
 1

IoT-Driven Visual Surveillance: Temporal Masking for

Adaptive Motion Compensation in Imaging Technology
Ali Akbar Siddique1, Wad Ghaban2, Amer Aljaedi3, Faisal Saeed4, Mohammad S. Alshehri5, Ahmed Alkhayyat6,

Hussain Mobarak Albarakati7, Member, IEEE

Abstract — Global security is a matter of critical concern

that requires adoption of advanced monitoring technologies.

Efficient surveillance systems comprise extensive camera

networks across large areas to ensure comprehensive

coverage. However, the large volume of data generated by

these networks poses challenges for traditional storage and

computational resources. This paper presents an innovative

video compression technique that focuses on optimizing data

management in visual surveillance systems by selectively

masking temporal information between frames. This technique

introduces a specially designed adaptive masking filter, which

hides the undetectable motion in video sequences and enhances

video compression. The introduced masking technique uses an

adaptive masking parameter ‘q’ to improve frame prediction or

to compensate for the masked temporal activity during

decoding and achieves over 30% bit-rate reduction compared

to the standard video encoding schemes, such as H.264/AVC.

Moreover, the introduced technique also reduces the

computational demands while keeping the quality of the output.

This can be evidenced by a Peak Signal to Noise Ratio (PSNR)

of 33.67 dB and a Structural Similarity Index (SSIM) of 92.7%

in a traffic video sequence. The proposed technique holds the

potential to be used in efficient IoT-driven video surveillance

systems to process video frames efficiently without

compromising quality.

Index Terms — Intra-Frame coding, Temporal Masking,

Adaptive Motion Compensation, Video Surveillance, Imaging

Technology.

I. INTRODUCTION

Uncompressed video data from cameras isn't suitable for

transmission due to its large size [1]. Available channel

bandwidth often struggles to sustain the required bitrate for live

video streaming, notably in applications needing multilayered

streams like surveillance or critical location monitoring. For

about a decade, real-time applications for ticketing traffic

violations have emerged. It's essential to penalize offenders to

encourage caution and prevent accidents [2]. Numerous

cameras are strategically placed in various locations prone to

violations. Cameras generate tons of data that could surpass

A. A. Siddique is with the Department of Telecommunication Engineering,

Sir Syed University of Engineering, Karachi, Pakistan (e-mail:
asiddiqui@ssuet.edu.pk)

W. Ghaban Applied is with the College, University of Tabuk, Tabuk, 47512,

Saudi Arabia (e-mail: Wghaban@ut.edu.sa)
A. Aljaedi is with the College of Computing and Information Technology,

University of Tabuk, Tabuk 71491, Saudi Arabia (e-mail: aaljaedi@ut.edu.sa)

F. Saeed is with the DAAI Research Group, College of Computing and
Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

(e-mail: faisal.saeed@bcu.ac.uk)

storage limits without compression. Wireless channels often

lack the capacity for low Compression Ratios (CR) needed.

When CR goes up, video quality tends to drop [3]. The Joint

Picture Expert Group (JPEG) has a guideline, a quantization

table, to assess video quality. Higher CR leads to more

distortion like ringing or blurriness, indicating over-

compression [4]. For seamless sharing, transmitted information

should align with the receiving end's characteristics [5]. An

escalation in Compression Ratio (CR) leads to a rise in

distortion artifacts like ringing, blockiness, and blurriness

within the video content, as highlighted in studies [6]. The

aforementioned video artifacts indicate that the video has been

excessively compressed, which leads to the degradation of the

quality of the video [7]. To facilitate seamless transmission of

information, it is important that the characteristics of the data

being sent should match the computational capabilities of the

receiving system [8]. The compatibility between the transmitted

data and the receiving system is crucial for minimizing

transmission errors. As explained in the study [9], in video-

based applications, a new dimension called time or temporal

dimension is added on top of the usual rows and columns.

While still images are mostly handled in the spatial domain and

don't have any extraneous information, a video series is made

up of these still images and has a lot of extraneous information

in the time domain across consecutive frames [10]. This natural

repetition in the series of frames makes it possible to compress

only the temporal activity within these frames, an idea that has

been looked into in detail in a number of studies [11-12]. This

use of temporal redundancy is the reason for tailored

compression methods in video data, which focus on the changes

that happen over time in the video stream. Video coding

employs two primary compression algorithms: lossy and

lossless compression [13]. Lossy compression, responsible for

reducing video size, uses Discrete Cosine Transform (DCT) to

switch images from spatial to frequency domains, and

quantization to eliminate less crucial high-frequency

components for frame reconstruction [14-16]. Estimating

Motion Vectors (MV) between consecutive frames and

capturing their temporal activity is crucial. MV, combined with

M. S. Alshehri is with the Departments of Computer Science, College of

Computer Science and Information Systems, Najran University, Najran 61441
Saudi Arabia (e-mail: msalshehry@nu.edu.sa)

A. Alkhayyat is with the Islamic University, 54001 Najaf, Iraq (e-mail:

ahmedalkhayyat85@iunajaf.edu.iq)
Hussain Mobarak Albarakati is with the Computer Engineering Department,

College of Computer and Information Systems, Umm Al-Qura University,

Makkah 24382, Saudi Arabia (e-mail: hmbarakati@uqu.edu.sa)

mailto:asiddiqui@ssuet.edu.pk
mailto:Wghaban@ut.edu.sa
mailto:aaljaedi@ut.edu.sa
mailto:faisal.saeed@bcu.ac.uk
mailto:msalshehry@nu.edu.sa
mailto:ahmedalkhayyat85@iunajaf.edu.iq
mailto:hmbarakati@uqu.edu.sa

2

residual frame data (difference image), aids in predicting or

reconstructing frames during decoding through Motion

Compensated Prediction Techniques [17-18].

