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Abstract 28 

The abnormality of haemoglobin in the human body is the fundamental cause of thalassemia 29 

disease. Thalassemia is considered a common genetic blood condition that has received 30 

extensive investigation in medical research globally. Likely, inherited disorders will be passed 31 

down to children from their parents. If both parents are beta Thalassemia carriers, 25% of their 32 

children will have intermediate or major beta thalassemia, which is fatal. An efficient method 33 

of beta thalassemia is prenatal screening after couples have received counselling. Identifying 34 

Thalassemia carriers involves a costly, time-consuming, and specialized test using quantifiable 35 

blood features. However, cost-effective and speedy screening methods must be developed to 36 

address this issue. The demise rate due to thalassemia development is outstandingly high 37 

around the globe. The passing rate due to thalassemia development can be reduced by 38 

following the proper procedure early; otherwise, it significantly impacts the body. A machine 39 

learning-based late fusion model proposes the detection of beta-thalassemia carriers by 40 

analyzing red blood cells. This study applied the late fusion technique to employ four machine 41 

learning algorithms. For identifying the beta thalassemia carriers, Logistics Regression, Naïve 42 

Bayes, Decision Tree, and Neural Network, they have achieved an accuracy of 94.01%, 43 
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93.15%, 97.93%, and 98.07%, respectively, by using the features-based dataset. The late 44 

fusion-based ML model achieved an overall accuracy of 96% for detecting beta-thalassemia 45 

carriers. The proposed late fusion model performs better than previously published approaches 46 

regarding efficiency, reliability, and precision. 47 

Keywords: Machine Learning (ML), Logistics Regression (LR), Naïve Bayes (NB), Decision Tree 48 

(DT), Neural Network (NN), Fuzzy Logic (FL), Internet of medical things (IoMT), Late Fusion 49 

model. 50 

Introduction 51 

Thalassemia comes from the Greek terms 'Thalassa' and 'Haima.' "Thalassa" means "the ocean," and 52 

"Haima" means "the blood". Thalassemia is a genetic blood disorder characterized by insufficient 53 

production of haemoglobin [1]. Haemoglobin plays a crucial role in the human body by transporting 54 

oxygen from the lungs to the rest of the body and returning carbon dioxide to the lungs [2]. 55 

Thalassemia is one of the world's most frequent diseases, particularly in the Mediterranean. Many 56 

countries are currently dealing with the high and rising incidence of thalassemia, which has become 57 

a primary public health concern—a significant source of disability and mortality around the world. 58 

Early detection of thalassemia can aid in the reduction of death rates. As a result, healthcare 59 

practitioners are responsible for making the right decisions. When distinguishing between ordinary 60 

people and patients, complete the following options. Who are carriers of diseases, especially when it 61 

comes to genetic disorders such as a condition known as thalassemia [3]. 62 

There are two divisions of thalassemia based on two polypeptide chains in haemoglobin. These are 63 

known as alpha-thalassemia (ɑ) and beta-thalassemia (β). An abnormality causes alpha thalassemia 64 

in the alpha polypeptide gene of haemoglobin, whereas beta-thalassemia is caused due to disturbance 65 

in the beta polypeptide gene. The development of any of the alpha or beta-thalassemia in a person's 66 

body leads to low or abnormal haemoglobin creation in the body [4]. The red blood cells are affected 67 

due to inadequate haemoglobin [5]. 68 

The classification of thalassemia consists of three stages: major, intermediate, and minor thalassemia. 69 

Thalassemia major is the most crucial stage of the disease in which the patient needs a continuous 70 

blood transfusion to survive. Thalassemia intermediate is the middle stage of the condition in which 71 

the patient needs blood transfusion occasionally. It is also known as mild or moderate anaemia. The 72 

patient with thalassemia minor looks physically fit and healthy. They don't need a blood transfusion 73 

but maintain their diet and healthy lifestyle [6]. 74 

World Health Organization (WHO) identifies that beta-thalassemia has 5.1% carriers worldwide [7]. 75 

