosine similarities (RCS) calculated for each
transformation pair together with the mean RCS of all examples α and β.

similarity in the last row of the table shows that all test recording pairs present a varied combination

of differing rhythmic patterns. This is important as evaluation of rhythmic transformation capabilities

of the proposed system would not be possible if the tested examples were rhythmically identical. This

pairing configuration also contributed to reduction of the computation cost of performing all possible

transformation combinations. All drum loops have a fixed-tempo set to 120 BPM in 4
4 metre. The

motivation for using a fixed-tempo of 120 BPM was to test how this transformation performs on audio

recordings typically used in the processes of remixing and mashup creation. Both processes rely on

automatic and manual beat-synchronisation of multiple audio inputs for manipulation of rhythm while

preserving listener comfort levels (Ishizaki et al., 2009). The chosen tempo is a typical tapping speed

(Moelants, 2002) and is common for many genres in popular and electronic music (e.g., rock, pop,

house). It is also the default tempo in various DAWs used in music production (e.g., Logic Pro, Ableton

Live, Pro Tools).16,17,18

4.2.2 Evaluation Strategies

The rhythmic and timbral modification characteristics of the proposed AST system are evaluated with

multiple reconstruction metrics assessing similarities computed between the input and the transformed

output audio signals. The system is used to generate new drum audio examples Υ from 15 transformation

drum loop pairs from the compiled dataset. The transformation pairs are created from two sets of

drum loop inputs termed α and β. To obtain the results, feature representations for evaluation metrics

introduced in Section 4.2.4 are created from Υ and compared to those of α and β. The reported metrics

16https://www.apple.com/uk/logic-pro/
17https://www.ableton.com/
18https://www.avid.com/pro-tools



64 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

are presented as means across all transformations from three comparisons between the following drum

loop pairs: pα,Υq, pβ,Υq, and pα, βq for five transformation objectives. For example, a comparison

between pα,Υq for Lv is represented as Lα
v , and a comparison between pβ,Υq as Lβ

v , where v denotes

the transformation objective. The following section details transformation objectives which include the

standard AST loss formulations and newly proposed AST loss formulations for mashup and augmented

mashup transformations.

4.2.3 Transformation Objectives

Different combinations of loss objectives correspond to a separate transformation. The standard AST

objective (Gatys et al., 2015) consists of loss functions for a single content input and a single style input.

To perform a transformation of rhythmic patterns as well as the timbral content of drum recordings the

standard AST objective is extended to include two additional mashup transformations which incorporate

combinations of the content and style loss functions.

4.2.3.1 Standard Audio Style Transfer Formulation

The standard audio style transfer objective uses the content and style reconstruction loss functions.

Following Gatys et al. (2015), this objective is formulated as follows:

L1 “ ℓAC ` ℓBS , (4.9)

where, the content information of input A is transformed to acquire features from the style input B and

vice versa as follows:

L2 “ ℓAS ` ℓBC . (4.10)

This standard formulation of the neural style transfer objective has been utilised in a number of systems

for audio style transfer (Barry and Kim, 2018; Grinstein et al., 2017; Mital, 2017; Perez et al., 2017;

Ulyanov and Lebedev, 2016; Verma and Smith, 2018; Wyse, 2017) as well as systems for image style

transfer (Jing et al., 2019). An example of the standard image style transfer objective is illustrated

in Figure 4.2, where the content loss ℓAC is calculated from the image of a dog and the style Gram

characteristics are computed in ℓBS loss from the drawing.

4.2.3.2 Mashup Transformation

In this objective, the transformation uses solely the style feature representations to mix rhythmic and

timbral characteristics of both recordings. The proposed mashup transformation is formulated as follows:

L3 “ ℓAS ` ℓBS , (4.11)



4.2. EVALUATION METHODOLOGY 65

where each input optimises the squared difference between style Gram matrices. This loss function is

akin to a mashup of both audio inputs and extends the standard AST formulation with the ability of

moving acoustic events to create rhythmically new performances. In addition, the proportion of the

used ℓ can be changed with the corresponding proportion parameter from Equation (4.8) to produce the

desired transformation.

4.2.3.3 Augmented Mashup Transformation

This objective reinforces the mashup transformation with more content information from one the inputs

(e.g., A and B). The augmented mashup formulation is computed in order to move the transformation

towards the rhythmic performance present in input A as follows:

L4 “ L3 ` ℓAC . (4.12)

To move acoustic events to create a rhythmically new performance that is more similar to input B the

augmented mashup is computed as:

L5 “ L3 ` ℓBC . (4.13)

4.2.4 Metrics

The metrics used in the evaluations measure rhythmic and timbral reconstruction capabilities of the

presented system. The rhythmic constraints are tested using rhythmic similarity as well as the standard

onset detection metrics. Timbral reconstruction and audio quality of the system are evaluated using

spectral cosine similarity and Pearson correlation coefficients. Below, the feature representations necessary

for rhythmic and timbral evaluations are presented, with the following sections providing a detailed

description of each metric.

Logarithmic Spectrogram: To more closely match human perception of loudness and make the

evaluation and training of deep learning models more computationally tractable, the dimensionality of

a linear spectrogram can be reduced and converted to a logarithmic scale. The linear frequency bins,

measured in Hz, are converted to a logarithmic scale using a preset number of bands b per octave. The

filters of the logarithmic filter bank FB are computed as follows:

FBk
b “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, k ă gpb ´ 1q

k´gpb´1q

gpbq´gpb´1q
, gpb ´ 1q ď k ď gpbq

gpb`1q´k
gpb`1q´gpbq

, gpbq ď k ď gpb ` 1q

0, k ą gpb ´ 1q,

(4.14)



66 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

where gpq represents the logarithmically-spaced frequencies for the total of B number of bands. The

logarithmic spectrogram is calculated through matrix multiplication of the filter bank FB and the linear

spectrogram S.

Mel Spectrogram: The Mel scale is a perceptually motivated scale, which overcomes the fact that the

FFT has a linear resolution, where all frequency bins are evenly spaced (Stevens and Volkmann, 1940).

Since human hearing is not evenly spaced and humans hear pitch exponentially not linearly, the Mel

scale ensures a better frequency resolution in the lower frequencies than the higher ones by converting

the frequency f in Hz to the Mel scale m using:

m “ 2595 log10

ˆ

1 `
f

700

˙

. (4.15)

The Mel filter bank can be created using the filter bank computation from Equation (4.14) with gpq

Mel-spaced frequencies acquired from Equation (4.15) for the total B bands (e.g., B “ 120). Similarly to

computation of a logarithmic spectrogram, the Mel spectrogram is derived through matrix multiplication

of the linear spectrogram with the Mel filter bank.

4.2.4.1 Rhythmic Similarity

To test the rhythmic constraints imposed by different transformation objectives within the AST technique,

the rhythmic similarity is used to compare pairs of transformations (Davies et al., 2013, 2014a; Hockman,

2014). The rhythmic envelopes R are calculated from the spectral difference function (SDF) (see bottom

of Figure 2.7) of a new audio Υ with inputs α or β. Following Dixon (2006), the SDF is computed over

a linear spectrogram S (see Equation (4.1)) with k bins and t frames as follows:

RSptq “

K´1
ÿ

k“0

␣

Hp|Skpt ` 1q| ´ |Skptq|q
(

, (4.16)

where Hpxq “
px`|x|q

2 is the half-wave rectifier function, which returns zero for negative arguments.

The STFT parameters from Section 4.1.2 are used for computation of all spectral representations. All

envelopes are normalised to range from 0 to 1. Rhythmic cosine similarity (RCS) between every pair of

envelopes is calculated as:

RCSpω,Υq “
Rω ¨ RΥ

}Rω}}RΥ}
, (4.17)

where ω is a placeholder representing inputs of either α or β. Thus, the rhythmic similarity will be close

to unity for very similar patterns and nearer to zero for dissimilar patterns. RCS values calculated for 15

transformation pairs are shown in Table 4.1 together with the mean RCS calculated from all pairs.



4.2. EVALUATION METHODOLOGY 67

4.2.4.2 Spectral Cosine Similarity

Spectral cosine similarity (SCS) is used to measure timbral reconstruction capabilities of the proposed

transformations and was previously employed in evaluations of deep generative models for music signals

as an objective measure of audio quality (Raḿırez et al., 2021). Let log-spectral power magnitudes S

be defined as Spt, kq “ log10 |S|2, where S represents a Mel spectrogram with 120 Mel bands (see

Equation (4.15)) computed using STFT parameters from Section 4.1.2. Spectral cosine similarity is

calculated as:

SCSpω,Υq “
Sω ¨ SΥ

}Sω}}SΥ}
. (4.18)

4.2.4.3 Pearson Correlation

Pearson correlation (PC) coefficients are used as a metric measuring the quality of generated musical

signals (Kim et al., 2019). Similarly to the spectral cosine similarity metric, the PCs are calculated using

Mel spectrograms S, which offer a representation that effectively captures the fundamental frequencies

of drums. Pearson correlation coefficients are computed following Gonzalez and Wintz (1987):

PCpω,Υq “

ř

pSω ´ mωq ¨ pSΥ ´ mSΥ
q

a

ř

pSω ´ mωq2 ¨
ř

pSΥ ´ mΥq2
, (4.19)

where mω and mΥ are means of input Sω and transformation SΥ, respectively.

4.2.4.4 Onset Detection

Onset detection performance metrics are used to evaluate the extent of the rhythmic modifications

generated by the proposed transformation objectives. While rhythmic similarity is based on inherent

representation of rhythmic patterns as temporal envelopes the onset detection evaluation compares

numbers of events that were found against the target ground truth events in the temporal domain. The

standard metric used to evaluate performance of event detection algorithms is the mean F-measure (Bello

et al., 2005). A tolerance window is used to determine whether a detected onset is within an acceptable

range away from the onset in the target event. Here a window of ˘50 ms is used which is a standard

size seen in the automatic drum transcription literature (Southall, 2019; Southall et al., 2016; Wu

et al., 2018; Wu and Lerch, 2015). Once an event is detected in the acceptable range it is labelled as a

true positive (TP). If a detected onset is not within this range it is labelled as a false positive (FP).

Alternatively, if a target ground truth event does not coincide with any detected onset, it is labelled

as a false negative (FN). Using these counts, precision (P) and recall (R) metrics can be calculated.

Precision is the fraction of true positives among all detected events, while recall is the fraction of true

positives among all missed ground truth events. They are calculated as follows:

P “
TP

TP ` FP
, (4.20)



68 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Figure 4.4: Mean rhythmic cosine similarity (RCS) results. Crosses (’x’) indicate means per L objective and
comparison between drum loop pairs: pα,Υq, pβ,Υq, and reference pα, βq. A higher rhythmic cosine similarity
indicates that transformations Υ are more similar to either input α or β, with the reference for this comparison
depicted in brown on the left-hand side.

R “
TP

TP ` FN
. (4.21)

The precision and recall can be expressed as a single metric using the F-measure (F) calculation as

follows:

F “ 2
PR

P ` R
. (4.22)

All reported results were generated using a state-of-the-art OnsetDetector algorithm (MIREX, 2018a)

introduced in Böck et al. (2012b). Drum events are detected automatically for inputs α and β as well

as generations Υ for each transformation objective. The detected events from Υ are then used for

computation of F-measure when compared against each of the two inputs. Additionally, F-measure is

calculated to approximate the baseline performance between the two sets of α and β with, respectively,

368 and 410 annotated onsets in each set.

4.3 Results

Evaluated transformations along with other examples are presented on the supporting website.19

4.3.1 Rhythmic Similarity Results

4.3.1.1 Standard Audio Style Transfer: L1 and L2

Figure 4.4 presents the mean RCS results for five transformation objectives and different drum loop

pairings. A higher rhythmic cosine similarity suggests that the transformations, denoted by Υ, are more

similar to either input α or β. For comparison, the reference of rhythmic patterns between α and β is

represented in brown (i.e., left-hand side of the diagram). The comparisons between α and β offer a

19https://maciek-tomczak.github.io/maciek.github.io/Audio-Style-Transfer-with-Rhythmic-Constraints

https://maciek-tomczak.github.io/maciek.github.io/Audio-Style-Transfer-with-Rhythmic-Constraints


4.3. RESULTS 69

baseline to understand the inherent similarity between the inputs before any transformation is applied.

Objectives L1 (blue) and L2 (orange) denote the standard audio style transfer loss objectives. In these

cases, the rhythmic patterns remain unchanged, indicating an unsuccessful transformation. This means

that transformations where the rhythmic patterns do not change should ideally exhibit high similarity to

inputs α in L1 and to inputs β in L2.

The results show that standard AST loss objectives L1 and L2 do not achieve transformation of

rhythmic patterns. In both transformations, the RCS means for Lα
1 and Lβ

2 are higher than Lβ
1 and Lα

2 ,

indicating that the rhythmic patterns did not change in the standard AST formulation. Results from

t-tests performed across tracks and objectives Lα
1 and Lβ

2 demonstrate that the impact of the respective

content losses ℓAC and ℓBC is significant (ρ ă 0.05). This demonstrates that the content losses determine

the rhythmic patterns of the output transformations and the style losses ℓBS and ℓAS are not capable of

changing rhythmic patterns in the L1 and L2 objectives for neither of the inputs. This characteristic of

the standard AST objectives is also supported when compared with baseline mean RCS results computed

between inputs α and β (i.e., brown box), which are similar with Lβ
1 and Lα

2 . This means that for

these two objectives the transformations are as different from inputs α and β, respectively, as the

baseline comparisons between the two inputs resulting in no rhythmic transformation of the input drum

recordings.

4.3.1.2 Mashup Transformation: L3

The proposed mashup transformation objective L3 (green) generates new rhythmic performances that

combine rhythmic features of both inputs. The expectation here is to observe distinct patterns that

might not align closely with either α or β. The similar RCS means Lα
3 and Lβ

3 indicate that new drum

events were created in the generations Υ that were not present in the outputs of the standard AST

objectives L1 and L2. The variability of both generations for L3 is also similar with a 0.03 higher

mean rhythmic similarity for the comparison between α and Υ. This indicates a slightly larger overlap

between rhythmic patterns of the output transformations and inputs α. This difference is consistent

with the standard AST objective comparisons where mean results for Lα
1 show a 0.02 higher rhythmic

similarity than results for Lβ
2 . The comparisons of L3 and means calculated between α and β as well as

comparisons of L3 with Lβ
1 and Lα

2 are significant (ρ ă 0.05). This demonstrates that the proposed

mashup transformation is capable of generating drum loops with new rhythmic patterns that are not

changed when using the standard AST objectives.

4.3.1.3 Augmented Mashup Transformation: L4 and L5

The augmented mashup transformations L4 (red) and L5 (purple) enhance the proposed rhythmic

transformation with the content information acquired from ℓAC and ℓBC loss functions computed on inputs

α and β, respectively. Objectives L4 and L5 are designed to guide the rhythmic transformations to be

more similar to a selected input. Ideally, transformations under these objectives should exhibit higher

similarities to one of the inputs, either α in L4 or β in L5.



70 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Figure 4.5: Mean F-measure results calculated from different pairs of inputs (i.e., α and β) and output
transformations Υ. A higher F-measure indicates that the transformations Υ are more similar to either input α
or β, with the reference for this comparison depicted in brown on the left-hand side (i.e., (α, β)).

The comparisons of objectives L4, L5 and mean RCS results between α and β are significant

(ρ ă 0.05), which shows the augmented mashup transformations created new rhythmic patterns differing

from the baseline. The higher RCS means of objectives Lα
4 and Lβ

5 show that rhythmic patterns of Υ

can be controlled to be more similar to the respective input when the content loss function is used. The

mean similarities for Lβ
5 transformations are 0.08 higher than similarities of Lβ

3 which indicates that new

drum events were created, which were not initially present in inputs β. While the difference between

means of Lα
5 and Lβ

5 is small it is consistent with the results in L3 comparisons, where the Υ were

slightly more similar to the inputs α. In addition to the augmented mashup objective the user can aid the

transformation using proportion parameters from the proposed loss formulation shown in Equation (4.8)

which can add more controllability over the possible output transformations. Consequently, the rhythmic

pattern of the output can be fine-tuned to exhibit more similarities to the target input.

4.3.1.4 Onset Detection: L3, L4, and L5

Figure 4.5 shows F-measures calculated from comparisons between Υ and both inputs for the proposed

mashup and augmented mashup transformation objectives. An additional reference comparison between

inputs α and β, with a standard deviation of 0.091, is shown in brown on the left-hand side of the diagram.

The mean F-measure results for L3, for comparisons (α, Υ) and (β, Υ) with standard deviations of

0.057 and 0.064, respectively, are consistent and have little variability. This consistency in performance

supports the desired outcome for a mashup transformation. Additionally, the slightly higher similarity of

Υ to α in L3 can also be seen in rhythmic cosine similarity results and can be due to a larger overlap of

events in these transformation pairs. The results in Figure 4.5 also highlight that as different content

loss objectives are used the F-measure performance decreases (e.g., Lβ
4 and Lα

5 ). The mean differences

between Lα
4 and Lβ

4 as well as Lα
5 and Lβ

5 are also larger than RCS means for the augmented mashup

objectives. Both Lβ
4 and Lβ

5 have standard deviations of 0.071 and 0.066, respectively, which are slightly

higher than their counterparts. Specifically, Lα
4 and Lα

5 have standard deviations of 0.054 and 0.051,

suggesting they exhibit lower variability. The comparisons of mean results of the three objectives and α



4.3. RESULTS 71

Figure 4.6: Mean spectral cosine similarity (SCS) and Pearson correlation (PC) results. Crosses (’x’) indicate
means per L objective and comparison between drum loop pairs: pα,Υq, pβ,Υq, and pα, βq.

and β are significant (ρ ă 0.05). This demonstrates that the system generated new events in objectives

L3, L4, and L5 which were not present in the original inputs, suggesting successful transformations.

4.3.2 Spectral Similarity Results

The top diagram of Figure 4.6 presents the mean SCS results. The mean results using PC coefficients

are presented in two forms. The first, shown in the bottom diagram of Figure 4.6 as means calculated

across Mel bands as well as Lv and different drum loop pairs. The second, plotted across 120 Mel bands

in Figure 4.7 as mean results calculated for objectives Lv as well as comparisons between drum loop

pairs PC(α,Υ) (top) and PC(β,Υ) (bottom).

4.3.2.1 Standard Audio Style Transfer: L1 and L2

Mean SCS results for the standard AST objectives L1 and L2 highlight the spectrogram reconstruction

capabilities of the audio style transfer technique. Both Lα
1 and Lβ

2 comparisons represent the uppermost

reconstructions for the standard AST objective which replicates the spectrograms of the content losses

of ℓAC and ℓBC , respectively. There exists some inherent loss of audio quality previously attributed to the

addition of high-level information from the style loss (i.e., Gram matrix) (Grinstein et al., 2017), which

can be seen in the imperfect reconstructions for both Lα
1 and Lβ

2 . A similar reconstruction trend can be

seen in mean PC results in the bottom of Figure 4.6.



72 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Figure 4.7: Mean Pearson correlation (PC) results. Mean PCs are plotted across Mel bands for different
objectives Lv and different drum loop comparisons PC(α,Υ) (top) and PC(β,Υ) (bottom).

A visualisation of PC reconstructions over Mel frequency bands can be seen in Figure 4.7, where

Lα
1 (blue line in top plot) and Lβ

2 (orange line in bottom plot) show on average lower reconstruction

capabilities in the lower frequencies (Mel bands ă 60) than higher frequencies (Mel bands ą 60).

Conversely, the lowest reconstruction comparison of the model can be seen in the Lβ
1 (blue) and Lα

2

(orange) as well as the baseline comparisons between inputs α and β shown in brown. Both objectives

are closely correlated with the baseline across the frequency range which is also reflected by similar

means shown in Figure 4.6.

4.3.2.2 Mashup Transformation: L3

The mean SCS in top of Figure 4.6 for both Lα
3 and Lβ

3 are similar indicating an equal timbral mashup

between drum loops, with a slightly increased similarity towards inputs β. Mean SCS results for the L3

mashup transformation are comparable with the RCS means. Interestingly, the spectral reconstructions

for L3 reverse the trend visible in the rhythmic similarity and onset detection results, where Υ are more

similar to inputs α (see Figures 4.4 and 4.5). In contrast, SCS and PC indicate that mashups Υ acquired

more timbral characteristics from the inputs β despite the identical weighting used in all transformations

(see Equation (4.8)). Both spectral similarity comparisons of L3 with α and β as well as comparisons

of L3 with Lβ
1 and Lα

2 are significant (ρ ă 0.05). Additionally, PC means for L3 in Figure 4.7 indicate

that the timbre quality remains comparatively constant across all frequency bands with a slight dip

around 400Hz (Mel bands « 15) for the PC(β,Υ). The same dip can be seen in other comparisons of

PC(β,Υ) which can be a result of a particularly complex drum timbre in inputs β that is not present

in α. The overall stability of reconstruction quality across all frequency bands demonstrates that the



4.3. RESULTS 73

proposed mashup transformation is capable of mixing timbral characteristics of different drum loops

evenly throughout transformation examples.

4.3.2.3 Augmented Mashup Transformation: L4 and L5

Timbral similarities of the augmented mashup demonstrate that this objective can guide the transfor-

mation towards the timbral characteristics of the chosen input. The Lα
4 and Lβ

5 successfully generate

mashups which are closer to the corresponding content loss terms ℓAC and ℓBC , respectively. Similarly to

objective L3 the augmented mashup displays a consistent reconstruction quality across all frequency

bands. For PC comparisons against inputs β the Lβ
5 objective (purple) has the second highest similarity

which has some timbral overlap (e.g., Mel bands « 40 ) with results of the standard AST objective (or-

ange). High mean values of 0.76 and 0.72 for Lβ
5 SCS and Lβ

5 PC means, respectively, demonstrate a

similar trend seen in means from L3 caused by more timbral variability in the content characteristics

of inputs β. The comparisons of objectives L4 and L5 with timbral similarity means between α and β

are significant (ρ ă 0.05), which shows the augmented mashup transformations created new timbres

differing from the baseline comparisons.

4.3.3 Discussion

Controllable Rhythmic Transformation

The proposed mashup and augmented mashup transformation objectives effectively showcase a significant

capability to introduce controlled rhythmic transformations. In contrast, standard AST objectives seem

limited in this aspect, predominantly preserving rhythmic patterns similar to their inputs. Results

from onset detection and spectral similarity further validate the effectiveness of the mashup objectives.

These findings highlight the potential of the introduced techniques in transforming rhythmic content in

drum loops, setting the stage for a variety of user-controlled musical applications and transformations.

Moreover, due to the segmentation stage in the rhythmically constrained AST, the output adheres to

the metrical structure of the chosen input.

Differences in Transformation Techniques

The supporting audio examples on the accompanying website19 offer a comparative analysis, highlighting

the advantages of the rhythmically constrained AST system over existing transformation techniques for

automated rhythmic transformation of drum recordings. The L1, L2, and the proposed L3, L4, and

L5 transformation objectives can be audibly compared against other algorithms in the literature (Barry

and Kim, 2018; Mital, 2017; Ulyanov and Lebedev, 2016). In contrast to other methods that fail to

change the rhythmic patterns, the proposed system consistently showcases its ability to modify rhythmic

patterns without sacrificing coherence. These comparisons not only suggest promising potential for the

system but also hint at its unique contributions to the evolving landscape of audio style transfer.



74 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

Gram Matrix Feature Representation

The proposed rhythmically constrained transformation differs in that it is capable of generating new

rhythmic patterns from both inputs while preserving the beat pattern of the chosen recording. Challenges

faced by all AST transformations are the loss of phase information and the addition of noise, potentially

due to the high-level representation of the style loss (i.e., Gram matrix). As in other AST methods

(Barry and Kim, 2018; Grinstein et al., 2017; Mital, 2017; Perez et al., 2017; Ulyanov and Lebedev,

2016; Verma and Smith, 2018), the Gram matrix is here used as a representation for style, yet it remains

questionable whether this feature representation is suitable for transformations based on high-level

musical information. Briot and Pachet (2017) suggest that this technique presents challenges for audio

due to anisotropy of the content representation. Anisotropy signifies dependence on directions and here

it refers to the nature of the audio spectrogram. In this time-frequency representation the dimensions do

not correlate together in the same way a pixel would in an image (e.g., see Figure 4.2). A pixel almost

always corresponds to one object whereas in music multiple sources overlap (e.g., kick and hi-hat playing

at the same time) causing inherent issues when using the Gram matrix to transform local changes in

timbres.

