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Abstract: Stroke poses a significant health threat, affecting millions annually. Early and precise
prediction is crucial to providing effective preventive healthcare interventions. This study applied
an ensemble machine learning and data mining approach to enhance the effectiveness of stroke
prediction. By employing the cross-industry standard process for data mining (CRISP-DM) method-
ology, various techniques, including random forest, ExtraTrees, XGBoost, artificial neural network
(ANN), and genetic algorithm with ANN (GANN) were applied on two benchmark datasets to
predict stroke based on several parameters, such as gender, age, various diseases, smoking status,
BMI, HighCol, physical activity, hypertension, heart disease, lifestyle, and others. Due to dataset
imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied to the datasets. Hy-
perparameter tuning optimized the models via grid search and randomized search cross-validation.
The evaluation metrics included accuracy, precision, recall, F1-score, and area under the curve (AUC).
The experimental results show that the ensemble ExtraTrees classifier achieved the highest accuracy
(98.24%) and AUC (98.24%). Random forest also performed well, achieving 98.03% in both accuracy
and AUC. Comparisons with state-of-the-art stroke prediction methods revealed that the proposed
approach demonstrates superior performance, indicating its potential as a promising method for
stroke prediction and offering substantial benefits to healthcare.

Keywords: stroke; prediction model; machine learning; ensemble learning

1. Introduction

In the modern era, health is the most critical aspect of every individual’s well-being.
Cutting-edge smart health technologies such as the metaverse, Artificial Intelligence (AI),
and data science are transforming the medical industry [1].

Stroke is a condition that occurs when there is an interruption in the blood supply to
a part of the brain, leading to damage or death of brain cells. Depending on the affected
area of the brain and the timeliness of treatment, stroke can result in both short-term and
long-term effects. Survivors may experience a range of issues, including difficulties with
mobility, speech, and cognitive and emotional functions [2]. There are two types of strokes:
ischemic and hemorrhagic. The World Stroke Organization states that ischemic strokes can
lead to serious diseases, such as ischemic heart disease (IHD), dementia, and Alzheimer’s
disease, while hemorrhagic strokes can result in aneurysm, arteriovenous malformation
(AVM), and transient ischemic attack (TIA) [2].

According to [3], there are over 100,000 stroke cases per year in the United Kingdom
(UK), occurring at a rate of one every five minutes. About 1.3 million people in the UK have
recovered from stroke. Researchers have used AI to build a variety of stroke prediction
strategies, resulting in a huge impact, by allowing for early stroke detection and prompt
patient care. Stroke is also responsible for about 75% of deaths from cerebrovascular disease.
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According to the Office of National Statistics (ONS), 12.7% of the deaths in the UK were
caused by dementia and Alzheimer’s disease in 2018. While the total deaths from ischemic
heart disease (IHD) and cerebrovascular disease have reduced over the years, IHD remains
the leading cause of death among males, while dementia and Alzheimer’s disease account
for 16.5% of deaths in females [4].

According to Stewart [5], the overall number of in-patients diagnosed with stroke in
the UK in 2020/2021 is 128,703. Since more than 100,000 people have had a stroke every
year in the past decade, this is a serious issue that needs to be overcome. Thus, predictive
models are important to predict stroke disease.

Table 1 shows recent studies on the application of machine learning (ML) for predicting
stroke. The outcomes of the existing studies were hindered by insufficient data or results.
Therefore, this research aims to apply several ensemble machine learning methods on two
benchmark datasets to find the best model that can obtain accurate and robust performance.
Since class balancing is a major issue in most of the available datasets, Synthetic Minority
Oversampling Technique (SMOTE) was applied. Afterwards, the methods were evaluated
based on accuracy, precision, recall, F1-score, and area under the curve (AUC) values.

Table 1. Recent studies for stroke prediction.

Author Best Model (Accuracy)

[6] Stacking: 97.4%
[7] Random forest: 97.6%
[8] SVM: 99.9%
[9] Random forest: 78.0%

[10] Naïve Bayes: 82.0%
[11] Weighted voting: 97.0%
[12] DNN: 84.0%
[13] CNN-bi-LSTM: 94%
[14] ANN: 95.3%
[15] Neural network: 77.0%

1.1. Data Analytics in Healthcare

According to the World Health Organization (WHO), there are ten leading causes of
death that contributed to 55% of deaths worldwide in 2019. Among them, seven diseases
were noncommunicable. The main leading cause of death was ischemic heart disease
(contributed to 16% of deaths) followed by stroke (contributed to 11% of deaths) [16]. As
the quantity of digital data gathered within the healthcare industry has been increasing,
more technological advancements were developed to enhance medical diagnostics, early
disease identification, and decision making [17].

