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ABSTRACT
Dementia diagnosis often relies on expensive and invasive neuroimaging techniques that limit access to early screening. This study proposes
an innovative approach for facilitating early dementia screening by estimating diffusion tensor imaging (DTI) measures using accessible
lifestyle and brain imaging factors. Conventional DTI analysis, though effective, is often hindered by high costs and limited accessibility. To
address this challenge, fuzzy subtractive clustering identified 14 influential variables from the Lifestyle for Brain Health and Brain Atrophy
and Lesion Index frameworks, encompassing demographics, medical conditions, lifestyle factors, and structural brain markers. A multilayer
perceptron (MLP) neural network was developed using these selected variables to predict fractional anisotropy (FA), a DTI metric reflecting
white matter integrity and cognitive function. The MLP model achieved promising results, with a mean squared error of 0.000 878 on the
test set for FA prediction, demonstrating its potential for accurate DTI estimation without costly neuroimaging techniques. The FA values
in the dataset ranged from 0 to 1, with higher values indicating greater white matter integrity. Thus, a mean squared error of 0.000 878
suggests that the model’s predictions were highly accurate compared to the observed FA values. This multifactorial approach aligns with the
current understanding of dementia’s complex etiology influenced by various biological, environmental, and lifestyle factors. By integrating
readily available data into a predictive model, this method enables widespread, cost-effective screening for early dementia risk assessment.
The proposed accessible screening tool could facilitate timely interventions, preventive strategies, and efficient resource allocation in public
health programs, ultimately improving patient outcomes and caregiver burden.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0211527

INTRODUCTION

Dementia, a progressive neurodegenerative disorder, poses a
significant challenge to individuals, healthcare systems, and societies
worldwide.1 As the global population ages, the prevalence of demen-
tia continues to rise, with an estimated 66 × 106 cases projected
by 2030 and 115 × 106 by 2050.2 Early detection and diagnosis of
dementia are crucial for timely intervention, symptom management,

and improving the quality of life of affected individuals,3 socioe-
conomic costs associated with dementia, and Alzheimer’s disease
alone imposing an annual cost exceeding $350 000 per patient in the
United States.4

Current diagnostic methods often rely on invasive and costly
techniques, such as positron emission tomography (PET) scans or
cerebrospinal fluid analysis, which may not be readily accessible or
affordable for many individuals.5 In addition, the lack of accessible
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and cost-effective methods for estimating diffusion tensor imaging
(DTI) and diagnosing dementia at an early stage has hindered timely
intervention and treatment.6 Recently, computational approaches
are effectively used in biomedical engineering for the treatment of
different patients.7,8

The proposed approach in this study is an important step
toward addressing this need. Using the synergy between lifestyle fac-
tors, structural brain markers, and machine learning techniques, we
aimed to create a cost-effective and accessible tool for timely demen-
tia screening. The integration of diverse data sources, including the
More Effective Lifestyle Factors for Brain Health (LIBRA) and Brain
Injury and Atrophy Index (BALI), reflects the multifaceted nature
of dementia and its underlying drivers.9,10 The potential impact of
this effort extends beyond the realm of individual patient care, as it
holds promise for enabling large-scale screening initiatives and tar-
geted interventions in public health programs. By providing access
to early diagnosis of dementia, this approach could pave the way
for improved patient outcomes, reduced caregiver burden, and more
efficient allocation of healthcare resources.11

Several studies have investigated the potential of machine
learning algorithms to predict dementia risk based on health-
related factors.12,13 Studies using variables, such as age, educa-
tion, high blood pressure, obesity, and physical inactivity, have
shown the possibility of identifying people at high risk of cogni-
tive impairment.14,15 In other studies, using structural MRI data and
machine learning algorithms to classify people with Alzheimer’s dis-
ease, mild cognitive impairment, and healthy people, their approach
showed improved diagnostic accuracy.16–18 Although these studies
have made significant progress, the reliance on less expensive neu-
roimaging techniques remains a barrier to widespread implemen-
tation. Consequently, researchers have explored alternative strate-
gies for estimating neuroimaging markers using more accessible
data sources.19,20 In other studies, using demographic factors, a
model was developed to predict diffusion tensor imaging (DTI)
measurements sensitive to white matter integrity.21–23

