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A B S T R A C T   

This paper utilizes a Structural Time Series Model (STM) with an underlying component to estimate the global 
hydrogen demand function. This approach allows for the discernment of the ongoing impact of technology and 
the dynamic changes in consumer behavior that affect hydrogen demand over time. To estimate the hydrogen 
demand function, the analysis incorporates key variables, including hydrogen price, natural gas price, oil price, 
and GDP (Gross Domestic Product) per capita. The study utilizes quarterly global data from the first quarter of 
2009 to the fourth quarter of 2021. In comparing the underlying components influencing hydrogen demand, the 
study suggests that advancements in production technology, organizational technology, and changes in con-
sumer behavior collectively contribute to a gradual leftward shift in the global hydrogen demand curve over 
time. The study uncovered that, in the short term, global hydrogen demand demonstrates high inelasticity. 
Furthermore, the results reveal. 

a complementary relationship between natural gas and hydrogen, although this complementarity diminishes 
significantly over time. Additionally, the findings suggest that oil. 

can function as a substitute for hydrogen, with the substitution effect intensifying in the long term. Inter-
estingly, hydrogen is initially perceived as a luxury commodity, yet over the long term, it transitions to behaving 
as a normal commodity.   

1. Introduction 

Hydrogen is emerging as a promising energy carrier due to its clean 
combustion properties, high energy content, and versatility. With the 
world increasingly shifting towards a more sustainable future, the de-
mand for hydrogen as an alternative energy source is experiencing rapid 
growth. Policymakers, industries, and investors are all captivated by the 
ability of hydrogen to reduce greenhouse gas emissions and improve air 
quality. The development of renewable energy such as hydrogen have 
garnered significant attention in the energy sector due to their potential 
to enhance energy security, minimize harmful emissions, and alleviate 
the impacts of climate change (Moghaddam et al., 2019). 

Hydrogen is considered highly promising as an energy carrier for 
various applications, including stationary fuel cell systems and electro- 
mobility. The demand for hydrogen as an alternative energy source 
has surged recently, making it a focal point for policymakers, industries, 

and investors. The significant driver behind its growing popularity lies 
in hydrogen’s potential to lower greenhouse gas emissions, improve air 
quality, and achievement to climate change mitigation (Abid et al., 
2023a, 2023b). Notably, the demand for hydrogen has increased more 
than threefold since 1975 (International Energy Agency (IEA) , Inter-
national Energy Agency, 2021). Moreover, its high energy density, along 
with ease of storage and transportation, has positioned hydrogen as a 
preferred clean energy carrier (Dutta, 2014). Numerous processes exist 
for hydrogen production, utilizing both conventional and alternative 
energy resources, including natural gas, coal, nuclear, biomass, solar, 
and wind (Nikolaidis and Poullikkas, 2017). According to recent studies 
(Weger et al., 2021), hydrogen is being considered as a potential 
replacement for gasoline and diesel in vehicle fueling. 

Despite these advantages, there are significant challenges to the 
widespread use of hydrogen. One of the main issues is the high cost of 
production and distribution, which still renders it more expensive than 
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traditional fossil fuels. Additionally, the infrastructure for hydrogen 
production, storage, and distribution is currently limited, posing diffi-
culties in scaling up hydrogen production. The assessment of hydrogen 
as a clean energy source involves weighing its advantages and disad-
vantages. Consequently, estimating hydrogen demand and identifying 
the factors influencing it becomes crucial for investors, politicians, and 
stakeholders. 

Estimating hydrogen demand is crucial for guiding the emerging 
hydrogen economy. While global hydrogen use is increasing, demand 
remains concentrated in traditional applications within refining and the 
chemical industry, with the majority of production still relying on un-
abated fossil fuels (International Energy Agency, 2023). Estimating de-
mand provides essential insights for planning infrastructure, aligning 
policies, and attracting investments. Accurate forecasts support the 
transition to a low-carbon economy, unlocking hydrogen’s potential in 
sustainable energy solutions and addressing climate change challenges. 

Analyzing the factors influencing hydrogen demand is essential for 
accurate demand forecasting. The primary factor is the production and 
pricing of fossil fuels, with particular emphasis on oil. In the petroleum 
refining industry, hydrogen consumption is intricately linked to raw 
materials and processing technology; for instance, in China, refineries 
are major users of hydrogen (Xuesong, 2003). Simultaneously, the de-
mand for hydrogen can be impacted by the availability and cost of oil as 
a fuel alternative. The second crucial factor is natural gas, extensively 
employed in industries, transportation, electricity generation, notably, 
hydrogen production. The production methods and global pricing trends 
of natural gas also play a pivotal role in influencing hydrogen demand. 
According to the IEA report, depending on regional gas prices, the lev-
elized cost of hydrogen production from natural gas varies from USD 0.5 
to USD 1.7 per kg. The integration of Carbon Capture, Utilization and 
Storage (CCUS) technologies to mitigate CO2 emissions increases the 
production cost to approximately USD 1 to USD 2 per kg, while utilizing 
renewable electricity for hydrogen production ranges from USD 3 to 
USD 8 per kg (IEA, 2017, International Energy Agency, 2021). 

One of the critical factors in the demand function is consumer in-
come. Given that this paper focuses on estimating the global demand 
function for hydrogen, global per capita income becomes a significant 
determinant. While there is limited research specifically addressing the 
impact of consumer income on hydrogen demand, some studies have 
explored the influence of per capita income on the demand for renew-
able energy. For instance, Sadorsky (2009a, 2009b) demonstrates that 
over the long term, a 1% rise in real income per capita correlates with an 
approximately 3.5% increase in per capita consumption of renewable 
energy in emerging economies. 

This study acknowledges that changes in technology and consumer 
behavior (taste) are among the important factors affecting hydrogen 
demand, despite being neglected in research due to their unobserv-
ability. Consequently, an extension of the analysis beyond traditional 
factors—such as price of hydrogen, per capita income, and the cost of 
alternative fuels—is made to encompass the impact of technology and 
consumer preferences on hydrogen demand. To achieve this, the 
Structural Time Series Modeling (STM) is applied to observe the un-
derlying trend. By employing this method, we can control for unob-
served factors like technological advancements and changes in 
consumer behavior (Harvey, 1990). 

This paper presents three distinct contributions setting it apart from 
similar studies. Firstly, it investigates the determinants of hydrogen 
demand, incorporating variables such as hydrogen price, natural gas 
price, oil price, and GDP per capita. The analysis of quarterly global data 
spanning from 2009 to 2021 illuminates the dynamic nature of 
hydrogen demand and its interplay with key economic factors. Secondly, 
it identifies various factors influencing hydrogen demand, including 
advancements in production technology, organizational technology, 
and changes in consumer behavior—factors that are inherently unob-
servable and challenging to measure. Thirdly, it employs the STM 
method to estimate the hydrogen demand function. This method offers 

four distinct advantages: (i) These models can account for the complex 
interrelationships among various economic factors that influence energy 
demand. This allows for a more accurate and comprehensive under-
standing of the underlying drivers of energy demand (Commandeur and 
Koopman, 2007). This model provides valuable insights into how 
technology, laws and regulations, and consumer preferences have 
influenced hydrogen demand over time. (ii) The STM can capture both 
short-term and long-term trends in energy demand, which is crucial for 
forecasting future demand and planning energy infrastructure in-
vestments. (iii) These models can handle irregularities and missing data 
in the time series data, which is common in energy demand data due to 
factors such as weather patterns and changes in consumer behavior. 
Overall, the use of STM for estimating energy demand can lead to more 
accurate and reliable predictions, which can inform energy policy de-
cisions and facilitate the transition to a more sustainable (Box et al., 
2008) and efficient energy system (Houghton, 2019). (iv) This method 
splits the time series of hydrogen demand into five components, The 
trend component, the seasonal component, the cyclical component, the 
first-order autoregressive component, and the irregular time series 
component. With this segmentation, our understanding of the behavior 
of time series increases. 

