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Abstract— This study addresses the challenges of energy 
deficiencies and high impact low probability (HILP) events in 
modern electrical grids by developing resilient microgrid energy 
management strategies. It introduces a sliding Model Predictive 
Control (MPC) methodology integrated with Battery Energy 
Storage Systems (BESS), emphasizing extending battery life and 
prioritizing critical loads during HILP events. This approach 
focuses on extending the sustainability of battery operation by lin- 
earizing the battery lifecycle within the optimization framework. 
Furthermore, this research proposed a straightforward method 
to mitigate communication disruptions during HILP events, 
thereby ensuring operational integrity. This focused approach 
enhances isolated microgrid resilience and sustainability, offering 
a strategic response to contemporary environmental challenges. 

 

I. INTRODUCTION 

Contemporary power systems face two serious challenges: 

energy shortages and the escalation of HILP events like natural 

disasters and cyber-attacks. Smart grids (SGs) have been 

introduced as a solution to tackle these challenges sustainably 

and efficiently [1]. 

The Advanced Metering Infrastructure (AMI), a funda- 

mental component of SGs, facilitates innovative concepts 

such as demand response, prosumers, and microgrids (MGs) 

[2]. This bidirectional communication system revolutionizes 

energy exchange dynamics by efficiently utilizing renewable 

energy sources (RES). Among these concepts, microgrids 

particularly stand out for their ability to efficiently harness 

RES, offering a clean solution to energy deficiencies. This is 

particularly crucial for remote areas where extending power 

lines is impractical, and RES can offer a viable alternative. 

Microgrids are capable of operating in both connected and 

isolated modes [3]. The isolated MG is considered here to 

serve remote areas. 

The inherent intermittency of RES poses a significant chal- 

lenge to the stability of microgrid systems. BESS plays a 

critical role in managing the energy fluctuations within isolated 

microgrids [4]. Given their high cost, extending the lifespan 

of BESS is paramount for their long-term viability within the 

 

system [5]. Hence, this paper proposes a method of directly 

incorporating the linearization of Depth of Discharge (DOD) 

to Battery Life Cycle (BLC) curves into the MPC optimization 

problem to maximize BESS lifespan. 

Furthermore, in the face of HILP events, prioritizing the 

supply of critical loads over regular loads becomes essential 

[6]. This study integrates such prioritization within the MPC 

model. Additionally, during HILP events, SGs face the risk of 

communication loss with loads. This paper also considers and 

mitigates the impacts of potential communication failures by 

predicting load demand during critical hours. 

Recent advancements in Model Predictive Control (MPC) 

for isolated microgrid energy management, such as those 

presented in [7], have explored optimizing battery life through 

minimizing switching costs. However, these efforts do not di- 

rectly incorporate battery longevity in their objective functions, 

leaving uncertain impacts on actual battery life. Moreover, 

while studies like [8], [9], [10], and [11] advance distributed 

control, cooperative energy management, load prioritization, 

and outage management to enhance resilience and fault toler- 

ance, they largely neglect the critical issues of communication 

system resilience and battery sustainability. This oversight in 

the literature highlights a significant gap in effectively address- 

ing communication failures and ensuring battery longevity 

within MPC models for achieving comprehensive microgrid 

resilience. 

This study introduces several advancements in the optimal 

operation of isolated microgrids. Optimal operation of isolated 

microgrids is carried out using a sliding window mechanism 

MPC model, which significantly improves decision-making 

accuracy by incorporating future data into hourly analyses, 

thus mitigating the impact of initial conditions. Moreover, 

by linearizing the BESS lifecycle within the optimization’s 

objective function, it optimizes the computational burden 

while focusing on extending BESS lifespan as a key step 

toward sustainable energy management. The study broadens 

its approach to energy distribution by addressing both standard 

and resilient operations, employing linearization techniques to 

reduce power imbalances and ensure a resilient system. Ad- 
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Fig. 1: Proposed Microgrid Energy Management. 

 

ditionally, a prioritization scheme is introduced to distinguish 

between essential and regular loads, particularly during HILP 

events, ensuring that critical services maintain functionality. 

Load prediction mechanisms are integrated to counter potential 

communication disruptions during such events, enhancing the 

model’s realism and resilience. This approach ensures the 

system’s robustness in facing unforeseen disruptions. 

