
Radio Environment Maps through Spatial
Interpolation: A Web-based Approach

A. Almazi Bipon, Md Shantanu Islam, A. Taufiq Asyhari, Adel Aneiba and Raouf Abozariba
College of Computing, Birmingham City University, United Kingdom

{abrarjahin.almazibipon, mdshantanu.islam, taufiq.asyhari, adel.aneiba, raouf.abozariba}@bcu.ac.uk

Abstract—The 5G era has seen the largest number of studies
around Radio Environment Maps (REM) than in the previous
three generations combined. Visualization of network coverage on
interactive maps provides contextual information and numerous
benefits to operators, regulators and to the public. In this context,
spatial interpolation and extrapolation techniques are used to
add synthetic data points between measurements to fill gaps in
the data, where techniques such as machine learning, Ordinary
Kriging (OK) and Inverse Distance Weighted (IDW) are used
to enhance the quality of REMs. In this paper we present
a state-of-the-art software package, which integrates a series
of interpolation methods, augmented with polygon intersection
queries functionality to control data used for estimation of
coverage on the roads. The proposed web-based application
is powered by a set of modular Python packages, making it
future-proof and real-world ready, enabling efficient and precise
network management.

Index Terms—Interpolation, Network Analysis, REM software

I. INTRODUCTION

Once were a solution for cognitive radio systems, Radio
Environment Maps (REM) are now becoming indispensable
not only for mobile operators as a tool for network optimiza-
tion but for the telecommunications industry and spectrum
regulators too [1]. A growing number of use cases now depend
on reliable connectivity information in cities and rural areas,
while governmental agencies use REMs to make informed
decisions over spectrum policies and digital equality [2].
A recent application is mission planning for autonomous
vehicles that require network connectivity, where coverage
maps assist in minimizing the time and distance traversed
without connectivity [3]. The contextual information provided
by REMs can also aid in reducing the control signaling
necessary for channel estimation, as shown in a platooning
use case in [4]. Constructing direct radio maps can be achieved
through displaying georeferenced data, acquired by deploying
massive number of spatially dispersed sensor nodes, using
crowdsourcing techniques such as MDT or through drive test
campaigns [5], [6]. These data collection methods are known
to present fundamental limitations, related to data privacy and
costs, leading to an increased reliance on spatial interpolation
methods to address sample data shortages, recovering the
missing values to build local and global REMs. Machine
learning-based techniques such as Inverse Distance Weighting
(IDW), Nearest Neighbor (NN), Random Forest (RF) and
Ordinary Krigging (OK) based interpolation approaches were
all investigated in the literature under a variety of settings

to improve the quality of REMs [7]–[10]. More advanced
algorithms were proposed in the literature to further enhance
the interpolation accuracy and to address the drawbacks of
baseline methods, as shown in [11] and [12]. Other examples
include [13], which uses feedforward neural network (FFNN)
to improve the accuracy of Kriging in macro cells using data
obtained through software defined radios (SDRs).

Despite the vast range of solutions, currently there is no
conclusive evidence pointing to a single solution being uni-
versally superior across all network technologies, data types,
cell sizes and interpolation tasks, as each technique has its
own set of advantages and disadvantages [1]. Applying one
blanket interpolation technique to large sets of data spread over
large areas simply does not work in all cases and can lead to
weak prediction performance and high computation time. For
instance, IDW, which is based on weighted distance averages,
was shown to work best for evenly distributed data points
and is usually favored for its low computational complexity.
However, it is only applicable for microcell environments,
in the range of less than two kilometers wide [12]. On
the other hand, although OK estimates both path loss and
shadowing with acceptable accuracy, it requires estimating
variogram models and solving large systems of equations,
which can be computationally intensive, especially with a
high ratio of sample data (number of traces/road lengths) [1],
[4], [8]. Furthermore, the performance of OK in the presence
of noisy data is quite weak, which limits its application in
practice. Other techniques, such as Nearest Neighbor and
bilinear interpolation, while they offer low complexity, lead
to sharp transitions between the individual signal level zones,
especially at the boundary of a given area [2].

