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Abstract 

This article explores the coevolutionary dynamics of immature innovation systems (IMIS), focusing on 

the role of marginalized agents often excluded from Conventional Innovation Systems (CIS). 

Marginalized agents, such as informal entrepreneurs or low-resource communities, are key actors in 

addressing local challenges but are typically overlooked in mainstream innovation processes, making it 

crucial to understand how they can be integrated into broader systems. Using an Agent-Based Model 

(ABM) based on Villalba (2023) and Ruiz et al. (2016), we examine how interactions between agents 

with different innovation and inclusion capabilities drive system evolution. The model integrates 

learning and unlearning processes, allowing agents to adapt and build capabilities over time. Through 

simulations that vary social thresholds, agent configurations, NOPI (Needs, Opportunities, Problems 

and Ideas) complexity, and the presence or absence of learning, we find that while higher social 

thresholds and complex NOPIs foster agent specialization, they can limit the inclusion of marginalized 

agents. Conversely, the absence of learning results in system stagnation despite increased short-term 

inclusion. By adopting a system-wide perspective, this paper contributes to the literature on innovation 

systems by analyzing how the relationships between marginalized and conventional actors influence 

inclusion dynamics. Our ABM captures the complex interplay of inclusion, coevolution, and capability 

complementarity within IMIS, offering deeper insights into how marginalized agents drive inclusive 

innovation and emphasizing the importance of fostering both innovation and inclusion capabilities for 

sustainable, equitable outcomes. 
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1. Introduction 

Innovation systems in developing countries often face challenges due to their immature and exclusive 

nature (Albuquerque, 2007; Villalba et al., 2023), characterized by weak institutional frameworks, 

limited access to resources, and a lack of cohesive policy support.1 These systems are frequently 

dominated by conventional actors, such as established firms and research institutions, who focus 

primarily on economic gains through technological advancements. In contrast, marginalized groups, 

including informal entrepreneurs, smallholder farmers, and low-income communities, are often 

excluded from these processes despite their potential contributions to innovation. 

The integration of excluded agents into innovation systems is crucial for achieving sustainable and 

inclusive economic growth (Urmetzer & Pyka, 2020). Inclusive innovation systems (IIS) seek to 

democratize the innovation process by involving a wider range of actors (Altenburg, 2009), particularly 

those traditionally excluded from conventional innovation systems (CIS). This approach aligns with 

global development agendas, such as the United Nations’ Sustainable Development Goals (SDGs), 

which emphasize the need for inclusive and equitable economic growth. 

A key mechanism supporting this integration resides in the concept of coevolution (Castellacci & 

Natera, 2013; Almudi & Fatas-Villafranca, 2021), as it captures the dynamic and interdependent nature 

of innovation processes involving diverse agents. Coevolutionary dynamics can foster adaptive 

learning, knowledge exchange, and the development of complementary capabilities, enabling 

marginalized agents to contribute to and benefit from the broader innovation system. 

This study seeks to explore the coevolutionary dynamics of marginalized agents within an immature 

innovation system (IMIS). 2 An immature system, according to Albuquerque (1999), is characterized by 

underdeveloped science and technology infrastructure, weak interactions between research institutions 

and industries, and limited R&D investment from businesses. While some scientific infrastructure may 

exist, it is insufficient to drive technological innovation or industrial growth, making these systems 

reliant on external knowledge and technology and struggling to build self-sustaining innovation 

capabilities. We aim to understand how excluded agents, under certain conditions, can engage in 

productive collaborations with conventional actors and contribute to inclusive innovations in the context 

of an IMIS.  

To address the challenges of exclusion and underdevelopment in immature innovation systems, it is 

essential to examine how marginalized agents can be integrated into these systems and contribute to 

inclusive innovation. This study aims to explore these dynamics by investigating the roles of 

government policies and conventional actors in fostering collaboration and innovation that meet the 

needs of marginalized communities. 

The key research questions guiding this study focus on (1) the role of government and public policies 

in promoting opportunities for marginalized actors to enhance their innovation capabilities and 

collaborate with agents within conventional innovation systems (CIS), as well as (2) how these CIS 

agents can foster innovations that address local problems, particularly those affecting marginalized 

communities. To explore these questions, we propose an extension of the Agent-Based Model (ABM) 

developed by Villalba (2023), incorporating the dynamics of learning by doing, using, and interacting. 

This approach enables us to simulate various scenarios and evaluate the impact of different conditions 

on the emergence of inclusive innovation systems. 

Although there is considerable research on pro-poor innovation (Bardegue, 2005; Kaplinsky, 2014; 

Abrol & Ramani, 2014) and on bottom-of-the-pyramid (Prahalad, 2012; Urmetzer& Pyka, 2020), few 

 
1 A typology of innovation systems has been explored in Albuquerque (2007). 
2 We use the acronym IIS to refer to Inclusive Innovation Systems and IMIS to refer to Immature Innovation 

Systems. 
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studies in the literature provide a comprehensive analysis of these dynamics within the broader context 

of innovation systems. In particular, the ways in which conventional systems can either create barriers 

or offer opportunities for the inclusion of marginalized agents. This paper proposes to contribute to 

filling this gap by adopting a system-wide perspective that examines the interactions between 

marginalized and conventional actors, considering how their relationships shape the inclusion process. 

Additionally, we contribute to the literature by employing an Agent-Based Model (ABM) to capture the 

complex dynamics of inclusion, coevolution, and capability complementarity within IMIS. This 

approach provides a deeper understanding of how marginalized agents in innovation systems can 

contribute to inclusive innovation, emphasizing the importance of fostering both innovation capabilities 

and capabilities for inclusion to achieve more sustainable and equitable outcomes. 

