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Abstract — Global security is a matter of critical concern 

that requires adoption of advanced monitoring technologies. 

Efficient surveillance systems comprise extensive camera 

networks across large areas to ensure comprehensive 

coverage.  However, the large volume of data generated by 

these networks poses challenges for traditional storage and 

computational resources.  This paper presents an innovative 

video compression technique that focuses on optimizing data 

management in visual surveillance systems by selectively 

masking temporal information between frames. This technique 

introduces a specially designed adaptive masking filter, which 

hides the undetectable motion in video sequences and enhances 

video compression. The introduced masking technique uses an 

adaptive masking parameter ‘q’ to improve frame prediction or 

to compensate for the masked temporal activity during 

decoding and achieves over 30% bit-rate reduction compared 

to the standard video encoding schemes, such as H.264/AVC. 

Moreover, the introduced technique also reduces the 

computational demands while keeping the quality of the output. 

This can be evidenced by a Peak Signal to Noise Ratio (PSNR) 

of 33.67 dB and a Structural Similarity Index (SSIM) of 92.7% 

in a traffic video sequence. The proposed technique holds the 

potential to be used in efficient IoT-driven video surveillance 

systems to process video frames efficiently without 

compromising quality.  
 

Index Terms — Intra-Frame coding, Temporal Masking, 

Adaptive Motion Compensation, Video Surveillance, Imaging 

Technology.  

I. INTRODUCTION 

Uncompressed video data from cameras isn't suitable for 

transmission due to its large size [1]. Available channel 

bandwidth often struggles to sustain the required bitrate for live 

video streaming, notably in applications needing multilayered 

streams like surveillance or critical location monitoring. For 

about a decade, real-time applications for ticketing traffic 

violations have emerged. It's essential to penalize offenders to 

encourage caution and prevent accidents [2]. Numerous 

cameras are strategically placed in various locations prone to 

violations. Cameras generate tons of data that could surpass 
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storage limits without compression. Wireless channels often 

lack the capacity for low Compression Ratios (CR) needed. 

When CR goes up, video quality tends to drop [3]. The Joint 

Picture Expert Group (JPEG) has a guideline, a quantization 

table, to assess video quality. Higher CR leads to more 

distortion like ringing or blurriness, indicating over-

compression [4]. For seamless sharing, transmitted information 

should align with the receiving end's characteristics [5]. An 

escalation in Compression Ratio (CR) leads to a rise in 

distortion artifacts like ringing, blockiness, and blurriness 

within the video content, as highlighted in studies [6]. The 

aforementioned video artifacts indicate that the video has been 

excessively compressed, which leads to the degradation of the 

quality of the video [7]. To facilitate seamless transmission of 

information, it is important that the characteristics of the data 

being sent should match the computational capabilities of the 

receiving system [8]. The compatibility between the transmitted 

data and the receiving system is crucial for minimizing 

transmission errors. As explained in the study [9], in video-

based applications, a new dimension called time or temporal 

dimension is added on top of the usual rows and columns. 

While still images are mostly handled in the spatial domain and 

don't have any extraneous information, a video series is made 

up of these still images and has a lot of extraneous information 

in the time domain across consecutive frames [10]. This natural 

repetition in the series of frames makes it possible to compress 

only the temporal activity within these frames, an idea that has 

been looked into in detail in a number of studies [11-12]. This 

use of temporal redundancy is the reason for tailored 

compression methods in video data, which focus on the changes 

that happen over time in the video stream. Video coding 

employs two primary compression algorithms: lossy and 

lossless compression [13]. Lossy compression, responsible for 

reducing video size, uses Discrete Cosine Transform (DCT) to 

switch images from spatial to frequency domains, and 

quantization to eliminate less crucial high-frequency 

components for frame reconstruction [14-16]. Estimating 

Motion Vectors (MV) between consecutive frames and 

capturing their temporal activity is crucial. MV, combined with 
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residual frame data (difference image), aids in predicting or 

reconstructing frames during decoding through Motion 

Compensated Prediction Techniques [17-18]. 

This paper presents a novel algorithm that extracts motion 

vectors from consecutive video frames. These vectors capture 

various motion activities occurring within the frames that are 

imperceptible to the naked eye in real-time applications. 