Furthermore, the majority of the solutions in the litera-
ture were investigated under restricted data environments and
scarcity conditions, considering relatively uniform sampling.
For example, a single straight segment of a freeway was
considered in [14], where synthetic dataset was used for
training and tested over propagation data simulated in two
distinct scenarios in Milan, Italy. The work in [8] on the
other hand used walking measurement from a 1.0×1.3km area,
while the results in [7] were based on deterministic training
data modeled on a 200×200m grid.

To the best of our knowledge, there are no published inter-
polation tools, specifically designed to meet the requirements
of cellular network management. Motivated by these observa-
tions and by the quest to combine tools into one application,
our goal is to develop a software package capable of leveraging



Fig. 1. System design and end-to-end workflow implementing customized polygon based area selection, a range of interpolation techniques, and REM.

a host of proven interpolation methods across different tasks
that is more scalable and responsive, while enabling qualitative
and quantitative comparisons of interpolators, allowing users
to choose the best possible solver. We have made the source
code available at https://github.com/nealmegh/srems2, hoping
it’s availability will foster more interest in further research.

The plan of the paper is as follows. Section II provides
an overview of the application, focusing on how we enabled
advanced capabilities. Section III highlights the challenges
faced and how they were overcome. In Section IV, we provide
a brief demonstration of the application and share practical
insights. Section V concludes the paper and outlines future
work.

II. HIGH-LEVEL ARCHITECTURE

We developed a Python-based web application to accelerate
the visualization of REM, using a series of spatial interpolation
methods built using the Django framework. The application
interacts well with standard sklearn and TensorFlow functions
to tightly integrate ML-based interpolation methods, which are
increasingly popular in solving complex interpolation tasks.
The application also incorporates statistical-based methods
such as OK and deterministic algorithms such as IDW. A
breakdown of the main components of the application is
detailed below.

A. Data management:

The application is designed to handle large datasets, con-
sisting of a series of essential radio frequency descriptors
such as latitude, longitude, Reference Signal Received Power
(RSRP), Physical Cell ID (PCI), Signal-to-Noise-Ratio (SNR)
and 4G/5G bands, including new radio (NR) frequencies.
Initially, we used MySQL, a relational database management
system, due to its capabilities of fast execution and efficient
large dataset handling [15]. However, MySQL’s lack of ad-
vanced spatial querying capabilities led to inaccuracies in the
query results, particularly for datasets requiring polygon-based
queries, which aim to accumulate data available only inside
the specified region. To overcome this issue, we migrated
to PostgreSQL 16.1 and installed the PostGIS extension at
the local storage layer, which adds support for geographic
objects. PostgreSQL, a popular database management system
for spatial data storage, is integrated with dynamic indexing
mechanisms, such as R-trees, optimized for efficient querying

of spatial data. While migrating the data to PostgreSQL, we
created an extra column, named location, derived from the
latitude and longitude pairs, providing a point object repre-
senting a single location in a coordinate system. We utilized
django.contrib.gis.geos module in Django’s Geographic Infor-
mation Systems (GIS) framework to create the object. This
column entry converts the dataset to a universally recognized
geospatial format, enhancing its usability to process spatial
queries and operations like area size calculation and proximity
queries.

B. User input:

Spatial interpolation techniques provide the missing dataset
derived from a subset of available measurements to reconstruct
the REM of a given area [16]. It is paramount that the data used
for training and calibrating interpolation tools be from within
the relevant geographic area to minimize noise in the training
data [17]. On the other hand, performing global interpolation
on large areas with global datasets can demand substantial
processing resources. To address this issue, we developed an
interactive interface that enables users to specify geographical
boundaries within their area of interest through a javascript
library for interactive maps called Leaflet JS [18] and Leaflet
Draw, an extension of the map library. Leaflet Draw enables
users to outline polygons, selecting customized boundaries on
a map, confining their targeted area for REM construction,
minimizing processing time. The interface further enables
users to select any interpolation method from the list of
available options in the application, along with data source,
operator, or network generation. The application triggers an
event using Draw.event to capture the coordinates of the
drawn polygon to create a shape. It then performs a query
for data within this shape, utilizing the spatial functionalities
as outlined in Fig. 1. The data retrieved from the query is
subsequently utilized for further REM processing.