4.3.4 Conclusions

Rhythmic and spectral similarity metrics, along with onset detection methodologies, were employed

to evaluate the three proposed transformation objectives. The rhythmic similarity evaluations indicate

that the proposed transformation objectives consistently generate novel rhythmic patterns that deviate

from the source recordings. In contrast, the standard AST objective did not demonstrate rhythmic

transformation of the input audio examples. When the content loss was applied, the transformed outputs

from objectives L1 and L2 mirrored the rhythmic patterns of their respective inputs. This led to no

noticeable divergence from the baseline, as seen in the comparative study with regard to α and β.

The Lα
3 and Lβ

3 mashup objectives transform rhythmic patterns, resulting in performances distinct

from both source inputs, aligning with the desired outcomes of rhythmic transformation. Furthermore,

the augmented mashup demonstrates the capability of the L3 objective to adjust rhythmic patterns

towards a chosen input in terms of timbre, while also presenting innovative rhythmic transformations

distinct from baseline benchmarks. The timbral evaluation highlighted the proficiency of the proposed

objectives in generating drum loops with new timbral characteristics. The timbral similarity evaluations

showed a substantial effect of the proposed transformation objectives in creating drum loops with new

timbral characteristics as well as successfully directing the outputs towards the characteristics of the

chosen recording. While the results demonstrate that the AST transformation is sensitive to more

complex timbres, the mashup objectives are still able to preserve a constant reconstruction quality across

frequencies and guide the output to become significantly different from the standard AST objective.

Both rhythmic cosine similarity and onset detection metrics indicate that the content loss primarily

controls the augmented mashup transformations. Moreover, by adjusting the proportion parameters for



4.4. CHAPTER SUMMARY 75

each transformation objective, as shown in Equation (4.8), a further user-defined rhythmic controllability

can be introduced.

4.4 Chapter Summary

In this chapter, a rhythmically constrained audio style transfer (AST) system was developed, employing

a time-domain approach that operates on beat-length segments of input music signals. The chapter

presented evaluations of a combination of both standard and novel objectives and the role they play in

shaping the outcome. The rhythmically constrained AST system consists of three stages: segmentation,

in which audio inputs are split into beat-length segments; feature representation, where a neural network

is used to create content and style representations for the chosen inputs; and optimisation, where a

new beat-length segment is generated to encapsulate the timbral and rhythmic characteristics from

chosen recordings. Results from the standard AST objectives, L1 and L2, showcase a rigid adherence

to the original rhythmic patterns, mirroring them in their transformations. The outputs Υ for both

L1 and L2, largely influenced by the content losses, ℓAC and ℓBC , remain significantly similar to the

baseline rhythmic patterns observed between the inputs α and β. This resulting similarity, along with

the listening examples provided on the supporting website,19 underscores the limitation of the standard

AST objectives in facilitating meaningful rhythmic alterations. The mashup transformation objective

L3 successfully produces outputs with new rhythmic patterns. By crafting unique rhythmic patterns

that combine features from both inputs, L3 establishes itself as an effective transformation objective.

This results in tangible transformations that produce significantly different rhythmic patterns from the

content input, a distinction not observed with the standard AST objective. This is further supported in

the onset detection F-measure results, where L3 transformations demonstrate the generation of new

events significantly differing from the baseline comparisons. The augmented mashup transformations, L4

and L5, highlight the ability to combine the content information with rhythmic patterns, affording users

the capability to guide transformations towards a desired input. This is corroborated by the findings that

indicate significant differences in rhythmic similarity between Lα
4 and Lβ

4 , as well as Lα
5 and Lβ

5 . Such

controllability suggests that users can influence the rhythmic patterns based on the selected content

loss. Additionally, by utilising the proportion parameters integrated within the proposed loss formulation,

users can fine-tune their audio outputs. This capability allows users to modify the rhythmic patterns of

the output to align with their envisioned outcome, further enhancing the versatility of the AST system.

Overall, this chapter has presented a new system for audio style transfer with rhythmic constraints

together with two new transformation objectives. Chapter 4 serves as a foundation, highlighting the

importance of developing and refining the transformation objectives for precise and desired transformations

in rhythmic patterns. The introduced objectives offer a unique perspective on manipulating rhythmic

patterns and timbral characteristics of the input drum recordings. While the AST method employed

the Gram matrix feature representation, this represents just one of many potential representations used

in deep generative models. Exploring other feature representations can provide alternative capabilities



76 CHAPTER 4. AUDIO STYLE TRANSFER WITH RHYTHMIC CONSTRAINTS

for rhythmic transformation of drum recordings. In Chapter 6, an alternative feature representation is

introduced which is designed to capture entire bar-length patterns, encompassing all timbral characteristics

of drums. The evaluation techniques presented in this chapter lay the groundwork for methodologies

discussed in subsequent chapters. The next chapter explores another neural drum synthesis approach,

towards a transformation which relies on translation of input drums of one type to another. To enhance

the evaluation of transformations resulting from this method over a diverse range of drum recordings,

three existing datasets were employed and two new datasets were also created.



Chapter 5

Drum Translation for Rhythmic and

Timbral Transformation

This chapter presents a deep generative system for the synthesis of drum recordings using an autoencoder-

based WaveNet model. The system synthesises percussion instruments by learning from an extensive

dataset of drum samples, enabling precise control over the rhythmic and timbral characteristics of the

generated sounds. This method builds upon the foundations laid in previous chapters and advances

the field of neural drum synthesis by adapting the translation network and proposing a novel training

strategy for percussion instruments. Distinct from the methods explored in Chapter 4, which focused on

rhythmic transformation derived from multiple input recordings, the drum translation system operates on

a single input source. It introduces a comprehensive training dataset to facilitate drum translation—the

process by which an input file is transformed to emulate different drum types. This presents a granular

level of control of a rhythmic and timbral transformation of drum recordings.

The deliberate positioning of this chapter preceding Chapter 6 serves a dual purpose. Firstly, it

sets the stage for the integration and synthesis of adversarially trained autoencoders, central to the

subsequent chapter’s end-to-end system for drum synthesis and rhythmic transformation. Secondly, it

plays an essential role in the thesis’ development by enabling a shift from an audio style transfer system

reliant on input recordings and system parameters to one that users can personalise with their own drum

sample collections, thus offering a unique dimension to the creative transformation of percussion sounds.

This chapter is organised as follows: Sections 5.1 and 5.2 introduce the DGM model for drum

translation, outlining its components that are adapted to the task of generating individual drum samples

of the target type. Section 5.3 presents evaluations that employ automatic drum transcription assessment

to gauge the success of drum-to-drum translations and the reconstruction capabilities of the proposed

system. Section 5.4 discusses the results, focusing on the effectiveness of the drum translation system.

A summary of the chapter is provided in Section 5.5.

77



78 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

5.1 Drum Translation

The aim of the transformation addressed in this Chapter is mapping (or translation) of musical audio

to drum sounds. The rhythmic structure of an arbitrary audio input can be encoded as a combination

of different percussion instruments of the drum kit and transformed such that it sounds as if it were

played on different drums. This mode of transformation with DGMs (see Section 3.3) is capable of

transforming rhythmic patterns of the inputs in configurations shown in Figure 3.13e and 3.13g. The

proposed transformation is performed using autoregressive (AR) DGMs to further relax the memory

restrictions of AST with rhythmic constraints discussed in Chapter 4 and facilitate the generation of

temporally extended drum sequences.

Audio synthesis in AR models is achieved by learning a distribution that predicts the next audio sample

from the previous samples in its receptive field using a series of dilated convolutions. The majority of

these systems have been developed to address pitched instruments (Child et al., 2019; Dhariwal et al.,

2020; Engel et al., 2017; Mor et al., 2018; Oord et al., 2016a), while relatively few such systems have

focused on the rhythmic aspects of such transformations and on the generation of percussive instruments

in a drum-to-drum translation akin to the task of redrumming or drum replacement (see Section

2.3.3). To that end, a denoising WaveNet autoencoder architecture (Engel et al., 2017) is modified and

specialised for drum translation by utilising an unsupervised training strategy of a multi-domain latent

space that is trained end-to-end on combinations of drum samples. In this architecture, a single encoder

learns a shared latent space for multiple decoders to use during training and audio generation. The size

of the architecture is adjusted to learn short-term sounds of drum samples, while maintaining encodings

for different drum instruments.

5.2 Method

This approach to drum translation concerns the task of synthesising source audio to corresponding drum

sounds. The system is inspired by architecture of Mor et al. (2019), in which music signals can be

translated across instruments and styles. While Chapter 4 centred on a rhythmically constrained audio

style transfer system, emphasising the modification of rhythmic patterns and timbral characteristics

through Gram matrix feature representation, the drum translation approach specialises in the translation

of specific drum sounds using an adversarially trained autoencoder network. It transitions from a broader

stylistic transformation to a more detailed and precise synthesis of drum types, presenting another

avenue for rhythmic transformation. The primary contributions of this approach to drum translation are

the simplification of the translation network and the proposition of a novel training strategy designed

specifically for percussion instruments.

Figure 5.1 provides an overview of the proposed drum translation system, which is comprised of

three stages: (1) Feature representation; (2) WaveNet autoencoder; and (3) Generation. At the core

of the system is a WaveNet autoencoder network with a shared encoder and a disentangled latent



5.2. METHOD 79

Figure 5.1: Drum translation overview in three stages. Source audio is transformed to output through a single
shared autoencoder of domain p specialised on domain decoders Dp, where p represents: kick (k), snare (s),
kick and snare (ks), hi-hat (h), kick, snare and hi-hat (ksh), kick and hi-hat (kh) or snare and hi-hat (sh).
Colours illustrate pathways between source and corresponding Dp trained to synthesise the target instrument
(e.g., orange decoder Ds synthesises snare drums). Solid lines represent information flow during synthesis and
dashed-dotted line represents information flow to a domain confusion network present only during training.

space, distributed across each drum domain decoder Dp, where p represents a percussion domain for

P total number of domains. Figure 5.1 illustrates seven percussion domains (P “ 7). These are

defined as the kick (k), snare (s), and hi-hat (h) instruments, as well as their combinations such as

kick and hi-hat (kh). However, the system is adaptable and can be trained with a different number of

drum domains. During training, multiple source-target pathways p (one per drum domain illustrated

by different colours in Figure 5.1) are encoded by a domain-independent encoder E. The input to the

neural network is an audio segment Xp of length T samples (T “ 6000) representing a waveform of

one of the seven drum domains. Each segment is distorted by random pitch modulation to prevent the

network from memorising the input signal and provide a semantic encoding.

The employed approach is influenced by autoencoder architecture design choices present in relevant

work in neural audio synthesis (Child et al., 2019; Dhariwal et al., 2020; Engel et al., 2017; Mor et al.,

2019). Figure 5.2 shows audio input into the encoder E, a fully convolutional network, which outputs a

latent space Z that is downsampled using 8-bit µ-law encoding. This encoding method was adopted

considering its success in speech and music synthesis tasks, particularly for its efficiency in representing

complex audio signals with minimal information loss (Oord et al., 2016a). The latent space is then used

to condition a domain confusion network (Ganin et al., 2016). The inclusion of this network is motivated

by its capability to provide an adversarial signal to the encoder during training, a strategy which has

proven effective in ensuring domain-invariant feature extraction across multiple domains. Subsequently,

the latent signal is temporally upsampled to the original audio rate and used to condition a WaveNet

decoder Dp. Each decoder uses a softmax activation to predict the probability of the next time step, a

decision grounded in literature highlighting the effectiveness of softmax in probability-based predictions

for sequential data (Oord et al., 2016a). Once training is finished, the embeddings of all drum domains

in the shared latent space can be used to transform source audio from any arbitrary audio domain.



80 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

Figure 5.2: Conditional autoencoder architecture for drum translation. Dotted lines present architectures for the
encoder E and domain confusion network C used during training with the WaveNet decoder for drum domain p.
During training, the decoder Dp uses input audio segment and predicts the next step.

This approach was proposed based on the principle that a shared latent representation can enable more

versatile and accurate audio transformations (Mor et al., 2018).

5.2.1 Conditional Autoencoders

A similar dilated convolutional WaveNet encoder architecture as Engel et al. (2017) is adopted and

a WaveNet decoder from Mor et al. (2019) to model percussion sounds in the time domain. Dilated

convolutions are convolutions with holes that greatly increase the receptive field while significantly

reducing the model parameters and computational cost. Dilated convolutions are preferred for audio-

related tasks due to their efficiency in managing large receptive fields, essential for capturing the details

in audio signals. Moreover, the WaveNet model integrates a residual learning framework, as suggested

by He et al. (2016a). This integration, as established in the literature, is aimed at circumventing the

vanishing gradient problem commonly associated with deep neural network training and expediting the

training process.

The shared encoder E has 18 layers with two blocks of nine residual-layers and a maximum dilation

of 512 samples. As in Mor et al. (2019), a residual-layer structure with a ReLU non-linearity is used, a

non-causal dilated convolution with an increasing kernel size, a second ReLU, and a 1x1 convolution

(i.e., a time-distributed fully connected layer) followed by a residual summation of the activations before



5.2. METHOD 81

the first ReLU. Unless specified otherwise, 64 channels are used in all hidden layers of the autoencoder

architecture. After two blocks, the encoding goes through a 1x1 layer and an average pooling with a

kernel size of υ samples (υ “ 400).

The WaveNet domain decoder Dp is conditioned with a temporally upsampled version of the latent

encoding Zup obtained with nearest neighbour interpolation. The conditioning signal adds parameters

to the probability distribution so that it depends on variables that describe the audio to be generated

instead of only using the previously generated samples. Without conditioners, WaveNet has been shown

to mix sequences of speech by repeated phoneme shifting between voices of all speakers used in training

of the model. As in Mor et al. (2019), the conditioning goes through a different 1x1 layer for each

decoder Dp to ensure that the latent space is domain independent. This reduces source-target pathway

memorisation, which is also aided by pitch augmentation. To ensure that only previous samples are used

in the generation of the new ones, decoders Dp use dilated causal convolutions together with additional

non-linear operations to enable them to learn input audio representations that cannot be captured with

just linear operations. Each Dp has two blocks of nine residual-layers, where each layer contains a causal

dilated convolution with an increasing kernel size, a gated hyperbolic tangent activation (Oord et al.,

2016a) (the main source of non-linearity), a 1x1 convolution followed by the residual summation of the

layer input, and a 1x1 convolution layer for skip connections. Encoding Zup is used to condition each

residual-layer during training. The skip connections are summed with a ReLU non-linearity activation

and passed through a 1x1 convolution layer before a softmax activation layer.

5.2.2 Domain Confusion Network

In order to introduce an adversarial signal to the autoencoder and ensure that the encoding is not

domain-specific, a domain confusion network C is implemented following Mor et al. (2019). The network

predicts the percussion domain label of the input data based on the latent vectors Z. It uses a single

gradient reversal layer defined in Ganin et al. (2016) and three 1D-convolution layers. The gradient

reversal layer (GRL) reverses the gradient by multiplying it with a negative scalar λ (λ “ ´0.01). The

GRL ensures that the feature distributions over the P drum domains are made similar (i.e., as difficult as

possible to recognise for the domain classifier C), thus resulting in the domain-independent features. The

three 1D-convolutional layers all include SELU non-linearities (Clevert et al., 2015) with 128 channels in

all hidden layers. After three layers the output is passed through an average pooling layer to project the

vectors to P total number of domains using a softmax layer (see Figure 5.2).

5.2.3 µ-law Quantisation

WaveNet predicts a non-normalised probability distribution from the residual-layers and transforms it

into a proper probability distribution by using a softmax function. The authors of the original WaveNet

(Oord et al., 2016a) show that softmax distribution tends to be more flexible than other mixture models

and can more easily model arbitrary distributions as it makes no assumptions about their shape.



82 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

All audio files processed by the model use a sampling rate of 22.05 kHz and are stored as 16-bit integers.

To model all possible values per time step, a softmax layer would need to output 216 probabilities. To

moderate this high bit-depth resolution of the input audio, a µ-law algorithm (ITU, 1988) is implemented

and quantises the data to 28 quantisation levels:

fpxpq “ signpxpq
lnp1 ` µ|xp|q

lnp1 ` µq
, (5.1)

where µ = 255 and ´1 ă xp ă 1. This quantises the high resolution input to 256 possible values

causing a loss in audio quality (Oord et al., 2016a); however, it makes the model feasible to train. The

inverse of the µ-law can be calculated to decode a quantised audio example as follows:

f´1pypq “ signpypq
p1 ` µq|yp| ´ 1

µ
. (5.2)

5.2.4 Data Augmentation

To improve the generalisability of a single encoder during training and to increase the size of the training

data, a pitch augmentation approach is implemented (Mor et al., 2019). In popular music production,

pitch shifting of individual drum samples is a common processing technique that is used either on all

drums or on a subset of drum samples that are layered underneath other sounds to create richer timbres.

Instead of augmenting only parts of the input data as in Mor et al. (2019), pitch is modulated across

the whole length of each audio segment Xp by a random value between ˘6 semitones with LibROSA

(McFee et al., 2015). The final representation of each augmented percussion segment used for training

is Xp “ txp,1, ..., xp,T u.

5.2.5 Training

Two training objectives are minimised with regard to an input sample xp at time step t from the

augmented segment Xp. The fist is the domain confusion loss Ldc computed as follows:

Ldc “
ÿ

p

ÿ

xp

ℓcepCpEpxpqq, pq. (5.3)

This objective applies cross entropy loss ℓce to each element of the output Z and the corresponding

percussion label p. The second objective is the autoencoder reconstruction loss Lac computed as:

Lac “
ÿ

p

ÿ

xp

ℓcepDppEpxpqq, xpq. (5.4)



5.3. EVALUATION 83

The decoder Dp is an AR model conditioned on the output of the shared encoder E. Final loss L is

defined as:

L “ Lac ´ λLdc, (5.5)

where λ is a scaling factor for Ldc described in Section 5.2.2.

An Adam optimiser with the initial learning rate of 0.001, and a decay factor of 0.98 is used. The

model is trained for 10 epochs and 50,000 iterations in total, where each iteration takes a random

mini-batch of 8 randomly pitch shifted Xp segments. All weights in the network are initialised using

Xavier initialisation (Glorot and Bengio, 2010).

5.2.6 Generation

During the transformation of an unaugmented audio sample y from any source domain, the autoencoder

of domain p with its corresponding Dp is used to output the new sample ŷ. The input y is quantised

using Equation (5.1) and then processed as follows:

ŷ “ DppEpyqq. (5.6)

The output ŷ is decoded using the inverse µ-law (see Equation (5.2)). The above generation procedure

is also referred to as the inference stage of DGMs and requires both the trained decoder and encoder

networks. During inference, the average time to generate 1 second of audio with a sampling rate of

22.05 kHz is 30 minutes when using an NVIDIA Tesla M40 computing processor.

5.3 Evaluation

To determine the efficacy of the drum translation approach, which focuses on translating specific drum

sounds through a trained autoencoder network, two evaluations are undertaken. The first evaluation

employs an automatic drum transcription assessment to gauge the success of drum-to-drum translation,

specifically for kick and snare drums. For this evaluation, the system is trained exclusively on kick,

snare, and hi-hat drum domains. In the second evaluation, the quality of timbral and pitch translation

reconstruction as well as rhythmic similarity was assessed using a system trained on seven drum domains,

as outlined in Figure 5.1.

5.3.1 Drum Sample Dataset

The dataset consists of short drum samples (i.e., isolated drum events) of different instruments from

the common drum kit. The dataset must consist of segmented samples to ensure control over the drum

types (i.e., domains p) in each training mini-batch as well as to exclude the influence of acoustics and

bleed from other instruments commonly present in recordings of a full drum kit. The system is trained



84 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

Figure 5.3: Process for creation of the drum sample dataset (top) and a capture of a web interface (bottom)
for data viewing used for removing noisy and erroneous audio examples (i.e., blue circles). A demo of the web
interface used for fine-tuning of the dataset can be viewed on https://tdsdne.vercel.app/.

using raw audio waveforms as input features and labels that heavily rely on the accurate representation

of each drum type.

Dataset Creation

The top of Figure 5.3 outlines the creation process for the drum sample dataset. Drum sample libraries

were sourced from sample packs included in a range of monthly online magazines such as Future

Music, Computer Music and Estrada i Studio.20,21,22 Additionally, the majority of drum recordings were

acquired in the process of web scraping from collaborative repositories of audio samples (e.g., FreeSound,

Loopmasters and Splice) as well as from a variety of different sample libraries included in the Ableton

Live 10 Suite software.17. The collected audio files were then filtered using a rule-based approach relying

on file and directory names coinciding with the three primary instruments (i.e., kick, snare and hi-hat).

Files which did not include the correct instrument name or were not inside a directory with a desired

name were removed. The final stage involved manual filtering of noisy data which could negatively

affect the training of the drum translation system. All drum samples are reduced to mono 16-bit WAV

files and downsampled from 44.1 kHz to 22.05 kHz.

Manual fine-tuning of large datasets is a laborious task which sometimes cannot be circumvented

or replaced with automated methods. While listening to every audio example in the dataset would be

time consuming and potentially error prone, a visually aided approach, which is both efficient and easy

to use, can significantly speed up the data filtering process. A new approach is proposed inspired by

visualisation solutions implemented using GANs for systems which generate non-existing images, also

20https://futuremusic.com/
21http://computermusic.co.uk/
22https://estradaistudio.pl/

https://tdsdne.vercel.app/.
https://futuremusic.com/
http://computermusic.co.uk/
https://estradaistudio.pl/


5.3. EVALUATION 85

known as This X Does Not Exist, where X could refer to anything from an object to a human person.23

The implemented approach uses a static website template from Gwern (2020). On the website, a large

number of audio examples in the dataset can be viewed simultaneously as shown in the bottom of

Figure 5.3. All audio waveforms are first saved as images and later loaded using a static website. Upon

visual inspection, filenames of noisy or otherwise faulty data samples can be identified and removed. Two

experts conducted a comprehensive manual filtering of the dataset using the illustrated web interface,

complemented by random listening checks and cross-examining of all examples for each drum type.

Furthermore, an external reviewer, uninvolved in the initial filtering stage, provided an additional layer

of scrutiny by both visually and aurally inspecting the dataset.

Dataset Details

The dataset of drum samples comprises 9000 examples with 3000 recordings per kick, snare and hi-hat

instrument types. All audio files have a constant length T (T “ 16384) audio samples (i.e., 0.37s), which

represents the nearest power of two from the original mean sample length of 18234 samples (i.e., 0.41s).

Each audio example is trimmed, with a linear fade applied to the last 1000 samples and zero-padded to a

constant length. The constant length requirement is dictated by the symmetric autoencoder architecture.

To ensure that each drum domain is accurately represented by the model, silence segments are removed

from the beginning of each audio recording. Subsequently, a short linear fade is applied at the start of

each file to guarantee that all files begin and end with an amplitude of 0. To mitigate the low resolution

at ranges near ˘1 that results from the µ-law encoding stage, the amplitudes of all audio segments are

randomly scaled between 0.5 and 0.6. The dataset was introduced in work on neural drum synthesis by

Drysdale et al. (2020) and is a contribution of this thesis.

Dataset Training Configurations

To facilitate the evaluation of different drum domains, the system is trained using two configurations of

drum sample dataset. The first configuration includes the entire dataset with 3000 recordings per kick,

snare and hi-hat instrument types. The first configuration is referred to as P3. The second configuration,

referred to as P7, uses a limited number of 1000 recordings from each of the sever instrument type.

This configuration was designed to preserve compute requirements comparable to the first configuration,

as they pose significant computational challenges. It also facilitates the generation of the additional four

drum domains, which are created as combinations of the three instrument types illustrated in Figure 5.1.

5.3.2 Test Data

‘To assess the ability of the system to perform rhythmic and timbral transformations, three distinct test

sets, namely S-AST, S-DT20 and S-DT70 were designed. The test sets were created to span a diverse

range of drum loop complexities, from basic to intricate, ensuring a comprehensive system evaluation.

The S-AST and S-DT20 subsets comprise the initial two beat-length segments from the drum loop

23https://thisxdoesnotexist.com/

https://thisxdoesnotexist.com/


86 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

Subsets Description Onsets

S-AST
kick drums 30

snare drums 23

S-DT20
kick drums 20

snare drums 25
hi-hats 14

S-DT70

kick drums 10
snare drums 10

hi-hats 10
kicks, hi-hats 10

snares, hi-hats 10
kicks, snares 10

kicks, snares, hi-hats 10

Table 5.1: Instrumentation and drum event onset counts in S-AST, S-DT20 and S-DT70 test sets.

datasets introduced in Sections 4.2.1 and 5.3.1. These segments are accompanied by onset and drum

label annotations. Additionally, S-DT70 offers less complex drum tracks, with isolated drum domain

samples per track. Table 5.1 summarises the instrumentation and onset counts for each drum type.

