
BIRMINGHAM CITY UNIVERSITY

DOCTORAL THESIS

A Streaming Approach to Data
Discrepancy Detection and Adaptation in

Deep Neural Networks

Author:
Lorraine CHAMBERS

Supervisors:
Professor Mohamed GABER

Dr. Hossein GHOMESHI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Data Analytics and Artificial Intelligence Research Group
College of Computing

Faculty of Computing, Engineering and the Built Environment

May 30, 2024

https://www.bcu.ac.uk/
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://www.bcu.ac.uk/computing/research/data-analytics-and-ai
https://www.bcu.ac.uk/computing
https://www.bcu.ac.uk/computing-engineering-and-the-built-environment




iii

Declaration of Authorship
I, Lorraine CHAMBERS, declare that this thesis titled, “A Streaming Approach to Data
Discrepancy Detection and Adaptation in Deep Neural Networks” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





v

BIRMINGHAM CITY UNIVERSITY

Abstract
Faculty of Computing, Engineering and the Built Environment

College of Computing

Doctor of Philosophy

A Streaming Approach to Data Discrepancy Detection and Adaptation in Deep
Neural Networks

by Lorraine CHAMBERS

Deep learning has achieved remarkable success over the last ten years. However,
keeping Deep Neural Networks (DNNs) up to date with changing data remains at
the forefront of creating genuinely practical systems. To address some aspects of
this challenge, this thesis studies the detection of streaming changing data and the
subsequent adaptation of DNNs. The main challenges are to efficiently detect the
changes and update the DNN promptly without forgetting the pertinent older in-
formation. This presents more of a challenge for DNNs than for other traditional
machine learning models as DNNs take longer to train, require more data and suf-
fer from catastrophic forgetting where previously learnt classes are forgotten when
the DNN is adapted to the new data. DNNs are typically used with high dimen-
sional unstructured data as opposed to lower dimensional structured data, which
the streaming literature has focused upon thus far. Hence, DNN adaptation has not
been widely studied in the streaming machine learning literature.

So far, clustering is the preferred method for detecting changes in data however,
this can be slow as a number of instances must be received before a change is de-
tected. A DNN is usually considered as a ’black box’ where, given an input, it pro-
vides outputs, but the specific process by which it arrived at the output is not easily
discernible. Inside this ’black box’ are many artificial neurons which output values
called activations. This thesis investigates if these activations can be used as a dif-
ferent representation of the input data and used as the input to streaming machine
learning models to assist in detecting changing data and in DNN adaptation.

To address this, initially, this thesis proposes a method that handles outlier de-
tection, adding an extra classification of ’unknown’ to DNNs, so known classes are
classified as their class and the detected changed data is classified as ’unknown’. Ac-
tivations are extracted, providing a unique dynamic trajectory of activations for use
with a streaming machine learning clustering model to detect outliers and label them
as unknown. It is shown that the DNN activations can be used as a different repre-
sentation of the input data and used with streaming machine learning techniques in
order to detect outliers. Experiments show that our method outperforms the other
leading open-set classification methods by a minimum of 2% and a maximum of
30% on the F1-Score and is between 5 and 100 times faster.

HTTPS://WWW.BCU.AC.UK/
https://www.bcu.ac.uk/computing-engineering-and-the-built-environment
https://www.bcu.ac.uk/computing


vi

The outlier detection method leads onto offering the second contribution, which
proposes a solution that handles the scenario of novel classes appearing in a stream
of data (known as concept evolution) and DNN adaptation. A novel method of ex-
tracting DNN activations is used with an accuracy volatility concept evolution de-
tection method and DNN adaptation process. Experiments show that our method
outperforms other leading methods with regards to accuracy when placed in the
concept evolution scenario with limited true-labelled data. The results of the exper-
iments are analysed based on accuracy, speed of inference and speed of adaptation.
On accuracy, our method outperforms the next best adaptation method by 27% and
the next best combined novel class detection and CNN adaptation method by 24%.
On speed, our method is within 1.5ms of the fastest inference speed and within 1.6s
of the fastest DNN adaptation speed.

Thirdly, this thesis proposes a method that handles the more advanced prob-
lem of concept drift detection and DNN adaptation in drift pattern scenarios. DNN
activations from multiple hidden layers are used with our novel ensemble drift de-
tection and DNN adaptation method. Experiments show that our method overall
outperforms other leading methods of detecting concept drift and DNN adaptation
in all drift scenarios. We compare with eleven other leading methods of drift de-
tection, adaptation and combined detection and adaptation methods. Our method
outperforms other leading drift detection methods by between 8% and 46% on F1-
Score, and other leading drift detection and adaptation methods by between 5% and
20% on accuracy. Our method is within 1.1ms of the fastest inference speed and 7
times faster than other adaptation methods.

These three methods culminate to provide the overall contributions of this thesis,
which are: (1) The application of methods to extract activations from DNNs, pro-
viding more features than the input data, termed by us as activation classification
footprints; and (2) applying these footprints to our own drift detection and DNN
adaptation methods in order to detect and adapt to outliers, concept evolution and
concept drift. The use of DNN activations in streaming machine learning models to
detect data changes and in DNN adaptation offers a unique perspective in this re-
search area and is a step forward towards realising fully adaptive continuous deep
learning systems.



vii





ix

Acknowledgements
First and foremost, I would like to extend my sincerest gratitude to my supervi-
sors, Prof. Mohamed Gaber and Dr. Hossein Ghomeshi, and my original second
supervisor, Dr. Zahraa Abdallah, for their continuous support, guidance, and infi-
nite patience throughout my PhD journey. Their expertise and insights have been
invaluable. Thank you to Mohamed who was instrumental in my endeavour of a
PhD instead of a Master’s degree. Although at times I wished I had just pursued
a Master’s, now I am forever grateful and appreciative of this opportunity. Thank
you to Hossein, whose perspective and encouragement was very much appreciated,
especially having been through the same process only a few years previously. Also,
thank you to Zahraa for the first year of insight, guidance and support.

Thank you to the BCU scholarship for the financial support that made this re-
search possible and to the Doctoral Research College (DRC) for their administrative
support. I am also thankful for the collaboration and support from colleagues and
fellow PhD students at the Data Analytics and Artificial Intelligence (DAAI) research
group, who made my PhD experience both enjoyable and memorable.

I would like to thank all of my friends endless patience, waiting for me to so-
cialise, and sometimes insisting on socialising with me anyway, ensuring that I re-
mained rounded. Thank you to Christina and Luzia for being you and making me
laugh; to Jill, Lesha and Mandy for the holidays; and to Lucy, Ce, Ruby, Linda and
others who have assisted me in a different perspective on everyday life that has
helped tremendously in belief of myself and my PhD. Also, thank you to my wider
group of friends in my village who have been asking for years if I have finished yet.
Especially to Roger - no I haven’t taken over the world yet! I could not face any of
you if I didn’t complete this, so thank you for the motivation.

A special thank you to my family, although shying away from the technical de-
tails, their support and words of encouragement have provided me with much com-
fort. A very special thank you to my partner Andy, who has been instrumental in
this endeavour and who’s unwavering patience, encouragement and support can-
not be put into words, without whom, this would have been a far harder journey.
Thank you to my stepson, Josh (who is just at the beginning of his PhD journey - you
can do it!) and his wife, Ariel for their support and encouragement. And to my other
stepson George, gone far too early, who understood far more about my PhD than he
ever thought he did - thank you for being you and entertaining your father while
I was too busy. There are too many people to mention all by name, but a sincerest
thank you to everyone who has touched my life during this time.





xi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Data Discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Data Discrepancy Detection and DNN Adaptation: A Review 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Open-Set Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Data Discrepancy Detection and Adaptation for Streaming Images . . 19

2.3.1 Concept Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Online Convolutional Neural Network Adaptation . . . . . . . . . . . 24
2.5 Discrepancy Detection and Adaptation Taxonomy . . . . . . . . . . . . 28
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Background for Proposed Solutions 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 39
3.4 DNN Activations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Activation Usage in Discrepancy Detection . . . . . . . . . . . . 45
3.4.2 DNN Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.3 Activation Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Jensen Shannon Divergence . . . . . . . . . . . . . . . . . . . . . 51
3.4.5 DNN Image Retrieval Descriptors . . . . . . . . . . . . . . . . . 53

3.5 Streaming Machine Learning Models . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Micro-cluster-based Continuous Outlier Detection . . . . . . . . 55
3.5.2 Hoeffding Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xii

3.5.3 Self Adjusting Memory k-Nearest Neighbours . . . . . . . . . . 59
3.6 Concept Evolution and Concept Drift Definition . . . . . . . . . . . . . 62

3.6.1 Drift Detection Review . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.2 Drift Detection Method . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 DeepStreamOS: Open-Set Classification in DNNs 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 DeepStreamOS System Description . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Activation Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Data Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 AdaDeepStream: Streaming DNN Adaptation to Concept Evolution 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 AdaDeepStream System Description . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Activation Reduction - JSDL . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Activation Reduction - DS-CBIR . . . . . . . . . . . . . . . . . . 98
5.2.3 Concept Evolution Detection . . . . . . . . . . . . . . . . . . . . 99
5.2.4 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Data Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 DeepStreamEnsemble System Description . . . . . . . . . . . . . . . . . 121

6.2.1 Activation Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Concept Drift Detection . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Data Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Conclusion 147
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Drift Detector Experiments 155



xiii

B Additional Results for Chapter 4 - DeepStreamOS 159
B.1 DNN Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2 DNN Prediction Accuracy Investigation Results . . . . . . . . . . . . . 162
B.3 Results of Parameter Investigation . . . . . . . . . . . . . . . . . . . . . 164

C Additional Results for Chapter 5 - AdaDeepStream 167
C.1 DNN and Streaming Classifier Accuracies . . . . . . . . . . . . . . . . . 167
C.2 Drift detection on pairs of novel classes . . . . . . . . . . . . . . . . . . 169
C.3 Novel Class Accuracy Results . . . . . . . . . . . . . . . . . . . . . . . . 172

D Additional Results for Chapter 6 - DeepStreamEnsemble 175
D.1 DNN and Streaming Classifier Accuracy . . . . . . . . . . . . . . . . . . 175
D.2 CIFAR-10 and CIFAR-100 Drift Detection Analysis . . . . . . . . . . . . 176

Bibliography 181





xv

List of Figures

1.1 Linear and Non-Linear Classification Boundary Examples. . . . . . . . 5
1.2 Representation of a biological and an artificial neuron. . . . . . . . . . . 5
1.3 Types of neural network activation functions. . . . . . . . . . . . . . . . 6
1.4 Patterns of data drift applied over time . . . . . . . . . . . . . . . . . . 7
1.5 Class and Sub-Class Classification Boundary Examples. . . . . . . . . . 12
1.6 Hierarchical representation of the contributions to this thesis . . . . . . 13

2.1 Discrepancy Detection and CNN Adaptation Methods . . . . . . . . . 30
2.2 Proposed taxonomy for data discrepancy detection and adaptation so-

lutions for streaming images . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Proposed taxonomy for streaming detection and online CNN adapta-

tion solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 VGG16 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Examples of feature maps from block outputs . . . . . . . . . . . . . . . 41
3.3 Simple Representation of Convolutional and Fully Connected Layers . 41
3.4 Graphical Representation of Convolution . . . . . . . . . . . . . . . . . 42
3.5 Distributions of the activations at the final convolution layer of VGG16 53
3.6 Representation of an important neuron projected back into the a con-

volutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Example MCOD clusters for k=4 in an MCOD clusterer . . . . . . . . . 55
3.8 Decision Tree Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 SAM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10 Types of Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 DeepStreamOS System Overview. . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Total number of classes against F1-Score. . . . . . . . . . . . . . . . . . 76
4.3 F1-Scores for CIFAR-10 Class data combinations. . . . . . . . . . . . . . 82
4.4 F1-Scores for Fashion-MNIST Class data combinations. . . . . . . . . . 83
4.5 F1-Scores for CIFAR-10 Sub-Class data combinations. . . . . . . . . . . 84
4.6 F1-Scores for Fashion-MNIST Sub-Class data combinations. . . . . . . 85

5.1 AdaDeepStream System overview . . . . . . . . . . . . . . . . . . . . . . 96
5.2 UMAP representations of reduced activation training data for six classes

in the CIFAR-10, CIFAR-100 and Fashion-MNIST datasets . . . . . . . 100
5.3 Overview of the DSAdapt adaptation method . . . . . . . . . . . . . . 104
5.4 Temporal types of concept evolution patterns . . . . . . . . . . . . . . . 105
5.5 Categorical types of concept evolution patterns . . . . . . . . . . . . . . 105
5.6 Number of novel classes against accuracy for DS-CBIR VGG16 CNN,

CIFAR-100 for all concept evolution patterns. . . . . . . . . . . . . . . . 111
5.7 Number of novel classes against Accuracy for JSDL VGG16 CNN,

CIFAR-100 for all concept evolution patterns. . . . . . . . . . . . . . . . 111

6.1 Class boundaries for concept evolution and concept drift. . . . . . . . . 120



xvi

6.2 Overview of the DeepStreamEnsemble system . . . . . . . . . . . . . . . 123
6.3 UMAP representations of reduced activation training data for each

block and final hidden layer of VGG16 CNN . . . . . . . . . . . . . . . 127
6.4 Intensity of concept drift against accuracy . . . . . . . . . . . . . . . . . 143

B.1 Variation of F1-Score with DNN prediction accuracy . . . . . . . . . . . 162
B.2 Radius, R against F1-Score for class data combinations. . . . . . . . . . 164
B.3 Radius, R against F1-Score for sub-class data combinations. . . . . . . . 165

C.1 Number of novel classes against accuracy for DS-CBIR, VGG16 CNN,
CIFAR-10 for all concept evolution patterns. . . . . . . . . . . . . . . . . 172

C.2 Number of novel classes against accuracy for DS-CBIR, VGG16 CNN,
Fashion-MNIST for all concept evolution patterns. . . . . . . . . . . . . 172

C.3 Number of novel classes against accuracy for JSDL, VGG16 CNN,
CIFAR-10 for all concept evolution patterns. . . . . . . . . . . . . . . . . 173

C.4 Number of novel classes against accuracy for JSDL, VGG16 CNN,
Fashion-MNIST for all concept evolution patterns. . . . . . . . . . . . . 173

D.1 Total number of classes against F1-Score. . . . . . . . . . . . . . . . . . 176
D.2 Drift detection example for CIFAR-10. . . . . . . . . . . . . . . . . . . . 178
D.3 Drift detection example for CIFAR-100. . . . . . . . . . . . . . . . . . . 178
D.4 UMAP representations of reduced activation training data for each

block and final hidden layer of VGG16 CNN . . . . . . . . . . . . . . . 179



xvii

List of Tables

2.1 Overview of the approaches for concept evolution detection and adap-
tation solutions for streaming images . . . . . . . . . . . . . . . . . . . . 21

2.2 Overview of the approaches for concept drift detection and adapta-
tion solutions for streaming images . . . . . . . . . . . . . . . . . . . . . 23

2.3 Overview of the approaches for online CNN adaptation . . . . . . . . . 28
2.4 Overview of the approaches for data discrepancy detection with CNN

adaptation and online CNN adaptation solutions for streaming images 29

3.1 Calculation of the number of activations for VGG16 CNN . . . . . . . . 44
3.2 Overview of the approaches for using activations in discrepancy de-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Summary of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 CIFAR-10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Fashion-MNIST Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 CIFAR-10 Category Combinations . . . . . . . . . . . . . . . . . . . . . 82
4.5 Fashion-MNIST Category Combinations . . . . . . . . . . . . . . . . . . 83
4.6 Sub-Class Category Combinations . . . . . . . . . . . . . . . . . . . . . 84
4.7 Fashion-MNIST Sub-Class Category Combinations . . . . . . . . . . . 85
4.8 Average and standard deviation (SD) for dataset F1-Scores . . . . . . . 86
4.9 Average and standard deviation (SD) for time per instance . . . . . . . 87

5.1 Summary of main symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Class data combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Average accuracy after CNN adaptation for each concept evolution

pattern for DS-CBIR activation reduction. . . . . . . . . . . . . . . . . . 112
5.4 Time per instance and rank . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Adaptation time and rank . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Summary of main symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Super-classes and sub-classes . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 Sub-class data combinations . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Drift detection module comparison. The average F1-Score for each

drift pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.5 Overall system comparison . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6 Drift detection time (ms) and rank. . . . . . . . . . . . . . . . . . . . . . 141
6.7 Adaptation Time and accuracy after adaptation for ODI methods. . . . 141
6.8 Time per instance and accuracy after adaptation for combined concept

drift detection and adaptation methods . . . . . . . . . . . . . . . . . . 141

A.1 Experimental Results for MobileNet DNN, Extremely Fast Decision
Tree Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Experimental Results for VGG16 DNN, Extremely Fast Decision Tree
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xviii

A.3 Experimental Results for MobileNet DNN, Hoeffding Decision Tree
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4 Experimental Results for VGG16 DNN, Hoeffding Decision Tree Meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.1 Initial training accuracies for novel class DNNs . . . . . . . . . . . . . . 160
B.2 Initial training accuracies for novel sub-class DNNs . . . . . . . . . . . 161

C.1 Training accuracies for VGG16 DNN and Hoeffding Tree Streaming
Classifier (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.2 Drift detection on pairs of novel classes for VGG16 CIFAR-10 . . . . . . 170
C.3 Drift detection on pairs of novel classes for VGG16 Fashion-MNIST . . 171
C.4 Average accuracy after CNN adaptation for each concept evolution

pattern for JSDL activation reduction . . . . . . . . . . . . . . . . . . . . 174

D.1 Initial training accuracies for VGG16 DNN and Hoeffding Tree Stream-
ing Classifiers (SC0 to SC5) . . . . . . . . . . . . . . . . . . . . . . . . . 175



xix

List of Abbreviations

ADWIN Adaptive WINdowing
AI Artificial Intelligence
CBIR Content Based Image Retrieval
CF Continuous Forgetting
CNN Convolutional Neural Network
CPE CNN based Prototype Ensemble
DD Drift Detection
DDM Drift Detection Method
DNN Deep Neural Network
DS Deep Stream
ER Experience Replay
HDDMW Hoeffding Drift Detection Method using the statistical W-test
iCARL incremental Classifier And Representation Learning
JS Jensen Shannon
JSDL Jensen Shannon Divergence Last
KSWIN Kolmogorov-Smirnov WINdowing
LwF Learning without Forgetting
MCOD Micro-cluster-based Continuous Outlier Detection
MINAS MultIclass learNing Algorithm for data Streams
MIR Maximally Interfered Retrieval
OCDD One Class Drift Detector
OCI Online Class Incremental
OCL Online Class Learning
ODI Online Domain Incremental
OOD Out Of Detection
PAC Probably Automatically Correct
ReLU Rectified Linear Unit
RSB Reactive Subspace Buffer
RV ReView trick
SAM-kNN Self Adjusting Memory k-Nearest Neighbours
TENT Test ENTropy
UDA Unsupervised Domain Adaptation





1

Chapter 1

Introduction

1.1 Preamble

Humans have imagined or used intelligent machines dating back to philosophers

and mathematicians from as long as three thousand years ago [155]. More recently,

in the 1950’s, Alan Turing explored the mathematical possibility of artificial intel-

ligence and discussed how to build intelligent machines and how to test their in-

telligence [174]. However, at that time computers could be told what to do but

couldn’t remember what they did and were also extremely expensive [174]. A few

years later, the term Artificial Intelligence was conceived by McCarthy et al. [124]

and encompasses ’intelligent behaviour’ in computers. Different techniques were

investigated and as computers became faster, cheaper and more accessible, Machine

Learning arose as a sub-field of Artificial Intelligence, using statistical modelling to

automatically improve algorithms from data observations. Subsequently, in the big-

data age, with the ability to store and process more data, Deep Learning emerged as

a sub-field of machine learning.

Deep Learning is concerned with algorithms inspired by the structure and func-

tion of the brain and use models called Deep Neural Networks (DNNs). They re-

quire large amounts of data and computing power. DNNs are widely used in the

data streaming field due to the volume of data available from sources such as In-

ternet of Things (IoT) sensors [130]. The McKinsey’s report on the global economic

impact of IoT [126] estimates that the annual economic impact of IoT in 2030 could

be up to $12.5 trillion globally in areas such as healthcare, home, retail environments,



2 Chapter 1. Introduction

offices, production environments, vehicles and cities. In many other real-world sce-

nario’s, the data that DNNs use is also often in a streaming environment with emerg-

ing data that the DNN has not seen before. In this thesis, this new unseen data is

referred to as data discrepancies.

Data discrepancies affect performance in DNNs, causing incorrect classification.

This can have catastrophic implications as DNNs are employed in important areas

such as healthcare, finance and transportation. They are being used to develop sys-

tems that can help doctors diagnose diseases more accurately, such as cancer [112].

In finance, they assist in detecting serious crimes such as credit card and insurance

fraud [2]. In transportation, DNNs are instrumental in developing self-driving cars

and trucks, and exist in systems such as the Tesla Autopilot and Full Self-Driving

features [182]. Incorrect classification is extremely critical in systems such as au-

tonomous vehicles as this may result in catastrophic circumstances. In 2022 in Amer-

ica, self-driving systems were involved in 392 car crashes; six people were killed and

five were seriously injured [134]. In 2021, The National Law Review (for America)

reported that, "on average, there are 9.1 self-driving car accidents per million miles

driven, while the same rate is 4.1 crashes per million miles for regular vehicles" [185].

Various safety incidents have been reported in the media such as Google’s self driv-

ing car hitting a bus [106] and a Tesla driver’s fatal crash [199]. In these circum-

stances, data discrepancy detection and recognition of previously unseen objects is

essential.

The remainder of this introduction provides an overview of the main topics of

this thesis in order to set the context. Section 1.2 briefly sets the scene and introduces

streaming machine learning, DNNs and our definition of data discrepancies. Section

1.3 introduces the main research for data discrepancy detection and DNN adaptation

alongside the key challenges. Sections 1.4 and 1.5 provide the problem definition

and the aims and objectives. Section 1.6 lists the main contributions. Section 1.7

lists the publications that comprise the main chapters, with Section 1.8 providing an

overview of the content of the thesis.



1.2. Background 3

1.2 Background

1.2.1 Machine Learning

Machine learning encompasses many types of models. These models can be cat-

egorised into supervised, unsupervised and reinforcement learning. Supervised

methods use labelled datasets to train models to those labelled outcomes. The two

main applications for supervised methods are classification and regression prob-

lems. Classification converts an input to one or more discrete values. For instance,

the dataset may be a set of images that also have the labels describing what those

images are. Regression converts an input into a projected number (a continuous

value). For instance, estimating the price of a property or a trend in stock prices. Un-

supervised methods operate with unlabelled data, where the results are unknown.

It is used to explore the structure of the information, discovering hidden patterns

or groupings without the need for human labelling. For instance, grouping similar

photographs together, or Google grouping news items with similar content [40]. Un-

supervised learning also encompasses unsupervised transformations where a differ-

ent representation of the data is created that might be easier for machine learning

models or humans to understand. For instance, reducing data to two dimensions

so it can be visualised [133]. Reinforcement learning involves acquiring knowledge

about how to respond to situations (mapping situations to actions) in order to max-

imise a numerical reward. The learner is not explicitly instructed on which actions

to take but instead must determine through trial and error which actions result in

the highest reward. Actions have an impact on the immediate reward and may

also influence the subsequent situation and other subsequent rewards. This trial-

and-error search and delayed reward are important characteristics of reinforcement

learning [179].

Typically, in classification, a static set of labelled data is used to train and test

a model (classifier). Techniques that re-use or split data during training are used

to assess the prediction ability of the model such as hold-out or cross-validation.

Hold-out is a common technique which splits the dataset into two subsets: One for

training the model and one for evaluating its performance, to estimate how well the



4 Chapter 1. Introduction

model is likely to perform on new, unseen data. Cross-validation is a re-sampling

technique. It involves splitting the dataset into multiple subsets, or "folds" of equal

size to repeatedly train and evaluate the model. The classifier will be fitted with

the labelled training data and afterwards, test data is used to assess the classifiers

performance. One field where classification is common is in Computer Vision, which

focuses on analysing and understanding digital images and transforming them into

descriptions [53], with deep learning playing an essential role [181].

In many real-world applications, data is in the form of data streams. Handling

data streams is more challenging than static datasets for the following reasons: (1)

Data streams contain large amounts of continuous data points with time and mem-

ory constraints. Each data point is only processed once. (2) Static data techniques

such as holdout or cross-validation are not suitable for data streams due to infinite

size and high volume of data, where training cannot be independent from testing

the updated model. (3) The underlying distribution of the data often changes. These

reasons have resulted in the development of new streaming models or modification

of existing static models to facilitate learning from data streams [65]. Often stream-

ing machine learning models will be trained with static data (offline) and retrained

using new data from the changing data stream (online). In this thesis, changing data

is referred to as Data Discrepancies and the retraining of models is called Adapta-

tion. This thesis focuses on detecting data discrepancies and adapting DNNs to this

new data. These DNN models contain multiple layers with each layer consisting of

many artificial neurons.

1.2.2 Deep Neural Networks

Many machine learning classification methods can only divide classes via a linear

boundary as shown in Figure 1.1 (a) whereas DNNs are able to provide highly non-

linear classification boundaries as shown in Figure 1.1 (b).

The artificial neuron is inspired by the biological neuron. Figure 1.2 (a) shows a

biological neuron and Figure 1.2 (b) shows an artificial neuron as used as the sim-

plest element of a DNN. In a biological neuron, signals are received from the den-

drites, and sent down the axon when a high enough signal is received. This outgoing

signal can then be used as another input for other neurons, repeating the process.



1.2. Background 5

(a) Linear Prediction (b) Non-Linear Prediction

FIGURE 1.1: Linear and Non-Linear Classification Boundary
Examples.

(a) Biological Neuron

(b) Artificial Neuron

FIGURE 1.2: Representation of a biological and an artificial neuron.

Some signals are more important than others and can trigger some neurons to fire

more easily. Connections can become stronger or weaker and new connections can

appear while others disappear [51]. The artificial neuron mimics most of this process

by having weighted input signals into an activation function and outputs a signal if

the sum of these weighted inputs reach a certain bias. The output of the activa-

tion function is a numerical value called an activation. Common activation func-

tions are Sigmoid, Tanh (hyperbolic tangent) and ReLU (Rectified Linear Unit) [67].

Early neural networks used Sigmoid and Tanh, with ReLU being recommended for

most networks [67]. Figure 1.3 shows the aforementioned types of activation func-

tions. The performance of a DNN can be enhanced by the selection of the activation



6 Chapter 1. Introduction

function, with non-linear functions able to produce a highly non-linear classification

boundary. A DNN consists of many of these activation functions. They combine to

produce an overall function that culminates into a complex classification boundary

depending on the number of the artificial neurons. DNNs require large amounts of

data and computing power but have dramatically improved speech recognition and

visual object recognition amongst many other domains [105].

(a) Sigmoid (b) Tanh (c) ReLU

FIGURE 1.3: Types of neural network activation functions.

Deep learning models are engineered systems inspired by the biological brain

but they are generally not designed to be realistic models of biological function [67].

Not enough is known about biological learning in neuroscience to be able to offer

much guidance for the learning algorithms. The general media often emphasise

the similarity of deep learning to the brain. However, deep learning should not be

viewed as an attempt to simulate the brain [67].

DNNs were designed for a static data environment, where all data is available

in advance. They can only predict classes they are trained on. Hence, if a DNN

was trained to predict labels for images of cats and dogs; if an image of a frog was

presented, the DNN can only predict a cat or a dog. In most real-world situations,

data is streaming and changes over time. This means that the DNN could incorrectly

classify instances. Confidence is required in deep neural networks operating in a

streaming environment so that unseen instances that vary from the training data

will be automatically captured.

1.2.3 Data Discrepancies

In real-world scenarios involving machine learning, data often evolves over time.

This changing data plays a pivotal role in both challenging and refining the capa-

bilities of algorithms. Handling this changing data is a critical aspect of machine



1.2. Background 7

learning because it can lead to skewed model performance and inaccurate predic-

tions. The ability to adapt and learn is what ultimately enhances the robustness

and reliability of machine learning systems in real-world applications. The data dis-

crepancies that this thesis addresses are Outlier Detection, Concept Evolution and

Concept Drift. Outlier detection is concerned with identifying instances that stand

out from the training data [29]. Concept Evolution is where a completely new class

is seen that the deep neural network was not trained on. Concept Drift is where

changes in data cause incorrect classification but no new class arises (this could be

in patterns of incremental, recurrent, gradual or abrupt) [59]; Figure 1.4 shows a

graphical representation of the drift patterns.

Abrupt patterns, as shown in Figure 1.4 (a) is where the concept changes from

one concept to another suddenly. A real-world example of this may be the replace-

ment of a sensor in an industrial setting, where the new sensor has a different calibra-

tion. The incremental pattern, as shown in Figure 1.4 (b) is where the change consists

of many intermediate concepts (i.e. a sensor slowly fails and becomes less accurate).

The gradual pattern, as shown in Figure 1.4 (c) is where one concept changes into an-

other slowly (i.e. a user of a house advertising outlet may have an interest in looking

to buy a home but may still have an interest in rental homes and keeps going back to

the previous interest for some time). The reoccurring pattern as shown in Figure 1.4

(d) is where previously seen concepts may reoccur after some time (i.e. in cyclically

reoccurring fashions) [59]. An outlier is shown in (e) for comparison. This is not a

drift pattern but a one-off instance that deviates from the expected data.

(a) Abrupt (b) Incremental (c) Gradual (d) Reoccurring (e) Outlier
(not a drift pattern)

FIGURE 1.4: Patterns of data drift applied over time. Colours
represent different distributions (adapted from [57]).

Detection of discrepancies can be performed at different levels such as at instance-

level or at the window-level. At instance level, each individual instance is examined

to ascertain if it is outside the expected norm i.e. outlier detection. At window-level,

a window of data is analysed collectively via i.e. a statistical summary method and



8 Chapter 1. Introduction

a decision as to whether a discrepancy occurred in that window is made, but no

particular instances are identified.

1.3 Motivation

Whilst DNNs can be applied to low-dimensional data, most real-world scenarios are

high dimensional, such as images, audio, text, and other complex data types. DNNs

excel at automatically learning hierarchical representations and features from this

raw data. This makes them natural feature extractors where the input data is trans-

formed into sets of features that can be captured as the output of the intermediate

layers. The streaming machine learning field has tended to focus on lower dimen-

sional structured data [56] where the data is in an organised format, typically tabu-

lated and composed of attributes. Little research has been dedicated to high dimen-

sional unstructured data where the data is not organised in a pre-defined manner

such as images, audio and text. This is especially true for DNN adaptation within

a streaming environment. To handle high dimensional data, the data is commonly

transformed into a different representation to improve the intra-class cohesion and

the inter-class separation [85, 191, 60, 195]. A DNN is usually considered as a ’black

box’ where, given an input, it provides outputs but the specific process by which it

arrived at the output is not easily discernible. Inside this ’black box’ are many ar-

tificial neurons as described in Section 1.2.2, which output numerical values called

activations. These activations are employed in the DNN visualisation and inter-

pretability fields where the aim is to understand what the network has learned, how

it processes data and how DNNs come to their classification [88, 87]. This thesis

investigates if a different representation of the input data can be extracted from the

activations and applied to streaming machine learning models to detect data dis-

crepancies and adapt the classifying DNN.

Clustering is commonly used in concept drift detection [214]. It is an implicit

method of drift detection, meaning that the change in data is monitored over a num-

ber of instances before drift is declared. This is in contrast to explicit drift detection

where the change is detected and immediately reported. Implicit methods of drift

detection result in a delay of concept drift detection. In data stream classification,



1.4. Problem Definition 9

there are very few systems where a classifying DNN is adapted to high dimensional

data [101]. This means that DNN adaptation has not been studied in depth in the

concept evolution or concept drift field. On the contrary, the Online Continuous

Learning (OCL) field has a large number of DNN adaptation techniques [122]. How-

ever, they have not been applied to the more dynamic concept drift setting. To the

best of our knowledge, only one paper started to address this by unifying OCL with

concept drift adaptation [101]. However, drift patterns were not applied.

1.4 Problem Definition

The following issues exist in streaming data and DNN adaptation systems: In the

streaming machine learning literature, DNN adaptation of the classifying DNN has

not been widely studied as compared to traditional machine learning models [101].

This is because DNNs take longer to adapt [205], require more data, suffer from class

imbalance and retraining DNNs causes catastrophic forgetting [122]. Hence, there

are few streaming systems that adapt a classifying DNN. Those that do, use implicit

drift detection which can be slow as compared to explicit drift detection.

1.5 Aims and Objectives

This thesis proposes data discrepancy detection and DNN adaptation to streaming

data with the following aims:

1. Detecting data discrepancies in DNNs via neural activations for data streams.

2. Adapting DNNs in the presence of data discrepancies for data streams.

To achieve these aims, the following objectives have been identified:

1. Critically review data discrepancy detection and DNN adaptation methods.

2. Design, develop and evaluate an Open-Set (outlier) discrepancy detection method.

3. Design, develop and evaluate a concept evolution discrepancy detection and

DNN adaptation method.

4. Design, develop and evaluate a concept drift discrepancy detection and DNN

adaptation method.



10 Chapter 1. Introduction

1.6 Contributions

Achieving the objectives of this thesis has led to the advancement of the state-of-the-

art in streaming techniques with deep neural networks with the following contribu-

tions:

DeepStreamOS: Open-Set Classification in Deep Neural Networks

To satisfy objectives one and two, Chapter 4 proposes DeepStreamOS which brings

together the use of deep neural network activations with a stream-based outlier de-

tection method for fast identification of instances that belong to unknown classes.

DeepStreamOS uses all layers of a Convolutional Neural Network (CNN) to get a

trajectory of the activations and applies a stream-based analysis method to deter-

mine if an instance belongs to an unknown class. Our contributions are: (1) The

application of a statistical method to quantify the difference in activation distribu-

tion between any two consecutive hidden layers of deep neural networks to get a

dynamic trajectory of activations; and (2) fast interpretation of the reduced activa-

tions via a stream-based outlier detection method to detect unknown images.

AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

To satisfy objectives one and three, Chapter 5 proposes AdaDeepStream which offers

a dynamic concept evolution detection and CNN adaptation system using minimal

true-labelled samples. Our contributions are: (1) Heuristics for activation reduction

of deep neural networks via two methods to apply to concept evolution detection.

One of these methods expands upon the activation reduction used in DeepStreamOS,

the other is an image descriptor-based method; (2) concept evolution detection us-

ing neural network activations and streaming machine learning models. In contrast

to the outlier detection used in DeepStreamOS, we introduce our unique accuracy

volatility-based detection method; (3) DeepStreamOS did not involve adaptation. In

this contribution, we expand the work into CNN adaptation involving neural net-

work activations and streaming machine learning models; and (4) analysis of CNN

adaptation techniques in a concept evolution setting.



1.6. Contributions 11

DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

This satisfies objectives one and four. In Chapter 6 DeepStreamEnsemble proposes

detection and adaptation to concept drift with an experimental study on images

where novel sub-classes are arising. In contrast to the concept evolution aspect of

AdaDeepStream, DeepStreamEnsemble focuses upon the more complex scenario of con-

cept drift. Our contributions are: (1) DNN activation reduction method based on

image descriptors, expanding upon the method used in AdaDeepStream, as input to

concept drift detection; (2) explicit concept drift detection method using multi-layer

DNN activations and streaming machine learning ensemble; and (3) DNN adap-

tation method using multi-layer DNN activations and streaming machine learning

ensemble.

The experimental setting of this thesis focuses on the CNN as the type of DNN

and images for the input data. For images, concept drift is commonly applied as

i.e. new background, blur, noise, illumination and occlusion [122, 195]. These are

synthetic changes to the images which do not replicate real-world scenarios. We aim

to introduce sub-classes of data using real images. For instance, if a DNN classifies

images of cats and dogs as Animals, and another animal such as frog is introduced,

the classification of Animal already exists, but a frog has not previously been seen by

the DNN. Therefore, the input data for the Animal class has drifted from the training

data with the addition of the frog image. Figure 1.5 shows (a) the original classes of

Dog and Cat. In (b) a new class of Frog is added, resulting in a new class boundary

for Frog. In (c) a new sub-class of Frog is added to the Animal class, resulting in no

class boundary changes for Animal. Thus, we contribute the use of novel sub-classes

as concept drift to provide a scenario of changing real images instead of synthesised

ones.

As another contribution, this thesis also brings together the CNN adaptation so-

lutions offered in the Online Continuous Learning field (OCL) with the fields of

concept evolution and concept drift via the application of DNN adaptation solu-

tions and data drift patterns in AdaDeepStream (Chapter 5) and DeepStreamEnsemble

(Chapter 6).



12 Chapter 1. Introduction

(a) Original classes
(no discrepancy)

(b) New class
(concept evolution)

(c) New sub-class
(concept drift)

FIGURE 1.5: Class and Sub-Class Classification Boundary Examples.
Legend: Blue (circles) are known instances. Red (triangles) are unknown instances.

Black dashed line is a class boundary. Grey dotted line is a sub-class boundary.

1.7 Publications

The following journal papers have been published in contribution to this thesis:

1. L. Chambers, and M.M. Gaber, DeepStreamOS: Fast open-set classification for

convolutional neural networks, in Pattern Recognition Letters, vol. 154, pp.

75-82, Elsevier, 2022, ISSN: 0167-8655.

2. L. Chambers, M.M. Gaber and H. Ghomeshi, AdaDeepStream: streaming adap-

tation to concept evolution in deep neural networks. Applied Intelligence, vol.

53, pp. 27323–27343, Springer, 2023, ISSN: 1573-7497.

3. L. Chambers, M.M. Gaber, and H. Ghomeshi, DeepStreamEnsemble: Stream-

ing Adaptation to Concept Drift in Deep Neural Networks. In communication.

1.8 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 provides an overview

of the related work in data discrepancy detection and DNN adaptation. Detection

techniques for identifying unknown instances are reviewed followed by the tech-

niques for discrepancy detection and CNN adaptation for streaming images. To

gain further knowledge on CNN adaptation techniques, the OCL and streaming

DNN learning fields are reviewed with respect to CNNs. These detection and adap-

tation techniques are summarised in a novel taxonomy, categorising them via their



1.8. Thesis Outline 13

detection technique, catastrophic forgetting mitigation method and which parts of

the CNN is adapted.

Chapter 3 provides a background and theoretical explanation of the models and

algorithms employed or modified in this thesis. An overview of DNN architecture is

given in order to explain DNN activations. Pre-existing statistical methods, stream-

ing machine learning algorithms and other algorithms used within our novel solu-

tions are explained and discussed.

Chapter 4 presents the DeepStreamOS method as our contribution to objective

two. This method provides an algorithm that is focused upon instance-based de-

tection and detects data discrepancies for outliers applied as novel classes and sub-

classes.

Chapter 5 presents the AdaDeepStream method as our contribution to objective

three. This method is built upon DeepStreamOS, focusing upon concept evolution,

adding DNN adaptation and moving from instance-based detection to window-

based detection.

Chapter 6 presents the DeepStreamEnsemble method as our contribution to objec-

tive four. This method focuses upon the more challenging problem of concept drift

and DNN adaptation.

Chapter 7 summarises the work presented in this thesis and draws conclusions

from the presented algorithms. It contains a brief summary of the novel methods

and specifies important directions for future work.

FIGURE 1.6: Hierarchical representation of the contributions to this
thesis

Figure 1.6 shows a hierarchical representation of the contributions to this thesis.



14 Chapter 1. Introduction

DeepStreamOS lays the groundwork by investigating DNN activations in outlier de-

tection in DNNs, operating on a per-instance detection basis. AdaDeepStream and

DeepStreamEnsemble progresses this by moving into a window-based detection con-

text. AdaDeepStream detects concept evolution and additionally adapts the DNN.

DeepStreamEnsemble progresses onto the more advanced problem of concept drift

detection and also adapts the DNN.



15

Chapter 2

Data Discrepancy Detection and

DNN Adaptation: A Review

This chapter presents an extensive review of state-of-the-art algorithms designed

for detecting discrepancies and adapting DNNs accordingly. In our experimental

methodologies in Sections 4.3, 5.3 and 6.3, the type of DNN employed is the CNN

with images as the high dimensional data. Therefore, we focus our review in this

direction. Firstly, in Section 2.2, the open-set recognition field is reviewed as this

is the setting for our instance-based outlier discrepancy detection contribution of

DeepStreamOS in Chapter 4. Section 2.3 then progresses on to review the concept

evolution and concept drift discrepancy detection and adaptation fields. Section

2.4 reviews online CNN adaptation. Both of these sections provide the literature

review for our concept evolution and concept drift discrepancy detection and CNN

adaptation contributions of AdaDeepStream and DeepStreamEnsemble in Chapters 5

and 6 respectively. Additionally, a unique taxonomy of discrepancy detection and

CNN adaptation methods for streaming images is proposed. This categorises the

current methods based on their detection and adaptation approaches. This chapter

aligns with the first objective outlined in Chapter 1.

2.1 Introduction

DNNs are widely used and have achieved state-of-the-art performance in static data

classification tasks [105, 180]. However, data evolves in real-world scenarios and

standard DNNs are not responsive to changing data. DNNs only recognise classes

they are trained on. Therefore, novel classes are attributed to known labels from the



16 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

training data. This will result in incorrectly classified instances. Non-responsiveness

to changing data could be dangerous in safety-critical applications. Detection and

adaptation to changing data in these circumstances is essential.

In this thesis, we consider three discrepancy types of outlier detection, concept

evolution and concept drift. Where outliers are instances that deviate from the ex-

pected data. Section 3.6 gives a formalisation and explanation of concept evolution

and concept drift. To understand the terminology, a historic context of the field is

required. The term ’concept drift’ was first introduced in 1986 by Schlimmer and

Granger Jr [169] and is an overall term concerned with changes in data stream dis-

tribution over time. There are two types of concept drift: Real and Virtual [59]. With

real concept drift, changes occur in the data stream that cause the decision boundary

to change. With virtual concept drift, changes occur in the data stream that do not

change the decision boundary.

There are a number of existing surveys, the major ones are by Gama in 2014 [59]

and Ditzler [45] in 2015. More recently, in 2018, Khamassi brings together related

ideas from different disciplines for addressing concept drift [95] and explains that

the type of concept drift that new classes cause is called Class Prior Concept Drift

and has only been used as a term since 2015 [95]. Originally, novel class emergence

was considered as a type of real concept drift. Novel class emergence is also known

as concept evolution in data stream literature. Therefore, terminology as detailed

in Section 3.6 is: (1) Concept evolution is class prior concept drift of the novel class

emergence type; and (2) concept drift is real concept drift (there are changes in input

data that change existing class boundaries without forming new class boundaries)

and virtual concept drift (there are changes in input data with class boundaries stay-

ing the same). When novel classes appear in a data stream in accumulated instances,

this data drift is called concept evolution [43]. When there is a distribution change

within the existing classes only and no new classes arise, this data drift is called con-

cept drift [57]. In this thesis we have termed outlier detection, concept evolution and

concept drift as data discrepancies.



2.2. Open-Set Recognition 17

2.2 Open-Set Recognition

This section focuses upon open-set recognition. This is the setting for our proposed

method DeepStreamOS in Chapter 4 to demonstrate outlier discrepancy detection.

Open-set recognition extends the traditional classification task by recognising in-

stances from known classes while also detecting instances that belong to unknown

or novel classes. This concept acknowledges that in real-world scenarios, models

may encounter instances that were not seen during training. It aims to provide ac-

curate predictions for known classes and properly handle instances from new or

untrained classes by labelling them as ’unknown’ [13].

Open-Set recognition methods can be split into two types of models: Genera-

tive and discriminative. In the generative models, training data is added in order

to augment the open space. In discriminative models, a border is attempted to be

created around the known classes to separate them from the open space [63]. Dis-

criminative methods can be statistical, deep learning based or a combination of the

two. The first open-set detection methods were statistical and used Support Vector

Machines (SVM). However, SVMs separate the classes with hyperplanes and were

not sufficient to discriminate the open space on their own.

Subsequently, Extreme Value Theory (EVT) was added to SVMs [168], improving

the outcome. EVT estimates the probability of the instance being an outlier with re-

spect to each class and uses a rejection threshold. Rudd proposed EVM [162] which

is derived from EVT and is the radial probability of inclusion of a point with re-

spect to the class of another. In combination methods, EVT is now a common post-

processing step. However, EVT methods use thresholds and when the unknown

image is only slightly different from the known images there is more of a risk of

miss-classifying known images as unknown. Thresholds also require tuning. To

improve upon this, distance measures can also be used and recently, clustering has

been applied to EVM [82].

Deep learning based methods either use outputs from the deep neural network

under test or incorporate deep learning in other processing steps. The simplest

method is thresholding the Softmax scores of the DNN. However, this is rejecting un-

certain predictions, rather than unknown classes [13]. Subsequently, OpenMax [13]



18 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

used activation patterns from the final hidden layer of the DNN. The theory being

that the output of the penultimate layer of the network is far away from the feature

space of the images the network was trained on and are easier to capture. EVT was

then applied to determine if the instance belongs to a class. Following OpenMax,

DOC [172] used output layers of Sigmoids rather than Softmax to reduce the open

space risk by tightening the decision boundaries of Sigmoid functions with Gaus-

sian fitting. More recently Generative Adversarial Networks (GANs) are used to

generate instances to fill the open space. For instance, Classification-Reconstruction

learning for Open-Set Recognition (CROSR) [203] reconstructs input samples from

low dimensional latent representations. However, any technique that utilises deep

learning in the processing requires considerable computational resources and re-

quires additional parameters to tune the system.

Generative, discriminative, statistical and deep learning based open-set meth-

ods are all ongoing areas of research with recent practical applications in 3D object

recognition [14] and research in further directions with Positive-Unlabelled learning

and Open-Set adaptation [115]. In safety-critical applications such as for the auto-

motive industry, the computational cost during inference is particularly important

as there are limited computational resources and real-time constraints. Detection

of unknowns is used to trigger a safe fallback mode where a different monitoring

system is employed [136] therefore, fast detection of the unknowns is required.

In summary, deep learning based open-set methods are increasing. Activations

from within the DNN are used and they tend to be from the final hidden layer and

are applied to an alternative output layer than the traditional Softmax layer to re-

duce the open-space risk. Detecting unknowns is used in safety-critical applications,

indicating that they need to be detected promptly. However, in the open-set classifi-

cation field, the focus has not been on speed.



2.3. Data Discrepancy Detection and Adaptation for Streaming Images 19

2.3 Data Discrepancy Detection and Adaptation for Stream-

ing Images

This section focuses upon concept evolution and concept drift detection and adapta-

tion to these discrepancies. This is the setting for our proposed methods of AdaDeep-

Stream in Chapter 5 and DeepStreamEnsemble in Chapter 6.

Existing approaches for DNN adaptation to concept evolution and concept drift

are limited as in the streaming field, the focus has been on other types of traditional

machine learning classifiers and have been mainly assessed with low-dimensional

data [56]. The slow uptake of addressing DNNs in the streaming literature results

from the specific challenges that DNNs pose. DNNs are typically implemented for

high dimensional unstructured data such as text, images or audio due to the superior

non-linear classification boundaries they are able to attain, as previously explained

in Section 1.2.2. To achieve this, DNNs require large amounts of data, and high data

dimensionality contributes to the adaptation latency being large [205]. DNN adap-

tation can also cause catastrophic forgetting, where originally known classes are for-

gotten in the presence of new classes [122]. DNNs also require balanced classes

for training which are not available in streaming scenarios when novel classes are

emerging. This is exacerbated by DNNs requiring a larger amount of data for train-

ing as compared to other types of machine learning models.