After this introduction, we outline the structure of the paper as follows: in Section 2, we review the 

relevant literature on innovation systems, focusing on marginalized agents and their roles within these 

systems. In Section 3, we present the extended Agent-Based Model (ABM) used to simulate the 

coevolutionary dynamics between conventional and excluded agents in immature innovation systems. 

Section 4 describes the experimental setup and scenarios tested using the ABM, while Section 5 presents 

the results and key findings from the simulations. Finally, in Sections 6 and 7 we conclude with a 

discussion of the implications for policy and practice and suggest avenues for future research. 

2. Literature Review 

2.1 Innovation Systems and Marginalized Agents 

The concept of innovation systems has undergone substantial development since its introduction 

(Freeman, 1987; Lundvall, 1992), now encompassing a range of contexts, including national, regional, 

and sectoral systems (Edquist, 2010). Much of the literature focuses on Conventional Innovation 

Systems (CIS), which are characterized by structured interactions among established firms, research 

institutions, and government bodies within an environment that reinforces innovation-driven solutions. 

In these systems, interactions, collaboration, and knowledge flows play a central role in generating new 

products and processes, diffusing them throughout the system, and creating benefits for all participating 

agents (Lundvall et al, 2009). However, the concepts of CIS, which offers a blueprint to constitute a 

virtuous system, and often overlook the contributions of marginalized agents (Berdegue, 2005; 

Urmetzer & Pyka, 2020), whose informal and necessity-driven innovations do not fit neatly within 

conventional frameworks. 

Marginalized agents, such as informal entrepreneurs and smallholder farmers, are those that often 

engage in innovative activities out of necessity, driven by the need to address immediate local 

challenges (Urmetzer and Pyka, 2020). Very prominent in developing countries, these agents typically 

operate outside formal networks and institutional support, relying on indigenous knowledge, frugal 

innovation practices, and community-based solutions (Sen & Kliksberg, 2007). While their innovations 

may lack the formal recognition and scale of conventional innovations, they are crucial for addressing 

pressing local issues and enhancing community resilience (Prahalad, 2012). 

The framework for Inclusive Innovation Systems (IIS) (Altenburg, 2009; Chataway et al., 2014; 

Villalba, 2023) builds upon the structures of conventional systems but emphasizes inclusivity and the 

integration of marginalized agents. The theoretical basis for this shift stems from the recognition that 

innovation can and should be a tool for social inclusion, addressing issues of inequality and exclusion 

(Arocena & Sutz, 2021). In inclusive systems, the interactions among agents—both established and 

marginalized—are key to fostering innovation that benefits not only the market but also socially 

excluded groups. 

Villalba et al. (2023) explores the IIS framework by examining how these systems emerge and evolve 

through the participation of excluded agents. Inclusive innovation systems require a broader 

understanding of the diverse capabilities of agents, particularly those who may not have traditionally 
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participated in the innovation process. The complementarity of innovation capabilities and capabilities 

for inclusion becomes crucial, as these systems rely on the interactions between agents with different 

but complementary capabilities to co-create solutions that address both economic and social challenges. 

2.2 Coevolution in Innovation Systems and Agent-Based Modeling 

A key aspect of this dynamic is the concept of coevolution, which plays a vital role in the development 

of innovation systems. Coevolution refers to the process through which two or more entities, such as 

species, organizations, or agents, evolve in response to each other's actions and adaptations (Gowdy, 

1994; Almudi & Fatas-Villafranca, 2021). In the context of innovation systems, coevolution highlights 

the interdependent development of agents, their capabilities, and the institutional environment. It 

emphasizes the importance of reciprocal interactions, mutual learning, and adaptive responses in 

shaping the evolution of innovation ecosystems (Nelson & Winter, 1982; Kallis, 2007). 

The concept of coevolution is particularly relevant for IIS (Villalba et al., 2023). In these systems, 

marginalized agents and conventional actors coevolve, influencing each other's strategies, behaviors, 

and outcomes (Guha-Khasnobis et al, 2006). For instance, socially conscious firms may develop new 

business models that integrate the capabilities of marginalized agents, while the latter may enhance their 

skills and knowledge through these interactions. 

To capture this coevolutionary mechanisms, Agent-Based Modeling (ABM) has been used as a powerful 

tool for exploring the dynamics of complex systems, such as innovation systems. It allows for the 

simulation of interactions among heterogeneous agents, each with distinct characteristics, decision-

making processes, and adaptive behaviors. This approach is well-suited to studying the emergent 

properties of systems where individual actions and interactions lead to system-level outcomes (Gilbert 

et al., 2001a; Epstein & Axtell, 1996). In innovation studies, ABM has been used to examine knowledge 

diffusion, network dynamics, and the impact of policy interventions, simulating scenarios that include 

diverse agents, varying interaction mechanisms, and evolving capabilities.3 These models provide 

insights into how different agents—firms, universities, NGOs, and marginalized actors—interact, learn 

from one another, and co-create innovations that address social and economic needs. 

Contributions on the use of ABM for IIS include Villalba (2023), which simulate how marginalized 

agents can drive innovation within IIS, particularly in contexts characterized by resource constraints, 

such as frugal innovation. The SKIN model4, initially developed by Gilbert et al. (2001b), has been 

refined, expanded, and modified in subsequent works, including Ahrweiler et al. (2004), Gilbert et al. 

(2007), Pyka et al. (2007), Pyka and Scholz (2008), Pyka et al. (2009), Ahrweiler et al. (2011), and 

Triulzi et al. (2011). Additionally, the hypercycles model5, introduced by Padgett (1997) and later 

extended by Padgett et al. (2003, 2009) and Watts and Binder (2012), offers further insights into these 

dynamics. 