S-AST

The first subset, termed S-AST, consists of 15 drum loops with only kick and snare drums. It represents

an easier translation material with no overlapping drum sounds and non-complex rhythmic patterns as

illustrated in Figure 4.3 in Section 4.2.1. The drum loops are in mono WAV format and are resampled

from 44.1 kHz to 22.05 kHz with 16-bit resolution.

S-DT20

The second subset, termed S-DT20, has 20 drum loops with the addition of hi-hats and instrument

overlap which can be more challenging for the transformations under evaluation. The simpler dataset

S-AST and the more complex S-DT20 have a comparable number of onsets with drum labels and onset

times extracted from MIDI and cross-examined by two expert annotators. To evaluate the capability of

the system to generate the three primary instruments in different music material, the combined drum

labels are reduced to their primary drum domain (e.g., kh label is changed to k and sh is changed to

s). This reduction of overlapping labels as well as varying tempi of S-DT20 contributes to a slightly

different number of drum events from S-AST.

The S-DT20 comprises drum loops compiled using the Apple Logic Pro sample library.16 The

motivation for creation of a new dataset was to introduce more drum types for evaluation as well as

introduce more complexity through varied tempi of the drum styles. Due to the increased complexity of

the data as well as the compute cost required for this transformation (see Section 5.2.6), the dataset

has been reduced to from 30 to 20 loops in contrast to the dataset in Chapter 4. The drum loops

are chosen to reflect a variety of different drum patterns and styles, with multiple domains reflected in

each loop. The drum loops have a mean duration of 3.5s and tempo ranges from 100 BPM to 170

BPM. All loops are in the mono WAV format and are resampled from 44.1 kHz to 22.05 kHz with 16-bit



5.3. EVALUATION 87

Figure 5.4: Patterns represented as rhythmic envelopes from 20 drum loops in the S-DT20 dataset (top). Sums
of rhythmic envelopes computed across the dataset (bottom), where bar boundaries (i.e., 2 bars) are represented
with blue vertical lines.

resolution. The dataset is available on the supporting website.24 The rhythmic patterns in the dataset

are portrayed in Figure 5.4. STFT parameters use a w-length Hann window (w “ 2048) with a hop size

of w
4 for computation of all rhythmic envelopes (see Equation (4.16)). Due to different tempi present

in the drum recordings, every rhythmic envelope was resampled to the same length for the purpose of

visualisation. The visualised rhythmic patterns are more complex as compared to the dataset presented

in Chapter 4. This is due the addition of the hi-hat cymbal as well as an added complexity stemming

from more varied tempi and drum timbres. The larger overlap of different drums (e.g., kick and hi-hat

playing together) and resampling result in a more noisy sum of envelopes at the bottom of Figure 5.4.

Similar to the dataset from Chapter 4, the summed representation shows a high presence of events (i.e.,

kicks) on downbeats in most examples as well as a strong presence of events (e.g., snares) on beats

two and four, which is characteristic in Western popular music. Additionally, several patterns have less

events and their representations appear to be more smeared (e.g., in envelopes 1, 13 and 16). The

smearing artifact is introduced in the resampling process and can be further aggravated by the length

differences of the original loops (e.g., 1 bar-length pattern compared to 2 bars).

S-DT70

The S-DT70 dataset consists of seven audio tracks, each comprising ten drum samples with distinct

timbres sourced from the Logic Pro sample library.16 Table 5.1 outlines the seven drum domains. Each

track features individual percussion instruments, as well as combinations thereof, playing quarter notes

at a tempo of 120 BPM.

24https://maciek-tomczak.github.io/maciek.github.io/Drum-Translation-for-Timbral-and-Rhythmic-Transformation

https://maciek-tomczak.github.io/maciek.github.io/Drum-Translation-for-Timbral-and-Rhythmic-Transformation


88 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

5.3.3 Evaluation Metrics

Automatic Drum Transcription

While the rhythmic cosine similarity reconstruction metric reveals differences in rhythmic patterns of

the transformed signals, it cannot differentiate between each individual event type present within the

rhythmic envelope. To mitigate this, an objective drum classification approach is proposed using a

state-of-the-art supervised automatic drum transcription (ADT) model (i.e., lstmpB25) (Southall et al.,

2017). The standard rates of true positive (TP) and false negative (FN) onsets are used as evaluation

metrics. Drum event onset candidates are accepted as true positives if they fall within 50ms of the

ground truth annotations while the remaining missed detections represent false negatives. In case of

multiple detections within the tolerance window, only the first onset and the corresponding label is

accepted and the remaining are discarded. The onsets are reported as percentages of true positives (i.e.,

the proportion of correctly identified onsets to the total onsets in the target transformation) in each test

set with the remaining percentage indicating the missed false negatives. Since the aim is to assess the

success of translations between different drum domains and not evaluation of the ADT model, the false

positive rates (i.e., detections outside the tolerance window) are not reported. The different translation

scenarios include translations to the same drum domain (e.g., k to k) or to another domain (e.g., k to

s). Prior to automatic drum transcription, all evaluation audio files are converted to 44.1 kHz sampling

rate to facilitate the requirements of the ADT model. Additionally, due to significant differences in

complexity between the test sets, the ADT evaluations using the improved training set are performed for

the same domain translations of the three primary instruments across both S-AST and S-DT20, while

translations to opposite k and s domains are performed using the S-AST test set.

Reconstruction Metrics

The timbral and pitch translation reconstruction quality of each drum domain is evaluated using

the Pearson correlation (PC) coefficients comparing the source audio with the output generations.

The evaluations utilise two different spectrogram types which can provide an objective measure of

reconstruction quality with respect to different aspects of the signal. The first is the perceptually

motivated Mel scale filtered spectrogram (see Equation (4.15)) and the second is the Constant-Q

transform (CQT). The Mel scale provides a better frequency resolution in the lower frequencies than the

higher frequencies, and is an appropriate choice for evaluation of non-pitched instruments such as drums.

On the other hand, the CQT creates logarithmically-spaced frequency range over musical octaves and

has been previously used in evaluation of DGMs for generation of isolated pitched instrument audio

samples (Kim et al., 2019). The CQT and Mel representations are used for comparability with other

studies. Following Schörkhuber and Klapuri (2010), the CQTpk, nq for an audio signal xpnq is defined

as:

CQT pk, nq “

n`tNk{2u
ÿ

j“n´tNk{2u

xpjqa˚
kpj ´ n ` Nk{2q, (5.7)

25The algorithm implementation is publicly available as a Python library on https://github.com/CarlSouthall/ADTLib

https://github.com/CarlSouthall/ADTLib


5.3. EVALUATION 89

Figure 5.5: Percentages of true positive onsets (i.e., those in a dark shade) and false negative onsets (i.e., those
in a light shade) as detected by an automatic drum transcription (ADT) system are presented. The results
reflect the ADT’s performance in translating between kick (blue) and snare (orange) drum domains using the
P3 training configuration, tested on recordings from the S-AST subset. A successful transformation from kick
to snare is indicated by low automatic detections for kicks and high for snares, whereas a successful snare to kick
transformation would be indicated by the opposite.

where a˚
k is the complex conjugate of the basis function akpnq calculated as:

akpnq “
1

Nk
ωp

n

Nk
q expr´i2πn

fk
fs

s. (5.8)

The CQT frequency bins and the Hann window function are denoted by k and ω, respectively, and t¨u

denotes rounding towards negative infinity. The center frequencies of the equal tempered scale are

calculated as fk “ f12
k´1
12 for 12 semitone bins spacing per octave, where f1 is the centre frequency

of the lowest-frequency bin and fs is the sampling rate of the signal. In the following reconstruction

evaluations, the PC coefficients are visualised over a frequency range of 32–10548 Hz and calculated

using 101-bin log-magnitude CQT with 12 bins per octave starting from C1 («32.70Hz) and hop

size of 512 using LibROSA (McFee et al., 2015). The PC coefficients are then calculated as follows.

For each domain, the mean PCs are taken for ten different source and output log-magnitude CQT

spectrograms. The correlation values across all frequencies are smoothed using a median filter. High

Pearson correlations indicate that translation quality for a particular drum domain is well preserved,

whereas lower correlations indicate larger quality degradation from the source drum recording.

Rhythmic reconstruction evaluates the capacity of the proposed system for preservation of rhythmic

patterns during transformations based on the rhythmic envelopes computed from the generated audio.

The rhythmic reconstruction evaluations follow the procedure described in Section 4.2.4.1 using the

drum loop dataset described in Section 5.3.1. The events in each drum loop are manually labelled, then

translated into an output drum loop where domains correspond to the source. The cosine similarity

(see Equation (4.17)) is measured between the rhythmic envelopes of source and output transformation



90 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

Figure 5.6: Percentages of true positive onsets (i.e., dark shade) and false negative onsets (i.e., light shade) from
an automatic drum transcription (ADT) system for the model trained using configurations P7 (i.e., horizontal
lines) and P3 (i.e., diagonal lines). From left to right, the first three diagrams correspond to kicks in blue, snares
in orange, and hi-hats in red.

pairs. The rhythmic pattern reconstruction is measured with cosine similarity calculated on the standard

spectral difference envelopes (see Equation (4.16)). A high cosine similarity score close to 1 suggests

the rhythmic envelopes are almost identical whereas a low score suggests that they are dissimilar.

5.4 Results

5.4.1 Automatic Drum Transcription

S-AST Test Set

Figure 5.5 showcases the ADT system’s performance when evaluating the proposed transformations on

the S-AST test set. Specifically, the analysis juxtaposes two distinct translation scenarios: (1) inter-

domain translations, represented by k to s and s to k translations, and (2) intra-domain translations,

where the source and target domains remain consistent. A successful inter-domain translation, for

example from k to s, is manifested as a true positive (TP) snare detection by the ADT system on the

resultant drum sample. Results are expressed as percentages reflecting the TP onset counts. A scrutiny

of the outcomes reveals that the detection efficacy remains relatively consistent across both scenarios,

regardless of whether the translation target is the k or s domain. Furthermore, translations targeting

the s domain exhibit higher TP detection rates compared to those aimed at the k domain.

S-DT Test Set

Figure 5.6 offers a comparative visualisation of TP percentages for intra-drum domain translations

assessed on the S-DT test set. The performance metrics are presented for two distinct training

configurations: P7 (depicted with horizontal lines) and P3 (illustrated with diagonal lines), across k, s,

and h domains. The results indicate that the P3 configuration improves achieves higher of all translated



5.4. RESULTS 91

Figure 5.7: Smoothed mean Pearson correlations between the translated and source audio for k (blue), s
(orange) and h (red) drum domains.

instruments. The highest improvement of the correctly detected translations can be observed for k

and h domains, whereas it is lesser for s. With the new dataset the correct classifications for k are

improved by 30% and by 21.4% for h.

5.4.2 Reconstruction

S-AST and S-DT20 Test Sets

The reconstruction quality is evaluated using PC coefficients, determined as the mean values between

the translated drum loops and their corresponding source recordings. For a comprehensive analysis of

the generational reconstructions, we present results using both CQT (5.7) and Mel (4.15) spectrogram

representations.

Figure 5.7 illustrates the average PC reconstruction outcomes for the k (blue), s (orange), and h (red)

domains. The outcomes derived from the P7 training set are depicted as solid lines for the S-DT20.

In contrast, results obtained from the P3 training set for both the S-AST and S-DT20 are denoted



92 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

with dashed and dotted-dashed lines, respectively. Notably, the frequency reconstruction for frequencies

below 100 Hz is higher across all domains for both spectral representations for configuration P3.

The results from S-AST show a higher PC for k around the 60 Hz mark (a typical fundamental frequency

for kick drums, as per (Major, 2014)), compared to the S-DT20. This disparity can be attributed

to the more straightforward and non-overlapping audio samples in the S-AST test set. Additionally,

the S-AST displays elevated PC reconstructions around the mid-range frequencies (approximately

1 kHz) in both spectrogram representations for the k and h domains. In the higher frequency bracket

(exceeding 9 kHz), reconstructions show higher results for all instruments in both spectral representations.

The most substantial difference is evident in the higher kick reconstructions (blue lines), with modest

enhancements observed in the snares and hi-hats (red lines). This trend suggests that, relative to kick

drums, snares and hi-hats possess noisier characteristics, making their reconstruction more challenging.

In terms of low frequencies, the CQT spectrogram representations depict a significant degradation, a

phenomenon previously observed in pitched instruments (Kim et al., 2019). For non-pitched percussion

instruments, the octave spaced CQT representation achieves superior reconstruction of low frequencies

and diminished reconstruction of higher frequencies. Conversely, the Mel spectrogram demonstrates

lower reconstruction scores for low frequencies and heightened scores for higher frequencies. The primary

exception to this trend is observed in the kick drums in S-AST, which achieves higher reconstructions

than its counterparts in S-DT20. Drum kit instruments, characterised by complex transients and a

lack of regularly spaced overtones, contribute to the Mel spectrogram’s subpar reconstruction at low

frequencies and enhanced reconstruction at high frequencies. Overall, higher frequency reconstructions

are closely matched by both representations, suggesting a similar upper bound of the synthesis quality

(e.g., PC«0.8 for s and h).

The average cosine similarity score across the 20 transformations in S-DT20 dataset training stands at

0.75. This score suggests that, in many instances, the system effectively retains the rhythmic structure

during translation from the source to the target domain. The highest rhythmic similarity score of 0.96 for

a particular transformation indicates that the majority of the target domains were accurately translated,

yielding a rhythmic envelope closely mirroring the input. Conversely, transformations with lower scores

often missed parts of the input, leading to inconsistent rhythmic envelopes. The most underperforming

transformation registered a rhythmic similarity score of 0.48, attributable to consistent misinterpretations

of the kick domain, represented by k. The possible reasons for the various artifacts and behaviours of

the synthesised drums are discussed later, using two translation outputs presented in Figure 5.9.

S-DT70 Test Set

Figure 5.8 presents the smoothed Pearson correlations for seven drum domains (e.g., kick k, snare s,

hi-hat h, and their combinations). The top diagram showcases PCs computed with CQT spectrograms,

while the bottom diagram features PCs derived from Mel spectrograms. For all domains, CQT results

suggest a strong preservation of frequency information below 100 Hz. A noticeable decline in correlation

for low-mid frequencies (220–1760 Hz) is observed across all domains. Domain k (blue curve) stands out



5.4. RESULTS 93

Figure 5.8: Smoothed mean Pearson correlations between the translated and source audio for all drum domains
in S-DT20 for system trained with configuration P7.

with a higher correlation in these frequencies, but experiences a significant roll-off for high frequencies

above 1760 Hz, likely due to model-introduced noise. Conversely, the Mel spectrogram results reveal

notably lower reconstructions for frequencies under 3 kHz. Domains s and h exhibit the highest

reconstructions across all frequencies with CQT representation, yet score lower in the low-frequency

regions with Mel spectrograms. Domain ksh (pink curve) embodies simultaneous kick, snare, and hi-hat

playbacks and records the lowest Pearson correlation across all frequency bands. This suggests the

heightened complexity of simultaneously playing three instruments poses reconstruction challenges. This

trend is also observed, though to a lesser extent, in combined drum domains (i.e., ks, kh, and sh) when

juxtaposed against individual s and h domains. Additionally, drum translations and additional examples

are accessible on the affiliated website.24 As can be heard from many of the translations, the system is

capable of generating samples indicative of the intended target domains. Nevertheless, considerable

noise surfaces during transformations.

The mean cosine similarity score across the 20 transformations in the rhythmic similarity experiment is

0.75. This indicates that in most cases, the proposed system is capable of preserving rhythmic structure



94 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

Figure 5.9: Example translations generated from two sources (A and B), with spectral difference functions as
solid lines over each waveform. Output colours correspond to target drum domains (e.g., blue represents kick
drum translations).

when translating from source to target domain. The highest rhythmic similarity score is 0.96, which

suggests that for this transformation the majority of the target domains were successfully translated

resulting in a rhythmic envelope that is almost identical to the input. Transformations receiving low

similarity scores failed to translate parts of the input resulting in dissimilar rhythmic envelopes. The

lowest performing transformation has a rhythmic similarity score of 0.48 due to a frequent failure in

properly translating kick domain k. The possible reasons for different artifacts and behaviours of the

synthesised audio are discussed using two translation outputs presented in Figure 5.9.

5.4.3 Discussion

To delve deeper into the challenges faced in translated outputs, Figure 5.9 plots two sets of source and

output waveforms from the complex S-DT20 dataset of drum loops. The cosine similarity for translation

A is 0.79, implying certain rhythmic disparities. Upon observing the first beat of output example A,

one notes that the waveform of the source kick drum appears distorted. In the first beat of the output

example A, it can be seen that the waveform of the source kick drum was unnaturally smeared, whereas

the source kick drum A from beat 3 was not translated at all. Both these anomalies—the distortion

and the omission—highlight instances where the system did not accurately capture the kick domain,

leading to numerous unsuccessful transformations and missed detections in Section 5.4. In the case of

example B, all drum domains were translated efficiently, reflected in its high rhythmic similarity score of

0.96. It is plausible that the timbral and rhythmic characteristics of source B enhanced the translation,

revealing a well trained latent space across various drum domains. For instance, the translated output

kick drum from source B in the first beat shows a noisy onset, but it effectively captures the anticipated

low frequencies thereafter. It does, however, noticeably modify the source’s traits, thereby generating a



5.4. RESULTS 95

distinct kick sound. While the rhythmic reconstruction metric aids in analysing rhythmic alterations in

the produced outputs, it does not provide insights into the specific drum types in the signal. Hence a

more detailed investigation into drum translation effectiveness was conducted using a new approach

based on automatic drum transcription introduced in Section 5.3.3.

The analysis of Figure 5.5 provides crucial insights into the robustness of the translation system

under varying translation scenarios. Both inter-domain and intra-domain translations pose unique

challenges. The consistency in detection efficacy across these scenarios suggests that the system adapted

for percussion instruments has achieved a level of domain invariance. This means that the transformation

procedure is capable of retaining essential rhythmic information irrespective of the source or target

domain. The observed higher TP detection rates in translations targeting the s domain could be

attributed to distinctive characteristics inherent to the snare drum, which might be more pronounced

or easier to detect post-translation. The comparative analysis facilitated by Figure 5.6 highlights the

efficacy of different training configurations. The relatively lower improvement for the s domain, when

juxtaposed with the results from the S-AST test set, further supports the hypothesis that the distinctive

features of snare drums make them resilient to variations in training configurations. Such insights could

pave the way for tailored training approaches for each drum domain in future research.

The interpretation of the reconstruction quality using PC coefficients, as showcased in Figure 5.7,

offers an intricate understanding of how the translation system processes and maintains the quality

of translated drum loops when compared with their source recordings. Two key observations emerge.

The first being the system’s effectiveness at recreating low-frequency content, particularly under the

configuration P3. This reconstruction ability in the lower frequency band, especially around the 60 Hz

mark for the k domain in the S-AST test set, underscores the system’s sensitivity to the kick drum’s

fundamental frequency, which is a desired trait of a DGM system trained for neural drum synthesis. This

fidelity to the original, combined with the more simplified nature of the S-AST audio samples, might

explain the elevated PC reconstructions observed. The second observation revolves around the disparities

in the reconstruction of mid-range and higher frequencies. The increased PC values at mid-range

frequencies for the k and h domains signify that the system is adept at capturing the characteristics of

these drums’ harmonic content. The distinction in the reconstruction quality in the higher frequency

bracket further outlines the complexity inherent to different drum types. The prominence of the kick

drums in higher frequency reconstructions, when juxtaposed against the snares and hi-hats, lends support

to the hypothesis that the inherent noisier characteristics of snares and hi-hats pose intricate challenges

in the reconstruction process.

5.4.4 Conclusions

The drum translation system was evaluated using two distinct methodologies. Firstly, an automatic

drum transcription assessment was utilised to determine the effectiveness of drum-to-drum translation,

with a specific focus on kick and snare drums. This evaluation hinged on the system being rigorously



96 CHAPTER 5. DRUM TRANSLATION FOR RHYTHMIC AND TIMBRAL TRANSFORMATION

trained on kick, snare, and hi-hat drum domains. The second evaluation delved deeper, assessing the

quality of timbral and pitch translation reconstruction in conjunction with rhythmic similarity. To ensure

a comprehensive evaluation, this system was trained across a wider spectrum, encompassing seven drum

domains, as illustrated in Figure 5.1. Our results highlight a marked variance in model performance

across different drum types. Kick drums demonstrate a distinct improvement, whereas snares and

hi-hats do not follow the same trajectory. Several factors might contribute to this distinction. Among

them are the inherent challenges of reconstructing low-frequency content and the system’s heightened

sensitivity to certain characteristics of the training data. Interestingly, kick drums seem more affected by

these factors than the naturally noisy signals of snares and hi-hats. Such drawbacks hint at potential

architecture-related improvements.

5.5 Chapter Summary

This chapter has introduced a new mode of transformation through drum translation, which explores

the rhythmic and timbral capabilities of generative audio synthesis with WaveNet autoencoders. The

introduced system serves as a method for redrumming, fostering innovative possibilities in musical

composition and rhythmic transformation. In this transformation, an input file of an arbitrary length

is transformed such that it sounds as if it were performed by different drum instruments. To further

enhance the system’s efficacy, a unique method was introduced for the visual fine-tuning of large audio

datasets, specifically to identify and eliminate noisy outliers. Moreover a novel evaluation technique

based on automatic drum transcription was proposed. The technique aimed to gauge the system’s

success rate in translating drums both within and across types. The findings revealed that kick drum

generations benefited the most from the enhanced training dataset. In contrast, translations of snares

and hi-hats displayed marginal improvements, attributed to their inherently intricate and erratic timbral

attributes. Building upon the foundational metrics presented in Chapter 4, this chapter extended the

reconstruction metrics to offer comprehensive evaluation of the proposed transformation system.

Overall, this chapter unveiled the transformative potential of redrumming. Advancing beyond the

rhythmic pattern modifications and timbral adjustments of the rhythmically constrained audio style

transfer presented in Chapter 4, the drum translation system explores the creation of specific target

drum sounds. Users can customise these sounds with their unique drum sample collections, offering a

personalised touch to creative transformations of percussion recordings. The next chapter presents an

end-to-end drum synthesis and transformation system, which allows a user to synthesise individual drum

instruments, but also extends neural audio synthesis to include the manipulation of rhythmic patterns

within bar-length segments of arbitrary percussion recordings.



Chapter 6

Drum Synthesis and Rhythmic

Transformation with AAE

This chapter presents a deep generative system for automated rhythmic transformation based on adversar-

ial autoencoders (AAE). In this system for combined drum synthesis and rhythmic transformation—akin

to the popular task of redrumming—a user is provided with control to continuously navigate among

complex rhythmic possibilities by interpolating through a low-dimensional latent space. This is achieved

by integrating Gaussian mixture latent distributions for rhythmic pattern conditioning with state-of-the-

art adversarial autoencoders. To train and evaluate the system, a dataset of over 500,000 bars from

5,418 audio tracks from a variety of musical genres is collected and annotated. This dataset serves

as both the proving ground and the training field for the system’s capabilities. Chapter 4 introduced

a rhythmically-constrained audio style transfer system, which required two audio inputs to function.

Then, Chapter 5 discussed drum translation, working with individual drum samples within a percussion

recording. Analogous concepts are explored in this chapter, enabling the system to work with either a

single input or a pair of inputs, at the scale of bar-length rhythmic patterns.

A major contribution of this chapter is the development of a system that does not require tedious

discretised note segmentation or rhythmic event selection prior to transformation. A user is given the

freedom to manipulate the structure within a bar without reliance on discrete identification of rhythmic

boundaries towards a continuous transformation. This is achieved with the proposed framework based

on Gaussian mixture adversarial autoencoders (AAE-GM) conditioned on rhythmic patterns present in

real music recordings. AAEs are neural networks that use adversarial training to learn a compact

and informative representation of the training data, and then use this representation to generate new

samples. AAEs have been demonstrated to successfully generate latent space which preserves timbral

characteristics of different instruments (Bitton et al., 2019) as well as face features in photographs

relating to age (Zhang et al., 2017). The authors in Makhzani et al. (2015) observed that variational

autoencoders (VAE) are largely limited by the Gaussian prior, and proposed to use AAEs which can be

97



98 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

trained with any distribution by replacing the KL divergence with an adversarial loss imposed on the

encoder output.