To achieve online DNN adaptation, solutions often require prior selection of spe-

cialised DNN architectures or loss functions, enforcing retraining of the DNN. For

instance, [192] and [15] require extra layers to be added to the CNN prior to train-

ing. Therefore, in a number of solutions, data discrepancy detection and adaptation

cannot be retrospectively applied without completely retraining the DNN on the ini-

tial data. This is particularly an issue in DNNs that take a long time to train. The

requirement of online adaptation may not always be realised at the time of original

implementation of the DNN system. If such a system is not in place, metrics would

need to be manually monitored, data collected and labelled, and a new model stati-

cally trained.



20 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

To handle high dimensional data, the data is typically transformed into a differ-

ent representation to improve the separation of the classes [85, 191, 60, 195]. Clus-

tering is commonly used in data discrepancy detection [101, 195, 60, 42, 73, 22, 207].

It is an implicit method of drift detection meaning that the drift is monitored over a

number of instances before drift is declared. This is in contrast to explicit drift de-

tection where the change is detected and immediately reported. Implicit methods of

drift detection tends to result in a delay of data discrepancy detection.

The following sections further explore the solutions available for concept evo-

lution detection and concept drift detection. Methods that are reviewed here are

designed for, or have been successfully used with CNNs and image data.

2.3.1 Concept Evolution

There are numerous methods that are able to detect concept evolution (also known

as streaming novel class detection) and adapt to images. However, to the best of our

knowledge, Reactive Sub-space Buffer (RSB) [101] is the only method that detects

novel classes and directly adapts a classifying CNN. Other systems have DNNs in-

volved in the detection of novel classes such as CNN based Prototype Ensemble

(CPE) [195] and Convolutional open-world multi-task image Stream classifier with

Intrinsic similarity Metrics (CSIM) [60].

There are a larger number of other methods that adapt to novel classes in images

that do not involve any kind of DNN which are: EMC [42], SAND [73], SENNE [22],

KNNENS [207], ECSMiner [123], SEEN [212], SENCForest [131], SACCOS [61], SENC-

Mas [132] and Echo-D [74]. Table 2.1 shows a summary of approaches for novel class

detection and adaptation for images. From this, it can be seen that ten out of the thir-

teen methods use clustering.

For the CNN adaptation, if the method contains a CNN, the CNN usage is de-

fined, with ’Classify’ signifying that the CNN is the main image classifying CNN

and ’Detect’ signifies that a CNN is used in the detection of concept evolution. In

the CNN Adaptation column, ’Full’ signifies that all layers of the CNN are adapted.

The only method that adapts the classifying CNN is RSB, which retrains the entire

CNN with identified concept evolution instances that it has stored in memory.



2.3. Data Discrepancy Detection and Adaptation for Streaming Images 21

TABLE 2.1: Overview of the approaches for concept evolution detec-
tion and adaptation solutions for streaming images

Method Detection Method
Detection
Type

CNN
Usage

CNN
Adaptation

CPE [195] Clustering Implicit Detect Full
CSIM [60] Clustering Implicit Detect Full
Echo-D [74] Clustering Implicit - -
ECSMiner [123] Clustering Implicit - -
EMC [42] Clustering Implicit - -
KNNENS [207] Clustering Ensemble Implicit - -
RSB [101] Clustering Implicit Classify Full
SACCOS [61] Clustering Graph Implicit - -
SAND [73] Outliers Implicit - -
SEEN [212] Clustering Forest Implicit - -
SENCForest [131] Forest Implicit - -
SENC-MaS [132] Matrix Sketching Implicit - -
SENNE [22] Clustering Ensemble Implicit - -

2.3.2 Concept Drift

Some of the systems specified for detection of concept evolution also detect concept

drift. Of those that detect both, some may use different methods for each type of de-

tection. Table 2.2 provides an overview of leading concept drift and adaptation solu-

tions for streaming images. To the best of our knowledge, in the concept drift field,

RSB [101] and Change Detection Test-CNN (CDT-CNN) [44] are the only methods

that detect concept drift and adapt the classifying CNN. RSB uses the same cluster-

ing method to detect concept evolution and concept drift. It uses centroid clustering,

and a reactive subspace buffer tracks drift. The CNN adaptation is memory-based

and stores diverse samples only. This method uses implicit drift detection suggest-

ing a slow response to changing data. Whereas, CDT-CNN detects concept drift via

CUSUM [142], a sequential analysis technique that is used to detect changes in a pro-

cess or signal. The authors of CDT-CNN express that the drift detection is not the

contribution, but the adaptation of the CNN. When the drift is detected, the layers of

the CNN that have become obsolete due to the concept drift are identified and only

those layers are retrained. CPE [195] detects concept drift using a clustering method

but employs a CNN in the detection of concept drift in images but does not directly

adapt a classifying CNN.



22 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

There are a larger number of other methods that adapt to concept drift in im-

ages that do not involve a DNN: Evolving Micro-Clusters (EMC) [42] which is a

clustering method; Semi-Supervised Adaptive Novel Class Detection (SAND) [73]

where the concept drift technique differs from the concept evolution detection tech-

nique and uses a clustering ensemble; Enhanced Classifier for Data Streams with

novel class Miner (ECSMiner) [123] which also uses a differing concept drift detec-

tion technique via an ensemble; Semi-supervised Adaptive ClassifiCation Over data

Stream (SACCOS) [61] which is a clustering graph technique and Efficient handling

of concept drift and concept evolution over Stream Data (Echo-D) [74] which uses a

clustering ensemble for concept drift detection.

Most solutions for adapting to concept drift in images use implicit clustering.

Only CDT-CNN and ECSMiner’s concept drift detection method does not use clus-

tering. CDT-CNN uses an off-the-shelf drift detector based on error detection and

ECSMiner’s drift detection aspect uses an error detection based ensemble.

The Deep Unsupervised Domain Adaptation (UDA) field, has also yielded promis-

ing results regarding natural image processing, video analysis, natural language

processing, time-series data analysis, and medical image analysis [114]. Batch nor-

malisation is added to the layers of the DNN for fast adaptation with reduced over-

fitting. Batch Normalisation-Norm (BN-Norm) [15] recomputes the normalisation

statistics during test time [15]. Test ENTropy (TENT) [192] re-estimates these statis-

tics but also optimises transformation batch normalisation parameters using a single

backpropagation pass during prediction [192]. This would be fast with regards to

the adaptation of the CNN but may be limited in the types of data drift it can suc-

cessfully adapt to. Table 2.2 shows a summary of the approaches for concept drift

detection and adaptation. It can be seen that of the ten concept drift detection tech-

niques, six of them use clustering. If the method contains a CNN, the CNN usage is

defined. In this case, we have four methods that adapt a classifying CNN, and one

method that uses a CNN to detect concept drift.

In summary, There are limited methods for combined data discrepancy detection

and CNN adaptation methods for streaming images. This is because DNNs have

not been widely studied in streaming scenarios due to their high adaptation latency,

their catastrophic forgetting of previous classes when adapted to novel classes, their



2.3. Data Discrepancy Detection and Adaptation for Streaming Images 23

TABLE 2.2: Overview of the approaches for concept drift detection
and adaptation solutions for streaming images

Method Detection Method
Detection
Type

CNN
Usage

CNN
Adaptation

BN-Norm [15] Statistics Implicit Classify SA, Partial
CDT-CNN [44] Change Detection Explicit Classify Partial
CPE [195] Clustering Implicit Detect Full
Echo-D [74] Clustering Ensemble Implicit - -
ECSMiner [123] Ensemble Implicit - -
EMC [42] Clustering Implicit - -
RSB [101] Clustering Implicit Classify Full
SACCOS [61] Clustering Graph Implicit - -
SAND [73] Clustering Ensemble Implicit - -
TENT [192] Statistics Implicit Classify SA, Partial

SA: Specific Architecture

requirement of balanced classes and their need for large amounts of training data as

compared to other machine learning models. Most solutions use clustering as the

discrepancy detection method, and transform the high dimensional input data into

a lower dimensional representation. Clustering requires a number of accumulated

instances before drift is declared, which is an implicit method of detection and can

be slower than explicit methods. Where explicit concept drift detection is used, it is

an off-the-shelf method.

For the CNN adaptation, the few existing methods retrain some or all of the

CNN layers, with the exception of methods in the related field of UDA where extra

batch normalisation layers are inserted into the network. However, this changes

the architecture of the network and requires that the CNN is trained from scratch,

meaning that this method cannot be applied to a pretrained standard CNN. It is

notable that none of these solutions employ the use of activations from within the

CNN. In concept drift, it is also notable that concept drift is applied via synthetic

augmentation of the images to apply effects such as blur, noise and illumination. We

have identified that CNN adaptation has not been widely studied within combined

discrepancy detection and CNN adaptation methods, thus in the following section,

we investigate online CNN adaptation methods from other fields.



24 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

2.4 Online Convolutional Neural Network Adaptation

In this section, we review online CNN adaptation techniques, with OCL being the

major contributing field, and streaming learning for DNNs being another relatively

new contributing field. OCL solutions tend to be trained on large incremental batches,

whereas streaming learning trains DNNs one instance at a time and can be evalu-

ated at any point instead of only at the end of a batch. The term OCL is often used

interchangeably with lifelong learning and incremental learning [122]. In the OCL

field, the aim is to accumulate and preserve knowledge without forgetting any previ-

ous data [122], known as catastrophic forgetting, where the network cannot perform

well on previously seen data after updating with new data [69]. The terminology

in this field is such that streaming data is provided as tasks, where for instance, a

task may include new classes (class incremental) or data non-stationarity (domain

incremental) [122].

Methods in the OCL field to mitigate catastrophic forgetting are based on: Mem-

ory, Regularisation, Knowledge Distillation and Parameter Isolation [122]. Regular-

isation techniques help prevent catastrophic forgetting by making small changes to

the network’s parameters. This can be done by adding penalty terms to the loss

function or by modifying the gradient of parameters during optimisation [30, 98,

116, 157, 206]. Memory-based techniques store a subset of samples from previous

tasks. These samples can be used for replay while training on a new task or for reg-

ularisation purposes [30, 18, 1, 31, 98, 149, 116, 7, 156, 154, 89, 92, 157, 8, 206, 210].

However, these methods can be infeasible if storing raw samples is not possible due

to privacy or storage concerns [122].

Knowledge Distillation is a technique for transferring knowledge between net-

works. It has been widely used in continual learning methods [208, 156, 89, 110, 210],

where it is often considered as a type of regularisation. However, it can be difficult

to balance the regularisation with the current learning when learning from a long

stream of data [122]. Parameter-isolation techniques prevent interference between

tasks by allocating different parameters to each task with no architecture change [1,

77, 154] or with a Dynamic Architecture (DA) change [108, 202, 161], adding specific



2.4. Online Convolutional Neural Network Adaptation 25

architecture and hence parameters for new tasks. Generative replay is an alterna-

tive to memory-based techniques. It involves training a deep generative model to

generate pseudo-data that mimics past data for replay. However, it can take a long

time to train these models, and they may not be suitable for more complex datasets.

Therefore, they are out of scope for this thesis. Most methods are based on memory,

although there has been a trend towards combining methods [122].

The OCL field has two sub-fields of: Online Class Incremental (OCI) which is

analogous to concept evolution, where new classes are added; and Online Domain

Incremental (ODI) which is analogous to concept drift, where changes in existing

classes occur. Methods that excel in performance in the Online Class Incremental

(OCI) setting are Incremental Classifier and Representation Learning (iCARL) [156],

Learning without Forgetting (LwF) [110], Maximally Interfered Retrieval (MIR) [8]

and Experience Replay (ER) [31] [122]. LwF is regularisation and knowledge distil-

lation based and all others are memory-based. LwF uses outputs from past tasks as

an effective regulariser and knowledge distillation [85] to preserve knowledge from

past tasks and uses a teacher/student model. However, the teacher/student model

means it has reliance on relatedness between the old and the new data and may not

perform well if the distributions of the old and new data are different [110]. iCARL

creates a training set by mixing all of the samples in the memory buffer and the cur-

rent unseen samples, adjusts the loss function to address class imbalance between

old and new classes and uses a nearest-class-mean (NCM) classifier instead of a Soft-

max classifier. iCARL has the best performance with a small memory buffer on small

datasets. However it has slow inference time. ER simply trains the model with the

unseen data batch and memory mini-batches, has an efficient training time and has

outperformed other approaches [31]. MIR selects memory samples according to the

loss increases given the estimated parameter update based on the incoming unseen

window and updates the DNN on this sample plus the original unseen window. It

performs well on large scale datasets with a large memory buffer [122].

There are also a number of "tricks" that can be applied that can enhance existing

adaptation methods. These address class imbalance due to the strong bias towards

the known classes. Examples of the strongest ones are Review Trick (RV) [25], which

uses an additional tuning step with a small learning rate and a memory buffer and



26 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

NCM [127], which replaces the fully connected layer and the Softmax layer with an

NCM Classifier. However, inference time increases with the growth of the memory

size whereas for RV, the training time increases with the growth of the memory size

but it is more memory-efficient than NCM [122].

The same methods that are used in the OCI field are employed in the ODI field [122].

The highest performing DNN adaptation methods in the ODI field are based on

memory. The notable difference is that the knowledge distillation method of LwF [110]

is not successful in the ODI setting. Methods that excel in performance are iCARL,

MIR and ER [122]. However iCARL has slow inference time.

Streaming Learning for DNNs is a relatively young field with papers emerg-

ing from 2019 [76]. In streaming learning, each unique example is seen only once,

the ordering of the stream is arbitrary and the DNN being trained can be evalu-

ated at any point within the data stream, rather than the incremental batch learning

scenario, where a model learns from a series of large collections of labeled sam-

ples [77]. In the streaming literature, attention is given to which parts of the net-

work should be static and which parts should be plastic [45], sample shortage, and

the time to train the DNN [94, 205]. Methods of streaming learning for DNNs are

ExStream [76], DeepSLDA [77] and REMIND [78]. ExStream is a memory-based

method using a compressed set of prototypes to reduce memory size. In DeepSLDA,

the use of deep Streaming Linear Discriminant Analysis [144] is explored for train-

ing the output layer of a CNN incrementally, which may be preferable in limited

memory/computational resources scenarios as it does not store previous examples.

REMIND [78] stores compressed feature maps in memory.

The UDA field, as first mentioned in Section 2.3.2 contains a method called Un-

supervised Continual Learning for Gradually Varying domain adaptation (UCL-

GV) [183]. Here, UDA is brought closer to the continuous learning paradigm with

clustering, episodic memory replay with buffer management and a contrastive loss

is incorporated for better alignment of the buffer samples. Due to its connection with

continuous learning, it is listed in Table 2.3.

Table 2.3 provides an overview of the online CNN adaptation techniques, how

they mitigate catastrophic forgetting, which parts of the CNN is adapted (’Full’ or

’Partial’) and whether a specific initial architecture (SA) is required or whether the



2.4. Online Convolutional Neural Network Adaptation 27

architecture is dynamically updated (DA). It has been stated, and is logical to as-

sume that methods that retrain the entire network or that dynamically update the

DNN architecture can be slow to adapt [164]. Therefore, initially, it appears that par-

tial updating with no architecture changes is preferable. However, this does not take

into account parameters such as the number of retraining epochs or if the learning

rate is reduced, which could speed up the optimisation process and therefore the

adaptation process. Dynamically Expandable Networks (DEN) [202] as listed in Ta-

ble 2.3, adds small networks to the existing structure to accommodate new classes.

The speed of this method depends on how efficiently the partial section of the DNN

is selected, created and trained. In CDT-CNN [44], the CNN adaptation is partial but

the layers to be updated are dynamically selected which may be slow. If there is an

existing system that has a standard DNN which takes a long time to train, it would

not be preferable to retrain on a new specialised architecture, but rather be able to

apply the adaptation to the existing DNN. Hence, it is difficult to judge whether an

adaptation technique will be fast simply from the section of network that is updated

and what architecture changes are employed. The optimum selection of a method

also depends on the desired characteristics of the system i.e. if a pretrained network

with the constraint of no retraining is preferable.

There are differences in the focus of the concept evolution/concept drift detec-

tion and adaptation fields and the OCL fields. Research in the OCL field focuses on

accumulating and preserving knowledge without forgetting any previous data [122].

True-labelled samples of the classes are often used, which results in an artificially

high performance. In a real-world scenario, even partially labelling a data stream

using humans can be expensive [59] and impractical due to the need for domain

experts and manual labelling. This is in contrast to the Concept Evolution and Con-

cept Drift fields where focus is upon the changing data, taking into account only

some previous data and using minimal true-labelled samples. The fields of concept

evolution/concept drift and OCL require bringing together as they offer complimen-

tary views. The following section provides a combined overview of these aforemen-

tioned streaming and online continuous learning methods in a unique taxonomy.



28 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

TABLE 2.3: Overview of the approaches for online CNN adaptation

Method
Catastrophic
Forgetting
Mitigation

CNN
Adaptation

A-GEM [30] Memory, Regularisation Full
CBO [18] Memory Full
CCG [1] Memory, Parameter Isolation SA, Partial
CN-DPM [108] Parameter Isolation (DA) DA, Partial
DeepSLDA [77] Memory, Parameter Isolation Partial
DEN [202] Parameter Isolation (DA) DA, Partial
DMC [208] Knowledge Distillation Full
ExStream [76] Memory Partial
ER [31] Memory Full
EWC [98] Memory, Regularisation Full
GDumb [149] Memory Full
GEM [116] Memory, Regularisation Full
GSS [7] Memory Full
iCARL [156] Memory, Knowledge Distillation Full
iTAML [154] Memory, Parameter Isolation SA, Partial
LUCIR [89] Memory, Knowledge Distillation SA, Full
LwF [110] Regularisation, Knowledge Distillation SA, Full
MEFA [92] Memory SA, Full
MER [157] Memory , Regularisation Partial
MIR [8] Memory Full
REMIND [78] Memory Partial
SI [206] Memory , Regularisation Full
TreeCNN [161] Parameter Isolation (DA) DA, Partial
UCL-GV [183] Memory SA, Full
WA [210] Memory, Knowledge Distillation SA, Full

SA: Specific Architecture, DA: Dynamic Architecture

2.5 Discrepancy Detection and Adaptation Taxonomy

This section provides an overview of discrepancy detection and adaptation for stream-

ing images and online CNN adaptation techniques. In Figure 2.1, we provide a dia-

gram of the reviewed study areas, their methods and how they relate to each other.

In Figure 2.2, we categorise the solutions for discrepancy detection and adaptation

of streaming images into their use of CNNs, which parts of the CNN they adapt and

what discrepancy detection method they use. Alongside, we also categorise the on-

line CNN adaptation methods into their adaptation and catastrophic forgetting (CF)

mitigation method. Figure 2.3 summarises the categories for detection and adapta-

tion and Table 2.4 shows an amalgamated overview.



2.5. Discrepancy Detection and Adaptation Taxonomy 29

Figure 2.1 shows the available solutions for concept evolution and concept drift

for detection of and adaptation to streaming images. The methods in blue show the

solutions that adapt a classifying CNN. The pink methods use a CNN in the detec-

tion of concept evolution or concept drift. The yellow methods show the solutions

where no CNNs are used. Some of the methods can be applied to both concept evo-

lution and concept drift, with some adopting different solutions within one frame-

work (as indicated via the asterisk). This shows that in the streaming literature,

there are limited solutions that adapt the classifying CNN. As shown in blue, in the

OCL and streaming learning fields, there are many solutions that adapt CNNs. The

Deep UDA field has methods overlapping concept drift and OCL and the streaming

learning in CNNs overlap into the OCL field.

TABLE 2.4: Overview of the approaches for data discrepancy detec-
tion with CNN adaptation and online CNN adaptation solutions for

streaming images

Algorithm Detects Detection Method
Detection
Type

Catastrophic Forgetting
Mitigation

CNN
Adaptation

Drift Detection and Adapting Classification CNN
BN-Norm [15] CD Statistics Implicit Parameter Isolation SA, Partial
CDT-CNN [44] CD Change Detection Explicit Parameter Isolation Partial
RSB [101] CD/CE Clustering Implicit Memory Full
TENT [192] CD Statistics Implicit Parameter Isolation SA, Partial

Online CNN Adaptation
A-GEM [30] - - - Memory, Regularisation Full
CBO [18] - - - Memory Full
CCG [1] - - - Memory, Parameter Isolation SA, Partial
CN-DPM [108] - - - Parameter Isolation (DA) DA, Partial
DeepSLDA [77] - - - Memory, Parameter Isolation Partial
DEN [202] - - - Parameter Isolation (DA) DA, Partial
DMC [208] - - - Knowledge Distillation Full
ExStream [76] - - - Memory Partial
ER [31] - - - Memory Full
EWC [98] - - - Memory, Regularisation Full
GDumb [149] - - - Memory Full
GEM [116] - - - Memory, Regularisation Full
GSS [7] - - - Memory Full
iCARL [156] - - - Memory, Knowledge Distillation Full
iTAML [154] - - - Memory, Parameter Isolation SA, Partial
LUCIR [89] - - - Memory, Knowledge Distillation SA, Full
LwF [110] - - - Regularisation, Knowledge Distillation SA, Full
MEFA [92] - - - Memory SA, Full
MER [157] - - - Memory , Regularisation Partial
MIR [8] - - - Memory Full
REMIND [78] - - - Memory Partial
SI [206] - - - Memory , Regularisation Full
TreeCNN [161] - - - Parameter Isolation (DA) DA, Partial
UCL-GV [183] - - - Memory SA, Full
WA [210] - - - Memory, Knowledge Distillation SA, Full

SA: Specific Architecture, DA: Dynamic Architecture

Figure 2.2 shows a taxonomy for data discrepancy detection and adaptation so-

lutions for streaming images and online CNN adaptation, categorising the type of



30 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

FIGURE 2.1: Discrepancy Detection and CNN Adaptation Methods

CNN usage; whether it is adapting the classifying CNN, whether it uses the CNN

in detection, or if no CNN is involved. If a CNN is involved, the type of adaptation

is categorised, as to whether it retrains the entire CNN, or only retrains part of the

CNN, also displaying the catastrophic forgetting mitigation technique. Figure 2.3



2.5. Discrepancy Detection and Adaptation Taxonomy 31

FIGURE 2.2: Proposed taxonomy for data discrepancy detection and
adaptation solutions for streaming images



32 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

FIGURE 2.3: Proposed taxonomy for streaming detection and online
CNN adaptation solutions

summarises all of the discrepancy detection and CNN adaptation techniques into

their categories of detection, catastrophic forgetting mitigation and CNN adapta-

tion. Table 2.4 summarises this information against the methods, also indicating the

detection type of explicit or implicit. It can be seen that there are a limited number

of detection and CNN adaptation techniques. Only one method uses explicit de-

tection, with the majority using implicit techniques. It can also be seen that there

are an abundance of CNN adaptation techniques using varying methods for CNN

adaptation.

2.6 Discussion

Studying and grouping the existing solutions for streaming data discrepancy detec-

tion and adaptation for images reveals research gaps, providing a basis for intro-

ducing innovative approaches. Categorising the available solutions based on their

discrepancy detection technique and their CNN involvement has assisted in iden-

tifying these gaps. For the combined data discrepancy detection and adaptation

to streaming image data, the gaps are: (1) There are a lack of solutions for detecting

data discrepancies in images and adapting a classifying CNN. This is because CNNs

have not been a focus of study in the streaming field as they have a large adaptation

latency and suffer from catastrophic forgetting more so than other machine learning

models; and (2) there are limited solutions offering explicit data discrepancy detec-

tion. The existing solutions are tailored towards clustering and clustering ensembles.



2.6. Discussion 33

We see no reason why explicit methods of discrepancy detection have not received

as much attention, other than the lack of focus on discrepancy detection and CNN

adaptation in the streaming scenario.

Focusing upon the CNN adaptation, there are CNN adaptation techniques avail-

able in the OCL field where data is applied in large incremental batches and the

DNN adapts to these batches. The gaps are: (1) The streaming field has very limited

solutions for adapting CNNs; and (2) the OCL field offers DNN adaptation tech-

niques but they have not been applied to the concept evolution and concept drift

fields to offer a more dynamic analysis. To the best of our knowledge, there is only

one method that directly adapts the classifying DNN and attempts to bring together

the OCL and concept drift fields, namely RSB [101]. However, this method uses

implicit drift detection, it has a slow response to changing data, and analysis with

respect to drift patterns was not performed.

Additionally, a further gap identified in the streaming data discrepancy detec-

tion and CNN adaptation field is that none of the detection methods use DNN ac-

tivations. When reviewing the open-set recognition field, it was identified that ac-

tivations from the final hidden layer are used in some solutions. Activations are

also employed in other fields which is explored in Sections 3.4.1 and 3.4.2. The ac-

tivations are higher dimensional than the already high dimensional input data of

images. However, they have the potential to provide more information than the

input data alone.

When an image is processed through a CNN, many feature maps are produced,

which are smaller representations of the image, each containing features that have

been extracted from the original image such as edges, textures or backgrounds. Sec-

tion 3.3 details this process. This natural feature extraction process that takes place

within the hidden layers of DNNs provides a much richer number of features than

the original image, enabling more detailed analysis. For instance, analysing the im-

age data will only be able to determine at a higher level if there is a discrepancy, such

as identifying that it is open-set or an outlier, and then may only be able to distin-

guish the more extreme cases. However, analysing the feature maps (the values of

which are called activations, collectively known as activation patterns, as described

in detail in Section 3.3) provides an opportunity to extract alternative aspects of the



34 Chapter 2. Data Discrepancy Detection and DNN Adaptation: A Review

data than is possible via purely using the image data. Each image has its own way of

activating the neural network and producing activation patterns. With further pro-

cessing these patterns become usable in other machine learning models, for which

we coin the term of activation classification footprint.

At the output of a DNN, classification is determined by a probability distribution

across all classes. Two images can be of the same class and be correctly classified,

but have different activation classification footprints. These images could represent

different sub-types in a class. If the final hidden layer activations were monitored,

this type of change in the data would not be captured. Monitoring the activation

classification footprint has the potential to capture this.

Consider the scenario where we have a system that identifies human faces, the

faces may be of differing sizes, which the model is trained upon and the model gen-

eralises well. However, at inference time, an image may arise that has a very big or

very small face as compared to any of the training images, still this can be recognised

by the model and is classified as a face. The activation classification footprint gives

the opportunity to detect if anything has activated in this way before and thus detect

a change in data.

We propose to create activation classification footprints from the naturally aris-

ing activation patterns from within the hidden layers of DNNs. These activation

classification footprints have the potential to detect more discrepancies than is pos-

sible via the input data. This makes DNN activations a promising area to be applied

to streaming data discrepancy detection and CNN adaptation.

Some CNN adaptation methods use specialised architecture or loss functions,

requiring a classification system to specifically use these architectures from the out-

set as the models need to be trained on these architectures. However, in real-world

applications, DNNs would be trained on large amounts of data and it may be infea-

sible to retrain new models with this data. Thus, it would be preferable to provide a

method that can be applied to existing pretrained DNNs without the need to retrain,

thus transforming a standard DNN into a discrepancy detecting adaptable DNN.

For the majority of concept drift detection methods, concept drift is applied via

synthesised augmentation of the images such as artificially created new background,

blur, noise, illumination and occlusion. However, in real-world systems, items in the



2.7. Summary 35

images are likely to change over time in a different way, such as photographed wild

birds with different backgrounds [129] or a cat monitoring system, where there is a

change in location of the monitored items such as the litter box or the cat changes

from a kitten into a cat [35]. Therefore changes in classes concerning real images

rather than synthesised ones demonstrate more real-world usability.

To address these gaps, this thesis proposes for the first time, explicit data dis-

crepancy detection and DNN adaptation for streaming data using activation clas-

sification footprints. This thesis firstly proposes DeepStreamOS to address outlier

data discrepancy detection using activation classification footprints. Next, AdaDeep-

Stream is proposed to address concept evolution detection and DNN adaptation us-

ing activation classification footprints. Finally, DeepStreamEnsemble is proposed to

address concept drift detection and DNN adaptation using activation classification

footprints. AdaDeepStream and DeepStreamEnsemble also bring together the fields of

concept evolution/concept drift with OCL by analysing DNN adaptation techniques

in a dynamic streaming environment by applying drift patterns. Application of con-

cept drift is via the introduction of previously unseen real-world images of new

sub-classes, thus using real-world images as opposed to synthetically augmented

ones.

2.7 Summary

This chapter offered an overview of different approaches for data discrepancy detec-

tion, starting with open-set recognition and progressing onto concept evolution and

concept drift detection with CNN adaptation, focusing on CNNs and images. Due

to a lack of solutions for CNN adaptation in the streaming field, the fields of OCL

and streaming learning for DNNs were investigated with respect to CNN adap-

tation techniques. A novel taxonomy of the approaches for discrepancy detection

and CNN adaptation in streaming images has been presented to simplify the under-

standing of the current literature. The contributions of this thesis with respect to the

literature were discussed, demonstrating the originality of the proposed methods.

The following chapter provides background information in order to understand the

proposed solutions.





37

Chapter 3

Background for Proposed

Solutions

3.1 Introduction

This chapter provides necessary background information in order to understand the

proposed solutions, accompanied by the formalisation and theoretical explanation

of the algorithms employed in these solutions. As this thesis is concerned with high

dimensionality data, Section 3.2 provides an overview of the problems associated

with this. Subsequently, in Section 3.3, CNNs are explained as they are used in our

experimental study, with a focus on the activations that are output from the inter-

nal layers of the CNN. In Section 3.4, the use of DNN activations and methods of

reducing them is concisely reviewed. This is followed by the basis of our activa-

tion reduction methods which are JS-Divergence and a DNN-based CBIR descriptor

method.

To detect our discrepancies, we employ streaming machine learning models. Sec-

tion 3.5 provides an overview of these methods. For our outlier detection solution

as described in Chapter 4, we use an existing streaming clustering method of Micro-

cluster Based Continuous outlier Detection (MCOD), for which an overview is given.

For concept evolution and concept drift detection, we introduce the streaming clas-

sifiers that are employed in the solutions in Chapters 5 and 6 respectively. We pro-

vide background information for decision trees, leading onto Hoeffding trees. We

introduce the Self Adjusting Memory k-Nearest Neighbours (SAM-kNN) streaming

classifier as used in Chapter 5.



38 Chapter 3. Background for Proposed Solutions

To provide an increased understanding of concept evolution and concept drift,

Section 3.6 gives a comprehensive overview of what they are and the difference be-

tween them, followed by a concise review on existing methods of detection. Finally,

an overview of the Drift Detection Method (DDM) [58] is given in Section 3.6.2 as

this features in our solution in Chapter 5.

3.2 The Curse of Dimensionality

Our experiments focus on the use of images, which are high dimensional. How-

ever, it is not the image data that will be used in our proposed solutions, but the

activations from the CNN. These activations are also high dimensional therefore, we

provide an overview of the problems associated with high dimensional data in this

section. Bellman introduced the curse of dimensionality [12]. It occurs in multiple

fields, machine learning being one of them. It encompasses the challenges that arise

when the number of features in a dataset increases. The curse of dimensionality

can make data analysis more complex and lead to the issues of increased computa-

tional complexity, data sparsity, increased data volume, overfitting and difficulty in

visualisation as data points become approximately equidistant from each other [12].

As the number of dimensions increase, algorithms that excel in low-dimensional

spaces may become slow and impractical. Data sparsity means that there may be

large regions of empty space between data points, such that it is harder to accurately

model the relationships between data points, leading to poor accuracy predictions.

Increased data volume may mean that a much larger amount of data is required to

cover the feature space, increasing storage requirements. The risk of overfitting is

increased, where a model fits well to specific characteristics involving i.e. random

variations to the data, which is not representational of the underlying patterns and

does not generalise well to unseen data. The increase in dimensionality in distance-

based algorithms such as clustering is particularly a problem as the distance be-

comes less meaningful, as all data points tend to be roughly equidistant from each

other. It is increasingly difficult to visualise and interpret data when the dimensions

increase. Most people can only visualise data up to three dimensions. Visualising

data in many dimensions can be challenging, making it harder to gain insights from



3.3. Convolutional Neural Networks 39

the data.

To mitigate the curse of dimensionality, dimensionality reduction techniques are

often used, such as Principal Component Analysis (PCA) [197], Uniform Manifold

(UMAP) [125] or t-distributed Stochastic Neighbor Embedding (t-SNE) [189], which

reduces the number of dimensions while preserving the most important informa-

tion. These techniques can help simplify the data and improve the performance of

machine learning models. Additionally, feature selection and feature engineering

can be used to reduce the dimensionality of the dataset by selecting the most rele-

vant features or creating new meaningful features. The following section provides

background information about the activations from a CNN.

3.3 Convolutional Neural Networks

As CNNs are used in our experimental study, this section provides an overview

of how they operate, with a focus on explaining the activations from within them.

In computer vision, DNNs (specifically CNNs) have excelled in image classifica-

tion [104, 79, 173, 90]. Figure 3.1 shows the architecture of a commonly used CNN

called VGG16 [173]. Simonyan and Zisserman introduced VGG16 in 2015, and de-

spite its age, it remains extensively utilised today, very recently in domains such

as plant identification, medical diagnosis, visual speech recognition, and manufac-

turing processes [201, 135, 163, 167]. The adaptive methods in this thesis aim to

provide a wrapper to existing systems such that the standard CNN becomes adap-

tive, these systems may not be using the latest designs of networks, thus VGG16

is a suitable choice as it is widely used. While this thesis employs VGG16, it also

employs MobileNet [90] but is not restricted to these models alone. VGG16 consists

of convolutional blocks, followed by classification layers. For the remainder of this

thesis, convolutional block will be simply referred to as block. Each block consists

of a few convolutional layers (typically one to three) and a max pooling layer. The

convolutional layers apply a set of filters to the input data which extract features

such as edges from the original image. The max pooling layer simply reduces the

size. The classification layers are fully connected layers, where each output dimen-

sion depends on each input dimension and each neuron is connected to each neuron



40 Chapter 3. Background for Proposed Solutions

FIGURE 3.1: VGG16 CNN Architecture

in the following layer. A simple diagram of convolutional layers followed by a fully

connected layer, leading to three output classifications is shown in Figure 3.3. The

fully connected layers transform the final convolved outputs into a final number that

corresponds to a classification label.

Training a Deep Neural Network (DNN) involves several key steps. The process

begins with the forward propagation of inputs through the network layers to gener-

ate an output. This output is then passed through a Softmax layer, which converts

the raw output into a probability distribution over the predicted classes, ensuring

that the sum of all probabilities equals 1. The difference between the predicted out-

put and the actual label is calculated using a loss function, which quantifies the error

of the prediction. Backpropagation, guided by the chain rule of calculus, is then used

to compute the gradients of the loss function with respect to the weights and biases

in the network, effectively determining how much each parameter contributed to the

error. The learning rate, a hyperparameter, determines the step size during the op-

timisation process when updating the network’s parameters. This entire process is

repeated for a specified number of iterations or epochs. An optimisation algorithm,

such as Stochastic Gradient Descent (SGD) [158] or Adam [97], is used to adjust the

parameters (weights and biases) in the direction that minimises the loss function,

thereby improving the model’s predictions over time.

Figure 3.2 shows examples of feature maps from TensorSpace, a neural network

3D visualisation framework [184]. The example images are taken from the AlexNet

[103] CNN, which is similar to VGG16. Figure 3.2 (a) shows the initial image of a

dog. Behind the dog, in yellow is shown the output of each filter from the first block.

These are known as feature maps or channels. In this thesis, we shall refer to them as



3.3. Convolutional Neural Networks 41

feature maps. Each feature map is a representation of the original image, each with

specific characteristics that have been picked out by each filter. For instance, some of

the feature maps show vertical edges and others show horizontal edges. Each pixel

from each feature map is an activation value. In the first block, the feature maps

preserve nearly all of the information found in the original image. Deeper into the

layers, these feature maps take on a more abstract nature and become less visually

interpretable. They start encoding more advanced concepts like angles and corners.

Figure 3.2 (b) shows some of the feature maps from the final block. These carry in-

creasingly less information about the visual contents of the image, and increasingly

more information related to the class of the image. These feature maps from within

the hidden layers of the CNN demonstrate the natural feature extraction capability

that image classifying CNNs have.

(a) First Convolutional
Block

(b) Final Convolutional
Block

FIGURE 3.2: Examples of feature maps from block outputs

FIGURE 3.3: Simple Representation of Convolutional and Fully Con-
nected Layers



42 Chapter 3. Background for Proposed Solutions

Convolution of an image is depicted in Figure 3.4. The input image is multiplied

by a filter (also known as a kernel or a feature detector. For this thesis, we shall refer

to it as a filter). The image is multiplied by a filter being placed over sections of the

image and is moved by a pre-defined ’stride’ In the example, the applied filter is

shown in yellow with a thick border and the values it is multiplied by (the values

of the filter) are shown in red in the bottom right hand corner of each element. The

stride of the filter is 1, as in the second iteration, the filter has moved one place to the

right.

FIGURE 3.4: Graphical Representation of Convolution

We have an input (neuron layer) of N × N (this is the input image in the first

convolutional layer) and we have an m×m filter ω. In order to compute the output

of the convolution, we multiply the output from the previous layer with the filter

elementwise in strides across, then down the input matrix. At each stride, the area

the filter is located on the input matrix is multiplied by the filter and these multiplied

values are summed. This reduces the size of the output matrix unless the padding is



3.3. Convolutional Neural Networks 43

set to ’valid’, which adds a user-specified number of padding elements around the

outside of the matrix such that the output of the convolution remains the same size

as the input (most common) or is larger. The example we show in Figure 3.4 is with

padding set to ’same’ which means no padding elements are added, hence why

the convolved feature map is smaller than the input matrix. Lastly, the activation

function σ is applied. In VGG16, this is achieved via a ReLU layer as shown in

Figure 1.3 (c), where if the input > 0, the input value remains the same, otherwise

the output is zero. Equation 3.1 represents the output of a convolutional layer with

the activation function, applied:

yℓij = σ(
m−1

∑
a=0

m−1

∑
b=0

ωabyℓ−1
(i+a)(j+b)) (3.1)

Following the convolutional layer is commonly a max-pooling layer, which sim-

ply takes a pre-defined region of size k× k and outputs a single value, which is the

maximum value in that region, also known as sub-sampling. Table 3.1 shows the

output dimensions for each layer in the VGG16 CNN with 1000 classification out-

puts and the number of activations pertaining to each layer. This gives an indication

that there are a huge amount of activations per layer. The activation values output

from these convolutional, max pooling and fully connected layers are the activations

that are used in varying ways in this thesis.

Given the utilisation of activations in our methods and the substantial volume of

values generated per layer, it is advantageous to test these methods on deep learn-

ing architectures with a reduced number of layers to maintain the tractability of our

experimental work. While more recent architectures, such as MobileNet, feature a

greater number of hidden layers and consequently produce a higher number of out-

put features, their execution demands more time and memory. Thus, VGG16 pro-

vides a suitable architecture for demonstrating our methods in an afforded amount

of time and computing resources.

During this thesis, the CNN is adapted via the following cross-entropy cost func-

tion:

− 1
M

M

∑
x=1

L

∑
c=1

yc
(x)logpc

(x) (3.2)

Where M is the number of instances in the training set, x is the training set instance,



44 Chapter 3. Background for Proposed Solutions

TABLE 3.1: Calculation of the number of activations for VGG16 CNN

Layer Dimensions Number of Activations

Input 224× 224× 3
Block 1 Conv 1 224× 224× 64 3211,264
Block 1 Conv 2 224× 224× 64 3211,264
Block 1 Max Pool 112× 112× 128 1605,632
Block 2 Conv 1 112× 112× 128 1605,632
Block 2 Conv 2 112× 112× 128 1605,632
Block 2 Max Pool 56× 56× 256 802,816
Block 3 Conv 1 56× 56× 256 802,816
Block 3 Conv 2 56× 56× 256 802,816
Block 3 Conv 3 56× 56× 256 802,816
Block 3 Max Pool 28× 28× 512 401,408
Block 4 Conv 1 28× 28× 512 401,408
Block 4 Conv 2 28× 28× 512 401,408
Block 4 Conv 3 28× 28× 512 401,408
Block 4 Max Pool 14× 14× 512 100,352
Block 5 Conv 1 14× 14× 512 100,352
Block 5 Conv 2 14× 14× 512 100,352
Block 5 Conv 3 14× 14× 512 100,352
Block 5 Max Pool 7× 7× 512 25,088
Fully Connected 4096 4096
Fully Connected 4096 4096
Fully Connected 1000 1000
Output 1000

Total: 16,482,816

L is the number of classes, c is the class, y is a one-hot encoded vector of ones and

zeros (one for each class), yc is the y value of the class and pc is the model’s prediction

for that class (the output of the Softmax layer for class c).

Now that we have an understanding of activations within a CNN, the following

sections provide a review of how these activations have been extracted and used

to gain useful information in discrepancy detection fields, the DNN inspection field

and possible methods of reducing them, leading onto our choices for activation ex-

traction and reduction.

3.4 DNN Activations

The proposed solutions in Chapters 4, 5 and 6 all use DNN activations. For one input

instance into a DNN, a huge number of activations are produced at each hidden

layer within the deep neural network. Section 3.3 explains and exemplifies this.

Activation data requires reducing before it can be meaningfully used in subsequent

analysis stages. Activations are used in various discrepancy detection fields and

are also commonly used in the DNN Inspection field. Activations have been widely

used in the field of Visual Interpretation of deep neural networks to determine which

neurons are related to specific image features to explain how the neural network is



3.4. DNN Activations 45

arriving at its classification. How the network arrives at its classification is out of the

scope of this thesis as we are only interested in identifying the important neurons

in a data instance’s classification. The following sub-sections investigate the use of

activations in various discrepancy detection fields and in visual interpretation and

also how this activation data can be reduced.

3.4.1 Activation Usage in Discrepancy Detection

In discrepancy detection in DNNs, there are a number of different fields pertaining

to the detection of different types of data discrepancies. We have already reviewed

one of them - open-set. The others are out-of-distribution (OOD), anomaly detection

and adversarial detection. We focus on the use of DNN activations in these fields.

OOD refers to instances that lie outside of the data distribution that the model was

trained on and aims to identify instances that are substantially different from the

training distribution. Anomaly detection, is the detection of instances that deviate

significantly from the majority of the data. Adversarial detection involves identify-

ing instances that have been specifically created to mislead and exploit vulnerabil-

ities in a model’s decision-making process [68]. The following paragraphs review

where DNN activations have been exploited in the aforementioned fields.

The main detection area that activations are used in is OOD and only recently,

since 2019, has this been explored. In OOD detection, areas involving DNN acti-

vations are: Deriving OOD scores based on analysis of activations; and uncertainty

estimation methods that operate on internal activations. These analysis scores and

estimates are used to monitor DNNs in safety-critical domains such as self-driving

cars [34, 75, 83] and cybersecurity malware classification [37], or explaining patient

medical diagnosis. In [147] a simple statistic analysis of the penultimate layer ac-

tivations is employed to detect rare sub-classes in the data as they may reduce the

DNN performance. In [34, 75, 83], the activation outputs of the hidden layers are

monitored for DNN safety signalling.

In [83], Henzinger uses k-means clustering and abstraction boxes. In [75], Hashemi

builds a Gaussian model for every neuron independently, establishing safety inter-

vals for every neuron based on the mean and the standard deviation of the previ-

ously built models and a voting mechanism to improve the decisions correctness.



46 Chapter 3. Background for Proposed Solutions

In [34], Cheng uses binary activations patterns and the hamming distance for OOD

detection. However, this has significant efficiency issues for use in current DNN

architectures and is improved upon in [138]. The type of DNN activation function

is important for OOD uncertainty calibration and an alternative bespoke activation

function is suggested in [128]. There are benefits to using the outputs of various

hidden layers and not just the final layer, as these authors conclude [148, 141]. Ol-

ber proposes the use of binary neuron activation patterns using convolutional lay-

ers [138]. It is however, specific to networks using ReLU activation functions. Re-

Act [178], reduces model overconfidence on OOD data by modifying the activations

of the final hidden layer to bring the overall activation pattern closer to the known

activation patterns and thus reduce the overconfidence score. ASH [46] removes

about 90% of a sample’s activation at a late layer and the remaining 10% is lightly

adjusted and used. The shaping is applied at inference time, and does not require

any statistics calculated from training data.

The use of activations within the anomaly detection field is less prevalent, with

[175] showing that the hidden activation values contain information useful to dis-

tinguish between normal and anomalous samples by combining three DNNs in an

anomaly network and based on the activation values in the target network, the alarm

network decides if the given sample is normal.

Adversarial detection involves identifying instances that have been specifically

created to mislead and exploit vulnerabilities in a model’s decision-making pro-

cess [68]. Qui [150] is using activation based back propagation algorithm to detect

an image’s effective path. This author notes that it needs to be kept in mind that

different methods or more computationally expensive methods may be required for

adversarial detection. Activations and the link between the activation layers are

used to map a path of neurons inside the deep neural network. There are adversar-

ial images that are close to the feature space of the original training instances, with

only a few pixels alteration in some cases [177]. Here, a layer in the deep network

is used where the activations will be far away from the training samples, where un-

known images become outliers in an open set recognition problem [13]. Carrara [24]

shows that hidden layer activations can be used to reveal incorrect classifications



3.4. DNN Activations 47

caused by adversarial attacks. In SafetyNet [120], Lu states that "Adversarial at-

tacks work by producing different patterns of activation in late stage ReLUs to those

produced by natural examples”. Therefore, SafetyNet quantises the final ReLU ac-

tivation layer of the model and constructs a binary support vector machine with a

radial basis function kernel as a classifier. Carrara [23] proposed a hypothesis that

intermediate representations of adversarial examples undergo a distinct evolution

with respect to clean inputs. The relative positions of internal activations of points

representing the dense regions of the feature space is encoded. The detector is a

binary classifier constructed on top of the pretrained network, taking as inputs, the

encoded relative positions of internal activations of points representing the dense

regions of the feature space for adversarial examples and clean inputs. It should be

noted that adversarial detection is harder to detect than open-set as it often involves

small perturbations to the input data. It is out of the scope of this thesis but the re-

view on activations usage has shown that activations are successfully used within

this sub-field and point to successful usage in other discrepancy detection fields.

Table 3.2 shows a summary of activation usage in discrepancy detection meth-

ods. ’Final’ denotes that only the activations from the final hidden layer are used.

’Multi’ denotes that activations from multiple hidden layers are employed in the so-

lution. From this, we can see that there is a mixture of the amount of layers that are

used.

Focusing upon the activations as used in other discrepancy detection paradigms,

we studied the field of activation usage in data discrepancy detection. In open-set

detection (where an extra classification option of ’unknown’ is added to the output

of a DNN) in Section 2.2, we discovered that typically, only the final layer of of

DNN activations are used. In OOD, anomaly detection and adversarial detection,

we find more examples of use, ranging from just the final layer to intermediate and

all layers, indicating that other layers also carry important information about the

images. Activation data is also used in the DNN Inspection field for the purpose

of identifying which neurons are responsible for which parts of image classification.

This is reviewed in Section 3.4.2.



48 Chapter 3. Background for Proposed Solutions

TABLE 3.2: Overview of the approaches for using activations in dis-
crepancy detection

Layer Description Method

Final Statistic analysis of penultimate layer activations to detect rare sub-classes [68]
Final Modifies the activations of the final hidden layer to bring the overall activa-

tion pattern closer to the known activation patterns to reduce the overconfi-
dence score

[147]

Final 90% of a sample’s activation at a late layer is removed, the remaining 10% is
lightly adjusted

[138]

Final Quantises the last ReLU activation layer of the model and builds a binary
support vector machine with a radial basis function kernel classifier

[46]

Multi Binary activations patterns and the hamming distance for OOD detection [203]
Multi A sampling-free approach to approximate uncertainty estimates that rely on

noise injection at training time. Further simplification specifically for convo-
lutional neural networks using ReLU activation functions.