This paper presents a novel algorithm that extracts motion

vectors from consecutive video frames. These vectors capture

various motion activities occurring within the frames that are

imperceptible to the naked eye in real-time applications.

Exploiting this insight, the proposed algorithm masks a

negligible amount of temporal activity that contributes

minimum to the overall video stream. This strategic application

of Motion Masked Compensated Prediction (MMCP) employs

a parameter denoted as 'q' to achieve this masking effect,

culminating in a substantial 93.17% Structural Similarity Index

(SSIM). Through the utilization of this novel approach, the

algorithm adeptly distinguishes and isolates less crucial

temporal activity, enhancing the efficiency of video processing

and quality assessment in real-time scenarios.

The role of the Internet of Things (IoT) in this particular field

is vital in enabling communication between edge devices across

the network and also maintaining connectivity. The integration

of IoT-based visual surveillance with imaging technology helps

in facilitating consumer-focused gadgets that include

smartphones, cameras, and other similar imaging devices

capable of capturing images and videos in real-time. Fig 1

portrays the emerging technologies within the Consumer

Electronics domain. It also signifies that the proposed research

relies on an IoT-driven application, aligning directly with the

landscape of Consumer Electronics. The proposed technique is

important for the advancement of imaging technologies in

consumer electronics. It contributes to the current state of the

art by tackling the difficulties associated with motion

compensation using a novel technique driven by the Internet of

Things (IoT).

Fig. 1. Emerging Technologies in the Domain of Consumer Electronics

II. RELATED WORK

The process of feature propagation in motion coding is

enhanced by repeated encounters, leading to a stronger ability

to use long-range temporal correlation. Authors in [19]

proposed using hybrid context creation to effectively use the

multi-scale context information and enhance the mobility

condition. Most hypothesis modules generate different

movements and distorted features to extract enough temporal

information, enabling diverse inference possibilities from the

reference frame. In order to make better use of these

hypotheses, authors in [20] included the hypotheses attention

module by incorporating the channel-wise squeeze-and-

excitation layer and the multi-scale network. Context

combination merges weighted hypotheses to create powerful

contexts with strong temporal priors. Weighted warped

characteristics are combined in the right circumstances to

improve compression efficiency [21]. Multi-modes like

ConvLSTM-based feature domain prediction, optical flow-

conditioned feature domain prediction, and feature propagation

can handle static scenes without visible movements to dynamic

situations with a moving camera as proposed in [22]. For

temporal prediction in spatial block-based representations,

authors block the feature space and incorporate dense and

sparse post-quantization residual blocks for entropy coding and

optional run-length coding on sparse residuals to increase

compression. The authors present a unique unsupervised video

semantic compression issue that compresses semantics

downstream task-agnostically in [23]. They propose a Semantic

Mining-then-Compensation (SMC) framework to add semantic

coding to the plain video codec to solve this issue. Inspired by

current masked image modeling (MIM) approaches,

they improve the framework with just unlabeled video data by

masking off a part of the compressed video and recreating the

masked portions of the original video.

Authors in [24] proposed a reliable underwater image

compression method, where an underwater image extreme bit

rate compression begins with an autoencoder. After that, a

multistep training technique is suggested to progressively learn

channel deterioration aspects to strengthen the decoder. The

main channel compresses with a low bit rate and great

resilience, while the branching path compensates for picture

block retransmission using the feedback signal. Experimental

findings show that reconstructed images can be identified with

a compression ratio of up to 1/768 and an average bit error rate

of up to 10−1. It is possible that traditional codecs may not

always maintain characteristics that are essential to machine

learning algorithms when bandwidth is constrained, which

might result in performance that is possibly inferior. An

application-driven improvement of programmable commercial

codec settings was investigated by the author in [25] for

network learning tasks such as image classification. Because

they can extract relevant information from vast volumes of

complex data, deep learning and AI are ideal for real-time On-

board image applications. Authors in [26] present a lossy image

reduction approach using a Convolutional Autoencoder (CAE).

It can be done on the satellite and can save, reduce, and rebuild

camera images. Authors in [27] conduct a comparative analysis

of conventional and contemporary lossy image compression

methods using the Kodak Dataset. The approaches encompass

Autoencoders, Principal Component Analysis (PCA), K-

Means, and Discrete Wavelet Transform (DWT).

III. IOT-ENABLED VISUAL SURVEILLANCE FRAMEWORK

Video coding methods play a pivotal role in maximizing the

3

transmission, storage, and computational resources in

surveillance applications inside IoT-driven frameworks.

Utilization of well-known video coding standards such as

H.264/AVC, H.265/HEVC, or even more recent ones like AV1,

in IoT environments tends to compress video data without

compromising crucial information. Since IoT devices are not

able to cater to the information generated by video sources,

processing such as compression becomes vital in such a

scenario. The compression process leverages predictive coding

intra- and inter-frame prediction, transform coding, and entropy

coding to minimize the redundant information present within

the consecutive frames of the same scene, this process is

performed across the entire video sequence. Motion estimation

and compression play a key role in the process of video

compression within the visual surveillance domain. Block

matching and pixel-based matching approaches are utilized to

predict motion in the form of motion vectors between

consecutive frames which in turn aids in achieving better

Compression Ratio (CR). Predicting and transmitting only the

changes (extracted motion vectors) between the frames instead

of the entire frame, the bandwidth utilized is reduced, making

it feasible for IoT devices with limited or poor connectivity. Fig

2 represents the scenario of integrating a video coding scheme

in an IoT-enabled surveillance application.