The main contents of this chapter can be summarised as follows: Section 6.1.1 introduces the method

for continuous transformation with the implementations specifications of a unified AAE architecture

for drum synthesis and rhythmic transformation presented in Section 6.1.2. Section 6.1.3 proposes the

methodology used to find and transform rhythmic patterns. Section 6.2 describes the creation of the

new dataset of percussion performances extracted from real music recordings as well as the evaluation

methodologies of the transformation systems. In Section 6.3, the system performance is measured in

evaluations of the rhythmic pattern organisation in the latent space, as well as an evaluation of the audio

reconstruction performance compared with three pre-existing algorithms, and the transformation quality

between source and target patterns through latent space interpolation. The development and evaluations

of the proposed system would not be possible without the generous support of Masataka Goto and the

compute resources of the National Institute of Advanced Industrial Science and Technology (AIST).

6.1 Method

An overview of the proposed method for joint drum synthesis and rhythmic transformation is presented

in Figure 6.1. The system is based on adversarial autoencoders introduced in Makhzani et al. (2015)

and is inspired by adversarial audio synthesis approaches in Bitton et al. (2019), Donahue et al. (2018),

and Engel et al. (2019). To achieve both drum synthesis and rhythmic transformation in a unified

architecture, the proposed model originally extends adversarial audio synthesis to include a regularisation

based on a Wasserstein GAN adversarial framework for the transformation of rhythmic and timbral

qualities of drum recordings. It supports an AAE with gradient penalty and Guassian mixture prior for

conditional disentanglement, the ability of the model to separate and manipulate the underlying factors

of variation of rhythmic pattern styles in the dataset. Disentanglement is particularly important for

synthesis control of rhythmic patterns and drum types and allows for more fine-grained control over the

generated audio, enabling the model to synthesise specific rhythmic styles and instruments.

6.1.1 Adversarial Autoencoder

While similar in design to VAE (Kingma and Welling, 2013), adversarial autoencoders (AAE) appropriate

the additional discriminator network Dz from GANs, which aims to distinguish between real and

synthesised (i.e., fake) samples. Real samples z˚ „ ppzq are sampled from an assumed prior distribution

ppzq imposed on the latent variables z, while synthesised samples are generated through the use of

an encoder E conditional distribution qϕpz|xq. The decoder (i.e., generator network G) conditional

distribution is denoted by pθpx|zq. In practice pθpx|zq and qϕpz|xq are parameterised with neural

networks and sampling from qϕpz|xq is performed using a reparameterisation trick (Kingma and Welling,

2013). Let pdpxq be the data distribution of data sample x, and pgpxq be the distribution of data

generated by the model. The encoder defines an aggregated posterior distribution qϕpzq on the z as in



6.1. METHOD 99

Figure 6.1: Proposed architecture for joint drum synthesis and rhythm transformation. Input data x is mapped
onto a latent variable z „ qϕpz|xq. Encoder E tries to trick discriminator Dz with artificially generated latent
samples and generator G outputs spectrograms x̃. A Gaussian prior distribution z˚

„ ppzq (star) allows the
model to juxtapose similar rhythmic patterns in the latent space. Solid lines represent deterministic operations
of the network and dashed lines represent stochastic operations.

Equation (3.43). Following the more general formulation for GANs (Nagarajan and Kolter, 2017), the

adversarial component of an AAE can be trained as:

min
E

max
Dz

V pE,Dzq “ Ez˚„ppzqrfpDzpz˚qqs ` Ex„pdpxqrfp´DzpEpxqqqs, (6.1)

where Er¨s denotes expectation and objective V is optimised by alternating parameter updates of

encoder E and discriminator Dz in a minimax game characteristic of GAN models. When the concave

function f : R ÝÑ R is set to fpxq “ ´logp1 ` expp´xqq, the formulation resembles that of the GAN

by (Goodfellow et al., 2014). The Wasserstein GAN (WGAN) criterion—introduced in Arjovsky et al.

(2017)—can be obtained by setting fpxq “ x (see Section 3.2.4).

The parameters of the autoencoder are optimised by the reconstruction error, while the adversarial

network guides the encoder to match the imposed prior. Thus, the encoder plays the role of the generator

during the adversarial part of training, while the discriminator represents the adversarial network of

GANs. After training, decoder G acts as a generative model that maps the imposed prior to the data

distribution. Training of an AAE is performed in two phases: (1) the reconstruction phase and (2) the

regularisation phase. In the reconstruction phase the reconstruction error of E and G is minimised

together and in the regularisation phase, the parameters of the discriminator Dz are first updated

by minimising LDz
“ ´V pE,Dzq (i.e., to distinguish true samples generated by the prior from the

generated codes processed by the autoencoder). The adversarial network then updates the encoder to

confuse the discriminator. When combined, the two terms represent Ltotal as follows:



100 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

Ltotal “ BCEppd, pgq ` βLWGAN´GP , (6.2)

where BCE denotes binary cross-entropy reconstruction cost between the original data samples |S| (i.e.,

Mel spectrograms in this study) and their reconstructions |Ŝ| as:

BCEpS, Ŝq “ ´rSlogŜ ` p1 ´ Sqlogp1 ´ Ŝqs; |S| ă 1. (6.3)

The second term in Equation (6.2) is the WGAN with gradient penalty (WGAN-GP) loss with weighting β

from Gulrajani et al. (2017), proposed as an improved solution to gradient clipping in adversarial training

of the discriminator, computed as:

LWGAN´GP “ LDz
` λEx̂„px̂

rp||∇x̂DzpEpxqq|| ´ 1q2s, (6.4)

where x̂ represents a randomly weighted average between real and generated samples. Following Gulrajani

et al. (2017), λ “ 10. During the regularisation phase, this term imposes regularisation on latent

variables z and can be trained end-to-end with gradient descent.

6.1.2 Implementation

Details for the proposed adversarial autoencoder with Gaussian mixture prior (AAE-GM) are presented in

this section. All neural network models are implemented using the TensorFlow Python library.26

6.1.2.1 Input Features

Following the approach in Bitton et al. (2019), input audio (16-bit 22.05 kHz mono WAV files) is

transformed with short-time Fourier transform (STFT) using a Hann window with a window length of

2048 samples and a hop size of 324 samples to facilitate the desired temporal resolution of the network

input. To satisfy the symmetric structure of networks E and G, Mel spectrograms are created from

audio inputs with a fixed length of 41344 samples corresponding to a bar segment of 1.87s duration at

128 beats per minute (BPM). Every bar is normalised to this duration by a time-stretching algorithm to

ensure fixed bar-length spectral representations. Section 6.2.1 presents further discussion on the chosen

input representation of the utilised datasets. The resulting features represent the network input S of size

512 bins by 128 STFT frames. Magnitudes of S are floored to 1e–3 and log-scaled in [0,1] according to

the BCE range. Rhythmic pattern styles ξ “ 11 (i.e., classes as clustered attributes of S) are used in

supervised training as labels φ and are defined in Section 6.1.3.

26https://www.tensorflow.org/

https://www.tensorflow.org/


6.1. METHOD 101

6.1.2.2 Architecture

The architectural details and parameters were inspired by the methodologies outlined in Bitton et al.

(2019), Engel et al. (2019), and Donahue et al. (2018). These choices are geared towards optimal

performance in generating audio spectrograms with the frequency resolution outlined in Section 6.1.2.1

and have been adapted to facilitate the symmetric autoencoder architecture for modelling of bar-length

patterns at 128 BPM. All convolution layers in the proposed architecture are 2D, leveraging square

kernels to maintain the aspect ratio of the feature maps. Zero-padding is strategically set to half the

kernel size, ensuring the output feature map size is the same as the input size (i.e., same padding),

which is a common practice in convolutional neural networks to preserve border information (Goodfellow

et al., 2014). Feature normalisation in these layers employs the widely-adopted batch normalisation

technique introduced by Ioffe and Szegedy (2015), which stabilises learning by reducing internal covariate

shift. We utilise leaky rectified linear units (LeakyReLU) with a slope of 0.2, to introduce non-linearity

while mitigating the vanishing gradient problem often associated with standard ReLU activations. The

deterministic encoder consists of five convolution layers with output channels configured as [16, 32, 64,

128, 256]. This design follows a progressive downsampling strategy that doubles the number of feature

detectors after each layer, allowing the network to learn a hierarchy of features from simple to complex

(Simonyan and Zisserman, 2014). The chosen kernel size of 7 and stride of 2 have been optimised to

reduce the dimensionality effectively while capturing the relevant features in the input spectrograms.

The encoder’s output is a downsampled representation that is then flattened and passed through a

sequence of fully-connected layers forming a bottleneck. This structure, consisting of [2048, 1024, 512]

units, is designed to compress the input into a lower-dimensional latent space, as suggested by Hinton

and Salakhutdinov (2006) for efficient data encoding. Two fully-connected layers µ and σ are used

for sampling z with the reparametrisation trick (Kingma and Welling, 2013) (see Section 3.2.3), thus

mapping the input to the latent space z P RNz , where Nz “ 64. This technique is crucial for variational

autoencoder models to approximate probability distributions for generative processes. The decoder

architecture is a reflection of the encoder with 3 linear layers of output sizes [512, 1024, 2048] and a

layer reshaping the vector into 256 feature maps, expanding the compressed representation back to the

original input dimension. It employs linear layers followed by reshaping to recover spatial dimensions

from the flattened latent representations. To address the issue of upsampling, we use nearest-neighbour

interpolation as a computationally efficient alternative to transposed convolutions, which have been

shown to produce undesirable checkerboard patterns in the output (Odena et al., 2016). In the context

of audio processing, particularly when dealing with spectrograms, checkerboard artifacts can manifest

as spurious or unevenly distributed features across the frequency-time bins. These maps are processed

through 5 layers with an upsampling factor set to 4 and convolution layers with [128, 64, 32, 16, 1]

output channels, kernel sizes [7, 7, 7, 9, 9] and stride 2. The last layer reconstructs the input shape of S

(128ˆ512) followed by a sigmoid activation function bounding the output to the BCE range. A sigmoid

activation function is employed to confine the outputs to the [0,1] range, suitable for binary cross-entropy

(BCE) loss computation, a standard approach in autoencoder frameworks for input reconstruction



102 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

(Kingma and Welling, 2013). The adversarial discriminator is composed of three fully-connected layers

with a substantial number of output channels [2048, 2048, 1]. The architecture concludes with a linear

output layer that outputs a scalar score, assessing the degree to which the latent representation matches

the target distribution, a concept foundational to adversarial training as discussed by Goodfellow et al.

(2014) and Makhzani et al. (2015).

6.1.2.3 Representation of Prior Distribution

The authors in Makhzani et al. (2015) observed that VAEs are largely limited by the Gaussian prior,

and thus relaxed this constraint by allowing ppzq to be any distribution by replacing the KL divergence

with an adversarial loss imposed on the encoder output. Thus the latent variable z is required to have

the same aggregated posterior distribution as the prior ppzq. The AAE framework makes it possible

to leverage any prior knowledge that may be specific to the studied application. Here, an isotropic

Gaussian with 0 mean and I variance is used as a baseline, and compared against a prior distribution

that is a mixture of ξ Nz-dimensional Gaussians, where ξ denotes the number of rhythmic pattern

styles as defined in Section 6.1.3. This distribution can be depicted with a 2D flower-like shape and

allows modelling of a variety of similar rhythmic styles by pushing their latent codes to the centre of the

Nz-dimensional distribution. Following the notation by authors in Valenti et al. (2020), the means of ξ

Gaussians are placed on a 2D circle as:

µi “

„

cos

ˆ

2πi

ξ

˙

, sin

ˆ

2πi

ξ

˙

, 0, ..., 0

ȷ

, (6.5)

where µi has a total of Nz dimensions. The covariance matrix Σi is calculated as:

υi “

»

–

cosp 2πi
ξ q sinp 2πi

ξ q,

´sinp 2πi
ξ q cosp 2πi

ξ q

fi

fl , (6.6)

Ui “

»

–

υT
i 0

0 I

fi

fl , (6.7)

Λ “

»

–

a1 0

0 diagpa2q

fi

fl , (6.8)

Σi “ UiΛU
´1
i , (6.9)

where Ui and Λ are Nz ˆ Nz matrices. The variance a1 “ 0.1 for the radial (i.e., center-to-outer)

dimension, and variance a2 “ 0.001 for the remaining dimensions. The matrix Ui is used to rotate Λ

with respect to the position of the specific Gaussian. Thus, each of the ξ rhythmic pattern styles is

associated with a separate Gaussian where patterns that are more similar are still able to be organised

closer to each other.



6.1. METHOD 103

Figure 6.2: Rhythmic transformation of source (left) with intermediate pattern (middle) and resulting output
transformation (right). Rhythmic envelopes (bottom) show changes to the rhythmic pattern as the latent code
is manipulated via parameter α.

6.1.2.4 Training and Signal Reconstruction

The model is trained using the Adam optimiser (Kingma and Ba, 2014) with an initial learning rate

of 1e–4. All model weights use Xavier uniform initialisation (Glorot and Bengio, 2010). The model is

trained for around 100000 iterations with a total batch size of 128 for approximately 2 days using 4 Tesla

V100 GPUs on AI Bridging Cloud Infrastructure (ABCI) kindly facilitated by the National Institute of

Advanced Industrial Science and Technology.27 During training, the β parameter is gradually increased

by 0.1 every 5000 iterations. Mel spectrograms generated by the trained model are approximated back

to the linear frequency scale and iteratively inverted with the Griffin-Lim algorithm (Griffin and Lim,

1984) for 150 iterations.

6.1.3 Rhythmic Transformation

An overview of the rhythmic transformation is shown in Figure 6.2. A source recording is reduced to

rhythmic-timbral representation output from a deterministic encoder and is passed to the generator

together with a target pattern label. This latent code can be used to manipulate metrically relevant

positions of drum instruments within a bar with mixing parameter α.

6.1.3.1 Representation of Rhythmic Patterns

Information related to rhythmic patterns is introduced during model training in order to guide the output

generations towards particular target patterns. Audio tracks are first separated into a drums component

and music parts (e.g., vocals, bass, other) with the Spleeter source separation library (Hennequin et al.,

2020).28 Next, audio tracks are segmented into bars b using the state-of-the-art beat and downbeat

tracking algorithm (Böck et al., 2016b) included in the madmom Python library (Böck et al., 2016a).29

Rhythmic patterns are represented with rhythmic envelope features processed with LogFiltSpecFlux

from madmom, which performed well in onset detection function comparisons conducted in Böck

et al. (2012b), for N (N “ 3) frequency bands representing low (lowpass: 120 Hz), mid (bandpass:

27https://docs.abci.ai/en/
28https://github.com/deezer/spleeter
29https://github.com/CPJKU/madmom

https://docs.abci.ai/en/
https://github.com/deezer/spleeter
https://github.com/CPJKU/madmom


104 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

Figure 6.3: Bar-length drum pattern definition using three frequency bands (low, mid and high).

120–2500 Hz) and high (highpass: 2500 Hz) parts of drum recordings in each bar b. Following the

authors in Dixon et al. (2004) and Hockman et al. (2008), b rhythmic envelopes are resampled to a

length of 144 time steps t and normalised to ranges between 0 and 1. The resulting M number of

patterns is represented by a template matrix τ P RMˆNˆt. Figure 6.3 shows an example bar-length

drum recording with the proposed representation of three rhythmic envelopes plotted together.

6.1.3.2 Clustering of Rhythmic Pattern Styles

Building on past research for rhythmic pattern modelling (Dixon et al., 2003; Krebs et al., 2013; Peeters,

2005), an unsupervised clustering strategy via X-means (Pelleg and Moore, 2000) algorithm is proposed

in this work. X-means is an unsupervised extension of the popular K-means algorithm, which does

not require the predetermined K number of clusters prior to classification. The framework requires

specification of the range within which K reasonably lies, and then jointly outputs the number of

centroids together with a value for K that scores best by a model selection criterion such as Bayesian

information criterion (BIC). All clustering experiments are implemented using PyClustering Python

library (Novikov, 2019).

Centroid initialisation is known to influence clustering results in both K- and X-means algorithms,

and as such results can be improved through informed initialisation. All experiments in this study

incorporate K-means++ initialisation (Arthur and Vassilvitskii, 2006) with prior knowledge of rhythmic

patterns extracted from transcriptions of the 50 most frequent kick, snare and hi-hats patterns from

over 4.8 million bar-length drum patterns (Mauch and Dixon, 2012).30 Patterns are resampled to satisfy

the structure of rhythmic template matrix τ P R50ˆ3ˆ144.

6.1.3.3 Pattern Conditioning and Interpolation

In order to introduce conditioning based on rhythmic pattern styles, each input feature S used during

training is assigned a categorical variable taking one of the ξ number of style states found through

X-means clustering. During the reconstruction phase, one-hot encoded conditioning vectors for ξ

rhythmic styles are concatenated with inputs to the generator G. The basis for a suitable ξ number

of rhythmic pattern styles is presented in Section 6.1.3.4. Mixing of two different drum patterns can

30http://isophonics.net/ndrum

http://isophonics.net/ndrum


6.1. METHOD 105

Figure 6.4: Determination of a suitable K with X-Means algorithm. The plot shows sums of mean squared
errors for K “ r5 ´ 50s using Bayesian information criterion (BIC).

Rhythmic patterns ξ 3 9 2 4 1 10 7 6 0 5 8

Number of bars 21177 25496 33695 35815 38335 48453 50982 54612 58396 66939 76959

Table 6.1: Numbers of bars ordered from the smallest to the largest (left to right) present in each rhythmic
pattern ξ.

be achieved through interpolation transformation in the latent space of the trained model. Since the

transformation is continuous, a gradual change can be achieved from the source rhythmic pattern to

the target pattern by interpolating the intermediate z values before inputting them into the trained

generator. These intermediate latent codes can be produced using a linear interpolation between source

and target latent codes such that:

z̃ “ αztarget ` p1 ´ αqzsource (6.10)

where α is an interval between [0,1]. The interpolated codes z̃ are fed into the generator, which outputs

the mixed bar-length drum performances.

6.1.3.4 Pattern Style Definition via X-means

Determination of a suitable number of rhythmic patterns ξ is achieved through the X-means algorithm

using BIC scores calculated across K “ r5, 50s with a maximum number of clusters set to 100. As

in Dixon et al. (2004), a pattern resolution of t “ 144 is used. Rhythmic envelopes are smoothed for

different standard deviations ς “ r0.2, 0.6, 0.8s covering a range of 4 timesteps at a time. Convergence

was most frequently observed at K “ 11 with ς “ 0.2. Hence, ξ consists of 11 patterns ranged from ξ0

to ξ10. Using the proposed clustering parameter configuration, mean rhythmic pattern representations

are calculated for three frequency bands (i.e., high, mid, and low). Figure 6.5 shows the mean rhythmic



106 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

Figure 6.5: Rhythmic pattern style representations for patterns labelled from 0 to 11 extracted for the mid
range (120–2500 Hz).

patterns for the mid frequency band to illustrate the differences in different pattern representations. The

numbers of bars for each of the pattern clusters are shown in order from the least to highest number in

Table 6.1 as well as above each rhythmic envelope representation in Figure 6.5. The clusters sizes range

from 21177 bars (ξ3) to 76959 (ξ8) with a mean of 46442 bars and standard deviation of 17332 bars.

6.2 Evaluations

The proposed system described in Section 6.1 is assessed through an experiment to determine (1) the

rhythmic pattern organisation in the latent space structure, (2) an evaluation of the audio reconstruction

performance compared with similar AE models, and (3) an evaluation of the transformation quality

between source and target patterns through latent space interpolation. In this section the dataset,

experimental methodology and baseline systems under evaluation are presented.



6.2. EVALUATIONS 107

Figure 6.6: Mean bar-length pattern representations for different datasets (columns): JFRB (Tomczak et al.,
2020), HMX (Nieto et al., 2019), HJDB (Hockman et al., 2012), and DALI (Meseguer-Brocal et al., 2018).
Rhythmic envelopes are averaged over patterns extracted from recordings filtered using high (2500–11025 Hz),
mid (120–2500 Hz), and low (40–120 Hz) frequency bands (rows).

6.2.1 Dataset

This project makes use of three publicly available datasets: (1) DALI (4116 tracks) (Meseguer-Brocal

et al., 2018), (2) Harmonix (HMX 807 tracks) (Nieto et al., 2019), and (3) HJDB (227 tracks) (Hockman

et al., 2012), as well as a private collection of 268 jazz, funk and R&B (JFRB) recordings. For

reproducibility, all track filenames from all datasets are available on the supporting website.31 Mean

rhythmic pattern representations for four datasets are plotted in Figure 6.6. While HMX and DALI rhythms

are quite representative of Western popular music with heavy accents on beat 2 and 4, the patterns in

HJDB and JFRB show syncopated sixteenth note patterns. The resulting dataset contains 5418 musical

pieces of polyphonic sound mixtures having various kinds of instruments and represents a wide variety of

genres and rhythmic patterns. All audio recordings are in 16-bit mono WAV format and resampled to

22.05 kHz. To facilitate modelling of rhythmic patterns, those tracks are segmented into bars using the

downbeat tracking algorithm by Böck et al. (2016b).

In order to model rhythmic patterns from percussion instruments present in the dataset, source

separation is performed with the pre-trained 4stems model provided in the Spleeter library Hennequin

et al. (2020) to extract drum sounds from music sound mixtures. The resultant drum parts are used in

two ways: (1) as training inputs described in Section 6.1.2.1, and (2) for rhythmic pattern modelling

described in Section 6.1.3. In both scenarios, tracks with time signatures other than 4
4 or with a peak

amplitude ă 0.2—due either to empty bars or poor source separation—are excluded. After filtering,

the data is represented by 5418 tracks with a total of 510859 bars. Assessment of the dataset tempi

results in a median tempo of 128 BPM. To facilitate appropriate representation of a wide range of

rhythmic patterns, all bar-length segments are time-stretched to a fixed tempo of 128 BPM with the

Rubberband library.32 To reduce the overfitting or underfitting (see Section 3.1.4) during training, the

31https://maciek-tomczak.github.io/acm2020/
32https://breakfastquay.com/rubberband/

https://maciek-tomczak.github.io/acm2020/
https://breakfastquay.com/rubberband/


108 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

dataset samples are distributed among training (80%), validation (10%) and test sets (10%) with an

equal distribution of bars per ξ rhythmic pattern styles throughout all sets.

6.2.2 Experimental Methodology

In order to view the organisation of the learned latent space, its structure is visualised with 2D and 3D

plots for each of the rhythmic classes ξ with principal component analysis (PCA) portraying differences

between two different prior distributions. The ability of the proposed model to generate spectrograms is

evaluated using both timbral and temporal reconstruction metrics: root-mean squared error (RMSE),

log-spectral distance (LSD) and cosine similarity (CS). The LSD is calculated as follows:

LSD “

c

ÿ

”

10 log10p|S|q ´ 10 log10p|Ŝ|q

ı2

. (6.11)

Following Davies et al. (2014a), temporal reconstruction of the generations is evaluated with rhythmic

cosine similarity (RCS) between rhythmic envelopes R (see Section 6.1.3) extracted from source χ

and generated ν recording. The reported CSRχ,Rν
is computed between rhythmic envelopes Rχ and

Rν following the calculation presented in Equation (4.17). RCS will be close to unity for very similar

patterns and nearer to zero for dissimilar patterns. To evaluate the continuity of the transformations,

latent space interpolations between rhythmic patterns are performed using Equation (6.10). Scores

for each metric are calculated between the source recording and the resulting rhythmic transformation.

Reconstruction scores for all examples are scaled to range [0,1] and averaged for different α across three

folds. Three-fold cross validation is performed to establish that the validation and testing subsets portray

a true representation of the training dataset. For example, if the test or validation subsets were biased

in some way towards a particular rhythmic pattern, then the system performance could be inaccurately

presented. Hence different biases in the dataset can be reduced as well as the reliability of the reported

results can be improved. Evaluations in the following sections use 1000 patterns from each ξ rhythmic

pattern style, resulting in a total of 11000 evaluation audio examples per fold.

