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A B S T R A C T

Camera trap imagery has become an invaluable asset in contemporary wildlife surveillance, enabling researchers 
to observe and investigate the behaviors of wild animals. While existing methods rely solely on image data for 
classification, this may not suffice in cases of suboptimal animal angles, lighting, or image quality. This study 
introduces a novel approach that enhances wild animal classification by combining specific metadata (temper-
ature, location, time, etc) with image data. Using a dataset focused on the Norwegian climate, our models show 
an accuracy increase from 98.4% to 98.9% compared to existing methods. Notably, our approach also achieves 
high accuracy with metadata-only classification, highlighting its potential to reduce reliance on image quality. 
This work paves the way for integrated systems that advance wildlife classification technology.

1. Introduction

Over the past few centuries, human expansion and exploitation of 
natural resources have significantly stressed global wildlife. Factors such 
as human-induced climate change (Pörtner et al., 2022), deforestation 
(Lata et al., 2018), and the proliferation of roads (Richard et al., 2019) 
have led to a decline in biodiversity, marking a modern mass extinction 
event (Pievani, 2014). This pervasive impact has defined a new 
geological era, the Anthropocene, characterized by the profound influ-
ence of human activities on the planet. Monitoring wild habitats is 
imperative to understand and mitigate these impacts, providing 
invaluable data for informed ecosystem management. Camera traps 
have become a vital tool in wildlife surveillance, allowing for extensive 
data collection with minimal disruption to natural habitats. This data is 
crucial for monitoring animal populations, biodiversity, and individual 
behaviors. However, the primary challenge lies in extracting relevant 
information from the images, which requires tagging, labeling, and 
sorting. Citizen science has been instrumental in addressing this labor- 
intensive task, but the growing volume of data necessitates more effi-
cient solutions (Swanson et al., 2015).

Deep learning techniques have emerged as a powerful solution for 
wildlife image classification, leveraging large datasets to achieve high 
detection rates. While early contributions used pattern matching (Bolger 
et al., 2012) or feature extraction followed by classification via support 
vector machines (Yu et al., 2013), Chen et al. (2014) introduced the use 

of convolutional neural networks (CNNs) and an early form of object 
detection to wildlife camera trap literature. Gomez Villa et al. (2017)
introduced transfer learning to improve the performance of CNN clas-
sification. The use of deep learning methods for the automatic classifi-
cation of wildlife camera trap images has become widespread in recent 
years, with the work of Norouzzadeh et al. (2018) being another sig-
nificant contribution in the field, in which they used deep convolutional 
neural networks to detect, identify, and count wild animal species. 
Subsequently, several research groups incorporated an object detection 
component, e.g., (Norouzzadeh et al., 2021; Shepley et al., 2021; Tabak 
et al., 2020), or discussed out-of-sample performance, e.g., (Auer et al., 
2021; Curry et al., 2021; Gimenez et al., 2021; Miao et al., 2021; 
Schneider et al., 2019; Shepley et al., 2021; Tabak et al., 2020; Whytock 
et al., 2021). However, this field is not without its challenges. Wild 
animals seldom strike photogenic poses, and achieving ideal lighting 
conditions can be elusive, particularly for nocturnal species. Neverthe-
less, when the models are specifically tailored for Wild Animal Classi-
fication (WAC), deep learning emerges as a powerful tool, significantly 
easing the workload of scientists. This enables them to shift their focus 
from image labeling to more in-depth data analysis, made feasible by 
automatic WAC. While the domain of automatic WAC has been exten-
sively explored in datasets like Snapshot Serengeti, applying models 
trained on one dataset to new data from different climatic regions, such 
as Norway, results in notable declines in accuracy due to marked dif-
ferences in biodiversity and landscapes. Therefore, deep learning models 
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trained on the Snapshot dataset may not perform optimally in the 
Norwegian climate.

Additionally, camera trap images vary in lighting conditions, with 
RGB daytime and IR nighttime captures complicating model training. 
Simple grayscale conversion fails to capture the nuances of these light-
ing variations, necessitating models that can handle both grayscale and 
color images. Moreover, suboptimal image angles and varying image 
quality can further hinder classification accuracy. To address these 
limitations, our study introduces a novel approach that integrates spe-
cific metadata (temperature, location, time) with image data, enhancing 
classification performance. This method is particularly effective in sce-
narios with suboptimal lighting or image quality, reducing reliance on 
image data alone. Using a dataset from the Norwegian Institute for 
Nature Research (NINA) (Nina, n.d.), we developed region-specific 
models tailored to Norway’s unique environmental conditions. Our 
approach not only improves classification accuracy but also achieves 
high accuracy with metadata-only classification, highlighting its po-
tential to overcome image quality issues.

This paper presents the following primary contributions:

• We have curated an extensive dataset of 170,000 image and meta-
data samples from the NINA Viltkamera dataset. We also fill in the 
missing metadata when possible or provide contextual information 
to the deep learning network when data is not valid.

• Our study showcases the potential of fusing metadata along with 
images to significantly improve the performance of WAC models, 
representing a valuable advancement within the field.

• We investigate and assess diverse data fusion techniques, focusing on 
integrating image data and metadata. Our findings highlight the 
advantages of certain methods while shedding light on their 
limitations.

• We propose a method to logically aggregate various species into 
supergroups to enhance the model performance.

• We show what types of metadata exert the most influence on WAC.
• We outline effective strategies for incorporating metadata into WAC 

tasks without increasing the expected annotation work done by 
experts.

The remainder of the article is structured as follows: Section 2 re-
views current literature on wildlife classification. Section 3 details our 
methodology, covering dataset acquisition and our metadata- 
augmented models. Section 4 presents the results and discussion. 
Finally, Section 5 concludes the paper.

2. Related work

This section concisely overviews pertinent research and discusses the 
contemporary techniques employed in classifying wild animals, partic-
ularly from the last three years. The first subsection delves into 
contemporary detection techniques utilized in the realm of wild animal 
recognition, whereas the second subsection focuses on classification 
techniques. The last subsection discusses the data fusion in various fields 
and which inclusion techniques have worked better.