Conventional diagnostic methods for dementia rely heavily
on neuroimaging techniques, particularly diffusion tensor imaging
(DTI).24 DTI measurements, derived from advanced magnetic res-
onance imaging (MRI) scans, have proven to be highly effective
in detecting structural and functional changes in the brain associ-
ated with dementia.25,26 However, the widespread implementation
of DTI has been hindered by its substantial cost and the limited
availability of specialized facilities and expertise required for image
acquisition and analysis.27 In response to this challenge, researchers
have sought to develop alternative, cost-effective methods for esti-
mating DTI measurements, thereby facilitating early dementia diag-
nosis without the financial burden associated with conventional
neuroimaging techniques.28

Researchers have explored alternative approaches that use
affordable and readily available factors as potential dementia risk
indicators. Factors such as lifestyle for brain health (LIBRA) or brain
atrophy and lesion indices (BALI) have been shown to be associated
with brain health and cognitive function.28–31

The aim of this study was to develop an innovative system
identification network using a multilayer perceptron (MLP) method
to estimate DTI metrics based on a subset of the most influen-
tial factors of BALI and LIBRA. Using a data-driven approach, this
study sought to identify effective variables from a combined set of

BALI and LIBRA factors that can serve as input to the MLP net-
work to predict DTI measures. The successful implementation of
this approach could pave the way for an inexpensive and acces-
sible dementia screening tool that enables early intervention and
improved patient outcomes.

This challenge involves employing a data-driven approach to
select the most salient LIBRA and BALI factors for estimating DTI
measures. Specifically, we utilize fuzzy subtractive clustering, a pow-
erful machine learning technique, to identify the factors that exhibit
the greatest variation among patients referred to for dementia diag-
nosis. By focusing on these key variables, we sought to develop
an MLP network capable of accurately estimating DTI measures,
thereby enabling early dementia diagnosis through an inexpensive
and accessible method.

The successful implementation of this approach has the poten-
tial to revolutionize dementia diagnosis by providing a cost-effective
alternative to conventional neuroimaging techniques. By leverag-
ing readily available lifestyle and brain imaging markers, healthcare
systems could screen larger populations for cognitive impairment,
facilitating timely interventions and improving patient outcomes.
Moreover, the proposed methodology could serve as a foundation
for further research and development, ultimately paving the way
for a more equitable and accessible approach to dementia diagnosis
worldwide.

PROBLEM STATEMENT

The lack of an accessible and cost-effective method for esti-
mating DTI measurements and diagnosing dementia at an early
stage has far-reaching implications. Delayed diagnosis often leads
to a missed window of opportunity for therapeutic interventions,
ultimately compromising patient outcomes and quality of life.32 Fur-
thermore, the absence of early screening perpetuates the substantial
emotional, physical, and financial burdens imposed by caregivers
and healthcare systems. Moreover, the absence of early interven-
tion can accelerate the progression of dementia, leading to more
severe cognitive impairments and functional limitations, ultimately
diminishing individual’s independence and quality of life.33 The
development of an accessible and cost-effective method for esti-
mating DTI measurements and enabling early dementia diagnosis
is imperative for mitigating the far-reaching consequences of this
debilitating condition.

In light of the growing demand for early dementia diagno-
sis and the limitations of conventional methods, there is an urgent
need for a cost-effective and accessible approach for estimating DTI
measurements. By leveraging inexpensive and readily available fac-
tors, such as lifestyle and brain imaging markers, it may be possible
to develop a reliable model for predicting DTI measurements and
facilitating early dementia diagnosis. This approach could allevi-
ate the financial burden on healthcare systems and improve patient
outcomes by enabling timely interventions and treatment strategies.