[83]

Multi Comparison study that concludes that there are benefits to using the outputs
of various hidden layers

[37]

Multi Based on inferring Gaussian models of neuron activation values of some of
the neurons and layers

[14]

Multi Binary activation patterns and hamming distance [115, 34]
Multi Bespoke Activation Function and activations [75]
Multi Comparison of activations between networks [128]
Multi Backpropagation using activations to extract the image‘s effective path [148]

3.4.2 DNN Inspection

In the DNN inspection field, there have been many approaches to the identification

of the most important activations and these have been recently surveyed showing

that this is an important area and forms part of explainable AI [4], [21]. In [21], Table

1 shows that neuron activations are used for explainers for DNNs in different fields

such as images and text based DNNs. Approaches to using neuron activations can be

summarised as: Top k percent of activations in each layer, the activation magnitude,

average activations and clustering, nearest neighbour and backpropagation.

The first approach of top k percent activations is used in the Summit paper [88],

which uses the activation of channels in a CNN (to determine i.e edges, shapes, tex-

ture) and applies global max pooling to reduce the data. It uses the activations of the

channels and is appropriate to CNNs only. This method only does a forward pass

through the network to obtain the activations therefore, it is low on computation

which is required in a streaming environment. Activation Magnitude and Matrix

Factorisation is utilised by Olah [137] and uses the magnitude of the neuron activa-

tions and represents them as a cube and breaks them up using matrix factorisation to

get more meaningful groups of neurons, however matrix factorisation is computa-

tionally expensive as it has to be explicitly calculated for each image, and is therefore



3.4. DNN Activations 49

not suitable for a streaming environment. Average activation and clustering is used

in [113], where the average activation of each neuron in the activation layer is used

(average is taken for all instances with the same class), then clustered and a number

of neurons from each cluster is selected. This is more suited to a static environment

as a number of instances from the same class are required, which would not be avail-

able in a streaming scenario with an emerging novel class.

In ActiVis [93], the average activation for each neuron for all instances in a class

are used, but presented to the user for visualisation. The nearest neighbour ap-

proach is used in [145] where nearest neighbour is applied to the activation outputs

of each hidden layer. Locality Sensitive Hashing (LSH) function is used to reduce

the data dimensionality so it is suitable for use in the nearest neighbour representa-

tion, but this is computationally expensive and unsuitable for a streaming environ-

ment. Backpropagation is used in [166, 150]. The latter is applicable to both CNNs

and fully connected networks. This describes an effective critical path of weights

and neurons that lead to the final predicted path and uses an activation-based back

propagation algorithm to extract the effective path. This requires a backward pass

through the network which is computationally expensive and not appropriate in a

streaming environment.

In summary, usage of neuron activations requires limitation of which neurons

are used (i.e. only use a particular layer(s) or channel(s), or general reduction of

the activation such as in LSH to be suitable for post processing. Papers [145, 88, 33]

use the last activation layer only as a method of data reduction as this is the most

representative of the classification. Given this, a summary of general data reduction

techniques is required.

3.4.3 Activation Reduction

Using DNN activations implies data reduction of some form. This could be just

selecting a fewer number of layers from the network, or filtering the number of acti-

vations selected from each layer, using a statistical calculation between activations,

or using a general data reduction technique or a mixture of some or all. For instance,

a method could be using a distance measure on each layer such as L2Norm to get a

single value to represent the activations in each layer.



50 Chapter 3. Background for Proposed Solutions

Popular general methods of data reduction are Independent Component Analy-

sis (ICA), Principle Component Analysis (PCA), autoencoders, restricted Boltzmann

machines and graph-embedding. Hinton describes using selectively initialised au-

toencoders as better than PCA [84]. PCA and ICA are used for linear transformations

but when we are concerned with deep neural networks, they are not linear transfor-

mations. PCA is restricted to linear dimensionality reduction whereas autoencoders

enable linear and non-linear transformations. The choice of the autoencoder de-

pends on the nature of the data, for instance, convolution networks are preferred

for image datasets and Long Short Term Models (LSTM) produce good results for

sequential data.

In summary, analysis of activations within discrepancy detection fields show that

it is feasible and advantageous to use activations from within multiple hidden lay-

ers of DNNs. In the DNN inspection field, activations are typically used in conjunc-

tion with machine learning methods such as clustering or kNN directly on layers

or feature maps of the DNN to extract them. However, these are computationally

expensive and the speed and computation aspect has not been a focus of this field.

Some methods of data reduction can also be computationally expensive such as LSH

or autoencoders which also require parameter tuning, or the reduction methods are

only suitable for linear transformations such as PCA.

Another avenue is statistical measures that can differentiate between probability

distributions. Popular measures are Kullback-Leibler (KL) Divergence [55], Jensen-

Shannon (JS) divergence) [80, 171] and Kolmogorov-Smirnov (KS) Test [194]. The

Jensen-Shannon divergence is based on the KL divergence and measures the similar-

ity between two probability distributions and has previously been used with DNNs.

It has been used with DNN neurons and random forests to calculate the impor-

tance of a neuron [80] and applied within kernels of Support Vector Machines [171]

where Sharma expressed concern over whether JS-Divergence provides adequate

separation when the difference between input distributions is subtle. The KS-Test is

used to determine whether two sets of data came from the same distribution. Both

the JS-Divergence and the KS-Divergence are used to compare distributions, the JS-

Divergence measures the difference between two probability distributions, whereas



3.4. DNN Activations 51

the KS-Test determines whether two samples could come from the same distribu-

tion. Empirically, in our setting, JS-Divergence was proven to be more successful

than the KS-Test. Therefore, the JS-Divergence is focused upon with Section 3.4.4

formalising this.

Given that we are focusing on computationally inexpensive reduction methods

and that our experimental methodology is based on images, then another avenue

of investigation opens up, which is that of image descriptors. Image descriptors are

a compact representation of the visual features of the content of images and can be

used to distinguish one image from another by encoding useful information [70].

There has been a recent advance in descriptor generation by analysing activations

of DNNs [176]. Section 3.4.5 describes this in detail and is the basis of an activation

reduction method used in Chapter 6.

3.4.4 Jensen Shannon Divergence

JS-Divergence is a smooth symmetric measure of the similarity between two proba-

bility distributions based on the Kullback-Leibler divergence (KL-Divergence). KL-

Divergence DK L is based on entropy (a quantification of how much information is

in data). H is the entropy and if log2 is used, entropy is the minimum number of

bits it would take to encode the information. For instance, if p is the probability dis-

tribution of the activations in hidden layer 1, we get an entropy measure of H bits

from hidden layer 1 via Equation 3.3. The KL-Divergence combines two probability

distributions and calculates the difference of the log values for each. For instance, if

q is our distribution of the activations from hidden layer 2, KL-Divergence calculates

how much information is lost when p is compared with q. Equation 3.4 formalises

this. However, KL divergence cannot be used to measure the distance between two

distributions as it is not symmetric. The JS-Divergence DJS calculates a normalised

score that is symmetrical as shown in Equation 3.5.

[!h]H = −
N

∑
i=1

p(xi) · log p(xi) (3.3)

DKL(p||q) =
N

∑
i=1

p(xi) · (log p(xi)− log q(xi)) (3.4)



52 Chapter 3. Background for Proposed Solutions

DJS(p||q) = 1
2

DKL(p|| p + q
2

+
1
2

DKL(q||
p + q

2
) (3.5)

The application of the JS-Divergence measurement to the hidden layers of a CNN

is discussed in the following paragraphs.

The JS-Divergence-based measurement is applied to a single instance presented

to the CNN. The activations of this instance undergo a transformation: they are

normalised, and if the layers under comparison differ in size, the smaller layer is

padded with zeros. This normalisation ensures the activations range between 0 and

1 and are of equivalent size, making them suitable for the JS-Divergence calculation.

Individually, the hidden layer activations for a single instance do not represent a

probability distribution. However, after transformation, they become amenable to

distributive measures, allowing us to use these activations to derive a value that

distinguishes the activation data between any two layers under consideration. JS-

Divergence is a symmetrical similarity measurement and these properties can lend

themselves well to the activations after the above transformation process.

In this approach, we are not comparing neurons between each layer on a one-

to-one basis, as would be the case with distance-based measures such as Euclidean

or Manhattan distances. Instead, we employ a distribution-based calculation which

does not assume this relationship of the neurons. This calculation is performed con-

sistently for each instance, enabling direct comparison across instances. As the dis-

tribution of the input data changes, so too does the distribution of activations within

the hidden layers of the CNN, impacting our inter-layer measurements. Further

details on the distributions of activations in the hidden layers are provided in the

following paragraph.

As an example, the VGG16 CNN uses ReLU activation functions, whose outputs

are greater than zero as shown in Figure 1.3 (c). However, biases can be applied

to neurons, which may make the output of the activation function negative. Thus,

the activations of each layer output are normalised to be between 0 and 1. This

also makes the method applicable to other networks that use different activation

functions that may produce negative output values.

The deep neural network’s latent representations from within the hidden layers

of the deep neural network are used in detecting out of distribution samples [145,



3.4. DNN Activations 53

107]. The output of the final hidden layer of a DNN into the SoftMax output layer

is a probability distribution as DNNs learn the distribution of the training data and

the output layer uses this probability distribution to generate the output class. The

internal latent representations are also created from the distributions that are learnt

at training time. Thus, the activations of the hidden layers are not random data but

derived from the training of the deep neural network. In [140], Ong investigates the

distributions of the activations of the hidden layers. Figure 3.5 shows an overview

of the distributions of activations at the last convolutional layer for one class (image

from [140]).

FIGURE 3.5: Distributions of the activations at the final convolution
layer of VGG16

The Jensen-Shannon Divergence features within activation reduction methods in

Chapters 4 and 5.

3.4.5 DNN Image Retrieval Descriptors

CBIR is intended for content-based image retrieval [109]. One method of image re-

trieval is to create descriptors for images using deep neural networks [176]. It is

based on obtaining neural codes from fully connected layers activations. CBIR pro-

gresses this by using the information contained in convolutional layers. However,

the number of neurons in the convolutional part is large and most of them do not

contribute significantly to the final classification. Therefore the most significant neu-

ron activations only are extracted in order to provide extra information about the

image such as background textures or colour distribution that is present in the con-

volutional layers [176].

As shown in Figure 3.1, each block in the CNN (b1 to bN) consists of convolutional

layers followed by a max pooling layer. Figure 3.6 shows the max pooling layer and

the first convolutional layer of block N, the last block in the VGG16 model as shown



54 Chapter 3. Background for Proposed Solutions

FIGURE 3.6: Representation of an important neuron projected back
into the a convolutional layer

in Figure 3.1. Using this as an example of how the activations are reduced for each

CNN block: The largest value from the corresponding position in each feature map

in the max pooling layer is stored, giving a 7 x 7 one-dimensional matrix. A corre-

spondingly sized matrix is created that stores a 1 if the neuron is over a threshold

value, otherwise 0 (significance matrix, z). The neurons over the threshold value are

projected back into the first convolutional layer, where the number of neuron values

obtained is scaled up by the factor of difference between the max pooling layer and

the convolutional layer. The convolutional neuron values in each projected area are

summed. This is repeated for each feature map in the convolutional layer. Corre-

sponding neuron locations on the other feature maps in the first convolutional layer

are averaged to give one value per feature map, thus keeping the output dimension-

ality fixed. This single characteristic value for each feature map is calculated as in

Equation 3.6:

ωk =
∑i=1

H ∑
j=1
W (z)ij(ak)ij

∑i=1
H ∑

j=1
W (z)ij

(3.6)

Where ωk is the single characteristic value for feature map k, z is the significance

matrix for the block, ak are the activation values for feature map k. H is the height

and W is the width of the feature map and i and j specify matrix elements.



3.5. Streaming Machine Learning Models 55

In Section 3.4 we have reviewed DNN activations and identified two methods on

which to base their reduction in order to produce activation classification footprints.

These footprints are then applied to streaming machine learning models, which are

detailed in Section 3.5.

3.5 Streaming Machine Learning Models

In this section, we outline the streaming machine learning models that are used in

our proposed solutions. Firstly, Section 3.5.1 gives the background of the streaming

clustering model that is employed in the the proposed solution for outlier detec-

tion DeepStreamOS, in Chapter 4. This is followed by the streaming decision tree in

Section 3.5.2, which is used in the proposed solutions AdaDeepStream and DeepStrea-

mEnsemble in Chapters 5 and 6 respectively. Lastly, in Section 3.5.3, the background

is given for the nearest neighbour model which is used to assist in the DNN adapta-

tion in the AdaDeepStream solution in Chapter 5.

3.5.1 Micro-cluster-based Continuous Outlier Detection

MCOD is used within the outlier detection solution DeepStreamOS proposed in Chap-

ter 4. Outlier detection methods that have been used in real-time streams are MCOD

and AnyOut, with MCOD being an established outlier detection technique [72]. Tran

[186] compares exact-Storm, Abstact-C, LUE, DUE, COD, MCOD and Thresh-LEAP

and determines that MCOD demonstrates the superior performance among all of

the algorithms because of its micro-cluster abilities.

FIGURE 3.7: Example MCOD clusters for k=4 in an MCOD clusterer



56 Chapter 3. Background for Proposed Solutions

Figure 3.7 shows the concept of MCOD. MCOD is based on a micro-clustering

technique that takes parameters of: (1) Radius (R) of the micro-cluster (MC), (2) the

minimum number of instances to form a micro-cluster (k) and (3) window size – the

number of instances considered in the algorithm (W). If there are k + 1 instances of

p within R/2 of an MC, p becomes a member of that MC. If p is within 2R/2 of

any cluster, it becomes an outlier of those MCs. MCOD uses the centre of the micro

clusters to perform its calculations, which makes it computationally efficient.

3.5.2 Hoeffding Tree

The Hoeffding tree is used within the concept evolution and concept drift detection

solutions AdaDeepStream and DeepStreamEnsemble respectively, proposed in Chap-

ters 5 and 6. The Hoeffding tree [91] is an incremental decision tree that uses the

Hoeffding bound and is capable of learning from data streams. It is established and

well used [47]. Before delving into the Hoeffding Tree, we first give some back-

ground for the standard decision tree.

Decision Trees

Decision trees are used for both classification and regression. They recursively parti-

tion the training instances into smaller subsets based on the values of input features,

assigning a target value or class label to each subset. Examples of well known deci-

sion trees are CART [19] and ID3 [151]. CART (Classification and Regression Trees)

employs the Gini Index (for classification only) as the metric, while ID3 (Iterative Di-

chotomiser 3) utilises the Entropy function and information gain as metrics. These

classic decision tree learners operate with static data and necessitate the simultane-

ous storage of all training instances in memory, thereby constraining the number of

instances they can learn from.

Figure 3.8 shows the basic concepts of a decision tree. This consists of a Root

Node; the topmost node of the tree, which represents the entire dataset. The Internal

Node, which are nodes other than the root and leaf nodes and they represent feature

tests. Leaf Node, which are terminal nodes that hold the final predicted class or

value. A node can be split into two or more child nodes. A criterion measure is

used to determine the quality of a split (e.g., the Gini impurity or entropy). The



3.5. Streaming Machine Learning Models 57

FIGURE 3.8: Decision Tree Architecture

Gini impurity measures the probability of incorrectly classifying a randomly chosen

element in the dataset. For a binary classification problem with classes labeled 0 and

1, the Gini impurity at node t is calculated as in Equation 3.7:

Gini(t) = 1− (p2
0 + p2

1) (3.7)

Where p0 is the proportion of class 0 instances in node t, and p1 is the proportion

of class 1 instances in node t. The entropy measures the impurity or disorder in a set

of instances. It is calculated as in Equation 3.8:

Entropy(t) = −p0 log2(p0)− p1 log2(p1) (3.8)

p0 and p1 are the same as defined for the Gini impurity (p0 is the proportion of class

0 instances in node t, and p1 is the proportion of class 1 instances in node t).

The information gain represents the reduction in entropy or impurity achieved

by a split. Given a parent node p and its child nodes c1, c2, ..., ck, the information gain

IG for a split is calculated as in Equation 3.9:

IG(p) = Entropy(p)−
k

∑
i=1

|ci|
|p| · Entropy(ci) (3.9)



58 Chapter 3. Background for Proposed Solutions

Where |ci| is the number of instances in child node ci and |p| is the number of in-

stances in the parent node p.

Construction of the decision tree involves selecting the best split at each internal

node based on a criterion (e.g., Gini impurity or entropy). This procedure is itera-

tively carried out until a stopping criterion is satisfied, such as reaching a maximum

depth, attaining a minimum number of samples per leaf, or reaching a minimum

impurity threshold. Pruning is used to prevent overfitting by removing nodes that

do not provide significant information gain. It involves removing nodes from the

tree while maintaining its generalisation capability.

In summary, decision trees use a hierarchical structure to make predictions based

on feature tests. The choice of split is based on criteria like Gini impurity or entropy,

and the tree can be pruned to avoid overfitting. Decision trees are interpretable

and easy to visualise, making them a popular choice in various applications. How-

ever, classic decision trees require knowledge of the entire dataset. For data stream

classification, the amount of data is infinite and the arriving instances can only be

processed once. In classic decision tree algorithms, this would cause a very high

volume of data, making them unsuitable for streaming data.

Hoeffding Tree Formalisation

The Hoeffding tree is an incremental decision tree which uses a small number of in-

stances, n to decide on a splitting attribute. The Hoeffding bound is used to guaran-

tee that the splitting attribute is the correct choice with probability 1− δ. Assuming

that the information gain is used as the splitting measure and we have a real-valued

random variable r, then the range R will be log c (where c is the number of classes).

The Hoeffding bound states that, with probability 1− δ, the true mean of variable r

is at least r− ε, where ε is defined in Equation 3.10.

ε =

√
R2ln(1/δ)

2n
(3.10)

∆G ≥ ∆Ḡ− ε > 0 (3.11)



3.5. Streaming Machine Learning Models 59

where ∆G is the change in information gain between the two best attributes in the

data stream, and ∆Ḡ is the change in information gain between the two best at-

tributes in the small set of examples. The Hoeffding bound guarantees that with

probability 1− δ, the small sample is representative of the data stream as expressed

in Equation 3.11. Examples are accumulated from the stream until ε becomes smaller

than ∆Ḡ, then the node is split using the current best attribute and subsequent ex-

amples are passed to the new leaves. This gives a very fast and efficient decision

tree.

An extension of the Hoeffding Tree is the Hoeffding Adaptive Tree [16]. It sup-

plements the Hoeffding Tree by monitoring the branches of trees using a drift detec-

tor [17], commonly ADWIN [17] for accuracy. If the accuracy decreases, the branch

is replaced with a new branch, if the new branch is more accurate. It is used in our

proposed solution in Chapter 5.

3.5.3 Self Adjusting Memory k-Nearest Neighbours

SAM-kNN is leveraged within the concept evolution and DNN adaptation solu-

tion AdaDeepStream, to assist in DNN adaptation as proposed in Chapter 5. SAM-

kNN [117] is a popular Self Adjusting Memory (SAM) model for the k Nearest

Neighbor (kNN) [160, 118]. It is based on the kNN algorithm [38, 49] but can handle

heterogeneous concept drift, i.e., different types of concept drift occurring at differ-

ent rates. To identify concept drift, SAM-kNN uses a biologically inspired memory

model. This memory model is able to detect changes in the distribution of the data,

even if the changes are small or gradual. Figure 3.9 shows the architecture and is

adapted from [117]. SAM-kNN operates by maintaining two separate memories:

The short-term memory (STM) and the long term memory (LTM). Incoming exam-

ples are stored within the STM. Previous information from former concepts that con-

flict with information from the current concept, is transferred from the short-term

memory (STM) to the long-term memory (LTM). Knowledge accumulation is con-

densed whenever the available space is filled. Both models are taken into account

during predictions, depending on their historical performances.

The STM memory MST represents the current concept and is a dynamic sliding



60 Chapter 3. Background for Proposed Solutions

FIGURE 3.9: SAM Architecture

window containing the most recent m examples of the data stream. The LTM mem-

ory MLT preserves a compressed version of all former information which is not con-

tradicting those of the STM, a set of p points. There is also a combined memory MC

which is the union of both memories with size m + p. There is a distance weighted

kNN classifier for each memory MST, MLT and MCM. The kNN model assigns a

label for a given point x. Weights wST, wLT and wC represent the accuracy of the cor-

responding model on the current concept. The overall prediction of the model relies

on the sub-model with the highest weight. The model is adapted incrementally at

each timestep. During adaptation, the following parameters are adjusted: The size

of the STM; the data points in the LTM; the weights wST, wLT and wC. The model

has the following hyper-parameters: The number of neighbours k; the minimum

length of the STM; and the maximum number of stored examples (STM and LTM

combined).

A concept change is not explicitly detected, but the size is changed such that

the interleaved test-train error of the remaining STM is minimised. This relies on

the fact that a model trained on internally consistent data yields less errors and the

remaining instances are assumed to represent the current concept or be sufficiently

close to it. This is achieved by evaluating differently sized STMs and adopting the

one with the minimum interleaved test-train error. The interleaved test-train error

efficiently uses every example for test and training in the original order rather than

cross-validation which requires multiple repetitions over the same data to provide a



3.5. Streaming Machine Learning Models 61

stable estimation of the error.

The LTM contains all data for former concepts that is consistent with the STM.

This requires cleaning of the LTM for each seen example. When drift is detected,

the size of the STM is reduced by transferring as much data to the LTM as possible.

Before this is transferred, examples are deleted from the discarded samples from

the STM. Whenever the STM is shrunk, the discarded set is transferred to the LTM

after cleaning. Set A are the instances leftover in the STM (old concept) that is to be

transferred to the LTM. Set B is each incoming instance that has been stored from the

stream as ’cleaning’ instances. For each example in B (xi, yi), the nearest k neighbors

of xi in B is found and the ones with label yi are selected to define a threshold. xi

is then applied to A and the nearest k neighbours which are less than the threshold

defined from B are removed from A. Set B is also cleaned.

When the size limit of the LTM is reached, the LTM instances are condensed to a

sparse knowledge representation via clustering, allowing longer conservation than

simply discarding instances. For every class label, the corresponding data points are

grouped, then the clustering algorithm kMeans++ [10] is used with a reduced num-

ber of clusters as compared to the original number of classes, producing prototypes

representing the compressed original data.

In summary, the error of different sizes of the STM is monitored to detect drift.

Meanwhile incoming instances from the data stream are also stored to be used in

the ’cleaning’ process. When the STM error becomes large, the leftover samples (old

concept) are transferred to the LTM but before they go in, they are cleaned. Instances

in the transferred STM memory are removed if they are not close enough to the

’cleaning’ samples stored from the stream. Instances in the LTM are compressed to

a sparse knowledge representation via kMeans++ clustering.

The disadvantages of SAM-kNN are that it needs to maintain two separate mod-

els, the STM and LTM, which means it requires more memory than some other mod-

els. This can be a problem for datasets with a large number of features or a large

number of data points. It also needs to update its models dynamically, depend-

ing on the data that is being processed which can be computationally expensive for

large datasets or for datasets with a large number of features. Now that we have

an overview of streaming classifiers that are employed in our proposed solutions,



62 Chapter 3. Background for Proposed Solutions

Section 3.6 focuses on the definitions of the data that is applied to our proposed

solutions.

3.6 Concept Evolution and Concept Drift Definition

Concept evolution is the data discrepancy that our solution AdaDeepStream is fo-

cused on in Chapter 5. Concept drift is the data discrepancy that our solution Deep-

StreamEnsemble is focused on in Chapter 6. Hence, this section formally defines the

terms and explains the differences between them.

Bayesian decision theory is commonly employed to describe classification pro-

cedures, taking into account the prior probability distribution of classes (referred

to as p(y)) and the class conditional probability distribution (referred to as p(X|y))

[57, 95]. The classification decision relies on the posterior probabilities linked to the

classes. The posterior probability associated with class ci, given instance X, is deter-

mined via Equation 3.12:

P(ci|X) =
P(ci) · P(X|ci)

P(X)
(3.12)

Where P(X) = ∑m
i=1 P(ci) · P(X|ci) is the prior probability distribution. If concept

drift occurs between times t0 and t1, this gives Equation 3.13:

∃X : pt0(X, y) ̸= pt1(X, y) (3.13)

Figure 3.10 shows the different types of concept drift. In the literature, Real and

Virtual concept drift are collectively referred to as ’concept drift’. Class prior con-

cept drift pertains to changes in the class prior probability. This form of drift may

manifest as class imbalance, the emergence of novel classes, or the fusion of existing

classes. In previous surveys on concept drift [86, 57, 45], Class Prior Concept Drift

was not considered as a distinct type of drift. It is categorised as virtual drift when it

leads to class imbalance without affecting the decision boundaries. It is regarded as

real drift when it causes prior class evolution and thus affects decision boundaries.

The term "class prior concept drift" was first introduced in [96]. Treating it as a

distinct type of drift is pertinent in various real-world applications. For example, in



3.6. Concept Evolution and Concept Drift Definition 63

(a) Original Data
(b) Real Concept Drift

Changes in P(y|X)
Posterior Probability

(c) Virtual Concept Drift
Changes in P(X|y)

Conditional Probability

(d) Novel Class Emergence
Changes in P(y)
Prior Probability

(e) Class Imbalance
Changes in P(y)
Prior Probability

(f) Class Fusion
Changes in P(y)
Prior Probability

FIGURE 3.10: Types of Concept Drift

the biomedical field, certain viruses may acquire resistance to previously effective

antibiotics. Consequently, the class of resistant viruses may undergo evolution over

time and become more dominant. In such a scenario, the class prior distribution has

altered, signifying the occurrence of a class prior concept drift [96]. In the literature,

novel class emergence is often considered separately as concept evolution. Thus,

in this thesis, the applied concept drift is real and virtual concept drift. Concept

evolution is novel class emergence.

An example of concept evolution (or novel class emergence) applied in this thesis

is where a DNN is trained on images of cats and dogs, then a frog is presented to the

network. An example of concept drift (real or virtual) is where a DNN is trained on

images of super-classes of i.e. Animals and Transport, where the Animals category

consists of sub-classes of cats and dogs and the super-class of Transport consists of

sub-classes of Trucks and Aeroplanes. A frog is presented to the network, it’s super-

class is Animal. With this example, it is likely that this would not cause a decision

boundary change, as the super-classes Animal and Transport have quite different

characteristics. This is virtual concept drift, the input data has changed, but the class

boundaries have not. If the super-classes were more similar, this may manifest in



64 Chapter 3. Background for Proposed Solutions

class boundary changes, resulting in real concept drift.

A practical example of real concept drift is in satellite images, where land may

be categorised as agricultural, but over time, development creeps in and it becomes

urban; there has been a genuine change in the data and the model requires updating.

Virtual concept drift can occur when there are changes in the data, but the actual ter-

rain is the same. i.e. if atmospheric conditions change, or a sensor fails, causing the

image to change. In one pass, it is sunny and the terrain is classified as agricultural,

however, a change in atmospheric conditions may cause the model to misclassify

the image on the next pass. The model’s performance degrades, but the underlying

terrain usage has not changed, the differences are due to atmospheric conditions.

Now that concept evolution and concept drift has been described and formalised,

we move onto reviewing existing drift detection methods in Section 3.6.1.

3.6.1 Drift Detection Review

Our solution concerning concept evolution in Chapter 5 involves the use of an ex-

isting drift detection method. In Section 2.3.2, we reviewed concept drift methods

that were specifically for concept drift detection and adaptation for images. In this

section we review drift detection methods only. They operate on detecting the dif-

ferences between two inputs provided to them, and they signal possible changes.

Concept drift for online learning have been surveyed several times: (Widmer and

Kubat 1996 [196]; Tsymbal 2004 [187]; Quionero-Candela et al. 2009 [150]; Zliobaite

et al. 2012 [213]; Gama et al. 2014 [57]). Concept drift detection algorithms can be

categorised into (1) sequential, (2) adaptive windowing and (3) statistical [119, 200,

6].

Sequential based methods analyse whether the drift has occurred and predict the

drift based on the accuracy evaluation. Examples are Cumulative Sum (CUSUM)

[142] and Geometric Moving Average (GMA) [159]. CUSUM calculates the differ-

ence of observed values from the mean and raises an alarm when it is significantly

different. GMA uses a forgetting factor to weight the latest data and a threshold is

used to tune the false alarm rate. However, these algorithms require tuning of the

parameter values, resulting in a trade-off between false alarms and detecting true

drifts.



3.6. Concept Evolution and Concept Drift Definition 65

Windowing methods use fixed or dynamic windows that summarise informa-

tion; that information is then used to make a comparison between the previously

summarised windows and the current window to detect drift. Examples of adap-

tive windowing methods are Adaptive Windowing (ADWIN) [17] and Kolmogorov

Smirnov Windows (KSWIN ) [152]. ADWIN uses sliding windows of variable size

and if two windows are found that have distinctly different averages, then the data

distribution is deemed to have changed. KSWIN is based on the Kolmogorov statis-

tical test and has no assumption of the underlying data distribution. Another adap-

tive windowing method is HDDM [54] which is based on Hoeffding bounds and

monitors the data distribution of different time windows using probability inequal-

ities instead of the probability distribution function. It compares the moving aver-

ages to detect the drifts and uses a forgetting scheme to find the weight of moving

averages in the data stream. However, it needs to explore with different weighting

schemes for application to real-world problems [6].

Statistical methods are based on parameters like mean and standard deviation

to predict drift. Examples are DDM [58] and EDDM [11]. DDM is based on the

Probably Automatically Correct (PAC) learning model [58]. It assumes the binomial

distribution and uses the standard deviation to detect drift and works well on abrupt

drift. EDDM improves upon DDM by increasing the detection of gradual drift whilst

maintaining a good abrupt concept drift detection rate by using a distance error rate

instead of the classifiers error rate. The statistical methods are generally faster than

the sequential or adaptive windowing methods, and although DDM is one of the

older algorithms, it is one of the most accurate and fastest [66].

We conducted experiments on concept drift detection from the activations of the

deep neural network using streaming decision tree/drift detector combinations on

seven drift patterns as defined in Chapters 5 and 6. The test data instances are ap-

plied as in Figures 5.4 and 5.5. We applied ADWIN, KSWIN, HDDM, EDDM and

DDM drift detectors. We measured the F1-Score for detection, using the following

metrics for the F1-Score calculation: True positives are defined as images that be-

long to the new class and were correctly identified as concept drift. False positives

are defined as images that belong to an existing class and were incorrectly identi-

fied as concept drift. True negatives are defined as images that belong to an existing



66 Chapter 3. Background for Proposed Solutions

class and were correctly identified as such. We found that the DDM and EDDM drift

detectors significantly outperformed the ADWIN, KSWIN, HDDMA and HDDMW

methods. DDM and EDDM are statistical control based drift detectors whilst AD-

WIN, KSWIN, HDDMA and HDDMW are adaptive windowing methods that moni-

tor the data distribution of different time windows. Overall, in our setting, the DDM

method produced improved results as compared to EDDM. We also experimented

with combining the more successful drift detection methods in an ensemble. The

ensemble results were only a slight improvement on DDM. Due to the simplicity of

using one method as opposed to an ensemble for little performance gain, DDM was

favoured. Hence, the drift detection method selected to be used as the drift detec-

tor in AdaDeepStream in Chapter 5 is DDM. Section 3.6.2 details and formalises this

method.

3.6.2 Drift Detection Method

DDM (Drift Detection Method) [58] is used as the drift detection method in our

proposed solution AdaDeepStream in Chapter 5. It is a statistical method, it assumes

the binomial distribution and uses the standard deviation to detect drift. It is based

on the PAC learning model [58], whereby the error rate will decrease as the number

of analysed samples increases, as long as the data distribution is stationary. If a

rise in the error rate is identified that surpasses a calculated threshold, it triggers

either a change or a warning of a change. The detection threshold is computed

using two statistics, acquired when (pi + si) is minimum: The minimum recorded

error rate (pmin) and the minimum recorded standard deviation (smin). At instance

i, the detection algorithm employs the error rate at instant i (pi) and the standard

deviation at instant i (si). The conditions for entering the warning zone are shown in

Equation 3.14 and the conditions for detecting change are shown in Equation 3.15:

if pi + si ≥ pmin + 2 ∗ smin → warning (3.14)

if pi + si ≥ pmin + 3 ∗ smin → change (3.15)



3.7. Summary 67

DDM is able to detect abrupt and gradual drift but not very slow gradual drifts [11]

as examples are stored for an extended period and the drift level can take a con-

siderable duration to be triggered, requiring a large amount of memory. It is also

sensitive to noise.

3.7 Summary

This chapter discussed the background and theoretical definitions of the algorithms

used as the basis of the novel methods of DeepStreamOS (Chapter 4), AdaDeepStream

(Chapter 5) and DeepStreamEnsemble (Chapter 6) proposed in this thesis. The experi-

mental study involves image data as the input data and CNNs as the DNN. Hence, a

background to the curse of dimensionality has been provided along with CNNs and

their activations. Subsequently, the streaming machine learning models employed

in our proposed solutions have been explained and formalised. DeepStreamOS uses

the JS-Divergence as a tool to reduce DNN activations, and MCOD to detect outliers.

AdaDeepStream uses the JS-Divergence in a different way, and a DNN-based image

retrieval descriptor generation method to reduce DNN activations. The Hoeffding

Tree classifier is used with the activations and DDM to detect concept evolution.

SAM-kNN is used to assist the DNN adaptation process. DeepStreamEnsemble also

uses the DNN-based image retrieval descriptor generation method to reduce DNN

activations but applies it in a different way, with Hoeffding trees in an ensemble for

the detection and adaptation processes. The definitions for concept evolution and

concept drift were provided to deepen understanding of these discrepancy types.

These background methods are referenced in the following three contribution chap-

ters.





69

Chapter 4

DeepStreamOS: Open-Set

Classification in DNNs

In the previous chapter, the necessary background to understand the proposed so-

lutions, along with the theoretical explanation of the algorithms employed in these

solutions is provided. In this chapter, we propose a novel outlier detection method

using JS-Divergence and MCOD to address the second objective of this thesis as out-

lined in Section 1.5: Design, develop and evaluate an Open-Set (outlier) discrep-

ancy detection and DNN adaptation method. The work discussed in this chapter is

published as a paper titled "DeepStreamOS: Fast Open-Set classification for convo-

lutional neural networks" in the "Elsevier Pattern Recognition Letters" journal [26].

The code is available at https://github.com/chambai/DeepStreamOS.

4.1 Introduction

DNNs predict classifications based on the data they are trained on and have achieved

state-of-the-art performance in classification tasks [105, 180]. However, when the un-

seen instances are presented and they deviate from the training set distribution, they

can be incorrectly classified. This is problematic in safety critical systems such as

autonomous vehicles, flight control, medical image classification or medical sensor

analysis. For instance, DNNs have been used widely to develop autonomous vehi-

cles, and various safety incidents have been reported in the media such as Google’s

self driving car hitting a bus [106] and a Tesla driver’s fatal crash [199]. Fast detection

of unknown classes in these circumstances is essential.

The basic recognition categories for classes in open-set classification are asserted



70 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

in [168], where unknown unknown classes are defined as classes unseen in training

and also not having any meta information during training such as semantic or at-

tribute information [63]. In this chapter, we aim to detect unknown unknowns but

shall refer to them as unknowns. This research focuses on widely used convolutional

neural networks (CNNs) of VGG16 [173] and MobileNet [90], which classify images,

utilising image data from CIFAR-10 [103] and Fashion-MNIST [198] datasets. We

produce open-set unknown images by withholding classes from the dataset during

training, then apply unseen instances of known and withheld unknown classes dur-

ing testing. There are two different types of unknown images applied; those that

introduce a novel class (termed Class data), and those that introduce a new sub-type

of image to an existing class (termed Sub-Class data).

We analyse instances by utilising activations from the hidden layers within the

DNN, reducing the activations and applying this to a streaming analysis method for

outlier detection. Apart from our own previous work [27], to our knowledge, there

have been no studies analysing the activation data with streaming analysis tech-

niques. We represent multi-layer activations from the DNN using Jensen-Shannon

Divergence (JS-Divergence) and apply open-set classification using MCOD (Micro-

cluster-based Continuous Outlier Detection) streaming outlier detection [99] to pro-

vide fast analysis and detection of unknown instances.

We compare our system (DeepStreamOS) to leading DNN open-set classification

solution, OpenMax [13] and Extreme Value Machine, EVM [162]. These compari-

son methods have been selected as they are similar to our method in that they are

lightweight and do not augment the training data. Both OpenMax and EVM have

been used as comparison for other successful open-set classification methods such

as [41, 203] and show high F1-Scores under the datasets and networks they have

been tested on. We show our methods effectiveness in comparison to OpenMax and

EVM via F1-Scores and the efficiency via the speed per instance during inference.

We can summarise our contributions in this chapter as follows:

1. We apply a statistical method to quantify the difference in activation distribu-

tion between any two consecutive hidden layers of DNNs to get a dynamic

trajectory of activations.



4.2. DeepStreamOS System Description 71

2. We use fast interpretation of the reduced activations via a stream-based outlier

detection method to detect open-set images.

The rest of this chapter is organised as follows: In Section 4.2 we present a system

description including formalisation and implementation details of the DeepStreamOS

components and methodology. In the experimental study in Section 4.3 we spec-

ify the experimental setup specific to this chapter. In Section 4.4, we evaluate and

analyse DeepStreamOS on Class and Sub-Class data from the CIFAR-10 and Fashion-

MNIST datasets. The same data and DNNs are applied to open-set DNN solutions

OpenMax and EVM and the results are compared.

4.2 DeepStreamOS System Description

This section details our DeepStreamOS system components and their interactions

via descriptions and algorithms, presenting our JS-Divergence based activation re-

duction method and our concept evolution detection method as DeepStreamOS. Fig-

ure 4.1 shows the DeepStreamOS system and Table 4.1 lists the symbols used to de-

scribe our system.
TABLE 4.1: Summary of symbols

Symbol Description Symbol Description

h Layer number n Number of known classes
i Instance p Predicted class
j JS-divergence value r Outlier result
J JS-divergence set R Radius of MCOD micro-cluster
k Min inst per micro-cluster S A set of inlier/outlier decisions
l Layer W MCOD window size
M MCOD clusterer y True class
MC MCOD micro-cluster

Prerequisites for the system are: (1) A trained DNN that Open-Set Classification

is being applied to, and (2) the data instances that the DNN is trained on. To train

DeepStreamOS, the training instances are presented to the DNN. The activations of

each training instance are extracted, then the activation data proceeds through two

stages: (1) Activation reduction and (2) streaming analysis setup. In Figure 4.1, an

image i is applied and the activations are extracted. For the activation data reduc-

tion, we calculate the JS-Divergence between each pair of consecutive hidden layers



72 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

FIGURE 4.1: DeepStreamOS System Overview.

(j1 to jh). Equations 3.4, 3.3 and 3.5 show how JS-Divergence is calculated. These

values are stored in set Ji to provide a dynamic representation of the activations of a

DNN, termed an activation classification footprint. An MCOD clusterer M contains

all of the JS-Divergence training instance footprints for one known class. There are

M1 to Mn MCOD clusterers, one for each known class. In this example, the CNN is

trained on airplanes, automobiles and horses. An unknown image of a frog is ap-

plied, the JS-Divergence is calculated per pair of hidden layers (j1 to jh) and stored as

one set, Ji. The predicted class, pi is 0 (airplane). Ji is applied to the MCOD clusterer

for class 0 (M1). Outlier analysis is applied to M1. If it is an inlier, it is known. If it is

an outlier, it is unknown. The following sections provide details and algorithms for

the activation reduction, training and inference of our system.



4.2. DeepStreamOS System Description 73

4.2.1 Activation Reduction

Activation reduction is achieved via the JS-Divergence measure, which is explained

in detail in Section 3.4.4. To recap, JS-Divergence is a method of measuring the sim-

ilarity between two probability distributions. The activation reduction method is

shown in Algorithm 1. For brevity in our algorithms, we refer to JS-Divergence

as JSD. For each layer, starting at the second layer, the JS-Divergence is calculated

between the current layer and the previous layer (lines 1 to 6). To compare layers us-

ing JS-Divergence, the number of activations utilised from each neighbouring layer

needs to be the same size. The layer is flattened (line 4), the largest layer size in

the CNN is selected and if the layer sizes are smaller, they are padded with zero’s

(line 5), then the JS-Divergence is calculated between the neighbouring layers (line

6). This yields one value between each activation layer per data instance. These

values are stored in set Ji (line 7). These values represent activation classification

footprints for the instances as discussed in Section 2.6. The same process is used

during training and inference.

Algorithm 1 DeepStreamOS Activation Reduction
Input: Pretrained DNN on n classes
Input: Instance i
Output: Ji: Set of JS-Divergence calculations between layers

1: layer number, h = 0
2: for each layer, li do ▷ at layer level

3: if h > 0 then ▷ skip first layer

4: flatten(li) ▷ make layer activations 1D

5: pad(li,li − 1) ▷ make layer activations same size

6: jl = jsdiverge(li,li − 1) ▷ calc JSD between consecutive layers

7: Add jl to JS-Divergence set, Ji ▷ store JSD value

8: end if
9: h += 1

10: end for

4.2.2 Outlier Detection

The streaming outlier detection method based on MCOD [99] is used for the stream-

ing analysis. MCOD is a streaming clustering algorithm and is explained in detail

in Section 3.5.1. Before outlier detection can occur, the MCOD clusterers need to be

trained. As shown in Figure 4.1, there is one MCOD clusterer M per known class.



74 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

Reduced activation instances are added to the MCOD clusterer that represents their

classification label. Algorithm 2 details this procedure. For each training instance,

the DNN prediction is acquired (line 2). If the DNN predicted value matches the

true value of the training instance, then the activation classification footprint is gen-

erated (line 4) as described in Algorithm 1. Subsequently, the activation classification

footprint data is added to the MCOD clusterer pertaining to the class of the instance

(line 6). This results in n trained MCOD clusterers M1 to Mn. Micro clusters (MC)

may be formed within the MCOD clusterer (M), however, during the training phase

we are not interested in these micro clusters as we do not require inlier/outlier de-

cisions. W (MCOD window size) is set to the number of training instances for that

class plus one and the effect of varying k (the minimum number of instances to form

an MCOD micro-cluster) and R (the radius of the MCOD micro-cluster) is evaluated

to determine optimum values.

Algorithm 2 DeepStreamOS Training
Input: Pretrained DNN on n classes
Input: Empty MCOD clusterers M1...Mn for n known classes
Output: n Trained MCOD clusterers M1...Mn

1: for training instance, i and its true value, y do ▷ at instance level

2: pi = getPredictedClass(i) ▷ DNN predicted class

3: if pi = yi then ▷ only add instance to MCOD if correctly predicted

4: Ji = getJSD(i) ▷ get JSD values

5: My = MCOD clusterer for true class yi
6: addToClusterer(My,Ji) ▷ add reduced instance to MCOD clusterer

7: end if
8: end for

Algorithm 3 DeepStreamOS Inference
Input: Pretrained DNN on n classes
Input: Trained MCOD clusterers M1...Mn for n known classes
Output: S: A set of results

1: for unseen instance, i do ▷ at instance level

2: Ji = getJSD(i) ▷ get reduced activations (footprint)

3: pi = getPredictedClass(i) ▷ DNN predicted class

4: Mp = MCOD clusterer for class pi
5: ri = addToClusterer(Mp,Ji) ▷ determine if outlier

6: Add ri to results, R
7: removeFromClusterer(Mp,Ji) ▷ remove instance from MCOD

8: end for



4.3. Experimental Methodology 75

The algorithm for the open-set classification (inference) is presented in Algo-

rithm 3. For previously unseen instances arriving at the DNN, the activation classi-

fication pattern is extracted (line 2) as detailed in Algorithm 1. The DNN predicted

class of the instance is obtained (line 3) and the reduced instance is added to the

MCOD clusterer for the predicted class (line 5), giving an outcome r, as to whether

the reduced instance is an inlier or an outlier with respect to the MCOD clusterer it

was added to. If it is an inlier, the instance is considered to be known and if it is an

outlier, the instance is considered as unknown. The instance is then removed from

the MCOD clusterer (line 7) so that the clusterer only contains the training data and

the next instance is not affected by the previous instance.

4.3 Experimental Methodology

This section provides details of the experiments conducted with details of the spe-

cific setup implemented for the proposed method in this chapter.

4.3.1 Datasets

For the experiments we use two datasets; CIFAR-10 [103] and Fashion-MNIST [198].

The CIFAR-10 dataset consists of 10 different classes of 32× 32 colour images. In

total there are 50000 training images and 10000 test images. The Fashion-MNIST

dataset consists of 10 different classes of 28× 28 greyscale images. In total there are

60000 training images and 10000 test images. Each of the classes is assigned a class

number ranging from 0 to 9. These classes can also be split into categories: Transport

and Animal for CIFAR-10 and Footwear and Clothing for Fashion-MNIST. These

datasets were selected as they naturally lend themselves to these super-class cate-

gorisations. Fashion-MNIST images originate from photographs of fashion items,

shot by professional photographers, demonstrating different aspects of the prod-

uct, for instance, front and back. Examples of these images are shown in Figure

4.2 (a) (image adapted from [198]). In order to explore real photographic images

rather than illustrated, artificially generated or altered images, the CIFAR-10 dataset

is employed. CIFAR-10 provides a similar amount of instances to Fashion-MNIST.

The CIFAR-10 dataset was manually selected and annotated by humans who were

asked to ensure the images were photo-realistic [103]. An example of these images is



76 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

shown in Figure 4.2 (b) (image adapted from [103]). CIFAR-10 is considered a hard

dataset with variations in colour, illumination, and background [165]. These datasets

are widely used as benchmark datasets in image classification [165, 170, 20].

(a) Fashion-MNIST (b) CIFAR-100

FIGURE 4.2: Examples of images for Fashion-MNIST and CIFAR-10

Tables 4.2 and 4.3 lists the classes and their assigned categories.

4.3.2 Data Combinations

Two types of data combinations are experimented with; we shall call them (1) Class

and (2) Sub-Class. For the Class data combination, the DNNs are trained on the

original class labels. For example, the network will be trained on classes Ship and

Truck and class Dog is applied as an open-set class, so the open-set class has a novel

class label compared to that which the network was trained on. For the Sub-Class

data combination, the DNNs are trained on the category labels. For example, the

TABLE 4.2: CIFAR-10
Classes

Class ID Class Name Category
0 Airplane Transport
1 Automobile Transport
2 Bird Animal
3 Cat Animal
4 Deer Animal
5 Dog Animal
6 Frog Animal
7 Horse Animal
8 Ship Transport
9 Truck Transport

TABLE 4.3: Fashion-
MNIST Classes

Class ID Class Name Category
0 T-Shirt/Top Clothing
1 Trouser Clothing
2 Pullover Clothing
3 Dress Clothing
4 Coat Clothing
5 Sandal Footwear
6 Shirt Clothing
7 Sneaker Footwear
8 Bag Footwear
9 Ankle Boot Footwear



4.3. Experimental Methodology 77

network will be trained on classes Cat, Horse, Ship and Truck, but instead of using

these class labels, class labels of Animal, Animal, Transport and Transport are used.

The Frog class is applied as the open-set data, which has a class label of Animal,

so the input data changes without the class label changing; a Sub-Class has been

applied as the open-set data.

For the Fashion-MNIST dataset, the class of Bag has been included in the Footwear

category as it is made of similar material and is commonly purchased with footwear.

Tables 4.4, 4.5, 4.6 and 4.7 show the selected combinations and which category they

relate to. The Data ID column is the combination of classes represented as known

classes - unknown classes. The combinations have been selected such that there are

groups of 2, 4 and 6 known classes and incrementing numbers of unknown classes.

The x-axis of Figures 4.3, 4.4, 4.5 and 4.6 are data combinations, the nomenclature

of which is known-unknown classes. The known class IDs are specified first, separated

with a hyphen, then the unknown class IDs are specified. For instance, in Figure

4.3 the class combination of 01-6 signifies that the known classes are Airplane and

Automobile and the unknown class is Frog. The class IDs for the datasets can be

found in Tables 4.2 and 4.3.