The structure of this paper is as follows. Section II in- 

troduces the conceptual framework of the research, and will 

focus on conventional and resilience-enhanced control mech- 

anisms for BESS within a microgrid architecture. Section 

III examines simulation findings, evaluating the performance 

of the upgraded MPC model and the effects of innovations 

such as load prediction and priority. Finally, section IV will 

provide analysis of the study and its impact on enhancing the 

sustainability, resilience, and efficiency of isolated microgrids. 

II. MICRO-GRID MODEL 

This section discusses the components of the model and the 

mathematical formulation behind it. As illustrated in Figure 

1, the architecture of the microgrid encompasses RESs such 

as wind and solar generators, alongside BESS facilities. The 

design incorporates dual power lines dedicated to supplying 

both essential and regular loads independently. Furthermore, 

this figure highlights the role of the MPC controller, which is 

an essential component responsible for regulating the battery’s 

charging and discharging processes. In this model, the MPC 

is assumed to be on the supplier side, managing the renewable 

generation and battery storage. 

Taking into consideration the generation sources, Figure 

2a shows a typical output from solar and wind sources over 

four days and their summation. This timeframe exceeds the 

three days considered by the sliding MPC to accommodate 

its operational logic, which involves anticipating the next 24 

hours for each battery management decision, and then sliding 

the assessment window by 24 hours following each decision. 

Thus, for a three-day analysis, data for four days is essential. 

Notably, in the event of a HILP scenario like a wind storm, 

wind generation typically peaks just before and after the event. 

In fact, during a storm, wind turbines may cease operation due 

to safety mechanisms, leading to a drop in wind generation 

(a) 
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Fig. 2: a) Wind, Solar, and Total Power Generation. b) Essen- 

tial Loads, Regular Loads, and Total Load Consumption. 

 

to zero, while some solar generation might still occur. In 

this case, in the second day, between hours 27 to 39, the 

system was hit by a HILP event. Figure 2b illustrates the 

consumption patterns of essential and regular loads, along 

with their combined total. The essential load demonstrates a 

stable, nearly flat profile, fluctuating within a narrow range, in 

contrast to the regular load, which varies throughout the day. 

Another significant contribution of this article lies in ad- 

dressing the potential loss of the communication system, or the 

cyber layer, during the HILP event. Specifically, the disruption 

begins at hour 27, leading to the assumption that data on 

load consumption from the load side becomes unavailable. A 

simple yet effective strategy that uses the average of the last 

two hours to estimate the load demand was adopted. However, 

upon concluding hour 27 and moving to decide on hour 28, 

the exact consumption for hour 27 becomes known, allowing 

for the use of precise data from hour 27 combined with hour 

26 data to forecast the load demand for hour 28. Employing 

this strategy results in a Root Mean Square Error (RMSE) of 

0.035 for essential loads, 0.162 for regular loads, and 0.145 for 

the total load. The advantage of this method is the minimal 

error observed in predicting essential loads, thus enhancing 

the robustness of the optimization process, even in scenarios 

of cyber layer disruption. This improved accuracy is attributed 

to the typically stable consumption pattern of essential loads, 

characterized by minimal fluctuations. The prediction for the 

second day is demonstrated in Figure 3. 
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Fig. 3: Essential and regular loads (straight lines) and load 

predictions (markers) during HILP event. 

 
 

Fig. 4: Battery Life Cycle as a Function of DOD. 

 
 

This work evaluates the effectiveness of a conventional 

BESS control strategy against an integrated BESS resilience 

management approach. The model, based on Mixed Integer 

Linear Programming (MILP), simplifies the curve of Depth of 

Discharge (DOD) related to battery lifecycle into eight linear 

sections. This curve can be found at [7]. This adaptation facil- 

itates its direct application in the MPC optimization problem, 

as shown in Figure 4. By manipulating several mathematical 

constraints, we force the MILP problem to choose from these 

eight segments based on the DOD variable. Consequently, the 

Battery Life Cycle (BLC) is calculated as part of the objective 

function, ensuring its integration into the optimization model 

while keeping the problem linear. 

Now, a general mathematical optimization framework per- 

tinent to this study will be introduced. Model parameters are 

detailed in Table I. 

Within the optimization framework, three primary sets are 

identified. The set K corresponds to time slots, encompassing 

a complete 24-hour cycle. The set A details the operational 

states of the battery, such as charging (CH), discharging (DIS), 

and idle (IDLE) modes. The set B is related to the eight 

distinct sections of the battery life cycle curve, with each 

section represented as a piecewise linear segment. 