Galetsi et al. [18] reviewed 804 studies on big data analytics (BDA) on healthcare and
confirmed the significance of developing analytical techniques that offer health support
and decision making by using automated algorithms. Another study [19], which performed
a systematic literature review on 41 studies in healthcare, concluded that BDA could bring
value to the healthcare industry in terms of conceptual evolution, data governance, decision
support, disease prediction, strategy formulation, and technology development. Thus, this
study focused on applying a data mining approach to stroke prediction, which can enhance
decision making in the healthcare industry.

According to [20], the use of machine learning in medical imaging can be used to
classify and categorize disease patterns. In the recent global pandemic, a review of medical
image analysis of COVID-19 using various deep learning algorithms was conducted in [21],
where convolutional neural network (CNN) was utilized to diagnose COVID-19 disease.

In addition, the authors in [22] and [23] researched diabetic kidney failure disease by
using machine learning, while the authors in [24] performed the prediction of fatty liver
by using machine learning algorithms such as XGBoost, decision tree, and support vector
machine. Prediction of heart disease was performed in [25] by using hybrid random forest



Bioengineering 2024, 11, 672 3 of 21

with the linear model, which obtained 88.4% accuracy. Similar research was performed
in [26], where support vector machine performed well, with 96.72% accuracy. Although
there are numerous studies on different diseases, more research is required to improve the
effectiveness of disease prediction.

1.2. Existing Studies on Stroke Prediction

In [6], predicting stroke with machine learning was investigated by using the Kaggle
dataset [27]. Redundant values reduction, feature selection, data discretization, and SMOTE
class balancing were performed to pre-process the data, while feature importance analysis
using random forest and information gain was performed. The stacking classifier provided
the best accuracy of 98% and an AUC score of 98.9%.

The authors in [10] analyzed the performance of stroke prediction by using the same
dataset [27] and six different ML algorithms. Before training and evaluating each of the
algorithms, data pre-processing, such as handling missing values by mean imputation,
balancing imbalanced data by using undersampling, and label encoding for the categorical
data, was performed on the data. Overall, Naïve Bayes performed well with an F1-score of
82.3%, an accuracy score of 82.2%, a precision score of 79.2%, and a recall score of 85.7%.
Another study [11] used the same dataset [27] but with different pre-processing techniques.
Missing values and label encoding were performed but without handling the imbalanced
data. In addition, a weighted voting classifier was used and improved the accuracy to 97%
and the AUC to 93%.

The authors in [15] proposed different methods on the stroke prediction dataset [27]
by using machine learning algorithms. The authors used principal component analysis
(PCA) to find the maximum variance in the features, and ML algorithms such as neural
network, decision trees, and random forests were implemented. As a result, the neural
network algorithm produced the best results, with 78% accuracy and a miss rate of 19%
based on a specific PCA combination feature.

In [9], three different ML algorithms were applied. One-hot encoding was used instead
of label encoding for the predictors, and several statistical tests, such as the T-test, the
Wilcoxon rank sum test, and the chi-square test, were applied. Feature importance using the
Gini coefficient was used. The authors used random oversampling, random undersampling,
and SMOTE balancing to balance the dataset and evaluate the performance of the ML
algorithms by using the 10-fold cross-validation method. As a result, the best model was
random forest, with 78% accuracy and 71% AUC. The accuracy result on the unbalanced
dataset was better, 95%, but the AUC value was 50%, which essentially indicated that the
model with an imbalanced dataset is not able to differentiate the target variable.

1.3. Potential of Machine Learning and Data Mining in Stroke Prediction

Machine learning and data mining hold significant promise in the realm of stroke
prediction due to their ability to analyze huge datasets, uncover hidden patterns, and
improve prediction accuracy. ML algorithms can manage and analyze large datasets that
are typically found in healthcare, including patient records, medical histories, genetic
information, imaging data, and more. These algorithms excel at modeling complex, non-
linear relationships within the data, leading to more accurate predictions compared with
traditional statistical methods [28].

One of the primary strengths of ML in stroke prediction is the ability of ensemble
methods, such as random forest, ExtraTrees, and XGBoost, to enhance prediction accuracy.
These techniques combine multiple models to reduce the risk of overfitting and improve
generalization to new data by aggregating the results of several models [29]. Furthermore,
ML models can continuously learn from new data, ensuring that predictions remain
relevant and accurate over time, which is crucial in the dynamic field of healthcare, where
new insights and data are constantly emerging [30].

Data mining techniques are invaluable in uncovering associations and patterns that
might not be immediately apparent. For instance, they can identify correlations between
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lifestyle factors and stroke risk that traditional methods might miss [31]. Additionally,
ML algorithms can automatically identify the most relevant features for predicting stroke,
streamlining the model development process and enhancing predictive performance [32].

Another significant advantage of ML in stroke prediction is the ability to provide
personalized risk assessments. By leveraging detailed patient data, ML models enable
healthcare providers to tailor preventive and therapeutic interventions to individual pa-
tients, potentially improving outcomes [33]. Integrating data from various sources, such as
clinical records, imaging, and genetic information, further enhances the model’s ability to
make accurate predictions and offers a holistic view of patient health [34].