2.1. Detection techniques

Saxena et al. (2020) introduced animal detection using SSD and 
Faster R-CNN on a dataset of 25 animal classes with 31,774 images. 
They achieved an mAP of 80.5% at 100 fps with SSD and 82.11% at 10 
fps with Faster R-CNN. Tan et al. (2022) created the NTLNP wildlife 
dataset and evaluated several object detection models on it, including 
YOLOv5m, Cascade R-CNN, and FCOS. YOLOv5m achieved the highest 
accuracy at 98.90% with the standard mAP (mean average precision) 
threshold of 0.5. Simões et al. (2023) employed a three-step process: 
video-to-image conversion, annotation using MegaDetector, and 
enhanced detection and classification with Inception-ResNetv2-based 

Faster R-CNN. They achieved 73.92% mAP for classification and 
96.88% mAP for detection at an IoU of 0.5. Norouzzadeh et al. (2021)
employed an active learning system to reduce the manual effort neces-
sary for training a computer vision model. Additionally, they incorpo-
rated object detection models and transfer learning to mitigate the risk 
of overfitting to specific camera locations; their target datasets were 
Snapshot Serengeti and NACTI (Lilawp., 2023). This method resulted in 
an accuracy of 91.71%, a precision of 84.47%, and a recall of 84.24%. 
Schindler and Steinhage (2021) presented a two-stage fusion network 
for animal classification, action recognition, and segmentation. They 
used Mask R-CNN and incorporated temporal data from 528 nighttime 
video clips involving deer, boars, foxes, and hares, achieving 63.8% 
average precision (AP) for animal detection and identification and 
94.10% accuracy for action detection. Buehler et al. (2019) proposed a 
method for automatic wild giraffe cropping based on Histogram of 
Oriented Gradients (HOG) features. They subsequently trained a Sup-
port Vector Machine (SVM) classifier using positive and negative HOG 
descriptors, along with hard-negatives mined through an Active 
Learning approach. The trained SVM was then utilized to detect occur-
rences of the object in new images. This process involved sliding a 
rectangular window over the image and evaluating the trained SVM at 
each window position to identify all objects. They reported a mean 
failure rate of 0.109 for 3518 raw photos and a mean failure rate of 
0.006 for high-quality photos. Gomez Villa et al. (2017) employed a 
transfer learning approach in their work. They utilized the Snapshot 
Serengeti dataset, selecting the most common 26 out of 48 species, to 
perform automatic classification of animal species in camera-trap im-
ages. Their fine-tuned ResNet-101 model achieved the best performance 
among all eight architectures employed. Qi Song et al. (2024) con-
structed a dataset comprising 15 bird species using Camera Traps. They 
employed deep learning techniques to identify birds amidst complex 
backgrounds, with Cascade RCNN models outperforming other object 
detection models. Additionally, their study found that the choice of 
backbones significantly influenced bird recognition accuracy. Recently, 
Bothmann et al. (2023) provided a comprehensive tuning procedure for 
optimizing the hyperparameters of a multi-step pipeline, comprising 
object detection and image classification. Additionally, they introduced 
an active learning component to facilitate efficient training of a high- 
performing model on new data, including potential scenarios 
involving new monitoring locations or previously unseen animal spe-
cies. Notably, they achieved the highest accuracy of 98.7% with their 
approach on a dataset featuring five species.

2.2. Classification techniques

Dhillon and Verma (2022) introduced a feature extraction and fusion 
method using DenseNet201 and ResNet101. They reduced feature 
dimensionality with Neighborhood Component Analysis (NCA), fol-
lowed by concatenation and SVM for classification. Their approach 
achieved 98.07% accuracy on a camera trap wild animal dataset. Battu 
(2022) employed two networks, one with clean samples and one 
without, using Snapshot Serengeti and Panama-Netherlands datasets. 
They enhanced training by grouping data via k-means clustering and 
achieved 73.09% accuracy at a 30% noise level. They observed a decline 
in the accuracy beyond that noise level. Islam et al. (2023) used DL 
models for categorizing snakes, lizards, and toads from camera trap 
images. Their self-trained CNN achieved 72% accuracy, while VGG16 
and ResNet50 reached 87% and 86% accuracy, respectively, in multi-
class classification. Sreedevi and Edison (2022) designed an algorithm 
for wild animal detection using a depth-wise separable convolution 
layer. Their model, which used zero padding to preserve edge charac-
teristics, was tested on the IWildCam dataset, achieving an IoU of 87.8% 
for detection accuracy and 99.6% accuracy in wild animal classification.

Observing recent literature reveals a prevailing trend where the 
majority of studies exclusively utilize image data for wild animal clas-
sification. However, our study takes a novel approach by incorporating 
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metadata in conjunction with image data. We aim to demonstrate the 
enhanced potential achieved through the fusion of metadata and image 
data, thereby advancing the current state of the art.

2.3. Data fusion for deep learning

The exploration of data fusion and deep learning has been under-
taken by numerous researchers across various fields. The overarching 
objective of data fusion is to provide additional context to enhance the 
decision-making capabilities of models. Arevalo et al. (2017) propose a 
specialized multimodal unit for handling data fusion, termed the Gated 
Multimodal Unit (GMU). In their approach, they address scenarios 
involving two types of multimodal data, wherein the contribution of 
each data type is determined by either σ or 1 − σ, with σ being a 
hyperparameter learned during model training. Employing their GMU, 
they combine textual descriptors with images to predict the genre of 
movies.

Data fusion has also been applied to skin lesion classification. 
Pacheco and Krohling (2021) and Li et al. (2020) both introduce ap-
proaches for integrating patient data with image data to enhance pre-
diction accuracy. In general, the findings from both studies indicate that 
early fusion methods outperform late fusion strategies. These papers 
suggest that incorporating metadata enhances the feature extraction 
process, thereby improving classification performance.

Finally, Bi et al. (2022) propose the use of user-generated hintmaps 
along with data fusion to enhance skin lesion segmentation. Following 
an initial feature extraction stage, positive and negative hintmaps are 
integrated with the image using multiple Hyper Integration Modules to 
refine segmentation results. Although the direct application of their 
model may not be applicable to the image and metadata scenario studied 
in this paper, their contributions offer valuable insights for designing 
architectures aimed at predicting animals in camera traps.

3. Materials and methods

This section outlines our methodology, beginning with the steps 
involved in acquiring the image dataset and metadata. Subsequently, we 
delve into the baseline models, ablation study, and our metadata- 
augmented models. The section concludes by providing details on 
training and evaluation processes.