4.3.3 Experimental Settings

The DNNs that have been applied to the DeepStreamOS system are the widely used

models; VGG16 [173] and MobileNet [90]. We have utilised transfer-learning from

ImageNet weights and then trained each of these networks on the known classes

specified in the Data ID column of Tables 4.4, 4.5, 4.6 and 4.7. Both of these DNNs

are CNNs. All hidden layers that have measurable outputs in Keras [36] are utilised.

VGG16 has 20 hidden measurable layers and MobileNet has 88 hidden measurable

layers.

For DeepStreamOS, the MCOD parameters k (the minimum number of neigh-

bours required to form an MCOD micro cluster) and R (the radius of the micro

cluster) require selecting. Based on empirical results and results from previous

work [27], k is set to 80. We conducted a parameter tuning exercise to investigate the

effect that the R (the radius of the micro cluster) has on the F1-Score. This parameter

tuning was conducted on a subset of Class and Sub-Class data combinations from



78 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

Figures 4.3 to 4.6, trained and inferred in the same way as the method described in

this chapter. For information, the results are shown in Appendix B.3. The selected

values are shown in the bar chart titles in Figures 4.3 to 4.6. For the test data, there

are 1000 instances per class. Combinations of known and unknown classes are ap-

plied in equal proportions. For instance, if the CIFAR-10 combination of 0189-23 is

applied then there would be 4000 known classes and 2000 unknown classes. The

number of instances in each of the known classes were reduced by half to provide a

balanced amount of unknown to known instances.

As stated in Section 4.1, we compare our system to the leading open-set clas-

sification solutions of OpenMax [13] and Extreme Value Machine, EVM [162]. An

overview of these methods follows:

1. OpenMax uses activation vectors to estimate the probability of deep network

failure. From correctly classified training samples, activations from the final

hidden layer are used to calculate a Mean Activation Vector (MAV). The dis-

tances between the training samples and their corresponding class MAVs are

computed and used to fit a separate Weibull (an Extreme Value theory (EVT)

probabilistic model) distribution for each class. The values of the activation

vector are then redistributed according to the score of the Weibull distribution

fit, and these redistributed values are used to compute an activation for un-

known classes. The class probabilities for known classes and unknown classes

are calculated by applying Softmax again, but this time on the newly redis-

tributed activation vectors [13].

2. EVM uses EVT and the margin distribution to further estimate the probability

of sample inclusion in each class. EVT provides the functional form for the

radial probability of inclusion of a point in a class with respect to its other

surrounding classes. The points and distributions that best summarise each

class (the points that are the least redundant with respect to one another) give

a compact probabilistic representation of the boundary for each class in terms

of its extreme vectors. This provides a nonlinear classifier with radial inclusion

functions that are similar to Radial Basis Function kernels but have variable

bandwidths and skew [162].



4.3. Experimental Methodology 79

These comparison methods are similar to our DeepStreamOS method in that they

do not augment the training data; they are discriminative rather than generative

methods, and therefore, do not generate data to fill the open space [63]. Similar

to our method, OpenMax uses activations from within the network, but only uses

the last layer whereas we use a trajectory of activations across all layers. EVM uses

statistical methods only. Similarly to OpenMax, it employs EVT but also uses the

margin distribution to improve upon OpenMax. These are both successful methods

used for comparison in open-set literature [41, 203]. In summary, OpenMax and

EVM are both statistical-based methods and focus on EVT, discriminating between

objects via extreme features rather than average ones and both rely on distances.

OpenMax uses the activations of the final hidden layer of a DNN, whereas EVM

uses the image data directly.

No incorrectly classified instances are removed during testing in order to more

closely simulate real-world applications. DeepStreamOS is compared to OpenMax

and EVM open-set methods using identical data. The F1-Score metric with out of

sample as the positive class is used as analysed in [81], leading to the following def-

initions: True positives are unknown images that are classified as unknown. False

positives are known images that are classified as unknown. False negatives are un-

known images that are classified as known.

To compare DeepStreamOS with OpenMax, we are using a modified version of

OpenMax that we have adapted to work with our data and DNNs. The parameters

of alpha and tail required modification for our data and optimum values for these

were found empirically to be 2 and 9, respectively by running a subset of data com-

binations (two from each data combination for each number of trained classes for

class and sub-class data) with a range of values between 1 and 20 for both alpha

and tail. To compare with EVM we are using the EVM PyPI installer associated with

the research paper [162]. The tail size parameter was tuned and optimum values

were found to be 40 for all Class data combinations, 60 for CIFAR-10 Sub-Class data

combinations and 20 for Fashion-MNIST Sub-Class data combinations. A subset of

data combinations was selected (two from each data combination for each number

of trained classes for class and sub-class data) with a range of values between 10 and



80 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

100. The distance function of cosine was selected as it yielded slightly improved re-

sults over Euclidean distance. There is an option to apply a threshold to the amount

of training data as this speeds up the training process. This has been set to 1 to use

all of the training data in order to compare directly with our method and Open-

Max. The output of EVM is the probability of the unseen instance belonging to each

trained class. The class with the maximum probability is taken. If the probability

is greater than 0.5, the instance is marked as belonging to that class (known). If the

probability is less than 0.5, the instance is deemed not to belong to any of the classes

(unknown). Our system is operating on HP Spectre x360 Intel i7-8750H CPU, 8GB

RAM.

4.4 Experimental Results

In this section, we discuss our thorough experimental study, evidencing the efficacy

of the proposed method.

Table 4.8 shows the average F1-Scores and the standard deviation for each DNN,

data combination type and dataset. For Class data combinations, Table 4.8 shows

that DeepStreamOS achieves F1-Scores, between 0.660 and 0.709. In figures 4.3 and

4.4, DeepStreamOS generally performed less well in the combinations that only had

two known classes. The VGG16 network shows lower F1-Scores for Fashion-MNIST

and comparative F1-Scores for the CIFAR-10 as compared to MobileNet, proba-

bly because there are less layers in VGG16 than MobileNet, and therefore less JS-

Divergence calculations contributing to the MCOD clustering. When the number of

known classes remains the same and the number of unknown classes are increased,

typically there is a drop in the F1-Score when the largest amount of unknown classes

are applied i.e. Figure 4.4, combination 5789-012346 and is most prevalent in the

VGG16 network/Fashion data in Figure 4.4. DeepStreamOS performed well on the

known classes 0189 in figure 4.3 and the known classes 5789 in Figure 4.4. These

both contained a single Transport/Animal or Clothing/Footwear category respec-

tively.

For Sub-Class data combinations, Table 4.8 shows that DeepStreamOS achieves

F1-Scores between 0.662 and 0.720. In Figures 4.5 and 4.6, DeepStreamOS achieves



4.4. Experimental Results 81

consistently higher F1-Scores for all Sub-Class data combinations than OpenMax.

A decrease in the F1-Score can be seen in Figure 4.5 for the four known classes of

0123 for VGG16 network/CIFAR-10 data and less so in Figure 4.6 for known classes

012579 for the VGG16 network. Again, indicating that DeepStreamOS is less accu-

rate on the smaller VGG16 network. However, the number of classes is limited to

only two categories of Transport/Animal and Clothing/Footwear in this Sub-Class

data combination scenario.

DeepStreamOS outperforms OpenMax in 97% of data combinations and EVM

in 43%, with DeepStreamOS outperforming EVM for the Fashion-MNIST dataset as

shown in Figure 4.6. The overall average F1-Score of DeepStreamOS exceeds EVM by

2.1% and OpenMax by 29.6%. Using the Wilcoxon Signed-Rank test, the difference

between the F1-Score of DeepStreamOS and that of OpenMax over the 170 tested data

combinations is statistically significant. The p-value is less than 0.00001 which is less

than 0.05 significance level, suggesting the acceptance of the alternative hypothesis

that true location shift is not equal to 0. These results indicate that DeepStreamOS

performs more accurately on networks with more layers and on a mixture of Trans-

port/Animal and Clothing/Footwear categories. However, when there are only two

known classes or when the number of unknown classes are increased, performance

decreases.



82 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

FIGURE 4.3: F1-Scores for CIFAR-10 Class data combinations.

TABLE 4.4: CIFAR-10 Category Combinations (Where Data ID
represents known classes-unknown classes, T=Transport, A=Animal)

Data ID Category
Combination

01-6 TT-A
08-2 TT-A
09-4 TT-A
34-7 AA-A
36-4 AA-A
89-1 TT-T
89-2 TT-A
89-3 TT-A
0189-2 TTTT-A
0189-23 TTTT-AA
0189-234 TTTT-AAA
0189-2345 TTTT-AAAA
0189-23456 TTTT-AAAAA
0189-234567 TTTT-AAAAAA

Data ID Category
Combination

234567-0 AAAAAA-T
234567-01 AAAAAA-TT
234567-018 AAAAAA-TTT
234567-0189 AAAAAA-TTTT
1468-0 TAAT-T
1468-02 TAAT-TA
1468-023 TAAT-TAA
1468-0235 TAAT-TAAA
1468-02357 TAAT-TAAAA
1468-023579 TAAT-TAAAAT
023789-1 TAAATT-T
023789-14 TAAATT-TA
023789-145 TAAATT-TAA
023789-1456 TAAATT-TAAA



4.4. Experimental Results 83

FIGURE 4.4: F1-Scores for Fashion-MNIST Class data combinations.

TABLE 4.5: Fashion-MNIST Category Combinations (Where Data ID
represents known classes-unknown classes, C=Clothing, F=Footwear)

Data ID Category
Combination

02-6 CC-C
02-8 CC-F
34-5 CC-F
34-6 CC-F
46-3 CC-C
57-9 CC-C
79-1 FF-F
012346-5 CCCCCC-F
012346-57 CCCCCC-FF
012346-578 CCCCCC-FFF
012346-5789 CCCCCC-FFFF
5789-0 FFFF-C
5789-01 FFFF-CC
5789-012 FFFF-CCC

Data ID Category
Combination

5789-0123 FFFF-CCCC
5789-01234 FFFF-CCCCC
5789-012346 FFFF-CCCCCC
1358-0 CCFF-C
1358-02 CCFF-CC
1358-024 CCFF-CCC
1358-0246 CCFF-CCCC
1358-02467 CCFF-CCCCC
1358-024679 CCFF-CCCCCC
024679-1 CCCCFF-C
024679-13 CCCCFF-CC
024679-135 CCCCFF-CCF
024679-1358 CCCCFF-CCFF



84 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

FIGURE 4.5: F1-Scores for CIFAR-10 Sub-Class data combinations.

TABLE 4.6: Sub-Class Category Combinations (Where Data ID
represents known classes-unknown classes, T=Transport, A=Animal)

Data ID
Category

Combination
02-1 TA-T
02-18 TA-TT
02-189 TA-TTT
02-1893 TA-TTTT
02-18934 TA-TTTTT
02-189345 TA-TTTTTT
02-13 TA-TA
02-1834 TA-TTAA

Data ID
Category

Combination
0123-8 TTAA-T
0123-89 TTAA-TT
0123-894 TTAA-TTA
0123-8945 TTAA-TTAA
0123-84 TTAA-TA
012348-9 TTAAAT-T
012348-95 TTAAAT-TA



4.4. Experimental Results 85

FIGURE 4.6: F1-Scores for Fashion-MNIST Sub-Class data
combinations.

TABLE 4.7: Fashion-MNIST Sub-Class Category
Combinations(Where Data ID represents known classes-unknown

classes, C=Clothing, F=Footwear)

Data ID
Category

Combination
05-1 CF-C
05-12 CF-CC
05-123 CF-CCC
05-1237 CF-CCCF
05-12378 CF-CCCFF
05-123789 CF-CCCFFF
05-17 CF-CF
05-1278 CF-CCFF

Data ID
Category

Combination
0157-2 CCFF-C
0157-24 CCFF-CC
0157-248 CCFF-CCF
0157-2489 CCFF-CCFF
0157-28 CCFF-CF
012579-6 CCCFFF-C
012579-68 CCCFFF-CF



86 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

DeepStreamOS consistently performs well on sub-class data combinations, how-

ever data is limited. DeepStreamOS outperforms OpenMax in all scenarios and out-

performs EVM in scenarios involving the Fashion-MNIST dataset. The initial CNN

accuracies are included in Appendix B.1. The CNN classifier accuracy could affect

DeepStreamOS as the training of the MCOD clusterers is dependent on how many

correct training instances are provided from the CNN. Appendix B.2 investigates

this.

Table 4.9 shows the average time to process an instance in milliseconds. The

timings are performed on a subset of at least 50% of data combinations within each

category in Table 4.8. The average speed of detection for DeepStreamOS is 6ms per

instance. This is the time per instance, measured in batches of 100 instances. It is the

duration it takes to extract the activations, calculate the JS-Divergence between each

layer and process them through the MCOD outlier detection algorithm to produce

an inlier/outlier result. The average time taken for OpenMax and EVM to calculate

the outcome for each instance is 29ms and 599ms, respectively. DeepStreamOS is 5

times faster than OpenMax and 100 times faster than EVM.

For OpenMax and EVM, the more known classes there are, the longer it takes to

process an instance. However, for DeepStreamOS, timings remain consistent, indicat-

ing that DeepStreamOS is more suitable for up-scaling than OpenMax or EVM.

TABLE 4.8: Average and standard deviation (SD) for dataset F1-
Scores

F1-Score

DNN Data Type Dataset
DeepStreamOS
(Ours)

OpenMax EVM

MobileNet Class CIFAR-10 0.660 (0.024) 0.600 (0.029) 0.674 (0.011)
MobileNet Class Fashion-MNIST 0.709 (0.061) 0.531 (0.142) 0.709 (0.124)
MobileNet Sub-Class CIFAR-10 0.667 (0.000) 0.564 (0.035) 0.684 (0.009)
MobileNet Sub-Class Fashion-MNIST 0.667 (0.000) 0.381 (0.085) 0.562 (0.095)
VGG16 Class CIFAR-10 0.661 (0.033) 0.314 (0.181) 0.674 (0.012)
VGG16 Class Fashion-MNIST 0.677 (0.076) 0.198 (0.221) 0.708 (0.125)
VGG16 Sub-Class CIFAR-10 0.662 (0.015) 0.342 (0.141) 0.684 (0.009)
VGG16 Sub-Class Fashion-MNIST 0.720 (0.095) 0.124 (0.212) 0.562 (0.095)



4.5. Summary 87

TABLE 4.9: Average and standard deviation (SD) for time per instance

Time per Instance (ms)

DNN Data Type Dataset
DeepStreamOS
(Ours)

OpenMax EVM

MobileNet Class CIFAR-10 10.5 (4.6) 21.3 (5.6) 632.8 (279.5)
MobileNet Class Fashion-MNIST 6.6 (3.5) 33.6 (10.8) 1049.0 (750.5)
MobileNet Sub-Class CIFAR-10 4.6 (1.2) 15.1 (0.3) 520.7 (34.3)
MobileNet Sub-Class Fashion-MNIST 4.9 (1.5) 18.2 (0.3) 176.2 (12.1)
VGG16 Class CIFAR-10 5.8 (3.2) 45.4 (11.4) 1087.5 (532.6)
VGG16 Class Fashion-MNIST 5.3 (3.4) 43.9 (11.0) 669.2 (233.9)
VGG16 Sub-Class CIFAR-10 3.3 (2.5) 24.6 (2.5) 436.8 (19.7)
VGG16 Sub-Class Fashion-MNIST 3.3 (0.8) 27.8 (2.3) 216.9 (15.6)

4.5 Summary

In this chapter, we proposed a novel method for outlier detection using DNN ac-

tivations. This method, called DeepStreamOS, extracts the DNN activations from

each hidden layer of the DNN and uses the statistical comparison method of JS-

Divergence to obtain a value indicating the difference between two consecutive

layers. This is obtained for each set of neighbouring layers, providing a set of JS-

Divergence values per instance, termed an activation classification footprint. The

footprints are then provided to the streaming analysis aspect, which consists of a

number of MCOD clusterers (one for each known class). The JS-Divergence values

for the instance is provided to the MCOD clusterer that the DNN predicted. The

instance is examined to ascertain if it is an outlier. If it is an outlier, it is considered

an unknown instance. If it is an inlier it is considered a known member of that class.

To examine the proposed method, a set of experiments with two benchmark im-

age datasets were conducted. Data class combinations were selected for the system

to be trained on and other classes were withheld in order to be applied as outliers.

Firstly at the class level, then at the sub-class level. At the class level, novel class

labels arose. At the sub-class level, no new class labels arose, but novel sub- classes

were applied, thus affecting the input data of known classes. Data combinations of

known and unknown classes were applied to two DNNs with a varying number of

hidden layers.

The results showed that the overall average F1-Score of DeepStreamOS exceeds

EVM by 2.1% and OpenMax by 29.6%. DeepStreamOS outperformed the state-of-

the-art solutions, OpenMax in 97% of the data combinations, and EVM in 43% of



88 Chapter 4. DeepStreamOS: Open-Set Classification in DNNs

combinations. With further investigation, it was discovered that the performance

of DeepStreamOS is compromised when there are only two known classes or when

the number of unknown classes are increased. Thus, performance improves when

there are a larger amount of known classes and a lower amount of unknown classes.

This scenario is common in real-world applications such as in medical image anal-

ysis, where a system would be pretrained on large amounts of known data and a

few novel changes would occur, i.e. chest x-rays where a new respiratory disease is

emerging. DeepStreamOS performs more accurately on networks with an increased

number of hidden layers and a mixture of categories, rather than unknown instances

from the same categories. Using the Wilcoxon Signed-Rank test, the difference be-

tween the F1-Score of the compared methods is statistically significant. With regards

the overall average F1-Score, DeepStreamOS exceeds OpenMax by 30% and EVM by

2%. With respect to the average speed of detection for an instance, DeepStreamOS by

far exceeds the compared methods, being five times faster than OpenMax and one

hundred times faster than EVM. Compared to EVT-based methods or deep learning-

based methods, DeepStreamOS provides fast inference with only two parameters that

require tuning for the MCOD outlier detection. This is comparable to the number of

parameters that require tuning in systems only involving EVT and considerably less

than if a DNN such as a GAN or autoencoder is involved in the processing.

The results indicate that DNN activation can be used with streaming machine

learning methods to detect outliers. JS-Divergence reduces the DNN activations into

a small amount of values per instance (the activation classification footprint). To im-

prove the detection performance, in the next chapter, we propose the AdaDeepStream

method with a modified JS-divergence activation reduction method with more val-

ues per instance, and an alternative activation reduction method based on content-

based image retrieval. We also move away from outlier detection, towards an ac-

curacy volatility-based discrepancy detection method. We detect concept evolution

whereby we apply novel classes in drift patterns and extend further to include DNN

adaptation in order to provide a complete detection and adaptation solution, thus

satisfying the third objective from Section 1.5.



89

Chapter 5

AdaDeepStream: Streaming DNN

Adaptation to Concept Evolution

In the previous chapter, we described a novel method called DeepStreamOS which

provides outlier detection for novel classes and sub-classes, addressing the second

objective as defined in Section 1.5 of this thesis. This chapter proposes the AdaDeep-

Stream concept evolution detection and DNN adaptation method. It progresses the

work in this thesis into concept evolution discrepancy detection, further investigat-

ing the activation reduction, with two new methods developed and analysed, and

adding DNN adaptation, satisfying objective three: Design, develop and evaluate a

concept evolution discrepancy detection and DNN adaptation method. The work

presented in this chapter is published as a paper titled "AdaDeepStream: Streaming

Adaptation to Concept Evolution in Deep Neural Networks" in the "Springer Ap-

plied Intelligence" journal [28].

The code is available at https://github.com/chambai/AdaDeepStream.

5.1 Introduction

DNNs are widely used and have achieved state-of-the-art performance in static

data classification tasks [105, 180]. However, data evolves in real-world scenarios

and standard DNNs are not responsive to changing data. DNNs only recognise

classes they are trained on. Therefore, novel classes are attributed to known la-

bels from the training data. This will result in incorrectly classified instances. Non-

responsiveness to changing data could be dangerous in safety-critical applications

such as autonomous vehicles [143] and medical sensor analysis [3]. For instance,



90 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

deep neural networks have been used widely to develop autonomous vehicles and

various safety incidents have been reported in the media such as Google’s self driv-

ing car hitting a bus [106] and a Tesla driver’s fatal crash [199]. Detection and adap-

tation of novel classes in these circumstances is essential. In this chapter we focus

on the key challenge of detecting novel classes emerging in streaming images and

CNN adaptation to this.

In dynamically changing and non-stationary environments, data drift can man-

ifest when out of distribution instances occur. When novel classes appear in a data

stream in accumulated instances, this data drift is called concept evolution [43].

When there is a distribution change within the existing classes only and no new

classes arise, this data drift is called concept drift [57]. This chapter focuses on con-

cept evolution only.

Detecting and adapting to concept evolution in CNNs can be problematic. In

the streaming environment there is no prior knowledge of the novel classes to assist

in the initial training process [209]. Image data is high dimensional which makes it

harder to detect concept evolution than for lower dimensional datasets [195]. In

CNN adaptation, high data dimensionality contributes to the adaptation latency

being large [205]. DNN adaptation can cause catastrophic forgetting (where orig-

inally known classes are forgotten in the presence of new classes) [122]. DNNs re-

quire balanced classes for training which are not available in streaming scenarios.

DNNs require a larger amount of data for training as compared to other types of

machine learning models. To achieve online CNN adaptation, solutions often re-

quire prior selection of specialised DNN architectures, loss functions or knowledge

distillation [202, 156, 110, 8]. This means that novel class detection and adaptation

cannot be retrospectively applied without retraining the CNN. This is particularly

an issue in CNNs that take a long time to train. The requirement of online adapta-

tion may not always be realised at the time of original implementation of the CNN

system. If such a system is not in place, metrics would need to be manually moni-

tored, data would need to be collected, labelled and another model statically trained

before being updated on the system, which may not be achievable when the sys-

tem is online. Therefore, easily implementable solutions to upgrade existing trained

CNNs are required. At the very least, an image recognition system should be able to



5.1. Introduction 91

detect and adapt to novel classes in a data stream. For an image recognition system

involving a DNN, the two fields of Concept Evolution and Online Class Incremental

(OCI) are involved. OCI is a subset of the Online Continuous Learning (OCL) field

concerning novel classes only. OCI typically trains a newly initialised DNN in an

incremental manner, applying all instances of one class at a time [122]. Research in

this field focuses on accumulating and preserving knowledge without forgetting any

previous data [122], true-labelled samples of the classes are often used, which results

in artificially high performance. In a real-world scenario, even partially labelling a

data stream using humans can be expensive [59] and impractical due to the need for

domain experts and manual labelling. This is in contrast to the Concept Evolution

field where focus is upon the changing data, taking into account only some previ-

ous data and using minimal true-labelled samples. The Concept Evolution and OCI

fields require bringing together as they offer complimentary views. We apply con-

cept evolution patterns of abrupt, gradual, incremental and reoccurring as shown in

Figure 1.4.

Existing approaches for CNN adaptation to concept evolution are limited as the

focus has been on lower dimensional data [56]. To handle high dimensional data,

the data is transformed into a different representation to improve the separation of

the classes [85, 191, 60, 195]. Clustering is commonly used in novel class detec-

tion [101, 195, 60, 42, 73, 22, 207]. It is an implicit method of drift detection. The drift

is monitored over a number of instances before drift is declared. This is in contrast

to explicit drift detection where the change is detected and immediately reported.

Implicit methods of drift detection result in a delay of concept evolution detection.

In data stream classification, there are approaches for novel class detection in images

where DNNs are used in the detection process [60, 81, 111, 5]. However, consider-

ably less where a CNN is adapted to the novel classes [101]. This means that CNN

adaptation has not been studied in depth in the concept evolution field. On the

contrary, the OCI field has a large number of CNN adaptation techniques [156, 110,

31, 76, 8]. However, they have not been applied to the more dynamic concept evo-

lution setting. Only one paper, [101] started to address this by unifying OCL with

concept drift and concept evolution adaptation [101]; however, data drift patterns

were not applied. Our own previous work uses the activations from within a DNN



92 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

with streaming clustering and detects random outliers [26], but had limitations with

memory [27]. An autoencoder was employed as the activation reduction method,

requiring a large amount of memory and computational power during the offline

training phase. Thus, a new solution is required that addresses concept evolution

detection and CNN adaptation to images with the following attributes: (1) Transfor-

mation of the image data into a different representation. (2) Explicit concept evolu-

tion detection. (3) A solution that can be applied to existing CNNs with no need to

retrain the CNN. (4) Analysis with respect to concept evolution patterns.

Our system (AdaDeepStream) aims to provide a wrapper whereby pretrained stan-

dard CNNs can be enabled to explicitly detect and adapt to concept evolution in

images. The concept evolution detection and CNN adaptation is facilitated by the

use of activations from within the deep neural network, applied to streaming ma-

chine learning models. Our system detects change in an unsupervised manner by

comparing the predictions of the CNN with predictions from a streaming classifier

using the internal activations of the CNN. Only instances that are detected at the

beginning of the change are true-labelled to minimise human interaction. The aim

is to adapt a CNN within seconds. This research focuses on image classification via

the widely used VGG16 Convolutional Neural Network [173]. Datasets CIFAR-10,

CIFAR-100 [103] and Fashion-MNIST [198] are used. Concept evolution patterns are

produced by withholding classes from the dataset during training, then applying

unseen instances of known and withheld classes during testing. We analyse un-

seen instances by utilising activations from the hidden layers within the deep neu-

ral network. We reduce the activations using two methods (1) an extension of our

Jensen-Shannon Divergence (JS-Divergence) as used in [26], altered to also calculate

JS-Divergence between each layer and the final layer. This is referred to as JSDL for

the remainder of this chapter. (2) a modified Content-Based Image Retrieval (CBIR)

descriptor generation method [176], referred to as DS-CBIR for the remainder of this

chapter. We apply the activations to a Hoeffding Adaptive Tree [16] streaming clas-

sifier. The difference between the Hoeffding adaptive classifier and the CNN is used

to detect concept evolution via Drift Detection Method (DDM) [58]. Once concept

evolution is detected, the CNN is adapted via our method, termed DSAdapt. We

substitute our DNN adaptation method with four leading methods from the OCI



5.1. Introduction 93

field: Incremental Classifier and Representation Learning (iCARL) [156], Learning

without Forgetting (LwF) [110], Experience Replay (ER) [31, 76] and Maximally In-

terfered Retrieval (MIR) [8] augmented with Review Trick (RV) [25]. We perform

an extensive empirical study, comparing these and our DSAdapt method based on

accuracy, speed of inference, and speed of adaptation. Our entire system, AdaDeep-

Stream, is an offline training and online inference method. Its effectiveness is shown

in comparison to Reactive Subspace Buffer (RSB) [101] and CNN based Prototype

Ensemble (CPE) [195] also through accuracy, speed of inference and speed of adap-

tation.

The CBIR technique [176] is modified to remove the threshold and further reduce

the activations by splitting them into equal sections and averaging each section. To

the best of our knowledge, applying CBIR to concept evolution detection is unique.

JSDL uses the JS-Divergence statistical difference measure in a novel way between

layers of a deep neural network. To the best of our knowledge, apart from our own

previous work in [27, 26]; using the reduced activations for concept evolution de-

tection is unique. Our CNN adaptation (DS-Adapt) is novel. Reduced activations

provide a buffer of training and true-labelled instances, assisting in addressing class

imbalance and catastrophic forgetting. To the best of our knowledge, using acti-

vations with streaming machine learning models for CNN adaptation is novel. A

summary of the contributions of this chapter is as follows:

1. Heuristics for activation reduction of deep neural networks via DS-CBIR and

JSDL to apply to concept evolution detection.

2. Concept evolution detection using neural network activations and streaming

machine learning models.

3. CNN adaptation involving neural network activations and streaming machine

learning models.

4. Analysis of OCI CNN adaptation techniques in a concept evolution setting.

This chapter is organised as follows: In Section 5.2, we present a description of

the system that includes formalisation and implementation details of the AdaDeep-

Stream components and methodology. In the experimental study in Section 5.3 we



94 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

specify the specific experimental setup details for this method. In Section 5.4, we

evaluate AdaDeepStream with four other CNN adaptation methods and two com-

bined novel class detection and CNN adaptation solution.

5.2 AdaDeepStream System Description

This section details our AdaDeepStream system components and their interactions

via descriptions and algorithms. We present our two activation reduction methods

(JSDL and DS-CBIR), our drift detection method, our CNN adaptation method (DS-

Adapt), and how the application of the four substituted CNN adaptation methods

is achieved.

Firstly, some fundamental concepts are given. For the definition of a data stream,

let D = {(xi, yi)}∞
1 where (xi, yi) is an instance that has arrived at timestep t. yi is

the true class label of the instance. Concept evolution are new classes that emerge

during inference. They are not present in the initial training data. For data stream

classification with novel class detection: Let Dinit be a training set of M examples:

Dinit = {(xi, yi)}M
1 where the class labels are: yi ∈ Y = {1, 2, . . . , L} and Y are the

known class labels. An initial model is built with: f : X → Y. The model f , is then

used to predict the class labels of incoming instances if it belongs to a known class,

or flag up a change. Each change detection is considered a possible new class in

that window. The model is then adapted to include the novel class. In the following

algorithm descriptions, index notation is used. For instance, xih is the ith instance

in hidden layer h. Table 5.1 lists the commonly used symbols. For brevity in the

descriptions, the Hoeffding Adaptive Tree streaming activation classifier is referred

to as HAT, JS-Divergence is referred to as JSD and the SAM-kNN streaming clusterer

is referred to as SAM.

Figure 5.1 shows the proposed AdaDeepStream system. The prerequisites for the

system are: (1) A trained CNN on which the detection and adaptation is being

applied, and (2) the data instances on which the deep neural network is trained.

AdaDeepStream is an offline-online system in that it is trained offline and processes

unseen instances online. To train AdaDeepStream, the training instances are pre-

sented to the CNN. The activations of each training instance are extracted, then



5.2. AdaDeepStream System Description 95

TABLE 5.1: Summary of main symbols

Symbol Description Symbol Description

A Reduced activations K SAM class predictions
B Change detection window buffer L Number of classes
b Convolutional block N Number of convolutional blocks
C CNN P CNN predicted class labels
Cadapt Adapted CNN R Drift detector outputs
D Data stream S HAT class predictions
E Class buffer s Sample from class buffer
G Number of windows in window buffer U Window buffer
H Number of hidden layers V Max num activation vals per layer
h Hidden layer number W Number of change detection groups
i Instance number w Window number
J Activations x Instance data
Jmax Max activation vals per channel Y True class labels
Jconv Activation values of conv layer

the activation data proceeds through 3 stages: (1) Activation reduction, (2) drift de-

tection setup and (3) adaptation setup. Activation reduction is achieved via JSDL

(Section 5.2.1) or via DS-CBIR (Section 5.2.2). The HAT and SAM are trained with

reduced activation data: Ainit = {(ai, yi)}M
1 . Where Ainit is a training set of M sam-

ples of activation data, where ai is an instance of reduced activation data. The class

buffer is initialised with image and activation data: Einit = {(xi, ai, yi)}M
1 . Where

Einit is a training set of M samples of image and activation data. At inference time,

a window of image data, Dw is applied. The reduced activations are extracted via

JSDL or DS-CBIR to give Aw. Each instance in Aw is classified by the HAT to give

a window of HAT predictions, Sw. The CNN predictions, Pw are compared with

Sw. Instances where the HAT and CNN predictions match are assigned as 0. In-

stances where the HAT and CNN prediction do not match are assigned as 1. These

are provided to the DDM drift detector. If the drift detector identifies changes, the

window data, (Aw, Dw) is passed to the adaptation phase. In Figure 5.1, units in-

volving the adaptation phase are shown in orange (that is, the HAT, Drift Change

Instances, Previous Window Buffer, SAM, Class Buffer, Train Classifier Layers and

the classification layers of the CNN). The window that change was detected in is true

labelled. The SAM and the class buffer are updated with the true labelled window

data. Windows prior to the drift detection are collected from the previous window

buffer. Samples are taken from the class buffer for each class detected in the previous



96 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

FIGURE 5.1: AdaDeepStream System overview. An unknown image of
a frog is presented to the CNN, the activations are extracted, drift is
detected and the CNN is adapted to recognise the new class. CNN

image adapted from [52].

window buffer to assist in mitigating catastrophic forgetting. The sampled image

data (Ds, Ys) is applied to the adaptation of the CNN. Only the CNN classification

layers are trained as shown by the dashed orange box in the CNN. The represen-

tations learned in the early layers provide a generalisation that remains even when

new data is learned [204]. If the CNN is adapting when new windows, Dw are arriv-

ing, the instance labels stored in the previous window use the prediction from SAM

instead of from the CNN as SAM has already been updated with the novel classes.

While the CNN is adapted, the HAT is adapted with the activation instances from

the class buffer (As, Ys) to recognise i.e. the Frog class. From this point on the frog is

a recognised class and does not trigger the drift detector.

5.2.1 Activation Reduction - JSDL

We calculate the JS-Divergence between each pair of consecutive hidden layers and

between each layer and the final hidden layer. Details of JS-Divergence statistical

difference measure can be found in Section 3.4.4. The JS-Divergence calculates a

normalised score that is symmetrical. The JS-Divergence has been selected as the

statistical difference measure as it, or the KL-Divergence has been used in conjunc-

tion with DNN activations [139, 188].



5.2. AdaDeepStream System Description 97

Algorithm 4 JSDL
Input: One window of image data, Dw
Input: CNN, C expressed in hidden layers: h ∈ C = {1, 2, . . . , H}
Output: Aw: One window of reduced activations

1: let V be the max number of activations in all layers of C
2: let H be the number of the final hidden layer
3: for xi ∈ Dw do
4: let layer number, h = 0
5: for h ∈ C do
6: Jih ← getActivations(h) ▷ get activations for current instance and hidden layer

7: if h > 1 then
8: Jih ← flatten(Jih) ▷ convert activations into 1-D array

9: Jih ← pad(Jih, Jin−1, V) ▷ pad adjacent activation layers to the same size

10: Jih ←jsdiverge(Jih, Jih−1) ▷ calculate JSD for adjacent layers

11: Aw ← jsdiverge(Jih, JiH) ▷ calculate JSD for current and last layer

12: end if
13: h = h + 1
14: end for
15: end for
16: Return Aw

Other statistical measures of Kolmogorov-Smirnov and cosine similarity were

experimented with. However, JS-Divergence provided superior results. To compare

layers using JS-Divergence, the number of activations utilised from each neighbour-

ing layer needs to be the same. The largest layer size in the CNN is selected and

if the layer sizes are smaller, they are padded with zero’s, then the JS-Divergence

is calculated between the neighbouring layers. This yields one value between each

activation layer per data instance. The algorithm for our JSDL implementation is

presented in Algorithm 4. In the overall AdaDeepStream system (Algorithm 6), JSDL

would be called in Line 2 via the reduceActivations method.

For previously unseen instances arriving at the deep neural network, the acti-

vations for one layer at a time is extracted via getActivations (Line 6). The JS-

Divergence is calculated for two neighbouring layers; therefore, the first layer is

skipped as shown in Line 7. The layers are flattened into a 1-D array via flatten in

(Line 8) and padded to the size of the largest layer in the network in pad (Line 9) and

the JS-Divergence is calculated between the neighbouring layers in jsdiverge (Line

10). This JS-Divergence calculation process is repeated for the current layer and the

final layer in jsdiverge (Line 11). This is repeated for all layers. The set of reduced

activations (Aw) for the window is returned.



98 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

Algorithm 5 DS-CBIR
Input: One window of image data, Dw
Input: CNN, C expressed in convolutional blocks: b ∈ C = {1, 2, . . . , N}
Output: Aw: One window of reduced activations

1: for xi ∈ Dw do
2: for b ∈ C do
3: let bp be the pooling layer of block b
4: for each channel, c of bp do
5: Jmax ←max(bp) ▷ get max channel value in pooling layer

6: Jconv ← getConvLayer(b) ▷ get conv layer 1 values

7: end for
8: Jb ← Jmax + Jconv
9: end for

10: JH ← getActivations(H) ▷ get final hidden layer activations

11: Jb ← sectionAvg(Jb, 16) ▷ get the average value for 16 sections

12: JH ← sectionAvg(JH , 32) ▷ get the average value for 32 sections

13: Aw ← Jb + JH
14: end for

5.2.2 Activation Reduction - DS-CBIR

A CBIR method [176] is intended for content-based image retrieval. It creates de-

scriptors for images using deep neural networks. It is based on obtaining neural

codes from fully connected layers activations, using the information contained in

convolutional layers. However, the number of neurons in the convolutional part

is large and most of them do not contribute significantly to the final classification.

Therefore the most significant neuron activations only are extracted in order to pro-

vide extra information about the image such as background textures or colour distri-

bution that is present in the convolutional layers [176]. We have modified this CBIR

method for use within AdaDeepStream to extract the most useful activations from the

network such that we can utilise it in our streaming classifier. The algorithm for

our CBIR implementation is presented in Algorithm 5, we have called this DS-CBIR.

This is invoked in the overall AdaDeepStream system (Algorithm 6) Line 2, via the

reduceActivations method.

For previously unseen instances arriving at the deep neural network, the acti-

vations for one block at a time is extracted, where a block in a CNN consists of

convolutional layers, then a pooling layer. For each channel in the block, the maxi-

mum activations for the pooling layer is extracted via max (Line 5). Corresponding



5.2. AdaDeepStream System Description 99

values are obtained from the first convolutional layer in the block via the getCon-

vLayer method (Line 6). This is repeated for each block in the network. Due to the

constraint on the number of input features the streaming classifier can accept, we

only extract the values from the first convolutional layer in each block. The original

CBIR descriptor generation paper [176] used a threshold to save on computing time,

reasoning that as ReLU (Rectified Linear Unit) activation functions were used, then

processing under an activation threshold of 0.5 was not advantageous. A description

of this method can be found in Section 3.4.5. As our system is designed to be flexible

for different types of CNNs, we removed this threshold which, on our system, did

not incur a significant increase in computing time but improved the clustering of

the activations. Lines 2 to 10 is the original CBIR algorithm [176]. Additionally, the

combined output of the max pooling layer activations and the convolutional layer

activations from each block are reduced further via the sectionAvg method (Line 11)

where set Jb is split into 16 equal parts and the average for each part is calculated.

The activations for the last hidden layer JH are extracted and these are also reduced

into 32 values in the same way (Line 12). These reduced sets are combined (Line 13)

and returned as the set of reduced activations (activation classification footprints) for

the window. This is required so that the number of values presented to the stream-

ing classifiers are within the range of the number of input features accepted by the

streaming classifier.

To achieve DS-CBIR, the convolutional blocks need to be identified for the CNN.

This is done automatically by AdaDeepStream, but may need manually adjusting,

whereas JSDL simply uses all of the networks layers. Figure 5.2 shows UMAP [125]

representations of the reduced activations. From this we can see that Fashion-MNIST

activation data potentially has superior clustering and separation of the classes than

the CIFAR-10 and CIFAR-100 data. Both of these activation reduction methods pro-

vide activation classification footprints as discussed in Section 2.6 into our concept

evolution detection method, described in the following section.

5.2.3 Concept Evolution Detection

The well known drift detection method of DDM [58] is used within the concept

evolution detection mechanism for drift detection. The drift detection method in



100 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

(a) CIFAR-10
JSDL

(b) CIFAR-100
JSDL

(c) Fashion-MNIST
JSDL

(d) CIFAR-10
DS-CBIR

(e) CIFAR-100
DS-CBIR

(f) Fashion-MNIST
DS-CBIR

FIGURE 5.2: UMAP representations of reduced activation training
data for six classes in the CIFAR-10, CIFAR-100 and Fashion-MNIST

datasets

AdaDeepStream can be substituted for any other drift detection method. An empirical

study was conducted with other drift detectors, for which the results are included in

Appendix A. As only drift detection and not more information such as severity or re-

gion of the drift is required, error-based drift detection methods only were analysed.

Statistical control-based and adaptive window-based drift detectors were selected.

The statistical based drift detectors of DDM [58] and EDDM [11] outperformed the

adaptive window-based drift detectors of ADWIN [17], KSWIN [152], HDDMA and

HDDMW methods [54]. DDM was significantly faster than EDDM, therefore it was

selected.

After the activations have been reduced, they are supplied to a Hoeffding Adap-

tive Tree streaming classifier which is established and well used [16]. Further infor-

mation on this classifier is provided in Section 3.5.2. The Hoeffding Adaptive Tree

is trained on the reduced activations obtained from the training data. Algorithm 6

shows the overall AdaDeepStream process at inference time. For previously unseen

instances arriving in the data stream, the prediction is obtained from the CNN, cn-

nPredict (Line 3). The reduced activations are extracted and a prediction from these

is obtained from the Hoeffding Adaptive Tree Classifier, hatPredict (Line 4). The

predictions are then compared. If they match, 0 is provided to the drift detector,

otherwise 1 is provided (Lines 5 to 15). The drift detector returns a ’W’ if a change

warning is detected, and returns a ’C’ if a change is detected. This is stored for later

use (Line 14). If a warning or a change is detected in the window, then the true labels

for that window are obtained, getTrueValues (Line 17). In reality, the images in this

window would be displayed to the user for them to label them with the true values.

As only the windows where the change was detected are displayed to the user, there



5.2. AdaDeepStream System Description 101

Algorithm 6 AdaDeepStream
Input: Windows of image data D
Input: Pretrained CNN, C on L classes
Input: Pretrained Hoeffding Adaptive Tree on activations of L classes
Output: P: A set of CNN predicted classes for data stream

1: for Dw ∈ D do
2: Aw ← reduceActivations(Dw) ▷ reduce activation via JSDL or DS-CBIR

3: Pw ← cnnPredict(Dw) ▷ get CNN predictions

4: Sw ← hatPredict(Aw) ▷ get HAT predictions

5: for xi ∈ Dw do
6: let ai be the reduced activations for xi
7: let pi be the CNN predicted class for xi
8: let si be the HAT predicted class for xi
9: if pi = si then ▷ check if CNN and HAT predictions match

10: di = 0 ▷ 0 if match

11: else
12: di = 1 ▷ otherwise 1

13: end if
14: Rw ← driftDetector(di) ▷ detect drift change

15: end for
16: if ’W’ or ’C’ is in Rw then ▷ drift detector returns ’W’ for warning or ’C’ for change

17: Yw ← getTrueValues(Dw) ▷ get true values for the drift detection window

18: Y ← Y + Yn ▷ add new labels to known classes

19: Cadapt ← adaptDnn(Dw, Aw, Yw) ▷ adapt CNN via DS-Adapt or another method

20: else
21: Let U be the window buffer and G be the number of windows in U
22: if CNN adaptation in progress then
23: Kw ← samPredict(Aw) ▷ use SAM predictions if CNN adapting

24: U ← (Dw, Aw, Kw)
25: else
26: U ← (Dw, Aw, Pw) ▷ use CNN predictions

27: end if
28: if G > 2 then ▷ only store 2 windows

29: U ← U −U0 ▷ remove oldest window

30: end if
31: end if
32: P← Pw
33: end for

is less labelling than if all the true values are used. The next step is adaptation (Line

19). Image data Dw, reduced activation data Aw and their true labels Yw are provided

to the adaptDNN method. This method can be any CNN adaptation method. Our

CNN adaptation algorithm, DSAdapt, is described in Algorithm 7. We substituted

this adaptation with four other state-of-the-art methods. The results are shown in

Section 5.4. If there is no drift detected, the previous G windows are stored in U

(Lines 28 and 29). If there is CNN adaptation occurring in the background, the win-

dow is re-predicted via the SAM clusterer, samPredict and stored (Lines 23 and 24).

As the SAM clusterer is the first to be updated with true labels, this improves the



102 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

Algorithm 7 DSAdapt
Input: One window of image data: Dw
Input: One window of reduced activation data Aw
Input: One window of true labels: Yw
Input: CNN to be adapted, C
Input: Buffer of two previous windows, U
Output: Adapted CNN, Cadapt

1: let W be the total number of change detection groups in buffer, B
2: B← U + (Dw, Aw, Yw) ▷ save the current change detection and previous two windows

3: if W > 5 then ▷ if there’s more than 5 groups of change detection buffers

4: B← B− B0 ▷ remove oldest group

5: end if
6: samPartialFit(Aw, Yw) ▷ add true labelled data to SAM

7: Kw ← samPredict(B)
8: Let E be the class buffer
9: E← E + (Dw, Aw, Yw) ▷ Add true labelled data to class buffer

10: E← E− (D0, A0, Y0) ▷ remove oldest instance

11: for class l in (Kw + Yw) do ▷ get 100 samples per class from buffer

12: (Ds, As, Ys)← getClassBufferSample(l, 100)
13: end for
14: (Ds, As, Ys)← (Ds, As, Ys) + B ▷ add change detection windows to samples

15: copy C and train with (Ds, Ys) for 3 epochs ▷ adapt CNN

16: hatPartialFit(As, Ys) ▷ adapt HAT

17: replace C with adapted CNN, Cadapt
18: repeat steps 1 to 17 on background thread

accuracy of the stored windows whilst the CNN adaptation is awaited. If there is no

CNN adaptation occurring, the window is stored with the CNN predictions (Line

26). SAM-kNN is a popular Self Adjusting Memory (SAM) model for the k Nearest

Neighbor (kNN) [160, 118]. It operates on a window of instances which is set to 1000

instances; therefore, the memory usage will not increase over time.

5.2.4 Adaptation

CNN adaptation is based on transfer learning with clustering, a class buffer and

some memory of previous instances. Our CNN adaptation method DSAdapt is de-

scribed in Algorithm 7.

When a warning of a change or a change is detected, the window of data within

which it is detected is provided to the CNN adaptation method. The current win-

dow and the previous two windows are added to a buffer (Line 2). These are the

change detection windows. If the buffer exceeds 5 groups of change detection win-

dows, the first group in the buffer is removed (Line 4). This provides some ’memory’



5.2. AdaDeepStream System Description 103

for the CNN adaptation. True-labelled instances are supplied to the SAM-kNN clus-

terer [117] (Line 6). The buffer instances are re-predicted via the SAM-kNN Stream-

ing Classifier (Line 7) to give Kw. True-labelled instances are also supplied to a class

buffer that stores training data instances of the original image data and the equiv-

alent activation data (Line 9). Each time a window is added to the class buffer, the

oldest window is removed (Line 10), ensuring that the size of the class buffer does

not increase. Each class in Kw and the true values for the change detection window

Yw is randomly sampled from the class buffer. One hundred instances (or if there

is not enough, the maximum number of instances that are available) are randomly

selected from the class buffer (Lines 11 to 13). The change detection windows, B

are added to the sampled class buffer data (Line 14). The CNN is adapted for 3

epochs (Line 15). The current CNN is replaced with the adapted CNN (Line 17).

Once the adaptation has been triggered, it continues adapting (Lines 1 to 17) on a

background thread, using the current instance window and previous windows pre-

dicted via the SAM-kNN Streaming Clusterer (Line 18), replacing the true values

Yw with the predicted values from the clusterer Kw. In summary, to achieve a bal-

ance between avoiding catastrophic forgetting and remembering recent data only,

windows pertaining to the last five change detections are stored. Only the classes

found in these change detection windows are sampled from the class buffer. There-

fore, not all previous classes that have ever arrived are used in the adaptation, but

only more recent ones. As a true-labelled instance is added to the class buffer, the

oldest instance is removed, ensuring the size of the class buffer does not increase

over time. Catastrophic forgetting is partially mitigated by remembering the recent

classes only. This is intentional as in the concept evolution field it is not the aim to

remember all classes ever seen.

Figure 5.3 shows the adaptation in more detail where the numbers depict the

following actions: 1. True label the change detection window. 2. Store the two pre-

vious windows and the change detection window in the change detection buffer. 3.

If the change detection buffer contains more than 5 buffers, remove the oldest. 4.

Add true-labelled change detection window image data to image buffer. 5. Remove

the oldest instances from the image class buffer. 6. Add true-labelled change de-

tection window activation data to SAMKNN. 7. Add true-labelled change detection



104 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

FIGURE 5.3: Overview of the DSAdapt adaptation method

window activation data to class buffer. 8. Remove the oldest instances from the

activation class buffer. 9. Get image data samples (100 per class that is present in

the change detection buffer). 10. Get activation data samples (same instances as in

number 9). 11. Train the CNN offline. 12. Train the HAT offline. 13. Move the CNN

and HAT online at the same time.

