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A B S T R A C T   

Convolutional Neural Networks (CNNs) have been successfully adopted by state-of-the-art feature point detection 
and description networks for the past number of years. The focus of these systems has been predominately on the 
accuracy of the system, rather than on its efficiency or ability to be implemented in real-time on embedded 
robotic devices. This paper demonstrates how techniques, developed for other CNN use cases, can be integrated 
into interest point detection and description systems to compress their network size and reduce the computa
tional complexity; this reduces the barrier to their uptake in computationally challenged environments. This 
paper documents the integration of these techniques into the popular Reliable Detector and Descriptor (R2D2) 
network. Along with the integration details, a comprehensive Key Performance Indicator (KPI) framework is 
developed to test all aspects of the networks. As a result, this paper presents a lightweight variant of the R2D2 
network that significantly reduces parameters and computational complexity while crucially maintaining an 
acceptable level of accuracy. Consequently, this new compressed network is more appropriate for use in real 
world systems and advances the efforts to implement such CNN based system for mobile devices.   

1. Introduction 

Interest point detection and description is an area of Computer 
Vision (CV) that has been researched for decades 1–3. It is a critical 
component of many CV applications in robotics such as camera cali
bration, Simultaneous Localisation and Mapping (SLAM) (see Fig. 1), 
and obstacle avoidance. Given the nature of these applications, there is a 
requirement for systems to run robustly and in real-time. For a system to 
run robustly it must provide not only invariance to many factors like 
motion, illumination changes, and image blur but also accurately locate 
features with associated distinctive descriptors. However, the obstacle to 
using the system as a real-time robotic agent is the limited availability of 
the computing and power resources. This is because such systems are 
battery-powered. In addition, interest point detection and description 
must run alongside other higher-level components that use the outputs 
of the feature detection and description, thus further straining the 
resources. 

Interest point detection was first researched in the 80s 4,5; those 
works demonstrated strong results that still stand up to current 
state-of-the-art systems. Since then attempts have been made to improve 

their accuracy 6; importantly, also, several attempts have been made to 
improve their efficiency 4,5 in embedded devices 7. 

Another seminal paper in interest point detection and description 
came in 2001 that introduced Scale Invariant Feature Transform (SIFT) 8 

that outperformed earlier work with its accurate localisation and 
invariant descriptors demonstrating robust performance. While the ac
curacy of SIFT was state-of-the-art, the efficiency was poor because it 
required computationally expensive multi-scale convolutional opera
tions. The following years saw variants of SIFT that tried to address this 
inefficiency, namely, SURF 9 and FREAK 10. Given these trends, it can be 
seen that a pattern in the research direction initially concerns itself with 
accuracy improvements and then laterally efficient implementations 
where trade-offs are made between accuracy and efficiency. However, a 
common thread across this line of work was that they all needed a priori 
knowledge of the tasks at hand to handcraft parts of their systems. 

More recently, CNN based methods have surpassed the accuracy 
performance of SIFT and other handcrafted methods. These CNNs can 
leverage learning from large datasets to create interest point detectors 
and descriptors that are robust to many variations. Crucially, however, a 
similar effort to optimize these CNNs has not gained traction yet and 
typically a CNN is not suitable for implementing interest point detection 
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and description on mobile devices. For instance 11, which is considered 
one of the more efficient solutions, reports a frame-rate of 70fps using 
Video Graphics Array (VGA) input on an Nvidia Titan X Graphics Pro
cessing Unit (GPU). Such a device is not a viable option for many robotic 
applications because of the price and power requirements. 

In contrast, other areas of CV (apart from keypoint localisation and 
description) that use CNN based methods have seen significant attention 
in terms of optimisation. For example, a state-of-the-art object detection 
network 12 was optimised using the MobileNetV2 13 network that 
significantly improved efficiency while retaining the accuracy. Howev
er, this improvement is not domain agnostic and does not work for in
terest point detection and feature description in embedded devices. 

The aim of this paper is to integrate these efficient architectural 
components developed in 13 into an efficient but accurate interest point 
detection and description network, while also providing metrics to 
analyse the accuracy and efficiency trade off for various network con
figurations. This effort is undertaken to develop a better understanding 
of how interest point detection and description can be optimised and to 
discover the viability of such networks on embedded devices. To that 
end, the results show that the proposed enhancements significantly 
reduce computational complexity of the state-of-the-art in this problem 
domain while maintaining acceptable accuracy. 

The remaining paper is organised as follows. Section 2 details related 

work in interest point detection and description methods and similar 
efforts to compress CNN based systems. Section 2.1 describes the pro
posed methods used in this paper for compressing the CNNs. Section 4 
details the experiments carried out. Section 5 provides a discussion on 
the results. Finally, Section 6 concludes with the main findings from this 
work. 

2. Related work 

In literature varying terminology has been used when referring to 
image keypoints (similar points of interest across images). For the pur
pose of clarity, this paper adopts similar jargon to that used in 14, where 
they have identified the process as two distinct categories: detection and 
description. Detection captures the process where salient regions are 
localised in an image. These regions are estimated to indicate the loca
tion of an important feature, usually a real world 3D landmark. These 
salient image regions are ill-defined in a strict mathematical sense but in 
practice they are image regions that are distinctive in their local context. 
An important attribute of these features is the accuracy of the location 
for the feature over time. Description is a step where a numerical or bi
nary representation for the appearance of the feature is calculated. The 
aim of the description process is to estimate a representation that will 
distinguish a feature from other features within an image while also 
allowing for matching of descriptors from the same 3D landmark over 
time (Fig. 3). A simple example of such a descriptor would be a vector of 
the direction and magnitude of gradients in the locality of a feature. An 
example of image features and their associated matches are shown in 
Fig. 2. 

