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ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Precise diagnosis of CRC
plays a crucial role in increasing patient survival rates and formulating effective treatment strategies.
Deep learning algorithms have demonstrated remarkable proficiency in the precise categorization of
histopathology images. In this paper, we introduce a novel deep learning model, termed DeepCon which
incorporates the divide-and-conquer principle into the classification task. DeepCon has been methodically
conceived to scrutinize the influence of acquired composition on the learning process, with a specific
application to the classification of histology images related to CRC. Our model harnesses pre-trained
networks to extract features from both the source and target domains, employing a two-stage transfer
learning approach encompassing multiple loss functions. Our transfer learning strategy exploits a learned
composition of decomposed images to enhance the transferability of extracted features. The efficacy of
the proposed model was assessed using a clinically valid dataset of 5000 CRC images. The experimental
results reveal that DeepCon when coupled with the Xception network as the backbone model and subjected
to extensive fine-tuning, achieved a remarkable accuracy rate of 98.4% and an F1 score of 98.4%.

INDEX TERMS Class Composition, Data Irregularity, Deep Learning, Colorectal Cancer, Image Classifi-

cation

I. INTRODUCTION

OLORECTAL Cancer (CRC) is a prevalent form of

cancer, ranking third in terms of global diagnosis rates.
Unfortunately, it is also the second leading cause of cancer-
related deaths, with a staggering 1.4 million new cases and
693,900 fatalities reported in 2020 alone [1]. However, there
is hope for those affected by this disease. Early detection
and precise diagnosis of CRC can significantly increase the
chances of patient survival and pave the way for effective
treatment plans.

Medical imaging is a crucial tool in the timely detection
and diagnosis of colorectal cancer (CRC). Histopathological
images are frequently employed in CRC diagnosis to identify
abnormal cells and tissues in colon tissue samples. However,
analyzing histopathology images is a complex task that
demands a high level of expertise in pathology. To overcome

this challenge, deep learning algorithms have emerged as a
promising solution, demonstrating remarkable accuracy in
the classification of histology images. Among these algo-
rithms, the Convolutional Neural Network (CNN) is one
of the most widely used approaches, exhibiting exceptional
performance in extracting salient features from images [2],
[3].

One of the main challenges encountered in the medical
field is the limited availability of samples. The collection
and labeling of histology images can be challenging and
time-consuming, and the size of available datasets in the
field is often smaller than in other fields. As a result,
transfer learning is a crucial technique that can be utilized
to overcome the issue of limited availability of histology
samples. Transfer learning is a machine learning technique
where a pre-existing model that has been trained on a specific
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task is used as a foundation for a new model to solve a
different problem. It involves re-purposing pre-trained CNN
models on larger datasets to improve the performance of
models trained on smaller datasets [4].

In this paper, we present a novel deep learning approach,
termed DeepCon, for the classification of CRC histopathol-
ogy images. DeepCon is an advancement of the previously
developed Decompose, Transfer, and Compose (DeTraC)
model [5] that aims to investigate the impact of trained
composition on the learning process. DeTraC relies on class
decomposition by partitioning image classes into subsets
based on specific guidelines and assigns new labels to these
subsets. It then proceeds to composition, assigning each
instance classified to a subclass to its original/parent class.
In contrast, DeepCon retains class decomposition but takes a
transformative step in the composition process. It introduces
a learnable composition step that dynamically assembles
subclass results using a pre-trained CNN, fine-tuning weights
for precise data-driven composition.

The complex nature of histopathological images poses
unique challenges, especially due to the intricate tissue
structures. Accurately distinguishing between sub-classes
within CRC is crucial for informing treatment decisions.
DeepCon utilizes transfer learning with various modes by
applying pre-trained models on ImageNet [6] to a dataset
of 5000 colorectal cancer (CRC) images. Transfer learning
from ImageNet-based models has been widely adopted and
recognized as the efficient way of training deep learning
models for classification tasks. A notable feature of DeepCon
is that it incorporates learnable composition of the decom-
posed classes unlike the traditional composition presented
in [5]. This is done by applying a pre-trained CNN to
automatically learn and classify the input image into one
of the original classes. The learned composition stage uses
a pre-trained CNN which uses the CNN weights applied to
the learning conducted for the subclass-level classification in
addition to fine-tuning to cope with the original class-level
classification. Our experiments show that the deep tuning
mode of DeepCon outperforms the shallow tuning mode,
achieving the highest accuracy among all pre-trained models
employed. The use of learned composition in DeepCon is a
significant advancement from the previous DeTraC model,
which allows more efficient and effective learning. In a
nutshell, during the decomposition phase of our divide-and-
conquer approach in DeepCon, learning occurs in the divide
stage, where classification is performed at the subclass level.
Conversely, during the composition stage, learning takes
place in the conquer stage, where it is done at the original
class level.