Numerous studies have demonstrated the effectiveness of ML in stroke prediction.
Ensemble approaches like random forest and XGBoost have achieved high accuracy and
area under the curve (AUC) scores in predicting stroke risk [35]. High accuracy and
reliable predictions are critical in clinical settings, and ML models that consistently perform
well across different datasets and patient populations are more likely to be adopted in
practice [36].

The potential of machine learning has been discussed, and the existing studies have
been reviewed. The main aim of this paper is to identify the best machine learning model
for stroke prediction by applying data mining methodology and employing various pre-
processing techniques.

2. Materials and Methods

The cross-industry process for data mining (CRISP-DM) approach is used in this study
to investigate the performance of several ensemble machine learning methods in stroke
prediction (Figure 1).

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 23 
 

improve generalization to new data by aggregating the results of several models [29]. 
Furthermore, ML models can continuously learn from new data, ensuring that predictions 
remain relevant and accurate over time, which is crucial in the dynamic field of healthcare, 
where new insights and data are constantly emerging [30]. 

Data mining techniques are invaluable in uncovering associations and patterns that 
might not be immediately apparent. For instance, they can identify correlations between 
lifestyle factors and stroke risk that traditional methods might miss [31]. Additionally, ML 
algorithms can automatically identify the most relevant features for predicting stroke, 
streamlining the model development process and enhancing predictive performance [32]. 

Another significant advantage of ML in stroke prediction is the ability to provide 
personalized risk assessments. By leveraging detailed patient data, ML models enable 
healthcare providers to tailor preventive and therapeutic interventions to individual 
patients, potentially improving outcomes [33]. Integrating data from various sources, such 
as clinical records, imaging, and genetic information, further enhances the model’s ability 
to make accurate predictions and offers a holistic view of patient health [34]. 

Numerous studies have demonstrated the effectiveness of ML in stroke prediction. 
Ensemble approaches like random forest and XGBoost have achieved high accuracy and 
area under the curve (AUC) scores in predicting stroke risk [35]. High accuracy and 
reliable predictions are critical in clinical settings, and ML models that consistently 
perform well across different datasets and patient populations are more likely to be 
adopted in practice [36]. 

The potential of machine learning has been discussed, and the existing studies have 
been reviewed. The main aim of this paper is to identify the best machine learning model 
for stroke prediction by applying data mining methodology and employing various pre-
processing techniques. 

2. Materials and Methods 
The cross-industry process for data mining (CRISP-DM) approach is used in this 

study to investigate the performance of several ensemble machine learning methods in 
stroke prediction (Figure 1). 

 
Figure 1. CRISP-DM methodology [37]. 

2.1. Cross-Industry Standard Process for Data Mining (CRISP-DM) Methodology 
CRISP-DM, which is used for solving several data analytics problems, is adopted as 

a data mining methodology. It consists of six phases: Business Understanding, Data 
Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The literature 
review was conducted in the first phase to understand the problem of stroke prediction 
and identify the research problem and the aim of this study. The other main phases were 
conducted as described in the following sections. 

Figure 1. CRISP-DM methodology [37].

2.1. Cross-Industry Standard Process for Data Mining (CRISP-DM) Methodology

CRISP-DM, which is used for solving several data analytics problems, is adopted
as a data mining methodology. It consists of six phases: Business Understanding, Data
Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The literature
review was conducted in the first phase to understand the problem of stroke prediction
and identify the research problem and the aim of this study. The other main phases were
conducted as described in the following sections.

2.2. Data Understanding

Two datasets were used to train and test the prediction models. The first dataset [27]
includes 12 features, such as gender, age, and previous medical records which might be
associated with a patient’s likelihood of getting a stroke. The attributes of this dataset are
detailed in Table 2.
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Table 2. Stroke dataset description.

Attribute Name Data Type Description

ID Numeric Unique identifier of each patient
Gender Categorical Gender of the patient

Age Numeric Age of the patient

Hypertension Numeric
0 means that the patient does not have

hypertension
1 means that the patient has hypertension

Heart disease Numeric
0 indicates the patient does not have heart

disease
1 indicates that the patient has heart disease

Ever married Categorical “Yes” means that the patient is married
“No” means that the patient is not married

Work type Categorical
The work that each patient does, categorized

into ‘children’, ‘Govt_Job’, ‘Never Worked’, and
‘Self-employed’

Residence type Categorical The residence type of each patient is categorized
into rural or urban area

Average glucose level Numeric The blood glucose level of the patient
BMI (Body Mass

Index) Numeric The BMI of each patient

Smoking status Categorical
The smoking status of patients is categorized

into ‘Formerly smoked’, ‘Never smoked’,
‘Smokes’, or ‘Unknown’

Stroke Numeric The target variable indicates whether the patient
has had a stroke or not

The second dataset [38] includes slightly different features, such as high cholesterol,
cholesterol check, physical activity, and others. The details of these features are shown in
Table 3.

