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ABSTRACT  
Trajectory data, increasingly available due to location tracking technologies, 
holds immense potential for intelligent traffic management and urban 
planning. Traditional ’attractive region’ mining methods often rely on 
density-based clustering, neglecting the inherent path information within 
trajectories. To address this, we propose a novel graph-based approach 
for attractive region discovery. By transforming trajectory data into 
graphs, we effectively leverage path and connectivity information for 
clustering with locality-sensitive hashing. Our study introduces the pARM, 
pgARM, and hgARM algorithms, demonstrating their superiority over 
GridDBScan through experiments on real-world datasets. We employ 
Davies–Bouldin metric and visualization techniques to highlight the 
robustness of our approach, especially for datasets with varied degree 
distributions. Although our method may have slightly longer processing 
times for smaller grid sizes, it achieves execution times comparable to 
GridDBScan for larger grids. We rigorously analyze performance variations 
within our algorithms using execution time, clustering coefficient, and 
modularity scores, providing guidance for their optimal application.
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1. Introduction

Intelligent transportation systems use geospatial data to improve the travel experience of the public 
by identifying better routes with reduced congestion while improving safety (Chavhan et al. 2021; 
De Souza Allan et al. 2016; Olayode et al. 2023). Trajectory data mining (J. Liu et al. 2017; Zhang 
et al. 2023) plays a crucial role in such intelligent systems in understanding travel patterns that help 
predict traffic flow (M. Li et al. 2021), anticipate path-related problems (Z. Wang, Fu, and Ye 2018), 
and find attractive or hot regions (Nikitopoulos et al. 2018), which is our focus in this article. 
Travel patterns are standard phenomena caused by various aspects during travel and are essential 
for individual mobility and location-based route planning (H. Cai et al. 2016).

Attractive Region Mining (ARM) becomes nontrivial due to the computational complexity of 
the task and the lack of accurate and timely information, as emphasized by Hamdi et al. (2022) 
and Cheng et al. (2021). Most studies on detecting travel patterns are based on data from public 
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transportation (S. Li et al. 2019), studying traffic flow modeling in urban areas, and on the mobility 
of trucks on freeways (Olayode et al. 2023). However, with the development of location-aware tech-
nologies (Pachni-Tsitiridou and Fouskas 2019) and using Geocoding like Baidu API (J. Liu et al. 
2017), the collection of travel data from residents is becoming more accessible, especially in 
urban areas where a taxi is the most common mode of transportation. Real-time analysis of 
large-scale taxi trips can provide valuable insights into traffic patterns and structures (Deng et al. 
2020; W. Li et al. 2023; Paulsen, Rasmussen Thomas, and Nielsen Otto 2021; Y. Wang et al. 
2020). Previous studies have analyzed spatial-temporal distribution from taxi trajectory data to 
identify attractive areas (Zheng et al. 2018), infer travel purposes (Hou et al. 2021), extract 
congestion areas (Fu et al. 2022), forecast traffic flow (Lan et al. 2022), and estimate travel time 
(Huang et al. 2022).

Grid-based approaches are prevalent to efficiently identify attractive regions with spatial and 
temporal constraints while mining trajectory data such as latitude and longitude information 
(G. Cai et al. 2014; Ohadi et al. 2020). As a state-of-the-art approach, the GridDBScan algorithm 
(Zheng et al. 2018) is a modified version of the density-based clustering algorithm that extracts tra-
vel patterns for space and time. This algorithm performs outlier-free density-based clustering for 
ARM using taxi trajectory data. However, the density-based clustering approach lacks edge connec-
tivity between spatial data points, which results in inaccurate attractive areas. It does not focus on 
the natural phenomenon of paths, i.e. links or edges. This approach compares the means of each 
pair of grid cells. We understand that comparing means puts less emphasis on outlier points and 
leads to biased results with power-law distribution data (O’Hagan et al. 2016). In other words, 
the mean-based approach may not be practical when the distribution of data points is skewed.