Image keypoints have a broad application to CV systems and are an 
integral part of SLAM, stereo reconstruction, image retrieval, visual 
odometry, camera calibration, panoramic image generation, and 
tracking, to name a few. Image features are a critical part of many CV 
applications. They appear in three broad application areas in modern 
CV. The first, is to support image retrieval and description. These sys
tems are mainly concerned with learning a compact statistical repre
sentation of an image from image keypoints with the goal of searching a 
database to find similar images. Image keypoints can also be designed to 
detect semantic keypoints for applications in video inspection. An 
example of this would be a vision defect detection system that is 
designed to identify cracks in a product. Finally, image features can be 
used to track points temporally to estimate structure in the scene and the 
motion of the camera. This final area is the concern of this paper. The 
goal in this case is to accurately locate and reliably detect these features 
over time, while also trying to develop a system which is appropriate for 
real-time implementation. 

Accurately tracking and matching features over time requires the 
detection and description process to be invariant to environmental, 
photometric, and geometric changes. Environmental factors may 
include scene lighting changes or moving objects in the scene, whereas 

Nomenclature 

AE Autoencoder 
CV Computer Vision 
CNN Convolutional Neural Network 
FPS Frame Per Second 
GPU Graphics Processing Unit 
SLAM Simultaneous Localisation and Mapping 
KPI Key Performance Indicator 
mAP mean Average Precision 
MLE Mean Localisation Error 
NNmAP Nearest Neighbour mean Average Precision 
ROC Receiver Operating Characteristic 
L Lightweight 
HP High-Performance 
MAC Multiply-Accumulate Operation 
R2D2 Reliable Detector and Descriptor 
SIFT Scale Invariant Feature Transform 
SGD Stochastic Gradient Descent 
VGA Video Graphics Array  

Fig. 1. Representation of interest point detection and description methods used 
in the Dyson 360 hoover system. The hoover uses a visual SLAM system to 
navigate and learn the topology of rooms it wishes to clean. Credit: Dyson: htt 
ps://www.kurzweilai.net/a-robot-vacuum-cleaner-with-360-vision. 

Fig. 2. Image Feature example. SIFT features estimated for two views. Features 
are indicated by the red circle in both images. The matches made by comparing 
descriptors from both views are indicated by the green lines. Credit: https://doc 
s.opencv.org/3.4/dc/dc3/tutorial_py_matcher.html. 
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photometric factors are internal camera noise sources like image noise 
and motion blur. Finally, geometric factors are concerned with changes 
that occur when objects are occluded from the camera or projective 
transformation of features when the camera is under motion. In other 
words, while viewing the same 3D world point from various perspec
tives, we must accurately locate the same point for all images that have 
viewed this point. 

A common workflow in calculating descriptors is to first transform 
the image patch to a normalised space that removes the perspective 
distortion of the feature. To fully model the transformation from one 
image to such a normalised space we need to use a projective trans
formation. Often we do not have the necessary information at the time of 
detection to model this projection to normalise the descriptors, so an 
affine projection is often used as an approximation. This affine projec
tion is generally accurate enough when small camera motions are con
cerned. This means that generally descriptors are robust to scale and 
rotations only. 

The remainder of this section is structured as follows. A brief outline 
of the classical methods used for image features is detailed. Under
standing the motivations for the design and methods used should pro
vide an insight into the problem and help develop domain knowledge. 
Then a more detailed description of the modern deep learning tech
niques is given. 

2.1. Deep learning methods 

Over the past ten years, deep learning methods have been revolu
tionising CV systems. Since 16 was published, a new era of CV has begun, 
which exploits the technology of deep neural networks. More specif
ically, CV usually employs CNNs which cascade convolutional layers 
along with pooling, spatial sub-sampling and non-linear activation 
functions to model complex CV problems. The general form of the 
multi-layer architectures performs by modeling low level features in the 
early layers while progressively capturing more complex features the 
data progresses through the network. In essence, the value added using 
such systems is that the data can be used to infer these image features, 
rather than classical methods outlined above which rely on an expert to 
“hand design” the desired appearance. The process of learning is mainly 
concerned with estimating a set of weights for the connections and the 
convolutions within the network. This process is performed by a 
regression of a provided cost function, in the context of supervised 
learning; this cost is estimated as the error between the putative output 
and the ground truth. The regression is performed by back propagation, 
a method that exploits the chain rule to allow efficient iterative refine
ment of the network weights. 

In addition to the overview on detection and description, a 

subsection on end-to-end systems is also now provided. An advantage of 
CNNs is that they can receive low level pixel information and output 
high level data, allowing it to skip intermediate steps, and to jointly 
model both description and detection at once. 

