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Abstract: Architects arguably have the greatest influence on the design of buildings. One of the key
factors that make it hard to improve the energy efficiency of buildings is the use of architects’ reasoning
by architects at the early design stage. There is a need to assess the impact of architects’ reasoning
on the energy performance of the designed building. To this end, this research was conducted
in two phases. Firstly, the most influential design parameters, in terms of energy efficiency, were
identified and used to develop a design exercise issued to a sample of practising architects in the north
of Algeria. Design exercise participants were required to minimise expected energy consumption
along with the construction cost. Secondly, computer-generated dynamic design optimisation for
the same design task was conducted in DesignBuilder v6. 1 .8. The computer-generated designs
decisively outperformed the human-generated designs. The experienced architects achieved the
least-performing designs rather than those with less experience.

Keywords: sustainability; architects’ reasoning; optimisation; pareto front; optimal design; early
design decisions; knowledge repertoire

1. Introduction

To design energy-efficient buildings that respond to the current challenges of sustain-
ability, particular aspects have to be considered from the early stage of design. Important
decisions are made early in the design that significantly affect a building’s energy perfor-
mance over its lifecycle [1–3]. These decisions are in the form of several design variables
that that need to be fixed early in the design process. By considering energy efficiency at
an early stage, the architect has the greatest influence over the lifecycle performance of
a building. Influential energy-efficient design variables such as building orientation and
building fabric are usually decided early on. Once these decisions have been made, it is
difficult to make subsequent revisions in order to enhance energy efficiency. Although en-
ergy performance is of paramount importance, it cannot be considered in isolation without
regard for other design priorities.

As energy aspirations become increasingly ambitious, the intricacy of these aspirations
and the complexity of building design challenge the architect’s built-up experience [4].
Ercan and Elias-Ozkan [5] argue that the integration of energy performance measures needs
to start from the conceptual design stage. The architect’s reasoning is therefore crucially
important during the early design stage to ensure energy-informed decisions are made in a
timely manner.

The energy performance gap between design intent and actual performance during
operation originates in early design decision-making, arguably due to the cognitive process
employed by architects’ minds while working on design problems [6]. Commonly, the early
design process is controlled by architects alone, usually without prior energy-efficiency
expertise [7]. This was supported by Rezaee et al. [8], who reported the wide confidence

Sustainability 2024, 16, 8220. https://doi.org/10.3390/su16188220 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16188220
https://doi.org/10.3390/su16188220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0006-4997-0229
https://orcid.org/0000-0001-8391-8690
https://doi.org/10.3390/su16188220
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16188220?type=check_update&version=1


Sustainability 2024, 16, 8220 2 of 21

intervals for performance predictions in thermal building performance during early design
stages; they reported confidence levels well below 50%. Lacking expertise in building
physics, architects’ choices are predominantly guided by intuition and experience that
fails to account for the implications of design decisions on building energy performance.
Consequently, architects tend to favour conventional solutions (known by practice) even
though their energy performance is not optimal. The amount of information humans may
consider at a time is limited to a few pieces of information, which can obstruct human
design problem-solving.

Such limitations have been observed as humans solve increasingly complex para-
metric design problems. Hirschi and Frey [9] report experiments showing that human
problem-solving performance declines considerably as the number of considered variables
increases. Much research has been conducted into the architectural design process and
the methods designers use to solve design problems [10–12]. Such work signposts the
scope for significant original research to test architects’ reasoning concerning energy per-
formance during the early design stage. By reasoning, the knowledge repertoire that is
used by architects to make early design decisions is meant to inform and guide their initial
creative process.

Within a background of more stringent building energy targets, designers must ap-
proach with care the task of designing their buildings. This research aims to assess the
tacit reasoning of architects and its role in achieving energy-efficient design. Therefore,
the primary building design performance objective considered in this paper is energy con-
sumption. Cost was added as a second objective function, because, in real-world projects,
it is hard to imagine a scenario in which the designer is only concerned with energy per-
formance but unconcerned with the cost of the resulting design. The most important
design variables that have the highest impact on energy performance (as identified from an
online questionnaire survey) were then used to design an exercise activity whereby each
participant was given the base case design model and asked to modify it to achieve the two
competing objectives.