The reason for estimating the global hydrogen demand function in 
this research is as follows: The global demand function provides a 
comprehensive perspective on the overall market dynamics and trends. 
This broader view allows researchers, policymakers, and industry 
stakeholders to understand the interdependencies between different 
markets and identify emerging patterns that may not be evident when 
examining individual countries in isolation. Global demand analysis 
enables the examination of interactions and dependencies between 
different countries and regions. It helps in identifying potential oppor-
tunities for international collaboration, trade, and investment in 
hydrogen production, distribution, and infrastructure for use. The 
reason for choosing to estimate the demand function for hydrogen stems 
from the fact that while many studies have estimated the demand 
function for other renewable energies, there has been no estimation for 
hydrogen’s demand function thus far. By estimating the demand func-
tion for hydrogen and identifying the factors influencing it, we can 
forecast future hydrogen demand and address potential obstacles pre-
emptively. Overall, estimating hydrogen demand supports the transition 
to a sustainable energy future, drives economic development, and fos-
ters technological innovation, positioning hydrogen as a key player in 
the global energy landscape. 

The remainder of the paper is organized as follows. The first section 
is introduction. The second section is a literature review of energy de-
mand in various studies. In the third section, we elaborate on the STM 
model. The empirical model will be presented in section four. Section 
five provides an interpretation of the data. The results of the estimation 
are presented in the sixth section. Finally, concluding remarks and 
policy recommendations will be presented in the seventh section. 

2. Understanding energy demand: A comprehensive literature 
review 

Research on estimating energy demand is typically divided into two 
primary categories: renewable energy and nonrenewable energy. In this 
paper, the literature on energy demand is examined in two separate 
groups, with a particular emphasis on the demand for hydrogen in the 
second group. 

2.1. Nonrenewable energy demand 

Numerous studies investigate the complicated dynamics of nonre-
newable energy demand, focusing primarily on the elasticity of price 
and income while also exploring nuanced factors such as technology and 
consumer preferences (Alarenan et al., 2020). Modeling energy con-
sumption demand has gained prominence in recent years, with 
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researchers employing a variety of time series analysis techniques 
tailored to different energy sources. These models can be categorized 
based on the specific methods utilized, including Ordinary Least Squares 
(OLS), Autoregressive Integrated Moving Average (ARIMA), Vector 
Autoregression (VAR), Vector Error Correction Model (VECM), or 
structural time series models. For instance, Hunt and Lynk (1995) uti-
lized cointegration approaches to analyze industrial energy demand in 
the UK. Among the prevailing trends, researchers consistently find that 
nonrenewable energy sources like gasoline and diesel tend to exhibit 
price inelasticity, while income elasticity often hovers around one, 
shaping consumption patterns and market behavior (Mousavi and 
Ghavidel, 2019). Empirical investigations across various countries and 
regions yield invaluable insights into the determinants of energy de-
mand. While income, energy prices, and population remain core factors, 
the influence of urbanization, climate conditions, technological ad-
vancements, consumer preferences, and government policies cannot be 
understated. For instance, studies like Amarawickrama and Hunt (2008) 
on electricity demand in Sri Lanka, Dilaver and Hunt (2011) on indus-
trial electricity demand in Turkey, and Filippini and Hunt, 2012 on 
residential energy demand in the United States shed light on the intri-
cate interplay of these variables, particularly emphasizing the role of 
energy efficiency and conservation efforts. 

Moreover, the scholarly discourse proposes advanced frameworks 
and methodologies to enhance energy demand modeling accuracy and 
effectiveness. Hunt and Ryan (2015) advocate for a more comprehensive 
approach that accounts for the heterogeneity of energy-consuming ac-
tivities and the interrelationships between energy services and efficiency 
improvements, as evidenced in their study of UK households. Similarly, 
Salisu and Ayinde’s (2016) comprehensive analysis underscores the 
importance of integrating evolving policy landscapes and technological 
advancements into energy demand models to enable robust forecasting 
and informed policy formulation. Jointly, innovative approaches like 
that of McGookin et al. (2021) for estimating local energy demand and 
supply in Ireland underscore the ongoing pursuit of holistic solutions 
that consider diverse variables, from population density to building 
infrastructure, in shaping energy transitions at a community level. 

2.2. Renewable energy demand 

Scientists widely agree on the urgent need to transition to renewable 
energy as a pivotal strategy to mitigate climate change (Ma et al., 2023). 
Consequently, the analysis and estimation of renewable energy demand 
are gaining momentum, although there are fewer studies compared to 
those focusing on non-renewable energy sources. The majority of in-
vestigations tend to approach renewable energy as a whole entity rather 
than dissecting its components. These studies span various countries and 
regions, examining regional disparities and employing diverse analyt-
ical methods, including panel data analysis, to estimate the elasticity of 
price and income in renewable energy demand over both short and long 
terms (Sadorsky, 2009a,b). Additionally, some studies incorporate fac-
tors such as the prices of other fossil fuels, such as oil and natural gas, 
which can act as related commodities in the demand for renewable 
energy (Ackah and Kizys, 2015). A few go further to consider changes in 
technology and consumer behavior within the demand function for 
renewable energy. 

Numerous factors intricately shape the consumption and production 
of renewable energy. For instance, Wei et al. (2023) illustrate how 
financial inclusion influences production and consumption within 
China’s renewable energy sector. In Sadorsky’s (2009a) research, a 
model estimating renewable energy consumption in G7 countries re-
veals that real GDP per capita and CO2 emissions are significant drivers 
of per capita renewable energy consumption. The study also finds a 
negative impact of oil prices on renewable energy consumption. More-
over, high-income elasticities of renewable energy consumption suggest 
that high-income countries are better positioned to invest in and pro-
duce renewable energy. Ackah and Kizys (2015) delve into factors 

influencing renewable energy demand in African countries, revealing 
that real income per capita, energy resource depletion, carbon emis-
sions, and energy prices are primary drivers. 

Further studies explore specific facets of renewable energy dynamics. 
Jiang et al. (2021) investigate the demand response potential of flexible 
electric water heaters with high renewable energy penetration, while 
Shang et al. (2022) analyze the influence of climate policy uncertainty 
on renewable and non-renewable energy demand in the United States. In 
a recent study, Weng et al. (2023) investigated the asymmetric adjust-
ment of clean energy demand in OECD countries, elucidating how clean 
energy consumption responds differentially to variations in energy pri-
ces and income growth. Employing an Autoregressive Distributed Lag 
(ARDL) model, they discovered that clean energy demand exhibits 
greater responsiveness to price decreases than increases and is more 
sensitive to negative income changes than positive ones. Collectively, 
these studies deepen our understanding of renewable energy demand 
dynamics and inform policy decisions crucial for achieving sustainable 
energy transitions. 

2.2.1. Hydrogen demand 
It’s important to mention that there is very little research and esti-

mation specifically focused on the demand for hydrogen. Some studies 
have explored the demand for hydrogen in specific industries through 
case studies (Ni et al., 2005). Here is a brief overview of notable previous 
studies on estimating the hydrogen demand function: 

Ball and Wietschel (2009) review hydrogen’s potential as an energy 
carrier, emphasizing its high energy density, low emissions, and ability 
to enhance energy security. Rahmouni et al. (2016) analyze hydrogen 
demand in Algeria’s road transport sector, considering population 
density, vehicle density, and fuel consumption to estimate demand 
across different regions. 

