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1. Introduction

Deep learning models have been used in several domains due to
their generalizable prediction ability.[1,2] Convolutional neural
networks (CNNs) are the cornerstone models in deep learning,
producing state-of-the-art results in many fields, especially in
image processing. These models have shown remarkable effi-
ciency, excelling in object detection and image classification tasks

by recognizing intricate patterns in differ-
ent regions of images.[1] In the last decade,
large-scale, general-purpose pretrained
CNN models with millions of parameters
trained with extensive image datasets have
emerged. By exploiting the diversity of
these datasets and the abundance of param-
eters, these models provide a general-
purpose transfer learning capability in
image processing. Users can achieve signif-
icantly higher accuracy by fine-tuning these
models for target domains, rather than
training custom CNNmodels from scratch.

Although pretrained CNN models
exhibit impressive performance, they have
some drawbacks, such as substantial
energy consumption, high computational
costs, and long running times. The primary
factors causing these challenges are the
extensive number of parameters present
in these models, particularly within the
convolutional layers, coupled with the
resource-intensive computations carried
out on these parameters.[3] For instance,
EfficientNetV2-L[4] has ≈120 million

parameters and requires 53 billion floating point operations
(FLOPs) to process a single image. As the parameters in these
deep architectures are tailored for general-purpose usage, they
are redundant when applied to a specific domain. This redun-
dancy incurs unnecessary energy consumption and computa-
tional overhead, even though these parameters do not
contribute to generating outcomes. Reducing the computational
complexities is vital in these models to achieve energy
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Although large-scale pretrained convolutinal neural networks (CNN) models have
shown impressive transfer learning capabilities, they come with drawbacks such
as high energy consumption and computational cost due to their potential
redundant parameters. This study presents an innovative weight-level pruning
technique that mitigates the challenges of overparameterization, and subse-
quently minimizes the electricity usage of such large deep learning models. The
method focuses on removing redundant parameters while upholding model
accuracy. This methodology is applied to classify Eimeria species parasites from
fowls and rabbits. By leveraging a set of 27 pretrained CNN models with a
number of parameters between 3.0M and 118.5M, the framework has identified a
4.8M-parameter model with the highest accuracy for both animals. The model is
then subjected to a systematic pruning process, resulting in an 8% reduction in
parameters and a 421M reduction in floating point operations while maintaining
the same classification accuracy for both fowls and rabbits. Furthermore, unlike
the existing literature where two separate models are created for rabbits and
fowls, this article presents a combined model with 17 classes. This approach has
resulted in a CNN model with nearly 50% reduced parameter size while retaining
the same accuracy of over 90%.
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efficiency.[5] Likewise, to enable the deployment of these models
on resource-constrained devices, a reduction in the number of
parameters is essential.[6,7]

To address the challenge of overparameterization in these
models, researchers have explored various methods for com-
pressing neural networks. Among these techniques, one notable
approach is pruning, which involves the removal of weights hav-
ing minimal or negligible influence on the model’s performance.
Pruning the weight parameters in pretrained CNNmodels, espe-
cially within the convolutional layer that includes a significant
portion of parameters, is critical for both the success and energy
efficiency of the models.[8] The pruning approaches should strike
a balance between preserving the accuracy and reducing the
number of parameters. In line with this objective, this study
introduces a weight-level pruning method designed to remove
ineffective parameters from the convolutional layer, all while
maintaining the accuracy of pretrained CNN models. This
method ranks the weights across all filters based on their contri-
butions to the model’s outputs. By selectively eliminating a cer-
tain proportion of weights with the least impact, this approach
effectively mitigates the issues of overparameterization and high
energy consumption in these expansive models.

On the other hand, this study specifically focused on classify-
ing Eimeria parasites, leading to serious diseases in many ani-
mals, especially rabbits and fowls.[9] Our approach involved
leveraging pretrained CNN models to identify these parasites,
which have many species. In this context, we created a frame-
work employing 27 different pretrained models widely used in
contemporary research and industry. In the initial phase, this
framework determined four models that produced the most
successful results among the options. Subsequently, from this
subset of four, it then found the most effective model that could
be used to detect Eimeria parasites with further analysis.
Throughout this process, we exclusively used these models for
inference purposes and did not perform any fine-tuning in
the convolutional layer. Our efforts were solely concentrated
on training the classification layers of these versatile models, cus-
tomizing them to suit the nuances of Eimeria species. In the next
phase, we reduced the model size by implementing our pruning
technique into the highest success model. Our method gradually
removes the irrelevant parameters by evaluating the model’s
accuracy. This systematic approach effectively discarded redun-
dant parameters while preserving the model’s accuracy.