2.1.1. Detection 
Detection is formulated as learning a response function that assigns a 

score for image patches. After all patches are processed in an image the 
scores are thresholded and minimum and maximum values are assigned 
as keypoints. This method provides a simple network which shows good 
invariance to rotation and scale changes 17. These networks are trained 
using a loss function which jointly considers positive and negative cor
respondence at once in an attempt to create small intra and large inter 
class variance. This has shown positive results for providing reliable 
detections over time. 

2.1.2. Description 
The method of learning descriptors is a process of using a number of 

patches which are observations of the same 3D landmark and trans
forming these patches into a latent space that encodes the distinguishing 
features of the patches. The ultimate goal of such networks is to reduce 
the intra-class variance (observations of the same 3D landmark) and 
increase the inter-class variance (observations of different 3D land
marks). The innovations within these networks are realised in the loss 
functions used to train the networks. The simplest formulation for this 
loss function is referred to as pairwise loss, where it uses two patches at 
once to compute errors. Adding another image patch to the loss function 
is referred to as triplet loss. While triplet loss uses more information to 
learn descriptors and in turn should be more robust it also increases 
complexity and has been shown to provide a more unstable solution 
space 18. Interesting work recently published 18 has shown improve
ments by selecting a subset of data from the training dataset, to perform 
back propagation on. This provides a method to identify specific 
weaknesses in the network during training and to dynamically select 
data to overcome these weaknesses. 

2.1.3. End-to-end 
The term end-to-end is used here to describe a system that outputs a 

complete set of image keypoints and descriptors. 14 reports that relative 
to the number of detection and description network papers published 
over the past number of years, end-to-end systems have received little 
attention. The first system of this kind was 19, which demonstrated how 
three sub networks, each trained for a distinct component of the image 
keypoint and description pipeline could be used to perform as an 
end-to-end system. The three networks included a keypoint detection 
network, a rotation normalisation network and finally a descriptor 
calculation network. The training process uses four image patches of the 
same 3D point viewed from different perspectives and trains each 
sub-network sequentially. 

More recently, the work in 11 reports a deep CNN that uses novel 
techniques to generate ground truth data for training. The training 
involved in their method termed SuperPoint uses what the authors call 
“pseudo ground truth”, which is comprised of simple geometric syn
thetic images with associated ground truth key points. This data is 
augmented with a method of homographic adaption, which warps each 
ground truth image a number of times with a randomly sampled 
homography. This has the effect of building affine transformation 
invariance into the network as well as providing more data for the 
network to train. They use this simple data to bootstrap a network and 
use this as initialisation on training for a real world dataset. 

Likewise, the work in 20 has built on techniques from 11 but added 
the technique of dilation to both increase the receptive field of the 
network and remove the need for max pooling in the network. Removing 
the need for max pooling means that no spatial resolution is lost within 
the network, i.e. the input and output have the same spatial resolution, 
meaning that the resulting keypoint localisation is more accurate. 

Fig. 3. Example of SIFT descriptor calculation, on the left the input image is 
overlaid with the detected keypoints. Here the circles indicate the scale at 
which the keypoint was detected. The line from the centre of the circle indicates 
the dominant gradient for that feature which acts to normalise the feature. In 
the middle and the right the pipeline to calculate the descriptor by taking a 
histogram of the local gradients is shown 15. 
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Increasing the dilation factor also results in increasing the receptive 
field, which has a positive effect on the descriptors. 

2.2. CNN optimisation 

Considerable attention has been given to making CNN based systems 
more efficient and possible to run on mobile devices over the past 
numbers of years. Many papers attempted to reduce the number of pa
rameters by various techniques and still maintain state-of-the-art accu
racy for CV tasks 21–24. The most notable work 25, proved successful at 
compressing the network size and running on a mobile device while 
providing robust performance. The work showed that the preliminary 
layers of a network which are primarily responsible for extracting low 
level image features could be replaced by an efficient network. The 
authors demonstrated this by implementing the network on a Google 
Pixel phone and performing object detection and semantic segmentation 
in real-time. The technique used in this method was called depthwise 
separable convolution. This method is an alternative to the 2D con
volutional operator normally found in CNNs. When applied to a network 
it significantly reduces the number of parameters and enhances the ef
ficiency of each convolutional operation. In essence, it separates the 
normal convolutional operation into two distinct convolutions, namely 
depthwise and pointwise; the theory used to create these new methods 
can be thought of as similar to separable convolution filters in image 
processing. The results showed that despite significant reduction in 
network complexity and run time costs, the accuracy was acceptably 
similar to the state-of-the-art methods. 

In later work from the same authors 13 they showed further im
provements by using a technique called inverted residuals and linear 
bottlenecks. Again, they showed the results on a Google Pixel mobile 
device such that while network parameters decreased even further the 
accuracy remained comparable (see Table 1). Results taken from 13 show 
similar mean Average Precision (mAP) but with significantly less 
complexity. It is shown that the newly proposed MobileNetV2 sustains 
accuracy but reduces parameters and operations executed. Note Mobi
lenetV1 was proposed in the authors’ earlier work in 25. 

While these works have shown positive results when applied to CV 
tasks such as object detection, little work has been carried out about 
applying these methods to an interest point detection and description 
network. The only notable work was 26 which applied a bespoke con
volutional operation (which was a combination of normal convolution 
and separable depthwise convolution) to interest point detection. In 
addition, the experimental results provided were high level image 
retrieval metrics, whereas, in this paper low level metrics are used to 
further highlight the viability of methods. The aim of this paper is to 
investigate the optimisation techniques employed for other tasks in CV 
to the specific use case of interest point detection and description. 