Nagasawa et al. (2019) examined the impact of wind-based renew-
able hydrogen production on transportation fuel demand, highlighting 
its potential to notably cut greenhouse gas emissions. Hassan et al. 
(2023) assess Saudi Arabia’s green hydrogen potential, stressing its 
importance in climate change mitigation. Despite strides in renewable 
energy, including solar, meeting green hydrogen demand remains 
challenging. Saudi Arabia seeks alliances with efficient green hydrogen 
producers, aiming to establish energy hubs generating 5 GW of hydrogen 
by 2025. However, solar-derived hydrogen storage may not match 
battery cost-effectiveness until around 2035. 

In their 2010 study, Ma & Chen examined China’s future hydrogen 
and renewable energy demand, considering economic development. 
They proposed two scenarios based on China’s economic growth rate, 
emphasizing initial investment in hydrogen research and government 
support for manufacturing over transportation. China’s evolving 
hydrogen demand is influenced by various factors beyond economic 
growth, necessitating further exploration. Huang et al. (2022) discuss 
China’s policies to stimulate green hydrogen and fuel cell demand, 
analyzing hydrogen demand dynamics using a system model. Factors 
like environmental conditions, hydrogen supply, and facility construc-
tion affect demand, with predictions made until 2030 across different 
scenarios. 

South Korea stands out as a leading country in the field of hydrogen 
operation, attracting numerous studies on the subject, such as the one 
conducted by Park et al. (2022). This study employs diverse forecasting 
techniques, including the Bass, logistic, and Gompertz models, in addi-
tion to the analogy method, to project the demand for Hydrogen fuel cell 
vehicles (HFCV). By adjusting the diffusion rate, the study provides 
projections for HFCV demand in 2040 under three scenarios, and it also 
forecasts annual hydrogen demand and daily hydrogen demand per 
charging station. The findings reveal a significant increase, with the 
daily hydrogen demand per hydrogen station expected to range from 1 
to 2.3 tons by 2040. Another study points to the barriers to hydrogen 
consumption and production in South Korea (Lee et al., 2022). They find 
and classify the obstacles holding back the growth of hydrogen fuel cell 
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energy in South Korea. Using expert Delphi surveys, the research iden-
tifies five key factors. The results point out that institutional and polit-
ical factors are the most significant barriers, alongside challenges related 
to the cost of the unit and fuel cell infrastructure. 

Several studies address challenges related to hydrogen demand. 
Yusaf et al. (2022) present a conceptual model for hydrogen energy, 
focusing on pathways and unintended consequences, notably the risk of 
increased NOx emissions from combustion. Global hydrogen demand 
forecasts range from 73 to 158 Mt by 2030. Brändle et al. (2021) 
advocate for natural gas reforming with carbon capture as the most 
cost-efficient low-carbon hydrogen production method in the medium 
term. Cost predictions suggest production costs could drop below $1/kg 
by 2050 in specific regions. Chen et al. (2023) demonstrate a 12.90% 
reduction in carbon emissions with electrolysis for hydrogen production 
and a 1.543% emissions reduction with adjustable thermal-electric de-
mand response, alongside a 5.24% cost decrease. These studies under-
score technology’s impact on energy consumption and production. 

Finally, as outlined by the World Energy Council in 2021, various 
scenarios exploring the future demand for hydrogen are investigated. 
The expected demand for hydrogen will fluctuate depending on the 
degree to which upcoming infrastructure integrates hydrogenation. 
Specifically, to meet the goal of restraining global warming to below 
1.8 ◦C, it is imperative to attain a target of 600 MT (Million Tons) in 
hydrogen demand by the year 2050 (World Bank Group, 2022). 

2.3. Summary of literature review 

The summary of previous studies indicates a prevalent focus on 
estimating the demand function for energy, primarily centered around 
non-renewable sources like fossil fuels. The similarity between the 
studies estimating the demand function for fossil fuels and those for 
clean energy lies in the observation that the price elasticity of energy 
demand is generally smaller than unity. However, there is a slight dif-
ference in income elasticity: the income elasticity for clean energy is 
higher than that for fossil energy. Other factors mentioned in the studies 
include financial inclusion, the rate of urbanization, and the prices of 
alternative energy sources. Notably, studies specific to estimating the 
demand function for hydrogen were notably absent. Hence, this 
research’s endeavor to estimate the demand function for hydrogen and 
identify its influencing factors presents a valuable contribution to the 
energy demand field. While this study shares similarities with previous 
research in selecting energy demand factors based on microeconomic 
rationale—such as energy prices and consumer income—it also diverges 
in two significant aspects. Firstly, it addresses the demand function for 
hydrogen as a clean fuel, a topic largely overlooked in prior studies. 
Secondly, it examines the role of technology in the clean energy demand 
function, an area seldom explored in existing literature. These distinc-
tions highlight the novelty and significance of the present research in 
advancing our understanding of energy demand dynamics, particularly 
in the context of hydrogen as a clean energy source. 

3. Material and methods 

In this section, we outline the methodology employed for estimating 
hydrogen demand and provide details regarding the data and materials 
utilized in the estimation process. 

3.1. Structural time series models (STM) 

Structural time series models were introduced into econometrics and 
statistics by Harvey (1990). This model considers time series as a com-
bination of unobserved components such as trend, cycle, seasonal, and 
irregular components. A univariate structure time series model is rep-
resented by Eq. (1): 

yt = μt + γt + ψt + rt + εt (1) 

The variable μt represents a trend component, γt denotes a seasonal 
component, ψ t signifies a cyclical component, rt stands for a first-order 
autoregressive component, and εt represents an irregular time series 
component. Each of these components can exhibit deterministic and 
stochastic behavior. The trend component consists of two parts: the level 
and the slope; this component is also referred to as the underlying trend 
(Mousavi and Ghavidel, 2019). In general, the trend component follows 
Eqs. (2) and (3). Eq. (2) indicates the level of the trend, and Eq. (3) in-
dicates changes in the level or slope of the trend. This component re-
flects the long-term behavioral characteristics of the time series. 

μt = μt− 1 + βt− 1 + ηt ηt ∼ N
(
0, σ2

η
)

(2)  

βt = βt− 1 + ξt ξt ∼ N
(

0, σ2
ξ

)
(3) 

In most economic time series, seasonal effects are present. The sea-
sonal component may take the form of a dummy variable or a trigono-
metric function. The seasonal component, in the case of stochastic and 
deterministic dummy variables, will be represented by Eqs. (4) and (5), 
respectively. The parameter ’s’ denotes the number of seasonal fre-
quencies in a specific period. For example, for monthly data (s = 12), 
quarterly data (s = 4), and six-month data (s = 2). 

∑s− 1

i=1
γt− i =ωt ωt ∼ N

(
0, σ2

ω
)

(4)  

∑s− 1

i=1
γt− i = 0 (5) 

In Eq. (4), the sum of seasonal effects has a zero mean, although due 
to its stochastic, they are sometimes formed slowly (when the variance is 
small) and sometimes quickly (when the variance is large). Eq. (5) is the 
case where the variance is zero. In this case, seasonal effects are constant 
over time. 

The cyclic component can be shown in two ways, deterministic and 
stochastic trigonometric cycles. A deterministic cycle with the period 
λ (0< λ< π) is expressed in the form of Eq. (6). 