2. Architects’ Reasoning in Design Decision-Making

Much of the knowledge in people’s heads is constructed within the system in which
they operate, and, therefore, this reasoning mechanism is the property of the system [13].
In the case of building performance, energy simulation and optimisation are typically
employed to create design solutions that meet the desired design objectives. As a result,
the majority of the simulation software that is generally used supports optimisation tasks
that are effective only late in the design process. Energy performance simulation generally
requires precise building geometry as well as data about the fabric characteristics of building
elements. The early design stage, however, is characterised by high-level activity with
regards to the architectural aspects of the design, where such design precision is not yet
possible. Petersen [14] suggests concentrating significant effort in the early design stage
by handling the design variables that architects can access and control at this early stage.
However, the lack of building physics expertise has always hindered design decision-
makers [15]. Without being able to investigate design alternatives against performance
targets early on in the design process, the resulting design may not be optimal due to the
multiple trade-offs to be made. In the absence of precise simulation predictions, architects
tend to use their reasoning based on experience to develop a design alternative. Thus, in
this research, architects’ reasoning is singled out as the factor which differentiates design
decision-making by humans versus the precise optimisation of computers. DesignBuilder
was used as the optimisation platform, as it has the capability of running optimisation
with multiple design objectives, for the following research: energy consumption and
construction cost.
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3. Method

Our research method adopts a descriptive design models paradigm, which emphasises
the process of generating a solution from an early stage. This paradigm emerged as a
response to the notion that what many designers do in actual practice does not completely
algin with the classical systematic pattern of design activities. De Wilde [6] observes that
descriptive decision-making does not always ensure optimum energy performance-based
design. Therefore, this research assesses the performance of this naturalistic decision-
making driven by architects’ reasoning. Two research methods were combined in an
attempt to isolate the effect of tacit reasoning by human architects. Firstly, a design exercise
experiment was conducted to trigger naturalistic design decision-making in practising
architects. Secondly, computational dynamic simulation and optimisation was applied to
the same design problem to explore the entire design space thoroughly. Figure 1 outlines
the research design.
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Figure 1. Research method.

3.1. Human Architects Design Experiment

Researchers use several approaches for empirically studying human designers, includ-
ing verbal protocols, case studies, and design experiments [11]. Design experiments were
adopted, because they enable the precise study of specific design processes with rigorous
statistical comparisons, rather than case studies and verbal protocols that may contain more
conflating contextual variables that obscure the validity of conclusions. Figure 2 presents
the experimental procedure for the design experiments.
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Figure 2. Experimental procedure for design experiments.

In the experiment, practicing architects were asked to complete a design exercise,
balancing the two competing objectives of minimising energy consumption and reducing
construction cost. Each architect’s years of experience was measured as an independent
variable in the design experiment. Experimental comparisons of novices and experts are
common in design research [16,17].

A design task base case model of a residential building block was created. Designers
were asked to modify the base case design considering two design objectives: to minimise
energy consumption and to minimise construction cost, with a particular emphasis placed
on an energy-efficient design. Measures of performance (MOP) indicators were used to
evaluate architects’ reasoning in terms of building energy and cost performance.

3.2. Base Case Model Definition
3.2.1. Weather Profile

Weather conditions directly impact the results of any energy performance simula-
tion [18,19]. The location of this study was chosen to be Algeria. Direct access to the
Algerian National Council of Architects by the first author facilitated the recruitment of
research participants for the design exercise. The location was also chosen due to the
importance of the Mediterranean climate and its applicability in many other countries in
the region. Furthermore, Algerian public policy prioritises energy efficiency as a matter of
urgency [20]. The weather profile from Sahabi Abed and Matzarakis [21] for the region of
Algiers was used for the base case model, which was provided to the design experiment
participants, in addition to input in DesignBuilder, for the simulations and, subsequently,
for the optimisation.

3.2.2. Base Case Model Description

The distribution of energy usage in Algeria by sector indicates that buildings account
for a very high proportion. The residential sector in particular accounts for 43% of the total
energy consumption, according to the energy balance released by [22]. For this reason, a
design task base case model of a residential building was chosen for this design exercise.
The model was a typical five-storey residential block, with each floor comprised of four
apartments, as shown in the floorplans of Figures 3 and 4, the latter of which shows a 3D
visualisation of the whole building.
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Figure 4. Entire building 3D visualization of the base case model considered for this study.

The floor area of each floor is 511.55 m2 with a floor-to-ceiling height of 3.0 m. The base
case building was assumed to be free from overshadowing from surrounding buildings.

3.2.3. Sampling Strategy

Purposive sampling was used to recruit architects for the design experiment. This
approach is suited to understanding aspects of real-world architecture practice. As years of
experience was identified as a significant variable, the sample was stratified by recruiting
roughly uniform numbers of participants in each of the five-year experience ranges. In
Algeria, as is the case for most countries, the architect typically leads the entire building
design development process. In early design, architects receive relevant project require-
ment information from a developer or owner and develop a conceptual building design.
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Fundamental decisions are made at this stage, such as 3D massing, building orientation,
and materials.