Many tests are required to diagnose the difference between Iron deficiency anaemia and beta-76 

thalassemia. These tests include serum iron level, Complete blood count, High-performance liquid 77 

chromatography, the binding capacity of Iron, and the calculation of ferritin and HBA2. However, 78 

these tests are expensive and unavailable everywhere [8]. 79 

In many other research disciplines, machine learning approaches are very efficient in producing 80 

results. They make managing and analyzing other fields easier and play a significant role in the health 81 

sector. A computer-based system can be developed to identify thalassemia with improved accuracy, 82 

better results, and more affordable cost. Various machine learning algorithms have offered effective 83 

treatments for various biomedical problems. Many models have been presented to analyze the data 84 

of other diseases [32,33] like brain tumours [9], kidney diseases [10], lung disorders [11], and Iron 85 

deficiency anaemia by using machine learning techniques [25, 26 and 30], including support vector 86 

machine [12], K-nearest neighbour [13], fuzzy logic [14, 29 and 31], Deep extreme machine learning 87 

[27] and deep neural network [15, 24 and 28]. 88 
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Logistic regression models a discrete outcome given an input variable. The most popular logistic 89 

regression models a binary result (true/false, yes/no, etc.). When analyzing a classification problem, 90 

logistic regression is a helpful analysis tool. 91 

Nave Bayes is a superficial learning algorithm that uses the Bayes rule and assumes attributes are 92 

class-dependent. Due to its processing efficiency and other benefits, nave Bayes is commonly used 93 

in practice [21]. 94 

A tree has numerous analogies in real life and has inspired machine learning, classification, and 95 

regression. A decision tree can represent the decision analysis process visually and explicitly. 96 

Feature-based data can be handled very effectively by neural network algorithms. Neural networks 97 

are computing systems inspired by human brain neural networks [2, 10]. 98 

Although machine learning algorithms are currently helpful for identifying illnesses, earlier research 99 

models were less accurate because they mainly concentrated on preprocessing methods, data 100 

balancing, and other supervised and semi-supervised learning models. A late fusion technique is 101 

needed to fuse the accuracy of many machine learning algorithms while maintaining high sickness 102 

detection accuracy. This study proposed a late fusion-based ML model that implements Logistics 103 

Regression, Naïve Bayes, Decision Tree, and Neural Network for data analysis. The system will use 104 

a featured-based dataset of thalassemia reports.  105 

It highlights the importance of accurately predicting β-thalassemia carriers to enable early 106 

intervention and genetic counselling. The limitations of existing prediction models and the need for 107 

an improved approach are discussed. The objectives of the paper are clearly stated as follows: 108 

1. To develop a fuzzy-based fusion model that combines multiple machine learning algorithms 109 

for β-thalassemia carrier prediction. 110 

2. To evaluate the performance of the proposed model using relevant performance metrics and 111 

compare it with existing approaches. 112 

3. To analyze the effectiveness of fuzzy logic in improving the accuracy and reliability of β-113 

thalassemia carrier prediction. 114 

The results of four different machine learning algorithms were combined through fuzzification 115 

to decide on beta-thalassemia carrier identification. The outcomes demonstrate that the 116 

proposed approach is more precise and effective than existing solutions. 117 

Related Work 118 

The goal of the research is to identify thalassemia sickness early. Hirimutugoda and Wijayarathna 119 

[2] implemented a three-layer artificial neural network to detect and differentiate malaria and 120 

thalassemia. Both diseases are life-threatening and global health issues. Visual inspection of the 121 

images of blood analysis taken with a light microscope is a well-known technique for determining 122 

malaria and thalassemia. This technique takes much time and is more consuming and expensive. The 123 

model used three and four layers of ANN that merged with methods of image analysis to find the 124 

accuracy and effectiveness of the classification for identifying the images related to morphological 125 

features of the blood erythrocytes. The study claimed that the three-layered ANN approach generated 126 

results with an accuracy of 84.54%. 127 

Ayyıldız and Tuncer [5] performed a decision-based diagnosis to identify and discriminate the Iron 128 

deficiency anemia (IDA) and beta-thalassemia (β). They implemented red blood cell indices and two 129 

effective techniques of machine learning: support vector machine and k-nearest neighbour. Various 130 

parameters of Complete blood count were used to differentiate between IDA and β–Thalassemia. 131 

Implementation of RBC indices improved the efficiency of the diagnostic model. But if the number 132 

of features increases, the system becomes complicated. 133 
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Das et al. [16] employed a decision-based system that used decision trees, ANN, and a Naïve Bayes 134 

classifier to discriminate β-thalassemia carriers from ordinary people. The Postgraduate Institute of 135 

Medical Education and Research in the Indian city of Chandigarh is where the dataset was gathered. 136 