6.2.3 Baseline Systems

In addition to the proposed Gaussian mixture AAE (AAE-GM) architecture, three additional models

are implemented for comparisons: (1) AAE using isotropic Gaussian prior distribution (AAE-ISO),

(2) variational autoencoder (VAE), (3) a Wasserstein autoencoder with maximum mean discrepancy

(WAE-MMD) regularisation. All models share the same architecture implementations and are trained

in a supervised manner. The proposed AAE-GM uses a regularisation based on a WGAN adversarial

framework—including a gradient penalty with Guassian mixture prior for conditional disentanglement of

rhythmic pattern styles—for the transformation of rhythmic and timbral qualities of drum recordings.

As a comparison for the rhythmic transformation capabilities of the presented AAE-GM model, the audio

synthesis framework using WAE-MMD (Bitton et al., 2019) is here modified to act on longer timescales



6.3. RESULTS AND DISCUSSION 109

Figure 6.7: PCA visualisations of the baseline AAE-ISO (top) and the proposed AAE-GM (bottom) with 2 PCs (left)
and 3 PCs (right) for 11 rhythmic styles.

as present in bar-length patterns. The WAE-MMD implementation is followed without the conditioning

module proposed by the authors in (Bitton et al., 2019). In the case of VAE, the model minimises the

evidence lower bound objective (Kingma and Welling, 2013) with isotropic Gaussian latent distribution.

The WAE-MMD uses BCE reconstruction loss where the regularisation from Equation (6.2) is replaced with

MMD (see Section 3.2). MMD represents a distance measure between the samples of the distributions

x „ ppxq and y „ qpyq and was proposed as a more flexible regularisation to Kullback–Leibler divergence

used in a baseline VAE (Bitton et al., 2019). MMD defines a differentiable divergence and was developed

as a distance between probabilistic moments that map to a general reproducing kernel Hilbert space as

defined in Equation (3.33). The kernel function used in computation of MMD is the radial basis kernel

defined in Equation (3.34).

6.3 Results and Discussion

Audio examples and additional experiments are available on a supporting website.33

6.3.1 Latent Space Structure

The 64-dimensional latent spaces for AAE-GM and AAE-ISO are visualised in 2D and 3D in Figure 6.7

using PCA. PCA ensures that the visualisation is a linear transform of the original space, and thus

preserves the real distances inside the latent space. As can be seen, it is not possible to distinguish

33https://maciek-tomczak.github.io/maciek.github.io/Drum-Synthesis-and-Rhythmic-Transformation/

https://maciek-tomczak.github.io/maciek.github.io/Drum-Synthesis-and-Rhythmic-Transformation/


110 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

RCS LSD RMSE

Pattern AAE-GM AAE-ISO VAE WAE-MMD AAE-GM AAE-ISO VAE WAE-MMD AAE-GM AAE-ISO VAE WAE-MMD

0 0.789 0.758 0.694 0.757 9.825 11.014 11.777 10.912 0.309 0.330 0.376 0.326
1 0.788 0.755 0.704 0.757 9.716 10.998 11.729 10.935 0.307 0.329 0.375 0.329
2 0.786 0.755 0.697 0.747 9.805 11.120 11.851 11.039 0.311 0.333 0.378 0.330
3 0.682 0.653 0.581 0.654 10.020 11.144 11.843 11.030 0.411 0.435 0.478 0.431
4 0.790 0.762 0.709 0.756 9.751 11.015 11.714 10.891 0.308 0.329 0.373 0.325
5 0.787 0.758 0.710 0.760 9.742 10.965 11.686 10.858 0.307 0.329 0.374 0.326
6 0.790 0.761 0.712 0.760 9.751 11.025 11.751 10.920 0.307 0.330 0.374 0.326
7 0.789 0.762 0.710 0.757 9.738 10.960 11.683 10.827 0.306 0.328 0.372 0.323
8 0.738 0.712 0.658 0.703 9.778 11.034 11.734 10.912 0.308 0.330 0.374 0.326
9 0.731 0.708 0.657 0.704 9.908 11.139 11.830 11.018 0.413 0.435 0.471 0.431
10 0.792 0.762 0.706 0.755 9.744 11.024 11.770 10.908 0.309 0.330 0.376 0.327

Means 0.769 0.741 0.685 0.737 9.798 11.040 11.761 10.932 0.327 0.349 0.393 0.345
σ 0.036 0.035 0.040 0.035 0.091 0.065 0.060 0.069 0.042 0.043 0.040 0.042

Table 6.2: Reconstruction results using rhythmic cosine similarity (RCS), log-spectral difference (LSD) and
root-mean squared error (RMSE) presented per rhythmic pattern for the proposed AAE-GM and baseline systems
AAE-ISO, VAE, and WAE-MMD. Colour strengths correspond to the results calculated across all rhythmic patterns (0–
10) for each metric and system (i.e., per column). Higher RCS values and lower LSD and RMSE values indicate
better reconstruction performance shown with green shading whereas lower performance is shown with red
shading.

between the different rhythmic pattern styles in AAE-ISO without the Gaussian mixture prior. The effect

of the proposed AAE-GM with Gaussian mixture prior can be clearly seen with more visibly organised

clusters in both 2D and 3D PCA representations. When analysing mean rhythmic pattern representations

as clustered by the X-means algorithm, pattern types ξ0 (purple) and ξ6 (green) represent disparate

rhythmic styles—style ξ0 is typified by a clear 16th-note pattern and style ξ6 is an 8th-note pattern with

an accent on the second beat in the bar (see Figure 6.5).

6.3.2 Reconstruction Performance

The reconstruction performance scores of the proposed and baseline models for each pattern style are

shown in Table 6.2. The mean LSD and RMSE scores describe the spectral reconstruction quality

of generated audio spectrograms with regard to the original. The results for mean LSD and RMSE

indicate that the proposed AAE-GM model achieves a higher level of reconstruction quality than the

other approaches. The mean differences between AAE-GM, AAE-ISO, and WAE-MMD are larger across

all patterns when compared to the VAE system. This indicates that the generations produced by the

baseline VAE are more noisy in comparison to the input examples.

The best reconstructed pattern across all systems is ξ7, as indicated by lowest mean values for

LSD (10.802) and RMSE (0.332) metrics. Conversely, the most challenging pattern to generate across

systems is ξ3 with highest means in LSD (11.00) and RMSE (0.439). The second most challenging

pattern across systems in both metrics is ξ9 with mean values in LSD (10.974) and RMSE (0.438).

While the AAE-GM exhibits higher variability in its LSD reconstruction results across different patterns,

it consistently outperforms the average reconstruction capabilities of other systems. This indicates

that the AAE-GM adapts to more challenging rhythmic patterns, making it a more versatile model in

diverse contexts. In contrast, the VAE shows the least variability in its LSD reconstructions, as indicated



6.3. RESULTS AND DISCUSSION 111

Figure 6.8: Example of interpolation between two rhythmic patterns.

by a standard deviation (σ) of 0.06. However, its adaptability is the poorest among the evaluated

models, resulting in consistently subpar reconstruction performance across all patterns. The poor

performance of all systems on ξ3 and ξ9 is correlated with the lowest numbers of bars in these two

rhythmic styles (see Table 6.1). This indicates that the model does not perform as well with lower

quantities of training examples. A similar finding is present in the rhythmic RCS results, where the

highest mean performance across systems can be observed in ξ6 (0.756) and ξ7 (0.755). Both correspond

to rhythmic styles with a larger number of bars than in ξ3 and ξ9. The RCS score quantifies how

similar are the rhythmic envelopes of the newly synthesised audio in comparison to the original and

the proposed AAE-GM produces higher RCS results than AAE-ISO for all pattern styles. Results from

t-tests computed across transformations and folds demonstrate that the improvement for rhythmic

RCS is significant (ρ ă 0.05). This demonstrates the advantage of the Gaussian mixture prior in the

AAE-GM system when compared to the baseline AAE-ISO systems. Although the reconstructions from the

AAE-GM, WAE-MMD and AAE-ISO all contain a degree of noise, the results of these three systems achieve

comparable RCS (ą 0.7). The RCS for the VAE is considerably lower, likely due to the reconstructions

being generated with a more substantial amount of noise. While all systems show similar variability

in RCS scores, the VAE has a slightly higher standard deviation, indicating more inconsistency in its

rhythmic pattern reconstructions. To mitigate the artifacts caused by the time-stretching effect—which

contribute to the overall added noise in the transformations, as evidenced by the comparable variance of



112 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

Figure 6.9: Reconstruction scores for interpolations between source and target rhythmic patterns.

RMSE reconstructions—it would be beneficial to explore the use of variable-length features in neural

network training. Furthermore, the transformation would also benefit from additional drum placement

information provided by accurate automatic drum transcription.

6.3.3 Latent Space Interpolation

One of the chief characteristics of a well-trained latent representation is its ability to generate accurately

represented samples based on embeddings created by performing linear interpolation (Section 6.1.3.3).

Smooth transitions in the latent space are desired in a user-controlled sound transformation (Bitton

et al., 2019, 2018). Figure 6.8 demonstrates a transformation between two different types of rhythmic

patterns and different instruments (e.g., purple kick drum transforms into a red snare drum at around

0.5s). Notably, the temporal positions of the last two events in the source audio (i.e., purple kicks after

1.0s) are gradually shifted in time as they are morphed into a single softer and higher pitched sound

event at α “ 0.5 before it disappears completely at α “ 0.75.

To analyse the effect of the rhythmic transformation for the intermediate α values, all audio examples

in the test set are interpolated to randomly chosen target patterns. Figure 6.9 depicts the reconstruction

scores calculated as means from all folds and transformations for each interpolated value for α. As

expected, the RCS decreases as the transformation moves output audio further away from the source and

highlights an upper bound of the RCS reconstruction performance of the system at approximately 0.77.

Results from t-tests computed across transformations and folds demonstrate that the change of the

RCS of all patterns is significant (ρ ă 0.05), which shows that the synthesised patterns are significantly

different from the source patterns. Moreover, as the transformation operates on audio containing

percussion only, the intention is not to adjust the spectral content by a large margin. The scores for

RMSE reflect that characteristic by not varying considerably throughout the interpolation, indicating



6.4. CHAPTER SUMMARY 113

that the spectrogram reconstruction quality remains similar. On the other hand, LSD mirrors the

behaviour of RCS indicating change in spectral content moving towards a novel target spectrogram after

transformation. This can be equivalent to moving and removing an event in one position or transforming

it into another instrument.

6.3.4 Conclusions

The visual analysis of the 64-dimensional latent spaces using PCA has revealed significant structural

differences between the AAE-GM and AAE-ISO models. With the Gaussian mixture prior integrated into

AAE-GM, the latent space exhibited distinct, well-organised clusters, a feature not observable in the

AAE-ISO model. This clustering pattern aligns with the delineation of rhythmic styles, such as the

16th-note patterns represented by ξ0 and the accented 8th-note patterns denoted by ξ6. A comprehensive

comparison of reconstruction performance between the proposed AAE-GM model and baseline systems

(AAE-ISO, VAE, and WAE-MMD) was presented using three metrics: rhythmic cosine similarity (RCS),

log-spectral difference (LSD), and root-mean squared error (RMSE). These metrics collectively suggest

that AAE-GM surpasses the baseline systems in maintaining the spectral characteristics of the original

audio and suggests its potential for superior noise reduction in audio reconstructions. The variability in

the AAE-GM’s performance across different rhythmic patterns underscores its adaptability and versatility

in dealing with diverse musical contexts. While pattern ξ7 was the most successfully reconstructed across

all models, patterns ξ3 and ξ9 presented significant challenges, which is correlated with the smaller

number of training examples for these styles. This highlights a crucial dependence of model performance

on the volume of training data. Interestingly, even within these limitations, the AAE-GM: model exhibited

a consistently higher RCS across all pattern types, underscoring the effectiveness of the Gaussian mixture

prior in capturing the rhythmic nuances of the original samples. The statistical significance of these

improvements, as confirmed by t-tests, validates the proposed model’s enhancements over the baseline

systems.

6.4 Chapter Summary

This chapter introduced a novel deep generative system that employs Gaussian mixture adversarial

autoencoders (AAEGM) for a joint drum synthesis and pattern modification, akin to the popular task of

redrumming. This approach offers users the flexibility to dynamically navigate through a trained latent

space of rhythmic variations by manipulating patterns within a bar-length sequence, without needing to

segment notes discretely. The system was rigorously trained and tested on a dataset of more than 500,000

bars derived from 5,418 tracks across various music genres, highlighting its ability to adapt to diverse

musical contexts. The AAE-GM model has demonstrated its superiority over baseline models (AAE-ISO,

VAE, and WAE-MMD) through extensive evaluation, outperforming them in maintaining the original audio’s

spectral integrity. This is reflected in the metrics of rhythmic cosine similarity (RCS), log-spectral

difference (LSD), and root-mean squared error (RMSE). The novel Gaussian mixture model exhibits



114 CHAPTER 6. DRUM SYNTHESIS AND RHYTHMIC TRANSFORMATION WITH AAE

capability in capturing the intricate rhythmic styles within the music, as evidenced by the clear clustering

of styles in its 64-dimensional latent space—a feature that was not present in the AAE-ISO model. In

the next chapter, the key takeaways from this and preceding chapters are synthesized, along with a

discussion on the existing limitations and potential avenues for future research in this field. This is

followed by a discussion of limitations that still exist and future directions that could be explored.



Chapter 7

Conclusions

This thesis has focused on rhythmic and timbral transformation of drum recordings using deep learning

techniques. While deep generative modelling for musical audio synthesis has been subject of previous

works, relatively few such works have explored generation and evaluation techniques for percussion

recordings as well as transformation of the underlying rhythmic patterns. One of the main contributions

of this thesis is the development of automated systems for joint rhythmic and timbral transformation

which provide controllable transformations learned by a generative model. Results from evaluations of the

proposed systems demonstrate that deep generative models (DGMs) are well suited for transformation of

rhythmic patterns as well as neural synthesis of drum sounds within a variety of musical genres. However,

the current systems may still produce unintended errors, indicating opportunities for improvement within

the broader field of neural audio synthesis.

The modes of rhythmic transformation proposed in this thesis are presented in three main systems.

Firstly, an audio style transfer (AST) approach with rhythmic constraints for mixing and mashing of two

or more audio inputs was introduced, to determine to what extent can the system be used to control

the rhythmic and timbral characteristics of drum recordings based on drum synthesis of beat-length

segments. Secondly, a mode of transformation that relies on drum translation was implemented and

evaluated with regard to how accurately can such system successively generate drum segments of varying

lengths containing individual drum types. The high-level evaluations of this system highlighted potential

improvement strategies which were implemented and resulted in improved rhythmic transformations

with higher quality of the generated drum sounds. Lastly, these systems were combined to jointly

perform neural drum synthesis and rhythmic transformation as part of a continuous transformation

which alleviated the need for discretised note detection or pattern matching present in the previous

approaches. The following reiterate the contents, contributions and conclusions of the systems presented

in the main chapters of this thesis.

115



116 CHAPTER 7. CONCLUSIONS

Chapter 4 introduced an exploration into rhythmically-constrained audio style transfer, offering

transformative insights and robust evaluations. This chapter has made a significant contribution to the

overarching goal of the thesis, which is to advance methodologies in automated rhythmic transformation

of drum recordings. At the core of this chapter is the introduction of an innovative model for raw

audio generation and rhythmic transformation. This system forms the basis for an exploration of

the rhythmic transformation of drum recordings, underpinning the chapter’s contributions. In the

rhythmically-constrained AST system, a source recording of arbitrary length is automatically segmented

and modified through the AST mode of transformation. A pivotal contribution is the introduction

of three novel AST loss objectives: L3, L4, and L5. These objectives enhance the traditional AST

formulation by facilitating the interplay between rhythmic and timbral characteristics, effectively creating

a rhythmic-timbral mashup functionality. This extension introduces a new level of control into the

transformation process. This extension introduces control into the transformation process. Through the

proposed rhythmic evaluation, it becomes evident that the mashup objective L3 and the augmented

mashup objectives L4, 5 generate entirely new rhythmic patterns. These patterns emerge as distinct

entities, significantly diverging from the original drum recordings, and underscore the system’s capability

to inject novel rhythmic elements into audio transformations. Investigations into timbral reconstruction

capabilities have unveiled a compelling consistency. All newly introduced mashup loss objectives preserve

the quality across the frequency spectrum while simultaneously generating outputs that differ from the

standard AST formulation—a desirable feature for timbral transformations. Another set of evaluations

explored the extent of rhythmic modifications generated by the system, using an automatic onset

detection system. These evaluations further demonstrated that the proposed AST system for rhythmic

transformation created new events in objectives L3, 4, 5 that were not present in the original inputs.

Moreover, the results highlighted that a more controlled and rhythmically varied transformation could

be achieved by extending the L3 mashup objective with the augmented mashup objectives. The

augmented objectives proved their suitability for modifying the rhythmic patterns to become more

closely aligned with the chosen input, thereby opening up new possibilities for rhythmic transformation.

These can be further refined through additional fine-tuning of the proportion parameters within the loss

formulations. This chapter paves the way for more practical applications in the realm of automated

rhythmic transformation. Such systems can serve as valuable tools for music producers, facilitating

the generation of drum tracks that blend the rhythmic patterns of one composition with the sonic

characteristics of another. The implications for music education are also significant, with the potential

for developing innovative educational tools in music theory. Such tools could demonstrate how various

rhythmic constraints influence the characteristics of drum loops, enhancing the learning experience for

aspiring musicians and music enthusiasts alike.

Chapter 5 introduced a granular approach to neural drum synthesis through drum translation. This

method autoregressively generates audio samples of percussion sounds, exploring the rhythmic and

timbral capabilities of generative audio synthesis with WaveNet autoencoders. Initially, the chapter

explored the model architecture and training specifications. The system utilised a dataset comprising



117

individual drum samples, successively synthesising drum segments of varying lengths, including individual

drums and their combinations, referred to as drum domains. These initial evaluations were instrumental

in shaping our understanding of the system’s capabilities. Notably, this system fosters creativity in

musical composition and addresses the challenges of rhythmic transformation in audio synthesis. A

unique method for visually fine-tuning large audio datasets was proposed and implemented. This process

aids in identifying and excluding outliers that introduce noise. Chapter 5 also introduced a novel

evaluation technique based on automatic drum transcription. This method ascertained the efficacy

of the drum translation system, enabling an assessment of the accuracy with which it can reproduce

drum sounds. This evaluation provides a deeper understanding of the system’s performance, especially

in translating complex sounds like those of snare drums and hi-hats, known for their intricate timbral

characteristics. Moreover, the chapter expands on the reconstruction metrics established in Chapter 4,

providing a comprehensive framework for assessing the transformative capabilities of the system. These

metrics are essential for understanding the fidelity and the transformative aspects of the generated audio.

The comparative analysis of the translated outputs has revealed significant issues, such as waveform

smearing and the occasional omission of drum sounds, which underscore the challenges within certain

drum domains. The evaluation of reconstruction quality using Pearson correlation coefficients presents

a nuanced perspective on the system’s performance. High correlation values in low-frequency bands

indicate the system’s adeptness in recreating kick drum sounds, which are foundational to drum tracks.

Conversely, the varied performance in mid-range and higher frequencies points to the challenges in

accurately reproducing the complex harmonics of snares and hi-hats. The current model’s memory

constraints, which limit the system’s residual channels and layer count, suggest that more expansive

architectures, such as parallel WaveNet, might provide a solution (Oord et al., 2018). These findings offer

valuable insights into the capabilities of the drum translation system. However, its direct applicability as

a music production tool remains an open question. The objective evaluations conducted represent a

significant step in this research field, but transitioning to real-world music production requires further

exploration and refinement. Chapter 5 contributes to the field of neural audio synthesis, particularly

in advancing the understanding and application of drum translation and redrumming processes. This

research has unveiled a system capable of transforming drum sounds and has established a comprehensive

set of evaluation metrics for rigorously assessing the quality of such transformations. The advancements

presented here open up a multitude of potential use cases, each with the possibility of revolutionising

aspects of sound design and musical creation. The proposed system can provide music producers with

the ability to tailor drum sounds to fit diverse musical contexts, thus enhancing sound design across

various genres. Furthermore, it allows for the augmentation of drum libraries by diversifying existing

samples, thereby enriching the resources available to producers and composers. For artists, the drum

translation system can facilitate the integration and morphing of drum sounds into compositions, setting

a new precedent for personalised drum synthesis and transformative drum transformations that can be

extended with personal drum sample collections.



118 CHAPTER 7. CONCLUSIONS

Chapter 6 introduces a system for the continuous transformation of drum recordings. The principal

contribution of this chapter is the development of a model capable of fluidly transitioning between

different rhythmic patterns and styles, guided by user-defined parameters. This transformation offers

continuous control, allowing users to navigate through the complex rhythmic landscape of bar-length

patterns via the interpolation of a low-dimensional latent space. By integrating Gaussian mixture (GM)

latent distributions for rhythmic pattern conditioning with advanced adversarial autoencoders, the system

achieves a transformation process similar to the popular task of redrumming. Experimental assessments

have showcased the system’s ability to organise rhythmic patterns within its latent space effectively,

surpassing other autoencoder models in terms of both rhythmic and timbral fidelity. The architecture

of the latent space, especially when utilising the disentangled distributions of the proposed adversarial

autoencoder with Gaussian mixtures, has been crucial to this success. High cosine similarity scores

highlight the system’s proficiency in generating temporal domains, while the log-spectral distance and

RMSE metrics point to the inherent challenges of synthesising realistic drum audio with neural networks.

It was noted that classes with fewer bars encountered more significant difficulties. Additionally, the

chapter delved into the latent space interpolations between source and target patterns, demonstrating

the system’s ability to facilitate smooth transitions across its learned latent space with varying degrees

of transformation. These insights validate the system’s design and shed light on potential avenues for

future research, particularly concerning the optimisation of generative models for audio synthesis that

take into account the scale and diversity of datasets.

7.1 Contributions

As highlighted in Chapter 1, automated rhythmic transformation of drums refers to the automated

processes for manipulation (e.g., resequencing, time-stretching) of rhythmic patterns of drum samples

or recordings. Deep generative models can be used to learn patterns and timbres in existing drum

examples and then generate new drum sounds and rhythms. The aim of this thesis was to develop deep

learning-based computational models for automated transformation of rhythmic patterns of percussion

instruments. The four most apparent contributions of this work are: formulation and description

of modes of transformation for drums using DGMs, development of modular deep learning-based

systems for rhythmic transformation, creation of new loss functions for AST, and implementation of

comprehensive evaluation methodologies, encompassing similarity metrics, onset detection and automatic

drum transcription to rigorously assess and validate the capabilities and efficacy of the proposed systems.

The modes of transformation (Section 3.3) are explained in the context of algorithms developed in

the field of deep learning, along with details of manipulation possibilities of the rhythmic and timbral

characteristics of different drum recordings. These descriptions can be used for differentiating between

transformations of patterns and timbres originating from the source and target recordings as well as from

the latent space of a trained DGM. To date, neural drum synthesis approaches for the transformation of

rhythmic patterns of percussion instruments were not described.



7.2. FUTURE WORK 119

The systems presented in Chapters 4–6 were created to facilitate rhythmic transformation of drum

recordings. Each of these modular systems was developed with design attributes that were specific to

percussion instruments under analysis (e.g., kicks, snares, hi-hats) and optimised with respect to neural

network architecture considerations as well as training hyperparameters. These systems can be used

to transform rhythmic patterns through neural drum synthesis of an entire drum kit in a bar-length

segment or shorter beat-length and individual drum segments. These transformations can be achieved

through control over a reduced parameter space of a deep generative model or through manipulation of

the chosen audio input content. In addition, new audio style transfer loss functions were created to

facilitate mashup-oriented drum recording transformations. These mashup loss objectives reduced the

computation requirements for the AST algorithm and offered rhythmic transformation capabilities which

adhere to larger rhythmic structure of the input to generate music that is both creative and realistic. The

audio style transfer system from Chapter 4 with the proposed mashup loss objectives was implemented

as an open source command line audio effect incorporating user-adjustable parameters to make it more

accessible to musicians and producers.34 It is hoped that these systems may also help uncover musical

relationships of familiar audio samples that might otherwise have never been conceptualised.