C. Interpolation process:

Once the network dataset is filtered by spatial query, the ap-
plication identifies the roads and captures a list of coordinates
within the polygon in 20-meter intervals along the roads that
are not included in the source data utilizing a Python library,
OSMnx [19]. To realize this, we used two different methods:
graph from polygon and graph to gdfs. The first method
requires a geometric shape, which, in our case, is a polygon



Fig. 2. Interpolation controller structure for building, training and prediction.

Fig. 3. Implemented IDW snippet, where distance (d) is calculated through
Euclidian formula, implemented in Python.

and a network-type attribute. OSMnx allows different levels
of road networks to be analyzed, ranging from pedestrian
pathways to drivable roads. We used drive as a default network
type, focusing on street-level analysis. This method generates
a directed graph consisting of the street network within the
defined polygon area, where each node in the graph represents
a road intersection. The second method converts the graph to
GeoDataFrame contains the edge data, representing the street
segments. An edge is a fundamental component that represents
a connection or relationship between two nodes in a graph.
Each row in this DataFrame corresponds to an edge in the
graph, and columns include information, such as the geometry
of the street.

Django framework follows the Model View Controller
(MVC) architecture, a popular structure for frameworks built
with object oriented programming (OOP) language. The appli-
cation is designed to leverage this structure to form individual
classes/models for individual interpolation techniques further
controlled by the interpolation controller. The controller uses
a three-step process to initiate, train, and predict the RSRP
values. Figure 2 illustrates the steps, starting with initializing
the interpolation class selected by the user with the network
source dataset. In the next step, the controller calls the class
to build and train the model with the given dataset. The
application leverages a series of open-source Python based
interpolation packages as listed in Table I. We plan to keep
upgrading the application in the future when more advanced
and developed interpolation techniques become available. In
the final step, the coordinates list from the OMSnx, passes by
the controller to the prediction function and receives a list of
RSRP values tagged with associated latitude and longitude.

D. Mapping and analysis:

Qualitative analysis: REM can be built to illustrate received
signal strength, which are determined by the aggregate effects
of the channel upon the signals transmitted by all active
sources. REM can also be built based on the signal-to-noise-
power ratio (SNR) or the signal-to-interference-plus-noise-
power ratio (SINR) [3]. In this paper the focus is beamed

towards signal strength based REMs through interpolation,
which is of interest to a wider range of user groups. It
is essential to provide statistics and information related to
the quality of empirical estimates, to determine the best
interpolator for a given task. The application appends the
predicted and source data to form a unified list. It passes
this list to Python’s Folium library to construct street-level
REM. Folium interfaces with the Leaflet library, offering
mapping capabilities through a Python API. To enhance the
visual analysis quality of the REM, the application also uses
branca.colormap library to generate a gradient-based heatmap,
which depicts the power distribution of signal strength along
the captured streets. This heatmap utilizes a color gradient
to represent signal strength quality across the area, ranging
from -80 dBm (green) to -120 dBm (red). The heatmap also
features interceptions in consecutive data points that are more
than 200 meters apart, highlighting the network’s continuity.

Quantitative analysis: The prediction algorithms come with
an error in their design. Interpolation of network signal
strength is no exception. More importantly, if interpolation has
been introduced for REM construction, it is crucial to consider
the error metrics before using the map to manage, analyze, or
make decisions on the network infrastructure. The application
uses sklearn.metrics to generate local error metrics such as
RMSE, MAE, R2, and inference latency as shown in Table II
to analyze the prediction performance of the models, enabling
users to solicit the best-possible interpolator. The results can
be more relevant to the area size and volume of the dataset
provided for training. All these parameters are auto-displayed
as an output with any completed interpolation tasks.

TABLE II
APPLICATION’S BUILT-IN MEASUREMENTS METRICS AND STATISTICS.