Both ratings were determined to be completely sensitive. The screening score for thalassemia 137 

characteristics (BTT) was determined to be 79.25 percent and 91.74 percent, respectively, for the 138 

combined score of BTT and HbE. Although the mechanism differentiates two main variants related 139 

to haemoglobin, it still requires validation with datasets collected from different countries for 140 

implementation and unification. 141 

Egejuru et al. [17] implemented a prediction model for identifying the risk of thalassemia disease. 142 

The model used supervised machine learning approaches for analyzing the data collected through 143 

questionnaires and medical persons. The Waikato Environment for Knowledge Analysis (WEKA) 144 

tool was used for data simulation. Identification variables included demographics (age, marital status, 145 

gender, social class, and ethnicity) and clinical variables (spleen enlargement, family history, urine 146 

colour, diabetes, and inherited disease status). The dataset consisted of 57% disease carriers and 43% 147 

non-carriers. The models implemented in the study are multi-layer perception (MLP) and the Naïve 148 

Bayes classifier. The study results show that the MLP is a more effective and reliable mechanism for 149 

identifying the risk of thalassemia in patients in Nigeria. 150 

Sadiq et al. [18] constructed an ensemble classifier model using a random forest support vector 151 

machine and a Gradient boosting machine to identify patients with thalassemia from the Complete 152 

blood count (CBC) test data. The model was implemented on the dataset of CBC reports of 5066 153 

patients collected from the Punjab thalassemia prevention program (PTPP). Input parameters used 154 

for this study are red blood cells, Haemoglobin, Hematocrit, Mean cell volume, Mean cell 155 

haemoglobin concentration, Mean cell haemoglobin, RBC distribution width, platelet count, and 156 

white blood cells. The study achieved an accuracy of 93% in identifying β-thalassemia carriers. 157 

Akhtar et al. [19] implemented a Linear discrimination analysis (LDA) classifier to classify the 158 

patients with thalassemia using various parameters of a Complete blood count report. The parameters 159 

used in the study are Ferritin, HB, RBC, WBC, HCT, and Platelets. The study also used mathematical 160 

formulas to discriminate the patients with thalassemia and iron deficiency anaemia. The accuracy 161 

achieved 78% results for females and 75% for males.  162 

The fuzzy-based model was developed to classify thalassemia diseases by Susanto et al. [20]. The 163 

haemoglobin, MCV, and MCH levels were obtained following the CBC examination to determine 164 

the type of thalassemia. Major, Intermedia, Minor, and Not Thalassemia are four output models. The 165 

doctor's perspectives on thalassemia were contrasted with the model prediction results against four 166 

datasets. Additional data must be used to understand to further test the model's accuracy.  167 

Jahan et al. [21] investigated the research on red cell indices utilizing machine learning techniques, 168 

such as an artificial neural network (ANN), to detect Beta-thalassemia traits (BTT) in pregnant 169 

women. The optimal cutoff for each index and the BTT detection test characteristics was determined 170 

using a Receiver operating characteristic (ROC) curve analysis. The C4.5 and Naive Bayes (NB) 171 

classifiers and a back-propagation type ANN were constructed and tested over 3947 patients using 172 

the red cell indices. The study emphasizes that none of the red cell features alone helps detect BTT. 173 

However, ANN, with a mixture of all red cell indices, exhibited good sensitivity and specificity for 174 

this use. Further neural network development might produce a valuable tool for thalassemia screening 175 

in remote areas. 176 

Mohammed and Al-Tuwaijari [22] presented various artificial intelligence-based methods and 177 

machine learning techniques for classifying and detecting thalassemia utilizing CBC test variables 178 

such as RBC, HGB, MCV, HTC, and HB. This system was developed to identify patients with minor 179 

thalassemia alpha and major thalassemia beta. The classification methods are decision tree, Naive 180 

Bayes, and support vector machine. 181 
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Tyas et al. [23] examined multi-layer perceptron to classify erythrocytes present in thalassemia cases. 182 

It combined morphological features with texture and colour features to increase the accuracy of 183 

erythrocyte classification. The experimental results of 7108 erythrocytes indicated an accuracy of 184 