Fig. 2. IoT-Enabled Surveillance Application Integrated with Video

Coding in Imaging Technology

IV. VISUAL DATABASE CORRELATION AND UTILIZATION

Table. 1 outlines the key characteristics of five separate video

sequences used. Every sequence is distinguished by a constant

resolution of 352×288 pixels, guaranteeing consistency across

the visuals. Differences in frames per second (FPS) are present

among the sequences, with the 'Sky' and 'Traffic' sequences

running at 25 FPS, while 'Foreman,' 'Street,' and 'sampleQCIF'

retain a higher speed of 30 FPS. Similarly, the length of these

sequences differs ranging from 21.55 MB for 'sampleQCIF' to

105.36 MB for the 'Sky' sequence. The videos strictly conform

to the YUV format, indicating their color encoding method.

This detailed table clearly illustrates the subtle variations in

frame rates, sizes, resolutions, and formats of the essential

video sequences that are crucial to the algorithm. The

significant variations in file sizes indicate the varying intricacy

and information density included within these sequences. The

dataset utilized in the proposed work is taken from [28].

TABLE I

VIDEO DATASET USED AND THEIR CHARISMATICS

Video
Sequence

Resolution FPS Size Format

Sky 352×288 25 105.36 MB YUV

Traffic 352×288 25 41.21 MB YUV

Foreman 352×288 30 43.5 MB YUV

Street 352×288 30 39.68 MB YUV

sampleQCIF 352×288 30 21.55 MB YUV

In an extensive extraction process, a total of 100 frames from

each of the 5 video sequences has been retrieved and visualized

forming a comprehensive display, a few samples are given in

Fig 3. Equation (1) represents the frame extraction process from

the YUV video sequences. The variable i represents the frame

number that is being targeted for extraction. The 'stream'

variable represents all frames and their associated metadata.

The variable 'l' defines the byte size of each frame in the video

stream. w and h represent the width and height of the frame.

Equations (2-4) represent the individual Y, U, and V

components that make up an entire frame when combined. Y

component provides information regarding the brightness of a

frame depicted as a grayscale image. U and V components carry

color information and represent the color difference between

luminance and the actual color itself. The Y component is

usually subsampled in comparison to these components since

human perception is more sensitive to variations in brightness

(luminance) than in color. The U and V components, even at a

reduced resolution as shown in (3-4), nonetheless enable

precise color reproduction when paired with the Y component.

Fig. 3. Row 1: Sky Sequence, Row 2: Traffic Sequence, Row 3: Foreman

Sequence, Row 4: Street Sequence, Row 5: sample QCIF Sequence

𝐹𝑟𝑎𝑚𝑒[𝑖] = 𝑠𝑡𝑟𝑒𝑎𝑚[(𝑖 − 1) × 𝑙 + 1: 𝑖 × 𝑙] (1)

𝑌𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝑟𝑎𝑚𝑒[𝑖][1: 𝑤 × ℎ], 𝑤, ℎ)𝑇 (2)

4

𝑈𝐶𝑜𝑚𝑝𝑝𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠𝑎ℎ𝑝𝑒 (𝐹𝑟𝑎𝑚𝑒[𝑖][𝑤 × ℎ + 1: 1.25 × 𝑤 ×

ℎ],
𝑤

2
,

ℎ

2
)

𝑇
 (3)

𝑉𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝐹𝑟𝑎𝑚𝑒[𝑖][1.25 × 𝑤 × ℎ + 1: 1.5 × 𝑤 ×

ℎ],
𝑤

2
,

ℎ

2
) (4)

Each video sequence comprises individual frames that, when

played at a predetermined pace, constitute a continuous video

sequence. The correlation coefficient index for just the first 50

frames of each sequence is shown in Fig 4. Equation (5) is used

to find the correlation coefficient index (CCI) for 50 frames of

each sequence. 𝐶𝐶𝐼𝑖 denoted the correlation coefficient index

of consecutive frames in the same video sequence.

𝑐𝑜𝑣(𝑖𝑚𝑔[𝑖], 𝑖𝑚𝑔[𝑖 + 1]) is the covariance between the current

frame and the incoming frame given in (6), in this equation i is

the current frame and j is the incoming frame. n represents the

number of pixels in each frame, 𝑖𝑘 and 𝑗𝑘 are the individual

pixel values at the corresponding positions in frames i and j,

respectively. 𝑖′ and 𝑗′ denotes the mean of frames i and j.

𝐶𝐶𝐼𝑖 =
𝑐𝑜𝑣(𝑖𝑚𝑔[𝑖],𝑖𝑚𝑔[𝑖+1])

𝜎𝑖𝑚𝑔[𝑖]∙𝜎𝑖𝑚𝑔[𝑖+1]
 (5)

𝑐𝑜𝑣(𝑖,𝑗) =
1

𝑛−1
∑ (𝑖𝑘 − 𝑖′) ∙ (𝑗𝑘 − 𝑗′)𝑛

𝑘=1 (6)

Fig. 4. Correlation Coefficient Index of 5 Video Sequences

V. TEMPORAL MASKING FOR ADAPTIVE MOTION

COMPENSATION

In the process of video coding, one important step is

acquiring motion information from a series of frames that make

up a video clip. Complex methods, like block matching

algorithms, are often used in this process to find patterns of

motion between frames that are next to each other.

