Developing Trustworthy Educational Metaverses Using Open-Source Generative AI (GenAI) and Mixed Reality (MR) Technologies

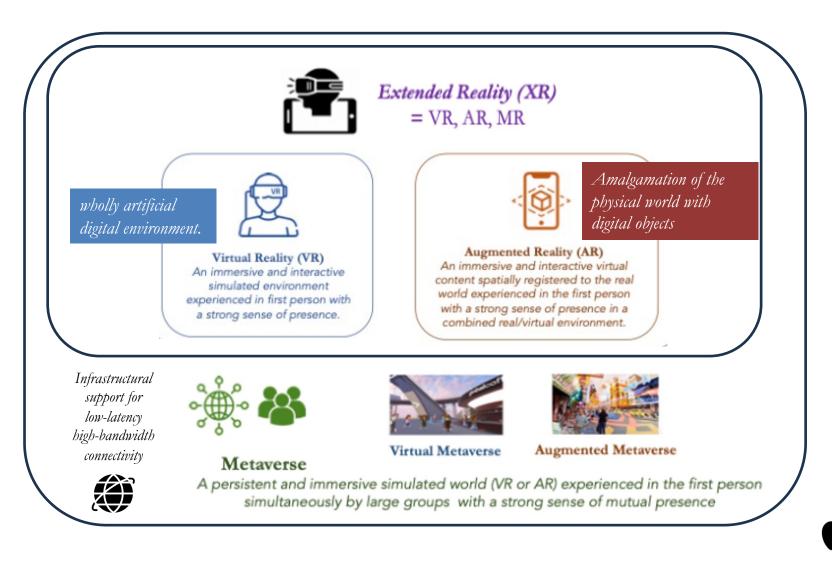
Prof. Junaid Qadir¹, Prof. Ala Al-Fuqaha², Prof. Muhammad Bilal³, Dr. Sajjad Hussain⁴

¹Qatar University, Qatar ²Hamad bin Khalifa University, Qatar ³Birmingham City University, United Kingdom ⁴University of Glasgow, United Kingdom

Presentation Outline

2 Introduction to Educational Metaverses

- Education in the Metaverse: Opportunities and Risks
- An Introduction to Generative AI (GenAI) and Open-Source GenAI
- An Introduction to Mixed Reality (MR) and Open-Source MR
- An example case study incorporating GenAI/ Metaverse.


Introduction

Defining the Metaverse

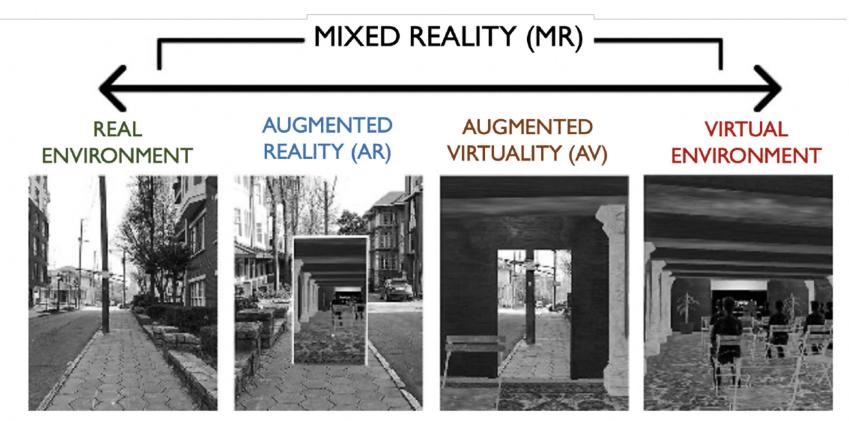
The Metaverse is a culmination of many applications of technology. There is no one single thing that makes the Metaverse the Metaverse

Introduction to AR/VR and the Metaverse

Enabling Technologies:

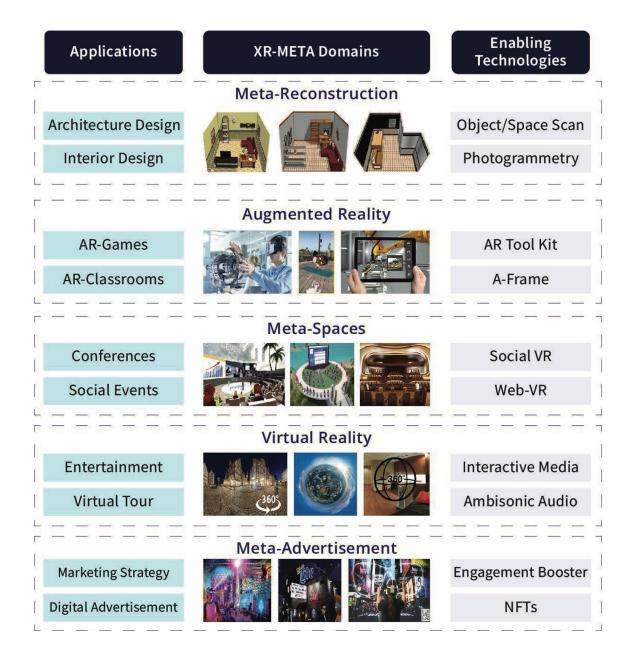
- Spatial Computing
- Spatial Web
- Haptic Technology
- Localization and Mapping
- AR/VR Libraries
- Gaming Industry

Meta



Mixed Reality (MR) Definition

The term MR describes a spectrum encompassing both Augmented Reality (AR) and Virtual Reality (VR). In MR environments, physical and digital objects coexist and interact in real time. Users can engage with virtual objects while still being aware of and interacting with the real world around them.


Reality to Virtuality Continuum

Spectrum ranging from Reality to Virtuality [Milgram and Kishino (1994) continuum.] *Figure adapted from "Reality Media" (Source: Bolter, Engberg, & MacIntyre, 2021)*

Metaverse Enabling Technologies

Metaverse is the next generation of the Internet that will surround us both graphically and socially enabled by various immersive and virtual technologies including XR.

Qayyum, A., Butt, M. A., Ali, H., Usman, M., Halabi, O., Al-Fuqaha, A., ... & Qadir, J. (2024). Secure and trustworthy artificial intelligence-extended reality (AI-XR) for metaverses. ACM Computing Surveys, 56(7), 1-38.

Architectural Overview of Metaverse

Metaverse's architecture expands from people's experiences to underlying enabling technologies and has seven layers. 1. Experience

Games, Social, Shopping, E-Sports, Events, Festivals, Working

2. Discovery

Advertising Networks, Virtual Stores, Avatars, Chatbots

3. Creator

Design Tools, Assets Market, Commerce

4. Spatial Computing 3D Engines, Mapping, AR, VR, MR, XR, etc.

> 5. Decentralization Blockchain, Edge Computing, etc.

> > 6. Human Interface Smart Wearables, etc. 7. Infrastructure

> > > 5G, 6G,

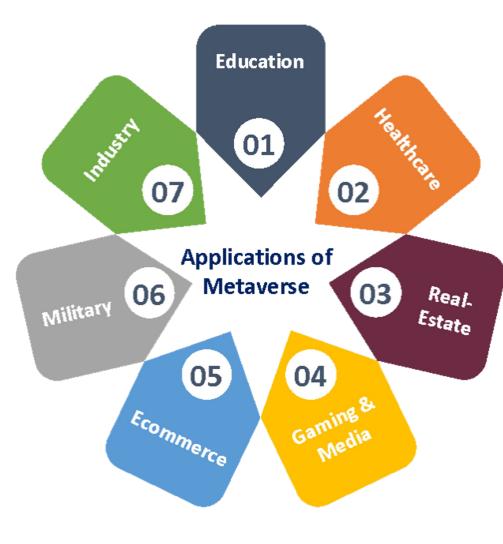
WiFi, etc

Qayyum, A., Butt, M. A., Ali, H., Usman, M., Halabi, O., Al-Fuqaha, A., ... & Qadir, J. (2024). Secure and trustworthy artificial intelligence-extended reality (AI-XR) for metaverses. ACM Computing Surveys, 56(7), 1-38.