Additionally, datasets with drum recordings were created to assist the training and evaluations of the

proposed systems for drum synthesis and rhythmic transformation. The dataset of individual kick, snare

and hi-hat samples introduced in Chapter 5 was refined to improve the quality of the generated examples

through automatic and visual filtering35 of noisy audio samples. A dataset of drum loops presented

in Chapter 6 was compiled from 5,418 tracks present in publicly available datasets (e.g., HMX, DALI,

HJDB) covering various musical genres. To facilitate evaluation of simple and more complex percussion

contexts as well as reproducibility of the results in this thesis, the audio examples and references to

other dataset filenames were provided in the online supplementary materials.36,37,38,39

7.2 Future Work

There exists a large scope of additional research in different complementary aspects neural drum synthesis

and rhythmic transformation presented in this thesis. This section discusses the possible directions this

work could take in the future.

Training Data

As the efficacy of generative models relies significantly on the quality and diversity of the training data,

there is a continual need to refine and expand datasets to drive advancements in drum synthesis and

rhythmic modifications. The custom datasets used in Chapters 4–6 were specifically constructed for

34https://github.com/maciek-tomczak/audio-style-transfer-with-rhythmic-constraints
35https://tdsdne.vercel.app/
36https://maciek-tomczak.github.io/rppw2017/
37https://maciek-tomczak.github.io/dafx2018/
38https://maciek-tomczak.github.io/dafx2019/
39https://maciek-tomczak.github.io/acm2020/

https://github.com/maciek-tomczak/audio-style-transfer-with-rhythmic-constraints
https://tdsdne.vercel.app/
https://maciek-tomczak.github.io/rppw2017/
https://maciek-tomczak.github.io/dafx2018/
https://maciek-tomczak.github.io/dafx2019/
https://maciek-tomczak.github.io/acm2020/


120 CHAPTER 7. CONCLUSIONS

this research. The analysis in Chapter 5 highlighted the direct impact of dataset quality and size on

drum translation model performance. Similarly, the system in Chapter 6 demands substantial training

data to capture intricate real-life audio patterns. To enhance these systems, future work could include

improvement of the source separation models to facilitate access to more real-world percussion examples

used for training. Another challenge lies in amassing and authenticating drum sample categories and

rhythmic pattern style labels. A possible direction is crowdsourcing of drum samples and loops. This

approach can serve as a potent strategy for gathering extensive high-quality data essential for neural

drum synthesis models. Crowdsourcing allows for the collection of a wide variety of audio data from

many different sources, which can help to increase the diversity and representativeness of the training

examples. Such data curation strategies can significantly improve the generalisation capabilities and

overall efficacy of neural drum synthesis and rhythmic transformation models. As datasets expand, the

need for automated label verification, especially for rhythmic patterns, becomes paramount. Manual

checks become less practical, highlighting the importance of automatic evaluations. Future work should

assess the robustness and adaptability of models trained on crowdsourced datasets, gauging their

real-world applicability. It is crucial that these models avoid overfitting to dataset nuances, ensuring

their reliability in drum synthesis and transformation tasks.

Disentangled Representations

Disentanglement remains an unsolved challenge and is an active area of research, particularly important

for improving the synthesis control of rhythmic patterns and drum types. Enhancing disentanglement in

this domain represents a chief direction for future work. It allows for more fine-grained control over the

generated audio, allowing the model to synthesise specific rhythmic styles, instruments, and to adjust

certain attributes such as timbre or pitch. It can lead to models that are more robust to variations in the

data and can generalise better to new audio examples as well as allow for better understanding of how the

model works. Chapter 6 highlighted how the introduced Gaussian mixture prior enhanced rhythmic style

disentanglement compared to baseline VAE models. Future research might explore different distributions

tailored for diverse datasets and specific musical production needs as well as diffusion-based models

(Tschannen et al., 2018; Yang et al., 2023).

Improved Evaluation Metrics for DGMs

Evaluating generative models for drum synthesis and rhythmic modifications poses inherent challenges.

As new models are developed to excel on specific evaluation metrics, there exists a risk they might

overfit to those metrics, potentially failing to produce audio that is perceptually improved or enhanced

in any other dimension. To address this, future research could focus on developing new metrics that

accurately capture the diverse characteristics of audio synthesis, consider the subjectivity in auditory

perception, and provide an overview of the fidelity, coherence, and variability of the generated outputs.

While the evaluation metrics discussed in Chapters 4–6 are considered standard in the field, they might

not capture the nuanced rhythmic and timbral changes influenced by the training process. Future



7.2. FUTURE WORK 121

research could prioritise crafting metrics that delve deeper into specific audio attributes, such as semantic

content and the microtiming deviations of output transformations, especially in relation to the quantised

representations of target patterns. These metrics could also incorporate text-based data to provide

semantic insights about the desired transformation, for example, through the use of transformer-based

and larger GAN-based models or their combinations (Dubey and Singh, 2023). Unlike the image

domain where pixel-wise differences are straightforwardly quantified, the creation of new metrics for

audio to gauge continuity within the latent space could offer valuable insights into smoothness and

disentanglement. While a metric exists for images (Karras et al., 2021), its adaptation for audio would

require considerable modifications.

User Studies

The evaluations detailed in Chapters 4–6 have highlighted the strengths and constraints of the proposed

deep learning models for rhythmic transformation and neural drum synthesis. These insights serve as a

foundation for the further development and refinement of these systems. Future research would benefit

from exploring methodologies for conducting user studies. Specifically, focusing on audio plugins and

embedded audio systems could offer users simpler access to the evaluated algorithms compared to

command line tools. Such studies could concentrate on discerning how users interact with the deep

learning systems, highlighting any challenges or obstacles they encounter, and collecting feedback on

their overall experience. The results from user studies could then be used to refine the systems and

better integrate them into user workflows. By aligning the deep generative applications with the needs

and preferences of users, engagement, interaction, and overall system performance could be significantly

enhanced.

Other Percussion Instruments

Future work could also explore other percussion such as more varied cymbals and tom drums. Additionally,

Chapter 5 highlighted the challenges related to the generation of audio with multiple overlapping

percussion instruments. Incorporating additional modalities, such as MIDI files and textual inputs as

well as extending the number of studied percussion instruments beyond kicks, snares and hi-hats, can

lead to generating more diverse and realistic audio outputs. Beyond the common hi-hats, there exists a

large variety of cymbals – from standard crash and ride to china cymbals, each with its distinct timbre

and sonic footprint. They can produce a wide array of overlapping sounds, which pose challenges for

rhythmic transformation over longer rhythmic patterns spanning multiple bars. Capturing the nuances

of a variety of cymbals can significantly enhance the depth and richness of generated audio.

Audio Plugins and Embedded Audio Processing

As highlighted through Chapters 4 to 6, another area of research is to improve the efficiency for audio

generation and transformation. State-of-the-art neural audio synthesis models are incredibly resource-

intensive, making their deployment for real-time applications challenging. However, as technology



122 CHAPTER 7. CONCLUSIONS

progresses and optimisation methods improve, there is an increasing potential for these models to be

adapted and streamlined for broader uses. This direction of research is pivotal in pushing the boundaries

of current applications, especially when it comes to platforms without the luxury of high-powered

graphics processing units. Audio plugins, whether they are virtual studio technology (VST), audio

units (AU), or other formats, form the backbone of contemporary digital audio workstations. Given

their widespread usage in sound design and music production environments, ensuring these plugins can

handle advanced audio synthesis without any considerable latency is crucial. Current advancements in

this field are focused on reducing computational overhead, improving parallel processing capabilities,

and making the most of available hardware resources. Moreover, developing more efficient models or

methods for optimising existing models could make them more practical for a wider range of use cases

which could enable them to run on resource-constrained devices such as mobile phones and embedded

systems (e.g., inside Eurorack modules).

Computational Creativity

To date, the majority of research in deep generative modelling for neural audio synthesis and rhythmic

transformation has focused on mimicking human creative traits akin to developing content proposal

generators, an approach that potentially underutilises the almost unlimited computational power of

machines. The relevance of this research has been highlighted through the emergence of nuanced

perspectives that might consider a greater emphasis on examining representation spaces (e.g., learning

disentangled representations of rhythm and timbre) within these models, in order to redefine the

relationship between humans and machines in the music production process. In considering future

research paths, Esling and Devis (2020) outline two directions which emerge as particularly compelling.

On the a technical front, there exists an important potential future work in discerning the mathematical

properties underpinning deep generative models for music creation. The future work could also delve

into the sociological facets of creativity, with the aim of creating a novel category of creatively intelligent

music production systems which would reflect our current understanding of creativity in the era of deep

generative systems for music creation.



7.3. FINAL THOUGHTS 123

7.3 Final Thoughts

As it was revealed to me during this research, the topic of neural audio synthesis, amasses extremely

creative musicians and researchers who articulate their passion for music in a range of artistic and

scientific disciplines. Neural composers and researchers in this field are constantly developing new

methods and models to improve the quality and realism of the generated audio, and there are many

contributions being made in this area every year. I, optimistically, hope that the work undertaken in this

thesis can serve as an inspiration for further research in neural drum synthesis and a small step towards

the comprehension of deep learning-based techniques for rhythmic transformation of drum recordings. I

am excited to see how deep learning techniques advance in the coming years and I hope that this work

will inspire the development of new contributions in the future.



References

Adamo, M. (2010). The Breakbeat Bible. Hudson Music, New York, USA (cit. on p. 13).

Alén, O. (1995). “Rhythm as Duration of Sounds in Tumba Francesa”. In: Ethnomusicology, 39(1),

Special Issue: Participatory Discrepancies, pp. 55–71 (cit. on p. 12).

Allan, H. (2004). Bar Lines and Beyond - Metre Tracking in Digital Audio. Master’s thesis, University of

Edinburgh, p. 28 (cit. on p. 14).

Amatriain, X., J. Bonada, L. Loscos, J. L. Arcos, and V. Verfaille (2003). “Content-based Transforma-

tions”. In: Journal of New Music Research, 32(1), pp. 95–114 (cit. on pp. 1, 3, 23, 24).

Arjovsky, M. and L. Bottou (2017). “Towards Principled Methods for Training Generative Adversarial

Networks”. In: CoRR abs/1701.04862 (cit. on p. 49).

Arjovsky, M., S. Chintala, and L. Bottou (2017). “Wasserstein Generative Adversarial Networks”.

In: Proceedings of the International Conference on Machine Learning (PMLR), Sydney, Australia,

pp. 214–223 (cit. on pp. 49, 99).

Arthur, D. and S. Vassilvitskii (2006). k-means++: The Advantages of Careful Seeding. Tech. rep.

Stanford University (cit. on p. 104).

Aucouturier, J.-J., F. Pachet, and M. Sandler (2005). “The way it Sounds: Timbre Models for Analysis

and Retrieval of Music Signals”. In: IEEE Transactions on Multimedia, 7(6), pp. 1028–1035 (cit. on

p. 2).

Barry, S. and Y. Kim (2018). Style Transfer for Musical Audio Using Multiple Time-Frequency Rep-

resentations. Accessed 15 February 2018, OpenReview (cit. on pp. 29, 53, 56–58, 61, 64, 73,

74).

Battenberg, E., V. Huang, and D. Wessel (2012). “Toward Live Drum Separation Using Probabilistic

Spectral Clustering Based on the Itakura-Saito Divergence”. In: Proceedings of the Audio Engineering

Society Conference (AES) Conference on Time-Frequency Processing in Audio. Helsinki, Finland,

pp. 1–10 (cit. on p. 21).

124

https://openreview.net/forum?id=BybQ7zWCb


REFERENCES 125

Bello, J. P., C. Duxbury, M. E. Davies, and M. Sandler (2004). “On the Use of Phase and Energy

for Musical Onset Detection in the Complex Domain”. In: IEEE Signal Processing Letters, 11(6),

pp. 553–556 (cit. on pp. 17, 18).

Bello, J. P., E. Ravelli, and M. B. Sandler (2006). “Drum Sound Analysis for the Manipulation of

Rhythm in Drum Loops”. In: Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Toulouse, France, pp. 233–236 (cit. on p. 21).

Bello, J. P., L. Daudet, S. Abdallah, C. Duxbury, M. E. Davies, and M. B. Sandler (2005). “A Tutorial

on Onset Detection in Music Signals”. In: IEEE Transactions on Speech and Audio Processing, 13(5),

pp. 1035–1047 (cit. on pp. 15–17, 67).

Bello, J. P. and M. Sandler (2003). “Phase-based Note Onset Detection for Music Signals”. In:

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Hong Kong, pp. 441–444 (cit. on p. 17).

Bengio, Y., R. Ducharme, and P. Vincent (2000). “A Neural Probabilistic Language Model”. In:

Proceedings of the Neural Information Processing System (NIPS), Denver, USA, pp. 932–938 (cit. on

p. 46).

Bilmes, J. A. (1993). Timing is of the Essence. Master’s thesis, Massachusetts Institute Of Technology

(cit. on pp. 12, 14, 22, 25).

Bittner, R. M., M. Gu, G. Hernandez, E. J. Humphrey, T. Jehan, H. McCurry, and N. Montecchio (2017).

“Automatic Playlist Sequencing and Transitions.” In: Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), Suzhou, China, pp. 442–448 (cit. on p. 3).

Bitton, A., P. Esling, A. Caillon, and M. Fouilleul (2019). “Assisted Sound Sample Generation with

Musical Conditioning in Adversarial Auto-encoders”. In: Proceedings of the International Conference

on Digital Audio Effects (DAFx), Birmingham, UK (cit. on pp. 52, 97, 98, 100, 101, 108, 109, 112).

Bitton, A., P. Esling, and A. Chemla-Romeu-Santos (2018). “Modulated Variational Auto-encoders for

Many-to-many Musical Timbre Transfer”. In: CoRR abs/1810.00222 (cit. on p. 112).

Böck, S. (2016). “Event Detection in Musical Audio”. PhD thesis. Johannes Kelper University Linz

(cit. on pp. 2, 18, 19).

Böck, S., A. Arzt, F. Krebs, and M. Schedl (2012a). “Online Real-time Onset Detection with Recurrent

Neural Networks”. In: Proceedings of the International Conference on Digital Audio Effects (DAFx),

York, UK (cit. on p. 16).



126 REFERENCES

Böck, S. and M. E. P. Davies (2020). “Deconstruct, Analyse, Reconstruct: How to improve Tempo,

Beat, and Downbeat Estimation”. In: Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Montréal, Canada, pp. 574–582 (cit. on p. 20).

Böck, S., M. E. P. Davies, and P. Knees (2019). “Multi-Task Learning of Tempo and Beat: Learning One

to Improve the Other”. In: Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), Delft, Netherlands, pp. 486–493 (cit. on p. 20).

Böck, S., F. Korzeniowski, J. Schlüter, F. Krebs, and G. Widmer (2016a). “madmom: A New Python

Audio and Music Signal Processing Library”. In: Proceedings of the ACM International Conference

on Multimedia (ACM-MM), Amsterdam, Netherlands, pp. 1174–1178 (cit. on pp. 57, 103).

Böck, S., F. Krebs, and M. Schedl (2012b). “Evaluating the Online Capabilities of Onset Detection

Methods”. In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Porto, Portugal, pp. 49–54 (cit. on pp. 16, 18, 23, 68, 103).

Böck, S., F. Krebs, and G. Widmer (2016b). “Joint Beat and Downbeat Tracking with Recurrent Neural

Networks.” In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), New York City, USA, pp. 255–261 (cit. on pp. 20, 57, 103, 107).

Böck, S. and M. Schedl (2011). “Enhanced Beat Tracking with Context-aware Neural Networks”. In:

Proceedings of the International Conference on Digital Audio Effects (DAFx), Paris, France (cit. on

p. 19).

Böck, S. and G. Widmer (2013a). “Local Group Delay Based Vibrato and Tremolo Suppression for Onset

Detection”. In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Curitiba, Brazil, pp. 361–366 (cit. on p. 17).

— (2013b). “Maximum Filter Vibrato Suppression for Onset Detection”. In: Proceedings of the Interna-

tional Conference on Digital Audio Effects (DAFx), Maynooth, Ireland (cit. on p. 17).

Briot, J.-P. and F. Pachet (2017). “Music Generation by Deep Learning-Challenges and Directions”. In:

CoRR abs/1712.04371 (cit. on pp. 27, 74).

Butler, M. J. (2006). Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance

Music. Indiana University Press, Indiana, USA (cit. on p. 13).

Carney, M., C. Li, E. Toh, N. Zada, P. Yu, and J. Engel (2021). “Tone Transfer: In-Browser Interactive

Neural Audio Synthesis”. In: Conference on Intelligent User Interfaces (cit. on p. 2).

Chang, J. (2007). Can’t Stop Won’t Stop: A History of the Hip-Hop Generation. St. Martin’s Press,

New York, USA (cit. on p. 2).



REFERENCES 127

Chen, T. Q. (2017). “Deep Kernel Mean Embeddings for Generative Modeling and Feedforward Style

Transfer”. PhD thesis. University of British Columbia (cit. on p. 45).

Child, R., S. Gray, A. Radford, and I. Sutskever (2019). “Generating Long Sequences with Sparse

Transformers”. In: CoRR abs/1904.10509 (cit. on pp. 78, 79).

Choi, K., D. Joo, and J. Kim (2017). “Kapre: On-GPU Audio Preprocessing Layers for a Quick

Implementation of Deep Neural Network Models with Keras”. In: Machine Learning for Music

Discovery Workshop at the International Conference on Machine Learning (ICML) (cit. on p. 58).

Chung, J., K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio (2015). “A Recurrent Latent

Variable Model for Sequential Data”. In: Proceedings of the Neural Information Processing System

(NIPS), Montréal, Canada (cit. on p. 29).

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). “Fast and Accurate Deep Network Learning

by Exponential Linear Unit”. In: CoRR abs/1511.07289 (cit. on p. 81).

Cocharro, D., G. Sioros, M. Caetano, and M. E. P. Davies (2014). “Real-time Manipulation of Syncopation

in Audio Loops”. In: Proceedings of the International Computer Music Conference (ICMC) joint

with the Sound and Music Computing Conference (SMC), Athens, Greece (cit. on p. 26).

Collins, N. (2001). “Algorithmic Composition Methods for Breakbeat Science”. In: Proceedings of the

International Conference for Music without Walls and Instruments, Leicester, UK (cit. on p. 9).

Collins, N. and B. L. Sturm (2011). “Sound Cross-synthesis and Morphing using Dictionary-based

Methods”. In: Proceedings of the International Computer Music Conference (ICMC) (cit. on p. 27).

Cooper, G. and L. B. Meyer (1963). The Rhythmic Structure of Music. University of Chicago Press,

Chicago, USA (cit. on p. 14).

Crocker, M. J. (1998). Handbook of Acoustics. John Wiley & Sons, New York, USA (cit. on p. 16).

Davies, M. E. P. (2007). “Towards Automatic Rhythmic Accompaniment”. PhD thesis. Department of

Electronic Engineering, Queen Mary University of London (cit. on p. 19).

Davies, M. E. P., P. Hamel, K. Yoshii, and M. Goto (2013). “AutoMashUpper: An Automatic Multi-Song

Mashup System”. In: Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), Curitiba, Brazil, pp. 575–580 (cit. on pp. 27, 66).

— (2014a). “AutoMashUpper: Automatic Creation of Multi-song Music Mashups”. In: IEEE/ACM

Transactions on Audio, Speech, and Language Processing (TASLP), 22(12), pp. 1726–1737 (cit. on

pp. 3, 19, 27, 66, 108).



128 REFERENCES

Davies, M. E. P. and M. D. Plumbley (2006). “A Spectral Difference Approach to Extracting Downbeats

in Musical Audio”. In: Proceedings of the European Signal Processing Conference (EUSIPCO),

Florence, Italy (cit. on p. 20).

Davies, M. E. P., A. M. Stark, F. Gouyon, and M. Goto (2014b). “Improvasher: A Real-time Mashup

System for Live Musical Input”. In: Proceedings of the International Conference on New Interfaces

for Musical Expression (NIME), London, UK, pp. 541–544 (cit. on p. 27).

Davy, M. and S. Godsill (2002). “Detection of Abrupt Spectral Changes Using Support Vector Machines

an Application to Audio Signal Segmentation”. In: Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, USA, pp. 1313–1316 (cit. on

p. 17).

Desain, P. and H. Honing (1989). “The Quantization of Musical Time: A Connectionist Approach”. In:

Computer Music Journal, 13(3), pp. 56–66 (cit. on p. 12).

— (1991). “Towards a Calculus for Expressive Timing in Music”. In: Computers in Music Research,

3(1), pp. 43–120 (cit. on p. 12).

Dhariwal, P., H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever (2020). “Jukebox: A Generative

Model for Music”. In: CoRR abs/2005.00341 (cit. on pp. 2, 3, 30, 78, 79).

Dieleman, S., A. v. d. Oord, and K. Simonyan (2018). “The Challenge of Realistic Music Generation:

Modelling Raw Audio at Scale”. In: Proceedings of the Neural Information Processing System (NIPS),

Montréal, Canada, pp. 8000–8010 (cit. on p. 29).

Dixon, S. (2001). “Automatic Extraction of Tempo and Beat from Expressive Performances”. In: Journal

of New Music Research, 30(1), pp. 39–58 (cit. on p. 19).

— (2006). “Onset Detection Revisited”. In: Proceedings of the International Conference on Digital

Audio Effects (DAFx), Montréal, Canada, pp. 133–137 (cit. on pp. 17, 19, 66).

— (2007). “Evaluation of the Audio Beat Tracking System Beatroot”. In: Journal of New Music

Research, 36(1), pp. 39–50 (cit. on p. 19).

Dixon, S., F. Gouyon, and G. Widmer (2004). “Towards Characterisation of Music via Rhythmic

Patterns”. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR),

Barcelona, Spain, pp. 509–516 (cit. on pp. 22, 104, 105).

Dixon, S., E. Pampalk, and G. Widmer (2003). “Classification of Dance Music by Periodicity Patterns”.

In: Proceedings of the International Conference on Music Information Retrieval (ISMIR), Baltimore,

USA, pp. 159–165 (cit. on p. 104).

Doersch, C. (2016). “Tutorial on Variational Autoencoders”. In: CoRR abs/1606.05908 (cit. on p. 47).



REFERENCES 129

Donahue, C., J. McAuley, and M. Puckette (2018). “Adversarial Audio Synthesis”. In: CoRR abs/1802.04208

(cit. on pp. 98, 101).

Drysdale, J., M. Tomczak, and J. Hockman (2020). “Adversarial Synthesis of Drum Sounds”. In:

Proceedings of the International Conference on Digital Audio Effects (DAFx), Vienna, Austria,

pp. 167–172 (cit. on p. 85).

Dubey, S. R. and S. K. Singh (2023). “Transformer-based Generative Adversarial Networks in Computer

Vision: A Comprehensive Survey”. In: CoRR abs/2302.08641 (cit. on p. 121).

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization”. In: Journal of Machine Learning Research (JMLR), 12(7) (cit. on p. 39).

Durand, S., J. P. Bello, B. David, and G. Richard (2016). “Feature Adapted Convolutional Neural

Networks for Downbeat Tracking”. In: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Shanghai, China, pp. 296–300 (cit. on p. 20).

Duxbury, C., M. Sandler, and M. E. Davies (2002). “A Hybrid Approach to Musical Note Onset

Detection”. In: Proceedings of the International Conference on Digital Audio Effects (DAFx),

Hamburg, Germany, pp. 33–38 (cit. on p. 16).

Duxbury, C. (2005). “Signal Models for Polyphonic Music”. PhD thesis. Centre for Digital Music, Queen

Mary University of London (cit. on p. 17).

Dziugaite, G. K., D. M. Roy, and Z. Ghahramani (2015). “Training Generative Neural Networks via

Maximum Mean Discrepancy Optimization”. In: Proceedings of the Conference on Uncertainty in

Artificial Intelligence (UAI), Amsterdam, Netherlands, pp. 258–267 (cit. on p. 45).

Ellis, D. P. W. (2007). “Beat Tracking by Dynamic Programming”. In: Journal of New Music Research,

36(1), pp. 51–60 (cit. on p. 19).

Ellis, D. P. W. and J. Arroyo (2004). “Eigenrhythms: Drum Pattern Basis Sets for Classification and

Generation”. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR),

Barcelona, Spain, pp. 101–106 (cit. on pp. 22, 23).

Engel, J., K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts (2019). “GANSynth:

Adversarial Neural Audio Synthesis”. In: Proceedings of the International Conference on Learning

Representations (ICLR), New Orleans, USA (cit. on pp. 98, 101).

Engel, J., L. Hantrakul, C. Gu, and A. Roberts (2020). “DDSP: Differentiable Digital Signal Processing”.

In: CoRR abs/2001.04643 (cit. on p. 3).