To overcome the core issue of the existing work for the ARM problem (Zheng et al. 2018), we 
formulate a solution that is free from dependence on the mean-based approach because of its sen-
sitivity to the underlying distribution of the data. For this purpose, we propose three variants to 
solve the problem. First, we opt for a pairwise approach, the pairwise attractive region mining algor-
ithm (pARM), which computes the direct distance between pairs of grid points instead of the cell 
means. Our pARM approach provides accuracy almost similar to that of the mean-based approach 
at the expense of quadratic time complexity due to point-to-point checking and lack of travel pat-
terns. Therefore, we propose a second variant called pairwise graph-based attractive region mining 
(pgARM) which performs pairwise distance checking among nodes in a spatial trajectory graph. 
Any spatial trajectory involves a starting and ending point, forming a graph. The vertices are the 
endpoints of a taxi travel/route, and the edges represent the paths between the endpoints. In this 
way, we compute the distances among the vertices for attractive-region mining, considering travel 
patterns inherently. Although modeling data in graphs has rich semantics, it still suffers from com-
plexity issues. Thus, we propose a third algorithm, hashing-based graph attractive region mining 
(hgARM), to solve the problem of higher computational complexity. In this regard, we use Locality 
Sensitive Hashing (LSH), a fast similarity search algorithm, to provide speed-ups by avoiding 
unnecessary similarity computation among distant data points in hgARM. We conducted a 
thorough experimental analysis of the proposed algorithms using four publicly available real- 
world datasets to reveal their superiority over the other variants. We now summarize the key con-
tributions of this article as follows. 

. Proposing a new solution to solve the problem of ARM: We propose three variants of 
attractive region mining (ARM) algorithms in a successive order, where each algorithm is 
superior to its predecessor in accuracy and efficiency.

. Use of semantic features in ARM: Modeling spatial trajectory data in graph structure to 
consider travel patterns as semantic features in ARM.

. Modelling LSH in the ARM domain: We propose a strategy to improve the efficiency of 
pairwise distance computations by modeling a well-known approach called LSH in the context 
of ARM.
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Since several acronyms are used in our paper, we provide their details in the table below.

Acronym Description

ARM Attractive Region Mining
pARM Pairwise Attractive Region Mining
pgARM Pairwise Graph-Based Attractive Region Mining
hgARM Hashing and Graph-Based Attractive Region Mining
LSH Locality Sensitive Hashing
DBSCAN Density-Based Spatial Clustering of Applications with Noise
GridDBScan Grid and Density-Based Spatial Clustering of Applications with Noise
DPC Density Peaks Clustering

2. Related work

In this section, we navigate through related concepts and ideas presented in the literature for attrac-
tive region and trajectory data mining.

Clustering and sequential pattern mining are commonly used techniques in trajectory data 
mining (Gaffney and Smyth 1999; Gao and Yu 2017; Guan, Liu, and Chen 2013; Kharrat et al. 
2008; Lee, Han, and Whang 2007; Z. Li et al. 2010; D. Liu, Cheng, and Yang 2015; Mao, Ji, and 
Liu 2016; Qi and Liu 2018; Saptawati 2017; Takimoto, Sugiura, and Ishikawa 2017). Many research-
ers have utilized textual features for clustering trajectory data, with each point in the trajectory 
described and captured as text to use semantic trajectories (Takimoto, Sugiura, and Ishikawa 
2017). The research on studying the freeway traffic flow to learn about volume and the congestion 
caused by the trucks used machine learning for this purpose (Olayode et al. 2023). Another notable 
approach is to use public cloud-based APIs from platforms like Baidu to perform trajectory pattern 
mining and trajectory clustering for the smart city (J. Liu et al. 2017). Similarly, Visualization is a 
crucial component of mining trajectory data, as traffic data has become a vital part of daily life due 
to the time people spend on the road (Y. Li and Ren 2022). Visualizing traffic data using taxi tra-
jectory charts allows humans to interpret it naturally and investigate congested areas and traffic 
jams. Analyzing traffic flow patterns can provide valuable information and recommendations to 
taxi drivers and passengers (Tran, Leyman, and De Causmaecker 2022).

Feature extraction is non-trivial for individual trajectories and complex attributes (Chen et al. 
2022; H. Li et al. 2022), making it challenging to determine representative routes or common 
trends shared by multiple moving objects. To address these challenges, various techniques 
have been introduced in the literature, such as using the regression mixture model and the 
expectation-maximization algorithm to categorize similar trajectories (Gaffney and Smyth 
1999), changing the trajectory partition to line segments (Kharrat et al. 2008), and using the Tra-
jectory-Hausdorff distance to build a group of closed trajectory segments. Furthermore, a micro- 
and macro-clustering framework was introduced by Lee, Han, and Whang (2007) and used by 
Z. Li et al. (2010). The authors in Guan, Liu, and Chen (2013) proposed a method to calculate 
the distance between two trajectories using a trajectory clustering algorithm based on the Haus-
dorff minimum distance, in which the relative and local distances are combined. Gao and Yu 
(2017) proposed a method for measuring the distance between two sub-trajectories using the 
DTW (dynamic time warping) algorithm.