3.2.4. Questionnaire Survey to Identify Pertinent Design Variables

Design experiment participants would be asked to make design decisions about
particular building characteristics. For this purpose, it was necessary to identify the
most important design variables affecting building energy performance. Therefore, an
online questionnaire survey was issued to a separate sample of practising architects to
help set up the design experiment. Architects were asked to rank a number of pertinent
variables identified from the literature by order of importance to achieving an energy-
efficient building and then to rate the potential impact of each variable on final energy
performance. A set of 109 questionnaire responses was received, and the data can be found
in Figure 5. Based on these assessments of importance and impact by professional architects,
the following variables were selected to be incorporated into the design exercise: external
wall construction, roof construction, glazing type, window frame type, south/east/west
shading, building orientation, and window-to-wall ratio.
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Figure 5. Design variable ranking by order of importance in bars and impact average weight by line
design exercise.

Once the base case model was fully developed and pertinent design variables were
identified, a design exercise was developed in which professional architects as research
participants were asked to modify the base design by altering the pertinent design variables
in order to balance the two objectives of construction cost and energy efficiency. Each
design generated by a participant had to be assessed for its achievement of the two design
objectives. DesignBuilder was selected as the design simulation application, as it has an
interface for a leading global simulation engine, EnergyPlus 9.6.0.

Two hundred participants were issued a design exercise leaflet along with the base
case model of the residential building block in RVT (Autodesk Revit 2019) format. The data
were collected in dual format: in-person visits to architectural offices, where possible, and
online, where in-person visits were not feasible.

Participants were instructed to improve the base case model’s performance against the
two design objectives by reconsidering the pertinent design variables. The list of the design
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variables was created as a database within Autodesk Revit. The term ‘design variables’ in
this study refers to those variables that the designer can change. This is consistent with
other studies, such as Hamdy et al., [23], and Sasena et al. [24]. The term ‘design choices’
refers to the values that each design variable (in this case, window type) may take, e.g.,
single glazing, double, grazing, and triple glazing. Each design variable had a number
of design choices associated with it, and the architects had to manually apply the design
choices in the Revit model provided. These parameters are laid out in Tables 1–3. The
types of external wall construction were sourced from the study of Baglivo et al. [25] on
optimised external walls in the Mediterranean climate. Each type of wall has predefined
layers in which different materials (in the layer thickness range column) are allowed to vary
according to the design variables and choices that architects think are the most appropriate.
The thermal specifications of insulation materials, in terms of thermal conductivity, heat
capacity, and density, have been identified based on the standard EN ISO 10456 [26].

Table 1. Building fabric variables.

Choices for Building
Envelope Variable Layers Choices for Layer Thickness Choices (mm)

Types of external walls; the choice of internal/external insulation was left to the participants

External heavyweight wall
Type 1

Concrete 90/100/110/120/130/140/150

Polyurethane foam 1 20/30/40/50/60/70/80/90/100/120

Concrete exp. clay 50

Polyurethane foam 2 20/30/40/50/60/70/80/90/100/110/120/130/140

Concrete 100

External heavyweight wall
Type 2

Concrete 10/20/30/40/50/60/70/80/90/100/110/120/130/140/150

Cork panel exp. 10/20/30/40/50/60/80/100/120/140/160

Cellulose fibre 30/40/50/60/80/100/120/140/160/180

Brick 120

Polyethylene exp. 2/3/4/5/6/8/10/12/15/20/25/30

External heavyweight wall
Type 3

Concrete 90/100/110/120/130/140/150

Polyurethane foam 1 20/30/40/50/60/70/80/90/100/120

Cross-laminated timber panels 60/78/95/128/146/162/202

Polyurethane foam 2 20/30/40/50/60/70/80/90/100/110/120/130/140

Plaster 15

External lightweight wall
Type 4

Concrete 90/100/110/120/130/140/150

Hemp fibre 30/40/50/60/80/100/120/140/160/180/200/220/240

Air 5/10/15/20/25/30/35/40/45/50

Cross-laminated timber panels 60/78/95/128/146/162/202

Cork panel exp. 10/20/30/40/50/60/80/100/120/140/160

External lightweight wall
Type 5

Concrete 90/100/110/120/130/140/150

Fibreboard 20/40/60/80/100/120/140/160

Polyethene exp. 2/3/4/5/8/10/12/15/20/25/30

Cork panel exp. 10/20/30/40/50/60/80/100/120/140/160

Plaster 15
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Table 1. Cont.