DeepCon offers several advantages in this domain. Firstly,
it achieves enhanced classification accuracy, enabling more
precise diagnoses. Furthermore, its unique ability to per-
form subclass-level classification provides finer granularity,
assisting clinicians in tailoring treatment plans. Addition-
ally, DeepCon is characterized by its flexibility in transfer

learning, allowing it to adapt readily to various datasets and
tasks. Lastly, it facilitates efficient learning, optimizing the
utilization of available resources. However, it is important
to acknowledge a limitation of our proposed solution. The
inclusion of two transfer learning stages in DeepCon, while
enhancing classification accuracy, may introduce computa-
tional overhead.

The contributions of the paper can be summarized as
follows:

e Introduces DeepCon, a novel deep learning approach
tailored for CRC histology image classification, ad-
dressing the critical need for accurate CRC diagnosis.

e Employs a unique divide-and-conquer methodology
with a focus on learned composition, enhancing the
transferability of features between domains and improv-
ing classification accuracy.

e Demonstrates the effectiveness of two-stage transfer
learning with multiple loss functions, showcasing its
potential for optimizing CRC histology image classifi-
cation.

The paper is organized as follows. Section II provides
an overview of the latest related work conducted for CRC
histology image classification. In Section III, we describe the
methodology of the proposed DeepCon model, including the
different transfer learning modes utilized and the process of
learned composition. Section IV presents the experimental
study carried out on the CRC imaging dataset. Finally, in
Section V, we draw conclusions from our findings.

Il. Related Work
In this section, we review the latest work conducted for the
classification of CRC histopathology images.

Several studies have been conducted in the field of CRC
image analysis [7], [8] and more specifically in classification
task using deep learning methods [9]-[12]. For example,
Peng et al. [10] developed a multitask deep learning frame-
work for simultaneous classification and retrieval of colorec-
tal histopathological images, making use of the well-known
concept of k-nearest neighbors to increase interpretation of
the model. Their original framework can be built on top
of any existing classification network (pre-trained models)
by combining a triplet loss function with a novel triplet
sampling strategy to compare distances between samples
and adding a hashing loss function to accelerate searching
for neighbors. Raczkowski et al. [13] introduced a Bayesian
network called ARA-CNN, which is precise and reliable and
employs an active approach to classify images of colorectal
cancer histopathology. The network is developed based on
residual network principles and utilizes variational dropout
techniques in its design. Shaban et al. [9] presented a method
for classifying colorectal images using a two-stacked CNN.
Their approach involves incorporating a larger contextual
view of the images through the use of a context-aware neural
network. The model first converts the local representation of
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a histopathology image into high-dimensional features and
then combines these features while taking into account their
spatial arrangement to make a final prediction.

Research conducted by [11] explored the application of
the ResNet architecture in the detection of colorectal cancer
through deep learning image classification. The study fo-
cused on training ResNet-18 and ResNet-50 models on colon
glands images to differentiate between benign and malignant
colorectal cancer. The work presented by [12] focused on
using deep learning architectures to classify and identify
colon cancer regions in sparsely annotated histopathological
data. The study reviews and compares the latest CNNs and
utilizes transfer learning techniques to overcome limited
annotated data sets. The models were tested on the AiCOLO
colon cancer and CRC-5000 datasets. The work presented
by [14] aimed to automatically identify eight types of tissues
in CRC histopathological evaluation using Transfer Learning
from CNN architectures. CNN structures were modified to
extract features from images, which were then fed into
various machine learning methods, including naive Bayes,
multilayer perceptron, k-nearest neighbors, random forest,
and support vector machine (SVM). A total of 108 extractor-
classifier combinations were evaluated, and the DenseNet169
with SVM achieved the best results.