Literature studies also focused on the identification of attractive regions (D. Liu, Cheng, and 
Yang 2015; Mao, Ji, and Liu 2016; Qi and Liu 2018; Saptawati 2017; Takimoto, Sugiura, and Ishi-
kawa 2017; Zheng et al. 2018). A density-based approach (D. Liu, Cheng, and Yang 2015), density 
peaks clustering (DPC), uses the density peaks feature to identify hot zones. The authors combined 
the DPC algorithm with image analysis techniques to improve efficiency. DPC experiments revealed 
that it is capable of detecting long-term hotspots. In another study (Mao, Ji, and Liu 2016), the 
authors presented a method to group the origin and destination points for travel trajectories, 
specifically household travel patterns, by identifying appealing locations. This approach allows 
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the visualization of clusters based on spatial distribution and temporal direction. Another study 
(Takimoto, Sugiura, and Ishikawa 2017) analyzes semantic trajectories to identify patterns and 
regions of interest. They developed a clustering algorithm called SimDB-SCAN that clusters 
areas based on similarities and incorporates user preferences using Flickr photos. They combined 
the region of interest (ROI) with trajectory points to create efficient models, which differs from pre-
vious studies that primarily used numerical data to group trajectory points.

Various grid-based approaches have been introduced in the literature to identify exciting regions 
(Qi and Liu 2018; Saptawati 2017; Zheng et al. 2018). For example, the authors in (Saptawati 2017) 
divided the trajectory dataset into smaller grids before applying DBSCAN clustering to each grid for 
each timestamp, resulting in high congestion levels in some areas. The R-FDBSCAN (Qi and Liu 
2018) approach (DBSCAN-based spatial clustering algorithm) has an additional parameter R con-
trolling the size of the clusters. This algorithm has demonstrated numerous advantages about time 
performance and clustering results. GridDBScan (Zheng et al. 2018) uses density-based clustering 
to identify hot regions based on the distances between the mean points of each cell. We understand 
that their mean-based approach may not be practical when the distribution of data points is skewed. 
Moreover, none of the above methods consider the rich semantics of travel patterns, e.g. pickup and 
drop-off locations, to identify attractive regions.

3. Methodology

This section explains our proposed incremental strategy for the ARM problem. Initially, we suggest 
an alternative approach called pairwise attractive region mining (pARM), in contrast to the mean- 
based approach (Zheng et al. 2018), where the distance between each data point in adjacent grid 
cells is calculated rather than computing the distancing among means of grid cells. Our pairwise 
distance computation approach for attractive region mining (pARM) works and provides almost 
similar accuracy to the mean-based method, detailed in Section 3.1. However, it has two issues; 
first, it involves quadratic time complexity for point-to-point checking; second, we understand 
that the overall problem of attractive region mining for spatial trajectories naturally gets modeled 
as a graph mining problem. Any spatial trajectory involves a starting and ending point; hence, we 
get a graph. Therefore, we first model the problem as a pairwise distance checking among nodes in a 
spatial trajectory graph. The vertices are the endpoints of a journey or trajectory, and the edges are 
the paths between the endpoints. We compute the distances among the vertices to mine the attrac-
tive regions. This approach is called pairwise graph-based Attractive Region Mining (pgARM), 
explained in Section 3.2. Modeling data as a graph seems appropriate; however, the time complexity 
issue remains the same. To solve this problem, we propose a model based on locality-sensitive hash-
ing (LSH). LSH is a fast similarity search algorithm that provides speed-ups by avoiding unnecess-
ary similarity computation among distant data points. We refer to this approach as hashing and 
graph-based attractive region mining (hgARM) and explain it in Section 3.3. In this way, we 
propose a series of algorithms to effectively solve the ARM problem using spatial trajectory data.

3.1. Pairwise attractive region mining (pARM): a brute-force strategy

In this section, we elaborate on our brute-force strategy to explore hot (aka attractive) regions in the 
spatial domain using pairwise computations. The idea behind our proposed approach, i.e. pairwise 
attractive region mining (pARM), is to perform pairwise distance computations among points of 
adjacent grid cells. Figure 1 shows an overview of our proposed solution, which compares its 
core characteristics to the current state-of-the-art solution (Zheng et al. 2018). It uses the same 
spatial point distribution to perform density-based clustering of cells corresponding to the cluster 
distance. However, the mean-based approach to compare cell distances leads to bias in data sets 
where the data distribution is skewed (O’Hagan et al. 2016). Therefore, we propose a pairwise 
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approach better suited to domains of skewed data distribution problems, such as power law. Figure 2
illustrates the difference between the two techniques.