5.3 Experimental Methodology

This section provides details of the experiments conducted and the specific setup

implemented for the proposed method in this chapter.

5.3.1 Datasets

We use datasets CIFAR-10, CIFAR-100 [103] and Fashion-MNIST [198]. Information

regarding the CIFAR-10 and Fashion-MNIST dataset can be found in Section 4.3.1.

The CIFAR-100 dataset consists of 100 different classes of 32 × 32 colour images.

The 100 classes are grouped into 20 super-classes. The super-classes are used in this

chapter and are listed in Table 5.2. In total there are 5000 training images and 1000

test images. There are 2500 training images per super-class, and 500 test images per

super-class. CIFAR-100 has the same attributes as CIFAR-10, as outlined in Section

4.3.1, specifically that it is a widely used benchmark dataset of photo-realistic images

considered a hard classification scenario. It provides a larger range of super-classes

and sub-classes, but with less images per class than CIFAR-10.



5.3. Experimental Methodology 105

5.3.2 Data Combinations

Three combinations of eight trained classes and two novel classes have been selected

from each dataset. An empirical study was conducted on the effectiveness of our

drift detection mechanism on different combinations of pairs of novel classes. It was

found that the drift detection was more effective when the classes differed in their

categories. The results of this study can be found in Appendix C.2. For CIFAR-10,

the classes can be split into categories of Transport and Animals, and for Fashion-

MNIST, the classes can be split into categories of Clothing and Footwear. Therefore,

to give a more rounded analysis, novel class combinations were selected as (1) a pair

containing a mix of categories, (2) a pair containing classes from the same category

(Animals for CIFAR-10 and Clothing for Fashion-MNIST) and (3) a pair containing

classes from the other category (Transport for CIFAR-10 and Footwear for Fashion-

MNIST). The selected combinations are shown in Table 5.2. For CIFAR-100, the

class combinations were randomly selected. The trained and novel class identifiers

are listed with a key of the class labels.

(a) Abrupt (b) Reoccurring (c) Gradual

FIGURE 5.4: Temporal types of concept evolution patterns

(a) Abrupt (b) Reoccurring (c) Gradual (d) Incremental

FIGURE 5.5: Categorical types of concept evolution patterns

For the test data, the instances are applied as in Figures 5.4 and 5.5. The x-axis is

the number of images, and the y-axis is the cumulative number of concept evolution

classes that have been introduced into the data stream. For instance, in Figures 5.4

and 5.5, when the line is at zero, this represents that only images the CNN has been

trained on are in the data stream, and when the line is at 1, all concept evolution

classes have been applied to the stream. Figure 5.5 shows the categorical patterns.



106 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

TABLE 5.2: Class data combinations

Trained Classes Novel Classes Class Identification Key

Fashion-MNIST
0-1-2-3-5-6-8-9 4-7 0 = T-Shirt/Top
2-3-4-5-6-7-8-9 0-1 1 = Trousers
0-1-2-3-4-6-7-8 5-9 2 = Pullover
0-1-2-3-4-6 5-7-8-9 3 = Dress
4-5-6-7-8-9 0-1-2-3 4 = Coat
2-3-4-6-8-9 0-1-5-7 5 = Sandal
0-1-8-9 2-3-4-5-6-7 6 = Shirt
0-1-5-6 2-3-4-7-8-9 7 = Sneaker
0-1-2-7 3-4-5-6-8-9 8 = Bag
6-9 0-1-2-3-4-5-7-8 9 = Ankle Boot
1-8 0-2-3-4-5-6-7-9
0-5 1-2-3-4-6-7-8-9

CIFAR-10
0-1-2-3-4-6-7-8 5-9 0 = Airplane
2-3-4-5-6-7-8-9 0-1 1 = Automobile
0-1-2-4-5-6-8-9 3-7 2 = Bird
0-1-2-3-6-7 4-5-8-9 3 = Cat
2-3-4-5-6-7 0-1-8-9 4 = Deer
0-1-4-5-8-9 2-3-6-7 5 = Dog
5-7-8-9 0-1-2-3-4-6 6 = Frog
0-2-6-7 1-3-4-5-8-9 7 = Horse
1-2-3-4 0-5-6-7-8-9 8 = Ship
0-7 1-2-3-4-5-6-8-9 9 = Truck
1-8 0-2-3-4-5-6-7-9
2-3 0-1-4-5-6-7-8-9

CIFAR-100
1-3-4-5-6-7-10-11-13-17 8-18 0 = Aquatic Mammals
0-1-3-5-11-12-15-17-18-19 2-7 1 = Fish
1-5-7-8-9-14-15-16-17-18 0-10 2 = Flowers
4-7-8-9-11-14-15-17-18-19 2-5-6-16 3 = Food Containers
0-2-4-5-7-9-13-14-15-18 10-11-12-19 4 = Fruit and Vegetables
5-6-7-10-11-12-14-17-18-19 1-4-8-9 5 = Household Electrical Devices
1-2-4-6-7-9-11-16-18-19 0-8-10-12-13-17 6 = Household Furniture
0-1-6-7-8-9-11-12-17-18 2-4-5-15-16-19 7 = Insects
0-2-3-5-8-9-10-11-12-19 4-6-13-15-17-18 8 = Large Carnivores
0-9-10-11-12-13-14-16-17-18 2-3-4-5-6-8-15-19 9 = Large Man-Made Outdoor Things
0-2-3-4-6-8-9-13-16-19 1-10-11-12-14-15-17-18 10 = Large Natural Outdoor Scenes
2-5-10-11-13-15-16-17-18-19 1-3-6-7-8-9-12-14 11 = Large Omnivores and Herbivores
4-5-8-12-14-15-16-17-18-19 0-1-2-3-6-7-9-10-11-13 12 = Medium-Sized Mammals
1-2-3-4-5-6-7-8-12-13 0-9-10-11-14-15-16-17-18-19 13 = Non-Insect Invertibrates
0-1-7-8-9-10-11-14-18-19 2-3-4-5-6-12-13-15-16-17 14 = People

15 = Reptiles
16 = Small Mammals
17 = Trees
18 = Vehicles 1
19 = Vehicles 2



5.3. Experimental Methodology 107

There are four steps, representing that there were four concept evolution classes that

have been cumulatively applied at different times in the data stream. No incorrectly

classified instances are removed during testing in order to simulate real-world ap-

plications.

5.3.3 Experimental Settings

We experiment with two different methods of activation reduction: JSDL and DS-

CBIR. The CNN that has been applied to the proposed system is VGG16, using trans-

fer learning from ImageNet weights and trained on three combinations of classes for

each data setup. All hidden layers that have measurable outputs in PyTorch [146] are

used. We selected a well-known pretrained network and applied transfer learning

as this is a common scenario in real-world applications.

The CNN adaptation of AdaDeepStream is substituted with four different adapta-

tion methods: (1) LwF [110] (2) iCARL [156], (3) ER [31] and (4) MIR [8], augmented

with trick RV [25]. These are successful methods in the OCI setting. Some methods

are adjusted to be appropriate for the single-head setting.

Single-head [32] configuration is where all classes (previously known and novel

classes) have a single shared output layer and do not need to know the class la-

bel [122]. The alternative is multi-head where more than one output layer is created

as the model adapts and extra information is required to select the correct head.

Our method is a single-head configuration and we will therefore compare with the

single-head implementations. Each of these methods has been adjusted to receive

only the true-labelled windows of instances when drift was detected from AdaDeep-

Stream and to remove prior knowledge of the number of novel classes. The following

hyper-parameters, as specified in [122] are set for all of the CNN adaptation meth-

ods: Learning rate = 0.01, epochs = 3, weight decay = 0 and memory buffers = 5000

(the mid-range that was used in the survey paper [122]). An overview of each of

these methods follows:

1. LwF (Learning without Forgetting) is a regularisation and knowledge distillation-

based method [85]. As previously explained in Section 2.4, in OCL, tasks are

data changes. For instance, a new task can be the addition of a novel class



108 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

into the data. A student model is created for the new task and the original

model becomes the teacher model. The authors describe it as a combination

of distillation networks [85] and fine tuning [64], where fine tuning initialises

with parameters from an existing network trained on related data and trains

for new data with a lower learning rate on part of the network. Distillation net-

works takes a more complex ensemble of networks and applies the parameters

to a simpler network to produce the same outputs. LwF adds task specific pa-

rameters for a new task and learns parameters that work well on old and new

tasks, using images and labels from only the new task and no data from exist-

ing tasks. A variant of LwF is used, LwF.MC that only has one head (where all

tasks share the same output head) [122].

2. iCARL (Incremental Classifier and Representation Learning) is a memory-based

method. A training set is constructed by mixing all the samples in the memory

buffer and the current task samples. The loss function has a classification loss

to help the model correctly predict the novel classes and a knowledge distil-

lation loss to prompt the model to reproduce the outputs from the previous

model for old classes. It uses binary cross-entropy for each class to handle

the imbalance between old and new classes. Originally, a Nearest Class Mean

(NCM) classifier is used with the memory buffer to predict labels for test im-

ages [127], which means it looks for a subset of samples whose mean of latent

features have the closest Euclidean distance to the mean of all samples in this

class; however, this method requires all samples from all classes, and there-

fore cannot be applied in the online setting. Therefore, the modified version

from [122] with reservoir sampling [190] is used instead of NCM [156].

3. ER (Experience Replay) is the use of a small memory, termed episodic mem-

ory, that stores examples from previous tasks and then replays these examples

when training for future tasks. It jointly trains on both the examples from the

current task and examples stored in the episodic memory [31].

4. MIR (Maximally Interfered Retrieval) is a recent memory-based method that

performs an estimated parameter update based on the incoming mini-batch

using stochastic gradient descent. It uses the samples from the memory buffer



5.3. Experimental Methodology 109

that have the largest estimated loss increases and mixes them with the in-

coming mini-batch. In this contribution, MIR is augmented with RV (Review

Trick) [25], as RV can provide an improvement and is more efficient in memory

than NCM [122]. RV reduces class imbalance by applying a fine-tuning step

with a small learning rate, using a balanced subset from the memory buffer

and the training set [121]. As recommended, We use RV from [121] with a

learning rate 10 times smaller than the training learning rate.

The entire AdaDeepStream system is compared to RSB [101] and CPE [195]. These

were selected due to their use of CNNs. Due to a shortage of methods detecting

discrepancies and directly adapting a CNN, we have RSB, which does directly adapt

a CNN, and we also have CPE, which uses a CNN in its detection method, but does

not adapt a main classifying CNN.

1. RSB (Reactive Subspace Buffer) is a memory-based method. It has centroid-

driven memory and stores diverse samples of incrementally arriving instances.

It is based on experience replay and combines class-based prototype centroid-

driven memory with a reactive sub space buffer that tracks drift occurrences

in previously seen classes and adapts clusters accordingly [101]. It traces the

dominant class in each of the clusters and can switch labels of the clusters or

split them when local changes are detected. User configurable parameters are

set to: Max centroids = 10, max size of class buffer = 100, window size = 100.

The window size is set to the same size as our system, which is a generally

accepted size in streaming machine learning as it is large enough to perform

statistics on [65]. The class buffer is set to the same size as our system, which

provides a comparable environmental setting and means the amount of train-

ing data is manageable in data combinations with a larger number of classes.

Max centroids were tuned from a range of 1 to 20 on a subset of data (two

from each data combination for each number of trained classes for class and

sub-class data). All other parameters are as recommended in the paper [101].

2. CPE (CNN based Prototype Ensemble) is cluster-based and projects the images

into a learned discriminated feature representation called prototypes. This im-

proves the intra-class compactness and expand inter-class separateness in the



110 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

output feature representation to enable the robustness of novel class detection.

When a pre-defined number of novel class instances are detected, the CNN re-

trains [195]. Contrary to our system and RSB, the CNN is used in the detection

of the novel classes, not as an overall image classifying CNN. Recommended

settings from the paper are used for the training of the CNN: 1000 instances

from each class of training data, number of novel classes that are accumulated

before CNN retraining = 1000, learning rate = 0.001 [195]. Tuning was per-

formed for the threshold of the prototypes, manually tuning between 1 and

100, and a value of 5.0 was found to produce the best results.

The system is running on AMD Ryzen Threadripper PRO 3955WX 16-Cores 3.90

GHz, 256 GB RAM with NVIDIA RTX A6000 GPU.

5.4 Experimental Results

In this section, we discuss our thorough experimental study, evidencing the efficacy

of the proposed method. The results are discussed in terms of accuracy for each of

the activation reduction methods and subsequently, timings for the time per instance

and DNN adaptation time.

Experiments were conducted on three datasets (CIFAR-10, CIFAR-100 and Fashion-

MNIST). Each using two different activation reduction methods (DS-CBIR and JSDL).

CIFAR-100 accuracy plots are shown in Figures 5.6 and 5.7. Plots for all other datasets

are included in Appendix C.3. The RSB and CPE results are displayed within the

DS-CBIR plots for ease of comparison, but they do not use any activation reduction

method. Figures 5.6 and 5.7 show how the accuracy of the models vary with an in-

creasing number of applied novel classes for the CIFAR-100 dataset. Generally, the

accuracy of all methods tend to decrease when the number of novel classes are in-

creased. This is more prominent in the DS-CBIR results (Figure 5.6) than it is in the

JSDL results (Figure 5.7), where the accuracies are more erratic. This pattern is also

prominent in the other dataset results in Appendix C.3. This indicates that DS-CBIR

is more consistent at detecting the changes in drift than JSDL.

In the Temporal-Reoccurring plots in Figures 5.6, 5.7 and Appendix C.3, higher

accuracies are reported than for the other concept evolution patterns. This can be



5.4. Experimental Results 111

FIGURE 5.6: Number of novel classes against accuracy for DS-CBIR
VGG16 CNN, CIFAR-100 for all concept evolution patterns.

FIGURE 5.7: Number of novel classes against Accuracy for JSDL
VGG16 CNN, CIFAR-100 for all concept evolution patterns.

seen for both DS-CBIR and JSDL. This could be due to there being a more diverse

range of old and new classes in less windows in this pattern as compared to the

other patterns. It is temporal, so the known classes are applied randomly rather

than incrementally. The novel classes occur in small blocks alongside the known

classes. This more diverse data is applied to the adaptation.

As DS-CBIR is more stable than JSDL, we focus on the DS-CBIR activation reduc-

tion method. Table 5.3 shows the average accuracy after adaptation for DS-CBIR, all

datasets and all concept evolution patterns. The equivalent data for the JSDL acti-

vation reduction method is included in Appendix C.3, Table C.4. The data combi-

nations with a large number of trained classes and a small number of novel classes



112 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

TABLE 5.3: Average accuracy after CNN adaptation for each concept
evolution pattern for DS-CBIR activation reduction.

Reduction/
Dataset Method Cat.

Abr.
Tem.
Abr.

Cat.
Gra.

Tem.
Gra.

Cat.
inc.

Cat.
Reo.

Tem.
Reo.

DS-CBIR
CIFAR-10
8 Trained
2 Novel
classes

iCARL 0.304 0.308 0.171 0.174 0.154 0.056 0.442
LwF 0.044 0.080 0.236 0.127 0.354 0.187 0.437
ER 0.548 0.453 0.459 0.677 0.457 0.377 0.694
MIR-RV 0.070 0.090 0.131 0.113 0.162 0.112 0.491
RSB 0.359 0.416 0.343 0.429 0.270 0.386 0.630
CPE 0.546 0.470 0.458 0.481 0.372 0.460 0.398
ADS (ours) 0.888 0.819 0.543 0.807 0.732 0.702 0.598

DS-CBIR
CIFAR-100
10 Trained
2 Novel
classes

iCARL 0.365 0.190 0.238 0.201 0.274 0.290 0.425
LwF 0.053 0.097 0.193 0.112 0.305 0.172 0.298
ER 0.363 0.157 0.207 0.298 0.305 0.204 0.471
MIR-RV 0.112 0.122 0.143 0.027 0.193 0.110 0.278
RSB 0.080 0.200 0.078 0.055 0.058 0.145 0.299
CPE 0.104 0.12 0.175 0.084 0.102 0.131 0.153
ADS (ours) 0.838 0.752 0.629 0.753 0.655 0.433 0.547

DS-CBIR
MNIST-Fashion
8 Trained
2 Novel
classes

iCARL 0.681 0.116 0.235 0.569 0.227 0.103 0.626
LwF 0.180 0.049 0.106 0.115 0.183 0.102 0.461
ER 0.806 0.606 0.317 0.907 0.324 0.166 0.728
MIR-RV 0.18 0.167 0.198 0.205 0.001 0.038 0.547
RSB 0.771 0.656 0.606 0.644 0.682 0.687 0.816
CPE 0.925 0.897 0.93 0.898 0.907 0.861 0.815
ADS (ours) 0.964 0.661 0.831 0.884 0.860 0.807 0.568

Legend: Highest values in bold.

are shown in these tables. This scenario is more usually seen in real-world applica-

tions. For instance, a model would be pretrained on known data, and see a few novel

classes arriving, such as in medical image analysis where identification of changes in

chest x-rays is required. A deep neural network would be trained on many known

diseases, and one or two new variations resulting in different chest x-ray results

would occur, rather than many new manifestations in a short amount of time.

For DS-CBIR, CIFAR-10 and CIFAR-100, Our method (ADS) has exceeded all

others, except in one scenario of Temporal-Reoccurring. The accuracies for Fashion-

MNIST are generally higher for all methods. This is probably due to the supe-

rior intra-class cohesion and inter-class separation of the reduced activation data,

as demonstrated in the UMAP [125] representations in Figure 5.2. Our method is

among the best; however, CPE excels on the Fashion-MNIST dataset. The standard

deviation of the methods ranges from 0.116 to 0.684, our method has the highest.

The implicit drift detection methods of RSB and CPE have standard deviations of

0.116 and 0.091 respectively, which are the lowest. Therefore, the higher standard

deviation may indicate that the explicit nature of the drift detection has an effect on

the consistency of our method. There is a connection between how successful the

CNN adaptation is and how successful the drift detection is, as the drift detection is



5.4. Experimental Results 113

based on the difference in predictions between the CNN and the Hoeffding Adap-

tive Tree Streaming Classifier. Therefore, the less successful the adaptation is, the

more unstable the drift detection will be.

On average, of the different concept evolution patterns applied, our DSAdapt

method outperforms the other adaptation methods. The two best-performing meth-

ods are DSAdapt (ours) and ER, which are both memory-based and use the standard

cross-entropy loss. The regularisation and knowledge distillation-based method,

LwF did not perform well in our scenarios. CPE only performs well on the Fashion-

MNIST dataset. This method does not have a CNN that classifies images, but has a

CNN that learns a feature representation of the images. Therefore, it is not a direct

comparison and our results suggest it prefers data that has superior intra-class co-

hesion and inter-class separation. After AdaDeepStream, the next highest performing

adaptation method is ER and the next best performing combined concept evolu-

tion and CNN adaptation method is CPE. On average, in our scenarios in Table 5.3,

AdaDeepStream outperforms ER by 27% and CPE by 24%.

The Wilcoxon Signed-Rank test is used to analyse the difference between the ac-

curacies of methods. The difference between the accuracy of AdaDeepStream and

that of ER over the 272 tested data patterns is statistically significant. The p-value

is less than 0.00001, which is less than 0.05 significance level, suggesting the accep-

tance of the alternative hypothesis that true location shift is not equal to 0. The

same is true for CPE and RSB. Therefore, AdaDeepStream with our DSAdapt adap-

tation method significantly outperforms the next-best substituted CNN adaptation

method of ER and AdaDeepStream significantly outperforms the drift detection and

adaptation methods of CPE and RSB. The initial CNN accuracies are included in

Appendix C.1

Tables 5.4 and 5.5 summarise the timings for the inference time and the time to

adapt, respectively and compare timings of the activation reduction methods of DS-

CBIR and JSDL. The RSB and CPE overall comparison methods are listed in these

tables under the DS-CBIR column for ease of comparison. However, they do not

use an activation reduction method. The time to process one instance in millisec-

onds is shown in Table 5.4. This is the time per instance, measured in batches of

100 instances. ER has the fastest time per instance with 7.1ms, with AdaDeepStream



114 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

TABLE 5.4: Time per instance (ms) and rank.

DS-CBIR JSDL
Time (ms) Rank Time (ms) Rank

iCARL 266.5 (82.2) 6 329.5 (92.5) 6
LwF 8.1 (7.7) 3 14.2 (8.0) 1
ER 7.1 (2.8) 1 16.3 (13.5) 3
MIR-RV 7.2 (2.4) 2 16.3 (13.6) 4
RSB 19.9 (7.8) 5 - -
CPE 545.2 (290.1) 7 - -
ADS (Ours) 8.5 (2.1) 4 15.7 (7.0) 2

Legend: Standard deviation in brackets. Lowest values in bold.

TABLE 5.5: Adaptation time (s) (with standard deviation in brackets)
and rank. Lowest values are in bold

DS-CBIR JSDL
Time (s) Rank Time (s) Rank

iCARL 78.095 (45.3) 6 115.373 (53.2) 6
LwF 6.095 (7.1) 2 21.463 (23.4) 3
ER 6.774 (6.1) 3 16.976 (18.2) 2
MIR-RV 36.000 (17.9) 5 56.256 (38.1) 5
RSB 1.995 (0.7) 1 - -
CPE 420.000 (123.0) 7 - -
ADS (Ours) 7.690 (1.9) 4 7.816 (1.2) 1

Legend: Standard deviation in brackets. Lowest values in bold.

having the fourth fastest at 8.5ms. This is close to the fastest results given that CPE

and iCARL are 545.2ms and 266.5ms respectively. From the adaptation time, ours

is fourth fastest at 7.69 seconds. The fastest is RSB at 1.995s, with CPE being the

slowest at 420s. However, RSB adapts on each data window and each individual

adaptation does not appear to have a big effect and it takes a number of windows

before an increase in the accuracy is seen. Discounting RSB, AdaDeepStream is close

to the fastest adaptation time of the next fastest methods of LwF and ER. From Ta-

bles 5.4 and 5.5, DS-CBIR outperforms JSDL with regards to the time per instance,

and adaptation time.



5.5. Summary 115

5.5 Summary

In this chapter, we proposed a method called AdaDeepStream which detects con-

cept evolution and adapts a DNN to this. Two DNN activation reduction meth-

ods were analysed, one using an extended JS-Divergence method as compared to

DeepStreamOS in Chapter 4, and one using content-based image retrieval descrip-

tor generation via DNN activations. The output of these were input into our novel

concept evolution detection method which uses a Hoeffding adaptive tree and accu-

racy volatility-based detection method. The DNN adaptation uses a partial network

update and DNN activations to assist in a memory based method to mitigate catas-

trophic forgetting.

To evaluate the proposed method, a set of experiments were conducted with

three benchmark image datasets. Classes were selected for the system to be trained

on and other classes were withheld in order to be applied as concept evolution via

novel classes in seven different patterns. These data patterns were applied in various

class combinations to the commonly used VGG16 DNN. AdaDeepStream was com-

pared to two state-of-the-art detection and DNN adaptation systems and the DNN

adaptation method was compared with four leading OCI DNN adaptation methods.

The results showed that of the two activation reduction methods: JSDL and DS-

CBIR, DS-CBIR is more consistent at detecting the changes in drift than the JSDL

method. AdaDeepStream exceeded other methods on the accuracy for CIFAR-10

and CIFAR-100 data with all methods responding well to the Fashion-MNIST data.

However, our method did generally have higher standard deviations. This may

be because the drift detection is based on the difference in predictions between the

CNN and the streaming classifier and the less successful the adaptation is, the more

unstable the drift detection will be. Another contributing factor could be the rel-

atively small amount of data we are extracting from the activations. Our adapta-

tion component (DSAdapt) outperformed the other leading OCI DNN adaptation

methods significantly as confirmed by the Wilcoxon Signed-Rank test. The over-

all average accuracy of the more real-world scenarios presented in Table 5.3 show

that AdaDeepStream outperforms the next highest combined detection and adapta-

tion method of CPE by 24% and the next highest OCI DNN adaptation method of



116 Chapter 5. AdaDeepStream: Streaming DNN Adaptation to Concept Evolution

ER by 27%. In terms of timings, AdaDeepStream is amongst the fastest compared

methods on both instance inference time and DNN adaptation.

AdaDeepStream is able to detect concept evolution using DNN activations and

adapt a DNN to this. DS-CBIR was the most successful activation reduction method.

Although an improvement on our previous DeepStreamOS method, there is still a rel-

atively small amount of activations extracted. We have shown this is sufficient for

concept evolution detection however, in the next chapter we are detecting concept

drift which is a more challenging problem as the changes in data that require de-

tecting are smaller. In the next chapter, we propose the DeepStreamEnsemble method

with a further modified CBIR method which extracts multi-layer activations and

uses them in an ensemble, providing the input into our novel drift detection method

and DNN adaptation method assisted by an activation ensemble. We detect con-

cept drift whereby we apply novel sub-classes in drift patterns and perform DNN

adaptation, thus satisfying the fourth objective from Section 1.5.



117

Chapter 6

DeepStreamEnsemble: Streaming

DNN Adaptation to Concept Drift

The previous chapter presented the novel concept evolution detection and DNN

adaptation method AdaDeepStream which built upon the DeepStreamOS method de-

scribed in Chapter 4. AdaDeepStream addresses the third objective as stated in Section

1.5. In this chapter, we propose the DeepStreamEnsemble method to address the final

objective, objective four of this thesis which is to: Design, develop and evaluate

a concept drift discrepancy detection and DNN adaptation method. To achieve

this more challenging objective, DeepStreamEnsemble uses DNN activations within

ensembles. The work presented in this chapter is submitted as a paper titled "Deep-

StreamEnsemble: Streaming Adaptation to Concept Drift in Deep Neural Networks"

to the "IEEE Transactions on Big Data, Special Issue on Stream Data Learning and its

Applications" journal.

The code is available at https://github.com/chambai/DeepStreamEnsemble.

6.1 Introduction

The same issues outlined in Chapter 5 (Streaming DNN adaptation to Concept Evo-

lution) also apply to Streaming DNN adaptation to Concept Drift. In summary, stan-

dard DNNs only recognise classes they were trained on, but in many real-world ap-

plications, the data evolves over time. When the data evolves, the DNN can attribute

incorrect labels to the data with no indication of this.

In this research, we focus on detection of and DNN adaptation to concept drift

in high dimensional data. Concept drift is data drift where changes in the input



118Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

data occur, but no new class labels arise [57]. We perform an experimental study

using image data as the high dimensional data and a CNN as the type of DNN. We

manifest the concept drift as new sub-classes in images. For instance, an image clas-

sification system is trained on a class of Flower that consists of Poppies and Roses.

Concept drift is applied by adding images of Sunflowers in to the data stream. The

overall class of Flower has not changed, but the input data for that class has.

As with concept evolution, DNN adaptation in a streaming scenario to concept

drift encounters the same issues with respect to the DNN adaptation. To recap

from Section 5.1, the issues are, that DNNs have a longer latency than other ma-

chine learning models, they suffer from catastrophic forgetting of previously known

classes, class imbalance when new data is arising and they require more data as

compared to other types of machine learning models.

In systems concerned with the detection of concept drift and adaptation of DNNs,

the domains of Concept Drift and Online Domain Incremental (ODI) play crucial

roles. ODI, a sub-field of Online Continuous Learning (OCL), addresses non-stationarity

in data without changes in class labels [122]. As with the OCI (Online Class Incre-

mental) field introduced in Section 5.1, ODI incrementally trains a newly initialised

DNN, one class at a time [122] and focuses on retaining all past data, relying on true

labelled samples leading to over inflated performance, whereas the concept drift

field focuses on the most recent changing data, using minimal true labels, without

the focus on retaining all past data, thus the two fields of Concept Drift and ODI

offer differing perspectives.

Current approaches to DNN adaptation in response to concept drift are con-

strained in the same way as for concept evolution, focusing on structured low di-

mensional data [56] [56]. Methods tend to be a subset of those for concept evolution,

as a number of methods combine concept evolution and drift detection solutions.

Many use clustering [101, 195, 60, 42, 73], with some utilising DNNs in the drift

detection mechanism [60, 81].

The same DNN adaptation techniques that are applied in the OCI field are also

applied in the ODI fields [156, 110, 31, 8]. These have not previously been applied in

a concept drift setting. [101] initiated the integration of ODI with concept drift but

did not explore the application of concept drift patterns.



6.1. Introduction 119

In the Concept Drift and Online Domain Incremental (ODI) fields, concept drift

typically involves changes such as new backgrounds, blur, noise, illumination, and

occlusion [122, 101, 195]. These synthetic alterations to images may not faithfully

replicate real-world scenarios. Hence, a novel approach is required to tackle concept

drift detection and adapt deep neural networks to high dimensional data, with the

specific characteristics of: (1) Transformation of data into an alternative representa-

tion. (2) Explicit concept drift detection. (3) Applicability to existing DNNs without

the need for retraining. (4) Analysis concerning concept drift patterns. (5) Analysis

concerning emerging novel sub-classes within a super-class.

Our system, called DeepStreamEnsemble, is designed to serve as a wrapper en-

abling pretrained standard DNNs to explicitly detect concept drift and adapt within

seconds. This method involves offline training and online inference. To analyse

unseen instances, we leverage neuron activations from within the hidden layers of

the DNN. Using a Content-Based Image Retrieval (CBIR) DNN descriptor genera-

tor method [176], we reduce these activations and apply to a Hoeffding Tree [91]

classifier ensemble for each block of hidden layers in the DNN. The difference in

predictions between the Hoeffding Tree ensemble and the DNN serves as the basis

for concept drift detection through our innovative method, referred to as DSE-DD,

which relies on accuracy volatility. Upon detecting concept drift, our novel adapta-

tion method, termed DSE-Adapt, is employed to adapt the DNN.

Detecting concept drift is more challenging than detecting concept evolution

as the differences are subtler within-class changes, rather than completely novel

classes. Figure 6.1 shows a comparison of class boundaries for concept evolution

and concept drift. In (a) it can be seen that during concept evolution, the emerging

class of Sunflower arises with its own class boundary. In (b) the class boundary is

now the super-class of Flower. The sub-class of Sunflower emerges in the centre

of the super-class, making it more challenging to detect than an entirely new class.

Thus, this chapter provides a unique solution for concept drift detection and DNN

adaptation to streaming data. More advanced methods of DNN activation extrac-

tion, concept drift detection and DNN adaptation using streaming machine learning

ensembles are proposed in order to address the more challenging problem of con-

cept drift.



120Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

(a) Concept Evolution (b) Concept Drift

FIGURE 6.1: Class boundaries for concept evolution and concept
drift.

Legend: Black (round) are known instances. Red (triangles) are unknown instances.

Black dashed line is a class boundary. Grey dotted line is a sub-class boundary.

We focus our experimental methodology on CNNs as the DNN and images as the

high dimensional data. To the best of our knowledge, DeepStreamEnsemble is the first

streaming concept drift detection and CNN adaptation system to focus on accuracy

volatility using CNN activations for concept drift detection. Its use of activations

from different sections of the CNN, and a streaming machine learning ensemble

is unique. We present a novel activation reduction method based on a CBIR tech-

nique, which is the first time CBIR has been involved as an input for concept drift

detection. We individually substitute concept drift detection and CNN adaptation

modules whereby the user can independently select these components. We provide

the first analysis of abrupt, gradual and reoccurring drift patterns to the ODI field.

For the first time, we apply concept drift as sub-class images to streaming concept

drift detection and CNN adaptation systems, rather than synthetic augmentations.

The main contributions presented in this chapter are:

1. Reduction of DNN activations based on a CBIR technique, utilised as input to

concept drift detection.

2. Explicit concept drift detection method using multi-layer DNN activations and

streaming machine learning ensemble.



6.2. DeepStreamEnsemble System Description 121

3. DNN adaptation method using multi-layer DNN activations and streaming

machine learning ensemble.

4. Unification of ODI and concept drift fields by analysing ODI DNN adaptation

methods in a sub-class concept drift setting via drift patterns.

This chapter is organised as follows: In section 6.2 we present a description of

the system that includes formalisation and implementation details of the DeepStrea-

mEnsemble components and methodology. In the experimental study in Section 6.3

we specify the experimental setup. In Section 6.4 we evaluate and analyse DeepStrea-

mEnsemble against eleven other methods. Section 6.5 summarises our findings.

6.2 DeepStreamEnsemble System Description

This section elaborates on the components of our DeepStreamEnsemble system and

how they interact, providing detailed descriptions, algorithms and formalisations.

It introduces our neuron activation reduction method (Block-CBIR), drift detection

method (DSE-DD), and CNN adaptation method (DSE-Adapt), along with an ex-

planation of how the substituted drift detection and CNN adaptation methods are

applied.

The definition of a data stream as in Section 5.2 also applies for this chapter,

except that sub-classes are emerging during inference. The DNN is trained via the

cross-entropy cost function as described by Equation 3.2.

Each detected change signifies a potential new sub-class within the current win-

dow. The model f , is adjusted to incorporate the identified new sub-class. Index

notation is employed in the algorithm descriptions; for example, Dw denotes the

wth window in the data stream. Commonly used symbols are listed in Table 6.1.

To streamline the descriptions, the Hoeffding Tree Block Ensemble is abbreviated as

HTBE, and the Adaptation Ensemble Buffer is referred to as AEB.

The proposed DeepStreamEnsemble system is illustrated in Figure 6.2. The system

requires two prerequisites: (1) A CNN fitted with training data (C), which is the sub-

ject of the concept drift detection and adaptation, and (2) data samples used to train

the deep neural network (Dinit). DeepStreamEnsemble operates as an offline-online



122Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

TABLE 6.1: Summary of main symbols

Symbol Description Symbol Description

A Reduced Activations N Number of convolutional blocks
B Change Detection buffer P CNN predicted class labels
b Convolutional block q Window count
C CNN S HTBE class predictions
Cadapt Adapted CNN s Sample from class buffer
c Class U Previous window buffer
D Data stream V Set of accuracy differences
d Drift detection result v Accuracy difference
E Class buffer W Number of change detection groups in B
K AEB predicted classes w Window number
k Feature map x Image data
L Number of classes Y True class labels
M Number of training set samples

system, undergoing offline training and subsequently processing unseen instances

online.

Referring to Figure 6.2, DeepStreamEnsemble comprises of four modules: The

CNN, Activation Reduction, Concept Drift Detection and Adaptation. The activa-

tions for each convolutional block in the CNN are extracted (b1 to bN) into Jw. Each

block consists of convolutional layers followed by a max pooling layer. The CNN

activations are reduced via Block-CBIR in the activation reduction module by ex-

tracting the most important neurons in the max pooling and convolutional layers

and are provided to the concept drift detection as Aw in Figure 6.2. The concept drift

detection requires the activation reduction output from the Block-CBIR module, the

Hoeffding Tree Block Ensemble (HTBE) predictions and accuracy volatility change

detection between the predictions of the CNN (Pw) and the Hoeffding as determined

by the DSE-DD module. The intuition behind the concept drift detection is that the

CNN is a natural feature extractor. Each layer learns to detect different features from

the input image. The initial layers learn to detect simpler patterns such as edges and

textures, while deeper layers recognise more complex features such as shapes or en-

tire objects [105]. These learned features are represented via feature maps (the values

of which are called activations). Analysing these feature maps provides an oppor-

tunity to extract alternative aspects of the data than is possible via purely using the

image data. Each image has its own way of activating the neural network and pro-

ducing activation patterns. The CNN is a strong classifier, and the Hoeffding Tree



6.2. DeepStreamEnsemble System Description 123

FIGURE 6.2: Overview of the DeepStreamEnsemble system. An un-
known image featuring a Sunflower is input to the CNN, activations
are extracted from various convolutional blocks, concept drift is iden-
tified, adapting the CNN for the new Sunflower sub-class within the

Flowers category.

is a weaker classifier, but adaptive. The Hoeffding Tree [91] is a streaming classi-

fier and operates on the minimal amount of data required to make a decision. The

Hoeffding Trees will adapt to the reduced activations of the CNN more often than

the CNN is adapted. This assists in the Hoeffding Tree diverging further from the

CNN, contributing to the accuracy volatility between the CNN and the Hoeffding

Trees. There is one Hoeffding tree for each convolutional block (b1 to bN) as shown in

Figure 6.2. Using the accuracy volatility between the prediction of the DNN and the

prediction of the Hoeffding Trees for each block provides monitoring of changes in

these latent representations from the CNN. The HTBE predictions for all blocks (Sw)

are provided to the change detection element (labelled as DSE-DD in Figure 6.2).

The DSE-DD calculates the total accuracy between the CNN and the HTBE predic-

tions for the current window of data (w). The change in accuracy between windows

is monitored in order to detect drift.

If change is detected, the window of data is provided to the adaptation phase

(Aw, Dw) where it is true-labelled (shown in Figure 6.2 via the Drift Change Instances



124Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

element) and fitted to the AEB (one for each block b1 to bN) with image data, activa-

tion data and true labels (Dw, Aw, Yw). Each block in the AEB consists of a Hoeffding

Tree and a class buffer containing activation data. The Hoeffding Tree and the class

buffers only contain training data and true-labelled instances. There is also a class

buffer for the image data. The CNN is adapted offline, whilst instances continue

to be processed. Instances arriving between the time the change was detected and

the time it takes to adapt the CNN are re-predicted via the AEB. Windows prior to

the detected drift change are stored in the previous window buffer as shown in Fig-

ure 6.2 as the Previous Window Buffer element with data (Aw), re-predicted via the

AEB and used in the adaptation. Only the fully connected layers of the CNN are

adapted via the Train Classifier Layers element in Figure 6.2 using data samples for

each class, sourced from the class buffers in the AEB (Ds, Ys). The HTBE Hoeffding

trees are updated offline with the same samples of data as the CNN (except it is

activation data instead of image data (As,Ys)). When the CNN has completed adap-

tation, the system is updated. Algorithm 8 provides a system overview. Algorithm 9

details the activation reduction. Algorithm 10 details the concept drift detection and

Algorithm 11 details the adaptation.

Algorithm 8 shows the overall process of DeepStreamEnsemble. In summary, for

each window of image data, the activations are reduced (Line 2) via our method

Block-CBIR. Drift detection is performed (Line 5) using the CNN and the HTBE pre-

dictions via our method DSE-DD. If drift is detected then true values of the windows

in which drift was detected are obtained (Line 7). The DNN is adapted (Line 8) and

the block ensembles are adapted with the new true values (Line 9). If the CNN is

adapting, predictions are obtained from the AEB (Line 13). Otherwise, the predic-

tions are obtained from the CNN (Line 16). At Line 5 (conceptDriftDetection), an

alternative concept drift detection method can be invoked. At Line 8, (adaptDnn),

an alternative CNN adaptation method can be invoked. Further information about

the substituted concept drift detection and adaptation methods can be found in Sec-

tion 6.3.



6.2. DeepStreamEnsemble System Description 125

Algorithm 8 DeepStreamEnsemble Overview
Input: Windows of image data D
Input: Pretrained CNN, C on L classes
Input: Pretrained Hoeffding Tree on activations of L classes
Output: P: A set of CNN predicted classes for data stream, D

1: for Dw ∈ D do
2: Aw ← reduceActivations(Dw) ▷ Block-CBIR or another method

3: Pw ← cnnPredict(Dw) ▷ get CNN predictions

4: Sw ← htbePredict(Aw) ▷ get HTBE predictions

5: r ←conceptDriftDetection(Aw) ▷ DSE-DD or another method

6: if r = 1 then
7: Yw = getTrueValues(Dw) ▷ Get true values for the drift window

8: adaptDnn(Dw, Aw, Yw) ▷ DS-Adapt or another method

9: adaptEnsembles(Dw, Aw, Yw) ▷ Adapt HTBE

10: else
11: Let U be the window buffer and Let G be the number of windows in U

12: if CNN adaptation in progress then
13: Kw ← aebPredict(Aw) ▷ use AEB predictions

14: U ← (Dw, Aw, Kw)
15: else
16: U ← (Dw, Aw, Pw) ▷ use CNN predictions

17: end if
18: if G > 2 then ▷ only store 2 windows

19: U ← U −U0 ▷ remove oldest window

20: end if
21: end if
22: P← Pw
23: end for

6.2.1 Activation Reduction

CBIR [176] is intended for content-based image retrieval. It creates descriptors for

images using deep neural networks. It is based on obtaining neural codes from

fully connected layers activations. CBIR takes this one stage further by using the

information contained in convolutional layers. However, the number of neurons in

the convolutional layers is large and most of them do not contribute significantly

to the final classification. Therefore the most significant neuron activations only are

extracted in order to provide extra information about the image such as background

textures or colour distribution that is present in the convolutional layers [176]. A

description of this method can be found in Section 3.4.5. We have modified CBIR

to use within DeepStreamEnsemble to extract the most useful activations from the

network such that we can utilise it in our streaming classifier. The algorithm for our

CBIR implementation is presented in Algorithm 9. We have called this Block-CBIR

to distinguish it from the original. This is invoked in the overall DeepStreamEnsemble



126Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

system (Algorithm 8) Line 2, via the reduceActivations method.

Algorithm 9 Activation Reduction: Block-CBIR
Input: One window of image data, Dw
Input: CNN, C expressed in convolutional blocks: b ∈ C = {1, 2, . . . , N}
Output: Aw: One window of reduced activations

1: for xi ∈ Dw do
2: for b ∈ C do
3: let bp be the pooling layer of block b
4: for each channel, c of bp do
5: Jmax ←max(bp) ▷ max channel value in pooling layer

6: Jconv ← getConvLayer(b) ▷ get conv layer 1 values

7: end for
8: Jb = Jmax + Jconv
9: Ab ← sectionAvg(Jb, 150) ▷ get the average value for 150 sections

10: end for
11: JH ← getActivations(H) ▷ get final hidden layer activations

12: AH ← sectionAvg(JH, 32) ▷ get the average value for 32 sections

13: Aw ← Ab + AH
14: end for

For previously unseen instances arriving at the deep neural network, the activa-

tions for one block at a time are extracted, where a block in a CNN consists of con-

volutional layers, and a pooling layer. For each value of each channel of the pooling

layer in the block, the maximum activation value across the channels for each lo-

cation in the pooling layer is extracted and stored (Line 5). Corresponding values

are obtained from the first convolutional layer in the block via the getConvLayer

method (Line 6). This is repeated for each block in the network.

In this work, there is less of a constraint on the number of features as each block’s

activations are processed individually. However, only the first convolutional layer

in each block is used as, empirically, this provided superior results than using both

convolutional layers. The original CBIR paper [176] used a threshold to save on

computing time, reasoning that as ReLU (Rectified Linear Unit) activation functions

were used, then processing under an activation threshold of 0.5 was not advanta-

geous. As our system is designed to be flexible, we removed this threshold so that

other types of activation functions could be used within applied CNNs, which, on

our system, did not incur a significant increase in computing time but improved the

clustering of the activations. The combined output of the max pooling layer activa-

tions and the convolutional layer activations from each block are reduced further via



6.2. DeepStreamEnsemble System Description 127

Fashion-MNIST

CIFAR-10

CIFAR-100

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Final

FIGURE 6.3: UMAP representations of reduced activation training
data for each block and final hidden layer of VGG16 CNN

the sectionAvg method (Line 9) where set Jb is split into 150 parts and the average

for each part is calculated. The activations for the last hidden layer JH are extracted

and converted into 32 values in the same way (Line 12). These reduced sets are

combined (Line 13) and returned as the set of reduced activations for the window.

To achieve Block-CBIR, the convolutional blocks need to be identified for the

CNN. For VGG16 there are five convolutional blocks. Figure 6.3 shows an exam-

ple of UMAP [125] representations of the reduced activations for the convolutional

blocks and final hidden layer of VGG16 CNN for the Fashion-MNIST, CIFAR-10 and

CIFAR-100 datasets. Sub-classes of 0-1-2-7-5-9 are shown for Fashion-MNIST. Sub-

classes of 0-1-2-3-4-8 are shown for CIFAR-10. Sub-classes 2-8-9-22-26-46-48-61-79-87

are shown for CIFAR-100. The sub-classes are explained in detail in Table 6.2. From

the UMAP images in Figure 6.3, the latter blocks (i.e. Block 5) show improved sepa-

ration as compared to the earlier blocks (i.e. Block 1). Fashion-MNIST demonstrates

superior separation in all blocks as compared to CIFAR-10 and CIFAR-100, with

CIFAR-10 displaying the least separation and CIFAR-100 displaying fewer instances

per class. This activation reduction method provides activation classification foot-

prints, as discussed in Section 2.6, into our concept drift detection method described



128Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

in the following section.

6.2.2 Concept Drift Detection

Our Concept drift detection method (DSE-DD) is based on an ensemble of the acti-

vation data from the blocks of the CNN, the prediction of the CNN and the accuracy

volatility of each CNN block. The following paragraph details this method.

Algorithm 10 Drift Detection: DSE-DD
Input: Window of reduced activation data, Aw
Input: CNN, C expressed in convolutional blocks, b ∈ C = {1, 2, . . . , N}
Input: CNN class predictions for window, Pw
Input: HTBE predictions for window, Sw
Input: Pretrained HTBE on activations and L classes; 1 for each conv. block, b
Output: r: 1 if window contains drift, otherwise 0

1: for b ∈ C do ▷ For each block in the CNN

2: a← calcRunAcc(Sw, Pw) ▷ accuracy for CNN block & CNN predictions

3: Vb ←max(a) - min(a) ▷ store the accuracy difference for the block

4: end for
5: vw = sum(Vb) ▷ sum the accuracy difference for all blocks

6: if q > 3 then
7: if vw > average({v0, v1, v2}) then ▷ is window > avg. of first 3 windows

8: r = 1 ▷ drift occurred

9: else
10: r = 0 ▷ no drift occurred

11: end if
12: else
13: V ← vw ▷ store accuracy difference for this window

14: r = 0 ▷ no drift occurred

15: end if

Concept drift detection is achieved via our novel method, DSE-DD and is de-

tailed in Algorithm 10. A window of reduced activation data Aw is applied to the

HTBE, which is trained on reduced activations and L classes. The data from each

block in the CNN is applied to its own Hoeffding Tree. The Hoeffding Tree classifier

is established and well used [91]. The HTBE provides predictions for each convolu-

tional block (b1 to bN) of the CNN. The running accuracy of the predictions for each

of the blocks and the CNN prediction is calculated in calcRunAcc (Line 2). When

the HTBE has been trained, the training samples are predicted via the HTBE and

the CNN. These predicted values are stored and are used in the accuracy calculation

of the unseen windows in calcRunAcc. The difference between the maximum and



6.2. DeepStreamEnsemble System Description 129

minimum accuracy of the window is calculated (Line 3) and summed (Line 5). Un-

der the scenario of new sub-classes, the earlier blocks in the CNN tend to be more

transient than the latter blocks, thus these early blocks provide a valid input into the

drift detection. As super-class predictions from the CNN are being used instead of

true values, increasing or decreasing accuracy could indicate concept drift. There-

fore any change in the accuracy is measured, regardless of whether it is an increase

or decrease. A threshold is required and is calculated from the accuracy volatility

difference of the first three windows of the data stream. If the accuracy difference

for the subsequent test data windows is greater than this threshold, drift is declared

(Lines 6 to 15).