Fig. 1. Process for acquiring the NINA dataset

Fig. 2. Data distribution
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3.1. NINA viltkamera dataset acquisition

We acquired a comprehensive dataset of 170,000 sample images 
along with metadata from the NINA website6. This dataset encompasses 
images of various animal species within the Norwegian climate, pri-
marily concentrated in the central region of Norway. The dataset 
acquisition process is shown in Fig. 1.

However, obtaining the NINA Viltkamera dataset was a complex 
challenge. Initially, we aimed to obtain a downloadable data blob from 
NINA. However, creating this proved challenging for them, leading to 
the agreement that a web scraping approach would be more feasible. 
The NINA website features an interactive map with pins representing 
individual camera traps, and clicking on these pins allows access to the 
images captured by each trap. To extract the image URLs, we had to 
identify the location of these URLs within the website structure. We 
found that they were stored within an object referred to as “vm” on the 
website. Further analysis revealed that this object contained a data 
member named “vm.media”, which in turn housed a JSON object con-
taining valuable metadata, including filenames and foreign keys refer-
encing species IDs (NOR: “FK_ArtID”). To establish the link between 
“FK_ArtID” and the species name, we utilized the “vm.arter()” function. 
This function returned a list of JSON objects, each containing an “ArtID” 
and its corresponding species name. Similarly, to pinpoint the approxi-
mate camera location (Location ID, latitude, and longitude), we 
employed the “vm.lokaliteter()” function. We iterated through each pin 
on the map to access all samples and their respective image URLs. Once 
we acquired the information, including image filenames, we down-
loaded the images directly from the provided URLs. To minimize the 
load on NINA’s servers, we conducted image processing tasks, which 
involved cropping out information bands at the top and bottom of each 
image. Subsequently, we resized the images to dimensions of 512× 512.

The NINA Viltkamera dataset encompassed a total of 100 distinct 
classes for categorizing images. Nevertheless, it is noteworthy that not 
all of these 100 classes contained any samples. Only 65 classes within 
the downloaded dataset had one or more samples associated with them. 
Developing an effective classifier for all 65 classes would present a 
considerable challenge, particularly given the limited number of sam-
ples available for some of these classes. Consequently, we opted to 
aggregate these classes into broader super-classes. A visual representa-
tion of a relatively mild aggregation can be observed in Fig. 2a. The most 
significant combination here is combining all birds into one super-class 
“Bird”. This 25-class dataset is still quite imbalanced, and while the 

larger classes like “Roe Deer” will fare well, we worry some of the 
smaller classes will be ignored. Therefore, we created a more aggressive 
grouping of the classes, which can be seen in Fig. 2b. To achieve this, we 
initially divide the dataset into a binary: “Deer” vs. “Not Deer”. Subse-
quently, the “Deer” class is further subdivided into three subclasses: 
“Roe Deer”, “Deer”, and “Capreolinae”. Hence, we utilized a final 
dataset of 13 classes in our main experiments involving metadata- 
augmented neural networks and baseline methods using image and 
metadata together for classification.

Next, we want to investigate whether its possible to separate out the 
classes that are most easily distinguishable by the metadata. Our dataset 
comprises 538 data points, indicating a potential mapping in a 538- 
dimensional space to discern underlying groupings. Given the chal-
lenge of visualizing information beyond three dimensions (or four with 
temporal data), we turn to dimensionality reduction techniques. Our 
study employs a novel approach to dimensionality reduction introduced 
by McInnes et al. (2020). Uniform Manifold Approximation and Pro-
jection or UMAP leverages topology, higher-dimensional manifolds, and 
graph theory to project high-dimensional data into lower dimensions 
while minimizing cross-entropy between the original and re-projected 
data. McInnes et al. (2020) demonstrates the qualitative and quantita-
tive superiority of UMAP over several other dimensionality reduction 
algorithms like t-SNE, LargeVis, Laplacian Eigenmaps, and PCA. The 
underlying math of the method relies on a good understanding of to-
pology. However, the actual algorithm can be summarized as given by 
Afridi et al. (2022); Tøn et al. (2023). They break down the process into 
two major steps and a couple minor steps in each major step as so:

1 Learn manifold structure
1.1 Finding nearest neighbors
1.2 Constructing neighbors graph

1.2.1 Varying distance
1.2.2 Local connectivity
1.2.3 Fuzzy area
1.2.4 Merging of edges

2 Finding low-dimensional representation
2.1 Minimum distance
2.2 Minimizing the cost function

By employing UMAP, we can explore potential patterns within ani-
mal clusters. If we identify local clusters in the reduced-dimensional 
space, it suggests that similar patterns likely exist in the original 538- 
dimensional space, which is otherwise challenging to analyze. Fig. 3a 
shows a clear separation of the Mustelidae class. This could be because 
Mustelidae encompasses a distinct group of carnivorous mammals, 
including species like weasels, otters, and badgers. These species may 

Fig. 3. UMAP projections demonstrating a separation between classes

6 https://viltkamera.nina.no/
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exhibit unique activity patterns or habitat preferences in response to 
certain environmental conditions (e.g., temperature, time of day). 
Following the isolation of the Mustelidae class, we proceeded to reapply 
the algorithm to the nine remaining classes, as illustrated in Fig. 3b. This 
process involves progressively eliminating the most distinct class and 
then rerunning the UMAP projection on the remaining data. As a result, 
we successfully separated the data into distinct categories, namely, 

“Fox”, “Feline”, “Farm Animal”, and “Boar”, as depicted in Fig. 4. 
However, the remaining classes exhibited a lack of clear separation 
based on metadata, as evident in Fig. 5.

Finally, we can gain valuable insights by examining samples from 
various classes, shedding light on the obstacles the neural network must 
surmount to classify them accurately. Fig. 6a illustrates a deer partially 
concealed by its intricate coat, while Fig. 6b highlights the 

Fig. 4. UMAP projections demonstrating a separation between classes

Fig. 5. Subsequent iterations of UMAP no longer cleanly separates the classes.
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complications arising from flash usage in low-light conditions. Addi-
tionally, we confront the challenge of handling partial images, as 
evident in Fig. 6c and Fig. 6d. While these images indeed pose chal-
lenges, they are not the most demanding in our dataset. Some images 
present only faint traces of animal features, shown in Fig. 7a, or are so 
severely blurred that discerning any details becomes a formidable task, 
as seen in Fig. 7b.