MATERIALS AND METHODS

This study was conducted on a cohort of elderly individu-
als referred to the Memory Clinic of Roozbeh Hospital in Tehran,
Iran. The initial pool consisted of 201 volunteers who met the eli-
gibility criteria for participation. However, several subjects were
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excluded due to their inability to undergo the required tests, lack
of interest in continuing the assessments, or the practitioner’s deci-
sion to withdraw them from the study. The final sample com-
prised 51 subjects from diverse regions of Iran. The study pro-
tocol adhered to the principles of the Ethics Committee of the
Islamic Azad University Science and Research Branch (Approval
No: IR.IAU.SRB.REC.1401.285). All participants provided informed
consent prior to their inclusion in this study.

This study utilized a comprehensive set of 49 variables derived
from two established frameworks: the Lifestyle for Brain Health
(LIBRA), comprising 42 factors, and the Brain Atrophy and Lesion
Index (BALI), comprising seven factors. The LIBRA factors encom-
pass a wide range of demographic, physical health, lifestyle, and
laboratory components known to influence brain health and cogni-
tive function.34 Specifically, the demographic components included
age, sex, education level, occupation, marital status, and income
level.35 The physical health factors included the presence and
duration of conditions, such as diabetes mellitus, hypertension,
hypercholesterolemia, kidney dysfunction, coronary heart disease,36

and the use of various medications, including benzodiazepines,
antipsychotics, anticholinergics, antidepressants, antiplatelets, lipid-
modulating drugs, and diabetes control drugs.29,37 In addition,
family history, stroke, psychiatric illness, sleep apnea, and sensory
impairments (hearing and vision) were considered.38 Lifestyle fac-
tors included physical activity levels, body mass index (BMI) as
a measure of obesity, smoking habits, dietary patterns (including
saturated fat intake, adherence to a dementia-preventive diet, and
alcohol consumption), cognitive activity, sleep quality, and stress
levels.39 Furthermore, laboratory components, such as C-reactive
protein (CRP), cobalamin (vitamin B12), folate, cholesterol, homo-
cysteine, fasting blood sugar (FBS), glycated hemoglobin (HbA1C),
and thyroid-stimulating hormone (TSH), were included in the
LIBRA framework.40

Complementing the LIBRA factors, the BALI framework
focused on brain structural changes and lesions. Specifically, the
presence and severity of gray matter lesions and subcortical dilated
perivascular spaces (GM-SV), deep white matter lesions (DWM),
periventricular white matter lesions (PV), lesions in the basal gan-
glia and surrounding areas (BG), infratentorial lesions and atro-
phy (IT), global atrophy (GA), and microhemorrhages (MH) were
evaluated.41,42

Diffusion tensor imaging (DTI) data were acquired from nine
major white matter tracts known to be implicated in cognitive
function and neurodegenerative disorders. Specifically, DTI mea-
surements were obtained from the left and right arcuate fasciculi,
the frontal–parietal portions of the left and right cingulum bundles,
the left and right superior longitudinal fasciculi, and the genu, body,
and splenium of the corpus callosum.43

From these DTI data, fractional anisotropy (FA) values were
calculated as a measure of the directionality and coherence of water
molecule diffusion within the white matter tracts.44 FA is a widely
used scalar metric derived from the diffusion tensor, which provides
valuable insights into the microstructural organization and integrity
of white matter fibers.45 Lower FA values are generally associated
with disruptions or disorganization of white matter pathways, which
can occur in various neurological conditions, including dementia.46

To ensure the accuracy and consistency of the data collection,
trained researchers conducted comprehensive in-person interviews

with participants, gathering relevant demographic information, clin-
ical assessments, lifestyle factors, and details regarding medication
usage. These researchers underwent meticulous training on stan-
dardized data collection protocols, minimizing potential sources of
variability and maximizing the reliability of the acquired data.

By integrating these comprehensive sets of factors from both
the LIBRA and BALI frameworks, this study aimed to capture the
multifaceted nature of dementia and its underlying contributors,
encompassing demographic, lifestyle, physical health, laboratory,
and brain structural markers.