 
3 The use of ABMs provides insight into the mechanisms through which the behaviour and interactions of micro-

agents—such as firms, universities, government entities, NGOs, and marginalized actors—contribute to the 

development of an innovation system. 
4 The SKIN (Simulating Knowledge Dynamics in Innovation Networks) model is an ABM designed to study 

knowledge creation, sharing, and innovation within networks of firms. It simulates the coevolution of knowledge 

and network structures through learning processes like learning-by-doing and learning-by-interacting, 

emphasizing the heterogeneity of firms and their collaborations (Gilbert et al., 2001b). 
5 The hypercycles model study the cooperative dynamics of self-replicating entities. Agents represent different 

types of replicators that support each other's replication through catalytic interactions, forming interconnected 

cycles (hypercycles). 
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The SSRIS model6, conceptually grounded in the organizational learning system proposed by Schwandt 

and Marquardt (2000), extracts four building blocks to form the subsystems of the conceptual models 

by Zollo et al. (2011), Iandoli et al. (2013), and Ponsiglione et al. (2014). Lastly, the innovation system 

model, which highlights the complementary nature of capabilities and learning to exploit innovation 

opportunities, was first developed by Ruiz et al. (2016) and later expanded by Quintero et al. (2017, 

2019). 

The strength of ABMs lies in their ability to model non-linear interactions and emergent phenomena, 

making them ideal for studying complex adaptive systems like inclusive innovation systems (Kiesling 

et al., 2012). By simulating different scenarios, ABMs can reveal leverage points and critical factors 

that influence the success of innovation initiatives within these systems. This makes them a valuable 

tool for policymakers and researchers seeking to design interventions that promote inclusivity and 

innovation. 

 

3. Model Extension and Formulation 

In this section, we present an enhanced Agent-Based Model (ABM) based on Villalba (2023), 

incorporating new dynamics to better capture the learning processes and coevolutionary interactions of 

marginalized agents within immature innovation systems. The model includes three key learning 

processes: (1) Learning by Doing, where agents enhance their capabilities through hands-on 

experience and iterative problem-solving, reflecting necessity-driven innovation; (2) Learning by 

Using, which involves agents adapting existing technologies to local contexts; and (3) Learning by 

Interacting, where agents engage with both excluded and conventional actors, fostering knowledge 

exchange, capability development, and system-wide coevolution. 

Agents are characterized by vectors of innovation capabilities and capabilities for inclusion. Innovation 

capabilities relate to R&D, diffusion, linkage, production, and market exploitation, while capabilities 

for inclusion involve social connectivity, agency, teaching-learning spaces management (TLSM) 

capabilities, and integrating traditional knowledge in production and commercialization of new 

appropriate solutions. The model accounts for agent heterogeneity: marginalized agents generally 

possess lower formal innovation capabilities, while conventional agents excel in innovation but often 

lack social connectivity. Interaction mechanisms, including knowledge exchange, collaboration 

formation, and adaptation, drive coevolution, enabling agents to influence one another’s development 

through shared learning. The ABM formalizes these interactions using equations that capture agents' 

evolving states, offering insights into the mechanisms driving inclusive innovation. 

The model consists of two different types of agents: the first is called Competitive Environment, where 

NOPI (Needs, Opportunities, Problems and Ideas) are generated7, which are composed of attributes that 

must be met by the competing agents who want to satisfy, take advantage of and/or solve them. The 

second type of agents is grouped together with the competing agents, who have capabilities that are 

made available to projects that seek to account for the NOPI. These agents are of various kinds: some 

are in charge of exploring and generating new knowledge (research centers, laboratories, universities, 

etc.); there are also interface entities, which have the purpose of connecting different kinds of competing 

agents so that knowledge flows between them (Technological development centers, innovation 

intermediaries, technological brokers, etc.); others are in charge of exploiting it (firms); and there are 

the excluded agents, who do not possess any of these capabilities recognized in the CIS, but who possess 

 
6 SSRIS (Social Simulations for Research on Inclusive Systems) explores the dynamics of inclusive innovation 

systems. It simulates how diverse agents, including marginalized groups, interact within innovation ecosystems, 

examining how learning, collaboration, and policy interventions impact innovation processes and social inclusion. 
7  
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other fundamental capabilities to fulfill new functions that allow addressing the social component of 

the NOPI as discussed in depth in the work of Villalba et al (2023). 

What is sought is that in the model these agents interact as follows: First, the agents seek to take 

advantage of the NOPI by fulfilling their attributes, which are found in the Inclusive Environment. They 

do this either individually or through interaction with other agents, using and complementing their 

capabilities if necessary. It should be clarified that the rules of interaction between the agents depend 

on the geographic location, first, and then on the complementarity of their capabilities. Second, by 

managing to take advantage of a NOPI, the competing agents learn by increasing those capabilities that 

were used and unlearn by decreasing those capabilities that were not; in this way the agents co-evolve, 

thanks to the interaction with the NOPI of the Inclusive Environment and with the other agents with 

whom they interact. Third, agents that manage to take advantage of NOPI are rewarded by the Inclusive 

Environment, thus increasing their energy (using a biological metaphor) to be able to survive in the 

system. Together, these agent types form a dynamic and interactive network, where each plays a role in 

the coevolution and development of the innovation system. 

Each agent type in the model is defined by distinct attributes that shape its behavior and interactions. 