Applications of Metaverses

Applications of Metaverses

Industry


- Manufacturing (i.e., developing better products and fault identification)
- Employees and Workers Training to Improve Safety
- Improving Planning for Manufacturing (Plants and Equipment)

Military

- Tactical Augmented Reality
- Immersive (Synthetic) Training Environments
- Creating physically and psychologically intensive combat situations, ...

Ecommerce

- Virtual Markets and Business
- Virtual Assists
- Virtual Shopping
- AR and VR assisted immersive shopping

Education

- Improving teaching using immersive environment
- Immersive learning environments for students
- Personalized learning interventions, ...

Healthcare

- Planning and Training
- AR-assisted Surgical Interventions
- Pharmaceuticals
- Vein Visualization, ...

Real-Estate

- Simulating 3D architectures
- Realistic and Immersive Virtual Tours
- Customized Tours (as per customer needs)
- Adding narrations alongside ambient music, light, & sound effects, ...

Gaming & Entertainment

- Immersive Gaming
- Enhanced Entertainment and Social Networking
- Virtual Meetings and Workspaces, ...

How educational metaverses can help improve education?

Educatio

Metaverses

Accessible Learning

Foster accessible learning through inclusive, immersive environments, catering to diverse styles and ensuring equitable access to resources.

Remote Learning

Immersive online environments, allowing students to collaborate, engage, and access educational content remotely.

Personalized Learning

Personalized learning through tailored content and experiences to individual needs, fostering adaptive and customized educational journeys.

Coummuniations

improved communication through interactive platforms fostering real-time engagement and effective information exchange among students and educators.

Immersive Learning

Learners can access personalized and adaptive content, fostering a gamified and interactive approach to education

Interactive Visualizations

Interactive visualizations for dynamic, immersive learning, enhancing comprehension through engaging and visually rich content.

Collaborative Learning

Empower collaborative learning by providing immersive virtual spaces where students globally can interact, share knowledge, and engage in dynamic, realtime educational experiences

Assessment and Analysis

Provides dynamic tools for evaluating student progress, understanding learning patterns, and tailoring personalized feedback for effective educational outcomes.

Abdullakutty, F., Qayyum, A., & Qadir, J. (2024). Trustworthy AI for Educational Metaverses. Authorea Preprints.

Artificial Intelligence's Role in Metaverses

Computer Vision

- Avatar generation,
- Object detection and recognition,
- Emotion recognition,
- Semantic segmentation,
- Scene understanding,
- Understanding users' activities, ...

Network Communication

Intrusion detection,

- Intelligent resource allocation,
- Resource slicing,
- Channel state estimation,
- Network and traffic modulation, ...

Blockchain

- Intelligent smart contracts,
- AI-based clustering and classification,
- Knowledge discover and learning,
- Data management,
- Perception, reasoning, & planning

–Natural Language Processing –

- Speech-to-text,
- Text-to-speech,
- Chatbots,
- Text/speech-based emotion recognition
- Voice and textual commands, ...

Digital Twin

- Using AI to intelligently monitor and translate data from complex physical systems to digital replica,
- Al-empowered data analytics, and simulations,
- Al-based virtual data generation, ...

Role of Al in Metaverse

An Introduction to Educational Metaverses

Education in the Metaverse

Future of Education: Immersive Teleportation Systems

Immersive teleportation systems redefine education by transcending physical limitations and fostering global connectivity.

- **Availability:** Live surgical training becomes globally accessible.
- Accessibility: Students worldwide join classes anytime, anywhere.
- **Communication:** Virtual classrooms enable seamless collaboration across borders.

Educational Metaverse: Opportunities and Risks

Security Issues in the AI-XR Metaverses

1. Experience Games, Social, Shopping, E-Sports, Events, Festivals, Working 2. Discovery Advertising Networks, Virtual Stores, Avatars, Chatbots 3. Creator Design Tools, Assets Market, Commerce 4. Spatial Computing 3D Engines, Mapping, AR, VR, MR, XR, etc. 5. Decentralization Blockchain, Edge Computing, et 6. Human Interface Smart Wearables, etc. 7. Infrastructure 5G. 6G. WiFi, etc.,