3. Model optimisation 

In this section further details will be given about the techniques used 
to compress the model, along with information of improvements in 
terms of complexity. Then the interest point detection and description 
network selected to be optimised will be detailed to give an under
standing of the original unmodified architecture. Finally, the steps taken 
to integrate these efficient design features will be outlined and the 
resulting network architectures will be defined. 

3.1. Depthwise separable convolution 

Convolutional layers in CNNs normally operate by transforming an 
input tensor F ∈ RWi×Hi×N to an output tensor G ∈ RWo×Ho×M, where Wi 
and Hi are the input width and height dimensions respectively. N and M 
are the input and output channel depths respectively, and Wo and Ho are 
the output width and height dimensions respectively. The trans
formation is parameterised by the convolution kernel K which is of size 
K × K × M × N × Wi × Hi where K is the kernel size.This operation of 
convolution, assuming padding and using a stride of one, is represented 
as: 

Gk,l,n =
∑

i,j,m
Ki,j,m,n⋅Fk+i− 1,l+j− 1,m  

From this equation we know the computational cost of this operation as: 

K × K × M × N × Wi × Hi  

Within this operation each layer of the input tensor is convolved with a 
kernel and summed to produce the final output. In depthwise separable 
convolution, each of these steps are factorised into a separate operation. 
This results in two forms of convolution being applied, depth-wise and 
point-wise convolution. Depthwise convolves a kernel with each input 
layer. This operation can be written as: 

Ĝk,l,m =
∑

i,j,m
K̂i,j,m⋅Fk+i− 1,l+j− 1,m  

where K̂ is the depthwise convolutional kernel of size k × k × M and 
each channel in F is convolved with a kernel in K̂. 

Then pointwise convolution takes the output of depthwise convolu
tion and sums values using a 1 × 1 convolution applied in the depth 
direction. Combining these two operations is known as depthwise 
separable convolution and has a computational cost as follows: 

(K × K × M × Wi × Hi) + M × N × Wi × Hi 

Comparing the computational cost of the depthwise separable 
convolution over the standard convolution, we get: 

(K × K × M × Wi × Hi) + M × N × Wi × Hi

K × K × M × N × Wi × Hi

=
1
N
+

1
K2  

This shows that the improvement of the computational cost is a direct 
function of the number of input layers and the kernel size. This equates 
to an 8 – 9 times improvement for a kernel size of 3 × 3. While the 
computational complexity of depth-wise separable convolution is less, 
the expressibility of the network will also be affected. Since there will be 
fewer parameters used in the network using depth-wise separable 
convolution this may negatively affect the ability of the network to 
learn. 

3.2. Linear bottlenecks 

The premise of Linear Bottlenecks, documented in 13, is that it allows 
the information, normally flattened in non-linear activation layers, to be 
preserved. The advantage of using non-linear activation functions is that 
they increase the expressibility of the network. The goal for using linear 
bottlenecks is to mitigate this loss of information while also preserving 
the expressibility created. For this to be possible, the dimensionality of 
the activation space is increased to be sufficiently larger than the input 
space so it is possible for information, which is normally flattened in 
non-linear activation functions, to be preserved in other channels. 
Practically, this is achieved by performing a 1 × 1 convolution as the 
first operation in a residual block, which will increase the channel depth 
of the activation space by a factor. This parameter is known as the width 

Table 1 
Precision and Complexity of Different Models.  

Network mAP Params MAdd CPU 

YOLOv2  21.6 50.7 M 17.5B - 
MobilenetV1  22.2 5.1 M 1.3B 270 ms 
MobilenetV2  22.1 4.3 M 0.8B 200 ms  
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multiplier. 

3.3. Inverted residual 

Inverted residuals are designed primarily to help propagate residuals 
calculated in back propagation during the training process. For networks 
which are deep, often issues relating to vanishing gradients mean that 
the early layers of a network are either under-utilised or the training 
process will be slow. The principle behind residuals, first detailed in 27, 
is that the input is subtracted from the output for a discrete CNN block 
and the input to the next block is this residual. This results in the block 
being trained on the residual of the output minus the input. When pre
forming back propagation on this network it will now be more effective 
and allows residuals in the optimisation training procedure to be more 
stable and propagate through the network. This technique also has the 
added benefit of creating more separation between the scale of features 
learned in each CNN block. 

3.4. Combining optimisations 

The importance for each of the above optimisations have been 
extensively studied, residuals connections in 28, and linear bottlenecks 
13. It is well established that each technique contributes to optimising 
the network and an ablation study to prove this is provided in 13. The 
experiments in this paper combine these techniques into a single con
volutional block. 