Fuzzy subtractive clustering, a data-driven technique, was
employed to identify the most influential variables among the
LIBRA and BALI factors. The factors that exhibit the greatest num-
ber of distinct membership functions within the resulting clusters
are considered the most influential variables for estimating DTI
measures.47,48

MLP neural network was utilized to develop a predictive model
for estimating DTI measures based on the identified more influen-
tial variables.49 The MLP architecture consisted of an input layer,
one or more hidden layers, and an output layer.50 The number of
nodes in the input layer corresponded to the number of selected
influential variables, while the output layer had nodes represent-
ing the DTI measures to be estimated (e.g., fractional anisotropy).
The hidden layers employed nonlinear activation functions to cap-
ture the complex relationships between the input variables and the
DTI measures.51 The network was trained using a backpropaga-
tion algorithm, which iteratively adjusted the connection weights
to minimize the error between the predicted and actual DTI
measurements.52 To prevent overfitting and ensure model gener-
alizability, techniques such as early stopping, regularization, and
cross-validation were employed during the training process.53

Preprocessing steps were taken to normalize the input vari-
ables. Specifically, min–max normalization was applied to rescale
the feature values to a common range, between 0 and 1. This step is
crucial to ensure that no single variable dominates the learning pro-
cess due to its larger numerical range. The pre-processed data were
then divided into training, validation, and testing sets to evaluate the
performance of the developed model.54

DTI is an advanced neuroimaging technique in which, using
the principles of magnetic resonance imaging (MRI), DTI cap-
tures the anisotropic diffusion of water molecules, particularly in
the white matter regions of the brain.55 Through the use of a ten-
sor model, DTI facilitates the estimation of the dominant direction
and integrity of white matter fibers and provides valuable insights
into the structural connectivity and architecture of neural pathways
in the brain.56 This noninvasive technique is valuable for studying
various neurological disorders as well as cognitive processes.

DTI uses a specialized MRI technique known as diffusion-
weighted imaging (DWI) to quantify the diffusion tensor.57 DWI
uses the random movement of water molecules in tissues to assess
MR signal attenuation, denoted by S. This signal attenuation is
controlled by the diffusion coefficient (D), the value of b, and the
direction of the gradient equation (1),58,59

S = f (D, b, g), (1)

where f represents the functional relationship between MR signal
intensity (S) and tissue diffusion properties, including the diffusion
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coefficient (D), diffusion-weighted coefficient (b), and applied gra-
dient direction (g). By systematically varying these parameters and
obtaining multiple DWI measurements, the diffusion tensor can be
calculated, enabling the description of the directional dependence of
water molecule diffusion in tissue.60

The diffusion tensor, D, encapsulates the diffusion characteris-
tics of water molecules in each unit volume, known as a voxel, of the
biological tissue under investigation. This tensor can be expressed
mathematically as follows:

D =
⎛
⎜⎜⎜
⎝

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞
⎟⎟⎟
⎠

, (2)

where Dxx, Dyy, and Dzz represent the axial, radial, and mean diffu-
sion values, respectively, which quantify the degree of displacement
of the water molecule along the main diffusion axes. The off-
diagonal elements Dxy, Dxz , Dyx, Dyz , Dzx, and Dzy account for the
oblique emission components in the voxel.60

Axial diffusion tensor imaging (DTI) metrics, such as fractional
anisotropy (FA), are derived from the eigenvalues and eigenvectors
of the diffusion tensor, D. These scalar and vector values provide
valuable insight into the underlying tissue microstructure.61

Fractional anisotropy (FA) is obtained from DTI data, which
characterizes the degree of anisotropic diffusion of water in biolog-
ical tissues. In the context of brain imaging, FA provides valuable
insights into the orientation and coherence of white matter tracts,
reflecting the extent to which water molecule diffusion is restricted
along the orientation of fiber bundles. The value of FA can be cal-
culated from the eigenvalues of the diffusion tensor, D, using the
following expression:

FA =

¿
ÁÁÀ1

2
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

, (3)

where λ1, λ2, and λ3 represent three distinct eigenvalues of the dif-
fusion tensor that correspond to the principal diffusion directions
in the tissue voxel. The FA value ranges from 0 to 1, with higher
values indicating a greater degree of anisotropic diffusion, which is
typically associated with more coherent and organized white matter
fiber tubules.60