The capabilities of agents are categorized into two types: 𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎, which represents conventional 

(traditional) innovation capabilities, and is expressed as a vector [𝑐1, 𝑐2, … , 𝑐𝑛], where each element 

denotes a specific skill or competency relevant to conventional innovation processes. The second type, 

𝑐𝑎𝑝𝐼𝑛𝑐𝑙, captures capabilities for inclusion, defined by the vector [𝑐1
′ , 𝑐2

′ , … , 𝑐𝑚
′ ], which reflects the 

agent’s potential to engage in inclusive innovation, emphasizing social connectivity, trust-building, and 

collaboration with marginalized actors. These capabilities define the agent's ability to contribute to both 

conventional and inclusive innovation efforts. 

In addition to capabilities, competing agents possess economic attributes that influence their financial 

decision-making and resource management. The cost attribute represents the expenditure required to 

maintain or develop an agent’s capabilities, while the benefit attribute reflects the gains obtained from 

successful engagements or transactions. Additionally, the SExe attribute refers to the stock of surpluses, 

which are the net resources available after deducting costs from the agent's benefits. Lastly, agents have 

interaction attributes, particularly 𝑛𝑜𝑝𝑖𝐿𝑖𝑛𝑘, which indicates connections to market opportunities, or 

NOPIs. These links are established when the agent's capabilities align with the specific requirements of 

a NOPI, facilitating collaboration and the pursuit of innovation opportunities. 

Agents interact with NOPIs (Needs, Opportunities, Problems, and Ideas) through a capability matching 

mechanism that evaluates the compatibility between an agent’s capabilities and the requirements of a 

NOPI. The capability matching function assesses potential links by comparing the agent’s conventional 

(𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎) and inclusive (𝑐𝑎𝑝𝐼𝑛𝑐𝑙) capabilities against the innovation and inclusion attributes of the 

NOPI. A match is determined if the agent’s capabilities meet or exceed the NOPI’s requirements. 

Mathematically, the matching function is defined as: 

 

𝑀𝑎𝑡𝑐ℎ(𝐴, 𝑁) = ∏ Ι𝑛
𝑗=1 (𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝐴,𝑗 ≥ 𝑎𝑡𝑡𝑟𝐼𝑛𝑜𝑇𝑟𝑎𝑁,𝑗) × ∏ Ι𝑚

𝑘=1 (𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝐴,𝑘 ≥ 𝑎𝑡𝑡𝑟𝐼𝑛𝑐𝑙𝑁,𝑘) (1) 

 

where Ι is an indicator function that returns 1 if the agent’s capability matches or exceeds the 

corresponding requirement of the NOPI, and 0 otherwise. This function ensures that only agents with 

adequate conventional and capabilities for inclusion are eligible to engage with specific NOPIs. 

Once a match is identified through the capability matching process, the agent proceeds to link formation, 

governed by specific decision rules. If an agent’s capabilities sufficiently align with a NOPI’s 

requirements, a link is established, enabling interaction and collaboration between the agent and the 

NOPI. If no match is found, the agent continues searching for alternative NOPIs that better fit its 
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capabilities. These decision rules ensure that agents only form productive links where they can 

contribute meaningfully, driving innovation and inclusion within the system through targeted 

collaborations. 

Learning and unlearning 

The learning and unlearning dynamics in the model allow agents to continuously adapt their 

capabilities, reflecting real-world processes of skill acquisition and loss. Learning is modelled as an 

increase in an agent's capabilities through increments associated with where on the “S”-shaped 

technological learning curve the capability is currently at when used, which are scaled by a learning 

rate. This is expressed mathematically as: 

 

𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖
′ = 𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖 + Δ𝑙𝑒𝑎𝑟𝑛,         (2) 

𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖
′ = 𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖 + Δ𝑙𝑒𝑎𝑟𝑛         (3) 

 

where Δ𝐿𝑒𝑎𝑟𝑛 is an increment given by the learning factor given to the context in which the agents 

interact, and which is affected by the moment of the “S” curve in which the capability is located. 

Through this process, agents improve both their conventional and inclusive capabilities, enhancing their 

potential to engage in innovation activities and form links with relevant NOPIs. Conversely, unlearning 

captures the process by which an agent’s capabilities decrease, either due to skill decay or a shift in 

focus to other competencies. This process is modelled similarly to learning, but with a negative 

increment: 

 

𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖
′ = 𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖 − Δ𝑈𝑛𝑙𝑒𝑎𝑟𝑛       (4) 

𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖′ = 𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖 − Δ𝑈𝑛𝑙𝑒𝑎𝑟𝑛        (5) 

 

where 𝛥𝑈𝑛𝑙𝑒𝑎𝑟𝑛 represents the loss of capabilities over time. Unlearning is a critical aspect of the 

system, as it reflects the dynamic nature of agent capabilities, where skills not actively used may 

degrade. The balance between learning and unlearning, updated at each time step, affects the agent's 

ability to form links with NOPIs and successfully participate in innovation transactions, ensuring a 

constantly evolving system where agents must adapt to remain competitive and effective. 

The economic performance of agents in the model is driven by three key factors: cost, surplus, and 

profit calculations. Cost calculation is based on the agent's capabilities, with the total cost determined 

by the sum of capability values multiplied by corresponding system-specific cost coefficients. 

Mathematically, this is represented as: 

 

𝐶𝑜𝑠𝑡𝑖 = ∑ 𝑐𝑗 ∙  𝐶𝐶_𝑆𝑦𝑠𝑡𝑒𝑚𝑗
𝑛
𝑗=1           (6) 

 

where 𝑐𝑗 represents the agent’s capabilities and 𝐶𝐶_𝑆𝑦𝑠𝑡𝑒𝑚𝑗 refers to the associated cost coefficients 

for each capability. This function ensures that agents with higher levels of capabilities incur greater 

costs to maintain or develop those capabilities. 

Surplus is updated by balancing the agent’s costs and the benefits obtained from successful transactions. 