The pARM approach performs pairwise attractive region mining using the direct distance com-
putation between pairs of grid points instead of the cell means. The critical steps of our approach 
are to convert data points in the grid as data mapping, finding neighbors, and distance calculations, 
as illustrated in Algorithm 1. To improve spatial data analysis, our algorithm first converts the data 
points to a grid with longitude on the Y-axis and latitude on the X-axis, then divides them into cells 
by determining the horizontal and vertical edges for equal parts, as demonstrated in the following 
Equation (1), where long and lat denote longitude and latitude, respectively.

Edgehorizontal =
longmax− longmin

kGridSize

Edgevertical = latmax− latmin
kGridSize

(1) 

Algorithm 1 Pairwise Attractive Region Mining (pARM)

1: Input: D a set of data points having longitudes and latitudes, λ a Distance coefficient (O’Hagan et al. 2016; Zheng et al. 2018), 
R radius to set limit of adjacent cells, K for grid cells

2: Output: Clusters of data points i.e. attractive regions
3: Divide D into KxK grid cells
4: Map each point p [ D into its respective grid cell
5: Label a given cell of the grid as attractive if its member points are greater than λ
6: For a given grid cell, compute pairwise spatial distances for each of its member data points against those of adjacent cell data 

points
7: Repeat the previous step until the pairwise distances of all cells are computed against all their adjacent cells
8: Using the majority voting scheme, group cells into attractive regions

Figure 1. A comparative overview of GridDBScan (Zheng et al. 2018) and the proposed pARM approach.

Figure 2. Illustration of pairwise comparison instead of mean-based approach. (a) GridDBScan (Zheng et al. 2018) based on the 
mean of the cell for comparison. (b) Finding similar cells using a pairwise comparison is our first proposed approach.
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3.1.1. Cluster identification using pARM
We introduce the concept of radius for a cell to achieve the aforementioned objective of pARM. The 
radius aims to set up the distance between the grid cells. For instance, the radius of ‘1’ means that 
adjacent grid cells are neighbors of the selected cell. Similarly, the radius of 2 defines two adjacent 
cells in each direction as neighbors of the cell under consideration, and so on. Once the grid is cre-
ated and neighbors are defined, we calculate the pairwise spatial distances between the members of 
adjacent cells. For example, if there are 4 points in cell 1 and 3 points in cell 2, the total pairs are 4 * 3 
= 12. In this way, spatial pairwise distance is computed among members’ data points of all the grid 
cells that fall within the threshold of a given radius. Once the distance computation is complete, we 
start to create clusters. Since we have several grid cells, various adjacent cells are merged into 
groups. We use a majority voting scheme to combine cells into clusters. If most of the pairings 
of data points fall within the given user-defined distance threshold, we declare that both grid 
cells belong to the same group.

3.1.2. Discussion on pARM
The brute-force clustering approach of pARM does identify the clusters, but these clusters do 
not capture the intrinsic path aspect of spatial trajectories. A trajectory is usually a path that has 
starting and ending locations. These paths provide the information on the network that can be 
used to create more meaningful clusters. Moreover, it suffers from its quadratic time complexity 
because of n x n comparisons between data points, which makes it impractical for very large- 
sized networks.

While motivating our work, GridDBScan (Zheng et al. 2018) uses density-based clustering on 
mean points of grid cells to find taxi travel patterns. However, this approach may not be optimal 
for datasets with skewed distributions. Our proposed variant, pARM, addresses this limitation by 
performing point-to-point distance computations within each grid cell. Although computationally 
more intensive, pARM establishes a foundation for developing further variants that elegantly solve 
the ARM problem. This novel problem formulation is the key strength of pARM, demonstrated by 
the effectiveness of its two extensions.

In this regard, to capture the real essence of trajectories, we model the data as a graph and pro-
pose a new approach called pgARM.