6.2.3 Adaptation

Algorithm 11 DNN Adaptation: DSE-Adapt
Input: One window of image data: Dw
Input: One window of reduced activation data Aw
Input: One window of true labels: Yw
Input: CNN to be adapted, C
Input: Buffer of two previous windows, U
Output: Adapted CNN, Cadapt

1: let W be the total number of change detection groups in buffer, B
2: B← U + (Dw, Aw, Yw) ▷ save current and previous two windows

3: if W > 5 then ▷ check number of change detection groups

4: B← B− B0 ▷ remove oldest group

5: end if
6: aebPartialFit(Dw, Aw, Yw) ▷ add true labelled data to AEB

7: Kw ← aebPredict(B) ▷ re-predict buffer windows via AEB

8: Let E be the class buffer
9: for b ∈ E do

10: Eb ← Eb + (Dw, Aw, Yw) ▷ Add true labelled data to class buffer

11: Eb ← Eb − (D0, A0, Y0) ▷ remove oldest instance

12: end for
13: for class l in (Kw + Yw) do ▷ get 100 samples per class from buffer

14: (Ds, As, Ys)← getClassBufferSample(l, 100)
15: end for
16: (Ds, As, Ys)← (Ds, As, Ys) + B ▷ add drift windows to samples

17: copy C and train with (Ds, Ys) for 3 epochs ▷ adapt CNN

18: htbePartialFit(As, Ys) ▷ adapt HTBE with sampled data

19: replace C with adapted CNN, Cadapt

Our CNN adaptation method (DSE-Adapt) is based on partial update of the



130Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

CNN, an ensemble class buffer and some memory of previous instances, and is de-

scribed in Algorithm 11. When a change is detected, that window of data is pro-

vided to the CNN adaptation method - the original image data (Dw), the activation

data (Aw) and the true class values (Yw). The current window and the previous two

windows are added to a change detection buffer (Line 2). If the buffer exceeds 5

windows, the first window in the buffer is removed (Lines 3 and 4). This means that

data previous to the change is also provided to the CNN adaptation and some data

from previous change detection points are supplied (if available), thus providing

some memory for the CNN adaptation. True-labelled instances are fitted to the AEB

which is an ensemble, one for each CNN convolutional block plus the final layer,

each containing a Hoeffding Tree. This is the same architecture as for the ensemble

in the drift detection stage but only contains training data and true labelled sam-

ples (Line 6). The two windows of data that are collected prior to the drift detection

window may contain incorrect CNN predictions due to the change in data. These

instances are re-predicted via aebPredict (Line 7). The predictions from the AEB are

weighted according to the training accuracy of each block of the CNN, thus aebPre-

dict returns the prevailing prediction, taking into account the block accuracies. The

current window true value instances are added to the class buffers (Line 10). A sam-

ple of 100 instances (or the maximum number of instances that are available) for

each class that occurs in the true-labelled window and in the previous two windows

is extracted from the class buffer (Lines 13 to 15) and used for CNN adaptation. The

CNN is adapted for three epochs (Line 17). The HTBE is adapted (Line 18). The

current CNN is replaced with the adapted CNN (Line 19).

6.3 Experimental Methodology

This section provides details of the experiments conducted, with details of the spe-

cific setup implemented for the proposed method in this chapter.

6.3.1 Datasets

We utilise the Fashion-MNIST [198], CIFAR-10, and CIFAR-100 datasets [103]. Infor-

mation regarding the CIFAR-10 and Fashion-MNIST dataset can be found in Section

4.3.1 and information regarding CIFAR-100 can be found in Section 5.3.1. The 100



6.3. Experimental Methodology 131

sub-classes are grouped into 20 super-classes, as shown in Table 6.2, along with the

sub-class identifiers in brackets.

6.3.2 Data Combinations

Sub-class data combinations are applied. For example, on CIFAR-10, for a data com-

bination of trained sub-classes 0-1-2-3 and novel sub-classes 8-9-4-5, the network

will be trained on classes Airplane, Automobile, Bird and Cat. However, instead

of using these labels, class labels of Transport, Transport, Animal and Animal are

assigned. The Ship, Truck, Deer and Dog classes are applied as the novel sub-class

data. For Fashion-MNIST and CIFAR-10, the data combinations have been selected

such that there are groups of 2, 4 and 6 known classes and incrementing numbers of

unknown sub-classes as shown in Table 6.3.

For CIFAR-100, two scenarios have been selected:

1. Trained on 5, 10 and 20 super-classes (2 sub-classes from each super-class),

adding 2 randomly selected novel sub-classes, each within a trained super-

class.

2. Trained on 5, 10 and 20 super-classes (2 sub-classes from each super-class),

adding 3 novel sub-classes per selected sub-class.

Scenario (1) involves numerous known classes and a limited amount of concept drift

classes, resembling typical real-world applications. For example, a model trained on

extensive data might encounter a low number of emerging concept drift classes, as

seen in i.e. medical image analysis. In this scenario, a DNN is fitted with data for

various known diseases, with only a couple of new variations appearing over time.

Scenario (2) represents a larger influx of concept drift classes. Table 6.3 provides

details of three class combinations for scenarios (1) and (2).

6.3.3 Experimental Settings

The CNN utilised in the proposed system is VGG16, trained from initialisation with

ImageNet weights; a common practice in real-world applications. Data instances

are applied in patterns, the same as for concept evolution, as shown in Figures 5.4

and 5.5, where the number of images are shown on the x-axis, and the cumulative



132Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

TABLE 6.2: Super-classes and sub-classes

Super-Class Names Sub-Class Names and Sub-Class Identifiers

Fashion-MNIST
Footwear Sandal, Sneaker, Bag, Ankle Boot (5, 7, 8, 9)
Clothing T-Shirt/Top, Trouser, Pullover, Dress, Coat, Shirt (0, 1, 2, 3, 4, 6)

CIFAR-10
Transport Airplane, Automobile, Ship, Truck (0, 1, 8, 9)
Animal Bird, Cat, Deer, Dog, Frog, Horse (2, 3, 4, 5, 6, 7)

CIFAR-100
Aquatic Mammals Beaver, Dolphin, Otter, Seal, Whale (4, 30, 55, 72, 95)
Fish Aquarium Fish, Flatfish, Ray, Shark, Trout (1, 32,67, 73, 91)
Flowers Orchids, Poppies, Roses, Sunflowers, Tulips (54, 62, 70, 82, 92)
Food Container Bottles, Bowls, Cans, Cups, Plates (9, 10, 16, 28, 61)
Fruit and Vegetables Apples, Mushrooms, Oranges, Pears, Sweet Peppers (0, 51, 53, 57, 83)
Household Electrical Devices Clock, Computer Keyboard, Lamp, Telephone, Television (22, 39, 40, 86, 87)
Household Furniture Bed, Chair, Couch, Table, Wardrobe (5, 20, 25, 84, 94)
Insects Bee, Beetle, Butterfly, Caterpillar, Cockroach (6, 7, 14, 18, 24)
Large Carnivores Bear, Leopard, Lion, Tiger, Wolf (3, 42, 43, 88, 97)
Large Man-Made Outdoor Things Bridge, Castle, House, Road, Skyscraper (12, 17, 37, 68, 76)
Large Natural Outdoor Scenes Cloud, Forest, Mountain, Plain, Sea (23, 33, 49, 60, 71)
Large Omnivores and Herbivores Camel, Cattle, Chimpanzee, Elephant, Kangaroo (15, 19, 21, 31, 38)
Medium-Sized Mammals Fox, Porcupine, Possum, Raccoon, Skunk (34, 63, 64, 66, 75)
Non-Insect Invertebrates Crab, Lobster, Snail, Spider, Worm (26, 45, 77, 79, 99)
People Baby, Boy, Girl, Man, Woman (2, 11, 35, 46, 98)
Reptiles Crocodile, Dinosaur, Lizard, Snake, Turtle (27, 29, 44, 78, 93)
Small Mammals Hamster, Mouse, Rabbit, Shrew, Squirrel (36, 50, 65, 74, 80)
Trees Maple, Oak, Palm, Pine, Willow (47, 52, 56, 59, 96)
Vehicles 1 Bicycle, Bus, Motorcycle, Pickup Truck, Train (8, 13, 48, 58, 90)
Vehicles 2 Lawn-mower, Rocket, Streetcar, Tank, Tractor (41, 69, 81, 85, 89)

number of introduced concept drift sub-classes in the data stream are shown on the

y-axis. A line at zero signifies that only images the CNN has been trained on have

been applied. Whilst a line at 1 indicates all concept drift sub-classes have been

applied to the stream. In categorical patterns, Figure 5.5 (a), (b), (c), and (d) show

steps, representing the cumulative application of thirty concept drift classes in the

data stream. In order to simulate real-world applications more closely, no incorrectly

classified instances are removed during testing.

The drift detection mechanism of DeepStreamEnsemble is replaced with six dis-

tinct drift detection methods which are high performing, widely used and from a

range of statistical, windowing and novelty detection methods, each tuned for op-

timal results. The adaptation aspect of DeepStreamEnsemble is substituted with two

different CNN adaptation methods. These are successful methods in the Online Do-

main Incremental (ODI) setting [122]. Each of these methods has been adjusted such

that they only receive true labels for the window in which the drift was detected by

DeepStreamEnsemble. To allow for a direct comparison of the substituted adaptation

methods, the drift detection has been simulated so that all methods are adapting to



6.3. Experimental Methodology 133

TABLE 6.3: Sub-class data combinations

Trained Sub-Classes Novel Sub-Classes

Fashion-MNIST
0-5 1-2
0-5 1-2-3
0-5 1-2-3-7
0-5 1-2-3-7-8
0-5 1-2-3-7-8-9
0-1-5-7 2-4
0-1-5-7 2-4-8
0-1-5-7 2-4-8-9
0-1-2-5-7-9 6
0-1-2-5-7-9 6-8

CIFAR-10
0-2 1-8
0-2 1-8-9
0-2 1-8-9-3
0-2 1-8-9-3-4
0-2 1-8-9-3-4-5
0-1-2-3 8-9
0-1-2-3 8-9-4
0-1-2-3 8-9-4-5
0-1-2-3-4-8 9
0-1-2-3-4-8 9-5

CIFAR-100 Scenario 1 - Two novel sub-classes applied
7-10-11-13-14-16-17-19-20-21-25-29-30-32-33-35-37-39-40-
42-43-44-45-48-49-50-51-52-53-55-56-62-63-64-65-67-69-
70-77-81

71-97

0-1-2-3-4-5-6-8-9-12-15-22-23-24-26-27-34-36-38-41-47-54-
61-71-75-76-80-83-87-89-90-91-92-93-94-95-96-97-98-99

10-52

18-24-28-31-38-46-57-58-59-60-61-66-68-71-72-73-74-75-
76-78-79-80-82-83-84-85-86-87-88-89-90-91-92-93-94-95-
96-97-98-99

27-75

18-24-31-38-59-60-68-71-73-76-78-82-85-88-89-91-92-93-
96-97

52-70

14-16-18-21-25-28-31-37-40-49-60-65-67-68-73-74-77-79-
84-86

33-94

13-17-19-21-29-37-42-43-44-45-48-50-62-63-64-65-69-70-
77-81

27-75

2-8-9-22-26-46-48-61-79-87 13-40
14-18-55-56-59-72-77-79-81-85 24-45
18-24-66-72-75-82-84-92-94-95 14-30

CIFAR-100 Scenario 2 - Three novel sub-classes per super-class applied
2-8-9-22-26-46-48-61-79-87 10-11-13-16-28-35-39-40-45-58-77-86-90-98-99
14-18-55-56-59-72-77-79-81-85 4-6-7-24-26-30-41-45-47-52-69-89-95-96-99
18-24-66-72-75-82-84-92-94-95 4-5-6-7-14-20-25-30-34-54-55-62-63-64-70
18-24-31-38-59-60-68-71-73-76-78-82-85-88-89-91-92-93-
96-97

1-3-6-7-12-14-15-17-19-21-23-27-29-32-33-37-41-42-43-44-
47-49-52-54-56-62-67-69-70-81

14-16-18-21-25-28-31-37-40-49-60-65-67-68-73-74-77-79-
84-86

1-5-6-7-9-10-12-15-17-19-20-22-23-24-26-32-33-36-38-39-
45-50-61-71-76-80-87-91-94-99

13-17-19-21-29-37-42-43-44-45-48-50-62-63-64-65-69-70-
77-81

3-8-12-15-26-27-31-34-36-38-41-54-58-66-68-74-75-76-78-
79-80-82-85-88-89-90-92-93-97-99

7-10-11-13-14-16-17-19-20-21-25-29-30-32-33-35-37-39-40-
42-43-44-45-48-49-50-51-52-53-55-56-62-63-64-65-67-69-
70-77-81

0-1-2-3-4-5-6-8-9-12-15-18-22-23-24-26-27-28-31-34-36-38-
41-46-47-54-57-58-59-60-61-66-68-71-72-73-74-75-76-78-
79-80-82-83-84-85-86-87-88-89-90-91-92-93-94-95-96-97-
98-99

0-1-2-3-4-5-6-8-9-12-15-22-23-24-26-27-34-36-38-41-47-54-
61-71-75-76-80-83-87-89-90-91-92-93-94-95-96-97-98-99

7-10-11-13-14-16-17-18-19-20-21-25-28-29-30-31-32-33-35-
37-39-40-42-43-44-45-46-48-49-50-51-52-53-55-56-57-58-
59-60-62-63-64-65-66-67-68-69-70-72-73-74-77-78-79-81-
82-84-85-86-88

18-24-28-31-38-46-57-58-59-60-61-66-68-71-72-73-74-75-
76-78-79-80-82-83-84-85-86-87-88-89-90-91-92-93-94-95-
96-97-98-99

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-19-20-21-22-
23-25-26-27-29-30-32-33-34-35-36-37-39-40-41-42-43-44-
45-47-48-49-50-51-52-53-54-55-56-62-63-64-65-67-69-70-
77-81



134Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

the same instances. The memory buffers are set to the mid-range value applied in

the OCL survey paper [122]. The complete DeepStreamEnsemble system is contrasted

with three other detection and DNN adaptation systems. They are evaluated via

accuracy and the intensity of concept drift, where the intensity is the number of sub-

classes applied as concept drift. DeepStreamEnsemble continues processing images

whilst adaptation takes place. The image datasets used in this chapter are relatively

small in streaming terms. Therefore, during adaptation the stream processing speed

is reduced such that adaptation can occur and remaining data instances are available

subsequent to the adaptation. In real world scenarios there would not be a limitation

on the amount of streaming data.

1. DDM (Drift Detection Method) [58] is a statistical method, it assumes the bino-

mial distribution and uses the standard deviation to detect drift. The following

tuning parameters were set: Min num instances = 30 (minimum number of in-

stances so change can be detected, tuned between 10 and 50), warning level=4,

out control level = 2. The warning level and control level were tuned between

1 and 4.

2. ADWIN (Adaptive Windowing) [17] is a windowing method that summarises

information from previous windows and then compares this with summarised

information from the current window. It uses sliding windows of variable size

and if two windows are found that have distinctly different averages, then the

data distribution is deemed to have changed. The following tuning parameters

were set: Delta = 0.5 after tuning at values of 0.0001, 0.002, 0.05 and 0.5 across

all data combinations.

3. HDDMW (Hoeffding Drift Detection Method using the statistical W-test) [54]

is a windowing method that summarises information from previous windows

and then compares this with summarised information from the current win-

dow. It relies on Hoeffding bounds and monitors the data distribution within

various time windows by employing probability inequalities rather than the

probability distribution function. The method contrasts moving averages to

identify drifts and incorporates a forgetting scheme to determine the weight of

moving averages in the data stream. The following tuning parameters were



6.3. Experimental Methodology 135

set: Drift confidence=0.001, warning confidence=0.01, lambda option=0.09.

Drift confidence and warning confidence were tuned around the values: 0.0001,

0.001, 0.005, 0.1 and lambda option from 0.01 to 0.1 across all data combina-

tions.

4. KSWIN (Kolmogorov–Smirnov Windowing) [152] is a windowing method that

summarises information from previous windows and then compares this with

summarised information from the current window. It is based on the Kol-

mogorov statistical test and has no assumption of the underlying data distri-

bution. The following tuning parameters were set: Alpha=0.0001, window

size=50, stat size=30. Alpha was tuned between 0.001 and 0.01, window size

between 20 and 200, and stat size between 10 and 50 across all data combina-

tions.

5. MINAS (MultIclass learNing Algorithm for data Streams) [50] is a clustering

method where each recognised class is represented by a collection of micro-

clusters, which provide a statistical summary of the data. In the online phase,

new micro-clusters can be established or removed. Unseen instances are ei-

ther assigned to an existing cluster or designated as unknown, being stored

in short-term memory. Once a sufficient number of examples accumulate in

short-term memory, they undergo clustering, resulting in the creation of a new

set of micro-clusters. Each newly formed micro-cluster is subjected to evalua-

tion, and non-cohesive or unrepresentative ones are eliminated. The valid new

micro-clusters are then assessed to determine whether they represent an exten-

sion of a recognised class or a novelty pattern. These valid micro-clusters are

incorporated into the decision model and utilised in the classification of new

examples. The following tuning parameters were set: min short mem trig-

ger=10, min examples cluster=5. Min short mem trigger was tuned between

10 and 100 and min examples cluster was tuned between 1 and 10 across all

data combinations.

6. OCDD (One Class Drift Detector) [71] employs a one-class learner featuring

a sliding window. The one-class classifier is utilised to gauge the distribu-

tion of the emerging concept, determining whether new samples belong to



136Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

the existing concept or deviate as outliers. Samples categorised as outliers are

recognised as data from the emerging concept. A drift is signalled based on

the percentage of outliers identified within the sliding window. This iterative

process persists until no further new data is encountered. The following tun-

ing parameters were set: Nu = 0.001, size=10, percent=0.1. Nu was tuned

between 0.001 and 0.9, size was tuned between 10 and 1000, and percent was

tuned between 0.1 and 0.9 across all data combinations.

DDM is a statistical method, ADWIN, HDDMW and KSWIN are all windowing

methods, but use different information to summarise the windows. MINAS is a

micro-clustering statistical summary method and OCDD is a one-class learner with

a sliding window. These methods provide a range of drift detection techniques. The

F1-Score metric with out of sample as the positive class is used as analysed in [81],

leading to the following definitions: True positives are unknown images that are

correctly classified. False positives are known images that are incorrectly classified.

False negatives are unknown images that are identified as known.

The adaptation aspect of DeepStreamEnsemble is substituted with two different

CNN adaptation methods: (1) ER [31] and (2) MIR [8] augmented with trick RV [25].

These are successful methods in the Online Domain Incremental (ODI) setting from

the comprehensive survey [122]. Each of these methods has been adjusted to re-

ceive only the true-labelled windows of instances when the drift was detected from

DeepStreamEnsemble. To allow for a direct comparison of the substituted adaptation

methods, the drift detection has been simulated so that all methods are adapting to

the same instances. The memory buffers are set to 5000. This is the mid-range value

applied in the OCL survey paper [122]. An overview of each of these methods

follows:

1. ER (Experience Replay) [190]. See Section 5.3.3 for details of this method.

2. MIR (Maximally Interfered Retrieval) [8]. See Section 5.3.3 for details of this

method.

The entire DeepStreamEnsemble system is compared to RSB [101], TENT [192] and

CPE [195]. They are evaluated via accuracy and the intensity of concept drift, where



6.4. Experimental Results 137

the intensity is the number of sub-classes applied as concept drift. DeepStreamEnsem-

ble continues processing images whilst adaptation takes place. An overview of each

of the combined drift and adaptation methods follows:

1. RSB (Reactive Subspace Buffer). See Section 5.3.3 for details of this method.

2. TENT (Test ENTropy) [192] requires batch normalisation layers after the max

pooling layers in the CNN. The normalisation statistics of the batch normalisa-

tion layers are adjusted online at each batch to reduce generalisation errors by

optimising channel-wise affine transformations to minimise entropy. The fol-

lowing tuning parameters were set: Learning rate = 0.01 on a subset of data

(two from each data combination for each number of trained classes for class

and sub-class data).

3. CPE (CNN based Prototype Ensemble). See Section 5.3.3 for details of this

method. Recommended settings from the paper [195] are applied for the train-

ing of the CNN: 1000 instances from each class of training data, number of

novel classes that are accumulated before CNN retraining = 1000, learning rate

= 0.001 [195]. Tuning was performed for the threshold of the prototypes and a

value of 3.0 was found to produce superior results.

The system is running on AMD Ryzen Threadripper PRO 3955WX 16-Cores 3.90

GHz, 256 GB RAM with NVIDIA RTX A6000 GPU.

6.4 Experimental Results

In this section, we present our comprehensive experimental analysis, substantiat-

ing the effectiveness of both the suggested concept drift detection method and the

adaptation approach. The outcomes are scrutinised based on the F1-Score for con-

cept drift detection and accuracy for adaptation and overall comparisons. Timing

considerations encompass time per instance and CNN adaptation time.

Table 6.4 displays the average F1-Score and standard deviation for each drift

pattern. For concept drift detection, our approach (DSE-DD) demonstrated superior

performance over DDM, ADWIN, HDDMW, KSWIN, MINAS, and OCDD across all



138Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

drift pattern scenarios, with the exception of CIFAR-10 data. This is because Deep-

StreamEnsemble detects changes in data. It detects when the unknown classes were

first introduced but not the whole range of the unknown classes. CIFAR-10 data has

more instances per class than CIFAR-100 therefore, in CIFAR-100, drift is detected

for more of the range of unknown instances, resulting in higher F1-Scores. The full

investigation is included in Appendix D.2. Notably, our method exhibited profi-

ciency in detecting Categorical Gradual and Categorical Reoccurring drift patterns,

while MINAS and OCDD exhibited higher efficacy in handling the remaining pat-

terns. MINAS and OCDD are implicit methods and incur an additional processing

time of over 20ms per instance compared to our method. The other explicit methods

tend to have a high false positive rate, therefore reducing their F1-Score. From Table

5.4, our drift detection method ranks fourth in the timings, exhibiting only 1.05ms

difference per instance compared to the top-performing DDM method. However,

despite this slight disparity, our approach significantly outperforms the latter con-

cerning F1-Score evaluation. The most time-consuming approaches are the implicit

methodologies employed by MINAS and OCDD.

For CNN adaptation, for the Fashion-MNIST dataset, our method (DSE-Adapt)

outperformed ER and MIR-RV for all drift patterns except for the Categorical Abrupt

pattern. For the CIFAR-10 dataset, our method performed well on Categorical In-

cremental and Categorical Reoccurring drift patterns, with the accuracy difference

between ours and the next best-performing adaptation technique being small. All

methods performed less well on the CIFAR-100 dataset. This concurs with the UMAP

images in Figure 6.3 which indicate that Fashion-MNIST data has superior separa-

tion compared to CIFAR data.

The CIFAR-100 dataset only has 100 images per class, whereas CIFAR-10 and

Fashion-MNIST have 1000 test images per class, providing the CNN more samples

to train from. Table 5.5 shows that our adaptation method is eight times faster than

the leading ODI method of ER, and seven times faster than MIR-RV. Our method

also achieves the highest overall adaptation accuracy.

Our system, DeepStreamEnsemble has been compared with three other systems:

RSB, TENT and CPE. Table 6.5 presents the accuracy following the application of

adaptation for each drift pattern. DeepStreamEnsemble outperforms the three other



6.4. Experimental Results 139

TABLE 6.4: Drift detection module comparison. The average F1-Score
for each drift pattern.

Categorical
Abrupt

Temporal
Abrupt

Categorical
Gradual

Temporal
Gradual

Categorical
Incremental

Categorical
Reoccurring

Temporal
Reoccurring

Fashion-MNIST

DSE-DD (Ours) 0.838
(0.209)

0.791
(0.222)

0.615
(0.308)

0.799
(0.235)

0.825
(0.173)

0.625
(0.186)

0.826
(0.188)

DDM 0.088
(0.111)

0.077
(0.090)

0.084
(0.094)

0.080
(0.082)

0.159
(0.111)

0.160
(0.132)

0.103
(0.112)

ADWIN 0.366
(0.194)

0.384
(0.206)

0.470
(0.232)

0.421
(0.202)

0.430
(0.184)

0.411
(0.157)

0.403
(0.182)

HDDMW 0.079
(0.129)

0.044
(0.052)

0.052
(0.095)

0.033
(0.050)

0.087
(0.069)

0.127
(0.143)

0.050
(0.063)

KSWIN 0.246
(0.33)

0.251
(0.314)

0.395
(0.308)

0.209
(0.3)

0.341
(0.316)

0.294
(0.228)

0.198
(0.261)

MINAS 0.633
(0.198)

0.632
(0.198)

0.381
(0.185)

0.632
(0.198)

0.633
(0.199)

0.475
(0.092)

0.632
(0.198)

OCDD 0.632
(0.198)

0.632
(0.198)

0.381
(0.185)

0.632
(0.198)

0.632
(0.198)

0.475
(0.092)

0.632
(0.198)

CIFAR-10

DSE-DD (Ours) 0.352
(0.300)

0.411
(0.335)

0.564
(0.239)

0.395
(0.270)

0.563
(0.245)

0.521
(0.171)

0.379
(0.254)

DDM 0.147
(0.089)

0.143
(0.108)

0.174
(0.108)

0.134
(0.108)

0.225
(0.132)

0.203
(0.105)

0.172
(0.100)

ADWIN 0.171
(0.153)

0.168
(0.116)

0.290
(0.239)

0.231
(0.158)

0.222
(0.149)

0.217
(0.126)

0.215
(0.133)

HDDMW 0.237
(0.122)

0.207
(0.086)

0.230
(0.216)

0.191
(0.119)

0.321
(0.121)

0.323
(0.114)

0.209
(0.123)

KSWIN 0.044
(0.051)

0.09
(0.130)

0.224
(0.157)

0.083
(0.094)

0.243
(0.182)

0.142
(0.124)

0.098
(0.113)

MINAS 0.632
(0.204)

0.633
(0.199)

0.384
(0.187)

0.633
(0.197)

0.63
(0.2)

0.474
(0.089)

0.635
(0.199)

OCDD 0.632
(0.198)

0.632
(0.198)

0.381
(0.185)

0.632
(0.198)

0.632
(0.198)

0.475
(0.092)

0.632
(0.198)

CIFAR-100

DSE-DD (Ours) 0.584
(0.226)

0.626
(0.281)

0.580
(0.298)

0.564
(0.211)

0.658
(0.244)

0.667
(0.192)

0.673
(0.237)

DDM 0.236
(0.219)

0.035
(0.087)

0.317
(0.395)

0.186
(0.194)

0.222
(0.222)

0.206
(0.303)

0.101
(0.231)

ADWIN 0.273
(0.179)

0.275
(0.186)

0.251
(0.160)

0.271
(0.194)

0.313
(0.202)

0.320
(0.185)

0.340
(0.217)

HDDMW 0.431
(0.308)

0.391
(0.313)

0.460
(0.310)

0.451
(0.259)

0.412
(0.300)

0.517
(0.268)

0.460
(0.314)

KSWIN 0.233
(0.137)

0.234
(0.188)

0.326
(0.214)

0.19
(0.104)

0.352
(0.155)

0.462
(0.193)

0.347
(0.198)

MINAS 0.506
(0.286)

0.506
(0.286)

0.291
(0.206)

0.506
(0.287)

0.506
(0.286)

0.379
(0.172)

0.506
(0.286)

OCDD 0.506
(0.286)

0.506
(0.286)

0.29
(0.205)

0.506
(0.286)

0.506
(0.286)

0.379
(0.172)

0.506
(0.286)

Legend: The highest values are in bold. The standard deviation is in brackets.

methods in all drift scenarios. Figure 6.4 shows how the accuracy changes with the

intensity of concept drift for a selection of scenarios. For DeepStreamEnsemble, as the

intensity of concept drift increases, there is a small decline in accuracy; neverthe-

less, it remains superior to other methods. This trend is particularly pronounced in

CIFAR-100 data, due to a higher number of applied sub-classes. All methods exhibit



140Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

improved performance on the Fashion-MNIST data. Conversely, the Categorical-

Incremental drift pattern poses a more challenging scenario for these systems, as

can be seen by the slightly poorer performance across all methods. The Wilcoxon

Signed-Rank test is employed to assess the distinction in accuracies among meth-

ods. Analyzing the difference between the accuracy of DeepStreamEnsemble and the

next highest-performing method, RSB, across 266 tested data combinations and pat-

terns, has a p-value below 0.00001. This value, being less than the 0.05 significance

level, supports the acceptance of the alternative hypothesis that the true location

shift is not equal to 0. Consequently, DeepStreamEnsemble demonstrates a significant

superiority over RSB.

TABLE 6.5: Overall system comparison. The average accuracy after
adaptation has been applied for each drift pattern.

Categorical
Abrupt

Temporal
Abrupt

Categorical
Gradual

Temporal
Gradual

Categorical
Incremental

Categorical
Reoccurring

Temporal
Reoccurring

Fashion-MNIST

DeepStreamEnsemble (Ours) 0.970
(0.037)

0.971
(0.037)

0.950
(0.060)

0.977
(0.028)

0.963
(0.043)

0.977
(0.025)

0.983
(0.018)

RSB 0.930
(0.078)

0.94
(0.081)

0.910
(0.071)

0.931
(0.067)

0.930
(0.071)

0.927
(0.051)

0.926
(0.024)

TENT 0.761
(0.169)

0.764
(0.169)

0.769
(0.012)

0.819
(0.128)

0.547
(0.022)

0.815
(0.040)

0.865
(0.091)

CPE 0.920
(0.092)

0.946
(0.049)

0.927
(0.067)

0.943
(0.043)

0.872
(0.125)

0.944
(0.045)

0.933
(0.053)

CIFAR-10

DeepStreamEnsemble (Ours) 0.947
(0.022)

0.949
(0.022)

0.942
(0.011)

0.948
(0.016)

0.953
(0.016)

0.944
(0.015)

0.948
(0.015)

RSB 0.930
(0.030)

0.934
(0.032)

0.879
(0.059)

0.918
(0.039)

0.927
(0.037)

0.891
(0.043)

0.921
(0.026)

TENT 0.706
(0.173)

0.705
(0.173)

0.722
(0.026)

0.757
(0.131)

0.506
(0.024)

0.757
(0.045)

0.793
(0.107)

CPE 0.707
(0.057)

0.691
(0.105)

0.708
(0.080)

0.731
(0.056)

0.655
(0.034)

0.733
(0.037)

0.754
(0.036)

CIFAR-100

DeepStreamEnsemble (Ours) 0.574
(0.180)

0.577
(0.191)

0.670
(0.154)

0.631
(0.170)

0.559
(0.182)

0.681
(0.146)

0.670
(0.155)

RSB 0.508
(0.106)

0.517
(0.101)

0.533
(0.035)

0.559
(0.08)

0.516
(0.167)

0.584
(0.075)

0.592
(0.079)

TENT 0.422
(0.193)

0.429
(0.194)

0.501
(0.158)

0.479
(0.181)

0.277
(0.195)

0.497
(0.148)

0.513
(0.157)

CPE 0.306
(0.199)

0.310
(0.177)

0.330
(0.148)

0.321
(0.161)

0.311
(0.191)

0.337
(0.149)

0.335
(0.154)

Legend: Standard deviation in brackets. Highest values in bold.

The adaptation time cannot be compared directly for the combined concept drift

detection and adaptation systems as the comparison methods do not explicitly adapt.



6.4. Experimental Results 141

TABLE 6.6: Drift detection time (ms) and rank.

Time (ms) Rank

DSE-DD (Ours) 64.56 (31.5) 4
DDM 63.51 (25.2) 1
ADWIN 63.64 (24.9) 2
HDDMW 63.85 (25.6) 3
KSWIN 64.96 (26.7) 5
MINAS 86.88 (38.78) 7
OCDD 78.91 (26.2) 6

Legend: Standard deviation in brackets. Lowest values in bold for timings.

TABLE 6.7: Adaptation Time and accuracy after adaptation for ODI
methods.

Adaptation Time (s) Accuracy

DSE-Adapt (Ours) 20.546 (18.998) 0.854 (0.158)
ER 164.061 (414.814) 0.841 (0.131)
MIR-RV 145.735 (246.299) 0.784 (0.159)

Legend: Standard deviation in brackets. Lowest values in bold for timings. Highest
values in bold for accuracies.

TABLE 6.8: Time per instance and accuracy after adaptation for com-
bined concept drift detection and adaptation methods. DSE is Deep-

StreamEnsemble.

Time per instance (ms) Accuracy

DSE (Ours) 18.355 (17.842) 0.846 (0.019)
RSB 18.263 (10.605) 0.795 (0.184)
TENT 5.229 (5.208) 0.638 (0.167)
CPE 344.313 (321.603) 0.653 (0.021)

Legend: Standard deviation in brackets. Lowest values in bold for timings. Highest
values in bold for accuracies.

As DeepStreamEnsemble adapts offline, the time per instance can be compared. Table

6.8 shows the time per instance in milliseconds. DeepStreamEnsemble takes a simi-

lar amount of time to process an instance as the next best performing method, RSB

does. However, our system outperforms RSB on accuracy. TENT is the fastest but

differs in the way it adapts as it employs batch normalisation layers which means the

CNN architecture has to be updated and retrained before use. TENT demonstrates

the lowest accuracy. CPE has the longest duration and presents a low accuracy in

comparison to ours. From Table 6.4, our method outperforms other leading drift

detection methods by between 8% and 46% on F1-Score. From Table 6.5 our method



142Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

outperforms leading combined drift detection and adaptation methods by between

5% and 20% on accuracy. Overall, DeepStreamEnsemble provides the highest aver-

age accuracy with timings comparable to the next highest performing method. The

initial CNN accuracies are included in Appendix D.1



6.4. Experimental Results 143

(a) Fashion-MNIST 2 trained classes

(b) CIFAR-10 2 trained classes

(c) CIFAR-100 averaged accuracies for 4, 10, 20 and 40 trained classes

FIGURE 6.4: Intensity of concept drift against accuracy



144Chapter 6. DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift

6.5 Summary

In this chapter, we proposed a method called DeepStreamEnsemble which detects con-

cept drift and adapts a DNN to this. A DNN activation based image descriptor

method was used as the basis to produce activation classification footprints for each

convolutional block of a CNN and supplied to an ensemble of Hoeffding tree classi-

fiers. The output of this ensemble was input into our novel concept drift detection

method which monitors the accuracy volatility between the DNN predictions and

the Hoeffding tree ensemble. The DNN adaptation uses a partial network update

and an activation ensemble to assist in a memory based method to mitigate catas-

trophic forgetting.

To evaluate the proposed method, a set of experiments were conducted with

three benchmark image datasets. Super-classes were selected for the system to be

trained on and sub-classes of the super-classes were withheld in order to be applied

as concept drift via novel sub-classes in seven different patterns. These data patterns

were applied in various class combinations to the commonly used VGG16 DNN.

DeepStreamEnsemble was compared to six leading concept drift detection methods,

two leading ODI DNN adaptation methods and three combined concept drift detec-

tion and DNN adaptation methods.

The results showed that our drift detection method (DSE-DD) overall outper-

forms all other methods in terms of accuracy. For drift detection, our method excels

across all patterns for Fashion-MNIST and CIFAR-100 and across the Categorical

Gradual and Categorical Reoccurring patterns for CIFAR-10. On CIFAR-10, our

method excels above all other explicit detection methods, with the implicit nov-

elty detection methods achieving greater accuracy, but with increased duration. For

adaptation, our method (DSE-Adapt) excels for Fashion-MNIST data and for Cate-

gorical Incremental and Categorical Reoccurring patterns for CIFAR-10. However,

it exhibits reduced performance on CIFAR-100. A contributory factor to CIFAR-100

lower accuracies is that it does not have as many instances per class. This indicates

that the optimum CNN adaptation method may vary depending on the dataset.

In this chapter, by presenting DeepStreamEnsemble, we have shown that our method

is able to detect concept drift using DNN activations and adapt a DNN to this and



6.5. Summary 145

have therefore addressed the final objective from Section 1.5. The next chapter pro-

vides a brief synopsis of the work presented in this thesis, draws conclusions and

identifies important directions for future research.





147

Chapter 7

Conclusion

This thesis studies discrepancy detection and DNN adaptation in streaming scenar-

ios. Firstly addressing outlier discrepancy detection in an open-set scenario, then

addressing concept evolution and concept drift discrepancies via drift patterns with

DNN adaptation. The aims and objectives identified in this thesis are concerned

with reviewing the literature for the state-of-the-art methods and proposing novel

methods to improve upon the existing approaches and expand upon the existing

analysis.

The aims of this thesis have been fulfilled by addressing the objectives. The

first aim is: Detecting data discrepancies in DNNs via neural activations for data

streams and has been addressed via objectives 1, 2, 3 and 4 from Section 1.5. The sec-

ond aim is: Adapting DNNs in the presence of data discrepancies for data streams

and has been addressed via objectives 1, 3 and 4 from Section 1.5. The following

paragraphs give a summary of the chapters, demonstrating how they have achieved

the objectives.

Chapter 1 provides an introduction to data discrepancies, DNNs, streaming clas-

sification and the main challenges in these areas of research. The proposal of em-

ploying DNN activations as an alternative representation of the input data is also

posed, along with the definition of the problems, aims and objectives of this thesis.

Chapter 2 addresses the first objective from Section 1.5, which is to critically re-

view data discrepancy detection and DNN adaptation methods. The focus of this

review is upon CNNs as the DNN, and images as the input data. The topics of

open-set recognition and data discrepancy detection with adaptation for streaming

images is reviewed and analysed. A taxonomy of these subjects is given in Section



148 Chapter 7. Conclusion

2.5. From this analysis, it becomes clear that there is a lack of discrepancy detec-

tion and CNN adaptation methods for streaming images. Solutions that do exist

often use implicit clustering drift detection where a number of drift instances must

arrive before declaring drift. This is in contrast to explicit drift detection where i.e.

statistical tests are performed to provide a more immediate response. We saw no

reason for the limited number of explicit discrepancy detection methods other than

the lack of focus on discrepancy detection and CNN adaptation in streaming scenar-

ios. DNN adaptation is not widely studied in the streaming literature as compared

to traditional machine learning models as DNNs take longer to adapt, require more

data, suffer from class imbalance, and the adaptation of DNNs causes catastrophic

forgetting.

The OCL field offers many DNN adaptation techniques, our review focused on

CNNs and it was found that little analysis had been performed with respect to OCL

CNN adaptation solutions in the streaming literature. Furthermore, OCL solutions

had not been analysed in terms of drift patterns.

High dimensional data is often transformed into a different representation to

analyse and use it. Investigation into the use of DNN activations in Sections 2.2 and

3.4.1 revealed that some methods in open-set recognition and other related detection

fields have successfully employed activations. Section 2.6 discussed that they can

provide more information than the original input data as CNNs act as natural feature

extractors. From this, we coined our own term of ’activation classification footprints’

that represent the input images via unique neural activation patterns, presenting

information that is not discernible in the original image.

For the concept drift detection and CNN adaptation methods, it was found that

concept drift is typically applied in the form of new background, blur, noise, illumi-

nation and occlusion. These are all synthetically applied drifts and do not represent

real-world situations. It was also identified that as DNNs can take an extended pe-

riod to train for real-world systems. It would be advantageous to have a system

that could be applied to an existing DNN without completely retraining it. Thus

transforming a standard DNN into a discrepancy detecting, adapting DNN. These

identified gaps made it clear that a new approach for discrepancy detection and

DNN adaptation for streaming data was required with the following attributes: (1)



7.1. Summary of Contributions 149

Transformation of the data into a different representation; (2) explicit concept evo-

lution detection; (3) explicit concept drift detection; (4) classifying DNN adaptation

in a streaming environment; (5) transforming a pretrained standard DNN into a

discrepancy detecting adapting DNN; (6) analysis with respect to concept drift pat-

terns; and (7) analysis with respect to novel sub-class real images arising within a

super-class. Hence, this thesis focused on achieving these attributes.

Chapter 3 reviews the required background and theoretical explanation of the

algorithms employed in the novel methods proposed in this thesis. The second ob-

jective of this thesis, which is to design, develop and evaluate an Open-Set (out-

lier) discrepancy detection method is addressed in Chapter 4 by proposing the

DeepStreamOS method for outlier discrepancy detection. This method provides the

groundwork for Chapter 5 where the concept evolution discrepancy detection ap-

proach is introduced and the system is expanded to include DNN adaptation. This

results in a novel method termed AdaDeepStream and achieves the third objective of

this thesis, which is to design, develop and evaluate a concept evolution discrep-

ancy detection and DNN adaptation method. Finally, Chapter 6 tackles the more

complex problem of concept drift discrepancy detection and DNN adaptation, pro-

ducing a novel method called DeepStreamEnsemble. This addresses the fourth objec-

tive which is to design, develop and evaluate a concept drift discrepancy detection

and DNN adaptation method. The following section summarises these contribu-

tions with attention to the identified attributes.

7.1 Summary of Contributions

In Chapter 4, DeepStreamOS: Open-Set classification in DNNs, we proposed a method

for addressing outlier discrepancy detection. This involved extracting activations

from within the CNN into a different representation to the input data to provide ac-

tivation classification footprints and using these to explicitly detect outliers at the in-

stance level. Novel class outliers and novel sub-class outliers were applied. Experi-

ments have shown that fast open-set classification is achievable using DeepStreamOS.

This was proven using two different types of data, one where novel classes are intro-

duced, and one where new sub-types of images are introduced into existing classes.



150 Chapter 7. Conclusion

Our method explicitly detected outliers at the instance level. We successfully de-

tected both types of data, which indicates that it is more suited to deep neural

networks with a larger number of layers. DeepStreamOS was compared to Open-

Max and EVM where, in terms of effectiveness via the F1-Score, it outperformed

OpenMax in all scenarios and outperformed EVM on Fashion-MNIST data, overall

exceeding EVM by 2% and OpenMax by 30%. DeepStreamOS considerably outper-

formed both OpenMax and EVM in terms of speed. DeepStreamOS is 5 times faster

than OpenMax and 100 times faster than EVM with scope to up-scale to more classes

without affecting the time to process an instance. We have applied our method to

pretrained CNNs and image data in this paper, however the inference method is

not specific to CNNs or images and could be applied to other types of deep neural

networks and data.

In Chapter 5 we introduced AdaDeepStream: Streaming DNN adaptation to con-

cept evolution. We proposed a method for addressing concept evolution discrep-

ancy detection. This contribution also places CNN adaptation methods from the

OCI field in the Concept Evolution field. This involved extracting activations from

within the CNN to provide activation classification footprints. This was investi-

gated for two different activation extraction methods (JSDL and DS-CBIR), where

JSDL built upon methods used in DeepStreamOS. Explicit concept evolution detec-

tion was performed using a well established drift detector and CNN adaptation with

assistance from the activation classification footprints. Our AdaDeepStream adapta-

tion method overall outperforms other leading OCI adaptation methods on accuracy

by 27% when placed in the concept evolution scenario with limited true-labelled

data. AdaDeepStream also outperforms other combined drift detection and CNN

adaptation systems (RSB and CPE) in accuracy by 24%. From the two novel ac-

tivation reduction methods presented, DS-CBIR produces more stable results than

JSDL. AdaDeepStream performs well on all concept evolution patterns whilst other

methods show an improvement on the Temporal-Reoccurring pattern, possibly due

to a more diverse range of classes arriving in the drift detection windows. Compared

to the other methods, AdaDeepStream also performs well on data with less intra-class

cohesion and inter-class separation. However, it is less stable compared to the im-

plicit drift detection comparison methods. This could indicate that the explicit drift



7.1. Summary of Contributions 151

detection and the use of CNN predictions in the drift detection method has an ef-

fect on the consistency of our method. Therefore, a good drift detection method is

important. The speed of inference and adaptation of AdaDeepStream is comparable

with the fastest adaptation methods. AdaDeepStream is a memory-based CNN adap-

tation method as is the next best performing method, ER. In this scenario of small

datasets, it indicates that the simple memory-based methods achieve good results.

In Chapter 6 we introduced DeepStreamEnsemble: Streaming DNN adaptation to

concept drift. We proposed a method for addressing concept drift discrepancy de-

tection. This involved extracting activations from within the CNN to provide acti-

vation classification footprints for each convolutional block of the CNN and applied

to an ensemble of classifiers. This is in contrast to AdaDeepStream, where there is

one classifier in total. Explicit concept evolution detection was performed using our

novel accuracy volatility drift detection method. CNN adaptation was achieved via

a memory-based method and assistance from the activation classification footprints.

Other bespoke drift detection and adaptation mechanisms may be substituted and

can be applied to existing pretrained CNNs to extend their functionality into an au-

tonomously adapting CNN to concept drift. Thus providing a flexible system where

the detection and adaptation components can be individually substituted. A thor-

ough analysis has been performed in a concept drift pattern scenario, with image

data and CNNs. Drift is applied as evolving sub-classes as opposed to the usual

concept drift scenario of noise, blurring or occlusion. DeepStreamEnsemble overall

outperforms other leading methods of detecting concept drift by 8% on the F1-Score,

and other leading methods of CNN adaptation by 5% on accuracy. It is seven times

faster than other ODI CNN adaptation methods and overall exceeds all adaptation

methods on accuracy. For overall comparison with CNN image drift detection and

adapting systems, our method outperforms in all drift scenarios. Via our substitu-

tion of individual extraction and adaptation mechanisms, we have shown that there

could be potential performance gains in using our novel unsupervised drift detec-

tion system with other CNN adaptation methods however, the adaptation will not

be as fast.

All three contributing methods operate on pretrained CNNs. DeepStreamOS does



152 Chapter 7. Conclusion

not employ a specialised output layer and both the AdaDeepStream and DeepStrea-

mEnsemble methods perform CNN adaptation which does not require a specialised

architecture or loss function. Thus, to apply these methods requires no retraining of

the image classifying CNN.

7.2 Future Directions

The novel methods presented in this thesis pave the way for future research in the

streaming high dimensional data discrepancy detection and DNN adaptation field.

Recommendations include, but are not limited to the following: (1) Further explo-

rations into measurements between the layers of deep neural networks; (2) apply to

other types of deep neural networks; (3) apply to different real-world domains; and

(4) providing mechanisms to assist in the true labelling of samples.

1. Further explorations into measurements between the layers of deep neu-

ral networks: Two of our methods used the statistical similarity measure of

JS-Divergence between layers. Alternatively, there are other similarity meth-

ods that have been investigated specifically for comparing representations be-

tween neural network layers [100].

2. Apply to other types of deep neural networks: Our JS-Divergence based ac-

tivation reduction methods use a similarity measure between hidden layers of

the DNN. This type of measurement has the potential to be network agnos-

tic. The more successful CBIR descriptor-based activation reduction method

requires more knowledge about the network, and although specifically aimed

at CNNs, it is promising to apply a modified version of this to other types of

DNNs to determine the most activated neurons and project them back into the

preceding layer to extract the important neurons. One recent type of neural

network is the Vision Transformer (ViT) [48]. They are used for image recog-

nition amongst other tasks. The ViT represents an input image as a sequen-

tial series of image patches and can learn high-quality intermediate represen-

tations [153], making it an interesting candidate for our activation reduction

methods.



7.3. Concluding Remarks 153

3. Apply to different real-world domains: Apply to other types of different

real-world domains such as x-ray datasets with novel or evolving diseases i.e.

COVID-19 [39], histology [9] and automotive vision [62].

4. Providing mechanisms to assist in the automatic labelling of novel classes:

Our proposed methods only require true labels of the initial novel classes and

sub-classes that cause the change detection. This is much less than most sys-

tems. The true labelling of samples is time-consuming and usually requires

the use of a domain-expert. To automatically label and generate new sam-

ples to assist in mitigating class imbalance would provide a more practical

system [102], for instance, using methods that leverage generative adversarial

networks [211, 193].

7.3 Concluding Remarks

In conclusion, data discrepancy detection and adaptation in DNNs in streaming sce-

narios is an important and ongoing area of research. The main challenges in this field

are fast discrepancy detection, efficiently adapting DNNs when they suffer from

class imbalance, catastrophic forgetting and DNNs requirement for large amounts

of training data. This thesis progresses this research area and offers a unique per-

spective by proposing the use of DNN activations in streaming machine learning

models for discrepancy detection and DNN adaptation. This is a step forward to-

wards realising fully adaptive continuous deep learning systems.