The surplus calculation is expressed as: 

𝑆𝐸𝑥𝑒𝑖 = 𝑆𝐸𝑥𝑒𝑖 − 𝐶𝑜𝑠𝑡𝑖 + 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖        (7) 
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Here, benefits are derived from the level of capability matching with linked NOPIs, with better matches 

yielding higher benefits. In addition to managing their surplus, agents also calculate their expected profit 

by considering both transaction costs and current surpluses. Expected profit is modeled as: 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑃𝑟𝑜𝑓𝑖𝑡𝑖 = 𝛼 ∙ (𝐶𝑜𝑠𝑡𝑖 + 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛_𝐶𝑜𝑠𝑡𝑠𝑖)      (8) 

 

where 𝛼 is a scaling factor that reflects the agent’s potential profitability based on the cost of their 

transactions and their engagement with NOPIs. This dynamic process allows agents to continuously 

adapt their strategies based on economic performance, influencing their future decisions and 

interactions. 

Initialization 

The model's initialization begins by assigning random capabilities to both agents and NOPIs within 

predefined limits, ensuring heterogeneity among the entities and the coherence with the reality. This 

initialization sets the stage for the system’s evolution over discrete time steps. Each time step represents 

a moment where agents adjust their capabilities, attempt to form links with NOPIs, and engage in 

economic activities. These interactions are driven by the agents' current attributes, including their 

innovation capabilities and capabilities for inclusion. The evolving interactions and learning processes 

allow agents to continuously refine their strategies and capabilities as they seek out profitable 

opportunities in the system. 

Additionally, the simulation introduces mechanisms for agent creation and termination. New agents and 

NOPIs are introduced into the system according to predefined birth rates, ensuring a dynamic flow of 

entities entering the system. Conversely, underperforming agents may exit if they fail to meet specific 

performance thresholds, such as maintaining sufficient surplus or forming successful links with NOPIs. 

Throughout the simulation, agents regularly reassess their capabilities, balancing between learning new 

skills and unlearning obsolete ones. This dynamic adjustment ensures agents can adapt to the system’s 

evolving conditions, making the environment highly responsive and fostering continuous innovation 

and interaction among agents. 

The dynamics of agents in the model are governed by key equations that dictate how their capabilities 

and economic status evolve over time. For capability updates, agents adjust both their conventional and 

inclusive capabilities at each time step. The equations governing these changes are: 

 

𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖,𝑡+1 = 𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖,𝑡 + 𝜂(𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑅𝑎𝑡𝑒) − 𝛾(𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑅𝑎𝑡𝑒)   (9) 

 

𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖,𝑡+1 = 𝑐𝑎𝑝𝐼𝑛𝑐𝑙𝑖, 𝑡 + 𝜂′(𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑅𝑎𝑡𝑒) − 𝛾′(𝑈𝑛𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑅𝑎𝑡𝑒)    (10) 

 

where 𝜂 and 𝛾 represent stochastic terms that determine the rates of learning and unlearning, 

respectively. This ensures that agents can both gain new skills through learning and lose them over time 

through unlearning. The balance between these two processes enables agents to dynamically adjust their 

capabilities based on interactions and environmental conditions within the system. 

Economic updates are similarly driven by the agents' capability adjustments and transaction outcomes. 

The cost an agent incurs at each time step is calculated based on their conventional capabilities and 

system-specific cost coefficients: 

 

𝐶𝑜𝑠𝑡𝑖,𝑡 = ∑ 𝑐𝑎𝑝𝐼𝑛𝑜𝑇𝑟𝑎𝑖,𝑗,𝑡
𝑛
𝑗=1 ∙ 𝐶𝐶𝑆𝑦𝑠𝑡𝑒𝑚𝑗

        (11) 
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𝑆𝐸𝑥𝑒𝑖,𝑡+1 = 𝑆𝐸𝑥𝑒𝑖,𝑡 − 𝐶𝑜𝑠𝑡𝑖,𝑡 + 𝑃𝑟𝑜𝑓𝑖𝑡𝑖,𝑡        (12) 

 

reflecting the dynamic balance between costs incurred, benefits gained, and the agent’s overall 

economic performance. Finally, agents decide to form links with NOPIs based on a matching condition: 

 

𝐿𝑖𝑛𝑘_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
1, 𝑖𝑓 𝑀𝑎𝑡𝑐ℎ(𝐴, 𝑁) = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

       (13) 

 

If a match is successful, the agent forms a link, facilitating collaboration and economic transactions. 

This decision rule ensures that agents only engage in interactions that are aligned with their capabilities, 

driving meaningful connections within the innovation system. Each variable used in the model is 

explained in detail in Annex 1. 

The Agent-Based Model (ABM) outlined above seeks to understand the dynamics of IMIS and IIS by 

simulating interactions between agents and the NOPI framework. The model includes mechanisms for 

agents to adjust their capabilities through both learning and unlearning processes, enabling adaptation 

and improvement in economic performance over time. By adjusting key parameters, such as learning 

rates and cost coefficients, the model simulates different scenarios to examine the impact of various 

strategies for promoting innovation and inclusion. 

 

4. Experiment  

The experimental design explores the effects of varying specific parameters on the dynamics of our 

ABM. To configure the scenarios, we varied four key parameters: 1) social level, 2) initial configuration 

of agents, 3) initial configuration of NOPIs based on their complexity, and 4) the presence or absence 

of learning processes. Each parameter was varied independently while holding other parameters 

constant, such as the birth rate of NOPIs, the birth rate of agents, transaction costs, maintenance costs 

of capabilities, the number of initial agents, learning-unlearning factors, income per attribute, and 

surplus stock. This section details the setup of each experimental scenario.  

For each case, we conduct Monte Carlo experiments using 20 different random seeds, running the model 

for 200 time steps. The calibration is based on reasonable assumptions, designed to represent quarterly 

periods. Annex 2 provides the initial values for each scenario. 