Learning information Interpolation quality REM metrics

Training duration (sec) MAE Operator Name
Inference duration (sec) RMSE SA/NSA/4G coverage ratio
Total Data Points R2 Channel bands
Polygon area size (km2) MBE RSRP

III. INTEGRATION CHALLENGES OF INTERPOLATION
METHODS

A. Generalization of training data:

A primary challenge in developing the application was
managing different data structures required by various inter-
polation models during the training/calibration, testing, and
prediction phases. For instance, IDW yields distinct predictive
values for each specific point in the dataset, whereas OK
collectively computes these values, generating all predictions
simultaneously. In contrast, methods such as RF and DT
deliver their predictive outputs in a batch format. In addition,
incorporating user-uploaded data within the application, which
might include varying formats of location, cell information
and signal strength data, requires the data structure to be
unified across all employed interpolators. This aspect was
critical to ensure the interoperability of diverse analytical
methods. We developed a protocol for data management,
encompassing detailed labeling (such as latitude and longitude,



TABLE I
INTERPOLATION METHODS AND ASSOCIATED PYTHON LIBRARIES.

Interpolation method: Random Forest Decision Tree Ordinary Kriging GAN IDW

Python library: RandomForestRegressor() SKlearn DecisionTreeRegressor() SKlearn Pykrige OrdinaryKriging: 2D Tensorflow Keras See Fig. 3 [20]

signal strength values, and PCI identifiers) and systematic
restructuring of datasets. This protocol was applied at each
model’s data entry and retrieval stages, enabling data format
uniformity and facilitating seamless integration across varied
interpolation techniques.

B. Measured and uncharted road lists:

The mechanism behind interpolation methods for building
REMs is to treat existing values as input to estimate the
RSRP at arbitrary points on a map as the output. Our aim
is to automatically place the interpolated values on the roads,
within the selected geographic boundary, which were not
previously mapped. This requires obtaining an explicit list of
roads/streets and their associated GNSS coordinates. However,
depending on the data collection method, a subset of roads
may only be partially measured, which can influence how
this part of the area should be interpolated. Initially, we
used the OpenStreetMap’s Overpass API to get the road and
street names in an area of interest. After fetching the names,
we used OSM API to get all the GNSS coordinates and
compare and remove the ones that already have data [21].
However, while effective, this method fails to capture all the
required roads, leaving a subset of the roads uninterpolated.
In addition, the required time for generating the coordinates
list was significantly prolonged due to utilizing two APIs in
the system under sequential processing.

To overcome these obstacles, we adopted the use of OSMnx
instead of Overpass API. This Python package is designed
to simplify the process of downloading, modeling, analyzing,
and visualizing spatial data from OpenStreetMap. Unlike the
OSM API, OSMnx focuses more on network analysis and is
particularly useful for working with street networks with the
ability to save street networks to disk as shapefiles, GraphML,
or SVG files, useful functions in the application. It also utilizes
caching to minimize repetitive data download. Our evaluation
shows that it captures more roads than the first method while
significantly reducing execution time. Table III shows an
example of processing time using the above-mentioned APIs
across three tasks of varied area sizes.

TABLE III
API PROCESSING TIME FOR OBTAINING STREET NAMES AND FILTERING

OUT MEASURED REGIONS.

Area ID Area Size (km2) OSM OSMnx OSMnx w/o Overlapping
1 5.28 32.12 sec 1.97 sec 1622.94 sec
2 3.17 31.32 sec 1.86 sec 942.47 sec
3 1.5 17.01 sec 1.15 sec 56.07 sec

C. Data aggregation:

REM combines the source data and the estimated values
through interpolation methods into an unmarked map. It is fair

Fig. 4. Combining interpolated data with source data. (a) area selected for
interpolation, (b) source data used for training (c) Random Forest interpola-
tion, excluding measured areas (d) collinear problem.

to say that the values obtained using physical measurement
are more accurate than the interpolated values. Due to the
nature of RSRP heatmaps, when interpolated values and real
data overlap, the colour of lines on the map misrepresents
the signal strength and interpolation errors will contaminate
areas with real measurement values as shown in Fig. 4.
This is caused by the so-called collinear points when both
measured and interpolated values fall along a road or street
in the vicinity of each other [22]. This issue arises from the
inherent accuracy limitations of GPS in user devices, typically
around 5 meters, which often results in measurement data
being placed outside of actual roads [3]. In contrast, OSMnx
provides a precise road coordinates list. This discrepancy
leads to a situation where collinear points emerge despite
the efforts to eliminate similar location information from the
coordinates list by comparing these two sets of data to avoid
overlaps. An algorithm was developed to compute the distance
between each OSMnx coordinate and the measurement data.
The coordinate is excluded from the list if this distance is
less than twenty meters. This threshold was chosen based
on the interval of coordinate collection. While effective, this
approach adds complexity and extends the time required for
generating the final coordinates list for interpolation, as shown
in Table III.