The results show that reducing the number of parameters up
to 8% does not have a negative effect on Eimeria parasite classifi-
cation success. As in many other studies on this subject, the
employment of fine-tuning after pruning would further enhance
this rate. However, our study differs from others in its distinct
aim to achieve the same results by both reducing the number of
parameters and minimizing energy consumption without fine-
tuning. This choice is due to the fact that retraining the convolu-
tional layers of these models for fine-tuning can take days and be
very energy-consuming. The proposed framework can perform
Eimeria classification with minimal energy consumption without
compromising accuracy. In addition, in contrast to models devel-
oped separately for fowls or rabbits in the literature, we proposed
a model to identify all Eimeria species causing illness in both
fowls and rabbits. Thus, we have presented a pragmatic and
energy-conscious solution for practitioners to apply directly in

the field. The key contributions of our study are as follows:
1) This study presents a comprehensive analysis comparing
the transfer learning performance of 27 different contemporary
CNN pretrained models for Eimeria parasite classification and
identifies the most proficient one. 2) As a novel approach, this
study proposes a weight-level pruning methodology capable of
reducing model weights without the need for fine-tuning and
provides energy efficiency in the model’s usage. 3) This innova-
tive technique holds universality, being applied to all pretrained
CNN models regardless of the architecture. 4) This study also
extends its impact by introducing a universal Eimeria species
classification model. Unlike existing studies that can only classify
Eimeria species in fowls or rabbits, this holistic approach effec-
tively recognizes all Eimeria parasites across the spectrum.

2. Related Work

Due to the dual focus of our study encompassing network com-
pression and the classification of Eimeria parasites, the related
work section is subdivided into two segments. Each segment
is dedicated to addressing pertinent research on these respective
topics.

2.1. Compression of Deep Learning Models

In recent years, researchers have delved into various strategies
for tackling overparameterization and redundancy issues in pre-
trained CNN models. These strategies, which aim to downsize
models, center around network compression techniques, broadly
classified into knowledge distillation, parameter quantization,
and network pruning.[10]

Knowledge distillation involves transferring the problem-
solving capabilities of a complex and large “teacher” model to
a more straightforward and smaller size “student” model.
This approach gained prominence through Hinton et al.’s suc-
cessful distillation of extensive ensemble models into a compact
model with improved accuracy,[11] inspiring subsequent
research. For instance, some attempts leveraging this approach
for cancer cell detection with pretrained CNN models[12,13] have
yielded close prediction accuracy while significantly reducing the
dimensions of the teacher model. Moreover, Luo et al. demon-
strated even surpassing the accuracy of the primary model in face
recognition using knowledge distillation.[14]

Parameter quantization involves modifying the weights to be
represented by fewer bits to reduce model size. Using this
approach, Han et al. achieved a 49-fold reduction in the size
of VGG-16,[15] while Gong et al. compressed their CNN models
by 32 times with only a 1% loss in accuracy.[16] However, this
technique does not reduce the number of FLOPs, thereby
becomes ineffective in accelerating models.

Network pruning, which aims to reduce the computational
cost and energy expenditure of models with acceptable perfor-
mance degradation, eliminates ineffective or minimally contrib-
uting parameters within a network. Pruning endeavors have
primarily focused on two application domains: weight or filter
removal. Weight-level pruning often entails a threshold-based
approach for eliminating weights below a specific value.[17,18]

While most of the attention has focused on the dilution of
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weights in the convolutional layer, refs. [19,20] have targeted the
reduction of weight in the fully connected layer. On the other
hand, filter-level pruning research consists of the studies that
remove least-contributing filters[21–26] or the filters which have
similar content.[27–29] Among the existing compression methods,
network pruning is the most preferred method due to its simplic-
ity and high compression capacity.[30]

All these methods involve fine-tuning the models after com-
pression to ensure that the generated results are similar to those
of the models’ original versions. Nevertheless, these approaches
carry a significant energy overhead during the fine-tuning phase,
often spanning several days or more. Differing from these meth-
odologies, our focus is to attain results on par with the original
model, eliminating the necessity for fine-tuning after pruning.
Our primary objective is to achieve this outcome with minimal
energy consumption.

2.2. Classification of Eimeria Parasites

Eimeria is a parasitic organism that invades the intestines of
domestic animals. If it is not detected at an early stage, it spreads
rapidly and leads to the mortality of these animals. This parasite
has numerous species, each causing distinct pathogenic and vir-
ulence effects on the host animals. Therefore, identifying these
specific species holds significant importance in disease treat-
ment. Even though Eimeria species show morphological differ-
ences in terms of color, size, contour, wall thickness, and
internal structure, the identification of these species by the
human eye within microscopic images is highly error-prone.[31]

This issue creates a demand for automated systems that can cat-
egorize Eimeria parasites with a wide range of species. Despite
the studies that employ DNA sequences for species detection in
the literature,[32] researchers have recently turned to image anal-
ysis methods that provide results with notably reduced cost and
quicker turnaround.

In this context, Castañón et al. achieved 85.75% prediction
accuracy with a Bayesian classifier utilizing a Gaussian distribu-
tion model in the real-time diagnosis of fowl Eimeria species.[31]

In the case of rabbit species, Abdalla et al. proposed a pixel-based
feature extraction method to categorize the species in this group
through the K-nearest neighbor (KNN).[33] Abdalla and Seker
expanded their investigation by using an artificial neural network
to identify Eimeria species, yielding more favorable outcomes

than KNN.[34] Similarly, Buyukyilmaz et al. used a multilayer
perceptron deep learning model to detect chicken Eimeria
species.[35] While refs. [36,37] incorporated CNN models to
classify the fowl species, Boufenar et al. compared five different
pretrained CNN models for the same purpose and found the
Xception as the most proficient model.[9]

Our study adopts a holistic approach to identify all varieties of
Eimeria species leading to disease in both fowls and rabbits,
diverging from the conventional practice of detecting them
within distinct groups. Furthermore, this study not only
determines the most effective pretrained model out of 27 diverse
models within this domain but also makes it energy-efficient by
implementing our pruning techniques.