ψt = α cos(λt) + β sin(λt) (6) 

If time (t) is continuous, then ψ t is a periodic function with period-
icity 

(
2π
λ

)
and oscillation amplitude 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + β2

√
. If time is discrete, ψ t will 

not be exactly a periodic function unless for some values where j and k 
are integers 

(
λ =

2jπ
k

)
. Regrettably, cycles in economic time series data 

are seldom systematic enough to be represented by a specific periodic 
function, as in Eq. (6). Nevertheless, through Fourier analysis, we un-
derstand that complex cyclic data can be expressed as the sum of a 
limited number of sinusoidal functions, exemplified in Eq. (6). As an 
alternative method for identifying one or more specific cycles that 
depend on a large number of parameters, a stochastic cycle can be 
represented in the form of Eq. (7). 
[

ψt

ψ∗
t

]

= ρ
[

cos(λ) sin(λ)
− sin(λ) cos(λ)

][ψt− 1

ψ∗
t− 1

]

+

[
vt

v∗t

]

(7)  

Where (ρ) indicates the cycle adjustment factor and is between zero and 
one. If this parameter is less than one, the cycle is stationary and if it is 
equal to one, the cycle is nonstationary. (λ) shows the periodic cycle in 
radians. The vt , v∗t represent the error terms that show the stochastic of 
cycles and have independent and identical distribution with zero mean 
and common variance σ2

v . If the variance is zero, the cycle converts to a 
specific cycle. This model can depict quite complex cyclical patterns in 
economic time series without introducing additional parameters. Rather 
than modeling the cyclical nature of a time series through a determin-
istic cyclical model (Eq. (6)) or a stochastic cyclical model (Eq. (7)), we 
can directly express it using Eq. (8) 
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rt = ρrt− 1 + υt υt ∼ N
(
0, σ2

υ
)

(8)  

where rt is an unobserved autoregressive component which follows a 
first-order autoregressive process with − 1 < ρ < + 1. This unobserved 
autoregressive component, despite its simplicity, can capture many of 
the movements in the time series data that indicate the inertia of busi-
ness cycles and are present in many economic time series. 

Beyond structural modeling of univariate time series, a regression 
can be developed by adding explanatory variables as well as lag values 
of yt on the right side for more accurate forecasting of yt series. The 
general form of the structural time series regression model is as Eq. (9). 

yt = μt + γt + ψt + rt +
∑p

i=1
αiyt− i +

∑J1

j1=0
β1j1 x1t− j1 + .....+

∑Jn

jn=0
βkjn xkt− jn + εt

(9)  

3.2. Experimental model 

Based on the theoretical literature concerning factors influencing 
hydrogen demand and following the methodology of structural time 
series regression, the empirical model for estimating the global demand 
function of hydrogen is as follows:  

In Eq. (10) variables qh
t , ph

t , p
ng
t , poil

t , and gdpper
t represent hydrogen 

demand, hydrogen price, natural gas price, oil price, and per capita in-
come, respectively. All variables are in logarithms. wt is the vector of 
intervention variables. Intervention variables can appear in the form of 
unexpected events as dummy variables in the model. If the unexpected 
event occurring at time τ has a pulse effect, the intervention variable is 
defined in Eq. (11). 

wt =

{
1 for t = τ
0 for t ∕= τ (11) 

If the unexpected event that happens at the time τ leads to a change 
in the slope or changes in the trend, in this case, the dummy variable is 
defined in Eq. (12). 

wt =

{
t − τ for t > τ

0 for t ≤ τ (12) 

In Eq. (10), the variances related to μt , γt ,ψ t , and rt are introduced as 
hyperparameters, which can be zero or positive. Depending on whether 
these variances are zero or non-zero, the unobservable components of 
the time series of hydrogen demand can be stochastic or fix, which is 
shown in Table 1. 

The critical component is represented by μ in Eq. (10). This 

component is estimated through the Kalman Filter process depicted in 
Diagram 1. The Kalman filter is a recursive mathematical algorithm used 
to estimate the state of a dynamic system from a sequence of noisy 
measurements. It operates by generating an optimal estimate of the 
system’s current state, considering its previous state and the latest 
observation, while also accounting for the uncertainty associated with 
both the system dynamics and the measurements. In the following, the 
estimation of μ for each year is calculated and plotted. Through this 
method, we ascertain the dynamic impact of technology and consumer 
preferences on hydrogen demand. Estimation of other parameters in Eq. 
(10) is performed by the Maximum Likelihood Estimator in regression. 

3.3. Data analysis 

The period used in the current research is the first quarter of 2009 to 
the fourth quarter of 2021. Table 2 describes the characteristics of the 
logarithm of data. Due to the lack of access to global hydrogen demand 
data, the total value of hydrogen imports by all countries, which was 
extracted from the World Integrated Trade Solution (WITS) website, was 
used. In order to obtain the real value of the demand for hydrogen, the 
nominal value of the import is divided by the price index of the producer 
of hydrogen and argon gas manufacturing to the base price of 2009, and 
this variable is a proxy for the global demand of hydrogen in the current 

paper. 
The mean and median indicators show that the data are normally 

distributed. It is also confirmed by using the Jarque–Bera test, except for 
the oil price variable. The indicators of the maximum, minimum, and 
standard deviation of the variables show that except for the logarithm of 
natural gas price (LNGP) and logarithm of oil price (LOP), the rest of the 
variables have less volatility. The values of the upper and lower bounds 
of the variables obtained by using the first, second, and third quartiles 
show that the variables did not have outlier data.1 

By using the HEGY2 method and considering the seasonality of the 
variables, all the variables with zero frequency are nonstationary at 
level, but they are stationary in the first difference. In other words, the 
variables are I(1). According to Johansen’s cointegration test and effect 
and maximum eigenvalue statistics in the cases of no deterministic trend 
in data, linear deterministic in data, and quadratic deterministic in data, 
there are at least two cointegration vectors between these variables. 
Therefore, it is possible to use the level of these variables in the 
regression model. 

The scatterplots between the logarithm of global hydrogen demand 
and the logarithm of hydrogen price, logarithm of natural gas price, 
logarithm of oil price, and logarithm of per capita income are shown in 

Table 1 
Hyperparameters and character of components.  

Character 
components 

Components and hyperparameters  

Trend 
level 

Trend 
slope 

Seasonal Cyclical Unobserved 
Autoregressive 
component 

Stochastic σ2
η > 0 σ2

ξ > 0 σ2
ω > 0 σ2

ν > 0 σ2
υ > 0 

Fixed σ2
η = 0 σ2

ξ = 0 σ2
ω = 0 σ2

ν = 0 σ2
υ = 0  

qh
t = θt +

∑I

i=1
αiqh

t− i +
∑J

j=0
βjph

t− j +
∑K

k=0
δkpng

t− k +
∑L

l=0
φlpoil

t− l +
∑M

m=0
φmgdpper

t− m + wtλ + εt

θt = μt + γt + ψt + rt

(10)   

1 To accomplish this, the first quantile (Q1), second quantile (Q2), and third 
quantile (Q3) are calculated for a given time series. Subsequently, upper and 
lower bounds are determined using the formulas (Q3 + 1.5 * Q2) and (Q1 - 1.5 
* Q2). If the maximum value in the time series is less than (Q3 + 1.5 * Q2), and 
the minimum value is greater than (Q1 - 1.5 * Q2), then none of the data in the 
time series are considered outliers. For example, consider the variable LHQ with 
a maximum value of 7.834 and a minimum value of 7.121. The upper and lower 
bounds are calculated as 18.65547 and − 3.91028, respectively (Table 2). Since 
the data fall within this range, there are no outliers.  

2 - Hylleberg, Engle, Granger, and Yoo (HEGY) test statistics for the null 
hypothesis seasonal unit roots. 
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Fig. 1. Based on the statistical facts in Fig. 1, there is a negative corre-
lation between the global demand for hydrogen and its price index at 
levels of the logarithm of the price index above 4.523. It should be noted 
that most of the observations of hydrogen price and demand are at levels 
higher than 4.523. 

The scatter plot between the price of natural gas and the global de-
mand for hydrogen, as well as the price of oil and the global demand for 
hydrogen, shows that there is a positive correlation between these var-
iables, which can indicate that natural gas and oil are substitutes for 
hydrogen. The scatter diagram between per capita income and global 

Diagram 1. Methodology of STM and Kalman filter to estimate Hydrogen demand.  