This work builds upon the optimization framework outlined 

in [7], incorporating formulas for the State of Charge (SOC) of 

BESS, various BESS operational modes, and BESS switching 

TABLE I: Resilient Energy Management of Microgrid Opti- 

mization Parameters 
 

Parameter Initial Value Parameter Initial Value 
PRE GEN Renewable Power Pload 2 Regular Load 
Pload 1 Essential Load wt [0,1] 
ωbat [0,1] wR [0,1] 
ηch 0.90 wBLC [0,1] 
ηdis 0.95 Big M 100 
SOCinit 0.5 Cbat 125 
SOCmin 0.2 Cch dis 0.055 
SOCmax 0.9 Cno ch  dis 0.055 

   Cidle 0.0275 Pbatmax 4  

 

costs into the objective function Jbat(k), alongside the total 

power imbalance cost function Jt(k). The battery life cycle is 

calculated after optimization as a sub-product in [7], whereas 

in this study, it is linearized and directly incorporated into the 

objective function. Additionally, this study enriches the model 

by integrating resiliency and battery lifecycle considerations 

into the cost function. 

The SOC rule, grounded in MPC, ensures that SOC is 

updated based on the net effect of charging and discharging 

activities. The MPC framework incorporates a sliding window 

approach to improve the accuracy of SOC forecasting. This 

strategy involves utilizing data for a future 24-hour period at 

each hourly increment to update the SOC, ensuring decisions 

are informed by a comprehensive predictive outlook. Specifi- 

cally, if the model is at hour 1, it employs data for the next 24 

hours to determine the SOC for hour 2. This sliding window 

mechanism facilitates an ongoing forward-looking analysis, 

enabling the model to make well-informed predictions and 

optimizations. Although this method provides data extending 

to day 4, the optimization results are confined to 3 days. This 

modelling technique highlights the anticipatory nature of MPC 

by optimizing future states based on current decisions and 

available forecasts, thus significantly influencing the system’s 

energy management strategy through an accurate reflection of 

the battery’s operational dynamics over a predictive horizon. 

Additionally, this approach mitigates the impact of the choice 

of initial SOC, making the optimization process less sensitive 

to initial conditions and more resilient to variations in starting 

SOC levels. 

The management of the battery’s life cycle is achieved 

through a structured piecewise linear model that encapsulates 

the relationship between the DOD and the BLC. The total 

cost associated with the battery life cycle for each period, k, 

is represented by JBLC(k). This total cost is a summation 

of individual life cycle costs across all segments, b, within 

the set B, indicative of the battery’s degradation stages. 

Mathematically, this relationship is expressed as: 

 

JBLC(k) = BLC(b, k) (1) 

b∈B 

where BLC(b, k) denotes the cost attributed to the battery 

life cycle for segment b at time k. 

The framework’s optimization includes a cost function for 

power resiliency, JR(k), which underscores the importance 
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of prioritizing essential loads over regular loads. This prior- 

itization is mathematically articulated in the resiliency cost 

function at time k as: 

J (k) = 1 
Total weighted loss(k) 

. (2a)
 

R Total weighted load(k) 

Total weighted loss(k) = 

ωessential × Pessential imbalance(k) 

+ωregular × Pregular imbalance(k). (2b) 

Here Pessential imbalance(k) indicates the power imbalance for 

essential loads at time k, while Pregular imbalance(k) signifies 

the power imbalance for regular loads at time k. ωessential 

and ωregular are coefficients reflecting the relative importance 

or cost of power imbalances in essential and regular loads, 

respectively. Assigning ωessential a higher value than ωregular 

quantifies the prioritization of essential loads, ensuring that 

disruptions affecting critical operations carry a greater cost. 

This strategic allocation of weights effectively guides the 

system toward maintaining service continuity for essential 

functions. 

The objective function of the optimization model aims to 

minimize the overall cost, taking into account various compo- 

nents related to battery operation, BLC, power imbalance, and 

power resiliency. This function is formulated as follows: 

min 
Σ  

ωbat · Jbat(k) − ωBLC · JBLC(k) 

for microgrid energy management, the second scenario takes 

into account the potential loss of the cyber layer during 

HILP events. The forecasting method proposed in section II 

for load prediction during these hours exhibits commendable 

accuracy, with an RMSE for essential loads around 3.5%, 

indicating nearly identical resilience index outcomes with a 

minor difference of 0.001 compared to scenarios with precise 

load knowledge. As outlined in Equation 2b, the weighting 

factor for essential loads is higher. Due to improved accuracy 

in predicting essential load consumption, the resilience index 

(RI) remains consistent. However, there is a greater loss in 

regular loads, attributed to lower precision in their prediction. 