After clinical assessments and neuroimaging acquisition,
numerical values were assigned to each LIBRA and BALI factors,
as specified in the Appendixes; however, the inherent variability in
the ranges of these values presents a potential barrier to unbiased
analysis. To address this challenge, a standardization procedure was
implemented whereby data from LIBRA were converted into BALI
factors using the following equation:

xs =
x −min (X)

max (X) −min (X) , (4)

where x represents the original numerical value assigned to a
given factor, X represents the set that includes all values of x
across the study population, and xs is the resulting standardized
value. Through this process, the range of all variables was rescaled
to fit within the interval [0, 1], thereby facilitating a fair and

unbiased comparative analysis among the various factors under
investigation.62

In this research effort, a Sugeno-type fuzzy inference system
(FIS), a class of fuzzy systems that are famous for their efficiency
in data-driven modeling, was considered for the development of the
target model. These fuzzy systems can be converted into fuzzy neural
networks.63

In the context of this research, a significant challenge arises
when all inputs are assigned an identical number of membership
functions, as the resulting number of fuzzy rules would be equal
to the number of nm rules. For instance, if all 49 BALI and LIBRA
factors were to be utilized as inputs to the fuzzy model, and three
membership functions were assigned to each input, the model would
have 349 or nearly 2.39× 1023 rules. Considering that each rule would
encompass 49 membership functions and 98 parameters, namely, Cij

and Ωij, the model would possess an overwhelming 2.35 × 1023 para-
meters solely within the membership functions. To identify such
an astronomical number of parameters, billions of datasets would
be required, an evidently unrealistic and unavailable prospect. The
pragmatic solution lies in identifying and removing less influential
inputs from the list through the process of subtractive clustering.

Subtractive clustering commences by calculating the density
value of each set of input data or uk from pre-processed data, where
k refers to a subject or patient, and uk encompasses the 49 BALI and
LIBRA factors. This density value can be expressed as follows:

Dk =
51

∑
l=1

exp
⎛
⎜⎜⎜
⎝
−

49
∑
i=1
(uk

i − ul
i)2

(ra/2)2

⎞
⎟⎟⎟
⎠

, (5)

where ra represents the range of influence, which is a positive
number, and 51 denotes the total number of data points.

The point with the highest density is designated the center of
the first cluster, and data points with a density value smaller than
the reject ratio are eliminated from the process. Subsequently, the
density of the remaining points is redefined as follows:

D′k = Dk −DC1 exp
⎛
⎝
−
∥uk − uC1∥2

(rb/2)2
⎞
⎠

, (6)

where rb is referred to as the squash factor, and uC1 represents the
center of the identified cluster. If the redefined density of any data
point falls below the reject ratio, it is eliminated; conversely, if it
exceeds the accept ratio, it is defined as the center of a new clus-
ter. The density of the remaining points is then redefined via the
following equation:

D′′k = D′k −

number of
exisiting clusters

∑
ι=1

DCι exp
⎛
⎝
−
∥uk − uCι∥2

(rb/2)2
⎞
⎠

, (7)

and this iterative process continues until the clusters remain
unchanged between two consecutive stages. These clusters can be
conceptualized as spheres with a diameter of ra in a 49-dimensional
space. Each of these clusters contributes to the formation of mem-
bership functions for a fuzzy rule. The center of the jth cluster in the
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dimension of the ith input will become Cij in the previous equation,
while Ωij = ra.

The process of developing a fuzzy inference system (FIS) can be
outlined through the following pseudocode:

1. The density of each data point, uk, was calculated using the
equations and ra = Range of Influence, where k ∊ N⋂,1,51 and
51 is the number of subjects (patients).

2. Identify the data point with the highest density value that
exceeds the accept ratio threshold and designate it as the
center of a new cluster.

3. Assign the current number of clusters to NC (Number of
Clusters).

4. If NC is equal to ONC (Old Number of Clusters), proceed to
step 2.

5. Update ONC with the current value of NC.
6. Eliminate data points (subjects) with a density value less than

the reject ratio from the process.
7. Subtract the influence of the existing clusters using the gen-

eralized equation D′′k , where rb is the squash factor, and Ct
represents the center of the identified cluster.