155

Appendix A

Drift Detector Experiments

TABLE A.1: Experimental Results for MobileNet DNN, Extremely
Fast Decision Tree Methods

DNN Dataset Drift Data
Setup

DSCD
exfastadwin
(Ours)

DSCD
exfastddm
(Ours)

DSCD
exfasteddm
(Ours)

DSCD
exfasthddma
(Ours)

DSCD
exfasthddmw
(Ours)

DSCD
exfastkswin
(Ours)

mobilenet fashion cat-abr M1 0 0.919 0.02 0 0 0
mobilenet fashion cat-abr M3 0.039 0.095 0.675 0 0 0.02
mobilenet fashion cat-abr M2 0 1 0 0 0 0
mobilenet fashion cat-abr M4 0 1 0.02 0 0 0
mobilenet fashion tem-abr M1 0 0.485 0.02 0 0 0
mobilenet fashion tem-abr M3 0.039 1 0.773 0.81 0 0
mobilenet fashion tem-abr M2 0 0.039 0 0 0.131 0
mobilenet fashion tem-abr M4 0 1 0 0 0 0
mobilenet fashion cat-gra M1 0 0.246 0.958 0 0 0
mobilenet fashion cat-gra M3 0 1 0.02 1 0 0
mobilenet fashion cat-gra M2 0 0 0 0 0 0
mobilenet fashion cat-gra M4 0 0.974 0.02 0 0 0
mobilenet fashion tem-gra M1 0 1 0.02 0 0 0
mobilenet fashion tem-gra M3 0 0.507 0.788 0 0 0
mobilenet fashion tem-gra M2 0 0.995 0 0 0 0
mobilenet fashion tem-gra M4 0 0.625 0.02 0 0 0
mobilenet fashion cat-inc M1 0 1 0.02 0 0 0
mobilenet fashion cat-inc M3 0.02 1 1 0 0 0
mobilenet fashion cat-inc M2 0 0.039 0.02 0 0 0
mobilenet fashion cat-inc M4 0 1 0.02 0 0 0
mobilenet fashion tem-out M1 0 0.611 0.639 0 0 0
mobilenet fashion tem-out M3 0 0 0.043 0 0 0
mobilenet fashion tem-out M2 0 0.582 0 0 0 0
mobilenet fashion tem-out M4 0 0.235 0.036 0 0 0
mobilenet fashion cat-reo M1 0 0.684 0.485 0 0 0
mobilenet fashion cat-reo M3 0.02 0.883 1 0 0 0
mobilenet fashion cat-reo M2 0 0.039 0 0 0 0
mobilenet fashion cat-reo M4 0 1 0.02 0 0 0
mobilenet fashion tem-reo M1 0 1 0.02 0 0 0
mobilenet fashion tem-reo M3 0 0.99 1 0 0 0
mobilenet fashion tem-reo M2 0 0.039 0 0 0 0
mobilenet fashion tem-reo M4 0 1 0.02 0 0.276 0
mobilenet CIFAR-10 cat-abr C1 0 0 1 0.276 0.113 0.02
mobilenet CIFAR-10 cat-abr C2 0 0 1 1 0 0
mobilenet CIFAR-10 cat-abr C3 0 1 1 0 0.077 0.02
mobilenet CIFAR-10 tem-abr C1 0 0 1 0 0.165 0.02
mobilenet CIFAR-10 tem-abr C2 0.02 0 1 0.98 0.291 0.039
mobilenet CIFAR-10 tem-abr C3 0 1 0.165 0 0.214 0
mobilenet CIFAR-10 cat-gra C1 0.039 0 0.87 0.909 0.095 0.02
mobilenet CIFAR-10 cat-gra C2 0.02 1 1 1 0.276 0
mobilenet CIFAR-10 cat-gra C3 0.04 0.995 1 0.077 0.246 0.02
mobilenet CIFAR-10 tem-gra C1 0 0 0.889 0 0.198 0.02
mobilenet CIFAR-10 tem-gra C2 0 0.059 1 0 0 0.02
mobilenet CIFAR-10 tem-gra C3 0.02 1 0.81 0.857 0.183 0
mobilenet CIFAR-10 cat-inc C1 0 1 0.693 0 0.319 0.02
mobilenet CIFAR-10 cat-inc C2 0.039 1 0.425 0.462 0 0.02
mobilenet CIFAR-10 cat-inc C3 0.058 0.182 0.246 0.413 0 0
mobilenet CIFAR-10 tem-out C1 0 0.385 0.075 0.073 0.167 0.042
mobilenet CIFAR-10 tem-out C2 0 0.771 0.74 0 0.23 0
mobilenet CIFAR-10 tem-out C3 0 0.438 0.723 0 0.192 0
mobilenet CIFAR-10 cat-reo C1 0.02 1 0.667 0 0 0
mobilenet CIFAR-10 cat-reo C2 0.058 0.901 0.773 1 0.261 0.02
mobilenet CIFAR-10 cat-reo C3 0 0.936 0.658 0 0.058 0.02
mobilenet CIFAR-10 tem-reo C1 0 1 1 0 0.095 0
mobilenet CIFAR-10 tem-reo C2 0.02 1 0.895 0 0 0
mobilenet CIFAR-10 tem-reo C3 0 0 0 0 0 0



156 Appendix A. Drift Detector Experiments

TABLE A.2: Experimental Results for VGG16 DNN, Extremely Fast
Decision Tree Methods

DNN Dataset Drift Data
Setup

DSCD
exfastadwin
(Ours)

DSCD
exfastddm
(Ours)

DSCD
exfasteddm
(Ours)

DSCD
exfasthddma
(Ours)

DSCD
exfasthddmw
(Ours)

DSCD
exfastkswin
(Ours)

vgg16 fashion cat-abr M1 0 0 0 0 0 0
vgg16 fashion cat-abr M3 0 0.02 0.02 0 0 0
vgg16 fashion cat-abr M2 0.039 0.611 1 0 0.058 0.02
vgg16 fashion cat-abr M4 0 0.02 0 0 0 0
vgg16 fashion tem-abr M1 0 0 0 0 0 0
vgg16 fashion tem-abr M3 0.02 1 0.02 0 0 0
vgg16 fashion tem-abr M2 0 0.02 1 1 0 0
vgg16 fashion tem-abr M4 0 0.02 0 0 0 0
vgg16 fashion cat-gra M1 0 0 0 0 0 0
vgg16 fashion cat-gra M3 0 0.496 0.02 0 0 0
vgg16 fashion cat-gra M2 0.04 0.907 0 0.286 0 0
vgg16 fashion cat-gra M4 0 0.336 0 0 0 0
vgg16 fashion tem-gra M1 0 0 0 0 0 0
vgg16 fashion tem-gra M3 0 1 0.02 0 0 0
vgg16 fashion tem-gra M2 0 0.305 0 0 0 0
vgg16 fashion tem-gra M4 0 0.02 0 0 0 0
vgg16 fashion cat-inc M1 0 0.02 0.02 0 0 0
vgg16 fashion cat-inc M3 0 0.742 0.02 0 0 0
vgg16 fashion cat-inc M2 0 0.387 1 0.077 0 0.02
vgg16 fashion cat-inc M4 0 0.02 0 0 0 0
vgg16 fashion tem-out M1 0 0 0 0 0 0
vgg16 fashion tem-out M3 0 0.675 0.675 0 0 0
vgg16 fashion tem-out M2 0 0.71 0.569 0 0 0
vgg16 fashion tem-out M4 0 0.05 0 0 0 0
vgg16 fashion cat-reo M1 0 0 1 0 0 0
vgg16 fashion cat-reo M3 0 0.907 0 0 0 0
vgg16 fashion cat-reo M2 0.039 0.964 1 0.276 0.198 0.02
vgg16 fashion cat-reo M4 0 0.02 0 0 0 0
vgg16 fashion tem-reo M1 0 0 0 0 0 0
vgg16 fashion tem-reo M3 0 1 0.02 0 0 0
vgg16 fashion tem-reo M2 0 0.23 1 0 0 0
vgg16 fashion tem-reo M4 0 0 0 0 0 0
vgg16 CIFAR-10 cat-abr C1 0.02 1 1 0.919 0.261 0.02
vgg16 CIFAR-10 cat-abr C2 0 0 1 0 0 0
vgg16 CIFAR-10 cat-abr C3 0.039 0 0 0.387 0.148 0.039
vgg16 CIFAR-10 tem-abr C1 0.02 1 0.824 0 0.058 0.02
vgg16 CIFAR-10 tem-abr C2 0 1 1 0 0 0
vgg16 CIFAR-10 tem-abr C3 0.058 0.718 1 0 0.182 0
vgg16 CIFAR-10 cat-gra C1 0.02 0.995 1 0.835 0.291 0.02
vgg16 CIFAR-10 cat-gra C2 0 1 1 0 0.182 0.02
vgg16 CIFAR-10 cat-gra C3 0.04 0.83 1 0 0 0.02
vgg16 CIFAR-10 tem-gra C1 0 0 1 0 0.276 0.02
vgg16 CIFAR-10 tem-gra C2 0 1 0.864 0 0 0
vgg16 CIFAR-10 tem-gra C3 0 1 1 0.131 0.248 0.02
vgg16 CIFAR-10 cat-inc C1 0.039 1 1 0.374 0.095 0
vgg16 CIFAR-10 cat-inc C2 0 0.98 0.02 0 0 0.02
vgg16 CIFAR-10 cat-inc C3 0 0 0.844 0.261 0.077 0.02
vgg16 CIFAR-10 tem-out C1 0 0 0.808 0 0.167 0.039
vgg16 CIFAR-10 tem-out C2 0 0.732 0.756 0 0 0
vgg16 CIFAR-10 tem-out C3 0 0.756 0.638 0 0.281 0.039
vgg16 CIFAR-10 cat-reo C1 0 1 0.582 0.291 0.361 0.02
vgg16 CIFAR-10 cat-reo C2 0 0 0.995 0 0.148 0.02
vgg16 CIFAR-10 cat-reo C3 0.02 0 0 0 0.261 0.02
vgg16 CIFAR-10 tem-reo C1 0 1 1 0.925 0 0
vgg16 CIFAR-10 tem-reo C2 0 0 1 0.039 0 0
vgg16 CIFAR-10 tem-reo C3 0.039 1 0 0.621 0.246 0.02



Appendix A. Drift Detector Experiments 157

TABLE A.3: Experimental Results for MobileNet DNN, Hoeffding
Decision Tree Methods

DNN Dataset Drift Data
Setup

DSCD
hoeffadwin
(Ours)

DSCD
hoeffddm
(Ours)

DSCD
hoeffeddm
(Ours)

DSCD
hoeffhddma
(Ours)

DSCD
hoeffhddmw
(Ours)

DSCD
hoeffkswin
(Ours)

mobilenet fashion cat-abr M1 0 1 0.658 0.925 0 0
mobilenet fashion cat-abr M3 0 0.4 0.02 0 0 0
mobilenet fashion cat-abr M2 0 0.039 0 0 0 0
mobilenet fashion cat-abr M4 0 1 0.02 0 0 0
mobilenet fashion tem-abr M1 0 0.876 0.02 0 0 0
mobilenet fashion tem-abr M3 0 1 0.947 0.93 0.077 0
mobilenet fashion tem-abr M2 0 0.02 0 0 0 0
mobilenet fashion tem-abr M4 0 0.87 0.02 0 0 0
mobilenet fashion cat-gra M1 0.039 1 1 0.995 0 0
mobilenet fashion cat-gra M3 0 1 0.817 0 0 0
mobilenet fashion cat-gra M2 0 0 0 0 0 0
mobilenet fashion cat-gra M4 0 0.078 0.02 0 0 0
mobilenet fashion tem-gra M1 0 1 0.058 0 0 0
mobilenet fashion tem-gra M3 0 1 0.02 0 0 0
mobilenet fashion tem-gra M2 0 0.02 0.02 0 0 0
mobilenet fashion tem-gra M4 0 0.571 0 0 0 0
mobilenet fashion cat-inc M1 0.024 0.507 1 0.347 0 0
mobilenet fashion cat-inc M3 0.039 1 1 0 0 0
mobilenet fashion cat-inc M2 0 0.039 0 0 0 0
mobilenet fashion cat-inc M4 0 0.23 0 0 0 0
mobilenet fashion tem-out M1 0 0.701 0.4 0 0 0
mobilenet fashion tem-out M3 0 0.742 0.71 0 0 0
mobilenet fashion tem-out M2 0 0.278 0 0 0 0
mobilenet fashion tem-out M4 0 0.04 0 0 0 0
mobilenet fashion cat-reo M1 0 0.742 0.02 0 0 0
mobilenet fashion cat-reo M3 0 0.758 0.02 0 0 0
mobilenet fashion cat-reo M2 0 0.039 0 0 0 0
mobilenet fashion cat-reo M4 0 0.425 0 0 0 0
mobilenet fashion tem-reo M1 0 1 0.876 0 0 0
mobilenet fashion tem-reo M3 0 0.964 0.02 0 0 0
mobilenet fashion tem-reo M2 0 0.02 0 0 0 0
mobilenet fashion tem-reo M4 0 1 0 0 0 0
mobilenet CIFAR-10 cat-abr C1 0 0 1 1 0.182 0
mobilenet CIFAR-10 cat-abr C2 0 0 0 0 0 0
mobilenet CIFAR-10 cat-abr C3 0 1 0 0.667 0.131 0
mobilenet CIFAR-10 tem-abr C1 0 0 1 0 0.131 0
mobilenet CIFAR-10 tem-abr C2 0 0 0.964 0 0 0
mobilenet CIFAR-10 tem-abr C3 0 1 0.851 0 0.113 0
mobilenet CIFAR-10 cat-gra C1 0 0.862 1 0 0 0
mobilenet CIFAR-10 cat-gra C2 0 0.821 0.907 0.02 0 0
mobilenet CIFAR-10 cat-gra C3 0 0.9 1 0.095 0.182 0.02
mobilenet CIFAR-10 tem-gra C1 0 1 1 0 0.039 0.02
mobilenet CIFAR-10 tem-gra C2 0 0.15 0.93 0 0 0.02
mobilenet CIFAR-10 tem-gra C3 0 0 0.969 0 0.096 0.02
mobilenet CIFAR-10 cat-inc C1 0.02 1 0.601 0 0.246 0.02
mobilenet CIFAR-10 cat-inc C2 0 1 0 0.02 0 0
mobilenet CIFAR-10 cat-inc C3 0.039 1 1 0.058 0.182 0
mobilenet CIFAR-10 tem-out C1 0 0 0.748 0.172 0.125 0
mobilenet CIFAR-10 tem-out C2 0 0.702 0.781 0 0.08 0
mobilenet CIFAR-10 tem-out C3 0 0.769 0.703 0 0.232 0
mobilenet CIFAR-10 cat-reo C1 0 1 0.507 0 0.165 0
mobilenet CIFAR-10 cat-reo C2 0 1 0.953 0 0 0
mobilenet CIFAR-10 cat-reo C3 0 1 0.895 0 0.261 0
mobilenet CIFAR-10 tem-reo C1 0 1 0.788 0 0.214 0
mobilenet CIFAR-10 tem-reo C2 0 1 1 0 0 0
mobilenet CIFAR-10 tem-reo C3 0 0.895 1 0.058 0.077 0



158 Appendix A. Drift Detector Experiments

TABLE A.4: Experimental Results for VGG16 DNN, Hoeffding Deci-
sion Tree Methods

DNN Dataset Drift Data
Setup

DSCD
hoeffadwin
(Ours)

DSCD
hoeffddm
(Ours)

DSCD
hoeffeddm
(Ours)

DSCD
hoeffhddma
(Ours)

DSCD
hoeffhddmw
(Ours)

DSCD
hoeffkswin
(Ours)

vgg16 fashion cat-abr M1 0 0 0 0 0 0
vgg16 fashion cat-abr M3 0 0.02 0.02 0 0 0
vgg16 fashion cat-abr M2 0 0.995 0 1 0 0
vgg16 fashion cat-abr M4 0 0 0 0 0 0
vgg16 fashion tem-abr M1 0 0 0 0 0 0
vgg16 fashion tem-abr M3 0 1 0.02 0 0 0
vgg16 fashion tem-abr M2 0 0.734 0.02 0 0 0
vgg16 fashion tem-abr M4 0 1 0 0 0 0
vgg16 fashion cat-gra M1 0 0 0 0 0 0
vgg16 fashion cat-gra M3 0 0.216 0 0 0 0
vgg16 fashion cat-gra M2 0 0.02 1 0 0 0
vgg16 fashion cat-gra M4 0 0.02 0 0 0 0
vgg16 fashion tem-gra M1 0 0 0 0 0 0
vgg16 fashion tem-gra M3 0 0.113 0 0 0 0
vgg16 fashion tem-gra M2 0 1 0 0 0 0
vgg16 fashion tem-gra M4 0 0 0 0 0 0
vgg16 fashion cat-inc M1 0 0.02 0 0 0 0
vgg16 fashion cat-inc M3 0 0.742 0.02 0 0 0
vgg16 fashion cat-inc M2 0 1 0 0 0.058 0
vgg16 fashion cat-inc M4 0 0 0 0 0 0
vgg16 fashion tem-out M1 0 0 0 0 0 0
vgg16 fashion tem-out M3 0 0.538 0.594 0 0 0
vgg16 fashion tem-out M2 0 0.75 0 0 0 0
vgg16 fashion tem-out M4 0 0.039 0 0 0 0
vgg16 fashion cat-reo M1 0 0 0 0 0 0
vgg16 fashion cat-reo M3 0 1 0 0 0 0
vgg16 fashion cat-reo M2 0 0.02 0.02 0 0 0
vgg16 fashion cat-reo M4 0 0 0 0 0 0
vgg16 fashion tem-reo M1 0 0.02 0 0 0 0
vgg16 fashion tem-reo M3 0 0.561 0.02 0 0 0
vgg16 fashion tem-reo M2 0 1 0.02 0 0 0
vgg16 fashion tem-reo M4 0 0 0 0 0 0
vgg16 CIFAR-10 cat-abr C1 0 1 1 0 0.131 0
vgg16 CIFAR-10 cat-abr C2 0 1 1 0 0 0
vgg16 CIFAR-10 cat-abr C3 0 0.529 0.837 0 0.23 0
vgg16 CIFAR-10 tem-abr C1 0 0.113 1 0.974 0.425 0
vgg16 CIFAR-10 tem-abr C2 0 1 1 0 0 0
vgg16 CIFAR-10 tem-abr C3 0 0 1 0.131 0.214 0
vgg16 CIFAR-10 cat-gra C1 0 0.821 1 1 0.132 0.02
vgg16 CIFAR-10 cat-gra C2 0 1 1 0 0 0
vgg16 CIFAR-10 cat-gra C3 0.02 0 0.571 0.601 0 0.02
vgg16 CIFAR-10 tem-gra C1 0 1 1 0 0.246 0
vgg16 CIFAR-10 tem-gra C2 0 1 1 0 0 0
vgg16 CIFAR-10 tem-gra C3 0 1 1 0.059 0.2 0.02
vgg16 CIFAR-10 cat-inc C1 0 1 0.701 0.83 0.198 0.02
vgg16 CIFAR-10 cat-inc C2 0.02 1 0.851 0.953 0 0
vgg16 CIFAR-10 cat-inc C3 0.02 0.925 1 0.592 0.261 0
vgg16 CIFAR-10 tem-out C1 0 0.763 0.648 0 0.323 0
vgg16 CIFAR-10 tem-out C2 0 0.792 0.717 0 0 0
vgg16 CIFAR-10 tem-out C3 0 0.733 0.538 0 0.246 0
vgg16 CIFAR-10 cat-reo C1 0 1 0.844 0.214 0.4 0
vgg16 CIFAR-10 cat-reo C2 0 1 1 0 0 0
vgg16 CIFAR-10 cat-reo C3 0 0 1 0 0.261 0
vgg16 CIFAR-10 tem-reo C1 0 1 0 0 0.276 0
vgg16 CIFAR-10 tem-reo C2 0 1 1 0 0 0
vgg16 CIFAR-10 tem-reo C3 0 1 0.639 0 0.077 0



159

Appendix B

Additional Results for Chapter 4 -

DeepStreamOS

B.1 DNN Accuracies

Tables B.1 and B.2 show the training classification accuracy of the DNNs prior to

adaptation, where true positives are the correctly predicted class and super-class

respectively.



160 Appendix B. Additional Results for Chapter 4 - DeepStreamOS

TABLE B.1: Initial training accuracies for novel class DNNs

Trained Classes DNN Accuracy
MobileNet CIFAR-10

0-1 0.947
0-8 0.858
0-9 0.911
3-4 0.876
3-6 0.865
8-9 0.909
0-1-8-9 0.791
2-3-4-5-6-7 0.643
1-4-6-8 0.874
0-2-3-7-8-9 0.758

MobileNet Fashion-MNIST
0-2 0.956
3-4 0.936
4-6 0.870
5-7 0.969
7-9 0.968
0-1-2-3-4-6 0.817
5-7-8-9 0.958
1-3-5-8 0.981
0-2-4-6-7-9 0.857

VGG16 CIFAR-10
0-1 0.966
0-8 0.935
0-9 0.963
3-4 0.913
3-6 0.904
8-9 0.962
0-1-8-9 0.908
2-3-4-5-6-7 0.777
1-4-6-8 0.952
0-2-3-7-8-9 0.878

VGG16 Fashion-MNIST
0-2 0.973
3-4 0.961
4-6 0.909
5-7 0.983
7-9 0.975
0-1-2-3-4-6 0.865
5-7-8-9 0.977
1-3-5-8 0.989
0-2-4-6-7-9 0.886



B.1. DNN Accuracies 161

TABLE B.2: Initial training accuracies for novel sub-class DNNs

Trained Classes DNN Accuracy
MobileNet - CIFAR-10

0-2 0.936
0-1-2-3 0.956
0-1-2-3-4-8 0.962

MobileNet - Fashion-MNIST
0-5 1.000
0-1-5-7 1.000
0-1-2-5-7-9 1.000

VGG16 - CIFAR-10
0-2 0.956
0-1-2-3 0.966
0-1-2-3-4-8 0.971

VGG16 - Fashion-MNIST
0-5 1.000
0-1-5-7 1.000
0-1-2-5-7-9 1.000



162 Appendix B. Additional Results for Chapter 4 - DeepStreamOS

B.2 DNN Prediction Accuracy Investigation Results

This section investigates how DNN classifier accuracy affects DeepStreamOS. The

experiment comprises of changing the accuracy of the DNN to 33%, 50%, 70%, 90%

and 100%. Ideally, the DNN should be trained to these specific accuracies and the

neuron activations extracted from these. However, this is not possible as the DNN

starts training from initialisation at accuracies of approximately 0.8 accuracy for the

smaller number of classes. Therefore, the accuracies have been achieved by altering

the prediction of the DNN after it has been predicted and replacing predicted values

with suitable random values to achieve the desired accuracy. This means that the ac-

tivations extracted (which are used to create the MCOD clusterers) are representative

of a more accurately trained CNN than the altered predictions provide. Therefore

accuracy results are probably higher than they would be if the CNN was able to be

trained to such a low accuracy. It should be noted that during training, the MCOD

clusterers are initialised with correctly predicted training instances only. Therefore,

as the applied DNN accuracy reduces, so do the amount of training instances stored

in each MCOD cluster. Nonetheless, this experiment can give an indication to the

behaviour of the system at lower DNN accuracies.

FIGURE B.1: Variation of F1-Score with DNN prediction accuracy

Figure B.1 shows the variation of the F1-Score (where true positives are unknown

classes classified as unknown) with the applied accuracies for novel classes and

novel sub-classes. Overall, the lower the trained accuracy of the CNN, the lower



B.2. DNN Prediction Accuracy Investigation Results 163

the detection rate of unknowns in the open-set system. The unknown detection ac-

curacy reduces at a lower rate than the applied DNN accuracy. This is because less

training data was used to initialise the MCOD clusterers with the reduction rate

possibly being lessened by the activations originating from a DNN with a higher

accuracy.



164 Appendix B. Additional Results for Chapter 4 - DeepStreamOS

B.3 Results of Parameter Investigation

FIGURE B.2: Radius, R against F1-Score for class data combinations.



B.3. Results of Parameter Investigation 165

FIGURE B.3: Radius, R against F1-Score for sub-class data combina-
tions.





167

Appendix C

Additional Results for Chapter 5 -

AdaDeepStream

C.1 DNN and Streaming Classifier Accuracies

Table C.1 shows the training classification accuracy of the DNNs and the streaming

classifiers prior to adaptation, where true positives are the correctly predicted class.



168 Appendix C. Additional Results for Chapter 5 - AdaDeepStream

TABLE C.1: Training accuracies for VGG16 DNN and Hoeffding Tree
Streaming Classifier (SC)

Trained Classes DNN SC (JSDL) SC (CBIR)
CIFAR-10

0-1-2-3-4-6-7-8 0.879 0.808 0.809
2-3-4-5-6-7-8-9 0.983 0.749 0.850
0-1-2-4-5-6-8-9 0.899 0.809 0.810
0-1-2-3-6-7 0.905 0.824 0.823
2-3-4-5-6-7 0.976 0.825 0.862
0-1-4-5-8-9 0.994 0.890 0.892
5-7-8-9 0.947 0.876 0.874
0-2-6-7 0.926 0.823 0.881
1-2-3-4 0.908 0.849 0.840
0-7 0.979 0.970 0.947
1-8 0.980 0.950 0.947
2-3 0.912 0.895 0.908

Fashion-MNIST
0-1-2-3-5-6-8-9 0.940 0.923 0.902
2-3-4-5-6-7-8-9 0.995 0.944 0.962
0-1-2-3-4-6-7-8 0.918 0.916 0.873
0-1-2-3-4-6 0.958 0.891 0.907
4-5-6-7-8-9 0.985 0.967 0.965
2-3-4-6-8-9 0.926 0.914 0.911
0-1-8-9 0.995 0.959 0.970
0-1-5-6 0.948 0.945 0.930
0-1-2-7 0.987 0.962 0.965
6-9 1.000 0.998 0.992
1-8 0.999 0.996 0.996
0-5 1.000 0.996 0.996

CIFAR-100
1-3-4-5-6-7-10-11-13-17 0.816 0.683 0.682
0-1-3-5-11-12-15-17-18-19 0.733 0.635 0.634
1-5-7-8-9-14-15-16-17-18 0.805 0.643 0.644
4-7-8-9-11-14-15-17-18-19 0.798 0.692 0.690
0-2-4-5-7-9-13-14-15-18 0.795 0.708 0.690
5-6-7-10-11-12-14-17-18-19 0.815 0.660 0.664
1-2-4-6-7-9-11-16-18-19 0.792 0.689 0.696
0-1-6-7-8-9-11-12-17-18 0.774 0.668 0.672
0-2-3-5-8-9-10-11-12-19 0.777 0.689 0.687
0-9-10-11-12-13-14-16-17-18 0.769 0.654 0.651
0-2-3-4-6-8-9-13-16-19 0.806 0.627 0.634
2-5-10-11-13-15-16-17-18-19 0.790 0.634 0.634
4-5-8-12-14-15-16-17-18-19 0.751 0.639 0.640
1-2-3-4-5-6-7-8-12-13 0.748 0.576 0.612
0-1-7-8-9-10-11-14-18-19 0.778 0.660 0.657



C.2. Drift detection on pairs of novel classes 169

C.2 Drift detection on pairs of novel classes

Tables C.2 and C.3 show the F1-Score for the drift detection of AdaDeepStream as

applied to eight trained classes and varying combinations of two unknown classes.

This was performed for the Temporal-Abrupt drift pattern. The tables are ordered

via the F1-Score from highest to lowest and the mix of categories are listed in the

’Class Category’ column. From this it can be seen that the mix of categories dominate

the higher F1-Scores, with the single categories predominately in the lower portions

of the tables.



170 Appendix C. Additional Results for Chapter 5 - AdaDeepStream

TABLE C.2: Drift detection on pairs of novel classes for VGG16
CIFAR-10

Trained Classes
Unknown
Class
Numbers

F1-Score
Unknown
Class
Name 1

Unknown
Class
Name 2

Class
Category

0-1-2-3-4-6-7-8 5-9 0.977 dog truck Mix
0-2-3-4-5-7-8-9 1-6 0.971 automobile frog Mix
0-2-3-4-6-7-8-9 1-5 0.969 automobile dog Mix
0-2-3-5-6-7-8-9 1-4 0.966 automobile deer Mix
0-1-2-3-4-5-6-8 7-9 0.965 horse truck Mix
0-1-2-3-4-6-7-9 5-8 0.963 dog ship Mix
0-2-3-4-5-6-8-9 1-7 0.960 automobile horse Mix
0-1-2-4-5-6-7-9 3-8 0.954 cat ship Mix
0-1-2-3-4-5-6-9 7-8 0.951 horse ship Mix
0-1-2-3-4-5-7-8 6-9 0.950 frog truck Mix
0-1-2-3-4-5-7-9 6-8 0.941 frog ship Mix
0-1-2-4-5-6-7-8 3-9 0.933 cat truck Mix
0-2-4-5-6-7-8-9 1-3 0.932 automobile cat Mix
0-1-2-3-5-6-7-9 4-8 0.925 deer ship Mix
0-1-3-4-5-6-7-8 2-9 0.923 bird truck Mix
1-2-3-4-5-6-8-9 0-7 0.914 airplane horse Mix
1-2-3-4-6-7-8-9 0-5 0.891 airplane dog Mix
1-2-4-5-6-7-8-9 0-3 0.879 airplane cat Mix
1-3-4-5-6-7-8-9 0-2 0.869 airplane bird Mix
1-2-3-5-6-7-8-9 0-4 0.869 airplane deer Mix
0-1-3-4-5-6-7-9 2-8 0.866 bird ship Mix
2-3-4-5-6-7-8-9 0-1 0.851 airplane automobile Transport
1-2-3-4-5-6-7-8 0-9 0.826 airplane truck Transport
1-2-3-4-5-7-8-9 0-6 0.813 airplane frog Mix
0-1-2-4-5-6-8-9 3-7 0.813 cat horse Animals
0-1-3-4-5-7-8-9 2-6 0.792 bird frog Animals
0-1-2-3-4-6-8-9 5-7 0.743 dog horse Animals
0-1-3-4-5-6-8-9 2-7 0.714 bird horse Animals
1-2-3-4-5-6-7-9 0-8 0.704 airplane ship Transport
0-1-3-5-6-7-8-9 2-4 0.590 bird deer Animals
0-1-2-3-4-5-8-9 6-7 0.539 frog horse Animals
0-1-2-3-6-7-8-9 4-5 0.521 deer dog Animals
0-1-3-4-6-7-8-9 2-5 0.517 bird dog Animals
0-1-2-4-5-7-8-9 3-6 0.513 cat frog Animals
0-1-4-5-6-7-8-9 2-3 0.505 bird cat Animals
0-1-2-4-6-7-8-9 3-5 0.502 cat dog Animals
0-1-2-3-5-7-8-9 4-6 0.499 deer frog Animals
0-1-2-3-5-6-8-9 4-7 0.495 deer horse Animals
0-2-3-4-5-6-7-8 1-9 0.474 automobile truck Transport
2-3-4-5-6-7-8-9 1-2 0.438 automobile bird Mix
0-1-2-5-6-7-8-9 3-4 0.296 cat deer Animals



C.2. Drift detection on pairs of novel classes 171

TABLE C.3: Drift detection on pairs of novel classes for VGG16
Fashion-MNIST

Trained Classes
Unknown
Class
Numbers

F1-Score
Unknown
Class
Name 1

Unknown
Class
Name 2

Class
Category

0-1-3-4-6-7-8-9 2-5 1.000 Pullover Sandal Mix
0-1-2-3-5-6-8-9 4-7 1.000 Coat Sneaker Mix
0-1-2-3-5-6-7-8 4-9 1.000 Coat Ankle boot Mix
1-2-3-4-5-6-7-8 0-9 0.999 T-shirt Ankle boot Mix
0-2-3-4-5-6-7-8 1-9 0.999 Trouser Ankle boot Mix
0-1-2-4-5-6-7-8 3-9 0.999 Dress Ankle boot Mix
0-1-2-3-4-5-8-9 6-7 0.999 Shirt Sneaker Mix
0-1-2-4-5-6-8-9 3-7 0.997 Dress Sneaker Mix
0-1-2-3-6-7-8-9 4-5 0.996 Coat Sandal Mix
0-1-2-3-4-7-8-9 5-6 0.991 Sandal Shirt Mix
0-1-2-3-4-5-7-8 6-9 0.988 Shirt Ankle boot Mix
1-2-3-4-6-7-8-9 0-5 0.986 T-shirt Sandal Mix
0-1-2-3-4-5-6-7 8-9 0.985 Bag Ankle boot Footwear
0-1-2-4-6-7-8-9 3-5 0.978 Dress Sandal Mix
0-1-3-4-5-6-7-8 2-9 0.977 Pullover Ankle boot Mix
0-1-2-3-4-6-7-9 5-8 0.970 Sandal Bag Footwear
2-3-4-5-6-7-8-9 0-1 0.969 T-shirt Trouser Clothing
0-2-3-4-5-6-7-9 1-8 0.965 Trouser Bag Mix
0-2-3-4-5-7-8-9 1-6 0.962 Trouser Shirt Clothing
1-2-3-4-5-6-8-9 0-7 0.941 T-shirt Sneaker Mix
0-2-3-5-6-7-8-9 1-4 0.938 Trouser Coat Mix
0-1-3-4-5-6-8-9 2-7 0.929 Pullover Sneaker Mix
0-1-2-3-4-5-6-9 7-8 0.919 Sneaker Bag Footwear
0-2-3-4-6-7-8-9 1-5 0.907 Trouser Sandal Mix
0-1-3-4-5-6-7-9 2-8 0.883 Pullover Bag Mix
0-1-2-3-5-6-7-9 4-8 0.850 Coat Bag Mix
0-1-2-5-6-7-8-9 3-4 0.808 Dress Coat Clothing
1-2-3-4-5-7-8-9 0-6 0.768 T-shirt Shirt Clothing
0-1-2-4-5-6-7-9 3-8 0.680 Dress Bag Mix
0-1-2-3-4-6-7-8 5-9 0.637 Sandal Ankle boot Footwear
1-2-3-4-5-6-7-9 0-8 0.601 T-shirt Bag Mix
0-2-4-5-6-7-8-9 1-3 0.570 Trouser Dress Clothing
0-1-2-3-4-5-7-9 6-8 0.523 Shirt Bag Mix
0-1-2-3-4-5-6-8 7-9 0.498 Sneaker Ankle boot Footwear
0-1-3-5-6-7-8-9 2-4 0.492 Pullover Coat Clothing
1-2-3-5-6-7-8-9 0-4 0.485 T-shirt Coat Clothing
1-3-4-5-6-7-8-9 0-2 0.484 T-shirt Pullover Clothing
0-1-3-4-5-7-8-9 2-6 0.476 Pullover Shirt Clothing
0-1-2-3-5-7-8-9 4-6 0.460 Coat Shirt Clothing
0-1-2-4-5-7-8-9 3-6 0.456 Dress Shirt Clothing
1-2-4-5-6-7-8-9 0-3 0.447 T-shirt Dress Clothing
2-3-4-5-6-7-8-9 1-2 0.447 Trouser Pullover Clothing
0-1-4-5-6-7-8-9 2-3 0.270 Pullover Dress Clothing
0-1-2-3-4-6-8-9 5-7 0.224 Sandal Sneaker Footwear



172 Appendix C. Additional Results for Chapter 5 - AdaDeepStream

C.3 Novel Class Accuracy Results

FIGURE C.1: Number of novel classes against accuracy for DS-CBIR,
VGG16 CNN, CIFAR-10 for all concept evolution patterns.

FIGURE C.2: Number of novel classes against accuracy for DS-CBIR,
VGG16 CNN, Fashion-MNIST for all concept evolution patterns.



C.3. Novel Class Accuracy Results 173

FIGURE C.3: Number of novel classes against accuracy for JSDL,
VGG16 CNN, CIFAR-10 for all concept evolution patterns.

FIGURE C.4: Number of novel classes against accuracy for JSDL,
VGG16 CNN, Fashion-MNIST for all concept evolution patterns.



174 Appendix C. Additional Results for Chapter 5 - AdaDeepStream

TABLE C.4: Average accuracy after CNN adaptation for each concept
evolution pattern for JSDL activation reduction. Highest values are

in bold.

Reduction/
Dataset Method Cat.

Abr.
Tem.
Abr.

Cat.
Gra.

Tem.
Gra.

Cat.
inc.

Cat.
Reo.

Tem.
Reo.

JSDL
CIFAR-10
8 Trained
2 Novel
classes

iCARL 0.588 0.452 0.431 0.301 0.250 0.452 0.438
LwF 0.582 0.631 0.480 0.682 0.632 0.662 0.563
ER 0.832 0.568 0.343 0.331 0.669 0.936 0.535
MIR-RV 0.481 0.613 0.261 0.095 0.580 0.064 0.748
ADS (ours) 0.830 0.883 0.734 0.792 0.622 0.893 0.555

JSDL
CIFAR-100
10 Trained
2 Novel
classes

iCARL 0.578 0.491 0.460 0.324 0.303 0.612 0.508
LwF 0.708 0.732 0.642 0.180 0.522 0.512 0.591
ER 0.856 0.821 0.744 0.787 0.429 0.376 0.572
MIR-RV 0.453 0.586 0.642 0.688 0.765 0.372 0.645
ADS (ours) 0.793 0.864 0.691 0.842 0.746 0.644 0.760

JSDL
MNIST-Fashion
8 Trained
2 Novel
classes

iCARL 0.821 0.759 0.516 0.663 0.543 0.196 0.450
LwF 0.848 0.302 0.322 0.317 0.501 0.308 0.589
ER 0.892 0.503 0.425 0.308 0.462 0.299 0.615
MIR-RV 0.527 0.425 0.467 0.236 0.339 0.171 0.674
ADS (ours) 0.880 0.584 0.611 0.620 0.621 0.562 0.685



175

Appendix D

Additional Results for Chapter 6 -

DeepStreamEnsemble

D.1 DNN and Streaming Classifier Accuracy

Table D.1 shows the training classification accuracy of the DNNs prior to adaptation,

where true positives are the correctly predicted super-class.

TABLE D.1: Initial training accuracies for VGG16 DNN and Hoeffd-
ing Tree Streaming Classifiers (SC0 to SC5)

Trained Classes DNN SC0 SC1 SC2 SC3 SC4 SC5
CIFAR-10

0-2 0.957 0.636 0.837 0.885 0.946 0.979 0.98
0-1-2-3 0.966 0.618 0.848 0.886 0.952 0.987 0.981
0-1-2-3-4-8 0.967 0.618 0.903 0.93 0.979 0.987 0.996

Fashion-MNIST
0-5 1.000 0.822 0.996 0.997 1.000 0.998 0.999
0-1-5-7 1.000 0.869 0.998 1.000 1.000 0.999 0.998
0-1-2-5-7-9 1.000 0.883 0.998 0.998 1.000 1.000 1.000

CIFAR-100
7-10-11-13-14-16-17-19-20-21-25-29-30-32-33-35-
37-39-40-42-43-44-45-48-49-50-51-52-53-55-56-62-
63-64-65-67-69-70-77-81

0.712 0.089 0.459 0.59 0.775 0.766 0.642

0-1-2-3-4-5-6-8-9-12-15-22-23-24-26-27-34-36-38-
41-47-54-61-71-75-76-80-83-87-89-90-91-92-93-94-
95-96-97-98-99

0.714 0.07 0.473 0.602 0.801 0.75 0.655

18-24-28-31-38-46-57-58-59-60-61-66-68-71-72-73-
74-75-76-78-79-80-82-83-84-85-86-87-88-89-90-91-
92-93-94-95-96-97-98-99

0.76 0.088 0.471 0.615 0.827 0.838 0.683

18-24-31-38-59-60-68-71-73-76-78-82-85-88-89-91-
92-93-96-97

0.856 0.178 0.579 0.694 0.877 0.893 0.74

14-16-18-21-25-28-31-37-40-49-60-65-67-68-73-74-
77-79-84-86

0.784 0.162 0.524 0.639 0.863 0.875 0.748

13-17-19-21-29-37-42-43-44-45-48-50-62-63-64-65-
69-70-77-81

0.691 0.184 0.557 0.668 0.792 0.706 0.713

2-8-9-22-26-46-48-61-79-87 0.862 0.226 0.599 0.751 0.876 0.903 0.832
14-18-55-56-59-72-77-79-81-85 0.831 0.252 0.626 0.737 0.886 0.849 0.813
18-24-66-72-75-82-84-92-94-95 0.889 0.304 0.711 0.797 0.898 0.933 0.86
31-38-57-83 0.976 0.598 0.884 0.886 0.967 0.98 0.968
59-79-96-99 0.97 0.555 0.872 0.902 0.934 0.975 0.925
78-86-87-93 0.971 0.541 0.863 0.885 0.972 0.988 0.967



176 Appendix D. Additional Results for Chapter 6 - DeepStreamEnsemble

D.2 CIFAR-10 and CIFAR-100 Drift Detection Analysis

This section analyses the difference between the drift detection results for CIFAR-10

and CIFAR-100 from Table 6.4. CIFAR-10 and CIFAR-100 offer two different ex-

perimental cases. CIFAR-10 contains 10 classes, which can be naturally split into

two super-classes of Animal and Transport. CIFAR-100 contains 20 super-classes,

which are divided into 100 sub-classes. The class combinations are specified in Ta-

ble 6.3. CIFAR-10 and Fashion-MNIST investigate a larger amount of data per sub-

class (1000 test instances) with a small number of sub-classes applied. Conversely,

CIFAR-100 investigates a smaller amount of data per sub-class (500 test instances)

with a larger number of sub-classes applied. Figure D.1 shows how the F1-Score

varies with the total number of sub-classes for each dataset. The F1-Score definition

is such that true positives are the correct identification of unknown instances. The

CIFAR-100 data combinations begin at eight sub-classes, and the F1-Score for this

lies between the F1-Score for the CIFAR-10 dataset and the Fashion-MNIST datasets

as can be seen in Figure D.1 (b). To allow for direct comparison between the datasets,

we compare drift detection plots for a CIFAR-10 and CIFAR-100 data combination

that have the same number of known and unknown sub-classes.

(a) CIFAR-10 and Fashion-MNIST (b) CIFAR-100

FIGURE D.1: Total number of classes against F1-Score for
Fashion-MNIST, CIFAR-10 and CIFAR-100

Figure D.2 shows an example of CIFAR-10 drift detection for the known classes



D.2. CIFAR-10 and CIFAR-100 Drift Detection Analysis 177

of 0, 1, 2 and 3, with unknown classes 8 and 9 applied. Figure D.3 shows an ex-

ample of CIFAR-100 drift detection for the known classes of 78, 86, 87 and 93, with

unknown classes 22 and 44 applied. From these examples, it can be seen that the

CIFAR-10 data has more instances than the CIFAR-100 data and does not detect es-

tablished drift, but only changes. With more data available, the system has time to

settle down such that there are no longer volatility changes, whereas, with a smaller

amount of data, more of the data is perceived as changing. Thus, the CIFAR-10

F1-Score results are lower than the CIFAR-100 results.

Figure D.4 shows UMAP [125] representations of the known and unknown sub-

classes aforementioned CIFAR-10 and CIFAR-100 examples for each block of the

CNN. It can be seen that the inter-class separation and the intra-class cohesion are

similar in these examples, but with less data points.

In summary, the DeepStreamEnsemble drift detection method detects changes in

data, not the entire range of novel sub-classes. This is not an indicator of how well

the adaptation of the system will perform as not all of the unknown data is required

for successful adaptation. Less change detection windows means less true-labelling

resources are required. As shown in Table 6.5, CIFAR-10 performs well with respect

to the classification accuracy after adaptation.



178 Appendix D. Additional Results for Chapter 6 - DeepStreamEnsemble

FIGURE D.2: Drift detection example for CIFAR-10

FIGURE D.3: Drift detection example for CIFAR-100



D.2. CIFAR-10 and CIFAR-100 Drift Detection Analysis 179

CIFAR-10

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5 (f) Final

CIFAR-100

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5 (f) Final

FIGURE D.4: UMAP representations of reduced activation training
data for each block and final hidden layer of VGG16 CNN





181

Bibliography

[1] Davide Abati et al. “Conditional Channel Gated Networks for Task-Aware

Continual Learning”. In: 2020, pp. 3931–3940.

[2] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. “Fraud detec-

tion system: A survey”. In: Journal of Network and Computer Applications 68

(June 2016), pp. 90–113. ISSN: 1084-8045.

[3] Zahraa S. Abdallah et al. “Activity Recognition with Evolving Data Streams:

A Review”. In: ACM Computing Surveys 51.4 (July 2018), 71:1–71:36. ISSN:

0360-0300.

[4] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A

Survey on Explainable Artificial Intelligence (XAI)”. en. In: IEEE Access 6

(2018), pp. 52138–52160. ISSN: 2169-3536.

[5] M. Adimoolam et al. “A Novel Technique to Detect and Track Multiple Ob-

jects in Dynamic Video Surveillance Systems”. eng. In: International Journal of

Interactive Multimedia and Artificial Intelligence (June 2022). ISSN: 1989-1660.

[6] Supriya Agrahari and Anil Kumar Singh. “Concept Drift Detection in Data

Stream Mining : A literature review”. en. In: Journal of King Saud University -

Computer and Information Sciences (Dec. 2021). ISSN: 1319-1578.

[7] Rahaf Aljundi et al. “Gradient based sample selection for online continual

learning”. In: Advances in Neural Information Processing Systems. Vol. 32. Cur-

ran Associates, Inc., 2019.

[8] Rahaf Aljundi et al. “Online Continual Learning with Maximal Interfered Re-

trieval”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran

Associates, Inc., 2019.



182 Bibliography

[9] Guilherme Aresta et al. “BACH: Grand challenge on breast cancer histology

images”. In: Medical Image Analysis 56 (Aug. 2019), pp. 122–139. ISSN: 1361-

8415.

[10] David Arthur and Sergei Vassilvitskii. “k-means++: the advantages of care-

ful seeding”. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-

9, 2007. Ed. by Nikhil Bansal, Kirk Pruhs, and Clifford Stein. SIAM, 2007,

pp. 1027–1035. URL: http://dl.acm.org/citation.cfm?id=1283383.

1283494.

[11] Manuel Baena-García et al. “Early Drift Detection Method”. In: 4th ECML

PKDD international workshop on knowledge discovery (Jan. 2006).

[12] RE Bellman and SE Dreyfus. Applied dynamic programming. 2015.

[13] Abhijit Bendale and Terrance E. Boult. “Towards Open Set Deep Networks”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 1563–1572.

[14] Ayush Bhardwaj et al. “Empowering Knowledge Distillation via Open Set

Recognition for Robust 3D Point Cloud Classification”. en. In: Pattern Recog-

nition Letters 151 (Nov. 2021), pp. 172–179. ISSN: 0167-8655.

[15] Kshitij Bhardwaj et al. “Benchmarking Test-Time Unsupervised Deep Neu-

ral Network Adaptation on Edge Devices”. In: 2022 IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS). May 2022,

pp. 236–238.

[16] Albert Bifet and Ricard Gavaldà. “Adaptive Learning from Evolving Data

Streams”. en. In: Advances in Intelligent Data Analysis VIII. Ed. by Niall M.

Adams et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,

2009, pp. 249–260. ISBN: 978-3-642-03915-7.

[17] Albert Bifet and Ricard Gavaldà. “Learning from Time-Changing Data with

Adaptive Windowing”. In: Proceedings of the 2007 SIAM International Confer-

ence on Data Mining. Proceedings. Society for Industrial and Applied Mathe-

matics, Apr. 2007, pp. 443–448. ISBN: 978-0-89871-630-6.

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494


Bibliography 183

[18] Zalán Borsos, Mojmir Mutny, and Andreas Krause. “Coresets via Bilevel Op-

timization for Continual Learning and Streaming”. In: Advances in Neural In-

formation Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 14879–

14890.

[19] Leo Breiman. Classification and Regression Trees. New York: Routledge, Oct.