Algorithm 2 Pairwise Graph-based Attractive Region Mining (pgARM)

1: Input: D a set of data points that have longitudes and latitudes, λ Jaccard similarity threshold, R radius to set the limit of 
adjacent cells, K for grid cells

2: Output: Clusters of data points, i.e. attractive regions
3: Divide D into KxK grid cells
4: Map each point p [ D into its respective grid cell
5: Map, a pair of data, points p, q [ D as source and destination points of a taxi’s trajectory, to mark them as nodes of the graph G 

and the path between them to be an edge
6: For a given pair of adjacent grid Cells i and j, if a node u [ Celli and node v [ Cellj has neighborhood similarity above λ, then 

declare the pair u, v as member of same cluster
7: Repeat the previous step until all pairs of nodes that are members of adjacent grid cells are marked into clusters
8: Cluster each group of cells into an attractive region using a majority voting scheme

3.2. Pairwise graph-based attractive region mining (pgARM)

We model trajectory data as a graph to learn the travel patterns and identify more meaningful clus-
ters. In a graph, a node represents the source or destination of a trajectory, while an edge represents 
the path between them. We compute source node groups with similar destinations using this data 
modeling format. In this way, all nodes meeting the similarity criteria are clustered together. In the 
following, we discuss each step of the proposed algorithm in detail, while Figure 3 shows its general 
working.
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3.2.1. Graph formation from trajectory data
We transform the data points into an undirected graph where a node is a particular location on the 
trajectory, specified by its longitude and latitude. Typically, a taxi trajectory comprises the origin and 
destination as two points. We connect both points through an edge to represent a path followed by a 
taxi. Using this method, we create a graph representation of the trajectory, as shown in Figure 4.

3.2.2. Cluster formation from trajectory graph
The next step of the algorithm is to find the adjacent nodes. In this regard, any two nodes are con-
sidered a pair if they have a count of common neighbors above a given threshold. Consequently, the 
nodes that meet the similarity threshold are clustered together. The similarity among any pair of 
nodes u and v is calculated using the Jaccard coefficient. This measure compares similarity using 
the adjacency list of each node, as illustrated in Equation (2), where N represents neighbors.

JSimilarity(u, v) =
|Nu > Nv|

|Nu < Nv
(2) 

3.2.3. Discussion on pgARM
The pARM approach suffers from the problems of higher computational complexity. Moreover, 
like GridDBScan (Zheng et al. 2018), it also misses using the use of an essential important and tan-
gible concept of a path between the endpints of any trajectory. In this regard, pgARM is effective, as 
it focuses on using the path information, i.e. the link structure among the data points, to perform 

Figure 3. Bird’s eye view of proposed pgARM.

Figure 4. Representing trajectories of taxis as an undirected graph.
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density-based clustering. Considering the connectivity among the endpoints of the trajectories, this 
variant aims to discover more meaningful clusters of the trajectories.

The pgARM approach captures information from the data network to maintain edge connec-
tivity between points. Because of pairwise comparisons, it has quadratic time complexity. Ideally, 
we need a strategy that captures information from the graph and provides a low-cost solution.

3.3. Hashing-based graph attractive region mining (hgARM)

We introduce an efficient approach based on the hashing mechanism to overcome the compu-
tational overhead due to extensive pairwise comparisons, named attractive region mining 
(hgARM) to efficiently identify similar nodes without explicit pairwise comparisons. Figure 
6 illustrates the overall idea of the hgARM approach, and Figure 5 illustrates the flow of 
the hgARM. It describes how the initial data points of a taxi are mapped to the corresponding 
grid cells of nXn size. The next step is to convert those points into nodes and edges to create 
their minhash vector representation. Subsequently, our algorithm generates hash tables for 
each band and groups the data points into clusters based on their similarities, i.e. smaller dis-
tance among data points. Finally, majority voting is applied to determine the attractive 
regions. The step-by-step working of the hgARM strategy is illustrated in Algorithm 3 and 
is explained in subsequent paragraphs. LSH is applied to the trajectory graph of Figure 4 to 
identify the clusters. Locality Sensitive Hashing (LSH) has the property of avoiding unnecess-
ary computations of similarity between unlikely pairs. In this way, hgARM is more efficient 
and scalable.

3.3.1. Applying LSH on trajectory graph for cluster formation
LSH uses multiple hash functions on each node to find similar nodes for cluster formation. 
These are random permutations of the adjacency list of every node, as shown in step (a) of 
Figure 7 as p1 to p4. Using these hash functions, we generate a minhash matrix of size N∗K, 
where N denotes the total number of nodes in the trajectory graph, and K represents the number 
of hash functions used. The minhash matrix obtained is shown in step (b) of Figure 7. The min-
hash matrix is a similarity-preserving matrix of the input graph that is much smaller in size and 
memory-preserving.