130 REFERENCES

Engel, J., C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan (2017). “Neural

Audio Synthesis of Musical Notes with WaveNet Autoencoders”. In: Proceedings of the International

Conference on Machine Learning (ICML), Sydney, Australia, pp. 1068–1077 (cit. on pp. 29, 78–80).

Esling, P. and N. Devis (2020). “Creativity in the Era of Artificial Intelligence”. In: CoRR abs/2008.05959

(cit. on p. 122).

Eyben, F., S. Böck, B. Schuller, and A. Graves (2010). “Universal Onset Detection with Bidirectional

Long Short-Term Memory Neural Networks”. In: Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Utrecht, Netherlands, pp. 589–594 (cit. on pp. 16, 18).

Fletcher, N. H. and T. D. Rossing (1998). The Physics of Musical Instruments. Springer, New York,

USA, pp. 583–622 (cit. on p. 11).

Fonseca, J., M. Fuentes, F. Bonini Baraldi, and M. E. P. Davies (2021). “On the use of automatic

onset detection for the analysis of maracatu de baque solto”. In: Perspectives on Music, Sound and

Musicology: Research, Education and Practice, pp. 209–225 (cit. on p. 18).

Foote, D., D. Yang, and M. Rohaninejad (2016). Do Androids Dream of Electric Beats? Accessed

2 September 2017, AudioStyleTransfer.wordpress.com (cit. on pp. 28, 53).

Foote, J. (2000). “Automatic Audio Segmentation Using a Measure of Audio Novelty”. In: Proceedings

of the IEEE International Conference on Multimedia and Expo (ICME), New York, USA, pp. 452–455

(cit. on p. 16).

Foroughmand, H. and G. Peeters (2019). “Deep-rhythm for Tempo Estimation and Rhythm Pattern

Recognition”. In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Delft, Netherlands (cit. on p. 23).

Fraisse, P. (1982). “Rhythm and Tempo”. In: The Psychology of Music, 1(1), pp. 149–180 (cit. on

p. 14).

— (1984). “Perception and Estimation of Time”. In: Annual Review of Psychology, 35(1), pp. 1–37

(cit. on p. 14).

Frane, A. V. (2017). “Swing Rhythm in Classic Drum Breaks From Hip-Hop’s Breakbeat Canon”. In:

Music Perception: An Interdisciplinary Journal, 34(3), pp. 291–302 (cit. on p. 13).

Freeman, P. and L. Lacey (2002). “Swing and Groove: Contextual Rhythmic Nuance in Live Performance”.

In: Proceedings of the International Conference on Music Perception and Cognition (ICMPC), Sydney,

Australia, pp. 548–550 (cit. on p. 12).

Friberg, A. and A. Sundström (1999). “Jazz Drummers’ Swing Ratio in Relation to Tempo”. In: Journal

of the Acoustical Society of America (JASA), 105(2), pp. 1330–1330 (cit. on p. 12).

https://audiostyletransfer.wordpress.com/2016/12/14/do-androids-dream-of-electric-beats/


REFERENCES 131

— (2002). “Swing Ratios and Ensemble Timing in Jazz Performance: Evidence for a Common Rhythmic

Pattern”. In: Music Perception: An Interdisciplinary Journal, 19(3), pp. 333–349 (cit. on p. 12).

Gabrielsson, A. (1973a). “Adjective Ratings and Dimension Analyses of Auditory Rhythm Patterns. I”.

In: Scandinavian Journal of Psychology, 14(1), pp. 244–260 (cit. on p. 22).

— (1973b). “Similarity Ratings and Dimension Analyses of Auditory Rhythm Patterns. II”. In: Scandi-

navian Journal of Psychology, 14(1), pp. 161–176 (cit. on p. 22).

Ganin, Y., E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V.

Lempitsky (2016). “Domain-Adversarial Training of Neural Networks”. In: Journal of Machine

Learning Research (JMLR), 17(1), pp. 2030–2096 (cit. on pp. 79, 81).

Gärdenfors, P. (2004). Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge, USA

(cit. on p. 22).

Gatys, L. A., A. S. Ecker, and M. Bethge (2015). “A Neural Algorithm of Artistic Style”. In: CoRR

abs/1508.06576 (cit. on pp. 28, 33, 51, 53, 59, 61, 64).

Gillet, O. and G. Richard (2008). “Transcription and Separation of Drum Signals from Polyphonic Music”.

In: IEEE Transactions on Audio, Speech, and Language Processing (TASLP), 16(3), pp. 529–540

(cit. on p. 21).

Gillick, J., A. Roberts, J. Engel, D. Eck, and D. Bamman (2019). “Learning to Groove with Inverse

Sequence Transformations”. In: Proceedings of the International Conference on Machine Learning

Research (PMLR), Long Beach, USA (cit. on p. 27).

Glorot, X. and Y. Bengio (2010). “Understanding the Difficulty of Training Deep Feedforward Neural

Networks”. In: Proceedings of the International Conference on Artificial Intelligence and Statistics

(AISTATS), Sardinia, Italy, pp. 249–256 (cit. on pp. 83, 103).

Gonzalez, R. C. and P. Wintz (1987). Digital Image Processing, Addison-Wesley, Boston, USA (cit. on

p. 67).

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.

Bengio (2014). “Generative Adversarial Nets”. In: Proceedings of the Neural Information Processing

System (NIPS), Montréal, Canada, pp. 2672–2680 (cit. on pp. 29, 48, 99, 101, 102).

Gordon, J. W. (1985). “Perception of Attack Transients in Musical Tones (Timing, Rhythm)”. PhD thesis.

Stanford University (cit. on p. 17).

Goto, M. (2001). “An Audio-based Real-time Beat Tracking System for Music with or Without Drum-

sounds”. In: Journal of New Music Research, 30(2), pp. 159–171 (cit. on pp. 15, 20).



132 REFERENCES

Goto, M. and Y. Muraoka (1994). “A Beat Tracking System for Acoustic Signals of Music”. In:

Proceedings of the ACM International Conference on Multimedia (ACM-MM), San Francisco, USA,

pp. 365–372 (cit. on pp. 15, 19).

Gouyon, F. (2003). Towards Automatic Rhythm Description of Musical Audio Signals. Representations,

Computational Models and Applications. PhD pre-thesis work (cit. on pp. 1, 15, 24).

— (2007). “Microtiming in “Samba de Roda”—Preliminary Experiments with Polyphonic Audio”. In:

Simpósio da Sociedade Brasileira de Computação Musical São Paulo, Brazil (cit. on p. 13).

Gouyon, F., L. Fabig, and J. Bonada (2003). “Rhythmic Expressiveness Transformations of Audio

Recordings: Swing Modifications”. In: Proceedings of the International Conference on Digital Audio

Effects (DAFx), Hamburg, Germany, pp. 8–11 (cit. on pp. 13, 25).

Gouyon, F., F. Pachet, O. Delerue, et al. (2000). “On the Use of Zero-crossing Rate for an Application

of Classification of Percussive Sounds”. In: Proceedings of the COST G-6 Conference on Digital

Audio Effects (DAFX), Verona, Italy (cit. on p. 21).

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola (2012). “A Kernel Two-sample

Test”. In: Journal of Machine Learning Research (JMLR), 13(1), pp. 723–773 (cit. on p. 45).

Griffin, D. and J. Lim (1984). “Signal Estimation from Modified Short-time Fourier Transform”. In: IEEE

Transactions on Acoustics, Speech, and Signal Processing (TASSP), 32(2), pp. 236–243 (cit. on

p. 103).

Griffin, G., Y. E. Kim, and D. Turnbull (2010). “Beat-Sync-Mash-Coder: A Web Application for Real-time

Creation of Beat-synchronous Music Mashups”. In: Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Dallas, USA, pp. 437–440 (cit. on p. 27).

Grinstein, E., N. Q. K. Duong, A. Ozerov, and P. Pérez (2017). “Audio Style Transfer”. In: Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New

Orleans, USA (cit. on pp. 28, 57, 58, 64, 71, 74).

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville (2017). “Improved Training of

Wasserstein GANs”. In: Proceedings of the Neural Information Processing System (NIPS), Long

Beach, USA, pp. 5767–5777 (cit. on pp. 49, 100).

Gwern (2020). This Waifu Does Not Exist. Accessed 1 July 2020, https://www.gwern.net/TWDNE

(cit. on p. 85).

Hawthorne, C., I. Simon, R. Swavely, E. Manilow, and J. Engel (2021). “Sequence-to-Sequence Piano

Transcription with Transformers”. In: CoRR abs/2107.09142 (cit. on p. 18).

https://www.gwern.net/TWDNE


REFERENCES 133

He, K., X. Zhang, S. Ren, and J. Sun (2016a). “Deep Residual Learning for Image Recognition”. In:

Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), Las

Vegas, USA (cit. on p. 80).

He, K., Y. Wang, and J. Hopcroft (2016b). “A Powerful Generative Model Using Random Weights

for the Deep Image Representation”. In: Proceedings of the Neural Information Processing System

(NIPS), Barcelona, Spain (cit. on p. 61).

Hennequin, R., A. Khlif, F. Voituret, and M. Moussallam (2020). “Spleeter: A Fast And State-of-the

Art Music Source Separation Tool With Pre-trained Models”. In: Journal of Open Source Software

(JOSS), 50(5), pp. 2154–2157 (cit. on pp. 103, 107).

Herrera, P., A. Yeterian, and F. Gouyon (2002). “Automatic Classification of Drum Sounds: A Comparison

of Feature Selection Methods and Classification Techniques”. In: Proceedings of the International

Conference on Music and Artificial Intelligence (ICMAI), Edinburgh, Scotland, pp. 69–80 (cit. on

p. 21).

Hewitt, M. (2009). Composition for Computer Musicians. Delmar-Publishing, Huntington Beach, USA

(cit. on pp. 10, 12, 13).

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the Dimensionality of Data with Neural

Networks”. In: Science, 313(5786), pp. 504–507 (cit. on p. 101).

Hochreiter, S. and J. Schmidhuber (1997). “Long Short-term Memory”. In: Neural Computation, 9(8),

pp. 1735–1780 (cit. on p. 46).

Hockman, J. A. (2007). Automatic Timbre Mutation of Drum Loops. Master’s Thesis, New York

University, USA (cit. on pp. 9, 27).

Hockman, J. A., J. P. Bello, M. E. P. Davies, and M. D. Plumbley (2008). “Automated Rhythmic

Transformation of Musical Audio”. In: Proceedings of the International Conference on Digital Audio

Effects (DAFx), Helsinki, Finland, pp. 177–180 (cit. on pp. 13, 19, 24–26, 104).

Hockman, J. A. and M. E. P. Davies (2015). “Computational Strategies for Breakbeat Classification

and Resequencing in Hardcore, Jungle and Drum & Bass”. In: Proceedings of the International

Conference on Digital Audio Effects (DAFx), Trondheim, Norway (cit. on pp. xii, 25).

Hockman, J. (2014). “An Ethnographic and Technological Study of Breakbeats in Hardcore, Jungle

and Drum & Bass”. PhD thesis. Department of Music Research, Schulich School of Music, McGill

University (cit. on pp. 2, 9, 20, 66).



134 REFERENCES

Hockman, J., M. E. P. Davies, and I. Fujinaga (2012). “One in the Jungle: Downbeat Detection in

Hardcore, Jungle, and Drum and Bass”. In: Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Porto, Portugal, pp. 169–174 (cit. on pp. xvi, 107).

Huang, S., Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse (2018). “TimbreTron: A WaveNet

(CycleGAN (CQT (Audio))) Pipeline for Musical Timbre Transfer”. In: Proceedings of the Neural

Information Processing System (NIPS), Montréal, Canada (cit. on p. 29).

ITU (1988). Pulse Code Modulation (PCM) of Voice Frequencies. International Telecommunication

Union (ITU) (cit. on p. 82).

Ioffe, S. and C. Szegedy (2015). “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift”. In: Proceedings of the International Conference on Machine Learning

(ICML), Lille, France, pp. 448–456 (cit. on pp. 41, 101).

Ishizaki, H., K. Hoashi, and Y. Takishima (2009). “Full-Automatic DJ Mixing System with Optimal

Tempo Adjustment based on Measurement Function of User Discomfort”. In: Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan, pp. 135–140

(cit. on pp. 27, 63).

Isola, P., J.-Y. Zhu, T. Zhou, and A. A. Efros (2017). “Image-to-image Translation with Conditional

Adversarial Networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, Hawaii, pp. 1125–1134 (cit. on pp. 33, 52).

Janer, J., J. Bonada, and S. Jordà (2006). “Groovator - An Implementation of Real-Time Rhythm

Transformations”. In: Proceedings of the Audio Engineering Society Conference (AES), San Francisco,

USA (cit. on p. 25).

Jehan, T. (1997). “Musical Signal Parameter Estimation”. In: The UC Berkeley Center for New Music

and Audio Technologies (CNMAT) (cit. on p. 17).

Ji, S., J. Luo, and X. Yang (2020). “A Comprehensive Survey on Deep Music Generation: Multi-level

Representations, Algorithms, Evaluations, and Future Directions”. In: CoRR abs/2011.06801 (cit. on

p. 27).

Jing, Y., Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song (2019). “Neural Style Transfer: A Review”. In:

IEEE Transactions on Visualization and Computer Graphics, 26(11), pp. 3365–3385 (cit. on p. 64).

Jones, M. R. and M. Boltz (1989). “Dynamic Attending and Responses to Time”. In: Psychological

Review, 96(3), pp. 459–491 (cit. on p. 14).

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1999). “An Introduction to Variational

Methods for Graphical Models”. In: Machine learning, 37(2), pp. 183–233 (cit. on p. 47).



REFERENCES 135

Kalchbrenner, N. et al. (2018). “Efficient Neural Audio Synthesis”. In: Proceedings of the International

Conference on Machine Learning Research (PMLR), Baltimore, USA, pp. 2410–2419 (cit. on p. 29).

Karras, T., M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila (2021). “Alias-free

Generative Adversarial Networks”. In: Advances in Neural Information Processing Systems (NIPS),

34(1), pp. 852–863 (cit. on p. 121).

Kim, J. W., R. Bittner, A. Kumar, and J. P. Bello (2019). “Neural Music Synthesis for Flexible Timbre

Control”. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Brighton, UK, pp. 176–180 (cit. on pp. 29, 67, 88, 92).

Kingma, D. P. and J. Ba (2014). “Adam: A Method for Stochastic Optimization”. In: CoRR abs/1412.6980

(cit. on pp. 39, 103).

Kingma, D. P. and M. Welling (2013). “Auto-encoding Variational Bayes”. In: CoRR abs/1312.6114

(cit. on pp. 29, 47–49, 98, 101, 102, 109).

Kingma, D. P., S. Mohamed, D. Jimenez Rezende, and M. Welling (2014). “Semi-supervised Learning

with Deep Generative Models”. In: Advances in Neural Information Processing Systems (NIPS),

27(1) (cit. on p. 33).

Klambauer, G., T. Unterthiner, A. Mayr, and S. Hochreiter (2017). “Self-normalizing Neural Networks”.

In: Advances in Neural Information Processing Systems (NIPS), 30(1) (cit. on p. 35).

Klapuri, A. P., A. J. Eronen, and J. T. Astola (2006). “Analysis of the Meter of Acoustic Musical Signals”.

In: IEEE Transactions on Audio, Speech, and Language Processing (TASLP), 14(1), pp. 342–355

(cit. on p. 20).

Klapuri, A. and M. Davy (2007). “Signal Processing Methods for Music Transcription”. In: (cit. on

p. 2).

Knees, P., K. Andersen, S. Jordà, M. Hlatky, A. Bucci, W. Gaebele, and R. Kaurson (2016). “The

Giantsteps Project: A Second-year Intermediate Report”. In: Proceedings of the International

Computer Music Conference (ICMC), Utrecht, Netherlands (cit. on pp. 9, 24).

Knees, P., K. Andersen, S. Jordà, M. Hlatky, G. Geiger, W. Gaebele, and R. Kaurson (2015). “Giantsteps

- Progress Towards Developing Intelligent and Collaborative Interfaces for Music Production and

Performance”. In: Proceedings of the IEEE International Conference on Multimedia & Expo Workshops

(ICMEW) (cit. on pp. 3, 9, 23).

Krebs, F., S. Böck, and G. Widmer (2013). “Rhythmic Pattern Modeling for Beat and Downbeat

Tracking in Musical Audio”. In: Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Curitiba, Brazil, pp. 227–232 (cit. on pp. 23, 104).



136 REFERENCES

Krebs, F., S. Böck, and G. Widmer (2015). “An Efficient State-Space Model for Joint Tempo and Meter

Tracking”. In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Málaga, Spain, pp. 72–78 (cit. on p. 20).

Krebs, F., F. Korzeniowski, M. Grachten, and G. Widmer (2014). “Unsupervised Learning and Refinement

of Rhythmic Patterns for Beat and Downbeat Tracking”. In: Proceedings of the IEEE European

Signal Processing Conference (EUSIPCO), Lisbon, Portugal, pp. 611–615 (cit. on pp. 15, 20).

Lacoste, A. and D. Eck (2006). “A Supervised Classification Algorithm for Note Onset Detection”. In:

EURASIP Journal on Advances in Signal Processing, 2007(1), pp. 1–13 (cit. on pp. 16, 18).

Lattner, S. and M. Grachten (2019). “High-Level Control of Drum Track Generation Using Learned

Patterns of Rhythmic Interaction”. In: Proceedings of the IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), New Paltz, USA, pp. 35–39 (cit. on p. 27).

Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal Music. MIT Press, Cambridge,

USA (cit. on p. 14).

Li, Y., N. Wang, J. Liu, and X. Hou (2017). “Demystifying Neural Style Transfer”. In: CoRR

abs/1701.01036 (cit. on p. 60).

Li, Y., K. Swersky, and R. Zemel (2015). “Generative Moment Matching Networks”. In: Proceedings of

the International Conference on Machine Learning Research (PMLR), San Diego, USA, pp. 1718–1727

(cit. on p. 45).

Liu, D. C. and J. Nocedal (1989). “On the Limited Memory BFGS Method for Large Scale Optimization”.

In: Mathematical Programming, 45(1), pp. 503–528 (cit. on p. 40).

London, J. (2012). Hearing in Time: Psychological Aspects of Musical Meter. Oxford University Press,

Oxford, UK (cit. on p. 14).

MIREX (2016). Music Information Retrieval Evaluation eXchange (MIREX): Audio Downbeat Estimation

Evaluation. Accessed 18 September 2019, /2016:Audio_Downbeat_Estimation_Results (cit. on

p. 20).

— (2018a). MIREX: Audio Onset Detection Evaluation. Accessed 21 August 2018, /mirex2018/

results/aod/ (cit. on pp. 18, 68).

— (2018b). MIREX: Automatic Drum Transcription Evaluation. Accessed 21 August 2018, /2018:

Drum_Transcription_Results (cit. on p. 21).

— (2019). MIREX: Audio Beat Tracking Evaluation. Accessed 18 September 2019, /mirex2019/

results/abt/smc/ (cit. on p. 19).

https://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
/2016:Audio_Downbeat_Estimation_Results
https://nema.lis.illinois.edu/nema_out/mirex2018/results/aod/
/mirex2018/results/aod/
https://nema.lis.illinois.edu/nema_out/mirex2018/results/aod/
/mirex2018/results/aod/
https://www.music-ir.org/mirex/wiki/2018:Drum_Transcription_Results
/2018:Drum_Transcription_Results
https://www.music-ir.org/mirex/wiki/2018:Drum_Transcription_Results
/2018:Drum_Transcription_Results
https://nema.lis.illinois.edu/nema_out/mirex2019/results/abt/smc/
/mirex2019/results/abt/smc/
https://nema.lis.illinois.edu/nema_out/mirex2019/results/abt/smc/
/mirex2019/results/abt/smc/


REFERENCES 137

Maas, A. L., A. Y. Hannun, A. Y. Ng, et al. (2013). “Rectifier Nonlinearities Improve Neural Network

Acoustic Models”. In: Proceedings of the International Conference on Machine Learning (ICML),

Atlanta, USA (cit. on p. 35).

Major, M. (2014). Recording Drums: The Complete Guide. Nelson Education, Toronto, Canada (cit. on

pp. 11, 92).

Makhzani, A., J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey (2015). “Adversarial Autoencoders”. In:

CoRR abs/1511.05644 (cit. on pp. 49, 97, 98, 102).

Manzelli, R., V. Thakkar, A. Siahkamari, and B. Kulis (2018). “Conditioning Deep Generative Raw

Audio Models for Structured Automatic Music”. In: Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), Paris, France (cit. on p. 29).

Maŕın, D. G. (2018). “Similarity and Style in Electronic Dance Music Drum Rhythms”. PhD thesis.

Department of Information and Communication Technologies, Pompeu Fabra University (cit. on

p. 10).

Masri, P. (1996). “Computer Modelling of Sound for Transformation and Synthesis of Musical Signals.”

PhD thesis. Electrical & Electronic Engineering, University of Bristol (cit. on p. 16).

Masri, P. and A. Bateman (1996). “Improved Modelling of Attack Transients in Music Analysis-

Resynthesis”. In: Proceedings of the International Computer Music Conference (ICMC), Hong Kong

(cit. on p. 17).

Mauch, M. and S. Dixon (2012). “A Corpus-based Study of Rhythm Patterns”. In: Proceedings of

the International Society for Music Information Retrieval Conference (ISMIR), Porto, Portugal,

pp. 163–168 (cit. on p. 104).

McAulay, R. and T. Quatieri (1986). “Speech Analysis/Synthesis Based on a Sinusoidal Representation”.

In: IEEE Transactions on Acoustics, Speech, and Signal Processing (TASSP), 34(4), pp. 744–754

(cit. on p. 16).

McFee, B., C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar, E. Battenberg, and O. Nieto (2015). “librosa:

Audio and Music Signal Analysis in Python”. In: Proceedings of the Python in Science Conference

(SciPy), Texas, USA (cit. on pp. 82, 89).

Mehri, S., K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio (2016). “Sam-

pleRNN: An Unconditional End-to-end Neural Audio Generation Model”. In: CoRR abs/1612.07837

(cit. on pp. 29, 52).

Meseguer-Brocal, G., A. Cohen-Hadria, and G. Peeters (2018). “DALI: A Large Dataset of Synchronized

Audio, Lyrics and Notes, Automatically Created Using Teacher-Student Machine Learning Paradigm”.



138 REFERENCES

In: Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),

Paris, France (cit. on pp. xvi, 107).

Mital, P. K. (2017). “Time Domain Neural Audio Style Transfer”. In: Proceedings of the Neural

Information Processing System (NIPS), Long Beach, USA (cit. on pp. 29, 57, 58, 64, 73, 74).

Moelants, D. (2002). “Preferred Tempo Reconsidered”. In: Proceedings of the International Conference

on Music Perception and Cognition (ICMPC), Sydney, Australia, pp. 1–4 (cit. on p. 63).

Mor, N., L. Wolf, A. Polyak, and Y. Taigman (2018). “A Universal Music Translation Network”. In:

CoRR abs/1805.07848 (cit. on pp. 30, 78, 80).

— (2019). “A Universal Music Translation Network”. In: Proceedings of the International Conference

on Learning Representations (ICLR), Vancouver, Canada (cit. on pp. 30, 78–82).

Moriarty, D. E. and R. Mikkulainen (1996). “Efficient Reinforcement Learning Through Symbiotic

Evolution”. In: Machine Learning, 22(1), pp. 11–32 (cit. on p. 40).

Muandet, K., K. Fukumizu, B. Sriperumbudur, and B. Schölkopf (2016). “Kernel Mean Embedding of

Distributions: A Review and Beyond”. In: Foundations and Trends® in Machine Learning, 10(1–2),

pp. 1–141 (cit. on pp. 44, 45).

Nagarajan, V. and J. Z. Kolter (2017). “Gradient Descent GAN Optimization is Locally Stable”. In:

Proceedings of the Neural Information Processing System (NIPS), Long Beach, USA, pp. 5585–5595

(cit. on p. 99).

Nakano, T., M. Goto, J. Ogata, and Y. Hiraga (2005). “Voice Drummer: A Music Notation Interface

of Drum Sounds Using Voice Percussion Input”. In: Proceedings of the ACM Symposium on User

Interface Software and Technology (UIST), Seattle, USA, pp. 49–50 (cit. on p. 21).

Nieto, O., M. McCallum, M. E. P. Davies, A. Robertson, A. Stark, and E. Egozy (2019). “The Harmonix

Set: Beats, Downbeats, and Functional Segment Annotations of Western Popular Music”. In:

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft,

Netherlands (cit. on pp. xvi, 107).