3. Experimental Section

This section thoroughly explains our methodology, centered
around a four-stage framework (Figure 1). In the initial phase,
we preprocessed the Eimeria parasite image dataset associated
with rabbit and fowl diseases, utilizing various image preprocess-
ing techniques. Subsequently, we engaged in model selection to
identify the optimal performing model within a pool of 27 dis-
tinct, contemporary, pretrained CNN models. Our focus then
shifted to the development of an energy-efficient model through
weight pruning on the previously determined best-performing
model. In the final step, we conducted an evaluation of both
the pruned and original versions of this model, utilizing a com-
prehensive dataset covering species from both rabbits and fowls.

3.1. Data Preprocessing

The dataset used in this study comprises seven species affecting
fowls and ten species affecting rabbits of Eimeria parasites.
Figure 2 depicts microscopic images of these 17 species, with
heights ranging from 192 to 642 pixels and widths from 177
to 492 pixels. These rectangular images contain oval-shaped cells
and a background. We applied a sequence of segmentation pro-
cedures to isolate cells from the background. To ensure standard-
ization, we placed all cells in the center of a black canvas whose
dimensions are 528 pixels in width and 642 pixels in height.
Additionally, inconsistent lighting during microscopic imaging
can significantly impact results.[3] Therefore, to minimize

Figure 1. Overview of our methodology—phase 1: data preprocessing, phase 2: model selection (including short fine-tuning and long fine-tuning), phase
3: weight-level pruning of CNN models, and phase 4: comparison of pruned and original models.
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illumination variations that can distort results, we converted all
images to grayscale.

We applied the Otsu image binarization algorithm to pinpoint
cell edges within the images.[38] This method identifies contours
representing cell boundaries and picks the contour with the larg-
est area as the representative cell. For data preprocessing pur-
poses, we applied the following operations on the original
image, as illustrated in Figure 3. 1) Cropping: It extracts the cell
within the image by utilizing the previously determined contour.
2) Rotating: It aligns the cropped cell into an upright orientation.
3) Masking: This procedure utilized the dimensions of the largest
cell within the dataset as a benchmark. These dimensions are
defined as the reference size of the canvas for all other images.
Each image was then positioned within a canvas of this size,
ensuring uniformity throughout the dataset. Any areas outside
of the cell boundary were masked with black color, thereby
creating a consistent visual representation across images.

3.2. Selection of Pretrained CNN Model

As shown in Figure 4, CNN comprises three main components:
1) an input layer to receive data, 2) a convolutional network
responsible for feature extraction, and 3) a classifier head layer

to perform the classification task.[39] The fine-tuning of the
convolutional network is the most energy-demanding and
computation-intensive stage of CNN models, which has a
substantial impact on overall model performance.[3] To avoid
this overhead, we utilize the large pretrained CNN models that
have been extensively trained on vast image datasets for general
use and could produce high-accuracy results. Thereby, we saved
time and energy to be spent on training the convolutional
network.

The model selection involves two distinct stages aimed at iden-
tifying the most effective pretrained CNN model. The first stage
entails a short fine-tuning step spanning of five epochs only.
During this phase, we modified only the weight parameters
within the classification layer and kept the rest of the model
parameters the same. This fine-tuning procedure is applied
across all models listed in Table 2. The models with the highest
classification accuracy went on to the next step, long fine-tuning,
in which we ran an extended fine-tuning spanning 200 epochs to
drill their performance. In contrast to previous studies, our
approach involves freezing the weight parameters in the convolu-
tional layers without interfering with them during both short and
long fine-tuning sessions. Thus, this strategy ensures that these
models efficiently detect Eimeria species with minimal energy

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p) (q)

Figure 2. Eimeria species causing disease in fowls and rabbits; a) Magna, b) Coecicola, c) Vejdovskyi, d) Flavescens, e) Intestinalis, f ) Media,
g) Piriformis, h) Stiedai, i) Necatrix, j) Exigua, k) Brunetti, l) Mitis, m) Perforans, n) Maxima, o) Acervulina, p) Praecox, and q) Tenella. The size of
all images is given in (x,y) just below each image, x: width and y: height.

Figure 3. Image preprocessing steps: a) cropping, b) and c) rotating, and d) masking.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2300644 2300644 (4 of 12) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300644 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


consumption by not updating the convolutional layer which has
high energy consumption.

3.3. Pruning

After determining the optimal model, this section describes our
proposed weight-level pruning technique. This innovative
method serves to further curtail computational complexity and
diminish energy consumption within the model. Essentially, this
technique targets the elimination of unproductive weights situ-
ated within the convolutional layer of the CNN.