Table 3. The second stroke prediction dataset description.

Attribute Name Data Type Description

Age Numeric Age of the patient in 13 categories

Sex Numeric Patient gender, where (1) is male and
(0) is female

HighChol Numeric Cholesterol in the patient: (0) not high
cholesterol and (1) cholesterol is high

CholCheck Numeric

Cholesterol in the patient, where (0) indicates
no cholesterol check for the past 5 years and
(1) means that there have been cholesterol

checks in the past 5 years
BMI Numeric Body Mass Index

Smoker Numeric
This binary variable indicates whether the

patient has smoked more than 100 cigarettes in
their entire life

HeartDiseaseorAttack Numeric
This is a binary variable which indicates

whether the patient has a history of coronary
heart disease (CHD) or not

PhysActivity Numeric
This variable represents whether the patient
has performed any physical activity for the
past month, where (0) is no and (1) is yes

Fruits Numeric This binary variable indicates whether the
patient consumes one or more fruits per day

Veggies Numeric
This binary variable indicates whether the
patient consumes one or more vegetables

per day

HvyAlcoholConsump Numeric
This binary variable represents heavy alcohol
consumption of more than 14 drinks per week
for men and more than 7 drinks for women.

GenHlth Numeric
This binary variable represents the patient’s
general health on a scale of 1 to 5, where 1 is

excellent and 5 is poor
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2.3. Data Preparation

To gain more understanding about the datasets, different data preparation methods
were adopted, such as feature selection, feature importance, handling missing data, data
balancing, data splitting, and data normalization. For instance, feature selection was
conducted to remove the variables that are not significant for stroke prediction, such as the
‘ID’ variable. Moreover, feature importance using the chi-square test was used to determine
variable importance for modeling.

Feature importance analysis is crucial when working with stroke prediction, as it
identifies key predictors within the dataset, enhancing model performance. By highlighting
the most important features, it guides clinical decision making, helping healthcare providers
focus on relevant factors and improve diagnostic accuracy. This analysis also aids in refining
models for better performance and efficiency and supports personalized medicine by aiding
in preparing treatment plans individual patients.

Python library ‘pandas’ was used to perform data pre-processing. The first step is to
identify the missing values. For instance, 202 missing values were found in the first dataset
and were removed, as the dataset has sufficient data for model training.

Normalization was performed to execute data transformation, converting categorical
data into numerical data by using label encoding and one-hot encoding. The main difference
between the two techniques is that label encoding is performed when the data type is
ordinal and the hierarchy within that attribute matters, whereas one-hot encoding is applied
if ordinal data do not exist. Additionally, data balancing of the class variable ‘stroke’ in both
datasets was performed by using Synthetic Minority Oversampling Technique (SMOTE),
which is an oversampling method to prevent bias or skewness within the stroke prediction
model which would result in an inaccurate prediction.

SMOTE is a method used to address class imbalance in datasets. It works by generating
synthetic examples for the minority class to balance the class distribution. This is achieved
by taking each minority class sample and introducing synthetic examples along the line
segments joining the k minority class nearest neighbors. This technique helps in improving
the performance of classifiers on imbalanced datasets by providing more representative
samples of the minority class [39].

Lastly, data splitting was performed, where the datasets were divided into training
and testing data in an 80:20 ratio. In addition, both the minmax and standard scalers were
applied to the input training dataset to compare the performance of different machine
learning algorithm on the original data without feature scaling, on the data after application
of the minmax scaler, and the data with after application of the standard scaler.

2.4. Modeling

In this paper, several ensemble machine learning methods were trained and tested,
which include random forest, Gradient Boost, histogram-based Gradient Boosting, XGBoost,
LightGBM, CatBoost, and ExtraTrees. In addition, artificial neural network (ANN) with
genetic algorithm was applied to train the prediction model.

Boosting algorithms such as AdaBoost, Gradient Boosting, XGBoost, LightGBM, and
CatBoost, alongside histogram-based Gradient Boosting, are pivotal in reducing bias and
variance in models [40]. AdaBoost (Adaptive Boosting) enhances the performance of
any given learning algorithm by iteratively adjusting the weights of incorrectly classified
instances, thus focusing more on hard-to-predict cases in subsequent iterations. This
method helps reduce bias by improving the accuracy of weak classifiers and transforming
them into strong ones [40].