ML Associated Security Issues

[Dij	ferent Layers of Metav	erse		
	Infrastructure	Human Interface	Decentralization	Spatial Computing	Creator Economy	Discovery	Experience
Enabling Technologies	 5G, 6G WiFi Cloud Data Center/Clusters, 	 Smart Phones Smart Watches Smart Glasses IoTs Devices Wearables Devices, 	 Edge Computing Al agents Blockchain Microservices Distributed Computing NFTs, 	 3D Engines VR, AR, MR, XR Geospatial Mapping Voice, Gesture, & Object Recog. Data Integration, 	 Design Tools Assets Market E-commerce Workflow, 	 Advertising Networks Virtual Stores Social Curation Ratings Avatars, Chatbots Community- driven content, 	 Games, E-Sports Social Networks Shopping Festivals, Events Learning Working Real time presence,
ML Use Cases/Applications	 Resource Allocation Load Balancing Spectrum Monitoring Channel Estimation Traffic off-loading Attack Prevention Network Fault Detection Scheduling, 	 Data Storage and Analytics Mobile Phone- based sensing Voice Recognition Human-computer Interaction Brain Computer Interfacing Face and Emotion Recognition, 	 Distributed ML Federated Learning Embedded ML ML-based Authentication ML-based Smart Contracts Swarm Learning, 	 3D Reconstruction Voice & Object Recognition and Tracking Image Restoration Image Super- resolution Pose Estimation & Action Recognition Object Detection & Segmentation, 	- ML-based Graphics Generation - Simulating Real Objects - 3D Objects Rendering - Denoising - ML-based Virtual Characters and Avatar Generation, 	- Smart Advertising - Generative Models - Conversational Al - Natural Language Processing - ML-based Personalization - Smart Video Streaming and Quality Assessment, 	 Computer Vision 3D Modeling and Mapping Voice, Face, Emotion, & Gesture Recognition Object Detection & Tracking Analyzing Body Movements & Phys- ical Interactions,
sociated Security Issues	Adversarial ML Attacks on - Network Traffic Classification - Intrusion Detection - Resource Allocation - SPAM Detection - Parameters Selection - Modulation Classification,	Adversarial Attacks on ML-based - Recognition Systems & Data Processing Pipeline - Data Poisoning and Manipulation - Privacy Violations and Breaches - Fake Commands,	Adversarial ML Attacks on - Model being trained in Federated and Distributed Learning - Attacks on Embedded ML,	Physical World Attacks on - Object and Voice Recognition - Action Recognition - Attacks on Semantic Segmentation - Object Detection and Tracking,	Privacy and Adversarial ML Attacks - User Profiling - Privacy Breaches - Identity Theft - Authentication Attacks on ML-based systems - Verification Systems,	Adversarial ML Attacks on - Attacks on Natural Language Processing - Fake Commands Generation - Deep Fakes Generation,	Physical World Attacks on - Object ,Voice, Face, Action, and Emotion Recognition - Attacks on Semantic Segmentation - Object Detection and Tracking,

Common ML Security Issues: (1) Evasion Attacks; (2) Adversarial ML Attacks; (3) Data and Model Privacy; (4) Reconstruction Attacks; (5) Model Poisoning or Stealing; (6) Extraction and Exploration Attacks; (7) Trojan Attacks; (8) Model Reuse Attack; (9) Membership Inference Attack; (10) Inversion Attacks;

Common Attack Surfaces: (1) Manipulating Data Collection and Preprocessing Pipelines; (2) Tampering Trained/Deployed Models or their Training; (3) Modifying Model Outputs: (4) Attacks on Authentication Systems; (4) Distribution Shifts/Drifts;

Towards Trustworthy AI in the Educational Metaverse

Explainable AI

- Creating Intrinsic Models
- Creating Post-hoc Models
- Model-specific Explanations
- Model-agnostic Explanations
- Surrogate Methods
- Visualization Methods (e.g., GradCAM and IntegratedGrad).