Exploiting this insight, the proposed algorithm masks a 

negligible amount of temporal activity that contributes 

minimum to the overall video stream. This strategic application 

of Motion Masked Compensated Prediction (MMCP) employs 

a parameter denoted as 'q' to achieve this masking effect, 

culminating in a substantial 93.17% Structural Similarity Index 

(SSIM). Through the utilization of this novel approach, the 

algorithm adeptly distinguishes and isolates less crucial 

temporal activity, enhancing the efficiency of video processing 

and quality assessment in real-time scenarios. 

The role of the Internet of Things (IoT) in this particular field 

is vital in enabling communication between edge devices across 

the network and also maintaining connectivity. The integration 

of IoT-based visual surveillance with imaging technology helps 

in facilitating consumer-focused gadgets that include 

smartphones, cameras, and other similar imaging devices 

capable of capturing images and videos in real-time. Fig 1 

portrays the emerging technologies within the Consumer 

Electronics domain. It also signifies that the proposed research 

relies on an IoT-driven application, aligning directly with the 

landscape of Consumer Electronics. The proposed technique is 

important for the advancement of imaging technologies in 

consumer electronics. It contributes to the current state of the 

art by tackling the difficulties associated with motion 

compensation using a novel technique driven by the Internet of 

Things (IoT).  

 

 
Fig.  1. Emerging Technologies in the Domain of Consumer Electronics 

II. RELATED WORK 

The process of feature propagation in motion coding is 

enhanced by repeated encounters, leading to a stronger ability 

to use long-range temporal correlation.  Authors in [19] 

proposed using hybrid context creation to effectively use the 

multi-scale context information and enhance the mobility 

condition. Most hypothesis modules generate different 

movements and distorted features to extract enough temporal 

information, enabling diverse inference possibilities from the 

reference frame. In order to make better use of these 

hypotheses, authors in [20] included the hypotheses attention 

module by incorporating the channel-wise squeeze-and-

excitation layer and the multi-scale network. Context 

combination merges weighted hypotheses to create powerful 

contexts with strong temporal priors. Weighted warped 

characteristics are combined in the right circumstances to 

improve compression efficiency [21]. Multi-modes like 

ConvLSTM-based feature domain prediction, optical flow-

conditioned feature domain prediction, and feature propagation 

can handle static scenes without visible movements to dynamic 

situations with a moving camera as proposed in [22]. For 

temporal prediction in spatial block-based representations, 

authors block the feature space and incorporate dense and 

sparse post-quantization residual blocks for entropy coding and 

optional run-length coding on sparse residuals to increase 

compression. The authors present a unique unsupervised video 

semantic compression issue that compresses semantics 

downstream task-agnostically in [23]. They propose a Semantic 

Mining-then-Compensation (SMC) framework to add semantic 

coding to the plain video codec to solve this issue. Inspired by 

current masked image modeling (MIM) approaches, 

they improve the framework with just unlabeled video data by 

masking off a part of the compressed video and recreating the 

masked portions of the original video. 

Authors in [24] proposed a reliable underwater image 

compression method, where an underwater image extreme bit 

rate compression begins with an autoencoder. After that, a 

multistep training technique is suggested to progressively learn 

channel deterioration aspects to strengthen the decoder. The 

main channel compresses with a low bit rate and great 

resilience, while the branching path compensates for picture 

block retransmission using the feedback signal. Experimental 

findings show that reconstructed images can be identified with 

a compression ratio of up to 1/768 and an average bit error rate 

of up to 10−1. It is possible that traditional codecs may not 

always maintain characteristics that are essential to machine 

learning algorithms when bandwidth is constrained, which 

might result in performance that is possibly inferior. An 

application-driven improvement of programmable commercial 

codec settings was investigated by the author in [25] for 

network learning tasks such as image classification. Because 

they can extract relevant information from vast volumes of 

complex data, deep learning and AI are ideal for real-time On-

board image applications. Authors in [26] present a lossy image 

reduction approach using a Convolutional Autoencoder (CAE). 