Let us consider a convolutional network of a CNN comprising
L layers. In this network, we parameterized the weights of a spe-
cific layer(l) with W lð Þ ∈ RMl�Nl�K�K , 1 ≤ l ≤ L representation
(Figure 5). For layer l, Ml signifies the number of channels in
the input feature map, while Nl represents the number of chan-
nels in the output feature map. K � K is the height and width of
the kernel holding the trainable weights. Equation (1) illustrates
W lð Þm,n, depicting a kernel matrix applied between channel m in
the input map and channel n in the output map at layer l of the
model, where 1 ≤ m ≤ Ml, 1 ≤ n ≤ Nl.

W lð Þm,n ¼
w1,1 : : : w1,K

..

. . .
. ..

.

wK ,1 : : : wK,K

0
BBB@

1
CCCA (1)

Our proposed technique focuses on a productivity analysis of
all trainable weights in all convolutional layers, aiming to
eliminate ineffective ones. To achieve this, we flatten the matrix
W lð Þm,n

i,j , which contains all weights between input and output

feature map channels in the corresponding layer, into a vector
W 0 as in Equation (3).

W lð Þm,n
i,j ¼

w1,1
1,1 : : : w1,1

1,K : : : w1,M
1,1 : : : w1,M

1,K

..

. . .
. ..

.
: : : ..

. . .
. ..

.

w1,1
K ,1 : : : w1,1

K ,K : : : w1,M
K ,1 : : : w1,M

K ,K

..

. . .
. ..

.
: : : ..

. . .
. ..

.

wN,1
1,1 : : : wN,1

1,K : : : wN,M
1,1 : : : wN,M

1,K

..

. . .
. ..

.
: : : ..

. . .
. ..

.

wN,1
K ,1 : : : wN,1

K ,K : : : wN,M
K ,1 : : : wN,M

K ,K

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(2)

Input 
Convolutional Layer 

Classification Layer

Figure 4. The general structure of CNN model including the input layer, convolutional layer, and fully connected classification layer.

Figure 5. Pruning the weights in a convolutional layer (l) in the model.
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W 0 ¼ w1,1
1,1, ::: ,w

1,1
K ,K , ::: ,w

1,M
1,1 , ::: ,w

1,M
K,K , ::: ,w

N,1
1,1 , ::: ,w

N,1
K ,K , ::: ,w

N,M
K,K

� �
(3)

The vector W 0 is then sorted based on absolute values of
weights using the argsoft function as indicated in
Equation (4). Subsequently, we obtained the ordered list, W ,
and defined the threshold (T) value to identify the productive
weights (Equation (5)). The limit in Equation (5) is the index that
determines T in the weight vector (W) and the limit value is cal-
culated as shown in Equation (6).

W ¼ argsort jW 0jð Þ (4)

T ¼ W limit½ � (5)

limit ¼ dim W 0½ ��p=100 (6)

where dim W 0½ � ¼ Ml � Nl � K � K (total number of weights
in the layer) and p is the percentage pruning rate, we applied.

In order to determine the optimal value of p, we conducted
an iterative experiment in which we ran the CNN model for
all integer values of p within the range of 1, 100½ �. Based on
the results of these experiments, we selected the highest p value
that did not cause a decrease in the accuracy of the model as the
limit index. Once the limit value was determined in parallel with
the highest p value, we reset all weights whose index is less than
limit inW to zero. These weights, which are below T value, were
deemed to be ineffective and are removed as in Equation (7).

Wi,j ¼
(
0 if Wm,n

i,j < T
Wm,n

i,j otherwise (7)

Figure 5 provides a visual representation of our proposed
pruning approach, and Algorithm 5 outlines the detailed pseu-
docode describing its operational steps.

4. Experimental Results

This section consists of analyses to determine the optimal pre-
trained model for effectively classifying Eimeria parasites.
Furthermore, it assesses the impact of our proposed pruning
method on the optimum model’s performance. Our study
encompasses the utilization of three distinct datasets. The first
dataset includes microscopic images of seven distinct Eimeria
species causing diseases in domestic fowls.[31] The second one
comprises images of ten diverse Eimeria species affecting rab-
bits.[40] Table 1 lists the species in the datasets and their sample
numbers. Additionally, a combined dataset containing both sets

Algorithm 1. The proposed weight pruning method.

Require: unpruned model, dataset, the accuracy of unpruned model ðHighest ACCÞ
Ensure: pruned model with a p-value

1: for p= 1 to 100 do

2: for each l in LðlayersÞ do
3: for each n in Nðoutput f eaturemap channelsÞ do
4: for each m in Mðinput f eaturemap channelsÞ do
5: for i= 1 to Kðkernel heightÞ do
6: for j= 1 to Kðkernel widthÞ do
7: Add Wm,n

i,j to W 0

8: end for

9: end for

10: end for

11: end for

12: for each n in N do

13: for each m in M do

14: for i= 1 to K do

15: for j= 1 to Kdo

16: if Wm,n
i,j < T then

17: Wm,n
i,j ¼ 0

18: end if

19: end for

20: end for

21: end for

22: end for

23: end for

24: ACC=Calculate accuracy

25: if ACC ¼ Highest ACC then

26: Keep the model and p-value

27: end if

28: end for

Table 1. The number of Eimeria species samples in the datasets affecting
fowls and rabbits.