98.11% for training and 93.77% for testing based on the combination of features. The system's 185 

effectiveness was assessed using images captured at various magnifications and on different scanning 186 

platforms. The least number of red cells to image for analysis was determined using Poisson 187 

modelling, and the results were validated using image sets. Table 1 is showing the comparative 188 

analysis with respect to the accuracy of past works that were about anomaly detection in network 189 

security. 190 

Table 1: Previous Work Accuracy and Dataset Status 191 

Author Method  Dataset  Accuracy  

Hirimutugoda and Wijayarathna [2] Artificial Neural Network Public  86.54% 

Sadiq et al. [18] Random Forest Private  91% 

Sadiq et al. [18] Support Vector Machine Private  90% 

Sadiq et al. [18] Gradient Boosting Machine Private  91% 

Susanto et al. [20] Fuzzy Inference System Public  89.26% 

Jahan et al. [21] Artificial Neural Network Private  85.95% 

Tyas et al. [23] Convolutional Neural Network Public  93.77% 

 192 

The Aims and objectives of the paper are: 193 

To highlight the importance of identifying beta-thalassemia carriers and their impact on reducing the 194 

mortality rate associated with the disease. 195 

To identify the limitations of current screening methods and propose developing cost-effective and 196 

speedy screening methods. 197 

To develop a machine learning-based late fusion model for detecting beta-thalassemia carriers by 198 

analyzing red blood cells. 199 

To compare the proposed late fusion model's accuracy, efficiency, reliability, and precision with 200 

previously published approaches. 201 

To explore the use of machine learning in medical research to detect beta-thalassemia carriers. 202 

To evaluate the performance of four machine learning algorithms, including Logistics Regression, 203 

Naïve Bayes, Decision Tree, and Neural Network. 204 

To use a features-based dataset for the development of the late fusion model. 205 

Proposed β-Thalassemia Prediction Model  206 

The Late fusion model based on machine learning is proposed for predicting β-thalassemia carriers. 207 

The system used a features-based dataset of thalassemia reports obtained from the Internet of Medical 208 

Things (IoMT) enabled devices. The novel features dataset was collected from the Punjab 209 

Thalassemia Prevention Program (PTPP) database. Table 2 presents a complete overview of the 210 

features. 211 

Table 2: Dataset structure 212 

Sr. Features Datatype Sr. Features Datatype 

1. CS/PS Integer 5. MCH Integer 

2. ETC Nominal 6. Hb Integer 

3. Age Integer 7. Hct Integer 

4. Sex  Integer 8. MCV Integer 

 213 
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 214 

PTPP is the initiative of the Punjab government of Pakistan to protect the people from thalassemia 215 

disease. This platform provides support to thalassemia patients in β-Thalassemia carrier screening. 216 

Initially, the dataset is divided into training and testing phases. 70% of records were fixed for training 217 

and 30% for testing.  218 

The Proposed model consists of training and validation phases. The proposed model consists of 219 

various layers that help to diagnose beta thalassemia disease. These layers are data acquisition, 220 

preprocessing, and application. The proposed model's first layer is the data acquisition layer, which 221 

collects the dataset from PTPP based on IoMT devices [18]. It consisted of twelve variables and a 222 

total number of 5066 instants. Output is classified into two categories. The first is β-Thalassemia 223 

Non-Carriers, which contains 3051 records, and the second is β-Thalassemia Carriers, with 2015 224 

patient records. The sex distribution ratio is 53% for males and 47% for females.   225 

This unprocessed data may have some missing or noisy values. Normalization of the data and 226 

treatment of missing values is accomplished in the preprocessing layer. The normalizing method is 227 

used to handle noisy data. In contrast, missing values are driven by calculating existing values' mean 228 

and moving averages. 229 

In the training phase, the third layer of the model is the application layer, which predicts thalassemia 230 

sickness using four different machine learning algorithms: Logistics Regression (LR), Naïve Bayes 231 

(NB), Decision Tree (DT), and Neural Network (NN).  232 

The LR, NB, DT, and NN results are given to the evaluation phase, which calculates the accuracy. It 233 

misrates in the targeted class represented by [0, 1], where 0 is for β-Thalassemia non-carrier, and 1 234 

is for β-Thalassemia Carrier investigated. The data is sent to the cloud if the learning criteria are 235 

satisfied. Otherwise, it needs to be retrained, as shown in Figure 1. 236 

 237 

Figure 1: Proposed Late Fusion Model for Thalassemia Disease Prediction  238 
The results of four different techniques are combined in the following stage using a fuzzy inference 239 

https://ptpp.punjab.gov.pk/
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system to increase the performance of the suggested beta thalassemia carrier's model.  240 