Choices for Building
Envelope Variable Layers Choices for Layer Thickness Choices (mm)

External lightweight wall
Type 6

Concrete 90/100/110/120/130/140/150

Wood fibre hardboard 20/40/60/80/100/120/140/160

Wood fibre hardboard 20/40/60/80/100/120/140/160

Polyurethane foam 1 20/30/40/50/60/70/80/90/100/120

OSB (Oriented Strand Board) 15/18/22/25

Roof type

Ground floor
This part is fixed

Ceramic finishing 7

Cement mortar 50

Polystyrene 0 to 50

Reinforced concrete slab 200

Roof type 1-hollow core

Plasterboard 15

Hollow concrete slab 160

Compression slab 40

Polystyrene 0 to 180

Sealing layer 20

Roof type 2-prestressed
reinforced concrete

Plasterboard 15

Solid slab 150

Vapour barrier 20

Polystyrene 0 to 180

Sealing layer 20

Table 2. Characteristics of glazing typologies.

Window Variables Window Layer
Thickness (mm)

U-Value
(W/m2 K) SHGC Solar

Transmission
Solar

Reflectance
Visual

Transmission

Single glazing (Glz1) 2.5 5.74 0.87 0.85 0.075 0.901

Double glazing filled
with air (Glz2) 2.5/12.7/2.5 2.95 0.777 0.727 0.129 0.817

Triple glazing filled
with air (Glz3) 2.5/12.7/2.5/12.7/2.5 2 0.7 0.624 0.168 0.744

Double glazing filled
with air +1 low

emissivity layers facing
inward (Glz4)

3/12.7/2.5 1.76 0.597 0.544 0.22 0.769

Double glazing filled
with argon +1 low

emissivity layers facing
inward (Glz5)

3/12.7/2.5 1.43 0.596 0.544 0.22 0.769
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Table 3. Different levels of selected parameters.

Other Variables Symbol Lower Limit Upper Limit Unit

Shading coefficient of
windows facing south SCs 0 1 -

Shading coefficient of
windows facing east SCe 0 1 -

Shading coefficient of
windows facing west SCw 0 1 -

Glazing Glz Glz1, Glz2, Glz3, Glz4, Glz5 - -

Type of window frame WF Aluminium, Wood, UPVC - -

Building Orientation BO ±45◦, ±90◦ - Degrees from North

Window-to-wall ratio WWR 20 90 %

All the architects’ generated designs were simulated in DesignBuilder, taking into
account all the configurations decided by the participants; this includes the type of wall,
insulation thickness layers, type of roof, type of glazing and window frame, building
orientation, window-to-wall ratio, air change rate and local shading devices, and the size.
The purpose of this sub-task was to evaluate the two MOPs of each design, which were
energy consumption in kWh/m2 and total construction cost in DZD, as shown in Figure 6.
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Builder.

Following the selection by each architect of alternative design options in line with
the two design objectives, the resulting design was assessed by using DesignBuilder to
predict its energy consumption and construction cost, as measures of performance (MOP).
The gbXML standard was used to export the models from Revit and import them into
DesignBuilder. A simulation was run to calculate the expected lifecycle energy consumption
in kWh/m2 and total construction cost in DZD (Algerian dinar).

A few assumptions had to be made in DesignBuilder when entering the simulation
input settings:

• Activity: The average occupancy for residential apartments in Algeria is four people
per apartment. A typical family would consist of a father, mother, and two to three
children. From the building layout, the total occupancy area of each flat is approx-
imately 90 m2. Therefore, the occupancy density specified in the simulation was
0.055 people/m2. Furthermore, DesignBuilder’s default metabolic factors were used:
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1.00 for men, 0.85 for women, and 0.75 for children or an average value if there is a
mix of occupants.

• The lighting heat gain was set to 7 W/m2 from the CIBSE energy code of practice [27].
The default diversity factor of 70% was used for the lighting heat gain, since it is
unlikely that all lights will be on simultaneously. From the assumed occupancy
schedule, lighting in the base case model was set to be used daily from 12:00 to 23:00.

• The heating and cooling setpoint temperatures were selected as default values; 21 ◦C
for heating and 25 ◦C for cooling.

• Minimum fresh air was assumed to be 10 L/s–person, as suggested in the CIBSE 2015
guide [27]

• Depending on the nature of the treated zone in the energy simulation model, the
internal gains, such as from occupants and equipment, were left at their default values
from DesignBuilder, depending on the nature of the occupant activity schedule and
metabolic rate.

Weather data that are used in DesignBuilder are based on EnergyPlus weather files
that define external conditions during simulation. Each location has a separate weather
file describing the external temperature, atmospheric conditions, solar radiation, etc., for
every hour of the year at that location. The file location of this research was set in the North
African region of Algeria and specifically in the capital Algiers.