Dataset Eimeria species Number of images

Rabbit Coecicola (COE) 192

Exigua (EXI) 290

Flavescens (FLA) 379

Intestinalis (INT) 115

Magna (MAG) 420

Media (MED) 190

Perforans (PER) 151

Piriformis (PIR) 125

Stiedai (STI) 96

Vejdovskyi (VEJ) 264

Total 2222

Fowl Acervulina (ACE) 726

Brunetti (BRU) 435

Maxima (MAX) 339

Mitis (MIT) 795

Necatrix (NEC) 468

Praecox (PRA) 857

Tenella (TEN) 605

Total 4225
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of images has been assembled, denoted as the “all-species” data-
set in subsequent sections. This composite dataset serves as the
foundation for classifying all Eimeria species, constituting a key
focus of our investigation. Despite the imbalanced distribution of
sample numbers among species in the datasets, our preliminary
study revealed that this imbalance did not negatively impact
the classification results. Consequently, similar to other
studies[9,31,33,35–37] in the literature, we utilized the datasets with-
out employing any sampling methods to balance them.

During the short fine-tuning, we employed a classification
layer composed of two dense layers featuring 512 and 256 neu-
rons, ending in 17 output units. We set the dropout rate to 0.3
and defined the fine-tuning parameters for the model as follows:
learning rate ¼ 0.0001, batch size ¼ 128, activation f unction ¼
“Sof tmax, ” and optimizer ¼ “Adam”:We conducted all the tests
using a fivefold cross-validation, which splits the dataset into five
equal parts and trains the model five times, in each iteration
using four parts for training and one part for validation.

We used accuracy, recall, precision, and F1-score metrics to
gauge the classification performance. To calculate these metrics,
we utilized true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values obtained from the confusion
matrix. Accuracy (Acc) is the ratio of accurately predicted species
to the total species (Equation (8)). Recall represents the propor-
tion of species correctly identified as TP relative to the total actual
positive species (Equation (9)). Precision stands for the portion of
species correctly identified as TP among all species predicted as
positive (Equation (10)). The F1-score is derived as the harmonic
mean of recall and precision, balancing between these two values
(Equation (11)). These metrics fall within the range of 0, 1½ �,
where higher values indicate a higher classification performance.

Accuracy ¼ðTP þ TNÞ = ðTP þ TN þ FP þ FNÞ (8)

Recall ¼TP = ðTP þ FNÞ (9)

Precision ¼TP = ðTP þ FPÞ (10)

F1 Score ¼ 2 � ðPrecision �RecallÞ = ðPrecision þ RecallÞ (11)

4.1. Model Selection Results

In the initial phase of model selection, we administered the short
fine-tuning procedure to 27 pretrained models on the all-species
dataset. Table 2 presents the minimum (Min), maximum (Max),
mean, median, and standard deviation (SD) values of the
models’ classification accuracies. Among these models, the ones
demonstrating a mean accuracy of 0.90 or higher, namely,
EfficientNetB0 (0.91), EfficientNetV2B3 (0.90), EfficientNetB3
(0.90), and EfficientNetB4 (0.90), proceeded to the subsequent
long fine-tuning phase. These four models were subjected to
long fine-tuning with the same hyperparameters used in short
fine-tuning, with outcomes showcased in Table 3. Ultimately,
the most proficient model in Eimeria parasite classification
emerged as EfficientNetB0, boasting a remarkable achievement
mean accuracy rate of 0.966.

EfficientNetB0 serves as the foundational model in the
EfficientNet series, spanning versions B0 through B7. It com-
prises an initial layer and seven blocks, with the number of layers

progressively increasing from B0 to B7. For instance, B0 contains
237 layers, while B7 boasts 813 layers. EfficientNetB0 has signif-
icantly fewer parameters not only compared to other models in
the EfficientNet series but also compared to other pretrained
CNN models such as DenseNet, ResNet, Xception, Inception,
and NasNET. This attribute contributes to its status as a highly
efficient pretrained model, as it executes fewer FLOPs than its
alternatives.

Table 2. Classification accuracies of all pretrained models in the short
fine-tuning (five epochs). Bold indicate the most successfull model.