 

Experiment 1. Social Level 

In Experiment 1, we explore the role of the social level in influencing the inclusion of marginalized 

agents. The social level is a parameter that ranges from 1 to 9, with a value of 4 defined in the original 

model as the threshold for a NOPI (Needs, Opportunities, Problems, and Ideas) to be considered social. 

To understand how varying this parameter affects the inclusion of agents, the experiment tests social 

levels of 2, 4, 6, and 8, while keeping other model parameters constant. This variation allows for the 

assessment of how changes in the social level impact the classification of NOPIs as social and, 

consequently, the inclusion of marginalized agents in the innovation process. 

The different scenarios tested show distinct impacts on inclusion. At a social level of 2, the lower 

inclusion threshold reduces the number of NOPIs classified as social, which may limit the participation 

of agents with agency and TLSM capabilities. The baseline scenario with a social level of 4 reflects the 

baseline original model’s assumptions. At a social level of 6, a higher inclusion threshold potentially 
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allows more agents with agency and TLSM capabilities to engage excluded agents in innovation 

activities. Finally, a social level of 8 approaches the maximum threshold, testing the limits of inclusion 

by enabling a broad spectrum of agents with higher agency and TLSM capabilities interact with NOPIs 

and they promote marginalized agents to participate in innovation dynamics. This experiment provides 

insights into how the social level parameter can be adjusted to enhance or restrict inclusion in the 

innovation system. 

 

Experiment 2. Changes in the Initial Configuration of Agents 

In Experiment 2, we explore the impact of the initial configuration of agents on the early dynamics of 

the innovation system by altering the baseline scenario from Villalba (2023). The baseline starts with a 

balanced distribution of agents, reflecting a mix of both innovation capabilities and capabilities for 

inclusion. For this experiment, two alternative conditions were tested. In the Formal Agents Only 

condition, all agents possess conventional innovation capabilities but lack inclusive innovation skills. 

This setup simulates a formal market environment where innovation is driven primarily by agents with 

conventional, market-focused capabilities. In contrast, the Informal Agents Only condition introduces 

agents who lack conventional innovation capabilities but possess low-level inclusive innovation 

capabilities, representing a system dominated by informal agents more focused on inclusive innovation 

processes. 

In both scenarios, the total number of agents and their birth rates were kept constant, ensuring that any 

differences in the system’s dynamics were attributed to the change in agent type configuration. The 

Formal Configuration scenario examined how the system operates when only innovation-focused 

agents are present, assessing how exclusion from inclusive processes impacts overall innovation. 

Conversely, the Informal Configuration scenario evaluated the dynamics when only inclusion-focused 

agents were active, exploring the potential of informal agents to drive innovation without conventional 

capabilities. This experiment provides insights into how the composition of agents influences the 

development and outcomes of the innovation system, particularly in terms of balancing formal and 

informal contributions. 

 

Experiment 3. Initial Configuration of NOPIs 

In Experiment 3, the initial configuration of NOPIs (Needs, Opportunities, Problems, and Ideas) is 

examined to understand how their complexity influences agent engagement and innovation dynamics 

within the system. NOPIs are characterized by specific attributes that define the capabilities agents must 

possess to interact with them, with attribute values ranging from 0 to 9, where 9 represents the highest 

capability required. Two scenarios were developed for this experiment. The Non-Complex NOPIs 

scenario sets all attributes to 1, creating a system with low complexity. This configuration tests how 

easily accessible opportunities, with minimal capability requirements, affect agent behavior and the 

overall dynamics of the innovation system. 

In contrast, the Complex NOPIs scenario assigns the maximum value of 9 to all NOPI attributes, 

establishing a system with high complexity. In this scenario, only agents with the highest capabilities 

are capable of engaging with these NOPIs, testing the system’s capability to handle demanding 

opportunities. The Non-Complex Configuration allows for widespread agent participation due to 

minimal barriers to entry, while the Complex Configuration assesses the system's behavior when only 

highly capable agents can participate, exploring the potential for specialization or exclusion. This 

experiment sheds light on how varying levels of NOPI complexity impact agent interactions, 

opportunity access, and the overall performance of the innovation system. 
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Experiment 4. Absence of Learning 

In Experiment 4, the model tests the impact of eliminating learning and unlearning processes to 

understand their importance in the innovation system's dynamics. One of the core assumptions of the 

original model is that agents and NOPIs continuously evolve through learning, which allows for the 

enhancement of both innovation and inclusive capabilities. In this experiment, all learning factors were 

set to zero, effectively halting any capability development or adaptation. This included learning factors 

related to NOPIs, agents' innovation capabilities, agents' inclusive capabilities, and the processes 

involved in teaching and knowledge transfer. By removing these elements, the experiment creates a 

baseline scenario in which agents cannot improve their skills or adapt to new opportunities. 

The No Learning scenario allows for an exploration of how static capabilities affect the interactions and 

outcomes within the system. Without the ability to learn or unlearn, agents are unable to adjust to 

evolving demands or improve their match with NOPIs over time, leading to stagnation in innovation 

activities. This experiment provides a valuable contrast to scenarios where learning is present, helping 

to highlight the critical role that continuous capability development plays in fostering dynamic 

interactions, adaptability, and overall system growth. The results offer insights into how learning 

mechanisms are essential for sustaining innovation and inclusion in evolving environments. 

 

In all experiments, several parameters were held constant to ensure that any variations in outcomes were 

directly attributable to the primary variables being investigated. One of these controlled parameters was 

the birth rate of NOPIs, which was set at 3% with an exponential growth pattern. This rate was chosen 

because a 2% rate was found to result in zero net growth, while the 3% rate ensured a steady but 

manageable increase in NOPIs, preventing an overwhelming influx of opportunities in the system. 