3.3. Computer Optimisation

DesignBuilder’s dynamic simulation and optimisation was used to compare the per-
formance of the human-generated designs to those from computer-generated optimum
design. Computer optimisation was conducted to benchmark the quality of the human
designs, highlighting the role of human reasoning. Optimisation in design is a process
where design variables and objectives need to be clearly defined in the early stages of the
design process [28]. The variation and the number of design variables make it possible
to identify a large number of possible designs including the interactions of the design
variables that eventually determine how buildings are constructed and use energy [29].
The more design variables there are and the more choices available for each design variable,
the larger the design search space (the set of all possible designs). DesignBuilder has a
built-in genetic algorithm in its optimisation engine called r It is widely used as a multi-
objective method that supports the search for a good trade-off between a well-converged
and well-distributed solution set. This method is used in this research to search for optimal
design solutions. The same entire set of design variables and design choices that were
used for the human architect design experiment were also used in the optimisation exercise
to allow a robust comparison between the human architects’ generated design and the
computation. The design variables were taken through a wide range to ensure that the
optimum design could be found in that range. The design variables were incremented in
sufficiently small steps through their respective ranges to avoid missing optimum values.
The variables used in this experiment fall into two categories: variables with numerical
design choices and those with non-numerical design choices. The ranges and incremental
step values for the numerical variables were set heuristically, informed by best practice
in design. For non-numerical variables such as building floor and roof, only one design
alternative option was set to limit the sheer number of design possibilities.

4. Results and Discussion

The results of the preliminary survey are shown in Figure 5. These design variables
emerged from the literature and are assumed to be within the architect’s control. The
aim was to rank the variables by order of importance, as a precursor to including the
most important variables in the subsequent design experiment. However, it is recognised
that architects might not have full freedom to make early-stage decisions due to high
uncertainty and the complexity of stakeholders. Therefore, architects were also asked to
rate the impact on energy performance of the variables [7]. External wall construction
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was ranked as the most important variable with an impact factor of four, followed by
roof construction and window-to-wall ratio (WWR), each with an impact weight factor of
three. The variables included in the design exercise (Tables 1–3) were carefully selected
to represent the top ranked variables from Figure 5. The design exercise was delivered
to a sample of 200 professional architects. A total of 134 valid design solutions out of 200
were received. The location of the study had a direct effect on the results due to prevalent
common design practices and design culture.

The building was modelled in DesignBuilder, considering all the configurations de-
cided by the participants based on Tables 1–3. The DesignBuilder platform has a con-
struction cost component which was used to calculate the initial construction cost of each
design variant provided by the architects. The cost model used in the calculation is based
on per unit area averages from a published database linked to DesignBuilder. The prices
of materials and labour cost were sourced from ©CYPE Ingenieros, S.A [30]. The price
generator is an engine that allows a calculation of the real cost of construction materials and
labour in Algeria, where the experiment was carried out. It provides an updated real-time
construction cost adjusted to the market in which the project is built. A cost correction factor
was applied specifically for Algeria. The accuracy of absolute cost estimates is unimportant
here, but rather the relative costs used to compare design alternatives and identify optimum
solutions were used instead. Table 4 shows the results of the two performance indicators,
energy consumption in kWh/m2/year and construction cost in DZD for the 134 designs
submitted by the architects.

Table 4. Simulation results of energy consumption and construction cost for architects’ designs.

Human Designs Energy kWh/m2/Year Construction Cost in Euros

Architect 1 143.07 260,210,000.00

Architect 2 151.67 257,351,000.00

Architect 3 150.01 253,508,000.00

Architect 4 173.47 253,367,000.00

Architect 5 172.64 262,919,000.00

Architect 6 157.38 257,025,000.00

Architect 7 182.19 254,735,000.00

Architect 8 174.04 260,942,000.00

Architect 9 156.81 261,224,000.00

Architect 10 214.39 232,977,000.00

Architect 11 215.87 232,580,000.00

Architect 12 190.56 235,461,000.00

Architect 13 163.46 260,451,000.00

Architect 14 190.37 235,731,000.00

Architect 15 215.61 232,501,000.00

Architect 16 136.03 260,651,000.00

Architect 17 137.92 260,965,000.00

Architect 18 215.85 232,117,000.00

Architect 19 213.73 236,004,000.00

Architect 20 170.91 260,738,000.00

Architect 21 213.09 235,553,000.00

Architect 22 169.02 262,370,000.00

Architect 23 169.5 261,038,000.00



Sustainability 2024, 16, 8220 12 of 21

Table 4. Cont.