Furthermore, Wang et al. [15] propose a transformer-
based unsupervised contrastive learning strategy named
semantically-relevant contrastive learning (SRCL), combined
with a hybrid model CTransPath. This approach achieves
exceptional results across diverse downstream tasks, high-
lighting its robustness and transferability. Kumar et al. [16]
introduce CRCCN-Net, a lightweight convolutional neural
network framework for automated colorectal tissue classifi-
cation. The framework showcases impressive performance,
positioning it as a potential diagnostic tool for clinicians.
Additionally, Zhou et al. [17] developed the HCCANet
method, a computer-aided diagnosis (CAD) system for grad-
ing colorectal cancer based on a CNN architecture and a
novel attention mechanism named MCCBAM. The model’s
interpretability is improved through gradient-weighted class
activation maps (Grad-CAM).

Moreover, Sabol et al. [18] contributed an explainable
classifier to improve accountability in decision-making for
colorectal cancer diagnosis from histopathological images.
The model offers human-friendly explanations about the
plausibility of decisions through a Cumulative Fuzzy Class
Membership Criterion (CFCMC). The classifier is shown to
be comparable to state-of-the-art neural networks in accuracy
and is particularly suited for use by human experts in the
medical domain.

Changjiang et al. [19] presented a framework that utilized
features of varying magnifications of Whole Slide Images
(WSI) to classify and localize colorectal cancer, relying
solely on global labels. The work presented by Zhou et
al. [20] developed a deep learning framework called the
cell graph convolutional neural network (CGC-Net) to grade
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colorectal cancer. Their method involves converting each
large histopathological image into a graph representation,
where the nuclei within the image are represented as nodes
and the cellular associations are represented as edges based
on the similarity between the nodes. The network utilizes
the local features and spatial dependencies of the nodes
to improve its accuracy. Haoyuan et al. [21] proposed the
IL-MCAM framework for colorectal histopathology image
classification, which involves two stages: automatic learning
and interactive learning. The automatic learning stage uses
three attention mechanism channels and CNNs to extract
multiple channel features, while the interactive learning stage
incorporates misclassified images into the training set to
improve the model’s classification performance.

Awan et al. [22] developed Best Alignment Metric (BAM),
a gland-shape metric that correlates with the grade of
colon cancer. Their model uses a Deep CNN to detect
gland boundaries and an SVM classifier to determine cancer
grade. Wang et al. [23] proposed a deep transferable semi-
supervised domain adaptation model called HisNet-SSDA
to classify histopathological WSIs with limited labeled data.
The method uses a pre-trained network to extract features
from both source and target domains, then matches the
two domains via semi-supervised domain adaptation with
multiple-weighted loss functions and a manifold regulariza-
tion term. The final image-level classification is obtained
by combining the estimated probabilities of the sampled
patches.

Here, we present a deep learning approach, termed Deep-
Con, for the classification of histopathology images. Deep-
Con is a new divide and conquer deep learning technique
that can address the challenge problem of data irregularity
presented in the Histopathological Image because samples
are characterized by high visual variability. DeepCon is
working as a two-stage transfer learning approach to achieve
coarse to fine transfer learning guided by a divide and
conquer training approach to learn the composition of the
decomposed images during the transfer learning.

lll. Material and Methods

In this section, we explain in detail the different stages of
DeepCon. First, we describe the dataset utilized in the study.
Second, we explain the preprocessing stage performed to
apply stain normalization for the dataset samples. Then, we
describe the transfer learning modes used. We then explain
the class decomposition and composition stages of DeepCon.
Finally, we describe the training and hyperparameter settings
utilized. Figure 1 describes the complete architecture of
DeepCon, including all essential stages. DeepCon has three
important stages. The first stage is to apply the decomposi-
tion to the samples of the normalized CRC dataset using the
K-means clustering algorithm. The aim of applying decom-
position is to simplify the complexity and data irregularity of
dataset samples. This stage results in having 16 decomposed
classes from the dataset. Then, as a second stage, we apply
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initial transfer learning by utilizing pre-trained CNN trained
on ImageNet. We applied fine-tuning to the last few layers
of the network to cope with the specific problem we have
(16-class classification task of the CRC dataset samples).
Lastly, we introduce a novel automatic class composition
strategy by applying second-round transfer learning. This is
done by utilizing the pre-trained CNN on the decomposed
CRC dataset in addition to fine-tuning to the last few layers
to cope with the final classification of the original class labels
(8-class classification task). See Figure 1.