It can be done on the satellite and can save, reduce, and rebuild 

camera images. Authors in [27] conduct a comparative analysis 

of conventional and contemporary lossy image compression 

methods using the Kodak Dataset. The approaches encompass 

Autoencoders, Principal Component Analysis (PCA), K-

Means, and Discrete Wavelet Transform (DWT). 

III. IOT-ENABLED VISUAL SURVEILLANCE FRAMEWORK 

Video coding methods play a pivotal role in maximizing the 
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transmission, storage, and computational resources in 

surveillance applications inside IoT-driven frameworks. 

Utilization of well-known video coding standards such as 

H.264/AVC, H.265/HEVC, or even more recent ones like AV1, 

in IoT environments tends to compress video data without 

compromising crucial information. Since IoT devices are not 

able to cater to the information generated by video sources, 

processing such as compression becomes vital in such a 

scenario. The compression process leverages predictive coding 

intra- and inter-frame prediction, transform coding, and entropy 

coding to minimize the redundant information present within 

the consecutive frames of the same scene, this process is 

performed across the entire video sequence. Motion estimation 

and compression play a key role in the process of video 

compression within the visual surveillance domain. Block 

matching and pixel-based matching approaches are utilized to 

predict motion in the form of motion vectors between 

consecutive frames which in turn aids in achieving better 

Compression Ratio (CR). Predicting and transmitting only the 

changes (extracted motion vectors) between the frames instead 

of the entire frame, the bandwidth utilized is reduced, making 

it feasible for IoT devices with limited or poor connectivity. Fig 

2 represents the scenario of integrating a video coding scheme 

in an IoT-enabled surveillance application. 

 

 
Fig.  2. IoT-Enabled Surveillance Application Integrated with Video 

Coding in Imaging Technology 

IV. VISUAL DATABASE CORRELATION AND UTILIZATION 

Table. 1 outlines the key characteristics of five separate video 

sequences used. Every sequence is distinguished by a constant 

resolution of 352×288 pixels, guaranteeing consistency across 

the visuals. Differences in frames per second (FPS) are present 

among the sequences, with the 'Sky' and 'Traffic' sequences 

running at 25 FPS, while 'Foreman,' 'Street,' and 'sampleQCIF' 

retain a higher speed of 30 FPS. Similarly, the length of these 

sequences differs ranging from 21.55 MB for 'sampleQCIF' to 

105.36 MB for the 'Sky' sequence. The videos strictly conform 

to the YUV format, indicating their color encoding method. 

This detailed table clearly illustrates the subtle variations in 

frame rates, sizes, resolutions, and formats of the essential 

video sequences that are crucial to the algorithm. The 

significant variations in file sizes indicate the varying intricacy 

and information density included within these sequences. The 

dataset utilized in the proposed work is taken from [28]. 
 

TABLE I 

VIDEO DATASET USED AND THEIR CHARISMATICS 

Video 
Sequence 

Resolution FPS Size Format 

Sky 352×288 25 105.36 MB YUV 

Traffic 352×288 25 41.21 MB YUV 

Foreman 352×288 30 43.5 MB YUV 

Street 352×288 30 39.68 MB YUV 

sampleQCIF 352×288 30 21.55 MB YUV 
 

In an extensive extraction process, a total of 100 frames from 

each of the 5 video sequences has been retrieved and visualized 

forming a comprehensive display, a few samples are given in 

Fig 3. Equation (1) represents the frame extraction process from 

the YUV video sequences. The variable i represents the frame 

number that is being targeted for extraction. The 'stream' 

variable represents all frames and their associated metadata. 

The variable 'l' defines the byte size of each frame in the video 

stream. w and h represent the width and height of the frame. 

Equations (2-4) represent the individual Y, U, and V 

components that make up an entire frame when combined. Y 

component provides information regarding the brightness of a 

frame depicted as a grayscale image. U and V components carry 

color information and represent the color difference between 

luminance and the actual color itself. The Y component is 

usually subsampled in comparison to these components since 

human perception is more sensitive to variations in brightness 

(luminance) than in color. The U and V components, even at a 

reduced resolution as shown in (3-4), nonetheless enable 

precise color reproduction when paired with the Y component. 
 