Table 2 
Data description.  

Notation: LHQ LHP LNGP LOP LPERGDP 

Variable: Logarithm of 
Hydrogen demand 

Logarithm of Hydrogen price Logarithm of Natural Gas Price Logarithm of Oil 
price 

Logarithm of Per capita 
income 

Unit: Trade Value 
1000USD 

Producer Price Index by 
manufacturing: Index Jun 2009 =
100 

Global price of Natural gas, U.S. 
Dollars per Million Metric British 
Thermal Unit 

Brent - Europe, 
Dollars per Barrel 

GDP per capita, PPP 
(constant 2017 international 
$) 

Source: (WITS) Federal Reserve Economic Data Federal Reserve Economic Data Federal Reserve 
Economic Data 

World Development 
Indicators 

Observations 52 52 52 52 52 
Mean 7.402 4.618 2.017 4.237 9.637 
Median 7.431 4.648 2.099 4.228 9.644 
Maximum 7.834 4.729 3.451 4.816 9.777 
Minimum 7.121 4.456 0.548 2.698 9.483 
Std. Dev. 0.166 0.083 0.503 0.401 0.075 
Skewness 0.208 − 0.467 − 0.311 − 1.043 − 0.251 
Kurtosis 2.280 1.859 3.970 5.322 2.036 
Jarque-Bera (Prob) 1.496 (0.473) 4.707 (0.095) 2.878 (0.237) 21.114 (0.000) 2.559 (0.278) 
Quantile 1 (Q1) 7.236697 4.542719 1.724867 3.962119 9.576218 
Quantile 2 (Q2) 7.431321 4.647606 2.099207 4.22776 9.644279 
Quantile 3 (Q3) 7.508485 4.691623 2.390807 4.609923 9.698524 
LOWER BOUND 

(Q1-1.5*Q2) 
− 3.91028 − 2.42869 − 1.42394 − 2.37952 − 4.8902 

UPPER BOUND 
(Q3+1.5*Q2) 

18.65547 11.66303 5.539618 10.95156 24.16494 

Unit Root Test 
(HEGY) 

I(1) 
Frequency 0 

I(1) 
Frequency 0 

I(1) 
Frequency 0 

I(1) 
Frequency 0 

I(1) 
Frequency 0  
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hydrogen demand shows that in the range of logarithm of per capita 
income between 9.549 and 9.688, there is a negative correlation be-
tween these two variables, which means that as per capita income in-
creases, global hydrogen demand has decreased. 

In order to accurately analyze the behavior of global hydrogen de-
mand, we analyze its trend, seasonal, cyclical, and irregular compo-
nents. These components are shown in Eq. (1) and are derived using the 
STM. The component of trend of global hydrogen demand shows its 
long-term volatility due to changes in technology or changes in con-
sumer taste. The seasonal component of global hydrogen demand in-
dicates its periodic pattern, in other words, it indicates the calendar 
effects. Changes in this component are usually due to factors such as 
weather conditions and customs. The cyclical component of global 
hydrogen demand represents repeated upward or downward move-
ments around the trend. These fluctuations around the trend can be 

related to short-term (4 years), medium-term (10 years), and long-term 
(20 years) periods. This means that repeated movements are measured 
from one through point to another through point or from one peak point 
to another peak point. Cyclical changes are not necessarily caused by 
economic factors. The irregular component of the global hydrogen de-
mand represents the movements of this time series that do not follow a 
regular pattern. In other words, this component represents a part of 
global hydrogen demand that is not explained by the trend, seasonal, 
and cyclical components. These are caused by unusual events that 
cannot be predicted, such as natural disasters, mass strikes, and 
manipulation of data intentionally or unintentionally. 

Figs. 2 and 3 show the behavior of the trend component of global 
hydrogen demand. A change in the trend component of global hydrogen 
demand can be due to a change in the level or slope (changes in the 
level) of the series. The long-term behavior of the global demand for 

Fig. 1. Correlation between the logarithm of global hydrogen demand and logarithm of hydrogen price, logarithm of natural gas price, logarithm of oil price, and 
logarithm of per capita income. 

Fig. 2. Trend-level component of global hydrogen demand.  

Fig. 3. Slope-trend component of global hydrogen demand.  
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hydrogen shows that the consumption of this fuel has decreased between 
2010 and 2017, but since 2017, the desire to consume this fuel has 
increased sharply. The slope of the trend shows the change in willing-
ness to consume in the long term. It can be seen that the intensity of 
changes in the desire to use hydrogen fuel has increased since 2015, 
which can be due to changes in technology in the production of this fuel 
or changes in the taste and preferences of consumers towards this fuel 
(Fig. 3). To understand the cause of this phenomenon (prompted change 
in behavior and technological advancement), we must examine the 
events that transpired in 2015. One of the most significant environ-
mental events of that year was the Paris Agreement. Unlike previous 
agreements, which were based on Intended Nationally Determined 
Contributions (INDC), the Paris Agreement changed the concept of 
INDC. According to paragraph 2 of Article 4 of the agreement, countries 
are required to prepare and subsequently implement their INDC. The use 
of the term "shall” in this paragraph imparts a mandatory legal obliga-
tion, indicating that, unlike past decisions regarding INDC submissions, 
which were non-binding, INDCs are entirely binding programs. 

Fig. 4 shows the seasonal component of global hydrogen demand. 
The movement pattern of this component is determined based on Eqs. 
(4) and (5). It can be seen that hydrogen demand has reached its 
maximum and minimum value in the first and third seasons of each year 
from 2009 to 2021, and this behavior is repeated every year. In other 
words, global hydrogen consumption reaches its maximum amount in 
January, February, and March and its minimum amount in July, August, 
and September. The primary consumption of hydrogen occurs in the 
chemical and refinery sectors (International Energy Agency, 2023). 
Within the chemical sector, it is predominantly used for ammonia pro-
duction, a key component in chemical fertilizers for agricultural pur-
poses. Notably, the demand for chemical fertilizers typically peaks 
during the spring season. Conversely, in the refinery sector, the con-
sumption of oil derivatives like gasoline and diesel experiences a surge 
in demand during spring, coinciding with the onset of vacations and 
increased travel. These factors significantly contribute to the seasonal 
fluctuations observed in hydrogen demand. 

Fig. 5 shows the cyclic component behavior of the global demand for 
hydrogen. This pattern is determined based on Eqs. (6) and (7). The 
cyclical behavior of global hydrogen demand indicates that it takes three 
years to reach one maximum consumption amount to another maximum 
consumption amount. For example, a peak of global hydrogen demand 
was in the second quarter of 2011, and three years later, or 12 seasons, in 
the second quarter of 2014, we reached another peak. The important 
point is the asymmetry of the cycles in terms of the cycle depth, which 
means that the depth of the cycles has increased over time, and this has 
indicated the increase in fluctuations in the global demand for hydrogen 
in recent years. The recent deepening of the cycle may be linked to key 
events in the energy sector. These events, both positive and negative, 
include the Paris Agreement in 2015, Covid-19 in 2020, and the Ukraine 
War in 2021. 

Fig. 6 shows the irregular component of global hydrogen demand. 
This component represents that part of the global hydrogen demand that 
is not explained by the trend, season, and cycle components and is 

affected by unknown factors. As shown in Fig. 6, apart from the first 
season of 2015, 2018, and 2019, the movement behavior of this 
component has had little fluctuations. It is to be emphasized that this 
represents an unidentified component within the time series. In other 
words, any factor affecting the demand for hydrogen beyond techno-
logical advancements, changes in consumer behavior, cyclic fluctua-
tions, and seasonal variations is concealed within this component. 
Among these factors, we can point out shifts in international trade, 
including the trade tensions between China and the United States in 
2018. Additionally, recent developments in the energy sector, such as a 
significant increase in the installation of solar and wind power plants, a 
decline in the cost of solar and wind energy production, and a rise in the 
adoption of electric cars, contribute to this component. 