Gradient Boosting, on the other hand, builds models sequentially, with each new
model correcting the residual errors of the previous ones. This approach effectively reduces
bias and variance by optimizing the loss function during the learning process, resulting in
a strong predictive model. Regularization techniques in Gradient Boosting further help in
mitigating overfitting, making the model robust against noise in the training data [41].
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XGBoost, an advanced implementation of Gradient Boosting, integrates several en-
hancements, such as regularization parameters to control model complexity, tree prun-
ing to eliminate unnecessary splits, and parallel processing for efficient computation.
These features make XGBoost particularly effective in achieving high prediction accuracy
while maintaining a balance between bias and variance, making it a powerful tool for
stroke prediction [42]. Similarly, LightGBM and CatBoost integrate optimizations like
histogram-based algorithms, which accelerate training and enhance performance in large
datasets, further contributing to bias–variance trade-off management [43,44]. Furthermore,
histogram-based Gradient Boosting techniques efficiently process data in histogram bins,
reducing computation time and improving model efficiency [42].

In addition to boosting algorithms, other techniques, such as artificial neural network
(ANN) and genetic algorithm (GA), also contribute to bias–variance management. ANN,
with its ability to capture complex patterns in data, offers another approach to reducing
bias and variance [32]. Genetic algorithm, when used in conjunction with ANN, aids in
optimizing network architecture and hyperparameters, further enhancing model perfor-
mance [45]. By iteratively optimizing the architecture and parameters of ANN by using
GA, this approach maximizes the model’s ability to capture relevant patterns in the data
while avoiding overfitting [45]. Consequently, the combination of GA with ANN provides
a powerful framework for managing bias and variance in predictive modeling tasks.

2.5. Evaluation

Evaluation metrics include accuracy, precision, recall, F1-score, and area under the
curve (AUC), which were used to assess the model performance.

True Positive (TP) reflects the values where both actual and predicted values are
true whereas false negative (FN) reflects values where both actual and predicted are false.
False Positive (FP) reveals where the actual value is false, and the predicted value is true,
whereas True Negative (TN) reflects values where both the actual and predicted outcomes
are negative. The evaluation metric formulas are shown in Table 4.

Table 4. Confusion matrix formula.

Metrics Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall (sensitivity) TP
TP+TN

F1-score 2 × Precision×Recall
Precision+Recall

Specificity TN
FP+TN

The area under the curve (AUC) plots the True Positive Rate (sensitivity) and False
Positive Rate (1—specificity). The AUC is one of the evaluation metrics for binary classifi-
cation problems, as it represents the ability of the model to differentiate the target classes.
Therefore, a high AUC value indicates that the model can distinguish between the positive
and negative classes, while AUC values that are near zero indicate that the model is de-
tecting negative classes as positive ones and vice versa. Lastly, in the case where the AUC
value is equal to 0.5, the model is unable to categorize the target classes, which essentially
makes the model redundant.

Upon completion of model training, the performance of the models was compared
to that of current state-of-the-art stroke prediction models to assess if the proposed model
made a significant advancement for the medical field.

2.6. The Proposed Approach

Figure 2 presents the approach proposed in this study. As presented above, the two
datasets were pre-processed to remove data duplication, missing values, and inconsistent
data. Additionally, variable selection and data transformation were performed to prepare
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the datasets for model training. The datasets were then separated in 80:20 ratios, and
several machine learning methods, including random forest, ExtraTrees, XGBoost, artificial
neural networks (ANN), and genetic algorithm with ANN (GANN) were applied. Upon
completion of model training, hyperparameter optimization and cross-validation were
implemented. Finally, each of the models was evaluated based on its performance on the
two datasets, and the model with the highest performance was reported as the best stroke
prediction model. In addition, a comparison of the best-performing model with current
state-of-the-art stroke prediction models was undertaken.
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3. Experimental Results

To analyze and understand the datasets well before applying the machine learning
methods, Figures 3–11 show the visualization of the first dataset, while Figures 12–19 show
the visualization of the second dataset.
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Figure 3 shows the correlation between the numerical variables within the first dataset.
There are six numerical variables, and none of them shows a strong correlation with the
others. However, a weak correlation of 0.33 was identified between the variables age and
BMI. Another weak correlation of 0.27 was identified between hypertension and age. The
target variable, ‘stroke’, has no strong correlation with the other input variables.

Figure 4 describes four different count plots for the categorical variables in the first
dataset. Firstly, the ‘gender’ variable shows the patient demographics of the dataset, where
approximately 3000 patients were female and the remaining 2000 were male. Thus, 60%
of the patients were female, whereas the remaining 40% were male patients. In terms of
‘work type’, 57% of the patients worked in the private sector, with about 2800 patients, and
a similar number of patients were in the categories self-employed, government-based jobs,
or children. However, a very small percentage of the patients had never worked before.
Regarding the place of residency, 50% of the patients lived in an urban area, whereas the
other half lived in a rural area. Lastly, 38% of the patients had never smoked before, 15% of
the patients were active smokers, 17% of the patients had smoked before, and the remaining
30% had an unknown history of smoking.