Secure and Private

- Differential Privacy
- Federated Learning
- Cryptographic Techniques
- Adversarial ML Defenses

Controlled Text Generation

- Retrieval Augmented Language Modelling
- Pre-trained Text Representationsbased methods
- Attribute alignment

Ethical AI

- Following Ethical Guidelines
- Human Centric AI Development
- Using Fair (bias free) Training Data
- Ensuring Security and Robustness
- Preserving Data & Model Privacy
- Enhancing Tranperency in Al predictions

AR/VR Tech for Education

C VIEW ALL TECHNOLOGIES
Extended Reality /
Augmented Reality / Virtual
Reality (XR/AR/VR)

https://www.civicspace.tech/technologies/ augmented-reality-virtual-reality/

Opportunities with AR/VR Tech for Education **Risks** with AR/VR Tech for Education

Governance of AR/VR Tech

Education

Unique first-person immersive experience to enhance human perception and educate in the relevant environment.

AR/VR can be used for emotional support, and for managing stress and anxiety

Emotional Support

Accessibility and Inclusiveness

Customizaion for visually-impaired people with enhanced emphasis on other senses with support from haptic or audio interface.

Empathy and Awareness

Increase empathy and promote awareness of problems such as racism, war, and discrimination

Case Studies

SDG Action Campaign

VR For Democratizing Access to Education

Spotlight on Refugees/War Victims

Participatory Governance

Awareness of Sexual Harassment

Awareness of Discrimination

Maternal HealthAwareness ofTrainingDire Poverty

Lack of Inclusiveness & Inequality Amplification

- Unequal Access to Foundational Technology
- Amplification of Inequalities

<u>Concentration of Power &</u> <u>Monopolies of Corporations</u>

Privacy Violation with

Intrusive Digital Surveillance:

- Manipulative Advertising
- Behavior Modification
- Bystander Privacy

Alignment with Human Values and Meaning-Making

Unintended Harmful Consequences of AR/VR

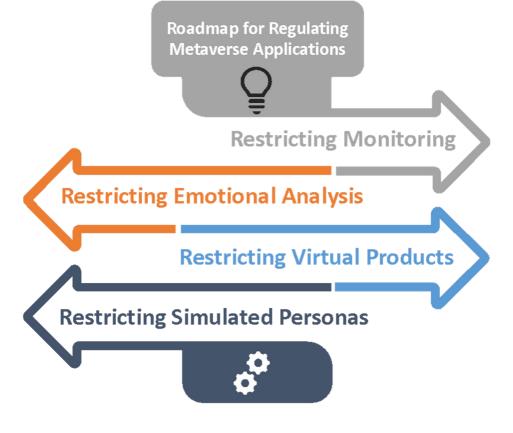
- Filter Bubbles and Echo Chambers
- Misinformation

- Anti-Social Behavior due to VR Disinhibition
- Empathy Used Antisocially

<u>"Too True to Be Good":</u>

Disenchantment with Reality

Neglect of physical self and environment


Safety and Security

- Children Safety
- Hacking and Misuse of Identity
- Virtual Violence

Regulating AI-XR Educational Metaverses

Restricting the use of emotional reactions and physiological data for fine-tunning marketing to provide emotion-responsive advertising.

Meatverse patform providers should inform their users about the existance of simulated personas having promotional agenda.

Restricting metaverse service providers to not monitor their users and to not store lowlevel user data for longer time.

Restricting realistic looking virtual product placement in metaverse for advertisement to avoid targeted-manipulation.

An Introduction to Generative AI (GenAI) and Mixed Reality (MR) and open-source GenAI and MR

GenAl Definition

Generative Artificial Intelligence (GenAI) refers to AI models that are capable of generating new content such as text, images, videos, and music. In recent times, these AI foundation models have been trained on vast amounts of data using self-supervised techniques, training them for multiple downstream tasks, where they generate content often in response to specific prompts.

Types of GenAl models (spectrum of openness in open GenAl models)

Considerations	internal research only high risk control low auditability limited perspectives					community research low risk control high auditability broader perspectives
Level of Access	fully closed	gradual/staged release	hosted access	cloud-based/API access	downloadable	fully open
System (Developer)	PaLM (Google) Gopher (DeepMind) Imagen (Google) Make-A-Video (Meta)	GPT-2 (OpenAl) Stable Diffusion (Stability Al)	DALLE·2 (OpenAl) Midjourney (Midjourney)	GPT-3 (OpenAl)	OPT (Meta) Craiyon (craiyon)	BLOOM (BigScience) GPT-J (EleutherAl)

Solaiman, I. (2023, June). The gradient of generative AI release: Methods and considerations. In *Proceedings of the 2023 ACM conference on fairness, accountability, and transparency* (pp. 111-122).