8. Go back to step 2.

In fuzzy subtractive clustering, each rule is associated with
a membership function for every input (BALI or LIBRA factor).
However, some membership functions of an input may be nearly
identical due to their close proximity. By considering these similar
membership functions as one, each input ends up with a distinct
number of membership functions. A greater number of distinct
membership functions for an input indicates that the clusters may
cover a wider range of that input, suggesting that the input is
more influential in estimating DTI measures (or any other out-
put).64 Theoretically, if an input has only one distinct membership
function, it implies that, in the centers of all the data clusters, the
input has the same value. Such an input plays an identical role
across all fuzzy rules and can be ignored in modeling; however,
it does not necessarily diminish its importance as a factor in the
disease itself.

In the subtractive clustering process, several key parameters
were defined to control the formation and characteristics of the
resulting clusters. The aspect ratio, set to 0.5, specifies the ratio of the
longest and shortest dimensions of the cluster, allowing for the iden-
tification of elongated or irregular cluster shapes. The reject ratio, set
to 0.15, establishes a threshold for discarding data points with low
density values, effectively removing outliers or noise from the clus-
tering process. The squash factor, set to 1.25, governs the extent to
which the potential of a data point to become a new cluster center
is reduced by the influence of existing clusters in its vicinity. Finally,
the range of influence, set to 0.5, determines the radius or spread
of the cluster’s neighborhood, ensuring that data points within this
range contribute to the cluster’s formation. With these parameter
settings, the subtractive clustering process resulted in 40 clusters,
which corresponded to 40 fuzzy rules.

It was reasonably assumed that membership functions in which
the distance between their centers is equal to or less than 0.02 (2% of
the inputs’ range) are not distinct. This assumption helped simplify
the model by considering closely spaced membership functions as
a single entity, reducing redundancy and improving computational
efficiency.

The input to each neuron in a multilayer perceptron (MLP) is
calculated by summing the products of the input values and their
corresponding weights, followed by a bias term,65,66 such that each
neuron receives a weighted sum of the inputs, allowing it to pro-
cess the information efficiently.67 The input equation of a neuron is
represented by v and is calculated as follows:

v = (
n

∑
i=1

wijxi + bi). (8)

This equation shows the linear combination of inputs xi, weights wi,
and a bias term b.

After computing the input, the result v is passed through an
activation function, enabling the network to learn complex patterns.
The activation function is shown in ϕ (v), where ϕ is the chosen
activation function.68

The final output of the MLP is calculated by summing the
outputs of the hidden neurons and their corresponding weights,
adding bias, and passing the result through the activation function.
This process enables the MLP to approximate complex functions
and model complex relationships between inputs and outputs. The
output equation y is expressed as follows:

y =
m

∑
j=1

ϕ(
n

∑
i=1

wijxi + bi), (9)

where m represents the number of neurons in the output layer, and
wi j represents the weight associated with the connection between the
input neuron i and the output neuron j.

These equations form the basic components of an MLP model,
allowing it to process input data, and generate meaningful output
predictions through interconnected layers of neurons.69

The MLP network was initialized using the
Levenberg–Marquardt backpropagation algorithm, as detailed
in Appendix 4 of the study by Mohammadzaheri et al.70 This initial-
ization method assigns initial values to the connection weights and
biases prior to the training process, ensuring that the network starts
from a suitable point in the weight space for efficient convergence.

The MLP network was trained using the Levenberg–Marquardt
backpropagation algorithm, as described in Appendix B of the
study by Mohammadzaheri et al.71 This supervised learning algo-
rithm iteratively adjusts the connection weights and biases to min-
imize the error between the predicted and actual DTI measure-
ments, leveraging second-order optimization techniques for efficient
convergence.