Figure 5 illustrates the remaining four different count plots for the binary variables in
the first dataset. Firstly, 65% of the patients had no history of hypertension, whereas 35% of
the patients had hypertension. In terms of heart disease, 95% of the patients had no history
of heart disease, while the remaining 5% of the patients had heart disease. Similarly, 95%
of the patients were married. Lastly, for the target variable ‘stroke’, 95% of the patients in
the first dataset had not had a stroke, which means that the dataset is imbalanced. Thus, a
class balancing technique called SMOTE was implemented during data transformation.

Figure 6 shows the histogram of the age variable categorized based on the target
variable ‘stroke’. Most of the patients who had had a stroke were above the age of 40.
Figure 7 also shows that people aged over 40 with a BMI of around 30 had had a stroke.

Figure 8 shows the histogram of the average glucose level categorized based on the
target variable ‘stroke’. It indicates that patients who had had a stroke had a low average
glucose level of 90–110. A similar trend is also seen in Figure 9, where patients who had
had a stroke had an average glucose level of less than 100.

Figure 10 shows the histogram of BMI based on stroke, which indicates that most
patients who had suffered from stroke were in the range of 30–35. Similarly, in Figure 11,
patients who had had a stroke had the BMI of an overweight person, as a normal BMI is
between 18.5 and 24.9. In summary, patients with these characteristics are at a higher risk
of experiencing a stroke: being overweight, having low average glucose levels, and being
above the age of 40.
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Figure 12 shows the correlation between the numerical variables only within the
second dataset. Unlike the first dataset, there are moderately correlated variables. The
variables ‘physical health’ and ‘general health’ have a moderate correlation of 0.55 followed
by a correlation between ‘different walk’ and ‘physical health’ of 0.49, as well as one
between ‘general health’ and ‘different walk’ of 0.48. Similar to the first dataset, the target
variable ‘stroke’ is not strongly correlated with any of the input variables.

Figure 13 shows the count plot for all the binary variables in the second dataset. Firstly,
52% of the patients had high cholesterol, and 97% of the patients had performed at least
one cholesterol check in the past 5 years. In terms of smoking, 52% of the patients had
never smoked, and 85% of the patients did not have heart disease or had not experienced
a heart attack. Additionally, 70% of the patients had performed physical activities in the
past month. Regarding fruit and vegetable consumption, 61% and 78% of the patients ate
one or more fruits and vegetables every day, respectively, and 95% of the patients did not
consume heavy alcohol; further, 74% of the patients had not had difficulty in walking in
the past month. However, 50% of the patients suffered from diabetes despite their good
eating habits and exercise, and 56% of the patients suffered from hypertension.

Figure 14 describes the patients’ general health for the past month on a scale of 1 to 5
where 1 is excellent and 5 is poor. A total of 80% of the patient population experienced an
excellent to average feeling of their general health for the past month, while the remaining
20% had poor feelings regarding their general health for the past month.

Figure 15 shows the count plot for the target variable ‘stroke’ and clearly shows that
the target variable is not balanced, where 93% of the patients had not been diagnosed with
stroke. Similar to the first dataset, since the target variable is not balanced, the SMOTE
technique was applied to balance the dataset.

The variable ‘mental health’ is visualized on a bar plot as shown in Figure 16, indicating
the number of days on which the patients had poor mental health. A total of 68% of the
patients did not feel that they had a poor mental health day, and 10% of the patients felt
like they had had 1 to 5 days of poor mental health. On the other hand, 6% of the patients
felt like every day for the past 30 days, they had poor mental health.

Similarly, the variable ‘physical health’ is visualized on a bar plot as shown in Figure 17,
indicating the number of days on which the patients experienced physical illness or injuries
in the past month. A total of 56% of the patients were healthy, followed by 11% of the
patients that experienced physical injuries or illness on all the past 30 days. On the other
hand, 18% of the patients had 1 to 5 days of physical injuries or illness.

Figure 18 shows the histogram of BMI based on stroke, which indicates that patients
who had had stroke had a BMI above average (30). Similarly, in Figure 19, which is a scatter
plot based on BMI against physical health based on stroke, many patients had had a stroke
when their BMI was overweight. Additionally, the patient that had less injury and illness
physically also had had a stroke.

Figure 20 shows the top five machine learning models, based on the accuracy on the
first dataset. Both light GBM and random forest algorithms performed well and delivered
high accuracy. However, the best-performing model was the ExtraTrees classifier.

Figure 21 shows that the AUC value of the ExtraTrees classifier is 0.98, which indicates
that the model can differentiate the target class distinctively. The full results of the model
performance on the first dataset are shown in Table 5. Here, we can see that although the
GANN algorithm without feature selection and class balancing is not listed in the top five
performing models, this model obtained an accuracy of 96%. However, the target variable
is not balanced, which creates a biased prediction model.
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Table 5. Model results on the first dataset.