 
Fig.  3. Row 1: Sky Sequence, Row 2: Traffic Sequence, Row 3: Foreman 

Sequence, Row 4: Street Sequence, Row 5: sample QCIF Sequence 

 

𝐹𝑟𝑎𝑚𝑒[𝑖] = 𝑠𝑡𝑟𝑒𝑎𝑚[(𝑖 − 1) × 𝑙 + 1: 𝑖 × 𝑙]             (1) 

 

𝑌𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝑟𝑎𝑚𝑒[𝑖][1: 𝑤 × ℎ], 𝑤, ℎ)𝑇         (2)      
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𝑈𝐶𝑜𝑚𝑝𝑝𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠𝑎ℎ𝑝𝑒 (𝐹𝑟𝑎𝑚𝑒[𝑖][𝑤 × ℎ + 1: 1.25 × 𝑤 ×

ℎ],
𝑤

2
,

ℎ

2
)

𝑇
      (3) 

 

𝑉𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝐹𝑟𝑎𝑚𝑒[𝑖][1.25 × 𝑤 × ℎ + 1: 1.5 × 𝑤 ×

ℎ],
𝑤

2
,

ℎ

2
)       (4)   

 

Each video sequence comprises individual frames that, when 

played at a predetermined pace, constitute a continuous video 

sequence. The correlation coefficient index for just the first 50 

frames of each sequence is shown in Fig 4. Equation (5) is used 

to find the correlation coefficient index (CCI) for 50 frames of 

each sequence. 𝐶𝐶𝐼𝑖 denoted the correlation coefficient index 

of consecutive frames in the same video sequence. 

𝑐𝑜𝑣(𝑖𝑚𝑔[𝑖], 𝑖𝑚𝑔[𝑖 + 1]) is the covariance between the current 

frame and the incoming frame given in (6), in this equation i is 

the current frame and j is the incoming frame. n represents the 

number of pixels in each frame, 𝑖𝑘 and 𝑗𝑘 are the individual 

pixel values at the corresponding positions in frames i and j, 

respectively. 𝑖′ and 𝑗′ denotes the mean of frames i and j. 

 

𝐶𝐶𝐼𝑖 =
𝑐𝑜𝑣(𝑖𝑚𝑔[𝑖],𝑖𝑚𝑔[𝑖+1])

𝜎𝑖𝑚𝑔[𝑖]∙𝜎𝑖𝑚𝑔[𝑖+1]
                           (5) 

 

𝑐𝑜𝑣(𝑖,𝑗) =
1

𝑛−1
∑ (𝑖𝑘 − 𝑖′) ∙ (𝑗𝑘 − 𝑗′)𝑛

𝑘=1                 (6) 

 

 
Fig.  4. Correlation Coefficient Index of 5 Video Sequences 

V. TEMPORAL MASKING FOR ADAPTIVE MOTION 

COMPENSATION 

In the process of video coding, one important step is 

acquiring motion information from a series of frames that make 

up a video clip. Complex methods, like block matching 

algorithms, are often used in this process to find patterns of 

motion between frames that are next to each other.  

A. Block Matching for Dynamic Motion Extraction 

Bi-directional motion estimation via block matching 

algorithms entails the prediction of motion in both the forward 

and backward directions for every block in successive frames. 

The method of forward motion estimation with a block-

matching algorithm entails determining the motion vector 

(𝑀𝑉𝑓) that signifies the displacement between a block in the 

reference frame 𝐼𝑟  and the most suitable matching block in the 

following frame 𝐼𝑛 represented in (7). Here, 𝐵𝑟  denotes an 8 × 8 

block in 𝐼𝑟  and 𝐵𝑛(𝑥, 𝑦) denotes block in 𝐼𝑛 at coordinate (𝑥, 𝑦). 

𝑀𝑉𝑓 is determined by finding the block 𝐵𝑛(𝑥′, 𝑦′) in 𝐼𝑛 

depicting the minimum difference. (𝑥′, 𝑦′) demonstrates the 

displacement or motion vector. Similarly, for each block in 𝐼𝑟 , 

find the best matching block in the previous frame 𝐼𝑝  using the 

block matching algorithm. This process identifies the motion 

vector 𝑀𝑉𝑏 that represents the backward displacement. The 

search area for the proposed algorithm is 16 pixels. The 

miniature red arrows depicted in Fig 5 illustrate the directional 

flow of the macroblocks movement between the successive 

frames. 