Figure 5. Flowchart diagram hgARM.
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Algorithm 3 Hashing-based Graph Attractive Region Mining (hgARM)

1: Input: D a set of data points having longitudes and latitudes, λ Jaccard similarity threshold, R radius to set limit of adjacent 
cells, K for grid cells, h number of hash functions for LSH, b number of bands/hash tables in LSH.

2: Output: Clusters of data points i.e. attractive regions
3: Divide D into KxK grid cells
4: Map each point p [ D into its respective grid cell
5: Map pair of the data points p, q [ D as source and destination points of a taxi’s trajectory to mark them as nodes of the graph 

G and the path between them to be an edge
6: Repeat Steps 6 and 7 for each u [ G
7: Compute minhash vector m for each u, by applying h hash functions on its neighborhood
8: Divide m into b bands of r rows each and store each band’s members as a hashed value in a bucket of the respective hash table
9: Retrieve all pairs of nodes u, v from adjacent grid Cells i and j, where u [ Celli and v [ Cellj and has neighborhood similarity 

above λ, to declare the pair u, v as member of same cluster
10: Repeat the previous step until all pairs of nodes that are members of adjacent grid cells are marked into clusters
11: Cluster each group of cells into an attractive region using a majority voting scheme

As soon as we obtain the minhash matrix, we divide it into b bands having r rows each, as illus-
trated in Step (c) of Figure 7. This way, the objective is to group the nodes with the same minhash 
codes into buckets. Step (d) shows the status of the nodes after applying a hash function on each 
band. All nodes with the same minhash codes in a band produce the same hash value. For example, 
the minhash codes for nodes 2, 7, and 19 are in a gray row; therefore, these nodes have the same 
hash code 8 in step (d). In this way, all such nodes having the same minhash codes in a specific 
band fall into the same buckets of the corresponding hash tables. Finally, we perform unions of 
the buckets of each hash table to find clusters of similar nodes, i.e., the points having a lesser dis-
tance from each other.

3.3.2. Discussion on hgARM
Our hgARM approach addresses the key challenges of the ARM problem faced by previous variants 
and GridDBScan. Uniquely, it integrates path information while optimizing computational 
efficiency. Using LSH (Locality-Sensitive Hashing), distance computations are intelligently limited 
to likely points. This innovation makes hgARM a highly effective and scalable solution for large 
datasets.

4. Experiments

In this section, we present an experimental evaluation of our solution. We performed experiments 
on the Ubuntu 20.04 LTS system with a core i5 processor with 8 GB RAM. All algorithms were 
implemented in Python 3.7. The experiments were carried out on four publicly available data 
sets, namely T-Drive,1 ECML/PKDD,2 and Road Networks of California3 and Texas.4

The T-Drive trajectory sample offers a rich dataset: a week of activity from 10,357 taxis, compris-
ing 15 million points and covering 9 million kilometers of travel. ECM-L/PKDD is a comprehensive 
dataset that details taxi operations in Porto, Portugal. The data covers a full year (01/07/2013–30/ 

Figure 6. Bird’s eye view of our proposed hgARM approach.
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06/2014) and includes trajectories of all 442 taxis in the city. Taxi rides are classified according to 
their origin (central, stand-alone, or street-hailed), and customer phone numbers are included 
when applicable. Each trip record features attributes such as trip ID, origin details, taxi ID, 

Figure 7. Illustration of how to apply LSH on a trajectory graph/ (a) adjacency matrix representation of a toy graph in Figure 4
along with four hash functions of random permutations. (b) Minhash matrix. (c) Division of matrix into two bands. (d) Combined 
hash codes for every band using an arbitrary hash function. (e) Hash tables contain buckets of candidates with similar nodes.
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timestamp, day type, missing data indicators, and a detailed GPS polyline tracking the trip’s route at 
15-second intervals. We model California and Texas road networks as graphs. Intersections and 
road endpoints become nodes, while the roads form undirected edges that connect these nodes.

We visualize the datasets in Figure 8 to better understand them. These visualizations clearly show 
how roads and paths are designed, highlighting intersections, areas of heavy traffic, and traffic flow. 
Each image shows the intricate layout of rural and urban road networks, allowing quick identification 
of congested areas and streamlined paths while separating packed and less crowded locations.