Pretrained model Parameter [million] Min Max Mean Median SD

DenseNet121[42] 7.6 0.68 0.78 0.74 0.76 0.033

DenseNet169[42] 13.6 0.68 0.77 0.74 0.74 0.027

DenseNet201[42] 19.4 0.65 0.82 0.76 0.77 0.046

EfficientNetB0[41] 4.8 0.88 0.93 0.91 0.90 0.016

EfficientNetB1[41] 7.3 0.86 0.91 0.88 0.88 0.015

EfficientNetB2[41] 8.6 0.84 0.91 0.87 0.87 0.022

EfficientNetB3[41] 11.7 0.85 0.91 0.90 0.90 0.016

EfficientNetB4[41] 18.7 0.87 0.93 0.90 0.90 0.015

EfficientNetB5[41] 29.6 0.87 0.91 0.89 0.89 0.012

EfficientNetB6[41] 42.2 0.79 0.86 0.82 0.82 0.022

EfficientNetB7[41] 65.5 0.83 0.91 0.89 0.89 0.022

EfficientNetV2B0[4] 6.7 0.83 0.90 0.87 0.86 0.025

EfficientNetV2B1[4] 7.7 0.81 0.89 0.87 0.87 0.024

EfficientNetV2B2[4] 9.6 0.86 0.92 0.88 0.88 0.020

EfficientNetV2B3[4] 13.8 0.86 0.91 0.90 0.90 0.017

EfficientNetV2S[4] 21.1 0.86 0.90 0.89 0.89 0.014

EfficientNetV2M[4] 53.9 0.77 0.85 0.82 0.82 0.020

EfficientNetV2L[4] 118.5 0.78 0.85 0.82 0.82 0.022

InceptionResNetV2[43] 55.2 0.13 0.18 0.16 0.16 0.016

InceptionV3[44] 22.9 0.60 0.71 0.66 0.66 0.035

MobileNet[45] 3.8 0.79 0.86 0.82 0.82 0.021

MobileNetV2[46] 3 0.71 0.82 0.78 0.78 0.034

NasNetLarge[47] 87.1 0.53 0.63 0.57 0.56 0.027

ResNet50V2[48] 24.7 0.39 0.65 0.50 0.50 0.084

ResNet101V2[48] 43.8 0.35 0.57 0.45 0.43 0.070

ResNet152V2[48] 59.5 0.26 0.49 0.35 0.34 0.066

Xception[49] 22 0.53 0.61 0.57 0.57 0.025

Table 3. Classification accuracies of the most successful four pretrained
models in the long fine-tuning (200 epochs). Bold indicate the most
successfull model.

Pretrained model Weight [million] Min Max Mean Median SD

EfficientNetB0 4.8 0.958 0.972 0.964 0.966 0.006

EfficientNetB3 11.7 0.936 0.952 0.946 0.946 0.007

EfficientNetB4 18.7 0.939 0.948 0.944 0.945 0.009

EfficientNetV2B3 13.8 0.958 0.966 0.962 0.961 0.004
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The architecture of EfficientNetB0 is distinguished by several
innovative features, including Inverted Bottleneck Residual
Blocks (MBConv), Squeeze-and-Excitation (SE) blocks, and the
Compound Scaling method.[41] MBConv introduces a significant
paradigm shift in convolution implementation by breaking down
standard convolutions into depthwise and pointwise convolu-
tions, resulting in reduced computational cost and parameter
count without compromising accuracy. SE blocks boost the
model performance by selectively emphasizing informative fea-
tures and suppressing less useful ones. Meanwhile, Compound
Scaling balances the network by scaling the dimensions of depth,
width, and resolution. These combined features position
EfficientNetB0 as a compelling choice for fast computation,
particularly in mobile and real-time environments.

4.2. Model Pruning Results

To assess the impact of pruning on EfficientNetB0, we evaluated
its performance across three datasets. This assessment involved
gradually increasing the pruning ratio from 1 to 100. Table 4
presents the weight pruning ratios along with the resultant clas-
sification outcomes linked to these pruning rates. Our proposed
method achieved the same accuracy as the unpruned model with
a weight pruning of 5% on the rabbit dataset, eliminating ≈189 K
parameters and 209 million (M) FLOPs. Similarly, the fowl data-
set yielded the same accuracy as the original model with a 7%
pruning rate, leading to the removal of roughly 261 K parameters
and 370M FLOPs. Within the all-species dataset, the model

maintained its accuracy without compromising up to an 8%
pruning rate, discarding around 301 K parameters and 421M
FLOPs. The number of FLOPs directly influences the computa-
tional complexity of a model. By reducing FLOPs, the number of
operations in the model decreases, resulting in fewer multiply–
accumulate operations performed on the CPU. Additionally,
pruning the weight parameters leads to a smaller model size,
reducing the memory footprint and the amount of data flowing
between memory and the CPU. These two key optimizations
contribute to a reduction in the energy consumption of the
model, thereby enhancing its energy efficiency.

On the other hand, at a pruning rate of 10%, there are
decreases of 4%, 3%, and 6% in accuracy values in rabbit, fowl,
and all-species datasets, respectively. The results are consistent
with other metrics such as recall, precision, and F1-scores, which
perform in parallel with accuracy in these experiments.

Figure 6 illustrates the confusion matrices obtained from the
three dataset classifications with both the pruned and original
versions of the models. These confusion matrices pertain to
the pruned models shown in Table 4, which demonstrate no
reduction in accuracy for the datasets. Detailed examination of
the confusion matrices demonstrates that the model’s perfor-
mance on the all-species dataset is similar to that on the other
dataset. This observation is valid for both the pruned and original
models. Even the pruned model performed enhanced classifica-
tion proficiency for Eimeria species such as COE, MAG, VEJ,
ACE, and MAX within the all-species dataset compared to the
other ones. For instance, the classification precision for the
COE species is 27/29= 0.93 in Figure 6b, while it is 146/
154= 0.95 in Figure 6f. Similarly, the original model exhibits
superior precision values for COE, INT, MAG, BRU, and
MAX species within the all-species dataset.