4. Results and discussion 

In this part, the demand function for hydrogen is estimated using the 
STM.3 Based on the assumptions for the hyperparameters, Eq. (10) has 
been estimated in five cases, and the results are reported in Table 3. In 
order to find the optimal lags in Eq. (10), it was used Akaike Information 
Criterion (AIC), the Hannan-Quinn Information Criterion (HQIC), and 
the Schwarz Criterion (SC) in the Autoregressive Distributed Lag (ARDL) 
estimation. The coefficients represent the elasticity because the vari-
ables are logarithmic. In the first case, the assumption is made that 
unobserved factors comprise trends and seasonal components, with the 
trend component characterized by a stochastic level and slope. The 
second case is similar to the first case, except that the slope of the trend is 
fixed. In the third case, the cycle component is also considered in un-
observed factors. The fourth case is the same as the third case, but the 
slope of trend is stochastic. Finally, in the fifth case, the unobserved 
factors including all the components are defined in Table 1. Further-
more, in all instances, intervention variables represented as unexpected 
events in the form of dummy variables have been controlled for. There is 
a pulse in the data for the first quarter of 2015, 2018, and 2019. 

The first variable that must be interpreted in any demand function is 
the price. In the short term, the demand for global hydrogen is very 
inelastic. The coefficient of LHP is small and statistically insignificant in 

Fig. 4. Seasonal component of global hydrogen demand.  

Fig. 5. Cyclical component of global hydrogen demand.  

Fig. 6. Irregular component of global hydrogen demand.  

3 For estimating the hydrogen demand function, the software OxMetrics 7 is 
used. 
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all cases. The price elasticity of demand is statistically significant in the 
long term, although its value is less than one unit. This coefficient is the 
sum of LHP and its statistically significant lags (LHP (− 1), LHP(-2)). The 
price elasticity of demand for hydrogen is about 0.15 in the long term. As 
a result, the demand for hydrogen in the world is less sensitive to price 
changes. This is consistent with the results of most studies such as Rao 
and Rao (2009), and Espey (1998) who found low price elasticity in the 
case of gasoline and diesel. Most studies on the demand for renewable 
and non-renewable energy believe that the price elasticity of energy is 
less than unity (e.g., Hunt and Ryan, 2015). Economically, this is 
favorable for hydrogen because if the price rises for any reason, like an 
increase in production costs, the demand for hydrogen will decrease 
insignificantly. A 100% increase in the price of hydrogen results in just a 
15% decrease in the demand amount. 

In the short term, the increase in the logarithm of natural gas price 
(LNGP) leads to a decrease in the demand for hydrogen. In other words, 
natural gas and hydrogen are two complementary fuels in the short term 
which is in line with the findings of Kani et al. (2014). Of course, this 
cross-elasticity is small and about − 0.1, which means that a one percent 
increase in the price of natural gas, in the short term, reduces the de-
mand for hydrogen by 0.1 percent. The important thing is that the 
complementarity of these two fuels will be greatly reduced in the long 
run because the coefficient of LNGP (− 1) is positive. Both LNGP and 
LNGP (− 1) coefficients are statistically significant, and the LNGP coef-
ficient is larger than LNGP (− 1). The cross elasticity of natural gas price 
decreases from − 0.1 in the short term to − 0.02 in the long term. The 
main reason for the complementarity of natural gas and hydrogen is that 
hydrogen is produced from natural gas. Fortunately, the cost of natural 
gas experienced a significant decrease from 2010 to 2020, halving in 
price according to Federal Reserve Economic Data. Although there was a 
rise in 2021 and 2022, the overall long-term trend suggests a declining 
trajectory. The reduced cost of natural gas fosters optimism for future 
mass production of hydrogen. Importantly, the inelastic demand for 
hydrogen to natural gas prices implies that even an increase in natural 
gas costs is unlikely to pose a significant threat to reducing hydrogen 

demand. 
The coefficients for LOP and LOP (− 1) indicate that oil acts as a 

substitute for hydrogen. The substitution effect intensifies in the long 
term, such that a one percent increase in the price of oil immediately 
boosts the demand for hydrogen by 0.02. However, in the long term, this 
effect reaches 0.06 (the sum of LOP and LOP (− 1) coefficients), effec-
tively tripling the impact. This confirms the results of Abada et al. (2013) 
who found the interfuel substitution at different fuel prices. This result is 
indicative of the fact that the drop in oil prices could threaten the global 
demand for hydrogen, which is a clean fuel, as the increase in the price 
of oil can boost the hydrogen market. Given the historical volatility of oil 
prices, predicting their future decrease or increase based solely on past 
trends remains challenging. While any potential rise in oil prices poses a 
threat to the demand for hydrogen, the relatively low elasticity of 
hydrogen demand concerning oil prices suggests that this threat is not of 
significant concern. 

Based on the LPERGDP coefficient, hydrogen is identified as a luxury 
commodity. The income elasticity for hydrogen is substantial, indicating 
that, in the short term, a one percent increase in income can lead to an 
8.8 percent increase in hydrogen demand. However, this elasticity un-
dergoes adjustments over time, as reflected by the negative coefficient of 
LPERGDP (− 1). In essence, hydrogen exhibits immediate luxury status 
for consumers, but in the long run, it transitions to being considered a 
normal commodity. The income elasticity for hydrogen demand in the 
long term is approximately 0.3, calculated as the sum of the LPERGDP 
and LPERGDP (− 1) coefficients. The positive news is that the world’s 
per capita income is steadily increasing, promising a favorable outlook 
for the future surge in demand for hydrogen. In contrast, nonrenewable 
energy sources such as gasoline and diesel are considered normal goods, 
as their income elasticity remains less than one even in the short run. 

Hydrogen demand has faced an unexpected shock in the form of a 
negative pulse in the first quarter of 2015 and 2018, and a positive pulse 
in the first quarter of 2019. These pulses are controlled by dummy 
variables Outlier_2015 (1), Outlier_2018 (1), and Outlier_2019 (1). The 
coefficients of these dummy variables are statistically significant. 

Table 3 
Estimation of global hydrogen demand function.   