A. Block Matching for Dynamic Motion Extraction

Bi-directional motion estimation via block matching

algorithms entails the prediction of motion in both the forward

and backward directions for every block in successive frames.

The method of forward motion estimation with a block-

matching algorithm entails determining the motion vector

(𝑀𝑉𝑓) that signifies the displacement between a block in the

reference frame 𝐼𝑟 and the most suitable matching block in the

following frame 𝐼𝑛 represented in (7). Here, 𝐵𝑟 denotes an 8 × 8

block in 𝐼𝑟 and 𝐵𝑛(𝑥, 𝑦) denotes block in 𝐼𝑛 at coordinate (𝑥, 𝑦).

𝑀𝑉𝑓 is determined by finding the block 𝐵𝑛(𝑥′, 𝑦′) in 𝐼𝑛

depicting the minimum difference. (𝑥′, 𝑦′) demonstrates the

displacement or motion vector. Similarly, for each block in 𝐼𝑟 ,

find the best matching block in the previous frame 𝐼𝑝 using the

block matching algorithm. This process identifies the motion

vector 𝑀𝑉𝑏 that represents the backward displacement. The

search area for the proposed algorithm is 16 pixels. The

miniature red arrows depicted in Fig 5 illustrate the directional

flow of the macroblocks movement between the successive

frames.

𝑀𝑉𝑓,𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑥′,𝑦′) ∑ ‖𝐵𝑟(𝑥, 𝑦) − 𝐵𝑛(𝑥 + 𝑥′, 𝑦 + 𝑦′)‖2
(𝑥,𝑦) (7)

B. Proposed Adaptive Temporal Masking Strategy

Given that most of the information between consecutive

frames is redundant. To optimize use, it is best to code just the

changes within the frame, rather than the entire frame itself. In

the context of consecutive frames within a video sequence,

there is minimal temporal activity or motion between two

adjacent frames. The human eye is unable to detect this degree

of motion, particularly when the video is played in real-time.

Temporal masking exploits the phenomenon of reduced motion

activity between successive frames and conceals the activity

that is imperceptible to the human eye. This method aims to

preserve the integrity of crucial temporal activity while

deliberately concealing low-motion activity. Utilizing

statistical motion analysis within the frame given in (8), the

standard deviation (σ) of motion vector magnitude is computed

given in (9). N represents the total number of motion vectors

while 𝑑𝑥𝑖 and 𝑑𝑦𝑖 are the motion vectors along x and y axis

respectively.

𝑀𝑉(𝑥,𝑦) = ∑ (𝑑𝑥𝑖 , 𝑑𝑦𝑖)𝑁
𝑖=1 (8)

𝜎 = √
1

𝑁
∑ (𝑑𝑥𝑖

2 + 𝑑𝑦𝑖
2)𝑁

𝑖=1 (9)

Temporal masking uses adaptive thresholding to determine a

threshold depending on temporal data. This approach adjusts

the threshold for video sequence motion intensity. In adaptive

thresholding, a statistical feature like standard deviation is used

to dynamically alter the threshold to differentiate significant

changes from minor variations. This allows exact motion data

separation and selective treatment. Equation (10) represents the

Adaptive Threshold (𝑞𝑎) where 𝛼 is the sensitivity of the

thresholding factor 𝛼 parameter governs the reaction of 𝑞𝑎 and

its variation for the motion vector magnitudes. An increased

value of α results in a more rigorous threshold. Establishing a

higher threshold value selectively eliminates less motion

activity.

5

𝑞𝑎 = 𝛼 × 𝜎 (10)

Fig. 5. (a) Current Frame. (b) Next Frame. (c) Extracted MV from the

current frame and the next frame. (d) Masked MV(x’, y’) at 𝜶 = 𝟎. 𝟓

Equation (11) depicts the filter that integrates 𝑞𝑎 to mask the

less motion activity. 𝑀𝑉(𝑥′,𝑦′) represents the Masked Motion

Vectors, this condition assesses each motion vector (𝑑𝑥𝑖 , 𝑑𝑦𝑖)

and adjusts it to (0, 0) if both components are within the

adaptive threshold range. Otherwise, it keeps the original

motion vector. Fig 5 depicts the order of frames, including the

present frame Fig 5(a), and the next frame Fig 5(b). The

MV extracted between these frames is shown in Fig 5(c),

illustrating the directional information of pixel displacements.

Fig 5(d) displays the masked motion vectors 𝑀𝑉(𝑥′,𝑦′), which

shows the motion information that has been filtered or adjusted

using the proposed masking technique.

𝑀𝑉(𝑥′,𝑦′) = {

0 𝑖𝑓 − 𝑞𝑎 < 𝑑𝑥𝑖 < 𝑞𝑎

0 𝑖𝑓 − 𝑞𝑎 < 𝑑𝑦𝑖 < 𝑞𝑎
(𝑑𝑥𝑖 , 𝑑𝑦𝑖) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

C. Adaptive Motion Compensated Prediction

The process starts by obtaining extracted frames in real time

depicted in Fig 6. The initial frame, or the first frame of the

sequence, will remain unchanged. This frame will act as a

reference frame 𝑓(̅𝑥, 𝑦, 𝑡) for the subsequent incoming frame

𝑓(𝑥, 𝑦, 𝑡). Residual frame 𝑒(𝑥, 𝑦, 𝑡) is obtained by taking the

difference between the reference frame and the targeted frame.