Figure 7 visualizes the accuracy and loss values gathered by
increasing the model’s pruning rate across the datasets.
Figure 7a. confirms that there is not a significant decrease in
accuracy for all datasets up to a pruning rate of 10%. Beyond
this threshold, a gradual decline in accuracy is observed.
Interestingly, a significant peak appears within the range of
17–22%, followed by a subsequent decrease. Remarkably, the
model operating on the all-species exhibits a performance of
accuracy closely aligned with the other two datasets.
Evaluating the results in terms of loss, Figure 7b shows that
rabbit is the most negatively affected dataset by pruning.

4.3. Comparative Evaluation

In order to assess the efficacy of our pruning method, we con-
ducted a comparative analysis of its performance against that of
existing classification studies in the literature on both the fowl
and rabbit versions of the Eimeria dataset. Table 5 lists the studies
in the literature, the dataset and classification method they
employed, and the accuracy values they attained. Upon analysis
of the studies on the fowl dataset, it is observed that the most
successful result was achieved by an ANN model that employed
CRF for feature extraction and the Relieff method for feature
selection, with an accuracy of 96.6%. Our method, which utilized
the pruned EfficientNetB0 model, attained the second-best result
in the literature, with an accuracy of 95.1%. When examining

Table 4. Changes in classification results and reduction in the weight and
FLOP numbers of the model in response to alterations in the pruning
ratio.

Dataset Pruning
ratio [%]

Reduced
weight

number [K]

Reduced
FLOP
number
[M]

Accuracy Recall Precision F1-
score

Rabbit 0 0 0 97% 0.97 0.97 0.97

5 189 K 209M 97% 0.96 0.95 0.96

10 377 K 403M 93% 0.92 0.92 0.90

25 943 K 956M 79% 0.75 0.73 0.71

50 1,887 K 1,914M 23% 0.23 0.08 0.11

75 2,830 K 2,868M 14% 0.10 0.01 0.02

Fowl 0 0 0 95% 0.96 0.95 0.95

7 261 K 370M 95% 0.95 0.95 0.95

10 377 K 515M 92% 0.93 0.92 0.92

25 943 K 1,222M 83% 0.84 0.87 0.83

50 1,887 K 2,445M 31% 0.28 0.19 0.20

75 2,830 K 3,664M 12% 0.14 0.02 0.03

All-
species

0 0 0 96% 0.96 0.96 0.96

8 301 K 421M 96% 0.96 0.96 0.96

10 377 K 515M 90% 0.90 0.91 0.89

25 943 K 1,222M 77% 0.79 0.83 0.78

50 1,887 K 2,445M 17% 0.16 0.11 0.08

75 2,830 K 3,664M 6% 0.06 0.01 0.01
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Figure 6. Confusionmatrices of models’ classification results: a) rabbit-original model, b) rabbit-pruned (5% pruning ratio) model, c) fowl-original model,
d) fowl-pruned (7% pruning ratio) model, e) all-species-original model, and f ) all-species-pruned (8% pruning ratio) model.
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studies on the rabbit dataset, our method achieved an accuracy of
97.4%, surpassing the closest competitor[34] by 5.6%. These
results underscore the superior classification performance of
our method compared to existing approaches while also deliver-
ing energy savings. Overall, our findings highlight the practical-
ity and efficacy of our proposed method.

5. Discussion

In this study, we initially identified the most proficient candi-
dates of pretrained CNN models for our application domain
by scanning 27 distinct extensively pretrained CNN models.
This was achieved through a fine-tuning process focused on
the classification layer, trained for five epochs. Our decision to

set the epoch number at five is rooted in a twofold rationale.
The first is to minimize energy consumption by reducing the
resource-intensive nature of the fine-tuning process. The second
is to identify a set of models that demonstrated rapid conver-
gence toward their optimal performance within this short epoch
range. Surprisingly, the selected models are the ones with the
least number of parameters among the models in the pool of
27 pretrained models. When we carried out a more comprehen-
sive performance analysis between these four models over 200
epochs, we found out that EfficientNetB0, which has the fewest
parameters in our model pool, yielded the highest performance.
This finding highlights the fact of overparameterization and
redundancy in pretrained models. One of the important contri-
butions of our study is that it saves significant energy by offering
EfficientNetB0 to a practitioner who can use EfficientNetV2L,
which has the highest number of parameters. EfficientNetB0
(4 million) has around 30 times fewer parameters than
EfficientNetV2L (118 million) while also exhibiting superior per-
formance in Eimeria parasite detection. In addition, by reducing
the number of parameters with the pruning, we achieved an
additional energy saving. Not updating the parameters in the
convolution layer in the fine-tuning of the models has also con-
tributed to this goal.

It is observed in the literature[9,34,37] that there is a common
approach that has been taken to create two separate CNNmodels
for the detection of rabbit and fowl parasites, separately. As this is
mainly a parasite detection problem linked to microscopic
images, a holistic approach has been taken to develop one single
CNN model with the output of 17 classes and a similar number
of CNN parameters in a single model. To clarify further, a single
model for the rabbit had 10 output classes with a total number of
4 839 351 weights, and a single model for fowl had 7 output clas-
ses with a total number of 4 838 570 weights, whereas the com-
bined all-species model with 17 output classes has resulted in a
CNN model of 4 841 140 weights. While there is no significant
reduction in the accuracy, there is a substantial potential gain for

Figure 7. Performance alteration of the model regarding pruning rates for all datasets: a) accuracy and b) loss.