Similarly, the birth rate of agents was held proportional across agent types, with significant effects only 

observed at rates above 18%. This allowed for the controlled emergence of agents within the system, 

with the assumption that 45% of agents are excluded to reflect realistic population dynamics. 

Other controlled factors included transaction costs and capability maintenance costs, which were fixed 

across all scenarios to maintain a consistent economic environment for agents. Additionally, the initial 

number of agents was kept the same in every experiment, ensuring that population size did not influence 

the outcomes, allowing the focus to remain on the changes in agent configurations or NOPI complexity. 

The factors of learning and unlearning were also consistent across all experiments, except in the 

scenario testing the absence of learning, where they were set to zero. This control structure ensured that 

the observed effects in each experiment could be reliably attributed to the specific variables being tested, 

providing a clear understanding of their influence on the innovation system’s dynamics. 

 

5. Results 

Based on the results presented in the Table 1, we can analyze several key variables related to 

marginalized agents, inclusion, and the overall system dynamics across various experiments. The 

experiments provide insight into how different social levels, complexity of NOPIs, and the presence or 

absence of learning influence the inclusion of marginalized agents and the performance of the 

innovation system. The results for Experiment 2 will not be reported, as all agents disappear in 

this scenario, demonstrating that a system entirely dominated by marginalized agents is unable 

to sustain itself. We opted to remove the graphs from Experiment 2 from our graphs. 

One of the primary variables to assess the inclusion of marginalized agents is 

agentsInSuccessFormulasExcluded, which tracks the number of excluded agents that are part of 
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successful innovation processes. In the baseline scenario (Exp 1 - Social Level 4), the number of 

excluded agents involved in successful formulas is 2.68. This number increases as the social level rises 

to 6 and 8, reaching 2.93 and 7.12, respectively. This suggests that higher social levels contribute to 

greater inclusion of marginalized agents in successful innovation activities. However, in Exp 3 

(Complex NOPIs), this number drops to 1.74, indicating that the complexity of opportunities can hinder 

the participation of excluded agents, likely due to the high capability requirements. Conversely, in Exp 

3 (Non-Complex NOPIs), the number of excluded agents participating in success formulas remains 

similar at 1.63, indicating that lower complexity does not significantly improve their inclusion. In Exp 

4 (No Learning), the number of excluded agents in successful formulas spikes to 9.10, a surprising 

result that might suggest that the lack of capability evolution allows excluded agents to capitalize on 

static opportunities, though this does not necessarily translate to long-term system health. These results 

can be observed in Graph 1.  

The totalExcludedAgents variable provides further insight into how many agents remain marginalized 

across the different scenarios (see Graph 2). In the baseline, 4.65 agents are excluded, but this number 

increases significantly as the social level rises, with 11.41 excluded agents at the social level 8. This 

implies that despite higher social levels potentially offering more opportunities for success, a larger 

portion of the agent population remains marginalized. The results for the complex and non-complex 

NOPI scenarios show fewer excluded agents (3.99 and 3.88, respectively), suggesting that in these 

scenarios, a higher percentage of the agent population is able to engage with opportunities. However, 

in the No Learning experiment, the number of excluded agents rises sharply to 22.01, which indicates 

that the absence of learning significantly increases marginalization.  A deeper look at the behavior over 

time of the variable totalExcludedAgents reveals that the social level scenarios 2 and 4, the complex 

and non-complex NOPI scenarios, and the No Learning scenario show a reduced growth in the number 

of excluded agents over time, while in the social level scenario 8 this variable shows an increasing 

behavior (see Graph 3). This implies that this extreme configuration generates positive effects by 

facilitating the involvement of excluded agents in the use of NOPIs, but at the same time it may not 

generate sufficient benefits for excluded agents to change their excluded status. 

The agentsInSuccessFormulasNotExcluded variable indicates the number of non-excluded agents 

that are successfully engaging in innovation processes. In the baseline, 32.37 non-excluded agents are 

involved in successful formulas. As social levels increase, this number fluctuates, reaching 31.23 at 

social level 6 and dropping to 28.29 at social level 8. This suggests that higher social levels do not 

necessarily guarantee greater success for non-excluded agents. Interestingly, both the complex and non-

complex NOPI scenarios see higher participation of non-excluded agents (50.73 and 55.70, 

respectively), indicating that opportunity complexity plays a critical role in determining the overall 

success rates of agents. In the No Learning scenario, the number drops to 47.98, which suggests that 

the absence of learning slightly reduces the success of non-excluded agents, though they still perform 

better than in the baseline.  

The sustainability variables, such as social, economic, and ecological provide insight into the overall 

sustainability of the system in each scenario. In the baseline, social sustainability is relatively low at 

2.61, while economic sustainability is also low at 1.29, and ecological sustainability is at 2.12. These 

values improve as social levels rise, with significant increases seen at social levels 6 and 8. In Exp 3 

(Complex NOPIs), these values spike dramatically, particularly for economic (5.08) and ecological 

(4.48) sustainability, suggesting that more complex opportunities lead to more sustainable outcomes for 

the system overall. However, in the No Learning scenario, ecological sustainability drops to 4.61, while 

social sustainability remains relatively low at 5.82, indicating that without learning, the system struggles 

to maintain long-term sustainability despite short-term gains in certain areas. This analysis is illustrated 

in Graph 4 including combinations of different directionality according to the three sustainability 

dimensions: equitable, viable, supportable, economic, social, and ecological.  
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In addition to the above, two distinct patterns emerge over time. In scenarios where only the level of 

inclusion is modified, the variables show little variation over time. However, in scenarios where changes 

are made to the complexity of NOPIs, the configuration of agents, or learning values, the level of 

variation is significantly higher (see Graph 5). These results highlight the substantial impact that 

different configurations can have on immature innovation systems, particularly in terms of system 

stability and adaptability. 