Spatial and temporal redundancy aids the compression process

by encoding only the motion features. At the same time, motion

is extracted by identifying areas of similarity between the two

frames. This is the vital information that assists in generating a

prediction of a frame at the decoder end. The proposed

algorithm masks the temporal activity based on the amount of

motion that it possesses by adaptively selecting appropriate 𝑞𝑎

parameter. This innovative approach enriches the encoding

process by effectively masking regions with minimal motion,

optimizing the utilization of available data. This is followed by

transform coding, usually using Discrete Cosine Transform

(DCT) given in (12-13), on the residual frame and occasionally

the prediction. Each frame of an entire video sequence is

present in the spatial domain, it is necessary to transform it into

the frequency domain which can be done using DCT. The DCT

translates spatial data into frequency components,

concentrating signal energy in fewer coefficients. Quantization

reduces data by approximating or zeroing less essential DCT

coefficients given in (14). Lastly, the entropy coding method

gives shorter codes to more common patterns to compress the

remaining data, resulting in a highly compressed video with

maintained quality.

𝐷(𝑖, 𝑗) =
1

√2𝑁
𝐶(𝑖)𝐶(𝑗) ∑ ∑ 𝑓(𝑥, 𝑦)𝐶𝑜𝑠 [

(2𝑥+1)𝑖𝜋

2𝑁
] 𝐶𝑜𝑠 [

(2𝑦+1)𝑗𝜋

2𝑀
]𝑀−1

𝑦=0
𝑁−1
𝑥=0 (12)

𝐶(𝑢) = {
1

√2
 𝑖𝑓 𝑢 = 0

1 𝑖𝑓 𝑢 > 0
 (13)

𝑄(𝑖, 𝑗) = 𝑟𝑜𝑢𝑛𝑑 (
𝐶(𝑖,𝑗)

𝑄𝑖×𝑄𝑗
) (14)

The essence of video compensation lies in expressing the

prediction of a current frame by leveraging the information

from the previously encoded frame given in (15). 𝑓𝑡(𝑥, 𝑦, 𝑡)

represents the predicted frame at the decoder end that utilizes

the encoded residual frame �̅�𝑡(𝑥, 𝑦, 𝑡) information and the

information of the Masked Motion Compensated Prediction

𝑓�̅�(𝑥, 𝑦, 𝑡) to reconstruct as depicted in (16).

𝑓�̅�(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑓𝑡−1(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡)𝑟

𝑗=−𝑟
𝑝
𝑖=−𝑝 (15)

𝑓�̂�(𝑥, 𝑦, 𝑡) = 𝑓�̅�(𝑥, 𝑦, 𝑡) + �̅�𝑡(𝑥, 𝑦, 𝑡) (16)

Fig. 6. Motion Compensated Prediction Integrated with Adaptive

Temporal Masking [12]

In the final stages of the compression process, entropy coding

is applied. The process of entropy coding is important as it

transforms the encoded information into a binary bitstream and

prepares it for transmission where the decoder decodes this

information. In the field of video coding Arithmetic coding is

the most widely used entropy coding technique [29]. Usually,

Arithmetic coding achieves a better compression ratio as

compared to other schemes like Huffman coding [30]. This

particular feature is beneficial in applications like compression

where reducing the size of the information is crucial without

losing the overall quality of the content. It adequately adapts to

6

the data that needs compression by assigning shorter codes to

more frequent symbols in the data which could lead to much

better performance. Arithmetic coding can also work with

context modeling methods, which cater to the probability of the

specific symbol appearing in the data stream. This really helps

in video compression applications where most of the

information is redundant between the consecutive frames. Even

a frame contains a correlation between the pixels and the

redundancy is maintained through the compression process.

The compression process requires two distinct processes which

are motion extraction and masking, and motion compensation.

Both of these steps occur at different stages of the video coding

process. During the process of encoding, motion extraction, and

masking is performed which identifies and isolates the temporal

activity between the consecutive frames and applies the

proposed adaptive temporal masking procedure. Conversely,

the process of motion compensation is performed at the decoder

end where the previously encoded frame is reconstructed as

accurately as possible.

 VI. RESULTS

The assessment of the proposed algorithm's performance is

based on three fundamental metrics: Mean Squared Error

(MSE) in (17), Peak Signal-to-Noise Ratio (PSNR) in (18), and

Structural Similarity Index (SSIM) in (19). MSE measures the

average of the squared differences between the original and

reconstructed frames, serving as a numerical indicator of the

precision of the reconstruction. A large value of PSNR

corresponds to high video quality. PSNR is calculated by

comparing the maximum potential power of the input signal to

the power of the distorting noise. Whereas the Structural

Similarity Index (SSIM) assesses how closely the structural

details match between the input frames and the reconstructed

frames. These two parameters can thoroughly evaluate the

performance of the introduced technique to ensure that the

reconstructed frames are minimally distorted, precise, and

retain the structural information.