Table 5. The comparison of our pruned model with existing research in
the literature on the classification of the Eimeria parasite. Bold show the
performance of our method aganist the existing studies in the literature.

Authors Eimeria type Method Accuracy [%]

Boufenar et al.[9] Fowl Xception 95.5

Buyukyilmaz et al.[35] Fowl MLP neural network 83.75

Diego et al.[37] Fowl CNN 93.12

Castanon et al.[31] Fowl Bayesian classifier 85.75

Abdalla et al.[34] Fowl ANNþ CRF Feaute
ExtractionþRelieff
Feature Selection

96.6

Our Pruned Model Fowl EfficientNetB0 95.1

Abdalla et al.[34] Rabbit ANNþ CRF Feaute
ExtractionþRelieff
Feature Selection

91.9

Abdalla et al.[33] Rabbit KNN 82.83

Our Pruned Model Rabbit EfficientNetB0 97.4
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the energy consumption of the CNN model as the total number
of weights used in the combined model is equivalent to that of a
single model. Furthermore, this combined model has been
developed as a template for parasite detection, which can be
utilized as a foundation for the construction of other species’
parasite detection models.

Our proposed pruning method removes 301 K unnecessary
weight parameters on the EfficientNetB0 model for the all-
species dataset. Despite this reduction, there is no decrease in
the model’s performance. In fact, as shown in the confusion
matrices in Figure 6e,f, the pruned model was at least as success-
ful as the original model in 9 out of 17 Eimeria species. This
result proves that our proposed framework saves energy without
losing accuracy with 8% pruning. On the other hand, Figure 7a
reveals a different trend when the pruning ratio increases from
17 to 20, which leads to an accuracy enhancement. This
observation emphasizes that all parameters in this range are
unnecessary and even have a negative impact on the results.
Consequently, the pruning rate ranges[1–8,17–20] in Figure 7a
reveal the fact of overparameterization in the model.

As a result, the proposed methodology has successfully pro-
duced similar outcomes to those in the literature, even without
updating the convolutional layer weights, which have a signifi-
cant influence on the results of CNN models. It is evident that
including the convolutional layer in the fine-tuning process
would yield even greater success. In this direction, researchers
aiming for higher accuracy in Eimeria classification can get
superior results by conducting extended fine-tuning of
EfficientNetB0. Although Eimeria parasites are the application
area of our study, our proposed approach has the potential to
be a role model for other fields.

A limitation of this study is that the model for the all-species
dataset can only detect Eimeria species that cause disease in rab-
bits and fowls. While Eimeria parasites may cause significant dis-
eases in a variety of animals, including cattle, sheep, and goats,
the lack of publicly available data on these animals’ Eimeria spe-
cies has restricted our ability to develop a truly holistic model. By
expanding the training dataset to include all Eimeria parasites
from a broader range of hosts, it would be possible to create a
more advanced model capable of detecting Eimeria infections
across a wider spectrum of animal species.

6. Conclusion

Nowadays, high energy consumption and long running times are
major challenges for pretrained CNNmodels. This is mainly due
to the problem of overparameterization within these models. In
this context, this study aims to mitigate the effects of the param-
eter redundancy drawback in these models by introducing a
weight-level pruning method. Focusing on a specific application
domain, the classification of Eimeria parasites, we performed a
two-stage model selection procedure aimed at identifying
the most energy-efficient pretrained model with superior classi-
fication performance among 27 cutting-edge candidates. The
proposed framework determined the four most promising mod-
els, namely EfficientNetB0, EfficientNetV2B0, EfficientNetV2B3
and EfficientNetB1, in the initial stage and advanced to the next
stage with them. In this second phase, with more extensive

fine-tuning, EfficientNetB0 emerged as the model with the
highest classification performance for Eimeria species. At the
same time, the study evaluated the effects of the pruning tech-
nique on the model by utilizing the all-species dataset consisting
of all Eimeria species.

As a result, our pruning method does not lead to a decrease in
classification performance, even when reducing parameters by
up to 8% across all Eimeria species. One of the remarkable results
is that EfficientNetB0 has the least number of parameters among
the 27 models. The modest parameter count of EfficientNetB0
corresponds to a significant reduction of the FLOPs in this model
compared to its counterparts, resulting in EfficientNetB0 as the
optimum choice for energy-efficient Eimeria parasite identifica-
tion. Additionally, the performance of the holistic model running
on the composite dataset encompassing all the species indicates
that the proposed framework can be used as a general-purpose
model for Eimeria parasite classification. This has resulted in a
model with ≈50% fewer parameters than two separate models
while maintaining nearly the same accuracy.

Considering that the developed approach reduces both energy
consumption and complexity, it has a great potential to be applied
to a broad spectrum of domains leading to the development of a
universal Eimeria detection model that can be generalized and
open to include other Eimeria parasites in one CNN model.
Further work will be geared toward improving accuracy and
generalization ability, pruning further, and adding more
Eimeria parasites in a single model.
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