We compared our proposed algorithm pARM with that from Zheng et al. (2018), which we call 
GridDBScan. Using this experiment, we aim to verify that the mean-based approach of GridDBScan 
can be replaced with pARM. This forms the basis for our proposal to formulate the problem as a 
graph mining task. We compare GridDBScan and pARM based on the Davies–Bouldin score 
and execution time for clustering the data points. Davies–Bouldin score is a measure to investigate 
the compactness and separation of the clusters. It verifies the goodness of the clusters in terms of 
variation within the groups and separation between the clusters. We also compare the visual output 
of both algorithms for effectiveness evaluation.

We evaluate our algorithms, namely pgARM and hgARM, based on their execution times for 
data clustering, clustering coefficients, and modularity scores of the resultant clusters. For exper-
iments using LSH, we used 50 hash functions of random permutations.

4.1. Evaluation on spatial trajectories

We present an empirical evaluation of GridDBScan and pARM when the trajectory data is modeled 
in its native spatial format.

GridDBScan is a density-based clustering algorithm that identifies partitions with high-density 
areas of points separated by low-density areas. We use the Davies–Bouldin score, a relative vali-
dation measure for arbitrarily formed density-based clusters. The measure evaluates the quality 

Figure 8. The visualization of the raw datasets used in the experiments.
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of clusters based on the relative density of connections between pairs of items. The index is based 
on a unique kernel density function, which is used to compute the density of objects (Moulavi 
et al. 2014). Figure 9 shows the results of the Davies–Bouldin score for the two methods, where 
we notice a better Davies–Bouldin score for large grids. We observe that pARM produces 
Davies–Bouldin scores similar to GridDBScan for grid sizes of 10 to 70. However, GridDBScan 
produces better results for greater grid sizes like 100 and 150. GridDBScan produces better 
results because each grid cell has multiple data points, and when we increase the number of 
grid cells, the data points in each grid cell are reduced. This ultimately leads to ignoring the 
noise data points, reducing the inter-cluster distance. Interestingly, we observe that the scores 
again rise when the grid size is increased, i.e., the number of cells above 150.

We also visualize the outputs of both algorithms for a grid size of 30 in Figure 10 for effectiveness 
evaluation. We observe a similar outcome for both algorithms, proving that our proposed aim 
works well compared to the state-of-the-art GridDBScan. On the other hand, when comparing 
the execution time of both algorithms, pARM happens to be an expensive approach than Grid-
DBScan because of its quadratic time complexity. However, the execution time of pARM signifi-
cantly drops with increasing grid size. This happens because the member data points of each 
grid cell are reduced; hence, comparisons between adjacent grid cells are also reduced. Therefore, 
both approaches consume a similar amount of time at a higher grid size, as depicted in Figure 11.

4.2. Evaluation using trajectory graphs

We present an empirical evaluation of our proposed algorithms pgARM and hgARM when the tra-
jectory data are modeled in graph format.

For this evaluation, we compare the clustering coefficient and modularity of the clusters pro-
duced by both the approaches and their execution times. The clustering coefficient measures the 
degree to which the nodes in a graph tend to cluster together. Modularity measures the strength 
of the division of a network into clusters by comparing the density of edges of the intra-cluster 
with the inter-cluster. We did not compare pgARM and hgARM with GridDBScan using the 
Davies–Bouldin score because it does not apply to graph-based clustering. The reason is that it 
is based on the distance or similarity metrics irrelevant to the graph data. The notion of ‘within- 

Figure 9. Davies–Bouldin score of GridDBScan and pARM on different sizes of grids of T-Drive dataset.
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Figure 10. Visualization of clusters produced by (a) GridDBScan and (b) pARM where the size of Grid is 30 of T-Drive dataset.
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cluster scatter’ and ‘between-cluster separation’ does not have a straightforward interpretation in 
graph-based clustering.

Figure 11. Execution time analysis of GridDBScan and pARM of T-Drive dataset.

Figure 12. Evaluation of clustering coefficient for the proposed algorithms pgARM and hgARM on all four datasets.

14 M. TOQEER ET AL.



In each comparison for all four datasets, we observe that pgARM provides better results for the 
clustering coefficient than hgARM having the minhash columns divided into 4 bands, as shown in 
Figure 12. This is so because pgARM performs explicit pairwise similarity comparisons among the 
nodes in the graph. If we observe the comparison of pgARM with 8 bands of hgARM, results are 
quite promising (see Figure 13) and the same trend holds for modularity. During the evaluation of 
the clusters using modularity, pgARM consistently outperformed hgARM in terms of identifying 
close groups or communities for both bands, where the band 8 results are close to pgARM. We 
can conclude that increasing the number of bands yields better results for the hgARM.