3.5. R2D2 

Repeatable and Reliable Detector and Descriptor (R2D2) is a state-of- 
the-art interest point detection and description method. The method 
uses a CNN to jointly solve for interest points and associated descriptors. 
The network is constructed of a common feature extraction segment, 
based closely on the L2-Net description network 29, with two distinct 
heads. One head is for feature description and the other is to produce 
repeatability and reliability heatmaps; see Fig. 4. R2D2 offers two in
novations: Reliability (over and above repeatability), and the use of 
kernel dilation. The reliability heatmap serves as a proxy to measure 
how reliable the descriptors are. R2D2 exploits this heatmap to provide 
an additional check when extracting the interest points so the results are 
not only repeatable but also have strong descriptors. Using kernel dila
tion allows the spatial resolution of the input to be preserved. This al
lows for accurate keypoint localisation accuracy as the resulting 
heatmap does not need to be up sampled to return to the original spatial 
dimensions. The common portion of the network is based on 29; this was 
first designed to be a description network in a compact manner, which 
also allows Euclidean distance to be used as a correspondence metric. 
These features mean that 20 is a suitable starting point to optimise a 
feature point and description network. 

3.6. Network architecture 

This sub-section describes how the original R2D2 network is 

restructured and how the techniques above are integrated. Combining 
the techniques from above gives the basic building blocks of the network 
(see Table 2) called inverted residual block. The structure of an inverted 
residual block compared to a normal convolutional block can be seen in  
Fig. 5. The original architecture of the R2D2 network can be seen in 
Fig. 4. The section of the network indicated by the dashed line in Fig. 4 is 
replaced with a number of inverted residual blocks. Two configurations 
are proposed, both with a different number of blocks, to give insight into 
the effect of the number of blocks within the network on the efficiency 
and performance. 

Table 3. The two variants of the network are named Lightweight (L) 
and High-Performance (HP). L is designed to reduce the number of pa
rameters within the network to allow a considerable compression of the 
network. HP is designed to demonstrate any gains in accuracy which 
may be realised by a relatively larger network when compared to the L 
variants, but still employing the optimized techniques. The high level 
details of the parameter counts and complexity for each network variant 
are shown in Table 4. It shows Multiply-Accumulate Operations (MACs), 
parameter sizes, and inference Frame Per Second (FPS) which are 
common methods to compare relative performance of networks in deep 
learning. The inference FPS is measured by averaging execution times on 
an Nvidia Jetson Xavier NX device using the TensorRT inference library. 
Details for each layer in L network are shown in Table 5 and the HP 
network are shown in Table 6. Notice that as the layers get deeper in the 
original network, the parameter count and complexity grow exponen
tially in the original R2D2 network while the optimized variants in
crease linearly at a relatively small rate. This graph is a good 
demonstration of the savings in terms of complexity and size that the 
separable convolution provides. In normal convolutional layers, as the 
channel depth increases, the size and complexity of the layers increase 
exponentially. In other networks, where max pooling or striding are 
used some savings can be realised but in this case no max pooling layers 
are used and the stride is always equal to one meaning the input spatial 
resolution is preserved. 

Normally max pooling also has the effect of increasing the receptive 
field within the network. This increase in receptive field has the effect of 
considering a larger image region when creating an image feature. To 
account for this, another method called kernel dilation is used. Kernel 
dilation allows the system to preserve the image resolution and increase 
the receptive field. The principle employed in kernel dilation is to use a 
sparse kernel sampling scheme where a number of pixels are skipped. A 
more detailed explanation of kernel dilation can be found in 30. 

Fig. 4. R2D2 NetworkL: overview of the architecture is presented. The dashed part of a CNN can be replaced by the two example configurations given in the two runs 
underneath it 20. Figure has been reproduced after permission by the corresponding author of 20. 

Table 2 
Architecture of an inverted residual block, as designed in 13.  

Input Operator Output 

h × w × k 1×1 conv2d, ReLU6 h × w × tk 
h × w × tk 3×3 dwise s = s, ReLU6 h

s
×

w
s
× tk 

h
s
×

w
s
× tk  linear 1×1 conv2d h

s
×

w
s
× ḱ    
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4. Experimental details 

The following section gives implementation details for how the 
modified CNNs were trained, and tested. The definition of each KPI is 
provided. Details are given on the training of the networks. The datasets 
used for training and testing are outlined. 

4.1. Metrics 

Each metric is calculated for a pair of images, both images view the 
same scene either from a different perspective or under different lighting 
conditions. The location of each pixel in the other image is known by 
homographic transformation. During the metric calculations this 
homography is used to warp image keypoints between corresponding 
images. Let I1 and I2 be a pair of images and KPi = (kpi

j)j<Ni 
the set of Ni 

keypoints in image Ii. 

4.1.1. Repeatability 
Repeatability measures the percentage of keypoints common to both 

images. To calculate this metric we first need to warp KP1 to I2 using the 
homography transformation and let the result be KP1,w. The repeat
ability is then calculated as the number of pairs which satisfy ||kp1,w 

− kp2||2 < e with e set as the image distance threshold. The resulting 
matches are M and the final score is calculated as: 

Repeatability =
|M|

min(
⃒
⃒KP1

⃒
⃒,
⃒
⃒KP2

⃒
⃒)

4.1.2. Mean localisation error 
Given the set of matches M, Mean Localisation Error (MLE) is the 

average error of the associated keypoints. 

MLE =

∑
||kp1,w − kp2||2 < e

|M|

4.1.3. Nearest neighbour mean average precision (NNmAP) 
The NNmAP can be calculated by varying the descriptor distance 

Fig. 5. Comparison of convolutional blocks. (a) shows the inverted residual 
block structure which combines the separable convolution, linear bottleneck 
and the inverted residual connection. (b) shows a normal convolutional block. 