The validation phase utilized the 30% records of the thalassemia dataset to validate the model. The 241 

trained fusion-based model is imported from the cloud to predict thalassemia. The model discards 242 

the value if a beta-thalassemia non-carrier is found. If a beta-thalassemia carrier is found, the patient 243 

is referred to the hospital for additional treatment, as shown in Figure 1. 244 

The following conditions (if-then rules) are employed in the fuzzy logic of the suggested late fusion 245 

model, which is written as follows:  246 

The late fusion-based rules identify beta-thalassemia carriers.  247 

𝜇𝐿𝑅∩NB∩𝐷𝑇∩NN(𝑙, 𝑛, 𝑑, 𝑛 ) = min[𝜇𝐿𝑅(𝑙), 𝜇𝑁𝐵(𝑛), 𝜇𝐷𝑇(𝑑), 𝜇𝑁𝑁(𝑛)] 248 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏 = IF (LR is carrier and NB is carrier and DT is carrier and NN is carrier) THEN (Thalassemia is Beta 249 

Carrier) 250 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟐 = IF (LR is carrier and NB is carrier and DT is carrier and NN is Non-carrier) THEN (Thalassemia is 251 

Beta Carrier) 252 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟑 = IF (LR is carrier and NB is carrier and DT is Non-carrier and NN is carrier) THEN (Thalassemia is 253 

Beta Carrier) 254 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟒 = IF (LR is carrier and NB is carrier and DT is Non-carrier and NN is Non-carrier) THEN (Thalassemia 255 

is Beta Carrier) 256 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟓 = IF (LR is carrier and NB is Non-carrier and DT is carrier and NN is carrier) THEN (Thalassemia is 257 

Beta Carrier) 258 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟔 = IF (LR is carrier and NB is Non-carrier and DT is carrier and NN is Non-carrier) THEN (Thalassemia 259 

is Beta Carrier) 260 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟕 = IF (LR is carrier and NB is Non-carrier and DT is Non-carrier and NN is carrier) THEN (Thalassemia 261 

is Beta Carrier) 262 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟖 = IF (LR is carrier and NB is Non-carrier and DT is Non-carrier and NN is Non-carrier) THEN 263 

(Thalassemia is Beta Non-Carrier) 264 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟗 = IF (LR is Non-carrier and NB is carrier and DT is carrier and NN is carrier) THEN (Thalassemia is 265 

Beta Carrier) 266 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟎= IF (LR is Non-carrier and NB is carrier and DT is carrier and NN is Non-carrier) THEN (Thalassemia 267 

is Beta Non-Carrier) 268 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟏= IF (LR is Non-carrier and NB is carrier and DT is Non-carrier and NN is carrier) THEN (Thalassemia 269 

is Beta Non-Carrier) 270 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟐= IF (LR is Non-carrier and NB is carrier and DT is Non-carrier and NN is Non-carrier) THEN 271 

(Thalassemia is Beta Non-Carrier) 272 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟑= IF (LR is Non-carrier and NB is Non-carrier and DT is carrier and NN is carrier) THEN (Thalassemia 273 

is Beta Non-Carrier) 274 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟒= IF (LR is Non-carrier and NB is Non-carrier and DT is carrier and NN is Non-carrier) THEN 275 

(Thalassemia is Beta Non-Carrier) 276 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟓= IF (LR is Non-carrier and NB is Non-carrier and DT is Non-carrier and NN is carrier) THEN 277 

(Thalassemia is Beta Non-Carrier) 278 

𝑹𝒖𝒍𝒆𝒃𝒕
𝟏𝟔= IF (LR is Non-carrier and NB is Non-carrier and DT is Non-carrier and NN is Non-carrier) THEN 279 

(Thalassemia is Beta Non-Carrier) 280 

The generated fuzzy rules show that the suggested late fusion-based technique will predict the 281 

optimal result based on at least three classification strategies (either the beta-thalassemia carrier 282 

or beta-thalassemia non-carrier). 283 
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 284 
Figure 2: Proposed Late Fusion Rule Surface for NB and LR  285 