D. IDW calculations process:

Network data collection is prone to collect data in irregular
spatial distribution for reasons such as vehicle speed and
network configuration. As mentioned earlier, IDW operates
by assigning weights to data points inversely proportional to
their distance from the estimation point. However, when the
estimation point is in close vicinity to one or more data points,
it produces negligible or zero value in distance, which in turn
creates computational overhead. This scenario is defined as
the IDW zero distance problem [23], which can potentially
interrupt the algorithm’s conventional computation flow. A
filtration is used in response to this issue where distances
amounting to zero are excluded from the weight computation



Fig. 5. Data segregation by PCI, revealing similarities with cell patterns.

process. This adjustment is vital in ensuring the best possible
mapping of the radio network conditions while the IDW
methodology remains consistent and effective, especially when
dealing with spatially dispersed data.

E. Exploiting PCI information:

Several papers assumed the base station coordinates are
known to the interpolation models [24]. However, network data
collected using consumer devices through drive tests lack BS
coordinates as well as CellId data. We used PCI (physical cell
identifier) values as an alternative to cell information, based
on the principle that PCI values are not repeated in smaller
areas to prevent collision and confusion [25]. PCI values can
identify the different cells of a 4G/5G system, which can help
build models based on each cell. This approach can improve
the quality of the RSRP interpolation as shown in [10]. Fig. 5
(left) shows an example from our dataset where a BS coverage
area and the PCIs associated with each sector. Fig. 5 (right)
shows the corresponding heatmap.

The application builds and trains individual models for each
unique PCI in the dataset. It initially groups the data by PCI
number, which enables drawing approximate cell boundaries,
determined by the extremities of latitude and longitude within
the group. The prediction methods work on this type of
model by finding the right PCI model for a given coordinate.
However, this methodology often results in insufficient data for
some PCIs, adversely affecting the performance of deep learn-
ing models. We observed that models can adversely impact the
interpolation quality when the number of training/calibration
samples is below 60. To address this issue, we implemented
a filter to exclude any PCI model with a dataset of 60 or
fewer. Based on the above, we created a new variant for every
interpolation technique considered with PCI as a feature, with
the goal of improving the predictive performance.

IV. EXAMPLE USAGE AND EVALUATION

To evaluate the performance of the application, we em-
ployed a dataset (size: 2 GB, samples: 5.6 million) obtained
from a network survey we conducted across Nottinghamshire
County, UK, spanning rural and urban areas of around 2100
km2. The data collection method and representation of various
metrics is discussed in our previous paper [26].

A. Visualizing interpolated heatmaps:

Fig. 6 shows REM heatmaps of RSRP for an urban area,
considering 9 interpolation methods. The heatmap in the upper

left image highlights that a significant portion of the selected
area lacks source data points on several roads.

The coverage of the source data is bordered on three sides,
with the upper edge exhibiting a greater concentration of data
points. This uneven data distribution is mirrored in the vari-
ance observed across the heatmaps by different interpolation
techniques. Analyzing the uncharted roads in the upper left,
we observe that a consistent pattern among all 9 interpolation
outcomes, predicting the signal strength of these roads from
average to poor quality. On the other hand, the projections of
other regions, especially the roads at the lower center, exhibit
greater variance, with different models estimating coverage
from high to low signal strength. These findings further
strengthen the need for a system capable of carrying out
multiple interpolation methods, given the inconsistency in the
prediction accuracy of these interpolation methods.