Data-driven model development requires avoiding overfitting,
where a model is overfitted to the complexities of the training data,
hindering its ability to effectively generalize to new and unseen
examples. A powerful technique to circumvent overfitting involves
continuously evaluating the model’s performance on a separate val-
idation dataset during the training phase. While the training data
drive the optimization of the model parameters, the validation data
remain intact. If the model error on the validation set starts to
increase while the training error continues to decrease, this is a clear
signal that overfitting is occurring. At this point, the training pro-
cess can be terminated to preserve the generalization capabilities of
the model.72
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To verify the robustness and reliability of a data-driven model,
it is necessary to perform cross-validation, which involves evaluat-
ing the model’s performance on an independent test dataset that has
undergone both training and validation processes. The estimation
error of the model in this test set should be reasonably small to ver-
ify its ability to generalize effectively and cross-validate its predictive
accuracy. It is important to distinguish between validation data used
to avoid overfitting and the test data used for cross-validation.73

To verify the robustness and reliability of a data-driven model,
it is necessary to perform cross-validation, which involves evaluat-
ing the model’s performance on an independent test dataset that has
undergone both training and validation processes. The estimation
error of the model in this test set should be reasonably small to ver-
ify its ability to generalize effectively and cross-validate its predictive
accuracy. It is important to distinguish between validation data used
to avoid overfitting and the test data used for cross-validation.74

At each iteration of training, both modeling and validation
errors were calculated. The validation error is the error calculated
with the validation datasets (the data used to prevent overfitting,
not the test data used for cross-validation). The coincidence of a
decrease in the modeling error and an increase in the validation error
is a sign of overfitting and triggers the termination of parameter
identification.74

The available dataset, consisting of 51 subjects, was divided
into three subsets: modeling, validation, and testing. The modeling
subset was used to train the MLP network and optimize its para-
meters. The validation subset, separate from the modeling data, was
employed to monitor the network’s performance during training
and prevent overfitting. Finally, the testing subset, which remained
unseen during the training process, served as an independent dataset
for cross-validating the MLP model’s predictive accuracy.

Specifically, the dataset was divided as follows: 70% of the data
(35 subjects) was allocated to the modeling (training) subset, 15% (8
subjects) constituted the validation subset, and the remaining 15%
(8 subjects) formed the testing subset. This division ensured that the
model was trained on a sufficiently large portion of the data, while
reserving separate subsets for overfitting prevention and final cross-
validation, respectively.

RESULTS

The fuzzy subtractive clustering analysis revealed that among
the 49 LIBRA and BALI factors, a subset of 14 variables emerged
as the most influential for estimating diffusion tensor imaging
(DTI) measures. These factors exhibited a greater number of dis-
tinct membership functions within the resulting clusters, indicating
their potential to capture the variability in the data and contribute
significantly to the prediction of DTI measures. The identified influ-
ential variables are as follows: age, level of education, job status,
history of blood pressure, coronary heart disease, antidepressant
drug usage, diabetes control drug usage, physical activity, obesity
(BMI), high cognitive activity, and adherence to a dementia preven-
tive diet from the LIBRA factors, as well as gray matter lesions and
subcortical dilated perivascular spaces (GM-SV), deep white matter
lesions (DWM), and periventricular white matter lesions (PV) from
the BALI factors as shown in Fig. 1.

The MLP neural network, trained on the selected 14 most
influential variables, demonstrated promising performance in esti-
mating DTI measurements. Specifically, the network achieved a
mean squared error (MSE) of 0.000 878 for predicting fractional
anisotropy (FA) on the test set. These results indicate a strong cor-
relation between the predicted and actual DTI measures, suggesting

FIG. 1. Membership functions diagram of fuzzy subtractive clustering analysis for the BALI and LIBRA factors.
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the effectiveness of the proposed approach in leveraging the iden-
tified influential variables for early dementia diagnosis. Specifically,
the network achieved a performance metric of 0.298, representing
the mean squared error between the predicted and actual DTI values.
In addition, the gradient that indicates the rate of change in the error
function during the training process converged to a value of 0.423.
These results highlight the efficacy of the MLP network in learning
the complex relationship between the identified influential variables,
including demographic characteristics, lifestyle factors, medical con-
ditions, and structural brain markers, and the DTI measures known
to be reliable indicators of dementia.