A. Dataset

In this work, we used the dataset "CRC-VAL-HE-7K”
from the Institute of Pathology (University Medical Center
Mannheim, Heidelberg University, Mannheim, Germany)
[24]. The dataset contains 5000 images, equally distributed
in 8 classes of 625 images each; TUMOR, STROMA, COM-
PLEX, LYMPHO, DEBRIS, MUCOSA, ADIPOSE, and
EMPTY/BACKGROUND. All images are 224x224 pixels
at 0.5 microns per pixel with TIF format.

B. Pre-processing

Due to the high visual variability of the images, a stain
normalization method [25] was used to combine the stain
density maps with the stain color basis of a selected target
image and consequently alter the color profile of the images
in our dataset to preserve the structure described by the stain
density maps; see Figure 2. Additionally, affine transforma-
tions were used for data augmentation to increase the size
of the dataset. Moreover, random orthogonal rotations across
were used in combination with horizontal and vertical flips.
Although CNNs are not rotationally invariant, there is no
correct orientation of histology images; therefore, the full
360-degree rotation was used. The reasoning for orthogonal
rotations was to prevent any empty space because of rotation
values other than multiples of 90 degrees. Although fill
methods exist for such empty spaces, they could have a
potentially negative effect and are also more computationally
intensive than orthogonal rotation.

C. Class Decomposition

The research carried out by [5] explored a class decom-
position approach in transfer learning known as DeTraC.
The method involves clustering the classes within a dataset
prior to training a network with transfer learning, with the
aim of improving accuracy in situations where the data
classes are unevenly distributed. After the training process,
the labels are corrected back to their original superclass
before evaluating performance metrics. The CRC dataset was
used to evaluate the method and was tested in three different
classes. The results demonstrated an increase in accuracy
compared to other approaches. In this work, we developed a
novel automated method for restoring the original classes
from the decomposition stage with the aim of achieving
higher accuracy.

The decomposition approach is implemented by following
the steps outlined in the original paper [5]. For each of
the 8 classes in the original dataset, a pre-trained Xception
network was utilized to extract a 2048-dimensional feature
vector for each of the 625 images in a particular class.
We applied Principal Component Analysis (PCA) to project
the high-dimensional feature space into a lower dimension,
such that the highly correlated features were ignored. This
step is crucial for the class decomposition to generate more
homogeneous classes, minimize the requirement for memory,
and increase the framework’s effectiveness. In order to
use PCA, the data was projected onto the top principal
components after computing the eigenvectors of the feature
covariance matrix. The feature vectors’ covariance matrices
were specifically constructed as follows after being centered:

5= (i — ) (i — )", ()

n

=1

where n = 625 is the number of images in the class, z; is the
feature vector of the i-th image, and p is the mean feature
vector of the class. T is the transpose applied to (z; — p).
The eigenvectors of ¥ were then computed, and the feature
vectors were projected onto the upper d eigenvectors, where
d was chosen so that the explained variance ratio was at least
0.95. This resulted in a reduced-dimension feature vector of
approximately 150 dimensions per class. Let us assume that
our feature space (PCA’s output) is represented by a 2-D
array, denoted as dataset A, and C is a set of class labels.
We can express A and C' as:

air a2 A1m
a21 a22 a2m

A= . 702{017027"'7Cj} (2)
Gn1  ap2 Anm

where j is the number of classes, m is the number of
features, and n is the number of samples present in the
dataset. Finally, to further categorize the images, the K-
means clustering algorithm [26] with £ = 2 was used to
cluster each class into two subclasses.

Let S = $11,812,...,517,521,822,++.,820, ..., Sj1 rep-
resent a set of subclasses/clusters, where |S| denotes the
number of elements in the set. This set is obtained through
a homogeneous decomposition, where each class is divided
into the same number of clusters/sub-classes, denoted by
the variable [. Since we have j classes, the total number
of elements in S is given by:

S| =4 x1 3
Based on the above explanation of the new decomposed

classes of the dataset, we can illustrate the feature space of
both dataset A and B as follows:
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FIGURE 1. Full architecture of DeepCon model. A) Decomposition Stage: Applying clustering using KMeans on dataset samples resulted in 16
decomposed classes. B) Transfer Learning Stage: Transferring knowledge by using pre-trained CNN trained on ImageNet to the decomposed CRC
dataset for classifying 16 decomposed classes. C) learned composition: Transferring knowledge by using pre-trained CNN trained on the decomposed
CRC dataset to the original CRC dataset to classify 8 original classes.