 

𝑀𝑉𝑓,𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑥′,𝑦′) ∑ ‖𝐵𝑟(𝑥, 𝑦) − 𝐵𝑛(𝑥 + 𝑥′, 𝑦 + 𝑦′)‖2
(𝑥,𝑦)    (7) 

 

B. Proposed Adaptive Temporal Masking Strategy  

Given that most of the information between consecutive 

frames is redundant. To optimize use, it is best to code just the 

changes within the frame, rather than the entire frame itself. In 

the context of consecutive frames within a video sequence, 

there is minimal temporal activity or motion between two 

adjacent frames. The human eye is unable to detect this degree 

of motion, particularly when the video is played in real-time. 

Temporal masking exploits the phenomenon of reduced motion 

activity between successive frames and conceals the activity 

that is imperceptible to the human eye. This method aims to 

preserve the integrity of crucial temporal activity while 

deliberately concealing low-motion activity. Utilizing 

statistical motion analysis within the frame given in (8), the 

standard deviation (σ) of motion vector magnitude is computed 

given in (9). N represents the total number of motion vectors 

while 𝑑𝑥𝑖  and  𝑑𝑦𝑖  are the motion vectors along x and y axis 

respectively. 
 

𝑀𝑉(𝑥,𝑦) = ∑ (𝑑𝑥𝑖 , 𝑑𝑦𝑖)𝑁
𝑖=1                                  (8) 

 

𝜎 = √
1

𝑁
∑ (𝑑𝑥𝑖

2 + 𝑑𝑦𝑖
2)𝑁

𝑖=1                                 (9) 

 

Temporal masking uses adaptive thresholding to determine a 

threshold depending on temporal data. This approach adjusts 

the threshold for video sequence motion intensity. In adaptive 

thresholding, a statistical feature like standard deviation is used 

to dynamically alter the threshold to differentiate significant 

changes from minor variations. This allows exact motion data 

separation and selective treatment. Equation (10) represents the 

Adaptive Threshold (𝑞𝑎) where 𝛼 is the sensitivity of the 

thresholding factor 𝛼 parameter governs the reaction of 𝑞𝑎 and 

its variation for the motion vector magnitudes. An increased 

value of α results in a more rigorous threshold. Establishing a 

higher threshold value selectively eliminates less motion 

activity. 
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𝑞𝑎 = 𝛼 × 𝜎          (10) 

 

 
Fig. 5. (a) Current Frame. (b) Next Frame. (c) Extracted MV from the 

current frame and the next frame. (d) Masked MV(x’, y’) at 𝜶 = 𝟎. 𝟓  

 

Equation (11) depicts the filter that integrates 𝑞𝑎 to mask the 

less motion activity. 𝑀𝑉(𝑥′,𝑦′) represents the Masked Motion 

Vectors, this condition assesses each motion vector (𝑑𝑥𝑖 , 𝑑𝑦𝑖) 

and adjusts it to (0, 0) if both components are within the 

adaptive threshold range. Otherwise, it keeps the original 

motion vector. Fig 5 depicts the order of frames, including the 

present frame Fig 5(a), and the next frame Fig 5(b). The 

MV extracted between these frames is shown in Fig 5(c), 

illustrating the directional information of pixel displacements. 

Fig 5(d) displays the masked motion vectors 𝑀𝑉(𝑥′,𝑦′), which 

shows the motion information that has been filtered or adjusted 

using the proposed masking technique. 

 

𝑀𝑉(𝑥′,𝑦′) = {
 
0        𝑖𝑓 − 𝑞𝑎 < 𝑑𝑥𝑖 < 𝑞𝑎

0        𝑖𝑓 − 𝑞𝑎 < 𝑑𝑦𝑖 < 𝑞𝑎 
(𝑑𝑥𝑖 , 𝑑𝑦𝑖)        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                    (11) 

C. Adaptive Motion Compensated Prediction 

The process starts by obtaining extracted frames in real time 

depicted in Fig 6. The initial frame, or the first frame of the 

sequence, will remain unchanged. This frame will act as a 

reference frame 𝑓(̅𝑥, 𝑦, 𝑡) for the subsequent incoming frame 

𝑓(𝑥, 𝑦, 𝑡). Residual frame 𝑒(𝑥, 𝑦, 𝑡) is obtained by taking the 

difference between the reference frame and the targeted frame. 