The proposed late fusion technique of rule surface for predicting beta-thalassemia carriers 286 

based on NB and LR is shown in Figure 2. If both classification methods indicate that "beta 287 

thalassemia = carrier" is the outcome, then the suggested technique will also mean that "beta 288 

thalassemia = carrier" is the outcome. If both methods indicate that "beta thalassemia = non-289 

carrier" is the outcome, then the proposed technique will suggest that "beta thalassemia = non-290 

carrier" is the outcome.  291 

 292 
Figure 3: Result of Proposed Late Fusion Model Beta Thalassemia Carrier  293 

Figure 3 demonstrates that the suggested late fusion technique will also predict "beta 294 

thalassemia = carrier" if NB, DT, and NN make this prediction 'beta thalassemia = carrier'. 295 

 296 
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 297 
Figure 4: Result of Proposed Late Fusion Model Beta Thalassemia Non-Carrier 298 

Figure 4 shows that if LR and NB show "beta thalassemia = non-carrier," even if DT and NN 299 

show "beta thalassemia = carrier," the proposed method will still show "beta thalassemia = 300 

non-carrier." 301 
Table 3: Fuzzy-based Graphical and Mathematical Membership Function Representation 302 

Sr 

No. 

Input / Output 

Variables 
Membership Functions (MF) Graphical Representation of MF 

1 
LR = 𝜇LR((lr)) 

 

𝜇𝐿𝑅,𝑐(𝑙𝑟) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (1,
0.5 − lr 

0.1
) , 0)} 

𝜇LR,nc(𝑙𝑟) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑙𝑟 − 0.4

0.1
, 1) , 0)} 

 

2 
NB = 𝜇NB((nb)) 

 

𝜇𝑁𝐵,𝑐(𝑛𝑏) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (1,
0.5 − nb 

0.1
) , 0)} 

𝜇NB,nc(𝑛𝑏) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑛𝑏 − 0.4

0.1
, 1) , 0)} 

 

3 
DT= 𝜇DT((dt)) 

 

𝜇𝐷𝑇,𝑐(𝑑𝑡) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (1,
0.5 − dt 

0.1
) , 0)} 

𝜇DT,nc(𝑑𝑡) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑑𝑡 − 0.4

0.1
, 1) , 0)} 

 

4 
NN = 𝜇NN((nn)) 

 

𝜇𝑁𝑁,𝑐(𝑛𝑛) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (1,
0.5 − nn 

0.1
) , 0)} 

𝜇NN,nc(𝑛𝑛) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑛𝑛 − 0.4

0.1
, 1) , 0)} 

 

5 

Beta-
Thalassemia 
= 𝜇BT((bt)) 

 

𝜇𝐵𝑇,𝑐(𝑏𝑡) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (1,
0.5 − bt 

0.05
) , 0)} 

𝜇BT,nc(𝑏𝑡) = {𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑏𝑡 − 0.45

0.05
, 1) , 0)} 

 

 303 



Hindawi Template version: Apr19 

 

 10 

Table 3 shows membership functions based on fuzzy rules. The system testing layer predicts 304 

beta-thalassemia carriers. A fuzzy-based cloud model is used to achieve an outcome that 305 

stores real-time patient data for evaluation. 306 

Results and Simulation 307 

The late fusion-based model is proposed for the earliest prediction of beta-thalassemia carriers. The 308 

results are obtained using MATLAB tool 2022. The proposed model comprises four machine learning 309 

techniques, LR, NB, DT, and NN are applied to 5066 features. For both methods, 30% of the fused 310 

samples were utilized for validation, while the remaining 70% were used for training. The proposed 311 

model diagnoses the beta thalassemia carrier and beta thalassemia non-carrier. The statistical metrics 312 

used to evaluate the suggested late fusion model's predicted effectiveness and other categorization 313 

methods are explained below. βTc represents beta thalassemia true predicted, βTnc represents beta 314 

thalassemia false predicted, βFnc represents beta thalassemia non-carrier false expected, and βFc 315 

means expected false beta thalassemia carrier. 316 

Accuracy =
βTc + βTnc

βFc + βFnc + βTc + βTnc
       (1) 317 

Accuracy is the number of correctly labelled cases out of the total number of cases. 318 

Misrate =
βFc + βFnc

βFc + βFnc + βTc + βTnc
       (2) 319 

The percentage of real positives and negatives missed during an experiment is known as the 320 

miss rate. 321 

Sensitivity =
βTc 

βTc + βFnc 
         (3) 322 

Sensitivity measures the capacity of the proposed model to identify positive cases. 323 

Specificity =
βTnc 

βTnc + βFc 
                                                                           (4) 324 