Human Designs Energy kWh/m2/Year Construction Cost in Euros

Architect 24 169.98 260,500,000.00

Architect 25 215.3 232,201,000.00

Architect 26 156.01 261,224,000.00

Architect 27 173.29 260,320,000.00

Architect 28 146.72 257,943,000.00

Architect 29 215.37 232,820,000.00

Architect 30 143.01 260,222,000.00

Architect 31 143.02 260,222,000.00

Architect 32 151.1 252,390,000.00

Architect 33 173.1 253,239,000.00

Architect 34 170.7 262,200,000.00

Architect 35 161.04 257,285,000.00

Architect 36 171.3 262,416,000.00

Architect 37 155.23 257,001,000.00

Architect 38 214.85 232,773,000.00

Architect 39 143.1 230,201,000.00

Architect 40 153.69 254,490,000.00

Architect 41 150.29 252,309,000.00

Architect 42 172.96 254,765,000.00

Architect 43 173.79 262,919,000.00

Architect 44 156.1 289,391,000.00

Architect 45 180.2 250,731,000.00

Architect 46 169.04 259,840,000.00

Architect 47 154.82 250,443,000.00

Architect 48 214.2 232,983,000.00

Architect 49 215.9 232,490,000.00

Architect 50 196.8 239,309,000.00

Architect 51 160.01 259,099,000.00

Architect 52 193.4 234,870,000.00

Architect 53 213.21 232,601,000.00

Architect 54 132.1 261,390,000.00

Architect 55 137.92 260,965,000.00

Architect 56 215.7 232,877,000.00

Architect 57 213.73 232,004,000.00

Architect 58 170.91 260,738,000.00

Architect 59 213.09 232,553,000.00

Architect 60 169.02 262,370,000.00

Architect 61 167.6 261,038,000.00

Architect 62 140.1 260,210,000.00

Architect 63 149.9 256,781,000.00

Architect 64 151.57 256,951,000.00
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Table 4. Cont.

Human Designs Energy kWh/m2/Year Construction Cost in Euros

Architect 65 170.91 255,547,000.00

Architect 66 171.15 262,919,000.00

Architect 67 159.4 253,580,000.00

Architect 68 180.92 252,635,000.00

Architect 69 173.89 259,998,000.00

Architect 70 156.5 260,359,000.00

Architect 71 215.28 232,500,000.00

Architect 72 214.9 232,821,000.00

Architect 73 191.12 235,461,000.00

Architect 74 164.45 261,451,000.00

Architect 75 190.37 235,319,000.00

Architect 76 213.05 232,835,000.00

Architect 77 130.94 261,903,000.00

Architect 78 136.64 259,376,000.00

Architect 79 213.58 232,769,000.00

Architect 80 170.87 261,378,000.00

Architect 81 142.64 256,644,000.00

Architect 82 213.75 233,853,000.00

Architect 83 141.52 261,913,000.00

Architect 84 141.06 261,733,000.00

Architect 85 214.83 232,809,000.00

Architect 86 121.76 240,907,000.00

Architect 87 159.3 264,600,000.00

Architect 88 155.09 234,102,000.00

Architect 89 169.51 260,333,000.00

Architect 90 155.4 261,203,000.00

Architect 91 159.41 258,901,000.00

Architect 92 179.29 232,433,000.00

Architect 93 170.09 261,222,000.00

Architect 94 157.61 260,453,000.00

Architect 95 215.31 232,430,000.00

Architect 96 214.97 232,321,000.00

Architect 97 187.69 234,200,000.00

Architect 98 158.53 258,285,000.00

Architect 99 187.43 235,416,000.00

Architect 100 213.7 232,001,000.00

Architect 101 134.79 234,773,000.00

Architect 102 137.01 231,201,000.00

Architect 103 213.92 232,490,000.00

Architect 104 213.64 232,309,000.00

Architect 105 171.03 252,765,000.00
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Table 4. Cont.