Model
Evaluation Metrics

Accuracy Precision Recall F1-Score AUC

Gradient Boost 97.29% 97.38% 97.29% 97.29% 97%
Histogram-based Gradient Boosting 97.87% 97.89% 97.87% 97.87% 98%

XGBoost 97.87% 97.88% 97.87% 97.87% 98%
LightGBM 98.03% 98.05% 98.03% 98.03% 98%
CatBoost 97.45% 97.50% 97.45% 97.45% 97%

ExtraTrees Classifier 98.24% 98.24% 98.24% 98.24% 98%
Random forest 98.03% 98.05% 98.03% 98.03% 98%

Random forest without feature scaling and class
balancing 94.50% 89.49% 94.50% 91.93% 50%

Random forest with minmax scaler 96.65% 96.72% 96.65% 96.65% 97%
Random forest with standard scaler 85.32% 87.69% 85.32% 85.04% 85%

Random forest without feature scaling + RSCV 97.18% 97.26% 97.18% 97.18% 97%
Random forest with minmax scaler + RSCV 97.29% 97.38% 97.29% 97.29% 97%
Random forest with standard scaler + RSCV 77.77% 84.20% 77.77% 76.55% 77%

ANN without feature scaling and class balancing 94.60% 89.50% 94.60% 91.98% 83%
ANN without feature scaling 92.13% 92.14% 92.13% 92.13% 97%

ANN with minmax scaler 94.89% 94.89% 94.89% 94.89% 99%
ANN with standard scaler 95.43% 95.43% 95.43% 95.43% 99%

ANN without feature scaling + GSCV 87.93% 88.50% 87.93% 87.86% 94%
ANN with minmax scaler + GSCV 95.96% 96.05% 95.96% 95.96% 99%
ANN with standard scaler + GSCV 96.33% 96.38% 96.33% 96.33% 99%

GANN without feature scaling and class balancing 96.03% - - - -
GANN without feature scaling 75.67% - - - -

GANN with minmax scaler 76.79% - - - -
GANN with standard scaler 79.98% - - - -

Figure 22 shows the top five models based on their accuracy on the second dataset. It
shows that applying the standard scaler on random forest on the second dataset reduces
the model performance significantly, while applying the minmax scaler on random forest
produces a better result. As in the first dataset, the ANN algorithm is shown to be suitable
for stroke prediction on the second dataset, achieving an average accuracy of 92%. However,
the best-performing model on the second dataset is random forest without feature scaling
and applying randomized cross-validation, with 96.74% accuracy. Additionally, as seen in
Table 3, the AUC of the model is 0.97, which indicates that the model can differentiate the
target class distinctively. However, the GANN algorithm is not listed in the top five, which
indicates that it is not suitable for stroke prediction. The results of the performance of the
applied models on the second dataset are presented in Table 6.
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Table 6. Model results on the second dataset.

Model
Evaluation Metrics

Accuracy Precision Recall F1-Score AUC

Random forest without feature scaling and class
balancing 92.96% 89.27% 92.96% 90.67% 52%

Random forest without feature scaling 96.40% 96.50% 96.40% 96.40% 96%
Random forest with minmax scaler 96.22% 96.32% 96.22% 96.21% 96%
Random forest with standard scaler 49.61% 62.95% 49.61% 33.07% 50%

Random forest without feature scaling + RSCV 96.74% 96.88% 96.74% 96.73% 97%
Random forest with minmax scaler + RSCV 96.65% 96.79% 96.65% 96.64% 97%
Random forest with standard scaler + RSCV 49.53% 62.38% 49.53% 32.84% 50%

ANN without feature scaling and class balancing 93.65% 87.70% 93.65% 90.58% 81%
ANN without feature scaling 89.38% 89.50% 89.38% 89.37% 96%

ANN with minmax scaler 93.83% 94.01% 93.83% 93.82% 98%
ANN with standard scaler 92.08% 92.33% 92.08% 92.07% 98%

ANN without feature scaling + GSCV 91.27% 91.44% 91.27% 91.26% 97%
ANN with minmax scaler + GSCV 93.17% 93.61% 93.17% 93.15% 98%
ANN with standard scaler + GSCV 91.04% 91.06% 91.04% 91.04% 97%

GANN without feature scaling and class balancing 93.82% - - - -
GANN without feature scaling 72.27% - - - -

GANN with minmax scaler 76.01% - - - -
GANN with standard scaler 73.21% - - - -

4. Discussion

Table 7 compares the proposed model with the state-of-the-art stroke prediction
models. In this comparison, it shows that most of the previous studies used the Stroke
Prediction dataset [27]. Other than that, different evaluation metrics were used in these
studies. Therefore, the comparison was performed according to the available results based
on different data pre-processing techniques.

Table 7. Comparison of proposed model and the current state-of-the-art stroke prediction models.