3.2. Metadata

Accessing metadata presented its own set of challenges. While some 
metadata was readily available in the base downloadable file from the 
website or indirectly accessible through foreign key references, we 
encountered missing temperature data in the majority of the samples. In 
this section, we detail our approach to addressing this issue, including 
tackling the circular nature of date-time and explaining our rationale for 
incorporating location information. Additionally, we delve into the 
handling of implicit metadata.

3.2.1. Temperature
Temperature is a critical variable in species distribution modeling. 

Integrating temperature information with camera trap data allows re-
searchers to create more accurate models predicting where specific 
species are likely to be found based on environmental conditions. To 
estimate missing temperatures, we employed the Norwegian Meteoro-

logical Institute’s Frost API7. Using the image’s capture time, latitude, 
and longitude, we retrieved data from the nearest weather station within 
±24 hours of the image. It is worth noting that some images lacked 
corresponding weather station readings within this time frame, and 
temperature fluctuations during the day were not considered. For any 
remaining missing values post-Frost API usage, we implemented a 2D 
vector approach. The first value indicated the validity of the tempera-
ture reading: 1 for valid and 0 for invalid. This method helped the 
network discern when to trust or ignore the temperature value.

3.2.2. Datetime
Date and time values were encoded as a compact 67-dimensional 

one-hot vector. This approach was selected to accommodate the circu-
lar nature of time representation in neural networks. By allocating 12 
dimensions for the month, 31 for the day, and 24 for the hour, we 
maintained the original date information without introducing disconti-
nuities at year ends. While sine curves were initially considered due to 
their circular nature, concerns arose regarding equivalent values 
occurring during seasonal transitions (e.g., spring and fall) and specific 
times of day (e.g., dawn and dusk).

3.2.3. Location
We included latitude and longitude with the suspicion that animals 

might occupy distinct regions, especially when considering time. This 
data, accessible through the web scraper, has limited precision — it is 

Fig. 6. Image variety and challenges

Fig. 7. Challenging images

7 https://frost.met.no/index.html
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accurate only within approximately a kilometer of the pin’s location. 
However, we acknowledge that this level of precision may not fully 
capture the extensive movements of animals, which often roam across 
areas larger than 1 kilometer. It is important to note that our location 
information is approximate, and the data’s granularity may not fully 
represent the animals’ broader range of activity. The location informa-
tion was just the latitude/longitude pair for each camera trap. The po-
sitional data were included in the metadata vector and concatenated 
with other features. To standardize the values, min-max normalization 
was applied, considering that most geographical coordinates in Norway 
fall within the range of approximately 58 to 71 degrees latitude and 4 to 
30 degrees longitude.

3.2.4. Implicit metadata
We supplemented the metadata with what we termed scene attributes, 

which were obtained using existing deep learning models detailed in 
(Zhou et al., 2017), which describe the visual content of images, iden-
tifying elements such as “leaves”, “clouds”, “trees”, “mountain”, and so 
forth. These models extracted 102 scene attributes from each image, 
which were subsequently stored alongside other image metadata. In 
addition to scene attributes, the pre-trained models from the Places365 
dataset (Zhou et al., 2017) offered scene recognition capabilities, which 
were the dataset’s primary focus. While scene attributes proved more 
beneficial in enhancing classification results, scene recognition still 
contributed to accuracy improvements in our ablation studies. Conse-
quently, many of our tested models incorporated both scene attributes 
and scene descriptors to provide additional context for species classifi-
cation. We consider implicit scene attributes as metadata derived from 
images that offer valuable insights into environmental conditions and 
habitat characteristics, enriching our understanding of wildlife obser-
vations. Incorporating scene attributes enhances the depth and 
comprehensiveness of our analysis, facilitating a holistic interpretation 
of wildlife observations and habitat dynamics as evident by the perfor-
mance gains achieved in this study. Certain animals exhibit preferences 
for specific geographical features. For example, goats may prefer 
mountainous regions over deer. By incorporating a parameter indicating 
a high likelihood of the current image representing a “mountain” scene, 
the network is encouraged to predict goats, especially in ambiguous and 
hard-to-tell cases. Similarly, attributes are associated more strongly with 
certain species, reflecting specific visual characteristics. Our aim is for 
the CNN to focus on the visual traits of the target species from image 
data while learning about the habitat or scenery surrounding the animal 
from the scene attributes.

3.3. Ablation study

The intent of ablation study was to see how well metadata alone can 
differentiate between animal classes; therefore, we used a fairly simple, 
fully connected model, with the input layer matching the number of 
metadata features in the current ablation test. This layer’s size varied 
based on the available features. The two hidden layers consisted of 128 
and 64 nodes, respectively, followed by a final classification layer with 
output nodes corresponding to the number of classes in the current run. 
In this context, the models are solely provided with metadata (with no 
images). Ideally, we would aim to investigate which specific metadata 
factors have the most significant impact on prediction accuracy and 
which groupings of animals benefit the most from particular metadata 
attributes. These additional experiments enable us to determine whether 
species can be classified using metadata features alone. If successful, this 
supports the notion that metadata is valuable and will likely enhance the 
network’s performance when combined with images. However, this 
exploration rapidly becomes impractical due to the sheer complexity of 
the task. Metadata can be categorized into several components, 
including datetime, temperature, position, scene attributes, and scene 
descriptors. Simultaneously, we are dealing with 13 classes that warrant 
investigation. When considering all possible combinations of pairs, 

triples, quadruples, and so on of animals, coupled with permutations of 
metadata, the number of potential combinations reaches a staggering 
253,518 – a computationally unmanageable figure. As a pragmatic so-
lution, we opted to streamline the study by reducing the number of 
animal classes to 9 (Fox, Deer, Mustelidae, Bird, Lynx, Cat, Sheep, Ro-
dent, Wolf). Additionally, we merged the relatively concise position and 
temperature information into a single combined vector labeled as 
“pos_temp”. This strategic simplification effectively reduces the number 
of combinations to a manageable 7,529.

3.3.1. Counting method
To identify the most effective metadata feature(s) for classifying 

animal species. We developed a counting method that evaluates the 
performance of different metadata features (or combinations thereof) 
across multiple classification trials. The analysis is divided into three 
parts: identifying the best single metadata feature, the best pair of 
metadata features, and finally, the best trio of metadata features.