Human Designs Energy kWh/m2/Year Construction Cost in Euros

Architect 106 213.11 232,919,000.00

Architect 107 170.03 285,391,000.00

Architect 108 171.11 251,731,000.00

Architect 109 139.94 260,840,000.00

Architect 110 166.83 255,443,000.00

Architect 111 214.48 231,983,000.00

Architect 112 151.95 230,490,000.00

Architect 113 176.19 240,309,000.00

Architect 114 141.08 257,099,000.00

Architect 115 213.74 235,870,000.00

Architect 116 145.96 235,601,000.00

Architect 117 141.95 262,390,000.00

Architect 118 159.13 259,965,000.00

Architect 119 179.19 234,877,000.00

Architect 120 168.58 234,004,000.00

Architect 121 156.19 258,738,000.00

Architect 122 173.95 236,553,000.00

Architect 123 144.02 262,370,000.00

Architect 124 213.57 234,038,000.00

Architect 125 149.21 258,210,000.00

Architect 126 157.73 257,781,000.00

Architect 127 149.28 253,951,000.00

Architect 128 173.94 254,547,000.00

Architect 129 167.02 261,919,000.00

Architect 130 150.14 254,580,000.00

Architect 131 179.21 251,635,000.00

Architect 132 170.03 260,998,000.00

Architect 133 151.82 261,359,000.00

Architect 134 213.41 235,500,000.00

The results for the designs generated by DesignBuilder’s optimisation engine are
shown in the optimisation converged at 309 model iterations, of which 13 were identified
as optimal and formed a Pareto front, as shown in red in Figure 7. The Pareto front is
identified with DesignBuilder optimisation automatically, and it uses equal weights for
each of the design objectives. In design, there is always a trade-off between competing
design objectives. Some of these design objectives need to be given a certain priority weight,
each of which makes those objectives that are given a higher priority in order to drive the
design. Wang et al. [31] reported that, in practice, the use of equal weights (50/50) is the
most popular weighting method.

Table 5 summarises the Pareto front solutions.
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Table 5. Energy consumption and construction cost for the optimal designs from the Pareto front.

Pareto Design Iteration Energy (kWh/m2/Year) Cost (DZD)

Pareto 01 107.79 DZD 212,521,000.00

Pareto 02 95.43 DZD 223,319,000.00

Pareto 03 104.41 DZD 212,935,000.00

Pareto 04 103.4 DZD 215,679,000.00

Pareto 05 90.35 DZD 230,570,000.00

Pareto 06 101.37 DZD 219,733,000.00

Pareto 07 93.34 DZD 226,477,000.00

Pareto 08 89.86 DZD 230,570,000.00

Pareto 09 110.84 DZD 207,874,000.00

Pareto 10 95.77 DZD 222,855,000.00

Pareto 11 93.66 DZD 226,012,000.00

Pareto 12 101.95 DZD 216,092,000.00

Pareto 13 109.09 DZD 211,031,000.00

The optimisation analysis was carried out on the basis of cross-referencing all design
variables from Tables 1–3. The Pareto solutions represent the designs that achieved the
minimum values for the energy and cost objectives, and neither objective could be improved
without harming the other. For both design objectives, minimisation is desired.

Among all the solutions generated by the optimisation, the Pareto curve comprises
13 solutions, as shown in Figure 7. For each Pareto optimum, the performance in the
energy consumption objective could only be improved by decreasing the performance in
construction cost.
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When examining the Pareto front curve more closely, there are optimal solutions that
can comparatively be more favourable than others. For instance, from Table 5, Pareto 08
achieved the most energy-efficient design with 89.86 kWh/m2/year. This Pareto optimal
is also the most expensive design on the Pareto front. Given that Pareto 08 offers better
outcomes at the same cost, we can confidently state that it dominates Pareto 05. In the
language of Pareto efficiency, this means that Pareto 08 is strictly preferred over Pareto 05.
Therefore, Pareto 08 is used as the baseline, against which the results from test subjects
are compared.

Figure 8 shows a comparison of the architects’ designs versus the designs that were
generated with multi-objective optimisation in DesignBuilder. The first observation is
that the bulk majority of architects who took part in this study are far from the range of
the optimal designs generated by the optimisation. The human-generated designs can be
considered failed designs as they do not achieve a trade-off between the two competing
design objectives. The primary energy consumption target was set to 100 kWh/m2/yr in the
design exercise, yet almost none of the architects were able to come close this energy figure.
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Computer optimisation clearly outperforms humans when searching for the best
trade-off between energy performance and construction cost. The architects had generated
various designs at substantially different performance levels when a considerably cheaper
design at a much lower energy consumption was found using optimisation. The analysis
of the human designs suggests that the architects are, to a certain extent, not concerned
with energy efficiency. Architects seem to struggle to position energy efficiency within
their professional boundaries. Figure 9 categorises architects’ performance by years of
experience and suggests that the relationship between design performance and experience
is not decisive. The relationship is a little clearer from Figures 10 and 11. Figure 10 shows
that the energy consumption of human-generated designs rises slightly as the architects’
years of experience rises. Figure 11 shows that more experienced architects generated
cheaper designs. The error bars shown in the charts suggest that these differences might
not be statistically significant.
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Architects with between 0 and 5 years of experience generated the most energy efficient
designs, while those having over 20 years of experience generated the least energy efficient
designs. The failure in achieving a competitive trade-off between design objectives worsens
as experience increases. The mean energy consumption and mean construction cost was
calculated for the 13 solutions in the Pareto front and taken to represent the performance
of the computer optimisation. Figure 11 indicates this mean energy consumption for the
optimization Pareto set so that it can be compared to that for architects in various ranges of
experience. The computer optimisation decisively outperforms even the best-performing
group of architects, those with the least experience.