Spatial and temporal redundancy aids the compression process 

by encoding only the motion features. At the same time, motion 

is extracted by identifying areas of similarity between the two 

frames. This is the vital information that assists in generating a 

prediction of a frame at the decoder end. The proposed 

algorithm masks the temporal activity based on the amount of 

motion that it possesses by adaptively selecting appropriate 𝑞𝑎 

parameter. This innovative approach enriches the encoding 

process by effectively masking regions with minimal motion, 

optimizing the utilization of available data. This is followed by 

transform coding, usually using Discrete Cosine Transform 

(DCT) given in (12-13), on the residual frame and occasionally 

the prediction. Each frame of an entire video sequence is 

present in the spatial domain, it is necessary to transform it into 

the frequency domain which can be done using DCT. The DCT 

translates spatial data into frequency components, 

concentrating signal energy in fewer coefficients. Quantization 

reduces data by approximating or zeroing less essential DCT 

coefficients given in (14). Lastly, the entropy coding method 

gives shorter codes to more common patterns to compress the 

remaining data, resulting in a highly compressed video with 

maintained quality.  
 

𝐷(𝑖, 𝑗) =
1

√2𝑁
𝐶(𝑖)𝐶(𝑗) ∑ ∑ 𝑓(𝑥, 𝑦)𝐶𝑜𝑠 [

(2𝑥+1)𝑖𝜋

2𝑁
] 𝐶𝑜𝑠 [

(2𝑦+1)𝑗𝜋

2𝑀
]𝑀−1

𝑦=0
𝑁−1
𝑥=0      (12) 

 

𝐶(𝑢) = {
1

√2
   𝑖𝑓 𝑢 = 0

1       𝑖𝑓 𝑢 > 0
           (13) 

 

𝑄(𝑖, 𝑗) = 𝑟𝑜𝑢𝑛𝑑 (
𝐶(𝑖,𝑗)

𝑄𝑖×𝑄𝑗
)              (14) 

  

The essence of video compensation lies in expressing the 

prediction of a current frame by leveraging the information 

from the previously encoded frame given in (15). 𝑓𝑡(𝑥, 𝑦, 𝑡) 

represents the predicted frame at the decoder end that utilizes 

the encoded residual frame �̅�𝑡(𝑥, 𝑦, 𝑡) information and the 

information of the Masked Motion Compensated Prediction 

𝑓�̅�(𝑥, 𝑦, 𝑡) to reconstruct as depicted in (16).  

 
𝑓�̅�(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑓𝑡−1(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡)𝑟

𝑗=−𝑟
𝑝
𝑖=−𝑝          (15) 

 

𝑓�̂�(𝑥, 𝑦, 𝑡) = 𝑓�̅�(𝑥, 𝑦, 𝑡) + �̅�𝑡(𝑥, 𝑦, 𝑡)                    (16) 

 

 
Fig.  6. Motion Compensated Prediction Integrated with Adaptive 

Temporal Masking [12] 

 

In the final stages of the compression process, entropy coding 

is applied. The process of entropy coding is important as it 

transforms the encoded information into a binary bitstream and 

prepares it for transmission where the decoder decodes this 

information. In the field of video coding Arithmetic coding is 

the most widely used entropy coding technique [29]. Usually, 

Arithmetic coding achieves a better compression ratio as 

compared to other schemes like Huffman coding [30]. This 

particular feature is beneficial in applications like compression 

where reducing the size of the information is crucial without 

losing the overall quality of the content. It adequately adapts to 
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the data that needs compression by assigning shorter codes to 

more frequent symbols in the data which could lead to much 

better performance. Arithmetic coding can also work with 

context modeling methods, which cater to the probability of the 

specific symbol appearing in the data stream. This really helps 

in video compression applications where most of the 

information is redundant between the consecutive frames. Even 

a frame contains a correlation between the pixels and the 

redundancy is maintained through the compression process. 

The compression process requires two distinct processes which 

are motion extraction and masking, and motion compensation. 