Types of GenAl models (spectrum of openness in open GenAl models)

Key Aspects	Low Auditability Limited Perspective Internal Research Only High Risk Control					High Auditability Broader Perspective Community Research Low Risk Control	
Openness	Fully Closed Source	Hosted Access	API/Cloud Access	Model Release	Code Release	Documentation	Fully Open Source
Description	Everything is kept proprietary including model, weights, codes, and data	Developed model is hosted as a web service or application	Access to the model is provided though APIs or Cloud	Developed model is publicly released, i.e., architecture and weights	Code for model training and inference is released	Documentation related to the model and training data is released	Open license for accessing, modifying, and distributing model.

Types of GenAl models (spectrum of openness in open GenAl models)

	Model Name	Developer	Level of Access	Key Features	Release Strategy
N LLAMA 2	LLaMA 2	Meta	Open-source	Advanced language understanding and generation	Fully open to the public
Llama 3	LLaMA 3	Meta	Open-source	Improved performance and scalability	Fully open to the public
MISTRAL AI_	Mistral	Mistral AI Labs	Open-source	Designed for flexibility in various tasks	Fully open to the public
	Claude	Anthropic	Hosted access	Safety and alignment-focused	Gated to public, API access
	ChatGPT	OpenAl	Hosted access	Conversational AI, context awareness	Gated to public, cloud-based/API

30

Open-Source MR Platforms

Holokit is a MR platform designed to provide developers with tools for creating immersive experiences by combining AR and VR technologies.

Mozilla Hubs is an open-source platform for creating and sharing virtual reality spaces, allowing users to meet in customizable virtual environments using web browsers or VR headsets.

JanusVR is an open-source immersive internet browser that enables users to browse the web in virtual reality. It allows for the creation and exploration of interconnected virtual spaces.

OpenXR is a cross-platform standard for VR and AR app development. It offers an open-source API, enabling developers to create MR applications compatible with different hardware devices.

A-Frame is an open-source web framework for building VR experiences on the web. It uses HTML-like syntax and works with popular VR platforms like Oculus Rift, HTC Vive, and Windows Mixed Reality.

OSVR is an open-source software platform for virtual and augmented reality. It allows discovery, configuration and operation of several VR/AR devices and peripherals.

by mozilla

hubs

HoloKit

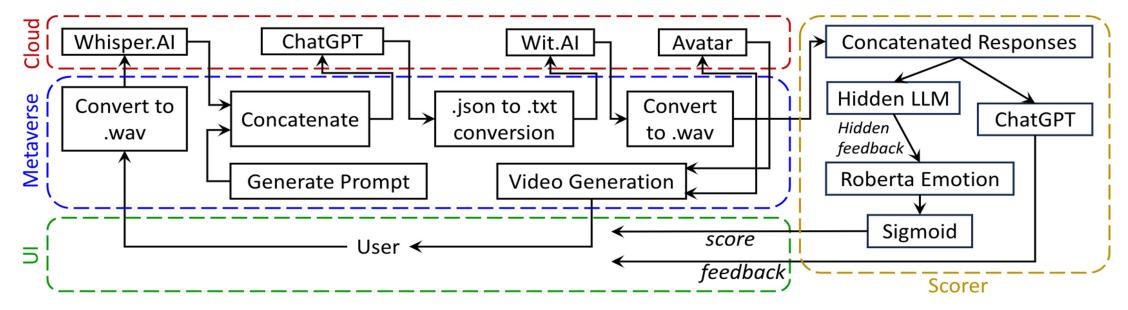
Open-Source MR Platforms

	🕖 HoloKit	hubs by mozilla		Open R .		🛱 OSVR
Feature/Platform	HoloKit	Mozilla Hubs	JanusVR	OpenXR	A-Frame	OSVR
Туре	Mixed Reality	Virtual Reality	Web Browser (VR)	API Standard	Web Framework	Software Platform
Main Use	Main Use Immersive apps Virtual spaces		Immersive browsing	Cross-platform dev. VR on the we		VR/AR device support
Technology	AR and VR	WebVR	WebVR, HTML5	VR and AR	HTML-like syntax	VR and AR
Device Compatibility	Smartphones	Multiple VR headsets	VR headsets	Various VR/AR	Popular VR headsets	Various VR/AR
Key Features	Affordable, easy	Customizable, social	Portal-like links	Universal API	Easy, accessible	Hardware integration
Accessibility	High	High	Medium	High	High	High
Target Audience	Developers	Users, Developers	Users, Developers	Developers	Developers	Developers