The findings of this study suggest that professional design experience only improves
construction cost prediction but not design for low energy consumption. From Figure 9,
it appears that only a subgroup of architects was able to compete with the optimisation
in terms of construction cost (the horizontal strip of points at about the DZD 230 million
level, equivalent to GBP 1,336,518). The construction cost performance of the architects’
designs improves (i.e., cost decreases) as the architects become more experienced and
appears to converge towards the optimisation prediction, as seen in Figure 10. (The least
two categories of experience on the left-hand side of Figure 10 are a minor exception, but
these might not be significant.) On the other hand, the energy performance of the architects’
designs deteriorates (i.e., predicted energy consumption rises) as the architects become
more experienced, as can be seen in Figure 11.

It is striking in the results that the human architects (despite being instructed explic-
itly to balance the two objectives of construction cost and energy efficiency), were more
concerned with construction cost. The decline in energy performance as the architects
become more experienced is also striking. Construction cost estimation is known to be
highly affected by the architects’ reasoning that is nurtured through learning by doing
and professional expertise [32]. Elfaki and Alatawi [33] argue that early construction cost
estimation relies on human judgement, and there often are differences between estimates
even in the same project. This resonates with the data from the design experiment. Despite
receiving the same data, base case model, and instructions, there was a large variance in the
cost performance of the human architects (as evidenced by the large error bars in Figure 10).
It appears, however, that the more experienced architects can compete with the Pareto front
in terms of construction cost estimation.

In his book on Building Performance Analysis, De Wilde [6], on page 457, contrasts
the research into performance-based design with the practice of performance-based design
decision-making. He observes that, whereas the research (often by academics) assumes a
normative model of decision-making, design practice is actually based on tacit knowledge,
where decisions are made “on the go”. Performance criteria are usually incorporated into
designs through the application of tacit knowledge and expertise. This aligns with the
research of Woo et al. [34], who similarly highlights the importance of tacit (over explicit)
knowledge in the design and construction of buildings. From the research reported here,
the central issue seems to be the balance accorded to the two competing objectives of
construction cost and energy performance. The knowledge acquired during education is
effective in achieving better energy-efficient designs, but experiential knowledge seems to
tip the balance more in favour of reducing construction cost.

5. Conclusions

In general, the contribution of this research highlights that computer optimisation
outperforms human architects decisively in terms of the energy performance of the designs
but less conclusively in terms of the cost performance of the designs. Rather than improve
design performance in general, the architects’ reasoning that is nurtured through experience
seems to tip the balance from energy performance to cost performance. That is to say,
while computer optimisation shows promise in cost-effective design, the results are less
conclusive when compared to human architects. This nuanced outcome can be explained
by that the fact that experienced architects bring invaluable insights into local building
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practices, material availability, and labour costs. Furthermore, in terms of qualitative
factors, humans excel at considering subjective elements like aesthetics and user experience,
which can impact overall project value.

The findings in this study challenge the assumption that experienced architects pos-
sess extensive and effective reasoning in making design decisions. The reliance on the
designers’ reasoning in this context is only useful when making construction cost predic-
tions. Considering the objective of energy-efficient design in isolation, the performance
of novice architects is good (perhaps an indication of the Algeria system of architecture
training) but still sub-optimal compared to the computer optimisation. Practical experience
causes it to deteriorate further. In Algeria, during the first two years after graduation, ar-
chitects undertake training within a qualified architecture practice before being accredited
to practise independently. During this period, there is a knowledge transfer from expert
architects to novices, as novices collaborate on projects with experienced architects. This
allows experienced architects to share their knowledge with novices through “Communities
of Practice”. This shared knowledge is fundamental to the practice of architecture [34].
Moreover, this can also explain that, particularly among the younger population, there is a
growing ecological awareness driving a shift towards sustainability. This demographic is
increasingly passionate about addressing climate change through more environmentally
responsible design decisions. However, further research is needed to understand why
mid-career professional practice of architecture seems to erode the importance of energy
efficiency which is imparted during architecture training.

There is scope for future research in understanding the inner workings of the human
designers’ reasoning during design decision-making, perhaps using think-aloud verbal
protocols. The research reported here was limited in its use of a single design problem,
a single geographic location, and a single computer optimisation platform. A larger
sample size would have provided more statistical power. Ultimately, the framing of
human versus computer might be unhelpful. Architects can deploy computer optimisation
in a meaningful way appropriate to the respective strengths of humans and computers.
Computer optimisation can augment human reasoning, rather than compete with it or
replace it. This is particularly true in creative design or design teamwork [35].
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