Both matrices have n rows and m + 1 columns, where n
is the number of instances or samples and m is the number
of features. The last column of matrices A and B contain

@i a2 @im €1 the class labels and sub-class labels of the corresponding
Gaz1 Q22 az2m C1 . .
instances, respectively.
A= , Figure 3 shows a set of images that were randomly picked
c from the two clusters of the Stroma class. A clear visual
8 difference can be observed between the images in each
- nl n2 Gnm 8 4 (4) cluster, indicating that the clustering process was effective
bii bio bim  s11 in separating the irregular images. Table 1 shows the distri-
bar b2 bam 515 bution of dataset samples after the decomposition stage.
B =
: : T Sg1
L bnl bn2 bnm S81 |
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original
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FIGURE 2. Stain normalization process. Transferring color from a target/reference image to source images.

Stroma cluster 1

Stroma cluster 2 ‘. j

FIGURE 3. An example of images generated from the two clusters of the Stroma class.

TABLE 1. Samples Distribution in Datasets A and B

Dataset A | No. of Samples | Dataset B | No. of Samples
T 1 2
Tumor 625 umor 60
Tumor 2 365
Stroma 625 Stroma 1 254
Stroma 2 371
Complex 1 284
Complex 625 otmp ex
Complex 2 341
Lympho 1 226
Lympho 625 YIpHo
Lympho 2 399
Debris 625 Debris 1 390
Debris 2 235
Mucosa 625 Mucosa 1 264
Mucosa 2 361
Adi 1 7
Adipose 625 1Pose 378
Adipose 2 247
Empty 1 307
Empty 625 PLy
Empty 2 318

D. Coarse Transfer Learning
In this work, two models, namely Xception [27] and Incep-
tionV3 [28], were chosen for transfer learning. The models

were initialized with pre-trained weights from ImageNet, but
the top fully connected layers were not included. To reduce
the number of parameters, the convolutional bases were
passed through a GlobalAveragePooling2D layer instead of
flattened. Then a new dense, fully connected layer with
1024 neurons and ReLU activation was added. The final
output layer had eight neurons with SoftMax activation,
corresponding to the number of classes. Consequently, to
train the models, three transfer learning strategies were
utilized: shallow, fine-tuning, and deep fine-tuning. In the
shallow fine-tuning approach, only the fully connected layer
is trained while the parameters of other layers in the con-
volutional network were frozen. The fine-tuning approach
involves unfreezing the weights of layer 14 (25-35%) to
adapt them to the dataset. Finally, all layers are trained in
the deep fine-tuning approach.

As we are addressing a multi-class classification problem,
the categorical cross-entropy loss function was used during
the training process of the pre-trained CNN utilized for
coarse transfer learning (Figure 1 B). In this stage, the
decomposed classes generated from the decomposition stage
were used. The cross-entropy loss is a measure of the
difference between the predicted class probabilities and the
true class probabilities, and it is defined as:
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Z ys log(f:),

where y is the true subclass probablhty distribution, ¢ is
the predicted sub-class probability distribution, and S is
the number of subclasses generated from the decomposition
stage. The training process conducted for this stage is uti-
lized in the next stage (learned composition) by transferring
weights for decomposed classes classification in addition to
fine-tuning to cope with the original classes classification.

LCoarbe Y, Z/ (5)

E. Learnable Composition using fine transfer learning
One of the standout features of DeepCon is its ability to learn
the composition to predict original classes. This is achieved
by using one more stage of transfer learning in a pretrained
CNN with the aim to learn some of the features generated
for the decomposed classes and applying fine-tuning to fit to
a classification task of the original classes. In other words,
to achieve the original class-level classification, the learned
composition stage of DeepCon uses a pretrained CNN that
is fine-tuned to handle the original class-level classification
using the CNN weights applied to the learning conducted
for the subclass-level classification.

Similar to the previous pre-trained CNN utilized for the
coarse transfer learning, categorical cross-entropy is used
during the training process, but with the original class labels.
The cross-entropy loss used in the learnable composition
stage is defined as follows:

Lfme Y, y (6)

Z yilog(pi)

where L ;. is the categorical loss function applied during
the fine transfer learning stage, C' is the number of original
classes, y; is the ground truth label of the ¢ th class, and p;
is the predicted probability of the 7th class.