Positive Predication Value =
βTc 

βTc + βFc 
                                               (5) 325 

Negative Predication Value =
βTnc 

βFnc + βTnc 
                                          (6) 326 

Predictive values, positive and negative, are calculated by dividing each set of results by the 327 

proportion of actual successes and failures. 328 

False Postive Ratio = 1 − 
βTnc 

βTnc + βFc 
                                                    (7) 329 

False Negative Ratio = 1 −  
βTc 

βTc + βFnc 
                                                 (8) 330 

Likelihood Ratio Positive =  
βTc 

βTc + βFnc 
 / 1 −  

βTnc 

βTnc + βFc 
                   (9) 331 

Likelihood Ratio Negative =  1 −  
βTc 

βTc + βFnc 
 / 

βTnc 

βTnc + βFc 
      (10) 332 

The dataset contains 5066 instances. 70% of the dataset is used for training which consists of 333 

3,546 records, while the remaining 30% is used for testing, which consists of 1,520 records. 334 

The 3546 records were used for training with the LR approach, in which 1715 were beta-335 

thalassemia non-carriers, and 1831 were beta-thalassemia carriers. When trained with LR, 1623 336 

out of 1715 occurrences were non-carriers, while 1717 out of 1831 were found to be carriers. 337 

Table 4 displays the results of a comparison between actual and predicted performance 338 

throughout training. Results showed an accuracy of 94.2% with a miss rate of 5.8%.                      339 

Table 4: Proposed LR-based Training Confusion Matrix  340 

Total Samples = 3546  OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 1715 1623 92 

IBT-Carrier = 1831 114 1717 
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In contrast, during the testing of LR, 716 records out of 757 were identified as non-carriers, 341 

while 713 records out of 763 were classified as carriers, as shown in Table 5. In LR testing, the 342 

attained accuracy was 94.01%, and the miss rate of 5.99%. 343 

Table 5: Proposed LR-based Testing Confusion Matrix  344 

Total Samples = 1520 OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 757 716 41 

IBT-Carrier = 763 50 713 

The 3546 records were used for training with the NB approach, in which 1715 were beta-345 

thalassemia non-carrier, and 1831 were beta-thalassemia carriers. When trained with NB, 1618 346 

out of 1715 occurrences were found to be non-carriers, while 1658 out of 1831 instances were 347 

found to be carriers. Table 6 displays the results of a comparison between actual and predicted 348 

performance throughout training. Results showed an accuracy of 92.4% with a miss rate of 349 

7.6%.     350 

Table 6: Proposed NB-based Training Confusion Matrix  351 

Total Samples = 3546  OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 1715 1618 97 

IBT-Carrier =  1831 173 1658 

In contrast, during the testing of NB, 721 records out of 757 were identified as non-carriers, 352 

while 695 records out of 763 were classified as carriers, as shown in Table 7. In NB testing, 353 

the attained accuracy was 93.15% and a miss rate of 6.85% 354 

Table 7: Proposed NB-based Testing Confusion Matrix  355 

Total Samples = 1520 OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 757 721 36 

IBT-Carrier = 763 68 695 

The 3546 records were used for training with the DT approach, in which 1715 were beta-356 

thalassemia non-carrier, and 1831 were beta-thalassemia carriers. When trained with DT, 1703 357 

out of 1715 occurrences were non-carriers, while 1813 out of 1831 were found to be carriers. 358 

Table 8 displays the results of a comparison between actual and predicted performance 359 

throughout training. Results showed an accuracy of 99.15% with a miss rate of 0.85%.     360 

Table 8: Proposed DT-based Training Confusion Matrix  361 

Total Samples = 3546  OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 1715 1703 12 

IBT-Carrier = 1831 18 1813 

In contrast, during the testing of DT, 756 records out of 757 were identified as non-carriers, 362 

while 763 records out of 763 were classified as carriers, as shown in Table 9. In DT testing, 363 

the attained accuracy was 99.93% , and a miss rate of 0.07% 364 

Table 9: Proposed DT-based Testing Confusion Matrix  365 

Total Samples = 1520 OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 757 756 1 