For the first analysis, each metadata feature was used to classify 
different combinations of species (e.g., combinations of 2 species, 3 
species, 4 species, and so on, up to 9 species). Each possible combination 
of animal species is referred to as a “classification trial”. The metadata 
feature that achieved the highest accuracy in any given classification 
trial was awarded a point. This process was repeated across numerous 
trials, each time with different species combinations, to ensure robust-
ness. After conducting all possible classification trials (total class com-
binations: 7,529), we tallied the points to determine how often each 
metadata feature was the top performer. This same process was con-
ducted for pairs and trios of metadata features to distinguish between 
combinations of species. The counting method is a straightforward yet 
powerful tool for determining which features are consistently the best 
predictors, though it does not account for the magnitude of performance 
differences between features.

3.3.2. Borderline synthetic minority oversampling technique (SMOTE)
To mitigate the challenges posed by imbalanced datasets, we 

employed the Borderline Synthetic Minority Oversampling Technique 
(Borderline SMOTE) (Han et al., 2005), enabling us to augment the 
training data used for the network while keeping the validation and 
testing data unaltered. The plain SMOTE algorithm has a weakness in 
that it may generate synthetic samples anywhere in the higher dimen-
sional space. Borderline SMOTE aims to improve this. By only gener-
ating synthetic samples on the boundary region between classes, the 
network gets more hard to tell samples, which should provide more 
benefit during training. It takes the set of all samples in the minority 

class class P =
{

p1, p2,…, ppnum

}
and majority class N =

{n1, n2,…, nnnum}. The next step is to count the number of majority class 
samples among the m nearest neighbors of a given point pi. This number 
mʹ could be any number between 0 ≤ mʹ ≤ m. If mʹ = m the point is 
marked as noise and ignored going forward. If m/2 ≤ mʹ ≤ m the mi-
nority sample is marked as a “DANGER” point, as it is likely to be mis-
classified, as 50% or more of its nearby neighbors are of the majority 
class. After all minority samples are checked, new synthetic samples are 
generated based on the minority samples in the DANGER group.

3.4. Our metadata augmented models

Our models are built upon the ResNet50 architecture, with specific 
modifications tailored to integrate metadata seamlessly. Although 
alternative models demonstrated slightly superior performance 
compared to ResNet50, we opted for ResNet50 for several reasons. 
Firstly, the design of the ResNet50 model provides a more straightfor-
ward mechanism for fusing metadata with the convolutional blocks, 
facilitating an intuitive incorporation of metadata into the model. Sec-
ondly, ResNet50’s residual blocks are designed to learn hierarchical 
feature representations effectively. This hierarchical feature extraction 
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is crucial for combining diverse data sources like images and metadata, 
as it ensures that both low-level and high-level features are well- 
captured and utilized.

3.4.1. Late fusion model
The simplest model conceptually employed in our study is the late 

fusion model. This model starts with a feature vector v→1 = ResNet50(x)
obtained from ResNet50, representing the final features before the 
classification step. Additionally, we have another feature vector v→2 =

M , which encapsulates metadata information. These two vectors are 
concatenated to form a new combined vector v→1 ⊕ v→2 = V→. After 
concatenation of the vectors, we run the full vector V→ through three 
layers of a fully connected network: 

ŷ = g3

(
g2

(
g1

(
V→
)))

In this context, each of the functions g1, g2, and g3 correspond to a 
fully connected linear layer followed by a ReLU activation function. The 
model can be visualized in Fig. 8.

3.4.2. Early fusion model
Another broad category of fusion is early fusion, also known as 

feature fusion networks. These networks aim to integrate various data 
modalities early in the process to enhance feature extraction. When 
focusing on early fusion, the question of how to fuse metadata becomes a 
central consideration. In our model, we implement metadata fusion at 
three key junctures within the bottleneck block of the Residual Net. This 
fusion is achieved by element-wise multiplication of the metadata vector 
with the feature map generated by each convolution block. To ensure 
compatibility, the metadata is passed through a linear layer with the 
same output shape as the feature map of the convolution layer. Subse-
quently, a Sigmoid function is applied to the metadata to introduce 
additional non-linearity into our network. Mathematically, each block of 
the Residual Net has been modified like this: 

out = in+ g3
(
g2(g1(c(in)× f1(M ) )× f2(M ) )× f3(M )

)

where f1, f2, and f3 represent the nonlinear functions that enable the 
metadata to fit the shape of the feature maps generated by the convo-
lutions. The sign × here implies a layer-wise multiplication between the 
feature map and the metadata. The different g’s represent normalization 
steps and nonlinear layers through which the convolution is passed and 

are present in a normal ResNet50 architecture as well. Finally, c repre-
sents the first convolution done in each block. Fig. 9 provides an over-
view of our early fusion approach.

3.4.3. Modified channel block attention module (MCBAM)
The utilization of a channel block attention mechanism (CBAM) is 

motivated by its potential to enhance feature extraction and facilitate 
selective attention to informative regions of images, and we test whether 
it can also adapt to contextual information (metadata). We wanted to 
employ an attention-based model alongside traditional deep neural 
networks for comparative analysis, to see how well the attention 
mechanism measures up when compared against traditional ap-
proaches. CBAM was also chosen due to its compatibility with modifi-
cations. The idea was that this approach might enable the model to 
effectively discriminate between different animal species amidst com-
plex backgrounds, leading to improved classification accuracy. Before 
we discuss our modifications, we need to discuss the mechanics of the 
attention module. At a high level, the attention mechanism employed by 
Woo et al. (2018) is demonstrated as follows: we multiply the incoming 
feature map by a channel attention vector and a block attention module. 
Mathematically written as: 

Fʹ = Mc(F) ⊗ F,

Fʹ́ = Ms(Fʹ) ⊗ Fʹ (1) 

where ⊗ represents an element-wise multiplication. Mc (channel 
attention map) and Ms (block attention map) are defined as per the 
mathematical derivations from Woo et al. (2018): 

Mc(F) = σ(MLP(AvgPool(F) )+MLP(MaxPool(f) ) (2) 

Fig. 8. Our late fusion approach

Fig. 9. Our early fusion approach
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Ms(F) = σ
(
f7×7([AvgPool(F) ;MaxPool(F) ] )

)
(3) 

where σ represents the sigmoid function, and f7×7 denotes a convo-
lution of the input by a 7 by 7 kernel. Mc(F) is derived by processing the 
global average-pooled and max-pooled features through separate multi- 
layer perceptrons (MLP). Ms(F) is computed by applying a 7 by 7 con-
volutional operation to the concatenated average-pooled and max- 
pooled features. Both attention maps are then passed through a sig-
moid activation function to obtain the final recalibration weights for 
channel-wise and spatial features.