Novikov, A. (2019). “PyClustering: Data Mining Library”. In: Journal of Open Source Software (JOSS),

4(36), pp. 1230–1234 (cit. on p. 104).

Nowozin, S., B. Cseke, and R. Tomioka (2016). “f -GAN: Training Generative Neural Samplers Using

Variational Divergence Minimization”. In: Proceedings of the Neural Information Processing System

(NIPS), Barcelona, Spain, pp. 271–279 (cit. on pp. 44, 49).

Odena, A., V. Dumoulin, and C. Olah (2016). Deconvolution and Checkerboard Artifacts. Accessed

December 2016, https://distill.pub/2016/deconv-checkerboard/ (cit. on p. 101).

https://distill.pub/2016/deconv-checkerboard/


REFERENCES 139

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and

K. Kavukcuoglu (2016a). “WaveNet: A Generative Model for Raw Audio”. In: CoRR abs/1609.03499

(cit. on pp. 29, 52, 78, 79, 81, 82).

Oord, A. v. d., N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu (2016b).

“Conditional Image Generation with PixelCNN Decoders”. In: Proceedings of the Neural Information

Processing System (NIPS), Barcelona, Spain (cit. on p. 46).

Oord, A. v. d. et al. (2018). “Parallel WaveNet: Fast High-fidelity Speech Synthesis”. In: Proceedings of

the International Conference on Machine Learning Research (PMLR), Baltimore, USA, pp. 3918–3926

(cit. on p. 117).

Owsinski, B. (2017). The Recording Engineer’s Handbook. Hal Leonard Corporation, Milwaukee, USA

(cit. on p. 11).

Owsinski, B. and D. Moody (2009). The Drum Recording Handbook. Hal Leonard Corporation, Milwaukee,

USA (cit. on p. 11).

Pampalk, E., P. Herrera, and M. Goto (2008). “Computational Models of Similarity for Drum Samples”.

In: IEEE Transactions on Audio, Speech, and Language Processing (TASLP), 16(2), pp. 408–423

(cit. on p. 21).

Paulus, J. and A. Klapuri (2002). “Measuring the Similarity of Rhythmic Patterns”. In: Proceedings

of the International Conference on Music Information Retrieval (ISMIR), Baltimore, USA (cit. on

pp. 10, 15, 22).

— (2009). “Drum Sound Detection in Polyphonic Music with Hidden Markov Models”. In: EURASIP

Journal on Audio, Speech, and Music Processing, 2009(1), pp. 1–9 (cit. on p. 21).

Paulus, J. and T. Virtanen (2005). “Drum Transcription with Non-negative Spectrogram Factorisation”.

In: Proceedings of the IEEE European Signal Processing Conference (EUSIPCO), Antalya, Turkey,

pp. 1–4 (cit. on p. 21).

Peeters, G. (2005). “Rhythm Classification Using Spectral Rhythm Patterns”. In: Proceedings of the

International Conference on Music Information Retrieval (ISMIR), London, UK, pp. 644–647 (cit. on

pp. 22, 23, 104).

Peeters, G. and H. Papadopoulos (2011). “Simultaneous Beat and Downbeat-tracking Using a Proba-

bilistic Framework: Theory and Large-scale Evaluation”. In: IEEE Transactions on Audio, Speech,

and Language Processing (TASLP), 19(6), pp. 1754–1769 (cit. on p. 20).



140 REFERENCES

Pelleg, D. and A. W. Moore (2000). “X-means: Extending K-means with Efficient Estimation of the

Number of Clusters”. In: Proceedings of the International Conference on Machine Learning (ICML),

Stanford, USA, pp. 727–734 (cit. on p. 104).

Perez, A., C. Proctor, and A. Jain (2017). Style Transfer for Prosodic Speech. Tech. rep. Stanford

University (cit. on pp. 29, 64, 74).

Pikrakis, A. (2013). “A Deep Learning Approach to Rhythm Modeling with Applications”. In: Proceedings

of the International Workshop on Machine Learning and Music (MML), Prague, Czech Republic

(cit. on p. 22).

Pons, J., R. Gong, and X. Serra (2017). “Score-informed Syllable Segmentation for a Cappella Singing

Voice with Convolutional Neural Networks”. In: Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Suzhou, China, pp. 483–489 (cit. on p. 18).

Pressing, J. (2002). “Black Atlantic Rhythm: Its Computational and Transcultural Foundations”. In:

Music Perception, 19(3), pp. 285–310 (cit. on p. 12).

Raḿırez, M. A. M., O. Wang, P. Smaragdis, and N. J. Bryan (2021). “Differentiable Signal Processing

with Black-Box Audio Effects”. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Toronto, Canada, pp. 66–70 (cit. on p. 67).

Ravelli, E., J. P. Bello, and M. Sandler (2007). “Automatic Rhythm Modification of Drum Loops”. In:

IEEE Signal Processing Letters, 14(4), pp. 228–231 (cit. on pp. 13, 24, 25).

Razavi, A., A. v. d. Oord, and O. Vinyals (2019). “Generating Diverse High-fidelity Images with

VQ-VAE-2”. In: Advances in Neural Information Processing Systems (NIPS), 32(1) (cit. on p. 30).

Reiss, J. D. and Ø. Brandtsegg (2018). “Applications of Cross-adaptive Audio Effects: Automatic Mixing,

Live Performance and Everything in Between”. In: Frontiers in Digital Humanities, 5(1), pp. 1–17

(cit. on p. 19).

Repp, B. H. (2005). “Sensorimotor Synchronization: A Review of the Tapping Literature”. In: Psycho-

nomic Bulletin & Review, 12(6), pp. 969–992 (cit. on p. 14).

Reynolds, S. (2012). Energy Flash: A Journey Through Rave Music and Dance Culture. Soft Skull Press,

New York, USA (cit. on pp. 2, 25).

Robertson, A. (2009). “Interactive Teal-time Musical Systems”. PhD thesis. School of Electronic

Engineering and Computer Science, Queen Mary University of London (cit. on p. 13).

Roma, G. (2008). “Freesound Radio: Supporting Collective Organization of Sounds”. PhD thesis.

Department of Information and Communication Technologies, Pompeu Fabra University (cit. on

p. 16).



REFERENCES 141

Rosenthal, D. F. (1992). “Machine Rhythm: Computer Emulation of Human Rhythm Perception”.

PhD thesis. Massachusetts Institute of Technology (cit. on p. 14).

Rossing, T. D. (2001). Science of Percussion Instruments. World Scientific Publishing, Singapore (cit. on

p. 11).

Rossing, T. D., F. R. Moore, and P. A. Wheeler (2014). The Science of Sound. Pearson Publishing,

London, UK (cit. on p. 11).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning Representations by Back-

propagating Errors”. In: Nature, 323(6088), pp. 533–536 (cit. on p. 39).

Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen (2016). “Improved

Techniques for Training GANs”. In: Advances in Neural Information Processing Systems (NIPS),

29(1), pp. 2234–2242 (cit. on p. 49).

Sawada, S., S. Fukayama, M. Goto, and K. Hirata (2019). “TransDrums: A Drum Pattern Transfer

System Preserving Global Pattern Structure”. In: Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, pp. 391–395 (cit. on p. 26).

Scheirer, E. D. (1998). “Tempo and Beat Analysis of Acoustic Musical Signals”. In: Journal of the

Acoustical Society of America (JASA), 103(1), pp. 588–601 (cit. on p. 19).

Schloss, W. A. (1985). “On the Automatic Transcription of Percussive Music from Acoustic Signal to

High-level Analysis”. PhD thesis. Center for Computer Research in Music and Acoustics (CCRMA),

Stanford University (cit. on pp. 17, 21).

Schlüter, J. and S. Böck (2013). “Musical Onset Detection with Convolutional Neural Networks”.

In: Proceedings of the International Workshop on Machine Learning and Music (MML) held in

conjunction with the European Conference on Machine Learning and Principles (ECML) and Practice

of Knowledge Discovery in Databases (PKDD) Prague, Czech Republic (cit. on p. 18).

— (2014). “Improved Musical Onset Detection with Convolutional Neural Networks”. In: Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence,

Italy, pp. 6979–6983 (cit. on p. 16).

Schörkhuber, C. and A. Klapuri (2010). “Constant-Q Transform Toolbox for Music Processing”. In:

Proceedings of the Sound and Music Computing Conference (SMC), Barcelona, Spain, pp. 1–8

(cit. on p. 88).

Schrader, B. (1982). Introduction to Electro-acoustic Music. Prentice Hall, Hoboken, USA (cit. on pp. 2,

9).



142 REFERENCES

Serra, X. (1989). “A System for Sound Analysis/Transformation/Synthesis Based on a Deterministic

Plus Stochastic Decomposition”. PhD thesis. Center for Computer Research in Music and Acoustics

(CCRMA), Stanford University (cit. on p. 9).

Shiga, J. (2007). “Copy-and-persist: The Logic of Mash-up Culture”. In: Critical Studies in Media

Communication (CSMC), 24(2), pp. 93–114 (cit. on p. 27).

Simonyan, K. and A. Zisserman (2014). “Very Deep Convolutional Networks for Large-scale Image

Recognition”. In: CoRR abs/1409.1556 (cit. on p. 101).

Snoman, R. (2012). The Dance Music Manual: Tools, Toys and Techniques. CRC Press, Boca Raton,

USA (cit. on pp. 10, 13).

Southall, C. (2019). “Automatic Drum Transcription Using Deep Learning”. PhD thesis. Sound and

Music Analysis (SOMA) Group, Digital Media Technology (DMT) Lab, Birmingham City University

(cit. on pp. 10, 20, 67).

Southall, C., R. Stables, and J. Hockman (2016). “Automatic Drum Transcription Using Bi-Directional

Recurrent Neural Networks”. In: Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), New York City, USA (cit. on pp. 21, 67).

— (2017). “Automatic Drum Transcription for Polyphonic Recordings Using Soft Attention Mecha-

nisms and Convolutional Neural Networks”. In: Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Suzhou, China, pp. 606–612 (cit. on pp. 21, 88).

— (2018). “Player Vs Transcriber: A Game Approach To Data Manipulation For Automatic Drum

Transcription”. In: Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Paris, France, pp. 58–65 (cit. on p. 21).

Sriperumbudur, B. K., K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet (2009). “On

Integral Probability Metrics, ϕ-Divergences and Binary Classification”. In: CoRR abs/0901.2698

(cit. on p. 44).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of Machine Learning Research

(JMLR), 15(1), pp. 1929–1958 (cit. on p. 42).

Steinwart, I. and A. Christmann (2008). Support Vector Machines. Springer Science & Business Media,

Berlin, Germany (cit. on p. 44).

Stevens, S. S. and J. Volkmann (1940). “The Relation of Pitch to Frequency: A Revised Scale”. In: The

American Journal of Psychology (AJP), 53(3), pp. 329–353 (cit. on p. 66).



REFERENCES 143

Stewart, A. (2000). “’Funky Drummer’: New Orleans, James Brown and the Rhythmic Transformation

of American Popular Music”. In: Popular Music, 19(3), pp. 293–318 (cit. on p. 12).

Sutton, R. (1986). “Two Problems with Back Propagation and Other Steepest Descent Learning

Procedures for Networks”. In: Proceedings of the Conference of the Cognitive Science Society

(CogSci), Amherst, USA, pp. 823–832 (cit. on p. 39).

Taylor, G., R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein (2016). “Training Neural Networks

Without Gradients: A Scalable ADMM Approach”. In: Proceedings of the International Conference

on Machine Learning Research (PMLR), New York, USA, pp. 2722–2731 (cit. on p. 40).

Temperley, D. (1999). “Syncopation in Rock: A Perceptual Perspective”. In: Popular Music, 18(1),

pp. 19–40 (cit. on p. 13).

— (2004). The Cognition of Basic Musical Structures. MIT Press, Cambridge, USA (cit. on p. 14).

Tenney, J. and L. Polansky (1980). “Temporal Gestalt Perception in Music”. In: Journal of Music Theory,

24(2), pp. 205–241 (cit. on p. 14).

Termens, E. G. (2004). “New Approaches for Rhythmic Description of Audio Signals”. PhD thesis.

Department of Information and Communication Technologies, Pompeu Fabra University (cit. on

p. 15).

Thul, E. and G. T. Toussaint (2008). “Rhythm Complexity Measures: A Comparison of Mathematical

Models of Human Perception and Performance”. In: Proceedings of the International Conference on

Music Information Retrieval (ISMIR), Philadelphia, USA, pp. 663–668 (cit. on p. 22).

Tieleman, T., G. Hinton, et al. (2012). “Lecture 6.5-RMSProp: Divide the Gradient by a Running

Average of Its Recent Magnitude”. In: COURSERA: Neural Networks for Machine Learning, 4(2),

pp. 26–31 (cit. on p. 39).

Tingle, D., Y. E. Kim, and D. Turnbull (2010). “Exploring Automatic Music Annotation with ’Acoustically-

Objective’ Tags”. In: Proceedings of the International Conference on Multimedia Information Retrieval,

New York, USA, pp. 55–62 (cit. on p. 3).

Toh, C.-C., B. Zhang, and Y. Wang (2008). “Multiple-Feature Fusion Based Onset Detection for Solo

Singing Voice”. In: Proceedings of the International Conference on Music Information Retrieval

(ISMIR), Philadelphia, USA, pp. 515–520 (cit. on p. 18).

Tokui, N. (2008). “Massh!: A Web-based Collective Music Mashup System”. In: Proceedings of the

International Conference on Digital Interactive Media in Entertainment and Arts (DIMEA), Athens,

Greece, pp. 526–527 (cit. on p. 27).



144 REFERENCES

Tomczak, M., J. Drysdale, and J. Hockman (2019). “Drum Translation for Timbral and Rhythmic

Transformation”. In: Proceedings of the International Conference on Digital Audio Effects (DAFx),

Birmingham, UK, pp. 340–346 (cit. on p. 54).

Tomczak, M., M. Goto, and J. Hockman (2020). “Drum Synthesis and Rhythmic Transformation with

Adversarial Autoencoders”. In: Proceedings of the ACM International Conference on Multimedia

(ACM-MM), Seattle, USA, pp. 2427–2435 (cit. on pp. xvi, 54, 107).

Tomczak, M., C. Southall, and J. Hockman (2018). “Audio Style Transfer with Rhythmic Constraints”.

In: Proceedings of the International Conference on Digital Audio Effects (DAFx), Aveiro, Portugal,

pp. 45–50 (cit. on p. 53).

Toussaint, G. T. (2004). “A Comparison of Rhythmic Similarity Measures”. In: Proceedings of the

International Conference on Music Information Retrieval (ISMIR), Barcelona, Spain (cit. on p. 22).

Tschannen, M., O. Bachem, and M. Lucic (2018). “Recent Advances in Autoencoder-based Representa-

tion Learning”. In: CoRR abs/1812.05069 (cit. on p. 120).

Tzanetakis, G., A. Kapur, and R. I. McWalter (2005). “Subband-based Drum Transcription for Audio

Signals”. In: Proceedings of the IEEE Workshop on Multimedia Signal Processing, Shanghai, China,

pp. 1–4 (cit. on p. 21).

UMMA (2017). Matisse Drawings: Curated by Ellsworth Kelly from The Pierre and Tana Matisse

Foundation Collection. Accessed 12 December 2018, https://umma.umich.edu/news/2017/umma-

presents-matisse-kelly-drawings (cit. on p. 59).

Ulyanov, D. and V. Lebedev (2016). Audio Texture Synthesis and Style Transfer. Accessed 3 December

2016, https://dmitryulyanov.github.io/ (cit. on pp. 28, 51, 53, 56, 58, 64, 73, 74).

Uria, B., I. Murray, and H. Larochelle (2014). “A Deep and Tractable Density Estimator”. In: Proceedings

of the International Conference on Machine Learning (ICML), Beijing, China, pp. 467–475 (cit. on

p. 46).

Valenti, A., A. Carta, and D. Bacciu (2020). “Learning a Latent Space of Style-Aware Symbolic Music

Representations by Adversarial Autoencoders”. In: CoRR abs/2001.05494 (cit. on pp. 27, 102).

Veire, L. V., T. De Bie, and J. Dambre (2019). “A CycleGAN for Style Transfer Between Drum and

Bass Subgenres”. In: Proceedings of the Machine Learning for Music Discovery Workshop at the

International Conference on Machine Learning (ICML), Long Beach, USA, pp. 1–3 (cit. on p. 30).

Verfaille, V., U. Zölzer, and D. Arfib (2006). “Adaptive Digital Audio Effects (A-DAFx): A New Class

of Sound Transformations”. In: IEEE Transactions on Audio, Speech, and Language Processing

(TASLP), 14(5), pp. 1817–1831 (cit. on p. 24).

https://umma.umich.edu/news/2017/umma-presents-matisse-kelly-drawings
https://umma.umich.edu/news/2017/umma-presents-matisse-kelly-drawings
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/


REFERENCES 145

Verma, P. and J. O. Smith (2018). “Neural Style Transfer for Audio Spectrograms”. In: Proceedings of

the Neural Information Processing System (NIPS), Montréal, Canada (cit. on pp. 28, 29, 64, 74).

Verma, T. S., S. N. Levine, and T. H. Y. Meng (1997). “Transient Modeling Synthesis: A Flexible

Analysis/Synthesis Tool for Transient Signals”. In: Proceedings of the International Computer Music

Conference (ICMC), Thessaloniki, Greece (cit. on p. 16).

Vogl, R., M. Dorfer, G. Widmer, and P. Knees (2017). “Drum Transcription via Joint Beat and Drum

Modeling Using Convolutional Recurrent Neural Networks.” In: Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR), Suzhou, China, pp. 150–157 (cit. on

p. 21).

Wilmering, T., G. Fazekas, and M. B. Sandler (2013). “The Audio Effects Ontology.” In: Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), Curitiba, Brazil,

pp. 215–220 (cit. on p. 3).

Witek, M. A. G., E. F. Clarke, M. Wallentin, M. L. Kringelbach, and P. Vuust (2014). “Syncopation,

Body-movement and Pleasure in Groove Music”. In: PLOS One: Public Library of Science, 9(4),

pp. 1–12 (cit. on p. 14).

Wu, C.-W., C. Dittmar, C. Southall, R. Vogl, G. Widmer, J. Hockman, M. Müller, and A. Lerch (2018).

“A Review of Automatic Drum Transcription”. In: IEEE/ACM Transactions on Audio, Speech, and

Language Processing (TASLP), 26(9), pp. 1457–1483 (cit. on pp. 2, 15, 20, 21, 67).

Wu, C.-W. and A. Lerch (2015). “Drum Transcription Using Partially Fixed Non-negative Matrix

Factorization”. In: Proceedings of the IEEE European Signal Processing Conference (EUSIPCO),

Nice, France, pp. 1281–1285 (cit. on pp. 21, 67).

Wu, Y.-K., C.-Y. Chiu, and Y.-H. Yang (2022). “JukeDrummer: Conditional Beat-aware Audio-domain

Drum Accompaniment Generation via Transformer VQ-VA”. In: CoRR abs/2210.06007 (cit. on

p. 30).

Wyse, L. (2017). “Audio Spectrogram Representations for Processing with Convolutional Neural

Networks”. In: Proceedings of the International Conference on Deep Learning and Music at the

International Joint Conference on Neural Networks (IJCNN), Anchorage, USA (cit. on pp. 28, 64).

Yang, T., Y. Wang, Y. Lv, and N. Zh (2023). “DisDiff: Unsupervised Disentanglement of Diffusion

Probabilistic Models”. In: CoRR abs/2301.13721 (cit. on p. 120).

Yoshii, K., M. Goto, K. Komatani, T. Ogata, and H. G. Okuno (2007). “Drumix: An Audio Player with

Real-time Drum-part Rearrangement Functions for Active Music Listening”. In: Information and

Media Technologies, 2(2), pp. 601–611 (cit. on p. 25).



146 REFERENCES

Yu, F. and V. Koltun (2016). “Multi-scale Context Aggregation by Dilated Convolutions”. In: CoRR

abs/1511.07122 (cit. on p. 37).

Yu, R. (2020). “A Tutorial on VAEs: From Bayes’ Rule to Lossless Compression”. In: CoRR abs/2006.10273

(cit. on p. 47).

Zeiler, M. D. (2012). “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR abs/1212.5701

(cit. on p. 39).

Zeiler, M. D. and R. Fergus (2014). “Visualizing and Understanding Convolutional Networks”. In:

European Conference on Computer Vision (ECCV), Zürich, Switzerland, pp. 818–833 (cit. on p. 37).

Zhang, Z., Y. Song, and H. Qi (2017). “Age Progression/Pegression by Conditional Adversarial Au-

toencoder”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Honolulu, Hawaii, pp. 5810–5818 (cit. on p. 97).

Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal (1997). “Algorithm 778: L-BFGS-B: Fortran Subroutines

for Large-scale Bound-constrained Optimization”. In: ACM Transactions on Mathematical Software,

23(4), pp. 550–560 (cit. on p. 61).

Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros (2017). “Unpaired Image-to-image Translation Using

Cycle-consistent Adversarial Networks”. In: Proceedings of the IEEE International Conference on

Computer Vision (ICCV), Venice, Italy, pp. 2223–2232 (cit. on pp. 29, 30, 52).

Zölzer, U. (2011). DAFX: Digital Audio Effects. John Wiley & Sons, New York, USA (cit. on pp. 9, 24).


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Mathematical Notation
	Introduction
	Motivation
	Aim and Objectives
	Contributions
	Structure
	Publications

	Review of Rhythmic Description and Transformation Literature
	Characteristics of Drums
	Instruments of the Drum Kit
	Features of Drum Styles

	Rhythmic Description
	Rhythm and Metre
	Onset Detection
	Beat Detection
	Downbeat Detection
	Automatic Drum Transcription
	Rhythmic Pattern Detection

	Existing Methods for Automated Rhythmic Transformation
	Content-based Transformations
	Resequencing Methods
	Hybrid Methods

	Chapter Summary

	Deep Learning and Deep Generative Models for Audio Synthesis
	Deep Learning
	Multilayer Perceptrons
	Convolutional Neural Networks
	Training Methods
	Regularisation

	Deep Generative Models
	Generative Moment Matching Networks
	Autoregressive Networks
	Variational Autoencoders
	Generative Adversarial Networks
	Adversarial Autoencoders

	Transformation Modes of Deep Generative Models
	Drum Translation
	Audio Style Transfer
	Latent Space Manipulation

	Chapter Summary

	Audio Style Transfer with Rhythmic Constraints
	Method
	Segmentation
	Feature Representation
	Content
	Style

	Optimisation
	Content and Style Loss Functions
	Training


	Evaluation Methodology
	Data
	Evaluation Strategies
	Transformation Objectives
	Standard Audio Style Transfer Formulation
	Mashup Transformation
	Augmented Mashup Transformation

	Metrics
	Rhythmic Similarity
	Spectral Cosine Similarity
	Pearson Correlation
	Onset Detection


	Results
	Rhythmic Similarity Results
	Standard Audio Style Transfer: L1 and L2
	Mashup Transformation: L3
	Augmented Mashup Transformation: L4 and L5
	Onset Detection: L3, L4, and L5

	Spectral Similarity Results
	Standard Audio Style Transfer: L1 and L2
	Mashup Transformation: L3
	Augmented Mashup Transformation: L4 and L5

	Discussion
	Conclusions

	Chapter Summary

	Drum Translation for Rhythmic and Timbral Transformation
	Drum Translation
	Method
	Conditional Autoencoders
	Domain Confusion Network
	–law Quantisation
	Data Augmentation
	Training
	Generation

	Evaluation
	Drum Sample Dataset
	Test Data
	Evaluation Metrics

	Results
	Automatic Drum Transcription
	Reconstruction
	Discussion
	Conclusions

	Chapter Summary

	Drum Synthesis and Rhythmic Transformation with AAE
	Method
	Adversarial Autoencoder
	Implementation
	Input Features
	Architecture
	Representation of Prior Distribution
	Training and Signal Reconstruction

	Rhythmic Transformation
	Representation of Rhythmic Patterns
	Clustering of Rhythmic Pattern Styles
	Pattern Conditioning and Interpolation
	Pattern Style Definition via –means


	Evaluations
	Dataset
	Experimental Methodology
	Baseline Systems

	Results and Discussion
	Latent Space Structure
	Reconstruction Performance
	Latent Space Interpolation
	Conclusions

	Chapter Summary

	Conclusions
	Contributions
	Future Work
	Final Thoughts