B. Statistics of interpolation quality:

Table IV shows the RMSE and R2 of 6 carefully selected
areas, varying in size from approximately 1 to 15 km2, encom-
passing rural and urban regions. The RMSE values illustrate
a deterioration of prediction accuracy in larger areas, with
PCI based models achieving higher accuracy than baseline
models. This improved performance could be attributed to
the localized modeling approach of PCI based interpolation,
which selectively uses sample data, effectively dividing the
target area into several smaller regions. However, this method
reduces the available sample size for each PCI sector, which
could explain the relatively smaller increase in RMSE. It is
important to mention that we considered the weighted average
of RMSE and R2 for PCI based models.

Although OK is widely used for REM construction, our
analysis shows it is rarely the best interpolator when applied
to the street level REM. We encountered a few out of context
RSRP values from the source data, which impacted only OK
while other methods remained unaffected. Further looking at
the R2 values in the table, it is safe to say that GAN suffers
from underfitting and can not perform to its’ potential. This
leads us to avoid implementing a PCI based GAN model. DT
and IDW also presented limited interpolation accuracy across
several regions.

C. Runtime:

Table V presents the training and inference duration of all
interpolation methods across the regions, as detailed in table
IV. We observe that the training duration is the longest in GAN
and shortest in DT, except IDW, which is a deterministic model
and does not require training. Also, the training duration is
directly proportional to the sample size. The extended training
time for PCI based models could result from the additional
building duration of multiple PCI variants. On the other hand,
the inference time depends on a few factors, such as uncharted
area size and road network density. Amongst the interpolators,
PCI IDW inference time is reduced significantly compared to
its baseline model since IDW considers all sample points for
each prediction.



Fig. 6. Heatmaps generated from source and interpolated dataset.

TABLE IV
RMSE & R2 COMPARISON OF A RANGE OF AREA SIZES AND TYPES FOR DIFFERENT INTERPOLATORS.

ID Area type Samples Area Size RF GAN DT IDW OK RF(PCI) DT(PCI) IDW(PCI) OK(PCI)

km2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

1 Urban 1944 1 2.84 0.86 8.31 -0.02 3.25 0.82 3.27 0.83 3.91 0.74 2.60 0.86 2.95 0.82 2.65 0.86 9x105 -5x102

2 Rural 2215 1 2.5 0.85 6.45 -0.02 2.79 0.82 2.66 0.81 4.39 0.55 2.15 0.86 2.61 0.80 2.21 0.86 116.98 -883.8

3 Urban 11519 5 3.35 0.69 5.99 -0.01 4.12 0.54 3.2 0.72 36.72 36.19 3.09 0.66 3.84 0.48 3.02 0.68 4.17 0.35

4 Rural 855 5 4.36 0.92 16.11 -0.02 5.37 0.88 4.49 0.92 7.33 0.78 4.86 0.86 5.20 0.83 5.19 0.86 9.10 0.24

5 Rural 2316 10 3.87 0.85 10.46 -0.01 4.37 0.80 3.83 0.87 7.34 0.45 3.25 0.81 3.73 0.76 3.21 0.84 836.9 -7x104

6 Urban 4638 15 3.75 0.79 8.37 0 4.42 0.71 3.87 0.78 2x104 -7x106 3.35 0.73 3.96 0.64 3.45 0.68 10.30 -15.17

TABLE V
TRAINING AND INFERENCE TIME COMPARISON OF A RANGE OF AREA SIZES AND TYPES FOR DIFFERENT INTERPOLATORS.

(HARDWARE DETAILS: INTEL CORE I7-10750H, 16 GB DDR4 (2933 MHZ) RAM, NVIDIA QUADRO P1000)

ID RF GAN DT IDW OK RF(PCI) DT(PCI) IDW(PCI) OK(PCI)

Training Inference Training Inference Training Inference Training Inference Training Inference Training Inference Training Inference Training Inference Training Inference

1 0.66s 0.51s 4.69s 5.69s 0.01s 0.01s 0s 1.67s 0.42s 0.62s 0.72s 0.42s 0.01s 0.01s 0s 0.2s 0.32s 4.55s