We modified the Channel Block Attention Module by including an 
extra step after channel and block attention was applied to the network. 
We dub this last component “Metadata Attention”. The overall structure 
of the network with our inclusion is depicted in Fig. 10.

More Formally, we can define the process as follows: 

Fʹ = Mc(F) ⊗ F,

Fʹ́ = Ms(Fʹ) ⊗ Fʹ,

Fʹ́ ʹ
= Mm(M )× Fʹ́ (4) 

Do note that we multiply the metadata vector by the feature maps 
generated by Fʹ. In line with methodologies used by Li et al. (2020) and 
Liu (2018). Mm is then defined as: 

Mm(M ) = σ(MLP(M ) ) (5) 

3.5. Experimental setup

3.5.1. Baseline models
To thoroughly assess the impact of metadata on improving 

classification in WAC, we initiate our evaluation with baseline models. 
These serve the crucial purpose of providing performance for networks 
without metadata incorporation. Our baseline models encompass 
renowned architectures, including AlexNet (Krizhevsky et al., 2012), 
ResNet (He et al., 2016), InceptionV3 (Szegedy et al., 2014), Effi-
cientNet (Tan and Quoc, 2020), and, notably, the Channel Block 
Attention Module (CBAM) (Woo et al., 2018).

3.5.2. Evaluation metrics
In this study, we will use some commonly used metrics: precision, 

recall, F1 score, false positive rate (FPR), and false negative rate (FNR), 
and overall accuracy. The formal definition for these are: 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

FPR =
FP

FP + TN

FNR =
FN

FN + TP 

These metrics can be conceptualized easily in a binary class: 

Prediction

Actual

[
TN FP

FN TP

]
(6) 

For a multi-class problem, the matrix becomes a bit more involved, 
but can be more generally summed up as: 

Prediciton

Actual

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

TN … TN FP TN … TN

⋮ ⋱ TN ⋮ TN ⋰ TN

TN … TN FP TN … TN

FN … FN TP FN … FN

TN … TN FP TN … TN

⋮ ⋰ TN ⋮ TN ⋱ TN

TN … TN FP TN … TN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7) 

In essence, everything not in the row or column of a specific class is a 
true negative. Everything in the column of the class but not the row of 
the class is a false negative (wrong class predicted), and everything in 
the row of the class but not the column is a false positive (class predicted 
wrongly). This pattern holds for all classes in a multi-class problem.

To compute the overall accuracy of the model, we use: 

Fig. 10. Modified CBAM architecture

Table 1 
Metadata Predictors Scores: The table illustrates the best prediction results for m 
classes when using n metadata types.

Classes Features used Acc κ

4, 6 Scene attributes 0.948 0.894
6, 12 Position and temperature, Scene attributes 0.982 0.945
4, 6 Places, Position and temperature, Scene attributes 0.967 0.932
6, 12 Datetime, Places, Position and temperature, Scene 

attributes
0.989 0.964

3, 4, 6 Scene attributes 0.87 0.779
3, 4, 6 Position and temperature, Scene attributes 0.869 0.782
3, 4, 6 Datetime, Places, Scene attributes 0.866 0.775
3, 4, 6 Datetime, Places, Position and temperature, Scene 

attributes
0.878 0.796

2, 3, 4, 6 Scene attributes 0.696 0.552
3, 4, 6, 12 Position and temperature, Scene attributes 0.731 0.603
3, 4, 6, 12 Datetime, Position and temperature, Scene 

attributes
0.729 0.614

3, 4, 6, 12 Datetime, Places, Position and temperature, Scene 
attributes

0.746 0.63
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Overall Accuracy =
1
N

∑N

i=0
ki 

where 

ki =

{
1 if ŷi = yi,

0 otherwise 

Finally, because of the imbalanced nature of our dataset, it can be 
useful to include a metric sensitive to prediction accuracy accounting for 
class imbalance. We will be using Cohens kappa score, proposed by 
Cohen (1960). Cohen kappa score measures the agreement between two 
predictors who classify N items into C mutually exclusive classes. To find 
this agreement, we need to first find the probability of our two pre-
dictors predicting identically by random chance pe: 

pe =
1
N2

∑C

k=1
n(1)

k n(2)
k 

Where n(i)
k is the number of times predictor i predicted class k.

Po is the observed agreement between samples. Given some observed 
response matrix M: 

M =

⎡

⎣
x1,1 … x1,C
⋮ ⋱ ⋮

xC,1 … xC,C

⎤

⎦

po is given as: 

po =

∑C
i=1xi,i

∑C
i=0

∑C
j=1xi,j 

Finally, we can use pe and po to find the overall kappa score: 

κ =
po − pe

1 − pe 

3.5.3. Oversampling and augmentation
Oversampling was performed using PyTorch “Weight-

edRandomSampler”. The augmentation of the over-sampled images was 
performed with an augmentation pipeline using the Albumentations 
python package (Buslaev et al., 2018). Each augmentation technique 
had specific probabilities and limits:

• Horizontal Flipping: P = 0.5
• Rotation: − 45◦

≤ θ ≤ 45◦ , P = 1
• Color Jitter: Brightness, contrast, hue, and saturation ±0.1, P = 1
• Dropout: Size = 32× 32, Holes = 8, P = 1

3.5.4. Training specifics
We divided the dataset into 90% training and 10% testing data. 

Within the training set, we performed an additional split, allocating 90% 
for training and 10% for validation. All models were pretrained on 
ImageNet and underwent training for 50 epochs and exhibited conver-
gence. Image dimensions were standardized to 512 pixels. The models 
were developed and trained on a Linux system with an Intel i9 12900KF, 
128 GB RAM, and an RTX3080-Ti. Initial weights were randomly set, 
and the optimizer’s initial learning rate was 1e − 3, decreasing by an 
order of magnitude every seven epochs over 25 total epochs. Mini- 
batches of 64 samples were used, and each epoch included validation 
on 10% of the test samples. If the model’s performance deteriorated, it 
was reverted to its best-performing iteration. Finally, the model was 
evaluated on the remaining 10% of the data initially set aside.