Both of these steps occur at different stages of the video coding 

process. During the process of encoding, motion extraction, and 

masking is performed which identifies and isolates the temporal 

activity between the consecutive frames and applies the 

proposed adaptive temporal masking procedure. Conversely, 

the process of motion compensation is performed at the decoder 

end where the previously encoded frame is reconstructed as 

accurately as possible.     

 VI. RESULTS 

The assessment of the proposed algorithm's performance is 

based on three fundamental metrics: Mean Squared Error 

(MSE) in (17), Peak Signal-to-Noise Ratio (PSNR) in (18), and 

Structural Similarity Index (SSIM) in (19). MSE measures the 

average of the squared differences between the original and 

reconstructed frames, serving as a numerical indicator of the 

precision of the reconstruction. A large value of PSNR 

corresponds to high video quality. PSNR is calculated by 

comparing the maximum potential power of the input signal to 

the power of the distorting noise. Whereas the Structural 

Similarity Index (SSIM) assesses how closely the structural 

details match between the input frames and the reconstructed 

frames. These two parameters can thoroughly evaluate the 

performance of the introduced technique to ensure that the 

reconstructed frames are minimally distorted, precise, and 

retain the structural information. 

 

𝑀𝑆𝐸 =
1

𝑁×𝑀
∑ ∑ [𝑓(𝑥, 𝑦, 𝑡) − 𝑓̅(𝑥, 𝑦, 𝑡)]

2𝑁−1
𝑗=0

𝑀−1
𝑖=0              (17) 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
(𝑀𝑎𝑥 𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒)2

𝑀𝑆𝐸
)                   (18) 

 

𝑆𝑆𝐼𝑀(𝑎, 𝑏) =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝐴𝐵+𝐶2)

(𝜇𝐴
2 +𝜇𝐵

2 +𝐶1)(𝜎𝐴
2+𝜎𝐵

2+𝐶2)
                 (19) 

 

In order to assess the quality of video compression, it is 

important to understand the importance of these metrics. A 

figure can be analyzed by comparing these metrics at different 

alpha values, i.e., 0.25, 0.5, and 1 with the standard H.264 

encoding across various bitrates from 250 to 2000 kbps. 

Fig. 7a compares PSNR values for various α levels at 

different bit rates with the standard H.264 encoding. It 

demonstrates a steady trend for all α levels: the PSNR values 

rise in tandem with the bit rate. This occurrence is consistent 

with predicted behavior as greater bit rates enable the allocation 

of more data, which enhances the quality of the frame during 

compression and reconstruction. In contrast to α values of 0.5 

and 0.25, α at 1 notably consistently exhibits the greatest PSNR 

values, demonstrating its efficacy in maintaining image quality 

during encoding. In this way, compression is performed based 

on the amount of motion present between the two frames. Fig 

.7b illustrates the SSIM values for the same α values and bit 

rates. Similar to the PSNR trend, the SSIM values also exhibit 

an increasing trend with rising bit rates for all α values. 

Although a higher amount of α will make q smaller which will 

have minimum effect on the masking filter which in turn 

generates a frame that correlates with the standard encoding 

scheme like H.264. Reiterating the importance of retaining 

image quality in video compression circumstances, the SSIM 

measure shows that greater bit rates and higher α values result 

in better image retention and similarity. Table 2 demonstrates 

the performance of the standard H.264/AVC encoding scheme.  

 
TABLE II 

PSNR VS SSIM (H.264/AVC STANDARD) 

Video Sequence PSNR SSIM 

Sky 32.07 0.903 

Traffic 36.80 0.933 

Foreman 35.01 0.924 

Street 35.32 0.937 

sampleQCIF 37.83 0.93 

 

 
Fig.  7. Sky Sequence (a) PSNR at different α. (b) SSIM at different α 

 

The comparison between the Peak Signal-to-Noise Ratio 

(PSNR) and the Structural Similarity Index (SSIM) for 

five video sequences at different alpha (α) values is shown 

in Table 4. In all video sequences, greater alpha values are often 

correlated with higher PSNR and SSIM values. 'Sky' at alpha of 
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0.25 displays the lowest PSNR of 30.67 dB and SSIM of 0.858 

among the sequences, indicating relatively lower image quality 

and similarity at lower alpha levels. In contrast, 'sampleQCIF' 

at α = 1 records the highest PSNR of 37.11 dB and SSIM of 

0.921, suggesting better image fidelity and similarity. To 

achieve the best quality to compression ratio, the range of α is 

selected to be from 0.4 to 0.6 which can be verified from table 

3 as well. 