2 0.71s 1.1s 5.15s 13.47s 0.01s 0.02s 0s 4.66s 0.59s 0.77s 0.77s 1.11 0.01s 0.02s 0s 0.57s 0.31s 18.59s

3 4.15s 4.73s 25.05s 67.6s 0.05s 0.09s 0s 123.61s 39.32s 56.88s 4.47s 5.19s 0.05s 0.11s 0s 7.63s 5.9s 927.63s

4 0.38s 5.14s 2.67s 108.79s 0.01s 0.12s 0s 9.5s 0.07s 0.14s 0.49s 5.24s 0.01s 0.1s 0s 0.88s 0.07s 10.49s

5 1.34s 13.53s 5.23s 110.57s 0.01s 0.17s 0s 38.14s 0.59s 1.11s 1.04s 8.74s 0.01s 0.17s 0s 2.53s 0.57s 41.22s

6 1.81s 19.12s 9.81s 251.22s 0.02s 0.34s 0s 184.45s 3.39s 6.83s 1.96 19.11s 0.03s 0.47s 0s 4.3s 0.68s 65.39s

It is possible to program our software package to automati-
cally display the best interpolator quantitively, using numerical
values and training the models asynchronously. However,
visual inspection and comparative analysis are often required
in the context of REMs, which is why we did not attempt to
add this function to our solution.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a REM software toolkit, in-
cluding (i) various baseline spatial interpolation methods with
automatic model training and dynamic learning (ii) polygon
area selection to determine source and target areas with high
precision (iii) and utilized a series of GIS techniques to
accelerate the generation of radio maps and provide high
interactivity. Spatial interpolations are developed to enable
performance comparisons of different interpolations methods,

through a set of system KPIs such as RMSE and R2. The
polygon-search style enables more precise and flexible radio
map reconstruction. Based on our results, it can be concluded
that it is difficult to determine the optimal spatial interpolation
method for a selected target area that minimizes the risk.
Future work should focus on enabling auto-model selection as
a function of the training data by analysing samples before ap-
plying it to an interpolator. Several indicators from the source
data can be used to suggest a safe choice of interpolation,
minimizing RMSE and prediction time.

ACKNOWLEDGEMENT

The financial support by the Local Government Association
(LGA), UK, through its Digital Pathfinders Programme and
the Department for Digital, Culture, Media & Sport (DCMS),
UK, is gratefully acknowledged.



REFERENCES

[1] H. N. Qureshi, U. Masood, M. Manalastas, S. M. A. Zaidi, H. Farooq,
J. Forgeat, M. Bouton, S. Bothe, P. Karlsson, A. Rizwan et al., “Towards
addressing training data scarcity challenge in emerging radio access
networks: A survey and framework,” IEEE Communications Surveys &
Tutorials, 2023.

[2] M. Pesko, T. Javornik, A. Kosir, M. Stular, and M. Mohorcic, “Radio
environment maps: The survey of construction methods,” KSII Trans-
actions on Internet and Information Systems (TIIS), vol. 8, no. 11, pp.
3789–3809, 2014.

[3] D. Romero and S.-J. Kim, “Radio map estimation: A data-driven
approach to spectrum cartography,” IEEE Signal Processing Magazine,
vol. 39, no. 6, pp. 53–72, 2022.

[4] S. Roger, C. Botella, J. J. Pérez-Solano, and J. Perez, “Application
of radio environment map reconstruction techniques to platoon-based
cellular V2X communications,” Sensors, vol. 20, no. 9, p. 2440, 2020.

[5] W. A. Hapsari et al., “Minimization of drive tests solution in 3GPP,”
IEEE Communications Magazine, vol. 50, no. 6, pp. 28–36, 2012.

[6] C. K. Anjinappa et al., “Coverage hole detection for mmWave networks:
An unsupervised learning approach,” IEEE Comms. Letters, vol. 25,
no. 11, pp. 3580–3584, 2021.

[7] E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Channel gain map track-
ing via distributed kriging,” IEEE transactions on vehicular technology,
vol. 60, no. 3, pp. 1205–1211, 2011.

[8] K. Sato, K. Suto, K. Inage, K. Adachi, and T. Fujii, “Space-frequency-
interpolated radio map,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 1, pp. 714–725, 2021.