Table 3 
Performance of networks. The key performance indicators for each network showing the performance difference with the efficient techniques integrated.  

Network MLE Repeatability NNmAP MScore Homog Est Err (HEE)= 1 HEE= 3 HEE= 5      

Overall    
SIFT 1.368  0.371 0.767 0.299 0.312 0.659 0.781 
SuperPoint 1.158  0.581 0.821 0.470 0.310 0.684 0.829 
R2D2 1.503  0.556 0.823 0.380 0.407 0.764 0.852 
R2D2 - L 1.827  0.535 0.718 0.288 0.386 0.710 0.795 
R2D2 - HP 1.609  0.643 0.675 0.303 0.448 0.750 0.821      

Viewpoint    
SIFT 1.324  0.383 0.792 0.331 0.319 0.678 0.797 
SuperPoint -  0.484 - - - - - 
R2D2 1.639  0.527 0.721 0.302 0.237 0.597 0.739 
R2D2 - L 1.909  0.504 0.595 0.217 0.176 0.519 0.651 
R2D2 - HP 1.778  0.609 0.547 0.233 0.220 0.573 0.685      

Illumination    
SIFT 1.413  0.358 0.740 0.267 0.305 0.639 0.765 
SuperPoint -  0.631 - - - - - 
R2D2 1.362  0.585 0.929 0.461 0.582 0.937 0.968 
R2D2 - L 1.742  0.567 0.846 0.362 0.604 0.909 0.944 
R2D2 - HP 1.434  0.679 0.807 0.376 0.684 0.933 0.961  

Table 4 
Network Complexity. MACs, parameter sizes, and inference FPS.  

Network MACs [G] Parameters [K] Compression Ratio FPS 

R2D2  149  484 × 1  17.6 
R2D2 - L  18  58 × 8.2  145 
R2D2 - HP  137  449 × 1.1  19.5  

Table 5 
Dimensions of each layer in the L network, the number of parameters for each 
layer along with the associated total for the network.     

R2D2   
Layer Type K Output Shape Params   

C H W  

Inverted Residual  3  32  480  640 480 
Inverted Residual  3  32  480  640 5136 
Inverted Residual  3  64  480  640 8832 
Inverted Residual  3  64  480  640 10,000 
Inverted Residual  3  128  480  640 14,848 
Inverted Residual  3  128  480  640 14,848 
Inverted Residual  2  128  480  640 21,056 
Conv2d-BN  2  128  480  640 8448 
Conv2d  1  2  480  640 258 
Conv2d  1  1  480  640 129 
Total         84,035  
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threshold; as a result the Receiver Operating Characteristic (ROC) curve 
can be calculated, which shows the recall and precision function. The 
area under this curve is used as a measure of the average precision. The 
metric is an indicator of how successful the descriptors are at being 
matched correctly. 

4.1.4. Matching score 
Matching score captures the ratio of points which are both nearest 

neighbours in terms of image and descriptor distance Md, while also 
being within their respective error thresholds. 

MatchingScore =
M ∩ Md

min(
⃒
⃒KP1

⃒
⃒,
⃒
⃒KP2

⃒
⃒)

This metric is an indicator of the joint performance of the interest points 
and the descriptors. 

4.1.5. Homographic estimation error 
Using the findHomography function from OpenCV a homography for 

an image pair is calculated and compared to the known ground truth 
homography. Since elements in the 3×3 homography matrix are scaled 
differently, comparison is not trivial. Following a similar approach as 11 

where the corners of image I1 projected into I2 are calculated using both 
the estimated homography and the ground truth homography, the error 
is calculated as the average error of the four corners between the two 
projections. To allow for more granularity three thresholds are used 
when calculating. The resulting metric is the percentage of the 
computed homographies, which are within the stated error threshold. 

4.2. Training 

Each training script was developed using the PyTorch 31 library. The 
training was carried out on an Nvidia Titan V GPU. The datasets used for 
the training process were the same as in original R2D2 paper 20. 

Following 13, the optimiser used to train was Stochastic Gradient 
Descent (SGD), with a learning rate of 1e − 3, momentum of 9e − 1, 
weight decay of 1e − 1, and the nestorov method activated. Each 
training was performed for 25 epochs and the batch size was 10. Ideally 
a larger batch size would produce more accurate results but in this case 
the batch size was limited by the memory available on the GPU. A result 
of using these values of hyper-parameters in this paper means that 
networks become easier to train. 

It should also be noted that L2 regularization was used on the 

descriptor head layer to help improve its generalisation. This is an 
important step to prevent over-fitting of the descriptor layer and allows 
for better performance on previously unseen data. 

4.3. Datasets 

The dataset used for evaluation of the networks is the HPatches 
dataset 32. This dataset contains 108 sequences, each with 6 images. One 
image is referred to as the reference image and the associated homog
raphy matrix to project each of the remaining images to the reference 
image is provided. This allows exact correspondence between each pixel 
in the reference image to the other images. 54 of the sequences are of a 
static scene with no camera motion and the only variable is scene illu
mination. The other 54 sequences contain camera motion. 

To standardise the size of the images a scaling preserving resize is 
used which enforces that the maximum size is 640×480. The homog
raphy transformations are also scaled accordingly to account for the 
resize. The networks are limited to a maximum number of 300 interest 
points. This number was selected as it is a reasonable number of interest 
points to run higher level algorithms with, e.g. pose estimation, while 
also providing a relatively low memory requirement. 