DISCUSSION

The identification of the 14 most influential variables from
the LIBRA and BALI factors has significant implications for the
early diagnosis of dementia and the understanding of brain health.
This multifaceted approach aligns with the current understand-
ing that dementia is a complex condition influenced by various
demographic, lifestyle, and biological factors.

Notably, the inclusion of variables, such as age, education level,
and job status, resonates with existing literature highlighting the
association between cognitive reserve and dementia risk. Individ-
uals with higher educational attainment and mentally stimulating
occupations have been shown to exhibit increased resilience against
cognitive decline, potentially due to the formation of more efficient
neural networks and the recruitment of alternative brain regions
to compensate for deteriorating function. Similarly, the influence
of factors, such as antidepressants and diabetes control drug usage,
underscores the intricate interplay between mental health, metabolic
conditions, and brain health.

In comparison to traditional diagnostic methods relying solely
on neuroimaging or cognitive assessment, the proposed MLP net-
work leverages a comprehensive set of influential variables, poten-
tially enhancing the accuracy and sensitivity of early dementia detec-
tion. Furthermore, the incorporation of lifestyle factors and brain
lesion indices offers a holistic perspective, aligning with the current
emphasis on multimodal approaches in dementia research.

The proposed approach holds promising potential for applica-
tions in clinical practice and public health initiatives. By identifying
individuals at heightened risk of dementia based on the 14 influen-
tial variables, targeted interventions and preventive strategies can be
implemented. Lifestyle modifications, such as dietary adjustments,
increased physical activity, and cognitive stimulation, may be rec-
ommended to mitigate risk factors. In addition, early detection could
facilitate timely treatment initiation, potentially slowing disease pro-
gression and improving the quality of life for patients and their
caregivers.

CONCLUSION

This study presents a novel approach to facilitating early
dementia diagnosis by leveraging a combination of lifestyle fac-
tors and brain structural imaging markers. Through the application
of fuzzy subtractive clustering, a subset of 14 influential variables
was identified from the LIBRA and BALI factors. The MLP neural
network, trained on these selected variables, demonstrated promis-

ing performance in estimating DTI measures, which are widely
recognized as reliable indicators of dementia.

The proposed approach contributes to the field of dementia
research by addressing the need for accessible and cost-effective
screening methods. By circumventing the reliance on resource-
intensive techniques, such as MRI and DTI analysis, the identified
influential variables offer a more feasible alternative for assessing
dementia risk in large populations. The integration of lifestyle fac-
tors and brain structural markers into a unified predictive model
represents a comprehensive and holistic approach, aligning with
the current understanding of dementia as a multifactorial condi-
tion influenced by various biological, environmental, and behavioral
factors.

The potential impact of this study lies in its capacity to
improve dementia screening and early diagnosis, ultimately paving
the way for timely interventions and improved patient outcomes.
By identifying individuals at heightened risk based on influential
variables, targeted preventive strategies, such as lifestyle modifica-
tions and cognitive stimulation, can be implemented. In addition,
early detection could facilitate the initiation of appropriate treat-
ments, potentially slowing disease progression and improving the
quality of life for patients and their caregivers. Furthermore, the
proposed approach holds promise for application in public health
initiatives, enabling the efficient allocation of resources and targeted
interventions for at-risk populations.

SUPPLEMENTARY MATERIAL

This manuscript contains the supplementary material provid-
ing additional details and supporting information for the research
presented. The supplementary material consists of two Appendixes:
Appendix A provides a detailed description of the factors included
in the Lifestyle for Brain Health (LIBRA) framework, including the
rating schemes used to assess each factor’s severity or duration.
Appendix B outlines the factors considered in the Brain Atrophy
and Lesion Index (BALI), along with the rating schemes used to
evaluate the presence and extent of various brain lesions and atro-
phy patterns. These Appendixes offer a comprehensive overview
of the variables explored in this study, facilitating a deeper under-
standing of the multifaceted nature of dementia risk assessment and
the potential contributors to cognitive decline. The supplementary
material aims to enhance the transparency and reproducibility of the
research findings reported in this manuscript.
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