[9] P. Zhen, B. Zhang, Y.-Q. Xu, Z. Chen, H. Wang, and D. Guo, “Radio
environment map construction based on Gaussian process with positional
uncertainty,” IEEE Wireless Communications Letters, vol. 11, no. 8, pp.
1639–1643, 2022.

[10] C. E. Garcia and I. Koo, “Coverage prediction and REM construction
for 5G networks in band n78,” in 2023 15th International Conference
on Computer and Automation Engineering (ICCAE). IEEE, 2023, pp.
125–129.

[11] Y. Du, H. Wang, and J. Liu, “Radio environment map construction
based on random forest regression,” in 2022 IEEE 22nd International
Conference on Communication Technology (ICCT). IEEE, 2022, pp.
551–556.

[12] H. Xia, S. Zha, J. Huang, and J. Liu, “Radio environment map construc-
tion by adaptive ordinary kriging algorithm based on affinity propagation
clustering,” International journal of distributed sensor networks, vol. 16,
no. 5, p. 1550147720922484, 2020.

[13] K. Sato, K. Inage, and T. Fujii, “On the performance of neural network
residual kriging in radio environment mapping,” IEEE Access, vol. 7,
pp. 94 557–94 568, 2019.

[14] S. Roger, M. Brambilla, B. C. Tedeschini, C. Botella-Mascarell, M. Co-
bos, and M. Nicoli, “Deep-learning-based radio map reconstruction for
V2X communications,” IEEE Transactions on Vehicular Technology,
2023.

[15] M. Reichardt, M. Gundall, and H. D. Schotten, “Benchmarking the
operation times of NoSQL and MySQL databases for python clients,” in
IECON 2021–47th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2021, pp. 1–8.

[16] K. Suto, S. Bannai, K. Sato, K. Inage, K. Adachi, and T. Fujii,
“Image-driven spatial interpolation with deep learning for radio map
construction,” IEEE Wireless Communications Letters, vol. 10, no. 6,
pp. 1222–1226, 2021.

[17] A. Kuznetsova, A. Talati, Y. Luo, K. Simmons, and V. Ferrari, “Efficient
video annotation with visual interpolation and frame selection guidance,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 3070–3079.

[18] P. Crickard III, Leaflet. js essentials. Packt Publishing Ltd, 2014.
[19] G. Boeing, “Osmnx: New methods for acquiring, constructing, analyz-

ing, and visualizing complex street networks,” Computers, Environment
and Urban Systems, vol. 65, pp. 126–139, 2017.

[20] E. Oktavia, I. W. Mustika et al., “Inverse distance weighting and
kriging spatial interpolation for data center thermal monitoring,” in 2016
1st International Conference on Information Technology, Information
Systems and Electrical Engineering (ICITISEE). IEEE, 2016, pp. 69–
74.

[21] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[22] R. Cao, Y. Zhang, X. Liu, and Z. Zhao, “3D building roof reconstruction
from airborne LiDAR point clouds: A framework based on a spatial
database,” International Journal of Geographical Information Science,
vol. 31, no. 7, pp. 1359–1380, 2017.

[23] L. De Mesnard, “Pollution models and inverse distance weighting: Some
critical remarks,” Computers & Geosciences, vol. 52, pp. 459–469, 2013.

[24] R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, “RadioUNet: fast radio
map estimation with convolutional neural networks,” IEEE Transactions
on Wireless Communications, vol. 20, no. 6, pp. 4001–4015, 2021.

[25] A. Zakrzewska, D. Lopez-Perez, L. Ho, H. Claussen, and H. Gacanin,
“Cell ID management in Multi-Vendor and Multi-RAT heterogeneous
networks,” IEEE Transactions on Network and Service Management,
vol. 16, no. 2, pp. 417–429, 2019.

[26] A. A. Bipon, A. Osman, M. S. Islam, A. T. Asyhari, and R. Abozariba,
“Pathfinder: End-to-end automation of coverage mapping of 4G/5G
networks at street level,” in 2023 20th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON).
IEEE, 2023, pp. 375–377.