𝑀𝑆𝐸 =
1

𝑁×𝑀
∑ ∑ [𝑓(𝑥, 𝑦, 𝑡) − 𝑓̅(𝑥, 𝑦, 𝑡)]

2𝑁−1
𝑗=0

𝑀−1
𝑖=0 (17)

𝑃𝑆𝑁𝑅 = 10 log10 (
(𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒)2

𝑀𝑆𝐸
) (18)

𝑆𝑆𝐼𝑀(𝑎, 𝑏) =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝐴𝐵+𝐶2)

(𝜇𝐴
2 +𝜇𝐵

2 +𝐶1)(𝜎𝐴
2+𝜎𝐵

2+𝐶2)
 (19)

In order to assess the quality of video compression, it is

important to understand the importance of these metrics. A

figure can be analyzed by comparing these metrics at different

alpha values, i.e., 0.25, 0.5, and 1 with the standard H.264

encoding across various bitrates from 250 to 2000 kbps.

Fig. 7a compares PSNR values for various α levels at

different bit rates with the standard H.264 encoding. It

demonstrates a steady trend for all α levels: the PSNR values

rise in tandem with the bit rate. This occurrence is consistent

with predicted behavior as greater bit rates enable the allocation

of more data, which enhances the quality of the frame during

compression and reconstruction. In contrast to α values of 0.5

and 0.25, α at 1 notably consistently exhibits the greatest PSNR

values, demonstrating its efficacy in maintaining image quality

during encoding. In this way, compression is performed based

on the amount of motion present between the two frames. Fig

.7b illustrates the SSIM values for the same α values and bit

rates. Similar to the PSNR trend, the SSIM values also exhibit

an increasing trend with rising bit rates for all α values.

Although a higher amount of α will make q smaller which will

have minimum effect on the masking filter which in turn

generates a frame that correlates with the standard encoding

scheme like H.264. Reiterating the importance of retaining

image quality in video compression circumstances, the SSIM

measure shows that greater bit rates and higher α values result

in better image retention and similarity. Table 2 demonstrates

the performance of the standard H.264/AVC encoding scheme.

TABLE II

PSNR VS SSIM (H.264/AVC STANDARD)

Video Sequence PSNR SSIM

Sky 32.07 0.903

Traffic 36.80 0.933

Foreman 35.01 0.924

Street 35.32 0.937

sampleQCIF 37.83 0.93

Fig. 7. Sky Sequence (a) PSNR at different α. (b) SSIM at different α

The comparison between the Peak Signal-to-Noise Ratio

(PSNR) and the Structural Similarity Index (SSIM) for

five video sequences at different alpha (α) values is shown

in Table 4. In all video sequences, greater alpha values are often

correlated with higher PSNR and SSIM values. 'Sky' at alpha of

7

0.25 displays the lowest PSNR of 30.67 dB and SSIM of 0.858

among the sequences, indicating relatively lower image quality

and similarity at lower alpha levels. In contrast, 'sampleQCIF'

at α = 1 records the highest PSNR of 37.11 dB and SSIM of

0.921, suggesting better image fidelity and similarity. To

achieve the best quality to compression ratio, the range of α is

selected to be from 0.4 to 0.6 which can be verified from table

3 as well.

The in-depth analysis of PSNR and SSIM at various alpha

values, and bitrate reduction demonstrates a discernible pattern.

When alpha is set to 0.25, the video sequences demonstrate

decreased PSNR and SSIM values in comparison to higher

alpha levels, indicating a decline in image quality and similarity

after reconstruction. As an example, the image 'Sky' has a Peak

Signal-to-Noise Ratio (PSNR) of 30.67 dB and a Structural

Similarity Index (SSIM) of 0.89, indicating reduced accuracy

and resemblance. Moreover, for this specific alpha level, the

range of bitrate savings varies from 27.83% for the video

'Traffic' to 34.98% for the video 'Street'. The association

between decreased alpha values diminished PSNR/SSIM, and

bitrate reductions underscore the compromise between image

quality and compression effectiveness in video encoding. The

Adaptive temporal masking function demonstrates the ability to

decrease the amount of information without significantly

compromising quality. Increasing the alpha values often

results in improved images, as seen by higher PSNR/SSIM

scores. However, this comes at the expense of reduced bitrate

savings. On the other hand, decreasing the alpha values allows

for more compression, but at the sacrifice of image fidelity and

similarity. It is necessary to keep checking the compression

ratio because if the compression is extensive, a phenomenon

called frame-skipping happens in which the information is

compressed to an extent that it would seem the reference frame

is still for a few seconds and the frame information is lost. The

proposed adaptive technique helps cater to this problem by

keeping the α to a level that avoids frame skipping.

TABLE III

PSNR VS SSIM AT DIFFERENT 𝛼 LEVELS

Video
Sequence

PSNR (dB) at α SSIM at α

 α=1 α=0.5 α=0.25 α=1 α=0.5 α=0.25

Sky 31.99 31.23 30.67 0.89 0.863 0.858

Traffic 36.41 34.40 33.68 0.927 0.907 0.862

Foreman 34.26 32.15 30.40 0.912 0.882 0.851

Street 34.98 31.39 29.45 0.929 0.879 0.843

sampleQCIF 37.11 34.9 31.41 0.921 0.909 0.877

TABLE IV

PSNR VS SSIM AT 𝜶 = 0.25 AND NUMBER OF BITRATE SAVED

Video
Sequence

PSNR (dB) at α
= 0.25

SSIM at α =
0.25

Bitrate Saved (%)