The assumption of hyperparameters  

Case 1 Case 2 Case 3 Case 4 Case 5 

Explanatory variables σ2
η > 0

σ2
ξ > 0

σ2
ω > 0 

σ2
η > 0

σ2
ξ = 0

σ2
ω > 0 

σ2
η > 0

σ2
ξ = 0

σ2
ω > 0

σ2
ν > 0 

σ2
η > 0

σ2
ξ > 0

σ2
ω > 0

σ2
υ > 0 

σ2
η > 0

σ2
ξ > 0

σ2
ω > 0

σ2
ν > 0

σ2
υ > 0 

LHQ(-1) 0.984*** (0.000) 0.972*** (0.000) 0.984*** (0.000) 0.984*** (0.000) 0.983*** (0.000) 
LHQ(-2) − 0.175*** (0.005) − 0.183** (0.084) − 0.176*** (0.005) − 0.176*** (0.006) − 0.179*** (0.006) 
LHQ(-3) − 0.022 (0.558) − 0.005 (0.934) − 0.023 (0.542) − 0.022 (0.563) − 0.019 (0.612) 
LHP − 0.105* (0.219) − 0.031 (0.823) − 0.107 (0.203) − 0.107 (0.211) − 0.108 (0.212) 
LHP(-1) 0.096 (0.393) − 0.279* (0.111) − 0.099 (0.378) − 0.098 (0.389) − 0.105 (0.376) 
LHP(-2) − 0.155** (0.094) − 0.093 (0.514) − 0.157** (0.090) − 0.156* (0.094) − 0.158** (0.099) 
LNGP − 0.118*** (0.000) − 0.074*** (0.017) − 0.115*** (0.000) − 0.118*** (0.000) − 0.118*** (0.000) 
LNGP(-1) 0.082*** (0.000) 0.041** (0.100) 0.079*** (0.000) 0.082*** (0.000) 0.082*** (0.000) 
LOP 0.025*** (0.018) 0.025** (0.092) 0.024*** (0.024) 0.025*** (0.018) 0.025*** (0.016) 
LOP(-1) 0.046*** (0.008) 0.022 (0.214) 0.044*** (0.011) 0.047*** (0.008) 0.047*** (0.008) 
LPERGDP 8.785*** (0.000) 8.860*** (0.000) 8.809*** (0.000) 8.792*** (0.000) 8.791*** (0.000) 
LPERGDP(-1) − 8.539*** (0.000) − 8.08*** (0.000) − 8.542*** (0.000) − 8.547*** (0.000) − 8.522*** (0.000) 
Outlier_2015 (1) − 0.112*** (0.000) − 0.083*** (0.000) − 0.113*** (0.000) − 0.112*** (0.000) − 0.111*** (0.000) 
Outlier_2018 (1) − 0.111*** (0.000) − 0.111*** (0.000) − 0.111*** (0.000) − 0.111*** (0.000) − 0.110*** (0.000) 
Outlier_2019 (1) 0.086*** (0.000) 0.088*** (0.000) 0.085*** (0.000) 0.087*** (0.000) 0.087*** (0.000) 
-2LOGL − 246.242 − 233.695 − 246.164 − 246.218 − 245.517 
R2 0.984 0.976 0.984 0.984 0.984 
DW 1.58 1.64 1.55 1.57 1.51 
Obs 50 50 50 50 50 
μ 2021(4) − 0.561 − 4.332 0.412 0.576 0.500 
β 2021(4) − 0.001 − 0.004 − 0.001 − 0.001 − 0.001 
ω 2021(4) 5.440 3.820 4.922 5.413 5.302 
Cycle_2021 (4) – – 0.002 – 0.0003 
AR coefficient – – – 0.903 0.889  
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4.1. Analysis of unobserved components 

As mentioned in the model section, the unobserved components 
include the underlying trend along with the level and slope, seasonal, 
cyclical, unobserved autoregression, and an irregular component. In 
case 1, the results of which are shown in Tables 3 and it is assumed that 
the unobserved components include the underlying trend and the sea-
sonal component. In addition, it is assumed that the underlying trend 
has a stochastic level and slope. Fig. 7 shows the level and slope of the 
underlying trend as well as the seasonal component. It can be seen that 
the level trend of global demand for hydrogen from 2009 to 2021 has 
been downward with an almost constant slope, that is, the intercept of 
the hydrogen demand function has shifted downward over time. Un-
derlying trends often reflect changes in technology and consumer pref-
erences over time. As a result, technology and consumer preferences and 
tastes have changed over time in such a way that the demand for 
hydrogen has decreased. This trend shows that technology has not hel-
ped to increase the demand for hydrogen in terms of production and 
consumption. The reasons for this outcome can vary; some of them are 
outlined below. 

While technology often drives innovation and growth, advancements 
in alternative energy sources or storage technologies may have outpaced 
those related to hydrogen. If competing technologies offer superior ef-
ficiency, cost-effectiveness, or environmental benefits, consumers may 
opt for alternatives, leading to a decrease in hydrogen demand. Changes 
in consumer preferences play a pivotal role in shaping market trends. If 
consumers prioritize energy sources that align with specific values, such 
as sustainability, affordability, or ease of use, this can influence the 
demand for hydrogen. If hydrogen-based solutions do not resonate with 
current consumer preferences, it can contribute to a decline in demand. 

Consumer perceptions of the value offered by hydrogen technologies 
compared to alternatives are crucial. If competing technologies are 
perceived as more reliable, accessible, or suitable for their needs, con-
sumers are likely to favor them over hydrogen-based options. Consumer 
choices are often influenced by the convenience and accessibility of 
energy solutions. If alternative technologies are more readily available 
or easier to integrate into existing infrastructure, they may gain pref-
erence over hydrogen, contributing to a decline in demand. Lack of 
awareness or understanding about the benefits of hydrogen technologies 

could also impact consumer choices. Effective education and commu-
nication strategies are essential to highlight the advantages of hydrogen 
and address any misconceptions that may contribute to decreased 
demand. 

The movement pattern of the seasonal component shows that until 
2013, the seasonal effects were negligible. From 2014 to 2017, the peak 
of demand was in the spring season and the bottom was in the summer. 
From 2017 onwards, the calendar effect has changed so that the autumn 
season has the peak demand and the spring season has the lowest de-
mand. The shift in the peak hydrogen demand from spring to autumn 
and the lowest demand from spring to summer could be influenced by 
several factors, including changes in industrial processes, regulatory 
shifts, and market dynamics. The demand for hydrogen can be heavily 
influenced by industrial processes, such as refining, chemical 
manufacturing, and energy production. Changes in these industries, 
including shifts in production schedules or the adoption of new tech-
nologies, could lead to fluctuations in demand throughout the year. 
Hydrogen is used in various sectors, including energy production and 
transportation. Changes in seasonal energy usage patterns, such as 
increased heating demands in autumn or changes in transportation 
needs, could affect the timing and magnitude of hydrogen demand. 
Changes in market dynamics, including fluctuations in the prices of 
alternative energy sources or disruptions in the supply chain, can in-
fluence the demand for hydrogen. Additionally, the availability of 
infrastructure for hydrogen production, distribution, and storage may 
impact seasonal demand patterns. In Fig. 7, the fitness of the estimate of 
the demand function is also plotted (first curve on the left side). It can be 
seen that the estimation is very close to the real value so the R2 is about 
98%. This demonstrates that the model exhibits high validity when 
compared to actual hydrogen demand data. 

In the second case, it is assumed that the trend slope is fixed and not 
stochastic, and the rest of the assumptions are the same as in the first 
case. The results of the level and slope of the trend are almost the same 
as in the first case, the level of the downtrend with a constant slope 
(Fig. 8). Seasonal effects are slightly different, with a peak of demand in 
winter and a trough in spring. It should be noted that the irregular 
component is present in all cases, this component represents that part of 
the global hydrogen demand that is affected by unknown factors, so it 
cannot be interpreted. 

Fig. 7. Case 1 – Stochastic Level and Slope for Underlying Trend (Logarithm of Hydrogen demand, 1000$).  
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In the third case, the cycle component is also added to the unob-
served factors. The movement pattern of the unobserved components is 
shown in Fig. 9. The results of the underlying trend are similar to the 
previous cases. The movement pattern of seasonal effects is the same as 
in the first case. The cyclical effects of the global hydrogen demand show 
the fact that the depth of the cycle was low at the beginning of the 
period, but the depth of cyclical fluctuations has increased in recent 
years. It took two years to reach from one maximum point to another 
maximum point at the beginning of the period, but at the end of the 
period, it takes 5 years to reach from one peak point to the next peak 
point. The recent turbulence in the energy market, driven by geopolit-
ical conflicts such as the war in Ukraine and economic disruptions 

resulting from the COVID-19 pandemic, has presented diverse chal-
lenges and opportunities for the hydrogen sector. Geopolitical un-
certainties can sway the supply and pricing dynamics of conventional 
energy sources, potentially paving the way for cleaner alternatives like 
hydrogen. Economic downturns linked to energy market fluctuations 
may influence the rate of investment in hydrogen projects, as exempli-
fied by the drastic drop in oil prices from 60 USD to 20 in 2020. 

Therefore, it is expected that the depth of the cycle will decrease with 
the subsidence of the war in Ukraine and the end of the COVID-19 
pandemic. 