IV. Results

In this work, all experiments were performed using 10-fold
cross-validation and the accuracy and F1-score were adopted
to evaluate the performance of the models. The accuracy and
F1 score are determined as follows:

e B TP + TN o
U = Tp I TN + FP + FN
TP
Fl-score = ®)
TP + L(FP + FN)

where TP and T'N represent the correct predictions by
our model for the occurrence of a certain class or not,
respectively, while F'P and F'N are the incorrect predictions
of the model for all cases.

Each model was trained with the different transfer learning
modes, where stratified cross-validation was used to ensure
the same number of samples from each class was balanced in
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TABLE 2. Hyperparameters setting for our experimental study.

Experiment Name Epochs | LR Decay Rate (per 5 epochs)
Xception Shallow 50 0.9x
Xception Finetune 40 0.75x
Xception Deep 30 0.65x
InceptionV3 Shallow 50 0.9x
InceptionV3 Finetune 40 0.75x
InceptionV3 Deep 30 0.65x

each training and test fold. A batch size of 32 was selected,
as this has been shown to increase generalizability and
training stability with Stochastic Gradient Descent (SGD)
in the case of transfer learning and especially for the fine-
tuning mode. Moreover, all models were implemented using
the TensorFlow 2.1 framework and trained and tested using
a NVIDIA 2070 GPU with 8 GB of memory on CentOS 7.8.

Table 2 shows the configuration of the six different exper-
iments for the selected models and the tuning strategies.

For the transfer learning stage of the DeepCon model,
the Xception and InceptionV3 networks were tested with
shallow, finetuning and deep transfer learning modes in the
clustered data set with the same hyperparameters and decay
rate. The number of epochs for shallow and finetuning modes
was changed to 60 and 50, respectively. For evaluation, the
labels for each cluster pair were corrected by collapsing them
into one of the two pairs for both predictions and ground
truth before the evaluation metrics were calculated. For each
cross-validation iteration, the DeTraC model was trained on
the decomposed dataset before replacing the output layer
with 8 neurons. The model was then trained on the original
dataset, making sure the same training and testing images
were used across models for each iteration. For the second
stage, the number of epochs was 7, 10, and 15 for the deep,
finetuning, and shallow approaches. The learning rate was
also reduced to 0.005, with no learning rate decay being
used.

Table 3 compares the results obtained by the Xception and
InceptionV3 networks on three different fine-tuning modes.
The results of the initial transfer learning experiments show
that deep transfer learning by using the pre-trained weights
as weight initialization with the Xception model outper-
formed all the other models. However, despite a notable
performance difference between the fine-tuning and shallow-
tuning modes in the Xception model, there is no difference
in the InceptionV3 model.

The DeTraC method degraded overall system performance
across various fine-tuning modes and pre-trained models.
On the other hand, our proposed DeepCon shows a sig-
nificant improvement of 1.2% and 0.2%, respectively, for
the Xcpetion network with fine-tuning and deep-fine-tuning
modes. Tables 4 and Table 5 illustrate the performance
difference after applying the DeTraC and DeepCon models.
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TABLE 3. Results of Transfer Learning Experiments on CNNs Pre-trained
Models with several training modes.

Pretrained Model (training mode) | Accuracy (%) | Fl-score (%)
Xception (Shallow) 92.8 92.8
Xception (Fine) 94.6 94.6
Xception (Deep) 98.2 98.2
InceptionV3 (Shallow) 914 91.5
InceptionV3 (Fine) 91.2 91.3
InceptionV3 (Deep) 97.4 97.4

Eventually, a paired student t test was used to determine
whether the results obtained by DeTraC and DeepCon were
statistically significantly different from the base experiments.
The results showed that only the deep DeTraC model was
significant with p=0.027. For DeepCon, the fine-tuning and
deep models were significant, with both having p=0.0002.

V. CONCLUSION

Transfer learning based on state-of-the-art CNN image clas-
sification models has been widely researched in medical
applications where data is often limited. This paper presents
a novel deep learning model, called DeepCon to investigate
the effect of divide-and-conquer applied to the original
classes on the learning process. DeepCon introduces a two-
stage transfer learning mechanism, in which knowledge was
first transferred using decomposed subclasses of the original
classes with coarse transfer learning and then an learned
composition with fine transfer learning was employed to
cope with the original classes. The proposed model has been
validated on a clinically valid dataset of 5000 colorectal
cancer (CRC) images. DeepCon based on deep-tuning mode
offers better performance than the shallow-tuning mode with
the highest accuracy achieved by all pre-trained models
used in this work, confirming the impact of the composition
learned at DeepCon.
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