Sky 30.67 0.89 33.23

Traffic 33.68 0.927 31.26

Foreman 30.40 0.912 30.68

Street 29.45 0.929 34.98

sampleQCIF 31.41 0.921 27.83

VII. CONCLUSION

This paper presented an adaptive temporal masking

technique for video surveillance systems that compresses the

video frames while maintaining their quality. The introduced

technique utilized an ‘alpha’ parameter that dynamically adjusts

the ‘q’ parameter to optimize the bitrate for video encoding. The

proposed technique reduced the temporal activity in vide

frames to a level, which is undetectable by the human eye. This

results in significant bit-rate reductions while preserving the

video quality. Thie technique enables extended storage of high-

resolution videos, which are extremely important for

comprehensive post-event analysis of videos in surveillance

applications. Moreover, the algorithm can adapt to varying

conditions in surveillance, e.g., different levels of motion

complexity or limited bandwidth. This property makes it a

suitable choice for video surveillance applications in IoT

environments. The proposed technique achieved over 30% bit

rate reduction compared to the standard video encoding

schemes, such as H.264/AVC and preserved the quality of the

original videos, which is evident by the results of PSNR of

33.67 dB and SSIM of 92.7%. The proposed adaptive temporal

masking approach represented an advancement in maximizing

the bandwidth and reducing the computational overhead.

ACKNOWLEDGMENT

This research is supported by Najran University.

REFERENCES

[1] L. Guo, et al. "Dvc: An end-to-end deep video compression

framework." Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2019.
[2] L. Guo, et al. "An end-to-end learning framework for video

compression." IEEE transactions on pattern analysis and machine

intelligence (2020).
[3] R. Yang, et al. "Learning for video compression with hierarchical quality

and recurrent enhancement." Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2020.
[4] E. Agustsson, et al. "Scale-space flow for end-to-end optimized video

compression." Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2020.
[5] M. Siwei, et al. "Image and video compression with neural networks: A

review." IEEE Transactions on Circuits and Systems for Video

Technology 30.6 (2019): 1683-1698.
[6] T. Shanableh, "Feature extraction and machine learning solutions for

detecting motion vector data embedding in HEVC videos." Multimedia

Tools and Applications (2020): 1-20.
[7] H. Chen, et al. "Real‐time action feature extraction via fast PCA‐

Flow." Concurrency and Computation: Practice and Experience 33.11

(2021): e5507.
[8] Y. Yuan, et al. "Key frame extraction based on global motion statistics for

team-sport videos." Multimedia Systems (2021): 1-15.

[9] P. Sykora, et al. "Comparison of Neural Networks with Feature Extraction
Methods for Depth Map Classification." Advances in Military

Technology 15.1 (2020).

[10] X. Xuguang, C. Feng, and S. He, "A method for the micro-motion signal
separation and micro-Doppler extraction for the space precession

target." IEEE Access 8 (2020): 130392-130404.

[11] S. Rana, K. Rohit, and A. Sur. "Motion vector based video steganography
using homogeneous block selection." Multimedia Tools and

Applications 79.9 (2020): 5881-5896.

[12] A. A. Siddique, M. T. Qadr, and Z. Mohy-Ud-Din. "Masking of temporal
activity for video quality control, measurement and

assessment." Measurement and Control 53, no. 9-10 (2020): 1817-1824.

8

[13] S. Zhang, et al. "A video deblurring algorithm based on motion vector and

an encorder-decoder network." IEEE Access 7 (2019): 86778-86788.
[14] Z. Wang, and Y. Zhu. "Video Key Frame Monitoring Algorithm and

Virtual Reality Display Based on Motion Vector." IEEE Access 8 (2020):

159027-159038.
[15] A. A. Siddique, M. T. Qadri, N. A. Siddiqui, and Z. Mohy-ud-Din.

"Temporal Masking with Luma Adjusted Interframe Coding for

Underwater Exploration Using Acoustic Channel." Wireless Personal
Communications 116 (2021): 1493-1506.

[16] V. K. Ghassab, R. Gonsalves, S. Mathur, and N. Bouguila. "Optimizing

Video Compression With CNN-Based Autoencoders With Chroma
Subsampling." SMPTE Motion Imaging Journal 132, no. 3 (2023): 18-26.

[17] B. Patel, "Dual autoencoder-based framework for image compression and

decompression." In Fifteenth International Conference on Machine
Vision (ICMV 2022), vol. 12701, pp. 549-557. SPIE, 2023.

[18] F. Galpin, M. Balcilar, F. Lefebvre, F. Racapé, and H. Pierre, "Entropy

Coding Improvement for Low-complexity Compressive Auto-
encoders." arXiv preprint arXiv: 2303.05962 (2023).

[19] W. Hamidouche, F. Pescador, T. Biatek, and E. François, "Editorial Real-

Time Implementation of VVC Standard for Consumer Electronic
Devices." IEEE Transactions on Consumer Electronics 68, no. 2 (2022):

93-95.
[20] Schimpf, Michael G., Nam Lign, and Ying Liu. "Compressing of

Medium-to Low-Rate Transform Residuals With Semi-Extreme Sparse

Coding as an Alternate Transform in Video Coding." IEEE Transactions
on Consumer Electronics 69, no. 3 (2023): 271-286.

[21] A. A. Siddique, S. M. U. Talha, M. U. Khan, A. Israr, U. Jilani, and V.

Uddin, "Efficient Online Lecture Platform: Design and Implementation
of Optimized Temporal Masking Technique for Compressed Video

Streaming." Wireless Personal Communications (2023): 1-18.