Instead of the cyclical component, the unobserved autoregressive 
component can be considered. The results of this situation are in the 

Fig. 8. Case 2 – Stochastic Level with Fixed Slope for Underlying Trend (Logarithm of Hydrogen demand, 1000$).  

Fig. 9. Case 3 - Stochastic Level with a Fixed Slope for the Underlying Trend and an Incorporated Cycle Component (Logarithm of Hydrogen demand, 1000$).  
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form of case 4 as described in Fig. 10. The unobserved autoregressive 
component can capture many of the movements in the time series data 
that indicate the inertia of business cycles. This refers to a part of the 
time series data that is not directly observed or measured. Autore-
gressive means that the current value of this component is dependent on 
its past values. In the context of business cycles, this component captures 
patterns and trends that are not explicitly observed but are inferred from 
the historical behavior of the time series. Movements in this context 
refer to patterns or fluctuations observed in the time series data. For 
business cycles, these movements could represent economic expansions 
and contractions over time. The unobserved autoregressive component 

is designed to capture and model these inherent movements in the data 
that are indicative of the inertia or persistence of business cycles. Inertia 
in this context implies that there is a tendency for the business cycle to 
persist or continue its current trajectory. The unobserved autoregressive 
component is a mathematical representation of this inertia, helping to 
account for the historical behavior that influences the current state of 
the business cycle. The movement pattern of this component is not much 
different from the cycle component that was interpreted in the previous 
case. The observed outcome could be attributed to the prevalent cyclical 
patterns in hydrogen demand data, which recur consistently. In such 
cases, the autoregressive terms might inadvertently encapsulate these 

Fig. 10. Case 4 - Stochastic Level with a Fixed Slope for the Underlying Trend and an Incorporated Unobserved Autoregressive Component (Logarithm of Hydrogen 
demand, 1000$). 

Fig. 11. Case 5 - All Unobserved Components are Controlled (Logarithm of Hydrogen demand, 1000$).  
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cyclical fluctuations. 
In the fifth case, all the unobserved components are controlled 

together. The results of the underlying trend are still the same as before. 
The result of the seasonal effect is the same as the first, third, and fourth 
cases (Fig. 11). Because the cyclical effect is combined with the unob-
served autoregressive effect, the cyclical effect is regular, but the un-
observed autoregressive effect is the same as in the previous case. As a 
result, the cyclical effect is due to the business cycle. 

Finally, from the comparison of 5 cases, it can be concluded that the 
effect of technology in production, organizational technology (in-
stitutions), and consumer behavior, which are important factors 
affecting the demand function, in the case of global hydrogen demand, 
the demand function has moved to the left over time. It should be noted 
that the decreasing effect of the underlying trend in the hydrogen de-
mand function is not large, for example, in case 5, the intercept of the 
demand function has decreased from 0.54 in 2009 to 0.5 in 2021, that is, 
in 12 years, only 0.04 of the logarithm of hydrogen demand has 
decreased due to the mentioned cases. 

The delayed impact of technology on increasing the demand for 
hydrogen is intricately tied to challenges in both consumption and 
production domains. On the consumption side, a lack of awareness 
among consumers about the benefits of hydrogen technologies, coupled 
with established preferences for conventional energy sources, impedes 
the rapid adoption of hydrogen. Consumer education initiatives and 
targeted marketing strategies are crucial to shifting preferences. On the 
production side, despite technological advancements, high production 
costs and efficiency challenges persist, affecting the competitiveness of 
hydrogen against other energy sources. Continued research and devel-
opment efforts focused on cost reduction and efficiency improvement 
are essential to make hydrogen production more economically viable 
(Dawood et al., 2020). Bridging the gap between consumer preferences 
and technological capabilities is vital for unlocking the full potential of 
hydrogen as a clean energy solution. Promoting entrepreneurship in 
hydrogen production and consumption is crucial for advancing 
hydrogen technology. This is supported by research indicating that 
fostering entrepreneurship contributes to sustainable development and 
climate change mitigation (Abid et al., 2023a, 2023b; Karimi et al., 
2023). 

5. Conclusion 

This paper applies a Structural Time Series Model (STM) to estimate 
both long-run and short-run global hydrogen demand. In order to obtain 
the real value of the demand for hydrogen, the nominal value of the 
import is divided by the price index of the producer of hydrogen and 
argon gas manufacturing to the base price of 2009, and this variable is a 
proxy for the global demand of hydrogen. 

We have found evidence indicating that in the short term, the global 
demand for hydrogen exhibits a high degree of price inelasticity. In the 
long term, the price elasticity of demand becomes statistically signifi-
cant at approximately 0.15, although its value remains below 1 unit. 
Consequently, the demand for hydrogen worldwide displays a relatively 
low sensitivity to changes in price. In the short term, an increase in the 
price of natural gas leads to a decrease in the demand for hydrogen. In 
other words, natural gas and hydrogen serve as complementary fuels in 
the short term. However, this complementarity diminishes significantly 
over time. In the short term, this elasticity is approximately − 0.1, 
whereas in the long term, it decreases to − 0.02. 

Additionally, our findings indicate that oil can act as a substitute for 
hydrogen, and this substitution effect intensifies in the long term. A one 
percent increase in the price of oil immediately raises the demand for 
hydrogen by 0.02 units, but this effect nearly triples in the long term. 
This outcome suggests that a decline in oil prices may pose a threat to 
the global demand for hydrogen, which is regarded as a clean fuel, as an 
increase in oil prices can stimulate the hydrogen market. 

Our conclusion is that, in the short run, hydrogen can be classified as 

a luxury commodity. The income elasticity of demand for hydrogen is 
substantial, meaning that in the short term, a one percent rise in income 
can lead to an 8.8 percent increase in hydrogen demand. However, this 
elasticity is adjusted after two years. Consequently, the luxury aspect of 
hydrogen is instantaneous for consumers, and in the long run, hydrogen 
is no longer regarded as a luxury commodity. The income elasticity for 
hydrogen demand in the long term is approximately 0.3, indicating that 
hydrogen becomes a normal commodity. 

Finally, based on the underlying component in the demand function 
for hydrogen and its decomposition into the trend, seasonal, cyclical, 
and irregular components, it was discovered that technological ad-
vancements in production, organizational technology (such as in-
stitutions), and changes in consumer behavior, which are significant 
factors influencing the demand function, have collectively shifted the 
demand function to the left over time in the case of global hydrogen, but 
this is not large. The movement pattern of the seasonal component 
shows that until 2013, the seasonal effects were negligible. From 2014 to 
2017, the peak of demand was in the spring season, and the bottom was 
in the summer. From 2017 onwards, the calendar effect has changed so 
that the autumn season has the peak demand and the spring season has 
the lowest demand. The cyclical effects of the global hydrogen demand 
show the fact that the depth of the cycle was low at the beginning of the 
period, but the depth of cyclical fluctuations has increased in recent 
years. 

The results of this study can be used to provide useful tools for the 
policymakers to identify the obstacles and formulate their policies 
accordingly, due to the fact that technology is not only technical, but 
also role of institutions and laws and regulations act like technical 
technology. The study revealed that technology has not significantly 
impacted the demand for hydrogen. However, it remains unclear why 
technological advancements have not been effective in stimulating de-
mand. Therefore, future research should aim to uncover the reasons 
behind this phenomenon. Subsequent studies must investigate whether 
production technology or organizational technology—such as laws and 
regulations at national and international levels concerning clean ener-
gy—has contributed less to the advancement of hydrogen demand. 
Finally, we strongly recommend that future research endeavors focus on 
studying the prediction of hydrogen demand. Understanding and fore-
casting hydrogen demand trends is crucial for informed decision-making 
in various sectors, including energy, transportation, and industry. 
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