The in-depth analysis of PSNR and SSIM at various alpha 

values, and bitrate reduction demonstrates a discernible pattern. 

When alpha is set to 0.25, the video sequences demonstrate 

decreased PSNR and SSIM values in comparison to higher 

alpha levels, indicating a decline in image quality and similarity 

after reconstruction. As an example, the image 'Sky' has a Peak 

Signal-to-Noise Ratio (PSNR) of 30.67 dB and a Structural 

Similarity Index (SSIM) of 0.89, indicating reduced accuracy 

and resemblance. Moreover, for this specific alpha level, the 

range of bitrate savings varies from 27.83% for the video 

'Traffic' to 34.98% for the video 'Street'. The association 

between decreased alpha values diminished PSNR/SSIM, and 

bitrate reductions underscore the compromise between image 

quality and compression effectiveness in video encoding. The 

Adaptive temporal masking function demonstrates the ability to 

decrease the amount of information without significantly 

compromising quality. Increasing the alpha values often 

results in improved images, as seen by higher PSNR/SSIM 

scores. However, this comes at the expense of reduced bitrate 

savings. On the other hand, decreasing the alpha values allows 

for more compression, but at the sacrifice of image fidelity and 

similarity. It is necessary to keep checking the compression 

ratio because if the compression is extensive, a phenomenon 

called frame-skipping happens in which the information is 

compressed to an extent that it would seem the reference frame 

is still for a few seconds and the frame information is lost. The 

proposed adaptive technique helps cater to this problem by 

keeping the α to a level that avoids frame skipping. 

 
TABLE III 

PSNR VS SSIM AT DIFFERENT 𝛼 LEVELS 

Video 
Sequence 

PSNR (dB) at α SSIM at α 

 α=1 α=0.5 α=0.25 α=1 α=0.5 α=0.25 

Sky 31.99 31.23 30.67 0.89 0.863 0.858 

Traffic 36.41 34.40 33.68 0.927 0.907 0.862 

Foreman 34.26 32.15 30.40 0.912 0.882 0.851 

Street 34.98 31.39 29.45 0.929 0.879 0.843 

sampleQCIF 37.11 34.9 31.41 0.921 0.909 0.877 

 
TABLE IV 

PSNR VS SSIM AT 𝜶 = 0.25 AND NUMBER OF BITRATE SAVED 

Video 
Sequence 

PSNR (dB) at α 
= 0.25 

SSIM at α = 
0.25 

Bitrate Saved (%) 

Sky 30.67 0.89 33.23 

Traffic 33.68 0.927 31.26 

Foreman 30.40 0.912 30.68 

Street 29.45 0.929 34.98 

sampleQCIF 31.41 0.921 27.83 

VII. CONCLUSION 

This paper presented an adaptive temporal masking 

technique for video surveillance systems that compresses the 

video frames while maintaining their quality. The introduced 

technique utilized an ‘alpha’ parameter that dynamically adjusts 

the ‘q’ parameter to optimize the bitrate for video encoding. The 

proposed technique reduced the temporal activity in vide 

frames to a level, which is undetectable by the human eye. This 

results in significant bit-rate reductions while preserving the 

video quality. Thie technique enables extended storage of high-

resolution videos, which are extremely important for 

comprehensive post-event analysis of videos in surveillance 

applications. Moreover, the algorithm can adapt to varying 

conditions in surveillance, e.g., different levels of motion 

complexity or limited bandwidth. This property makes it a 

suitable choice for video surveillance applications in IoT 

environments. The proposed technique achieved over 30% bit 

rate reduction compared to the standard video encoding 

schemes, such as H.264/AVC and preserved the quality of the 

original videos, which is evident by the results of PSNR of 

33.67 dB and SSIM of 92.7%. The proposed adaptive temporal 

masking approach represented an advancement in maximizing 

the bandwidth and reducing the computational overhead.  
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