[22] D. E-Jabeen, T. Khan, R. Iftikhar, A. A. Siddique, and S. Asghar. "An
Algorithm to Reduce Compression Ratio in Multimedia

Applications." Computers, Materials & Continua 75, no. 1 (2023).

[23] B. Liu, C. Yu, R. C. Machineni, S. Liu, and K. Hun-Seok, "MMVC:
Learned Multi-Mode Video Compression with Block-based Prediction

Mode Selection and Density-Adaptive Entropy Coding." In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18487-18496. 2023.

[24] J. Liu, F. Yuan, C. Xue, Z. Jia, and E. Cheng, "An Efficient and Robust

Underwater Image Compression Scheme Based on Autoencoder." IEEE
Journal of Oceanic Engineering (2023).

[25] A. Singhadia, M. Mamillapalli, and I. Chakrabarti, "Hardware-efficient

2D-DCT/IDCT architecture for portable HEVC-compliant
devices." IEEE Transactions on Consumer Electronics 66, no. 3 (2020):

203-212.

[26] G. Guerrisi, F. D. Frate, and G. Schiavon, "Convolutional Autoencoder
Algorithm for On-Board Image Compression." In IGARSS 2022-2022

IEEE International Geoscience and Remote Sensing Symposium, pp. 151-

154. IEEE, 2022.
[27] A. Thakker, N. Namboodiri, R. Mody, R. Tasgaonkar, and M. Kambli.

"Lossy Image Compression-A Comparison Between Wavelet Transform,

Principal Component Analysis, K-Means and Autoencoders." In 2022 5th
International Conference on Advances in Science and Technology

(ICAST), pp. 569-576. IEEE, 2022.

[28] K. Seshadrinathan, R. Soundararajan, A. C. Bovik and L. K. Cormack,

"Study of Subjective and Objective Quality Assessment of Video", IEEE

Transactions on Image Processing, vol.19, no.6, pp.1427-1441, June

2010.
[29] Pastuszak, Grzegorz. "Optimization of the Generative Multi-Symbol

Architecture of the Binary Arithmetic Coder for UHDTV Video

Encoders." Electronics 12, no. 22 (2023): 4643.
[30] Zhu, Xia, Jing Zhang, and Hongbo Zhu. "Research of Data Compression

Using Huffman Coding and Arithmetic Coding." In International

Conference on Computer Engineering and Networks, pp. 954-961.
Singapore: Springer Nature Singapore, 2022.

Ali Akbar Siddique obtained his bachelor’s degree from Sir Syed University
in March 2009 and his major was Electronics Engineering. He completed his

Masters in Control and Automation from Usman Institute of Technology (UIT)

with a 3.81 CGPA and was a Gold Medalist in his respective discipline. He
completed his Ph.D. in the field of Electronic Engineering and his specialization

is in Signal, Image, and Video processing.

Wad Ghaban is an assistant professor in the applied college at the University

of Tabuk, Saudi Arabia. Wad received her BSc in computer science from King
Abdul-Aziz University in Jeddah with honors degree. Then, she received her

MSc. in advanced computer science with distinction in University of

Birmingham by 2015. Later, she got her PhD from University of Birmingham
by 2020. During her study, Wad worked on several projects related to Human

computer interaction, survival analysis, online learning, Natural language

processing and sentiment analysis.

Amer Aljaedi received his Ph.D. degree in security engineering from the

Computer Science Department at Colorado University, Colorado Springs,
USA, in 2018. He received his M.Sc. degree in information systems security

from Concordia University of Edmonton, Canada, in 2011, and the B.Sc. degree

from King Saud University, Saudi Arabia, in 2007. He is currently an Associate
Professor at the College of Computing and Information Technology, University

of Tabuk. Before that, he was a senior research member with the Cybersecurity

Laboratory at Colorado University, and he received multiple research awards
from UCCS, UT, and SACM for his outstanding research papers.

Faisal Saeed is a Senior Lecturer in the Computing and Data Science
Department at the School of Computing and Digital Technology, Birmingham

City University (BCU), UK. He is leading the smart health lab at Data Analytics
and AI Research Group at BCU. Faisal received his BSc in Computers

(Information Technology) from Cairo University, Egypt, MSc in Information

Technology Management and PhD in Computer Science from UTM, Malaysia
in 2010 and 2013 respectively.

Mohammed S. Alshehri received the B.S. degree in Computer Science from
the King Khalid University, Abha, Saudi Arabia, in 2010, the M.S. degree in

Computer Science from the University of Colorado Denver, Denver, USA, in

2014, and the Ph.D. degree in Computer Science with concentration on
Information Security from the University of Arkansas, Fayetteville, USA, in

2021. Mohammed's areas of interest are Cybersecurity, Computer Networks,

Blockchain, Machine Learning, and Deep Learning.

Ahmed Alkhayyat received the B.Sc. degree in electrical engineering from AL

KUFA University, Najaf, Iraq, in 2007 and the M.Sc. degree from the Dehradun

Institute of Technology, Dehradun, India, in 2010. He contributed in organizing

several IEEE conferences, workshop, and special sessions. He is currently a

dean of international relationship and manager of the world ranking in the
Islamic University, Najaf, Iraq.

Hussain Mobarak Albarakati is with Department of Computer Engineering,
College of Computer and Information Systems, Umm Al-Qura University,

Makkah, Saudi Arabia., He is a Senior Professor of the university where

teaching courses related to AI and embedded systems. In addition, he is a senior
AI researcher related to remote sensing and medical. He published more than

50 research articles and also a reviewer for several good journals.