The experiments reveal that both approaches identify accurate groupings to some extent, 
pgARM performs better in a variety of settings, demonstrating that it is more reliable for this pur-
pose. The difference is especially obvious in the ECML/PKDD dataset, where pgARM stands out 
firmly. However, neither technique performed well for the T-Drive dataset, implying that the data-
set may be more difficult to work with or that both methods suffer in some cases. Although pgARM 
performs well in modularity or clustering coefficient, it runs poorly in time. On the other hand, 
hgARM only performs such comparisons between similar nodes and misses some genuinely similar 
nodes due to its approximation strategy. Consequently, hgARM consumes less execution time than 
its pgARM and, therefore, is more scalable.

However, as the number of bands increases from 4 to 8, its execution time approximately 
doubles, as seen in execution time analysis comparisons in Figures 14, 15, 16, and 17. The 
hgARM approach with 4 and 8 bands differs in execution time because of having a shorter 
execution time of hash table creation and searching through the LSH index. Dividing the minhash 
column into 4 bands results in 4 hash tables; hence, less time is required for the hash table creation 
and searching for closer data points. We observe a similar execution time for both variations of 
hgARM in all four datasets. In particular, for road networks of Texas and California, since both 

Figure 13. Evaluation of modularity for the proposed algorithms pgARM and hgARM on all 4 datasets.
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Figure 14. Execution time comparison of proposed graph-based algorithms pgARM and hgARM on ECML/PKDD dataset.

Figure 15. Execution time comparison of proposed graph-based algorithms pgARM and hgARM on T-Drive dataset.
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Figure 16. Execution time comparison of proposed graph-based algorithms pgARM and hgARM on dataset of Texas road 
network.

Figure 17. Execution time comparison of proposed graph-based algorithms pgARM and hgARM on a dataset of California road 
network.
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datasets possess similar network properties of clustering coefficient, where California has more 
number of triangles than Texas. However, the fractions of closed triangles are almost the same 
for both of these datasets. However, pgARM consumes more time, but emerges as the strongest 
tool to detect tightly associated groups in the data we examined, as can be observed in Figures 
12 and 13 for the clustering coefficient and modularity score. Unlike hgARM, it uses path infor-
mation and does not do any approximation for cluster discovery.

As a result, we conclude that our proposed idea to solve the problem of attractive region mining 
by transforming the spatial data sets as graph data sets perform well. We obtain clusters of descent 
quality in a reasonable amount of time. GridDBScan is not a scalable algorithm. However, with the 
proposed variants, the ARM problem gets into a new shape and is accelerated through using LSH.

During the problem formulation and implementation, We faced several challenges during the 
study. LSH’s memory requirements, which scale with dataset size, necessitate future work consider-
ing memory optimization techniques like adjusting the number of bands or utilizing parallel/dis-
tributed platforms. Additionally, transforming the problem domain from Euclidean space to 
graphs for efficient solutions proved challenging, mainly when modeling real-world datasets 
based on coordinates. This required careful formulation of coordinate-to-graph data transform-
ation using LSH. Designing suitable hashing functions for LSH implementation was another 
difficulty. Finally, selecting appropriate evaluation measures (e.g. Davies–Bouldin) for comparative 
analysis between graph-based and non-graph-based approaches presented its complexities.

5. Conclusion and future directions

In this paper, we presented a novel solution to the problem of attractive region mining (ARM) for 
taxi services, shifting the focus from spatial data alone to trajectory-based insights. By transforming 
spatial data into trajectory graphs, we achieved more meaningful clusters of attractive regions. Our 
method demonstrated superior time efficiency, clustering coefficient, and modularity scores with 
real-world datasets. This work advances our understanding of trajectory-based clustering and 
has significant implications for optimizing taxi services, driver efficiency, and broader intelligent 
transportation systems.

Future research could explore applications of this approach in managing public bike sharing sys-
tems and other urban mobility services. Our work presents several exciting avenues for future 
exploration, including optimizing performance through parallel execution platforms, automating 
LSH parameter determination for efficiency, developing methods to analyze weighted trajectories 
(considering path costs), and integrating time series analysis to uncover additional insights from 
trajectory data. These extensions have the potential to further enhance the performance, scalability, 
and impact of our approach.

Notes
1. https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.
2. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i respectively.
3. https://snap.stanford.edu/data/roadNet-CA.html.
4. https://snap.stanford.edu/data/roadNet-TX.html.
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