4. Results and discussion

In this section, we provide a thorough overview of the results from 
our metadata-augmented models for wild animal classification, along-
side the performance of baseline models without incorporating any 

metadata. We begin by discussing the outcomes of our ablation study, 
where our models were exclusively provided with metadata for wild 
animal classification without utilizing any images.

4.1. Results of ablation study

The purpose of the ablation study was to find whether metadata 
could tell the difference between the animals at all. These experiments 
establish a baseline for the performance of metadata in isolation. This is 
crucial as it sets expectations for the incremental value added by met-
adata when combined with visual data. Knowing the baseline perfor-
mance of metadata alone allows for a clearer quantification of the 
improvements achieved by integrating image data. In this context, we 
opted to utilize species IDs instead of the corresponding species names. 
The species IDs were as follows: 0 for “Fox”, 1 for “Deer”, 2 for “Mus-
telidae”, 3 for “Bird”, 4 for “Lynx”, 5 for “Cat”, 6 for “Sheep”, 7 for 
“Squirrel”, 8 for “Rabbit”, 9 for “Rodent”, 10 for “Cattle”, 11 for “Boar”, 
12 for “Wolf”, and 13 for “Bear”. Our analysis focused on identifying the 
best prediction results for m classes by using n types of metadata. With 
fewer classes, the analysis is simpler and more straightforward, enabling 
researchers to easily interpret the results and understand the relation-
ships between classes and metadata features. The results, as presented in 
Table 1, revealed that “Scene attributes” information emerged as the 
most influential single feature for enhancing prediction accuracy. 
Additionally, as we increased the number of included features, we 
observed a corresponding performance improvement. Moreover, the 
experiments demonstrate that metadata alone becomes insufficient as 
the number of classes increases, highlighting the need for fusion stra-
tegies that combine metadata with visual data.

However, the average performance of various features is not 
straightforward. We can better understand this relationship by exam-
ining the “winner” when comparing the performance of n predictors 
against each other across m classes. Fig. 11 illustrates the best predictor 
(s) for all combinations of all animals. “Scene attributes” emerged as the 
top single predictor, i.e we used only single metadata feature to try to 
classify different combinations of species/classes in Fig. 11a, and “SA” 
achieved the highest accuracy in many such experiments (we counted 
how many times it achieved the highest accuracy with different com-
binations of classes and this count is shown in the Y-axis) compared to 
“PI”, “DT” or “P&T”. And while “Scene attributes” emerge as the top 
single predictor, it is not among the top pairs, being surpassed by the 
combination of “Datetime” and “Places”. Note that we are counting the 
“best predictor” for all combination of animals, and it does not consider 
the extent to which one predictor outperforms another. It is unclear 
whether “Scene Features” dominated as the sole feature or if other 
features closely followed its performance. Nevertheless, it is evident 
from Table 1 that accuracy generally improves with the inclusion of 
more features, indicating each metadata contributes value to animal 
feature prediction. Notably, these predictions are solely based on met-
adata, without image input.

As we introduce more classes, the predictive performance decreases, 
a trend depicted in Fig. 12. This decline is understandable because dis-
tinguishing between two classes is inherently easier than distinguishing 
among ten. However, even when considering the random guess factor, 
the kappa score also decreases. This implies that as the number of classes 
increases, the discriminative capability of metadata diminishes. To 
maximize the differentiation potential of metadata, we should concen-
trate on scenarios with as few classes as possible, ensuring that these 
classes are distinct when examined based on metadata.

4.2. Results of baseline and metadata augmented models

This section discusses the performance of the base models (trained 
solely on images) and our modified models (trained on both images and 
metadata). The complete results for all models are presented in Table 2. 
From the beginning of the table up to CBAM, the unmodified models are 
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the baseline models. The models already demonstrate a reasonably high 
level of accuracy, making improvements relatively modest in percentage 
terms. Among the tested baseline models, InceptionV3 exhibits a slight 
performance advantage, with ResNet50 being a close second. It’s worth 
noting that while only EfficientNetb3 is displayed, we tested all itera-
tions of EfficientNet and retained the best-performing one for further 
evaluation.

The results at the end of Table 2 indicate that two out of three models 
perform equally or better than our baseline models. The Modified 
Convolutional Block Attention Module (MCBAM) is the exception, as it 
does not benefit from metadata inclusion in terms of overall accuracy 
compared to other models tested. This could be due to several reasons. 
First, CBAM introduces additional layers and complexity, which 

increases computational overhead and resource requirements. This 
added complexity might not translate to better performance, particu-
larly if the metadata is not effectively leveraged by the attention 
mechanisms. The increased computational demands can also make the 
model more difficult to train, potentially leading to suboptimal perfor-
mance. Second, while CBAM and its modified version did outperform 
our Late and Early Fusion models with ResNet50 as the backbone or 
other traditional models, this might be due to CBAM’s emphasis on 
specific channels and spatial locations. Such emphasis can lead to 
overfitting on the training set if the attention mechanism does not 
generalize well to the validation or test sets. This overfitting can result in 
poorer performance when the model encounters new data. Additionally, 
CBAM’s integration of metadata may not be as seamless or effective as 

Fig. 11. The best n features to use to distinguish a set of m animals. (Y-axis shows the number of times metadata feature(s) was the best predictor (count) for all 
animal combinations, whereas the X-axis shows the metadata feature(s). “SA” for scene attributes, “Pl” for scene descriptors (Places), “DT” for datetime, and “P&T” 
for position and temperature data).

Fig. 12. Prediction score versus number of classes to distinguish

Table 2 
Baseline Model Results: The table presents the performance evaluation of base models, trained solely on images, and modified models, trained on both images and 
metadata.