Author Best
Algorithm Data Pre-Processing Dataset Accuracy AUC

The proposed
model

ExtraTrees
Classifier

SMOTE balancing,
One-hot encoding, and

label encoding

Stroke Prediction Dataset by
[27] 98.24% 98%

[7] Random forest
Normalization and

agglomerative hierarchal
clustering

Open-Source Healthcare
Dataset Stroke Data 97.62% 81%

[8] SVM
Class balancing and

hyperparameter
optimization

Stroke Prediction Dataset
by [27] 99.99% -

[9] Random forest SMOTE balancing

Chinese Longitudinal Healthy
Longevity Study (CLHLS)

dataset for stroke prediction
from 2012 and 2014

78.0% 71%

[10] Naïve Bayes Undersampling class
balancing

Stroke Prediction Dataset
by [27] 82.0% -

[11] Weighted voting Data normalization Stroke Prediction Dataset
by [27] 97.0% 93%

[15] Neural network Principal component
analysis

Stroke Prediction Dataset
by [27] 77.0% -

It is shown that the ExtraTrees classifier is the best-performing model, as it achieved
an accuracy of 98.24%; despite the SVM model by [8] having a better accuracy of 99.99%,
the author did not provide the AUC score, which is an important aspect when evaluating
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a model. The authors in [8,10,11,15] used the same dataset, but their models did not
produce significant results, as they used different methods of data pre-processing and
transformation.

Compared with the other studies, the research works by [7,9] used different datasets,
and their best-performing model is random forest in both cases, achieving 97.62% and 78%
accuracy, respectively. However, the proposed model achieved better overall evaluation
metrics and AUC values.

In terms of AUC, the proposed model achieved an AUC of 98%, indicating strong
discrimination abilities, while the weighted voting algorithm in [11] and random forest
algorithm in [9] had significant AUC scores of 93% and 71%, respectively.

Overall, it is shown that ensemble machine learning models such as ExtraTrees and
random forest algorithm perform well in stroke prediction, achieving particularly high
accuracy and AUC scores. Cross-validation techniques were applied to prevent overfitting
and validate the data. In addition, ANN and GANN were applied and compared with the
ExtraTrees classifier model.

However, complex ensemble models, while they often produce accurate results, can
lack interpretability. Understanding how these models make predictions is crucial, es-
pecially in sensitive domains like healthcare. Challenges in interpretability include the
black-box nature of many ensemble models, as well as their complexity arising from the
combination of multiple base learners. Additionally, the non-linear relationships captured
by ensemble models can further complicate interpretation. To address these challenges
and ensure transparency and explainability, several techniques can be employed. Feature
importance analysis calculates feature importance scores, indicating how much each feature
contributes to the model’s predictions.

Integrating multi-modal data, such as clinical records, imaging data, and genetic
information, is crucial to enhancing predictive accuracy and facilitating personalized
treatment plans for stroke patients. Each data modality provides unique insights into
different aspects of stroke risk and patient health status.

5. Conclusions

This research aimed to predict the risk of stroke at an early stage, which can help
to reduce the death rate and increase the survivor rate in stroke patients. The high num-
ber of stroke cases in the UK in recent years highlights the importance of developing
effective predictive models. This research aimed to develop a predictive classification
model for the occurrence of stroke and assess the performance of the model by using
appropriate evaluation metrics. Additionally, a data mining methodology was used. The
findings indicate that ensemble methods, particularly the ExtraTrees classifier, achieved
the highest accuracy, 98.24%, and the highest area under the curve (AUC), also 98.24%.
This performance is superior to that of other models, including random forest, which also
performed well, with 98.03% accuracy and AUC. These results highlight the effectiveness
of ensemble methods for stroke prediction. Data pre-processing played a crucial role in
improving model performance. The use of Synthetic Minority Oversampling Technique
(SMOTE) for handling class imbalance, along with normalization and feature selection, was
essential. These pre-processing steps ensured that the models were trained on balanced
and well-prepared data, leading to more reliable predictions. When compared with the
existing state-of-the-art stroke prediction methods, the proposed ensemble model demon-
strated superior performance, indicating its potential for clinical application. This finding
underscores the effectiveness of the advanced machine learning techniques employed in
the study.

The integration of various data types, including demographics, medical history, and
lifestyle factors, was emphasized as essential to enhancing predictive accuracy and pro-
viding personalized treatment plans. This multi-modal data integration ensures that
predictions are comprehensive and tailored to individual patients, improving the overall
healthcare outcome. While ensemble methods like ExtraTrees and random forest offer high
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accuracy, this study acknowledges the challenge of interpretability in complex models. To
address this, techniques such as feature importance analysis are proposed, ensuring that
the models remain transparent and explainable. This balance between high performance
and interpretability is crucial for the adoption of these models in clinical settings.
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