In the second scenario, losses in essential loads were recorded 

at 11.559 kW, while increased in regular loads at 21.621 

kW, resulting in a resilience index of 0.844. The expected 

battery lifespan is estimated at 28.372 years, reflecting a one- 

year decrease compared to the first scenario. Additionally, 

this scenario observed 15 switches in operation modes of the 

BESS, with the battery discharging 23 times. 

Delving into the specifics of the first scenario, which 

emerges as the optimum choice, Figure 5a displays the bat- 

tery’s SOC over three days. Observations reveal that prior to 

hour 28, when the HILP event impacts the system, the battery 

charges itself to reach maximum capacity. It then endeavors 

to sustain this charge level to minimize essential load loss 

during the latter hours of the HILP event. In this scenario, it 

k∈K 

+ ωt · Jt(k) − ωR · JR(k)
 

, 

(3) becomes evident that the management strategy is mindful of 

battery longevity, opting to keep the battery in IDLE mode 

until its use is necessary. It is noteworthy that the battery’s 

where ωbat, ωBLC, ωT, and ωR: are weighting factors for the 

respective costs, reflecting their relative importance in the 

objective function. While the first two terms of the objective 

function control the battery switching and life cycle, the latter 

two elements deal with power management. This objective 

function integrates the various cost components, ensuring a 

balanced operational efficiency, battery sustainability, power 

balance, and resiliency within the energy management system. 

III. SIMULATION RESULTS AND DISCUSSIONS 

In this section, two distinct scenarios will presented. The 

first incorporates all objective functions with precise load data, 

and the second addresses the loss of the communication system 

during a HILP event. 

Upon comparing various scenarios that involved adjusting 

the weighting of elements within the objective function, the 

scenario in which all elements were considered emerged 

as the most balanced. This scenario achieved equilibrium, 

characterized by reasonable total switches, expected lifespan, 

resilience index, and system dynamics. It resulted in a total 

of 22 switches between different operation modes of the 

BESS, with the battery discharging 19 times. Essential load 

losses amounted to 11.629 kW, and regular load losses to 

21.061 kW, culminating in a total loss of 32.691 kW. The 

resilience index for this scenario stood at 0.845, and the 

expected lifespan of the battery was estimated at 29.29 years, 

as shown in Figure 5. Identified as the optimal approach 

operational capacity remains constrained within a range from 

0.2 kW to 3.6 kW due to the SOC limitations imposed on the 

battery system. 

Figure 5 displays the power supply, total demand, and total 

imbalances as shown in 5a. It is important to note that positive 

imbalances occasionally occur due to the limited capacity 

of the BESS. Furthermore, Figure 5b illustrates the optimal 

management’s efforts to minimize losses as much as possible. 

On the other hand, Figure 5c indicates that power management 

prioritizes essential loads over regular ones, resulting in less 

attention to the latter. 

The expected RI curve is utilized to evaluate the impact of 

the sliding MPC approach presented, as illustrated in Figure 6. 

This is evident when an HILP event occurs at hour 3 on day 

2, persisting for 13 hours within the system. Consequently, 

the expected RI diminishes, reaching its lowest point during 

the MPC decision-making process at hour 17. This decline 

continues for several hours, attributed to the MPC’s forward- 

looking capability. Upon anticipating a return to normalcy, the 

MPC forecasts a subsequent upturn in the RI trend. 

IV. CONCLUSION 

This study highlights the effectiveness of a sliding MPC 

approach for optimizing microgrid energy management, to 

enhance sustainability and resilience. By incorporating future 

data for decision-making, the model significantly improves 

prediction accuracy and operational efficiency, particularly 
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by extending BESS longevity and prioritizing essential loads 

during HILP events. Results demonstrate improvements in 

resilience and battery life, contributing to advancements in 

isolated microgrid optimization. 

Future research will focus on integrating flexibility re- 

sources like demand response, addressing uncertainties in 

renewable generation and load demand with advanced opti- 

mization techniques, and developing precise load prediction 

models. Additionally, we will compare our results with multi- 

objective optimization approaches, consider real-world case 

studies including real communication protocols and hardware- 

in-the-loop setups. 
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Fig. 5: a) Total Power Imbalances and State of Charge. b) 

Power Imbalances in Essential Loads. c) Power Imbalances in 

Regular Loads. 

 

 
 

Fig. 6: Resilience Index Expectation in Sliding MPC. 
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