5. Results 

The comparisons of the results are broken into two sections, KPIs, 
and Network Sizes and Complexity. KPIs capture the accuracy and 
robustness of the algorithms over the test dataset, while network sizes 
and complexity compare the computational cost and memory re
quirements for each network. In each case the baseline for comparison is 
the original R2D2 network. In addition, to demonstrate the performance 
of this network against state-of-the-art hand crafted and deep learning 
methods, SIFT and SuperPoint 11 are included. It is worth noting that the 
only KPI reported for the viewpoint and illumination changes in 11 is 
repeatability and for the overall results each KPI is reported. 

5.1. KPIs 

The results, shown in Table 3, detail the performance of the systems 
over all of the KPIs detailed above. The results are separated into three 
sections: the viewpoint section contains results from the sequences with 
viewpoint point changes only. The illumination section contains results 
for sequences with illumination changes only. And the overall section 
shows results over the complete dataset. It is valuable to show separate 
results for illumination and viewpoint changes because they are both 
distinct conditions which test the robustness of the system. The results 
are also shown in Fig. 6. It is noteworthy, that MLE is better as it ap
proaches 0 and the remaining KPIs get better as they approach 1. 

For the viewpoint results we can see that, apart from the repeat
ability results, SIFT performs best. These results demonstrate SIFT’s 
ability to provide invariance to scale and rotation. Within SIFT a multi 
scale method is used to encode the size of features as well as rotation 
normalisation to remove the effect of a moving camera. Also the MLE for 
SIFT is lowest mainly due to the sub-pixel refinement step, which in
creases the accuracy of the output localisation. All these steps are 
valuable in terms of performance but they do come with a computa
tional overhead related to the multiple scale processing. R2D2 does 
allow for multiple scale processing, where the input image is used to 
create a scale space and each scaled image is passed through the network 
and image points are intelligently combined to produce the output. This 
will have the effect of creating some scale invariance but given the focus 
of this work, to implement an efficient solution the single scale config
uration is used. SuperPoint is repeatedly the worst performing method 
and shows its poor robustness to viewpoint changes. Robustness to 
viewpoint changes is vital for methods used to support a pose estimation 
system, where the viewpoint is expected to regularly change over time. 

In terms of the relative R2D2 variants performance, we see that the 

Table 6 
Dimensions of each layer in the high performance network are shown. The 
number of parameters for each layer along with the associated total for the 
network.     

R2D2   
Layer Type K Output Shape Params   

C H W  

Inverted Residual  3  16  480  640 480 
Inverted Residual  3  24  480  640 5136 
Inverted Residual  3  24  480  640 8832 
Inverted Residual  3  32  480  640 10,000 
Inverted Residual  3  32  480  640 14,848 
Inverted Residual  3  32  480  640 14,848 
Inverted Residual  2  64  480  640 21,056 
Inverted Residual  2  64  480  640 21,056 
Inverted Residual  2  64  480  640 54,272 
Inverted Residual  2  64  480  640 54,272 
Inverted Residual  2  96  480  640 54,272 
Inverted Residual  2  96  480  640 66,624 
Inverted Residual  2  96  480  640 118,272 
Conv2d-BN  2  128  480  640 25088 
Conv2d  1  2  480  640 258 
Conv2d  1  1  480  640 129 
Total         448,771  
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original network performs best for the metrics. That being said, the other 
variants do provide comparable performance. It is worth mentioning 
that there is no reason for the networks to outperform the original, 
rather the aim here is to replicate the performance as closely as possible. 

The illumination results show a different trend when compared to 
the viewpoint results. The original R2D2 performs better than SIFT in all 
of the KPIs. This demonstrates that R2D2 provides better invariance to 
scene illumination. It is difficult to attribute this to one aspect or tech
nique used within the network but it does give proof of the ability of the 
CNN to generalise complex features. The HP variant performs slightly 
better when compared to L. The homography estimation results give a 
good indication for the performance within a pose estimation system. 
For these KPIs we see strong results for all R2D2 variants when 
compared to SIFT. This is due to the better repeatability, NNmAP, and 
matching score which indicates more accurate interest points and 
discriminate descriptors. SuperPoint, in terms of repeatability, is 
competitive with R2D2 and only the HP variant outperforms it. 

Separating the results into illumination and viewpoint demonstrates 
the attributes of each system when it comes to robustness. As a whole, 
the overall results weigh up the combined performance and show that 
R2D2 is a state of the art system according to the KPIs used. The MLE and 
repeatability show that the interest points are accurate and reliable. The 
NNmAP shows that descriptors are distinctive and do well at encoding 
the appearance of the interest points compactly, while the MScore and 
Homography Estimation show that the interest point and descriptors 
combine well to provide higher level systems with good data. For the HP 
and L variants we do see a slight performance drop off when looking at 
the low level interest point and descriptor KPIs but the results for the 
Homograph are comparable, and better in some cases. The HP network 
does perform better when compared to the L network, but this was ex
pected since there was a larger number of convolutional layers within 
the HP network. SuperPoint does perform well in the low level KPI but 

the performance on the homography estimation metrics is not as accu
rate as R2D2. 