IBT-Carrier = 763 0 763 

The 3546 records were used for training with the NN approach, in which 1715 were beta-366 

thalassemia non-carrier, and 1831 were beta-thalassemia carriers. When trained with NN, 1700 367 

out of 1715 occurrences were found to be non-carriers, while 1824 out of 1831 instances were 368 

found to be carriers. Table 10 displays the results of a comparison between actual and predicted 369 
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performance throughout training. Results showed an accuracy of 99.4% with a miss rate of 370 

0.6%.     371 

Table 10: Proposed NN-based Training Confusion Matrix  372 

Total Samples = 3546  OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 1715 1700 15 

IBT-Carrier = 1831 7 1824 

In contrast, during the testing of NN, 757 records out of 757 were identified as non-carriers, 373 

while 763 records out of 763 were classified as carriers, as shown in Table 11. In NN testing, 374 

the attained accuracy was 100%. 375 

Table 11: Proposed NN-based Testing Confusion Matrix  376 

Total Samples = 1520 OBT-Non-Carrier  OBT-Carrier 

IBT-Non-Carrier = 757 757 0 

IBT-Carrier = 763 0 763 

Table 12 displays detailed results for validation of all used classification machine learning 377 

techniques (LR, NB, DT, and NN). It can be observed that all four machine learning 378 

techniques performed well and achieved an average accuracy is 96.77% and misrate of 379 

3.23%. 380 

Table 12: ML-based Proposed Model Performance (Validation)  381 

 Samples for validation (30% Records) 

Approaches Accuracy Miss Rate 

Logistics Regression (LR) 94.01% 5.99% 

Naïve Bayes (NB) 93.15% 6.85% 

Decision Tree (DT) 99.93% 0.07% 

Neural Network (NN) 100% 0% 

Average Performance Proposed Model 96.77% 3.23% 

 382 

Four machine learning techniques are finally provided to the fuzzy system as input for the final 383 

prediction. Input to the fuzzy system consists of LR, NB, DT, and NN classifiers and the output 384 

class Beta Thalassemia Carriers classifiers. By employing fuzzy rules, the suggested machine 385 

learning late fusion-based fuzzy system attained an accuracy of 96% and a miss rate of 4%. 386 

The fuzzy system randomly takes twenty-five input ranges for generating the fusion-based 387 

results. Based on the fuzzy rules, 12 outputs show beta-thalassemia carriers, and 12 outcomes 388 

non-carriers truly predicted. The remaining one is between the carrier and non-carrier stages 389 

that, showed the system's error. 390 

Table 13: Comparison of Previous Approaches with Proposed Late Fusion-based ML 391 

Model 392 

Author Method  Accuracy  Misrate 

Sadiq et al. [18] Random Forest 91% 9% 

Sadiq et al. [18] Support Vector Machine 90% 10% 

Sadiq et al. [18] Gradient Boosting Machine 91% 9% 

Susanto et al. [20] Fuzzy Inference System 89.26% 10.74% 

Jahan et al. [21] Naïve Bayes 82.49% 17.51% 

Tyas et al. [23] Convolutional Neural Network 93.77% 6.23% 

Proposed Model Late fusion-based ML Model  96% 4% 

 393 
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Table 13 displays the results of a comparison between the suggested fused machine learning 394 

model and the various thalassemia illness prediction methods described in the literature. The 395 

proposed late fusion model is compared with RF [18], SVM [18], GBM [18], FIS [20], NB 396 

[21], and CNN [23]. Advanced methods are contrasted with the proposed late fusion model. In 397 

comparison to the other methods, the proposed late fusion model excelled. The proposed fused 398 

model outperformed the different approaches. The suggested machine learning fusion-based 399 

system can be included in intelligent healthcare systems for early and accurate beta thalassemia 400 

carrier prediction. The proposed model has shown the accuracy of beta thalassemia carrier 401 

prediction is 96%. 402 

Conclusions 403 

The critical point of this study is to develop a system to analyze beta-thalassemia carrier 404 

patients using the late fusion-based ML model. This system is fundamental and more accessible 405 

for medical experts and non-experts. Hence, any person can examine the status of thalassemia 406 

just by feeding the required input data. The goal of this study is to analyze the various 407 

dimensions of thalassemia. The total precision of this proposed late fusion-based ML model is 408 

96%. The presented framework can be enhanced in the future by utilizing different methods, 409 

including federated learning. The study can also be extended by applying Short‐Term Long 410 

Memory (LSTM) and other ML algorithms and diagnosing the other stages of Thalassemia like 411 

Alpha Max and Min, Beta Max, and Min. 412 
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