2017. ISBN: 978-1-315-13947-0.

[20] Lorenzo Brigato et al. “Image Classification With Small Datasets: Overview

and Benchmark”. In: IEEE Access 10 (2022). Conference Name: IEEE Access,

pp. 49233–49250. ISSN: 2169-3536.

[21] Vanessa Buhrmester, David Münch, and Michael Arens. “Analysis of Ex-

plainers of Black Box Deep Neural Networks for Computer Vision: A Sur-

vey”. en. In: Machine Learning and Knowledge Extraction 3.4 (Dec. 2021), pp. 966–

989. ISSN: 2504-4990.

[22] Xin-Qiang Cai et al. “Nearest Neighbor Ensembles: An Effective Method for

Difficult Problems in Streaming Classification with Emerging New Classes”.

In: 2019 IEEE International Conference on Data Mining (ICDM). ISSN: 2374-

8486. Nov. 2019, pp. 970–975.

[23] Fabio Carrara et al. “Adversarial examples detection in features distance spaces”.

In: 2018, pp. 1–10.

[24] Fabio Carrara et al. “Adversarial image detection in deep neural networks”.

en. In: Multimedia Tools and Applications 78.3 (Feb. 2019), pp. 2815–2835. ISSN:

1573-7721.

[25] Francisco M. Castro et al. “End-to-End Incremental Learning”. In: Proceedings

of the European Conference on Computer Vision (ECCV). 2018, pp. 233–248.

[26] Lorraine Chambers and Mohamed Medhat Gaber. “DeepStreamOS: Fast open-

Set classification for convolutional neural networks”. en. In: Pattern Recogni-

tion Letters 154 (Feb. 2022), pp. 75–82. ISSN: 0167-8655.

[27] Lorraine Chambers, Mohamed Medhat Gaber, and Zahraa S. Abdallah. “Deep-

StreamCE: A Streaming Approach to Concept Evolution Detection in Deep

Neural Networks”. In: arXiv:2004.04116 [cs, stat] (Apr. 2020). arXiv: 2004.04116.



184 Bibliography

[28] Lorraine Chambers, Mohamed Medhat Gaber, and Hossein Ghomeshi. “AdaDeep-

Stream: streaming adaptation to concept evolution in deep neural networks”.

In: Applied Intelligence 53.22 (Nov. 2023), pp. 27323–27343. ISSN: 1573-7497.

[29] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection:

A survey”. In: ACM Computing Surveys 41.3 (July 2009), 15:1–15:58. ISSN:

0360-0300.

[30] Arslan Chaudhry et al. “Efficient Lifelong Learning with A-GEM”. en. In:

7th international conference on learning representations. New Orleans, LA, USA,

May 2019.

[31] Arslan Chaudhry et al. “On Tiny Episodic Memories in Continual Learn-

ing”. In: 33rd Conference on Neural Information Processing Systems. Vancouver,

Canada: NeurIPS, June 2019.

[32] Arslan Chaudhry et al. “Riemannian Walk for Incremental Learning: Under-

standing Forgetting and Intransigence”. In: Proceedings of the European Confer-

ence on Computer Vision (ECCV). 2018, pp. 532–547.

[33] Bryant Chen et al. “Detecting Backdoor Attacks on Deep Neural Networks

by Activation Clustering”. en. In: Workshop on Artificial Intelligence Safety 2019

co-located with the Thirty-Third AAAI Conference on Artificial Intelligence. 00004.

Honolulu, Hawaii: CEUR-WS.org, 2019, p. 8.

[34] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi Yasuoka. “Runtime

Monitoring Neuron Activation Patterns”. In: 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE). ISSN: 1558-1101. Mar. 2019, pp. 300–

303.

[35] Yonggi Cho et al. “Multi-Cat Monitoring System Based on Concept Drift

Adaptive Machine Learning Architecture”. en. In: Sensors 23.21 (Jan. 2023).

Number: 21 Publisher: Multidisciplinary Digital Publishing Institute, p. 8852.

ISSN: 1424-8220.

[36] Francois Chollet. keras. original-date: 2015-03-28T00:35:42Z. June 2021. URL:

https://github.com/keras-team/keras (visited on 06/18/2021).

https://github.com/keras-team/keras


Bibliography 185

[37] Scott E. Coull and Christopher Gardner. “Activation Analysis of a Byte-Based

Deep Neural Network for Malware Classification”. In: 2019 IEEE Security and

Privacy Workshops (SPW). May 2019, pp. 21–27.

[38] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE Trans-

actions on Information Theory 13.1 (Jan. 1967). Conference Name: IEEE Trans-

actions on Information Theory, pp. 21–27. ISSN: 1557-9654.

[39] Dominic Cushnan et al. “An overview of the National COVID-19 Chest Imag-

ing Database: data quality and cohort analysis”. In: GigaScience 10.11 (Nov.

2021), giab076. ISSN: 2047-217X.

[40] Abhinandan S. Das et al. “Google news personalization: scalable online col-

laborative filtering”. In: Proceedings of the 16th international conference on World

Wide Web. WWW ’07. New York, NY, USA: Association for Computing Ma-

chinery, May 2007, pp. 271–280. ISBN: 978-1-59593-654-7.

[41] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. “Reducing Net-

work Agnostophobia”. In: Advances in Neural Information Processing Systems

31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 9157–9168.

[42] Salah Ud Din and Junming Shao. “Exploiting evolving micro-clusters for data

stream classification with emerging class detection”. en. In: Information Sci-

ences 507 (Jan. 2020), pp. 404–420. ISSN: 0020-0255.

[43] Salah Ud Din et al. “Data stream classification with novel class detection: a re-

view, comparison and challenges”. en. In: Knowledge and Information Systems

63.9 (Sept. 2021), pp. 2231–2276. ISSN: 0219-3116.

[44] Simone Disabato and Manuel Roveri. “Learning Convolutional Neural Net-

works in presence of Concept Drift”. In: 2019 International Joint Conference on

Neural Networks (IJCNN). ISSN: 2161-4407. July 2019, pp. 1–8.

[45] Gregory Ditzler et al. “Learning in Nonstationary Environments: A Survey”.

In: IEEE Computational Intelligence Magazine 10.4 (Nov. 2015). 00315, pp. 12–

25. ISSN: 1556-6048.



186 Bibliography

[46] Andrija Djurisic et al. “Extremely Simple Activation Shaping for Out–of–

Distribution Detection”. In: International Conference on Learning Representa-

tions (ICLR) 2023. ICLR, Sept. 2023.

[47] Pedro Domingos and Geoff Hulten. “Mining high-speed data streams”. en.

In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD ’00. Boston, Massachusetts, United States:

ACM Press, 2000, pp. 71–80. ISBN: 978-1-58113-233-5.

[48] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale”. In: ICLR, Oct. 2020.

[49] Sahibsingh A. Dudani. “The Distance-Weighted k-Nearest-Neighbor Rule”.

In: IEEE Transactions on Systems, Man, and Cybernetics SMC-6.4 (Apr. 1976),

pp. 325–327. ISSN: 2168-2909.

[50] Elaine Ribeiro de Faria, André Carlos Ponce de Leon Ferreira Carvalho, and

João Gama. “MINAS: multiclass learning algorithm for novelty detection in

data streams”. en. In: Data Mining and Knowledge Discovery 30.3 (May 2016),

pp. 640–680. ISSN: 1573-756X.

[51] Paul Fergus and Carl Chalmers. “Introduction to Deep Learning”. en. In: Ap-

plied Deep Learning: Tools, Techniques, and Implementation. Ed. by Paul Fergus

and Carl Chalmers. Computational Intelligence Methods and Applications.

Cham: Springer International Publishing, 2022, pp. 141–171. ISBN: 978-3-031-

04420-5. DOI: 10.1007/978-3-031-04420-5_6.

[52] Max Ferguson et al. “Automatic localization of casting defects with convo-

lutional neural networks”. In: 2017 IEEE International Conference on Big Data

(Big Data). Dec. 2017, pp. 1726–1735.

[53] D Forsyth. Computer Vision: a modern approach. EN. Archive Location: world.

Prentice hall, 2011.

[54] Isvani Frías-Blanco et al. “Online and Non-Parametric Drift Detection Meth-

ods Based on Hoeffding’s Bounds”. In: IEEE Transactions on Knowledge and

Data Engineering 27.3 (Mar. 2015). Conference Name: IEEE Transactions on

Knowledge and Data Engineering, pp. 810–823. ISSN: 1558-2191.

https://doi.org/10.1007/978-3-031-04420-5_6


Bibliography 187

[55] Björn Friedrich, Taishi Sawabe, and Andreas Hein. “Unsupervised statistical

concept drift detection for behaviour abnormality detection”. en. In: Applied

Intelligence 53.3 (Feb. 2023), pp. 2527–2537. ISSN: 1573-7497.

[56] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. “A

Survey of Classification Methods in Data Streams”. en. In: Data Streams: Mod-

els and Algorithms. Ed. by Charu C. Aggarwal. Advances in Database Systems.

Boston, MA: Springer US, 2007, pp. 39–59. ISBN: 978-0-387-47534-9.

[57] João Gama et al. “A survey on concept drift adaptation”. en. In: ACM Com-

puting Surveys 46.4 (Mar. 2014), pp. 1–37. ISSN: 03600300.

[58] João Gama et al. “Learning with Drift Detection”. en. In: Advances in Artificial

Intelligence – SBIA 2004. Ed. by Ana L. C. Bazzan and Sofiane Labidi. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 286–295.

ISBN: 978-3-540-28645-5.

[59] GamaJoão et al. “A survey on concept drift adaptation”. EN. In: ACM Com-

puting Surveys (CSUR) (Mar. 2014).

[60] Yang Gao et al. “Adaptive Image Stream Classification via Convolutional

Neural Network with Intrinsic Similarity Metrics”. en. In: Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. London: ACM, Aug. 2018.

[61] Yang Gao et al. “SACCOS: A Semi-Supervised Framework for Emerging Class

Detection and Concept Drift Adaption Over Data Streams”. In: IEEE Transac-

tions on Knowledge and Data Engineering 34.3 (Mar. 2022). Conference Name:

IEEE Transactions on Knowledge and Data Engineering, pp. 1416–1426. ISSN:

1558-2191.

[62] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for au-

tonomous driving? The KITTI vision benchmark suite”. In: 2012 IEEE Con-

ference on Computer Vision and Pattern Recognition. ISSN: 1063-6919. June 2012,

pp. 3354–3361.



188 Bibliography

[63] Chuanxing Geng, Sheng-Jun Huang, and Songcan Chen. “Recent Advances

in Open Set Recognition: A Survey”. In: IEEE Transactions on Pattern Analy-

sis and Machine Intelligence (2020). Conference Name: IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1–1. ISSN: 1939-3539.

[64] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection

and Semantic Segmentation”. In: 2014, pp. 580–587.

[65] Heitor Murilo Gomes et al. “Machine learning for streaming data: state of the

art, challenges, and opportunities”. In: ACM SIGKDD Explorations Newsletter

21.2 (Nov. 2019), pp. 6–22. ISSN: 1931-0145.

[66] Paulo M. Gonçalves et al. “A comparative study on concept drift detectors”.

en. In: Expert Systems with Applications 41.18 (Dec. 2014). 00073, pp. 8144–8156.

ISSN: 0957-4174.

[67] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. en. MIT

Press, Nov. 2016. ISBN: 978-0-262-33737-3.

[68] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and

Harnessing Adversarial Examples”. In: 3rd International Conference on Learn-

ing Representations. San Diego, CA, USA, May 2015.

[69] Ian J. Goodfellow et al. “An Empirical Investigation of Catastrophic For-

getting in Gradient-Based Neural Networks”. In: International Conference on

Learning Representations (ICLR) 2014. Banff, Canada: ICLR, Mar. 2015.

[70] A. Ardeshir Goshtasby. “Image Descriptors”. en. In: Image Registration: Princi-

ples, Tools and Methods. Ed. by A. Ardeshir Goshtasby. Advances in Computer

Vision and Pattern Recognition. London: Springer, 2012, pp. 219–246. ISBN:

978-1-4471-2458-0.

[71] Ömer Gözüaçık and Fazli Can. “Concept learning using one-class classifiers

for implicit drift detection in evolving data streams”. en. In: Artificial Intelli-

gence Review 54.5 (June 2021), pp. 3725–3747. ISSN: 1573-7462.

[72] Diana Haidar and Mohamed Medhat Gaber. “Data Stream Clustering for

Real-Time Anomaly Detection: An Application to Insider Threats”. en. In:



Bibliography 189

Clustering Methods for Big Data Analytics: Techniques, Toolboxes and Applica-

tions. Ed. by Olfa Nasraoui and Chiheb-Eddine Ben N’Cir. Unsupervised and

Semi-Supervised Learning. 00001. Cham: Springer International Publishing,

2019, pp. 115–144. ISBN: 978-3-319-97864-2.

[73] Ahsanul Haque, Latifur Khan, and Michael Baron. “SAND: Semi-Supervised

Adaptive Novel Class Detection and Classification over Data Stream”. en. In:

Thirtieth AAAI Conference on Artificial Intelligence. Feb. 2016.

[74] Ahsanul Haque et al. “Efficient handling of concept drift and concept evo-

lution over Stream Data”. In: 2016 IEEE 32nd International Conference on Data

Engineering (ICDE). May 2016, pp. 481–492.

[75] Vahid Hashemi et al. “Gaussian–Based Runtime Detection of Out–of–distribution

Inputs for Neural Networks”. en. In: Runtime Verification. Ed. by Lu Feng and

Dana Fisman. Lecture Notes in Computer Science. Cham: Springer Interna-

tional Publishing, 2021, pp. 254–264. ISBN: 978-3-030-88494-9.

[76] Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. “Memory Efficient

Experience Replay for Streaming Learning”. In: 2019 International Conference

on Robotics and Automation (ICRA). ISSN: 2577-087X. May 2019, pp. 9769–9776.

[77] Tyler L. Hayes and Christopher Kanan. “Lifelong Machine Learning With

Deep Streaming Linear Discriminant Analysis”. In: 2020, pp. 220–221.

[78] Tyler L. Hayes et al. “REMIND Your Neural Network to Prevent Catastrophic

Forgetting”. en. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al.

Vol. 12353. Series Title: Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2020, pp. 466–483. ISBN: 978-3-030-58597-6.

[79] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016,

pp. 770–778.

[80] Mohsen Heidari, Mohammad Hossein Moattar, and Hamidreza Ghaffari. “For-

ward propagation dropout in deep neural networks using Jensen–Shannon

and random forest feature importance ranking”. In: Neural Networks 165 (Aug.

2023), pp. 238–247. ISSN: 0893-6080.



190 Bibliography

[81] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified

and Out-of-Distribution Examples in Neural Networks”. In: 5th International

Conference in Learning Representations. Toulon, France, Apr. 2017.

[82] James Henrydoss et al. “Enhancing Open-Set Recognition using Clustering-

based Extreme Value Machine (C-EVM)”. In: 2020 IEEE International Confer-

ence on Big Data (Big Data). Dec. 2020, pp. 441–448.

[83] Thomas A Henzinger, Anna Lukina, and Christian Schilling. “Outside the

Box: Abstraction-Based Monitoring of Neural Networks”. en. In: European

Conference on Artificial Intelligence. Santiago de Compostela, 2020.

[84] G. E. Hinton. “Reducing the Dimensionality of Data with Neural Networks”.

en. In: Science 313.5786 (July 2006), pp. 504–507. ISSN: 0036-8075, 1095-9203.

[85] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the knowledge

in a neural network”. In: NIPS deep learning and representation learning work-

shop. 2015.

[86] T. Ryan Hoens, Robi Polikar, and Nitesh V. Chawla. “Learning from stream-

ing data with concept drift and imbalance: an overview”. en. In: Progress in

Artificial Intelligence 1.1 (Apr. 2012), pp. 89–101. ISSN: 2192-6360.

[87] F. M. Hohman et al. “Visual Analytics in Deep Learning: An Interrogative

Survey for the Next Frontiers”. In: IEEE Transactions on Visualization and Com-

puter Graphics (2018). 00041, pp. 1–1. ISSN: 1077-2626.

[88] Fred Hohman et al. “Summit: Scaling Deep Learning Interpretability by Visu-

alizing Activation and Attribution Summarizations”. In: IEEE Transactions on

Visualization and Computer Graphics 26.1 (Jan. 2020). Conference Name: IEEE

Transactions on Visualization and Computer Graphics, pp. 1096–1106. ISSN:

1941-0506.

[89] Saihui Hou et al. “Learning a Unified Classifier Incrementally via Rebalanc-

ing”. In: 2019, pp. 831–839.

[90] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications”. In: arXiv:1704.04861 [cs] (Apr. 2017).

arXiv: 1704.04861.



Bibliography 191

[91] Geoff Hulten, Laurie Spencer, and Pedro Domingos. “Mining time-changing

data streams”. en. In: Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’01. San Francisco,

California: ACM Press, 2001, pp. 97–106. ISBN: 978-1-58113-391-2.

[92] Ahmet Iscen et al. “Memory-Efficient Incremental Learning Through Feature

Adaptation”. en. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi

et al. Lecture Notes in Computer Science. Cham: Springer International Pub-

lishing, 2020, pp. 699–715. ISBN: 978-3-030-58517-4.

[93] M. Kahng et al. “ActiVis: Visual Exploration of Industry-Scale Deep Neural

Network Models”. In: IEEE Transactions on Visualization and Computer Graph-

ics 24.1 (Jan. 2018). 00000, pp. 88–97. ISSN: 1077-2626.

[94] Alex Kantchelian et al. “Approaches to adversarial drift”. In: Proceedings of

the 2013 ACM workshop on Artificial intelligence and security. AISec ’13. New

York, NY, USA: Association for Computing Machinery, Nov. 2013, pp. 99–

110. ISBN: 978-1-4503-2488-5.

[95] Imen Khamassi et al. “Discussion and review on evolving data streams and

concept drift adapting”. en. In: Evolving Systems 9.1 (Mar. 2018), pp. 1–23.

ISSN: 1868-6486.

[96] Imen Khamassi et al. “Self-Adaptive Windowing Approach for Handling

Complex Concept Drift”. en. In: Cognitive Computation 7.6 (Dec. 2015), pp. 772–

790. ISSN: 1866-9964.

[97] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-

timization”. In: 3rd International Conference on Learning Representations. San

Diego, CA, USA: ICLR, May 2015.

[98] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-

works”. In: Proceedings of the National Academy of Sciences 114.13 (Mar. 2017).

Publisher: Proceedings of the National Academy of Sciences, pp. 3521–3526.

[99] M. Kontaki et al. “Continuous monitoring of distance-based outliers over

data streams”. In: 2011 IEEE 27th International Conference on Data Engineering.

00098. Apr. 2011, pp. 135–146.



192 Bibliography

[100] Simon Kornblith et al. “Similarity of Neural Network Representations Revis-

ited”. en. In: Proceedings of the 36th International Conference on Machine Learn-

ing. ISSN: 2640-3498. PMLR, May 2019, pp. 3519–3529.

[101] Lukasz Korycki and Bartosz Krawczyk. “Class-Incremental Experience Re-

play for Continual Learning under Concept Drift”. en. In: 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

Nashville, TN, USA: IEEE, June 2021, pp. 3644–3653. ISBN: 978-1-66544-899-4.

[102] Łukasz Korycki and Bartosz Krawczyk. “Combining Active Learning and

Self-Labeling for Data Stream Mining”. en. In: Proceedings of the 10th Interna-

tional Conference on Computer Recognition Systems CORES 2017. Ed. by Marek

Kurzynski, Michal Wozniak, and Robert Burduk. Advances in Intelligent Sys-

tems and Computing. Cham: Springer International Publishing, 2018, pp. 481–

490. ISBN: 978-3-319-59162-9. DOI: 10.1007/978-3-319-59162-9_50.

[103] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep.

University of Toronto, 2009.

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classi-

fication with deep convolutional neural networks”. In: Communications of the

ACM 60.6 (May 2017), pp. 84–90. ISSN: 0001-0782.

[105] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. en. In:

Nature 521.7553 (May 2015), pp. 436–444. ISSN: 1476-4687.

[106] D Lee. “Google self-driving car hits a bus”. en-GB. In: BBC News (Feb. 2016).

[107] Kimin Lee et al. “A Simple Unified Framework for Detecting Out-of-Distribution

Samples and Adversarial Attacks”. In: Advances in Neural Information Process-

ing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 7167–

7177.

[108] Soochan Lee et al. “A neural dirichlet process mixture model for task-free

continual learning”. en. In: International Conference on Learning Representations.

2020.

https://doi.org/10.1007/978-3-319-59162-9_50


Bibliography 193

[109] Xiaoqing Li, Jiansheng Yang, and Jinwen Ma. “Recent developments of content-

based image retrieval (CBIR)”. In: Neurocomputing 452 (Sept. 2021), pp. 675–

689. ISSN: 0925-2312.

[110] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 40.12 (Dec. 2018). Confer-

ence Name: IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 2935–2947. ISSN: 1939-3539.

[111] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing The Reliability of Out-of-

distribution Image Detection in Neural Networks”. In: 5th International Con-

ference in Learning Representations. Toulon, France, Apr. 2017.

[112] Geert Litjens et al. “A survey on deep learning in medical image analysis”.

In: Medical Image Analysis 42 (Dec. 2017), pp. 60–88. ISSN: 1361-8415.

[113] M. Liu et al. “Towards Better Analysis of Deep Convolutional Neural Net-

works”. In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan.

2017). 00126, pp. 91–100. ISSN: 1077-2626.

[114] Xiaofeng Liu et al. Deep Unsupervised Domain Adaptation: A Review of Recent

Advances and Perspectives. arXiv:2208.07422 [cs, eess]. Aug. 2022.

[115] Mohammad Reza Loghmani, Markus Vincze, and Tatiana Tommasi. “Positive-

unlabeled learning for open set domain adaptation”. en. In: Pattern Recogni-

tion Letters 136 (Aug. 2020), pp. 198–204. ISSN: 0167-8655.

[116] David Lopez-Paz and Marc’ Aurelio Ranzato. “Gradient Episodic Memory

for Continual Learning”. In: Advances in Neural Information Processing Systems.

Vol. 30. Curran Associates, Inc., 2017.

[117] Viktor Losing, Barbara Hammer, and Heiko Wersing. “KNN Classifier with

Self Adjusting Memory for Heterogeneous Concept Drift”. In: 2016 IEEE 16th

International Conference on Data Mining (ICDM). ISSN: 2374-8486. Dec. 2016,

pp. 291–300.

[118] Viktor Losing, Barbara Hammer, and Heiko Wersing. “Tackling heteroge-

neous concept drift with the Self-Adjusting Memory (SAM)”. en. In: Knowl-

edge and Information Systems 54.1 (Jan. 2018), pp. 171–201. ISSN: 0219-3116.



194 Bibliography

[119] J. Lu et al. “Learning under Concept Drift: A Review”. In: IEEE Transactions

on Knowledge and Data Engineering 31.12 (Dec. 2019). Conference Name: IEEE

Transactions on Knowledge and Data Engineering, pp. 2346–2363. ISSN: 1558-

2191.

[120] Jiajun Lu, Theerasit Issaranon, and David Forsyth. “SafetyNet: Detecting and

Rejecting Adversarial Examples Robustly”. In: 2017, pp. 446–454.

[121] Zheda Mai et al. “Batch-level Experience Replay with Review for Continual

Learning”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition. Seattle, USA: IEEE, July 2020.

[122] Zheda Mai et al. “Online continual learning in image classification: An em-

pirical survey”. en. In: Neurocomputing 469 (Jan. 2022), pp. 28–51. ISSN: 0925-

2312.

[123] Mohammad Masud et al. “Classification and Novel Class Detection in Concept-

Drifting Data Streams under Time Constraints”. In: IEEE Transactions on Knowl-

edge and Data Engineering 23.6 (June 2011), pp. 859–874. ISSN: 2326-3865.

[124] John McCarthy et al. “A Proposal for the Dartmouth Summer Research Project

on Artificial Intelligence, August 31, 1955”. en. In: AI Magazine 27.4 (Dec.

2006). Number: 4, pp. 12–12. ISSN: 2371-9621.

[125] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction. Sept. 2020.

[126] McKinsey. What is IoT: The Internet of Things explained | McKinsey. Aug. 2022.

URL: https://www.mckinsey.com/featured-insights/mckinsey-explainers/

what-is-the-internet-of-things (visited on 03/23/2023).

[127] Thomas Mensink et al. “Distance-Based Image Classification: Generalizing

to New Classes at Near-Zero Cost”. In: IEEE Transactions on Pattern Analy-

sis and Machine Intelligence 35.11 (Nov. 2013). Conference Name: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pp. 2624–2637. ISSN:

1939-3539.

https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-the-internet-of-things
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-the-internet-of-things


Bibliography 195

[128] Lassi Meronen, Christabella Irwanto, and Arno Solin. “Stationary Activations

for Uncertainty Calibration in Deep Learning”. In: Advances in Neural Infor-

mation Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 2338–

2350.

[129] Golnaz Moallem et al. “An explainable deep vision system for animal classifi-

cation and detection in trail-camera images with automatic post-deployment

retraining”. In: Knowledge-Based Systems 216 (Mar. 2021), p. 106815. ISSN: 0950-

7051.

[130] Mehdi Mohammadi et al. “Deep Learning for IoT Big Data and Streaming

Analytics: A Survey”. In: IEEE Communications Surveys Tutorials 20.4 (2018),

pp. 2923–2960. ISSN: 2373-745X.

[131] Xin Mu, Kai Ming Ting, and Zhi-Hua Zhou. “Classification Under Streaming

Emerging New Classes: A Solution Using Completely-Random Trees”. In:

IEEE Transactions on Knowledge and Data Engineering 29.8 (Aug. 2017). Confer-

ence Name: IEEE Transactions on Knowledge and Data Engineering, pp. 1605–

1618. ISSN: 1558-2191.

[132] Xin Mu et al. “Streaming Classification with Emerging New Class by Class

Matrix Sketching”. en. In: Proceedings of the AAAI Conference on Artificial Intel-

ligence 31.1 (Feb. 2017). Number: 1. ISSN: 2374-3468.

[133] Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with

Python: A Guide for Data Scientists. en. "O’Reilly Media, Inc.", Sept. 2016. ISBN:

978-1-4493-6990-3.

[134] National Highway Traffic Safety Administration NHTSA. Summary Report:

Standing General Order on Crash Reporting for Level 2 Advanced Driver Assis-

tance Systems. en. May 2022. URL: https://www.nhtsa.gov/sites/nhtsa.

gov/files/2022- 06/ADAS- L2- SGO- Report- June- 2022.pdf (visited on

09/17/2023).

[135] G. S. Nijaguna et al. “Quantum Fruit Fly algorithm and ResNet50-VGG16

for medical diagnosis”. In: Applied Soft Computing 136 (Mar. 2023), p. 110055.

ISSN: 1568-4946. DOI: 10.1016/j.asoc.2023.110055.

https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://doi.org/10.1016/j.asoc.2023.110055


196 Bibliography

[136] Julia Nitsch et al. “Out-of-Distribution Detection for Automotive Perception”.

In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).

Sept. 2021, pp. 2938–2943.

[137] Chris Olah et al. “The Building Blocks of Interpretability”. en. In: Distill 3.3

(Mar. 2018). 00081, e10. ISSN: 2476-0757.

[138] Bartłomiej Olber et al. “Detection of Out-of-Distribution Samples Using Bi-

nary Neuron Activation Patterns”. en. In: 2023, pp. 3378–3387.

[139] Eng-Jon Ong, Sameed Husain, and Miroslaw Bober. “Understanding the Dis-

tributions of Aggregation Layers in Deep Neural Networks”. In: IEEE Trans-

actions on Neural Networks and Learning Systems (2022). Conference Name:

IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15. ISSN:

2162-2388.

[140] Eng-Jon Ong, Sameed Husain, and Miroslaw Bober. “Understanding the Dis-

tributions of Aggregation Layers in Deep Neural Networks”. In: IEEE Trans-

actions on Neural Networks and Learning Systems 35.4 (Apr. 2024). Conference

Name: IEEE Transactions on Neural Networks and Learning Systems, pp. 5536–

5550. ISSN: 2162-2388.

[141] Yaniv Ovadia et al. “Can you trust your model’ s uncertainty? Evaluating

predictive uncertainty under dataset shift”. In: Advances in Neural Information

Processing Systems. Vol. 32. Curran Associates, Inc., 2019.

[142] E. S. Page. “Continuous Inspection Schemes”. In: Biometrika 41.1/2 (1954).

Publisher: [Oxford University Press, Biometrika Trust], pp. 100–115. ISSN:

0006-3444.

[143] Sankar K. Pal et al. “Deep learning in multi-object detection and tracking:

state of the art”. en. In: Applied Intelligence 51.9 (Sept. 2021), pp. 6400–6429.

ISSN: 1573-7497.

[144] Shaoning Pang, S. Ozawa, and N. Kasabov. “Incremental linear discriminant

analysis for classification of data streams”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 35.5 (Oct. 2005). Conference Name:



Bibliography 197

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

pp. 905–914. ISSN: 1941-0492.

[145] Nicolas Papernot and Patrick McDaniel. “Deep k-Nearest Neighbors: Towards

Confident, Interpretable and Robust Deep Learning”. In: arXiv:1803.04765 [cs,

stat] (Mar. 2018). arXiv: 1803.04765.

[146] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems. Vol. 32.

Curran Associates, Inc., 2019.

[147] Colin Paterson, Radu Calinescu, and Chiara Picardi. “Detection and Mitiga-

tion of Rare Subclasses in Deep Neural Network Classifiers”. In: 2021 IEEE In-

ternational Conference on Artificial Intelligence Testing (AITest). Aug. 2021, pp. 9–

16.

[148] Janis Postels et al. “Sampling-Free Epistemic Uncertainty Estimation Using

Approximated Variance Propagation”. In: 2019, pp. 2931–2940.

[149] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. “GDumb: A Sim-

ple Approach that Questions Our Progress in Continual Learning”. en. In:

Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture Notes in

Computer Science. Cham: Springer International Publishing, 2020, pp. 524–

540. ISBN: 978-3-030-58536-5.

[150] Yuxian Qiu et al. “Adversarial Defense Through Network Profiling Based

Path Extraction”. In: IEEE Conference on Computer Vision and Pattern Recogni-

tion. Long Beach, CA, USA: Computer Vision Foundation / IEEE, June 2019.

[151] J. R. Quinlan. “Induction of decision trees”. en. In: Machine Learning 1.1 (Mar.

1986), pp. 81–106. ISSN: 1573-0565.

[152] Christoph Raab, Moritz Heusinger, and Frank-Michael Schleif. “Reactive Soft

Prototype Computing for Concept Drift Streams”. en. In: Neurocomputing 416

(Nov. 2020), pp. 340–351. ISSN: 0925-2312.

[153] Maithra Raghu et al. “Do Vision Transformers See Like Convolutional Neu-

ral Networks?” In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 12116–12128.



198 Bibliography

[154] Jathushan Rajasegaran et al. “iTAML: An Incremental Task-Agnostic Meta-

learning Approach”. en. In: 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, June 2020, pp. 13585–

13594. ISBN: 978-1-72817-168-5.

[155] The MIT Press Reader. Surveillance, Companionship, and Entertainment: The An-

cient History of Intelligent Machines. en. Nov. 2021. URL: https://thereader.

mitpress.mit.edu/the- ancient- history- of- intelligent- machines/

(visited on 09/20/2023).

[156] Sylvestre–Alvise Rebuffi et al. “iCaRL: Incremental Classifier and Represen-

tation Learning”. In: Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition. 2017, pp. 2001–2010.

[157] Matthew Riemer et al. “Learning to Learn without Forgetting by Maximiz-

ing Transfer and Minimizing Interference”. en. In: International Conference on

Learning Representations. 2019.

[158] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”.

In: The Annals of Mathematical Statistics 22.3 (1951). Publisher: Institute of

Mathematical Statistics, pp. 400–407. ISSN: 0003-4851.

[159] S. W. Roberts. “Control Chart Tests Based on Geometric Moving Averages”.

In: Technometrics 42.1 (Feb. 2000), pp. 97–101. ISSN: 0040-1706.

[160] Martha Roseberry, Bartosz Krawczyk, and Alberto Cano. “Multi-Label Puni-

tive kNN with Self-Adjusting Memory for Drifting Data Streams”. In: ACM

Transactions on Knowledge Discovery from Data 13.6 (Nov. 2019), 60:1–60:31.

ISSN: 1556-4681.

[161] Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. “Tree-CNN: A hier-

archical Deep Convolutional Neural Network for incremental learning”. In:

Neural Networks 121 (Jan. 2020), pp. 148–160. ISSN: 0893-6080.

[162] E. M. Rudd et al. “The Extreme Value Machine”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence 40.3 (Mar. 2018). Conference Name:

IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 762–768.

ISSN: 1939-3539.

https://thereader.mitpress.mit.edu/the-ancient-history-of-intelligent-machines/
https://thereader.mitpress.mit.edu/the-ancient-history-of-intelligent-machines/


Bibliography 199

[163] Shashidhar Rudregowda et al. “Visual Speech Recognition for Kannada Lan-

guage Using VGG16 Convolutional Neural Network”. en. In: Acoustics 5.1

(Mar. 2023). Number: 1 Publisher: Multidisciplinary Digital Publishing Insti-

tute, pp. 343–353. ISSN: 2624-599X.

[164] Sid Ryan et al. “Deep Learning Versus Conventional Learning in Data Streams

with Concept Drifts”. In: 2019 18th IEEE International Conference On Machine

Learning And Applications (ICMLA). Dec. 2019, pp. 1306–1313.

[165] Mohammadreza Salehi et al. “A Unified Survey on Anomaly, Novelty, Open-

Set, and Out-of-Distribution Detection: Solutions and Future Challenges”. In:

Transactions on Machine Learning Research 2022.2022 (Nov. 2022).

[166] W. Samek et al. “Evaluating the Visualization of What a Deep Neural Net-

work Has Learned”. In: IEEE Transactions on Neural Networks and Learning

Systems 28.11 (Nov. 2017). 00168, pp. 2660–2673. ISSN: 2162-237X.

[167] Soma Sarker, Sree Nirmillo Biswash Tushar, and Heping Chen. “High accu-

racy keyway angle identification using VGG16-based learning method”. In:

Journal of Manufacturing Processes 98 (July 2023), pp. 223–233. ISSN: 1526-6125.

[168] Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. “Probability Models for

Open Set Recognition”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 36.11 (Nov. 2014). 00199, pp. 2317–2324. ISSN: 1939-3539.

[169] Jeffrey C. Schlimmer and Richard H. Granger. “Incremental learning from

noisy data”. en. In: Machine Learning 1.3 (Sept. 1986). 00598, pp. 317–354. ISSN:

1573-0565.

[170] Neha Sharma, Vibhor Jain, and Anju Mishra. “An Analysis Of Convolutional

Neural Networks For Image Classification”. In: Procedia Computer Science. In-

ternational Conference on Computational Intelligence and Data Science 132

(Jan. 2018), pp. 377–384. ISSN: 1877-0509.

[171] Piyush K. Sharma and Adrienne Raglin. “IoT: Smart City Parking Solutions

with Metric-Chisini-Jensen-Shannon Divergence based Kernels”. In: MILCOM

2019 - 2019 IEEE Military Communications Conference (MILCOM). ISSN: 2155-

7586. Nov. 2019, pp. 324–330.



200 Bibliography

[172] Lei Shu, Hu Xu, and Bing Liu. “DOC: Deep Open Classification of Text Doc-

uments”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing. Copenhagen, Denmark: Association for Computational

Linguistics, Sept. 2017.

[173] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-

works for Large-Scale Image Recognition”. In: ICLR 2015. San Diego, Apr.

2015.

[174] SITNFlash. The History of Artificial Intelligence. en-US. Aug. 2017. URL: https:

//sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/.

[175] Philip Sperl, Jan-Philipp Schulze, and Konstantin Böttinger. “Activation Anomaly

Analysis”. en. In: Machine Learning and Knowledge Discovery in Databases. Ed.

by Frank Hutter et al. Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2021, pp. 69–84. ISBN: 978-3-030-67661-2.

[176] Paweł Staszewski et al. “A New Approach to Descriptors Generation for Im-

age Retrieval by Analyzing Activations of Deep Neural Network Layers”.

In: IEEE Transactions on Neural Networks and Learning Systems (2021), pp. 1–8.

ISSN: 2162-2388.

[177] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. “One Pixel At-

tack for Fooling Deep Neural Networks”. In: IEEE Transactions on Evolution-

ary Computation 23.5 (Oct. 2019). Conference Name: IEEE Transactions on

Evolutionary Computation, pp. 828–841. ISSN: 1941-0026.

[178] Yiyou Sun, Chuan Guo, and Yixuan Li. “ReAct: Out-of-distribution Detec-

tion With Rectified Activations”. In: Advances in Neural Information Processing

Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 144–157.

[179] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second edition:

An Introduction. en. Google-Books-ID: uWV0DwAAQBAJ. MIT Press, Nov.

2018. ISBN: 978-0-262-35270-3.

https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/


Bibliography 201

[180] Christian Szegedy et al. “Inception-v4, inception-ResNet and the impact of

residual connections on learning”. In: Proceedings of the Thirty-First AAAI Con-

ference on Artificial Intelligence. AAAI’17. San Francisco, California, USA: AAAI

Press, Feb. 2017, pp. 4278–4284.

[181] R Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022.

[182] Péter Szikora and Nikolett Madarász. “Self-driving cars — The human side”.

In: 2017 IEEE 14th International Scientific Conference on Informatics. Nov. 2017,

pp. 383–387.

[183] Abu Md Niamul Taufique, Chowdhury Sadman Jahan, and Andreas Savakis.

“Unsupervised Continual Learning for Gradually Varying Domains”. en. In:

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW). New Orleans, LA, USA: IEEE, June 2022, pp. 3739–3749.

ISBN: 978-1-66548-739-9.

[184] TensorSpace. TensorSpace Playground. 2019. URL: https://tensorspace.org/

html/playground/index.html (visited on 10/26/2023).

[185] NLR The National Law Review. Autonomous or Self-Driving Vehicle Safety Risks.

en. May 2021. URL: https://www.natlawreview.com/article/dangers-

driverless-cars (visited on 04/03/2024).

[186] Luan Tran, Liyue Fan, and Cyrus Shahabi. “Distance-based outlier detection

in data streams”. en. In: Proceedings of the VLDB Endowment 9.12 (Aug. 2016).

00032, pp. 1089–1100. ISSN: 21508097.

[187] Alexey Tsymbal. The Problem of Concept Drift: Definitions and Related Work.

Tech. rep. 00895. Trinity College Dublin, 2004.

[188] Furkan Ulger et al. “Fine-Grained Classification of Solder Joints With \alpha-

Skew Jensen–Shannon Divergence”. In: IEEE Transactions on Components, Pack-

aging and Manufacturing Technology 13.2 (Feb. 2023), pp. 257–264. ISSN: 2156-

3985.

[189] L Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In:

Journal of Machine Learning Research 9.11 (2008).

https://tensorspace.org/html/playground/index.html
https://tensorspace.org/html/playground/index.html
https://www.natlawreview.com/article/dangers-driverless-cars
https://www.natlawreview.com/article/dangers-driverless-cars


202 Bibliography

[190] Jeffrey S. Vitter. “Random sampling with a reservoir”. In: ACM Transactions

on Mathematical Software 11.1 (Mar. 1985), pp. 37–57. ISSN: 0098-3500.

[191] Apoorv Vyas et al. “Out-of-Distribution Detection Using an Ensemble of Self

Supervised Leave-out Classifiers”. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2018, pp. 550–564.

[192] Dequan Wang et al. “Tent: Fully Test-Time Adaptation by Entropy Minimiza-

tion”. en. In: International Conference on Learning Representations. Jan. 2023.

[193] Yaxing Wang et al. “Transferring GANs: generating images from limited data”.

In: 2018, pp. 218–234.

[194] Zhixiong Wang and Wei Wang. “Concept Drift Detection Based on Kolmogorov—

Smirnov Test”. en. In: Artificial Intelligence in China. Ed. by Qilian Liang et al.

Lecture Notes in Electrical Engineering. Singapore: Springer, 2020, pp. 273–

280.

[195] Zhuoyi Wang et al. “Robust High Dimensional Stream Classification with

Novel Class Detection”. In: 2019 IEEE 35th International Conference on Data

Engineering (ICDE). ISSN: 2375-026X. Apr. 2019, pp. 1418–1429.

[196] Gerhard Widmer and Miroslav Kubat. “Learning in the Presence of Concept

Drift and Hidden Contexts”. en. In: Machine Learning 23.1 (Apr. 1996), pp. 69–

101. ISSN: 1573-0565.

[197] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal component anal-

ysis”. In: Chemometrics and Intelligent Laboratory Systems. Proceedings of the

Multivariate Statistical Workshop for Geologists and Geochemists 2.1 (Aug.

1987), pp. 37–52. ISSN: 0169-7439.

[198] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion–MNIST: a Novel Im-

age Dataset for Benchmarking Machine Learning Algorithms”. In: arXiv:1708.07747

(Sept. 2017).

[199] D Yadron and D Tynan. Tesla driver dies in first fatal crash while using autopilot

mode. en. Section: Technology. June 2016. URL: http://www.theguardian.

com/technology/2016/jun/30/tesla-autopilot-death-self-driving-

car-elon-musk (visited on 06/28/2021).

http://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
http://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
http://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk


Bibliography 203

[200] Myuu Myuu Wai Yan. “Accurate detecting concept drift in evolving data

streams”. en. In: ICT Express 6.4 (Dec. 2020), pp. 332–338. ISSN: 2405-9595.

[201] Le Yang et al. “A new model based on improved VGG16 for corn weed identi-

fication”. English. In: Frontiers in Plant Science 14 (July 2023). Publisher: Fron-

tiers. ISSN: 1664-462X. DOI: 10.3389/fpls.2023.1205151.

[202] Jaehong Yoon et al. “Lifelong Learning with Dynamically Expandable Net-

works”. en. In: International Conference on Learning Representations (2018), p. 11.

[203] Ryota Yoshihashi et al. “Classification-Reconstruction Learning for Open-Set

Recognition”. In: 2019, pp. 4016–4025.

[204] Jason Yosinski et al. “How transferable are features in deep neural networks?”

In: Advances in Neural Information Processing Systems. Vol. 27. Curran Asso-

ciates, Inc., 2014.

[205] Liheng Yuan et al. “Recent Advances in Concept Drift Adaptation Methods

for Deep Learning”. en. In: Thirty-First International Joint Conference on Artifi-

cial Intelligence. Vol. 6. ISSN: 1045-0823. July 2022, pp. 5654–5661.

[206] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual Learning Through

Synaptic Intelligence”. en. In: Proceedings of the 34th International Conference on

Machine Learning. ISSN: 2640-3498. PMLR, July 2017, pp. 3987–3995.

[207] Jianjun Zhang et al. “KNNENS: A k-Nearest Neighbor Ensemble-Based Method

for Incremental Learning Under Data Stream With Emerging New Classes”.

In: IEEE Transactions on Neural Networks and Learning Systems (2022). Confer-

ence Name: IEEE Transactions on Neural Networks and Learning Systems,

pp. 1–8. ISSN: 2162-2388.

[208] Junting Zhang et al. “Class-incremental Learning via Deep Model Consoli-

dation”. en. In: 2020 IEEE Winter Conference on Applications of Computer Vision

(WACV). Snowmass Village, CO, USA: IEEE, Mar. 2020, pp. 1120–1129. ISBN:

978-1-72816-553-0.

[209] Zhuo Zhang et al. “Dataset and Baselines for IID and OOD Image Classifica-

tion Considering Data Quality and Evolving Environments”. en. In: Interna-

tional Journal of Interactive Multimedia and Artificial Intelligence 8.Special Issue

https://doi.org/10.3389/fpls.2023.1205151


204 Bibliography

on AI-driven Algorithms and Applications in the Dynamic and Evolving En-

vironments (2023). ISSN: 1989-1660.

[210] Bowen Zhao et al. “Maintaining Discrimination and Fairness in Class Incre-

mental Learning”. In: 2020, pp. 13208–13217.

[211] Miaoyun Zhao, Yulai Cong, and Lawrence Carin. “On Leveraging Pretrained

GANs for Generation with Limited Data”. en. In: Proceedings of the 37th Inter-

national Conference on Machine Learning. ISSN: 2640-3498. PMLR, Nov. 2020,

pp. 11340–11351.

[212] Yong-Nan Zhu and Yu-Feng Li. “Semi-Supervised Streaming Learning with

Emerging New Labels”. en. In: Proceedings of the AAAI Conference on Artificial

Intelligence 34.04 (Apr. 2020). Number: 04, pp. 7015–7022. ISSN: 2374-3468.

[213] Indrė Žliobaitė, Mykola Pechenizkiy, and João Gama. “An Overview of Con-

cept Drift Applications”. In: Big Data Analysis: New Algorithms for a New Soci-

ety. SBD. Vol. 16. Springer, Jan. 2016, pp. 91–114. ISBN: 978-3-319-26987-0.

[214] Alaettin Zubaroğlu and Volkan Atalay. “Data stream clustering: a review”.

en. In: Artificial Intelligence Review 54.2 (Feb. 2021), pp. 1201–1236. ISSN: 1573-

7462.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Preamble
	Background
	Machine Learning
	Deep Neural Networks
	Data Discrepancies

	Motivation
	Problem Definition
	Aims and Objectives
	Contributions
	Publications
	Thesis Outline

	Data Discrepancy Detection and DNN Adaptation: A Review
	Introduction
	Open-Set Recognition
	Data Discrepancy Detection and Adaptation for Streaming Images
	Concept Evolution
	Concept Drift

	Online Convolutional Neural Network Adaptation
	Discrepancy Detection and Adaptation Taxonomy
	Discussion
	Summary

	Background for Proposed Solutions
	Introduction
	The Curse of Dimensionality
	Convolutional Neural Networks
	DNN Activations
	Activation Usage in Discrepancy Detection
	DNN Inspection
	Activation Reduction
	Jensen Shannon Divergence
	DNN Image Retrieval Descriptors

	Streaming Machine Learning Models
	Micro-cluster-based Continuous Outlier Detection
	Hoeffding Tree
	Self Adjusting Memory k-Nearest Neighbours

	Concept Evolution and Concept Drift Definition
	Drift Detection Review
	Drift Detection Method

	Summary

	DeepStreamOS: Open-Set Classification in DNNs
	Introduction
	DeepStreamOS System Description
	Activation Reduction
	Outlier Detection

	Experimental Methodology
	Datasets
	Data Combinations
	Experimental Settings

	Experimental Results
	Summary

	AdaDeepStream: Streaming DNN Adaptation to Concept Evolution
	Introduction
	AdaDeepStream System Description
	Activation Reduction - JSDL
	Activation Reduction - DS-CBIR
	Concept Evolution Detection
	Adaptation

	Experimental Methodology
	Datasets
	Data Combinations
	Experimental Settings

	Experimental Results
	Summary

	DeepStreamEnsemble: Streaming DNN Adaptation to Concept Drift
	Introduction
	DeepStreamEnsemble System Description
	Activation Reduction
	Concept Drift Detection
	Adaptation

	Experimental Methodology
	Datasets
	Data Combinations
	Experimental Settings

	Experimental Results
	Summary

	Conclusion
	Summary of Contributions
	Future Directions
	Concluding Remarks

	Drift Detector Experiments
	Additional Results for Chapter 4 - DeepStreamOS
	DNN Accuracies
	DNN Prediction Accuracy Investigation Results
	Results of Parameter Investigation

	Additional Results for Chapter 5 - AdaDeepStream
	DNN and Streaming Classifier Accuracies
	Drift detection on pairs of novel classes
	Novel Class Accuracy Results

	Additional Results for Chapter 6 - DeepStreamEnsemble
	DNN and Streaming Classifier Accuracy
	CIFAR-10 and CIFAR-100 Drift Detection Analysis

	Bibliography