5.2. Network sizes and complexity 

A comparison of the network sizes and complexity is shown in Fig. 2 
and also in Fig. 7 where the numbers are presented for each layer. It is 
clear that the L variant of the network provides considerable compres
sion of the network with a compression factor of 8.2 and the number of 
MACs is also an order of magnitude less than the original network. 
Taking into account the KPI performance of this network it proves to be 
a viable solution at providing a more compact and efficient network 
with only a slight trade-off in accuracy to be made. The HP variant 
proves to have similar requirements to the original network in terms of 
parameter count and MACs. Coupled with the fact the KPI performance 
is slightly worse than the original indicates that this variant does not 
provide any advantages. It is worth mentioning that the HP variant 
contains 6 extra convolutional layers when compared to the original 
network. These extra layers could allow for the network to learn more 
complex features but ultimately this is not realised within this testing. It 
should however be considered as future work to investigate the potential 
for these extra layers.  

Fig. 8 shows the results of the L Network. The top left image shows 
the input image. The top right image shows the resulting keypoints from 
processing the output heatmaps. The bottom left image is the repeat
ability heatmap and the bottom right image is the reliability heatmap. 
The same kind of results for the HP Network can be seen in 9. 

6. Conclusions 

Inferring accurate models with low complexity is becoming a cross- 
cutting concern in Machine Learning 33,34 and Machine Learning 

Fig. 6. KPI performance of systems. The performance for each system is graphed together to allow relative evaluation. The three graphs show separate results for 
illumination change, viewpoints changes and overall results. 

Fig. 7. Complexity of Networks. On the left the parameter count per layer of the original and optimised networks is shown. On the right are the number of MACs per 
layer of the original and optimised networks is shown. 
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inspired Computing 35,36. This work has demonstrated the successful 
integration of efficient techniques that help to reduce the complexity 
and size of CNNs used in interest point detection and description sys
tems. The complete KPI framework has adopted a state-of-the-art dataset 
and KPIs to measure the relative accuracy performance of the various 
systems. It was found that only a slight accuracy trade-off afforded a 
considerable compression of network size, and lower computational 
complexity was achieved with the L variant. As a matter of fact, we have 
shown that the L network performed substantially better while it ran on 
an Nvidia Jetson Xavier NX GPU. On the other hand, the results reported 
for the SuperPoint network were accumulated using an Nvidia Titan X 

GPU. It is worth noting that the later GPU is much superior to the 
erstwhile in terms of specifications, throughput, and speed. The HP 
variant did not prove to have any advantages in terms of accuracy, size, 
or computational complexity. 

The motivation of the paper was to enable a state-of-the-art network 
to operate in a constrained computing environment, such as a battery- 
powered robot. Examples of the applications that interest point net
works can support are trajectory planning for robotic vacuum cleaners, 
head pose estimation for virtual reality headsets, and camera calibration 
for a wide variety of camera-based systems. The network selected to be 
studied was the best-performing network, in terms of accuracy, which 

Fig. 8. R2D2 - L Network inputs and outputs. The top left image shows the input image, the top right image shows the resulting keypoints from processing the output 
heatmaps, the bottom left image is the repeatability heatmap and the bottom right image is the reliability heatmap. 

Fig. 9. R2D2 - HP Network inputs and outputs. The top left image shows the input image, the top right image shows the resulting keypoints from processing the 
output heatmaps, the bottom left image is the repeatability heatmap and the bottom right image is the reliability heatmap. 
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allowed the integration of the studied optimization techniques in 13. The 
other state-of-the-art network, called SuperPoint 11, uses an 
Encoder-Decoder (Autoencoders (AEs)) architecture which is not 
appropriate for these optimizations since the skip connections are not 
within each convolutional block rather they are connected between each 
corresponding decoder and encoder blocks. AEs are not appropriate here 
because supervised learning is required to teach the network what in
terest points are. 

The training hyper-parameters details are given in section 4.2. A 
result of using the optimization techniques in this paper means that 
networks become easier to train in the sense that they are less sensitive 
to hyper-parameters when compared to the original networks. The skip 
connections in each convolutional block allow gradients during back
propagation to flow into deeper layers thus allowing each layer to learn 
efficiently. However, in a future extension of this research, we also 
aspire to employ a hyper-parameter tuning scheme based on the tradi
tional grid search or the more sophisticated and advanced evolutionary 
algorithms. 

In terms of future work, it would be valuable to implement such 
efficient networks to better understand the practical challenges of 
running on embedded devices. In addition, it would be interesting to 
understand if and how the extra layers in the HP variant could be 
exploited to provide accuracy improvements. 

Although the focus of this work has been to improve efficiency while 
retaining accuracy, future work can also look to further enhance the 
generalization ability of the models produced by the proposed meth
odology. Although we have already employed L2 regularization and 
shown the generalization ability of our models on unseen data, we also 
aim to leverage certain novel and promising regularization techniques. 
Regularization techniques have come a long way as compared with the 
traditional addition of a punitive term to the loss function. 37 have 
proposed a novel generalization algorithm that initially performs 
anomaly detection and eventually regularizes the model based on the 
distribution of the data. The technique has shown nice results in CV and 
deep learning. In a recent work manifold regularization was applied to 
train auto encoders successfully and was found to be quite beneficial 38. 
We also plan to benefit from this approach in the future. 
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