AR Application Development APIs

	AR Development Kit	Ownership	Open Source	Platform	Main Features
C ARCore	ARCore	Google	No	Android, iOS	APIs for environmental understanding, motion tracking, and light estimation
K T T	ARKit	Apple	No	iOS	Advanced face tracking, realistic rendering, and environmental understanding
	ARToolKit+	ARToolworks	Yes	I ross-niattorm	Marker and markerless tracking, simple to set up for basic AR experiences
mi <mark>×</mark> are	Mixare	Independent	Yes	Android	Open-source AR browser and SDK, combines data from multiple sources
📚 vuforia	Vuforia	PTC Inc.	No	Android, iOS, UWP	Wide range of features including image recognition, 3D object detection, and VuMarks
0	Wikitude	Wikitude GmbH	No	Android, iOS, Windows	Image recognition, 3D tracking, cloud recognition, and location-based services

GenAl/ Metaverse Case Study: Interview Training and Education Module (ITEM)


AI-Enhanced Interview Simulation in the Metaverse: Transforming Professional Skills Training through VR and Generative Conversational AI

Abdullah Bin Nofal¹, Hassan Ali^{1,2}, Muhammad Hadi¹, Aizaz Ahmad¹, Adnan Qayyum¹, Aditya Johri³, Ala Al-Fuqaha⁴, and Junaid Qadir⁵

(a) Stage 1: *ITEM* asking first question after (b) Stage 2: Student's response to a question (c) Stage 3: *ITEM* provides feedback to the initialization. is displayed for confirmation. student.

GenAl/ Metaverse Case Study: Interview Training and Education Module (ITEM)

- Utilized C# programming language within the Unity 3D engine.
- Used OpenAl Unity Wrapper for GPT API integration.
- Used Whisper API and Wit.ai for speech-to-text functionality and text-to-speech capabilities.
- To ensure compatibility/performance across VR platforms, we used OpenXR framework & Oculus Integration SDK.
- We evaluated ITEM using Oculus Quest 2 and Oculus Quest Pro devices.

Some Questions to Consider In Educational Metaverses

- Does the AR/VR project *enhance human engagement* with the physical world and real-world issues?
- Will the AR/VR amplify existing real-world inequality?
- Have the <u>system-level repercussions of AR/VR technology</u> usage been considered?
- Which <u>policy and regulatory frameworks</u> have been considered to ensure there is not violation of human rights?
- Have the necessary steps been taken to accommodate and promote <u>diversity and inclusion (D&I)</u> so that the developed technology is appropriate for the needs and sensitivities of different groups?
- Is there <u>transparency</u> in the system regarding what data is collected, who it is shared with and how it is used?
- What steps and frameworks have been followed to ensure that <u>any behavior modification or nudging</u> <u>performed by the technology is guided by ethics and law and is culturally sensitive and pro-social</u>?
- Has appropriate consideration been given to *safeguarding children's rights* if the application is intended for use by children?
- Is the technology *culturally appropriate*?

Leveraging GenAI and MR for Personalized Learning:

GenAl and MR technologies enable educational metaverses that can provide dynamic, personalized learning environments that adapt to individual needs and enhance engagement.

Expanding Educational Accessibility and Inclusivity: GenAl and MR can extend access to education through simulations and virtual labs accessible globally, promoting inclusivity for students in remote or underserved areas.

Promoting Transparent Innovation with Open-Source Technologies: Open-source GenAI/MR can foster collaborative development, enabling rapid innovation, and improved security through community involvement.

Thank you!

jqadir@qu.edu.qa