Model Accuracy Precision Recall F1 FPR FNR κ

ResNet18 0.966 0.953 0.964 0.958 0.003 0.036 0.959
ResNet50 0.983 0.974 0.978 0.976 0.001 0.022 0.98
AlexNet 0.888 0.841 0.909 0.872 0.01 0.091 0.867
EfficientNetb3 0.982 0.98 0.979 0.979 0.002 0.021 0.978
InceptionV3 0.984 0.981 0.979 0.980 0.001 0.021 0.980
CBAM 0.805 0.688 0.789 0.720 0.017 0.211 0.768
Late Fusion (Ours) 0.987 0.986 0.98 0.983 0.001 0.02 0.984
Early Fusion (Ours) 0.989 0.984 0.986 0.984 0.001 0.014 0.987
MCBAM (Ours) 0.795 0.703 0.783 0.735 0.018 0.217 0.758
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the straightforward fusion methods used with ResNet50. ResNet50’s 
established robustness and the availability of pre-trained models likely 
provide a more stable and efficient foundation for incorporating meta-
data. In contrast, CBAM’s attention mechanisms might struggle to bal-
ance the image features with the additional metadata, especially if the 
metadata is not optimally utilized. All of these reasons suggest that 
simpler and more established architectures like ResNet50, which are 
well-suited for metadata integration, can offer more reliable and supe-
rior performance in such tasks. However, MCBAM exhibits higher 
overall precision compared to CBAM but at the cost of reduced recall, 
implying a preference for lower false positives. We can evaluate this 
better by comparing CBAM and MCBAM’s accuracy per class, shown in 
Table 3. We can observe that CBAM demonstrates superior performance 
in majority class classifications, while MCBAM exhibits slight im-
provements in minority class samples. The choice between these models 
depends on specific use-case requirements. Encouragingly, the inclusion 
of metadata does not inherently lead to a bias toward predicting the 
majority class.

The late fusion model slightly outperforms the best baseline models, 
but we are particularly interested in the early fusion model, which shows 
a slightly better performance. We observed that early fusion performs 
better than late fusion. We will now compare the performance per class 
of two models: the best-performing baseline model (InceptionV3) and 
the best-performing model from our metadata-augmented models (Early 
Fusion).

Table 4 indicates that the best baseline model performs better in only 
a few classes. This is encouraging, considering that we have tested only a 
limited number of architectures for metadata-augmented models. Other 
models will likely surpass the ones tested here, and it might even be 
worthwhile to design architectures from scratch, incorporating 

metadata-augmented feature extraction from the outset.
Relating our results to prior work in the field 2.2, Dhillon and Verma 

(2022) achieved 98.07% accuracy using DenseNet201 and ResNet101 
on a camera trap dataset. Our best baseline model, InceptionV3, dem-
onstrates comparable accuracy. Battu (2022) reported 73.09% accuracy 
with a noise-resilient approach on the Snapshot Serengeti and Panama- 
Netherlands datasets. Our baseline models show significantly higher 
accuracy, suggesting the effectiveness of our dataset and model selec-
tion. As far as metadata integration goes, Islam et al. (2023) achieved 
87% accuracy with VGG16 and 86% with ResNet50 on multiclass clas-
sification of reptiles. Our metadata-augmented models surpass these 
figures, with the Early Fusion model achieving 98.9% accuracy. Finally, 
Sreedevi and Edison (2022) achieved 99.6% accuracy using a depth- 
wise separable convolution layer on the IWildCam dataset. While their 
approach focuses on convolutional efficiency, our method integrates 
additional contextual information through metadata, offering a different 
pathway to achieving high accuracy.

5. Conclusion and future work

This study showcased the importance of using metadata together 
with image data for effective classification of wild animals. Our results 
demonstrate that integrating metadata with image data significantly 
enhances the accuracy of wildlife classification models. The Early Fusion 
model, in particular, achieves superior performance compared to both 
our baseline models and those reported in previous studies. Our 
approach not only offers a robust solution for handling variations in 
image quality and lighting conditions but also sets a new benchmark for 
wildlife classification tasks by achieving high accuracy with metadata- 
only classification. To test the merit of using metadata, we conducted 
an ablation study that classified the animals by metadata alone; the 
results were a function of the number of classes in the dataset, 
decreasing with the increasing number of classes. However, they 
encouraged combining metadata with images. Notably, Scene Attri-
butes, automatically extractable from any image, proved to be a 
powerful metadata feature. It is essential to emphasize that including 
metadata introduces more parameters, necessitating a rigorous evalua-
tion of models with and without metadata. While other studies have 
demonstrated the efficacy of deep learning, our study is among the first 
in Wild Animal Classification to explore metadata utilization, and 
therefore, there is no established precedent to set our expectations. 
Thus, while data fusion has shown promise in other deep learning do-
mains, its universal applicability in Wild Animal Classification requires 
further comprehensive research and experimentation.

We recommend further exploration of metadata-enhanced wild an-
imal classification, particularly emphasizing the use of automated scene 
attribute and descriptor detectors. Moving forward, a promising avenue 
for further research involves the validation and adaptation of our 
methodology in diverse ecological contexts beyond Norway. Collabo-
rative efforts with researchers and conservationists across different re-
gions could facilitate the refinement and optimization of our approach 
to suit varying environmental conditions and wildlife populations. 
Moreover, exploring time encoding using sine and cosine components 
could be a promising avenue for addressing the issue of spring/fall 
indistinguishability. While this approach was considered later in the 
current project, time constraints prevented its implementation and 
testing. Future work may also explore alternative methods of metadata 
fusion could be investigated to enhance model efficiency and 
effectiveness.
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Data availability

The implementation code used in this study is publicly accessible on 
GitHub11https://github.com/ammarlodhi255/metadata-augmented- 
neural-networks-for-wild-animal-classification. The repository contains 
scripts for data collection, processing, analysis, training, evaluation, and 
visualization, along with detailed documentation for usage, installation, 
and dataset preparation.

Model weights are available on Figshare22https://figshare. 
com/s/c4ca09789621053d5cb7. Additionally, important JSON files, 
which include species data and associated metadata, can be found 
here33https://figshare.com/articles/dataset/JSON_files/26832049? 
file=48793426.

The curated image dataset used in our main experiments is provided 
in two parts. The first part is the file named images 
_part_1.zip which can be accessed at this link44https://figshare. 
com/articles/dataset/images_part_1/26832043?file=48792940 and 
the second part is the file images_part_2.zip which can be found 
here55https://figshare.com/articles/dataset/images_part_2/26832475? 
file=48793543. To reconstruct the complete dataset, these files must be 
merged.
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