The inclusiveWithLinks and conventionalWithLinks variables track the number of NOPIs (inclusive 

and conventional) that agents successfully engage with. The behavior over time of this variable is 

similar in all scenarios (see Graph 6), thus it is important to perform its analysis based on the average 

values identified in Table 1. In the baseline, 9.66 inclusive NOPIs have links, while 15.35 conventional 

NOPIs have links. As the social level increases, the number of inclusive NOPIs with links rises to 11.13 

at social level 6 and 13.40 at social level 8. This suggests that higher social levels provide more inclusive 

opportunities for agents to engage with. On the other hand, the number of conventional NOPIs with 

links remains relatively stable, with a significant rise in Exp 3 (Non-Complex NOPIs), where 27.06 

conventional NOPIs have links, indicating that lower complexity leads to more conventional 

opportunities being exploited. In Exp 4 (No Learning), inclusive NOPIs with links remain similar 

(11.41), but the number of conventional NOPIs with links rises significantly to 25.17, suggesting that 

without learning, agents can still capitalize on static conventional opportunities. 

Several variables track the specialization of agents, such as hybridExploiter, 

conventionalIntermediary, and scientificExplorer. In the baseline, hybrid exploiters and 

conventional intermediaries have moderate engagement, with values of 7.65 and 2.31, respectively. As 

social levels rise, the number of hybrid exploiters decreases, particularly at social level 8, where it drops 

to 4.77. Similarly, conventional intermediaries increase in Exp 3 (Complex NOPIs) to 6.49, suggesting 

that higher complexity fosters greater specialization. The scientific explorer role sees a notable increase 

in Exp 3 (Complex NOPIs), reaching 8.66, which suggests that more complex environments encourage 

scientific exploration. In Exp 4 (No Learning), the scientific explorer role is significantly diminished, 

dropping to 4.68, indicating that learning is crucial for fostering specialized roles like scientific 

exploration. 

Finally, the highCost and mediumHigh variables provide insight into the economic performance of 

agents in each scenario. In the baseline, the high cost is 1277.98, and medium-high cost is 636.02. These 

costs rise as the social level increases, with a particularly sharp increase at social level 8, where high 

cost reaches 1609.52. In Exp 3 (Complex NOPIs), these costs rise even further to 1364.45, suggesting 

that complex environments require higher investments from agents. In contrast, in Exp 3 (Non-Complex 

NOPIs), costs are relatively lower, indicating that simpler environments are less economically 

demanding. In Exp 4 (No Learning), costs are significantly reduced, particularly for high-cost agents 

(999.60), which indicates that the absence of learning reduces the financial burden on agents, though 

this may come at the cost of long-term system performance. 

 

6. Discussion  

The results from this study offer important insights into coevolutionary theory, particularly in the 

context of immature innovation systems involving marginalized and conventional agents. The data from 

the experiments reveal how marginalized agents, although often limited in formal innovation 

capabilities, can still contribute significantly to the system’s coevolutionary dynamics through their 

higher inclusion-related skills. These findings emphasize the importance of capability complementarity. 

In scenarios where the social level was higher (Experiment 1, Social Level 8), marginalized agents were 

more integrated into the system, illustrating that even agents with lower formal innovation capabilities 

can drive necessity-driven innovations when social conditions are conducive. This suggests that 
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marginalized agents are not only recipients of innovation but active contributors to system change, 

challenging conventional perspectives that prioritize only formal innovation capabilities. Emphasizing 

the importance of the role of agents with agency and TLSM capabilities, since this type of agent is the 

one who gives visibility to the excluded and helps them to improve their skills so that they can be 

integrated into the dynamics of innovation. 

Furthermore, the dynamic interaction between agents demonstrates the crucial role of learning and 

unlearning processes. The absence of learning in Experiment 4 illustrates the negative consequences of 

stagnation. Without these adaptive processes, the inclusion of marginalized agents is severely limited, 

and the overall system becomes less capable of evolving to meet changing demands. This reinforces the 

idea that learning, both formal and informal, is essential to the ongoing development and resilience of 

innovation systems, particularly those in their immature stages. The data thus support the 

coevolutionary view that both marginalized and conventional agents must continuously adapt through 

mutual interactions to foster innovation. 

For policymakers, the findings show that enabling the inclusion of marginalized agents requires more 

than simply encouraging innovation; it necessitates policies that enhance both innovation capabilities 

and capabilities for inclusion. In scenarios where social thresholds were set higher, marginalized agents 

became more involved in the success formulas, suggesting that fostering inclusion is directly linked to 

more socially supportive environments. Practical interventions could involve creating platforms for 

knowledge exchange between conventional and marginalized agents, especially in sectors like 

agriculture or frugal technology, where informal innovation has a larger role to play. Moreover, public 

policy needs to invest in both educational programs and the social infrastructure that builds trust 

between agents, enabling marginalized groups to interact more effectively with conventional agents. 

That may be through the promotion of the existence of agents with agency and teaching-learning spaces 

management capabilities. Experiments where social level was elevated (Experiment 1, Social Level 8) 

demonstrated a marked increase in successful collaborations, which suggests that promoting social 

cohesion within innovation ecosystems is a critical lever for coevolutionary development. 

For conventional actors such as firms and research institutions, the results underscore the importance 

of actively engaging marginalized agents. Recognizing their unique contributions can lead to 

partnerships that are not only innovative but also more resilient in the face of social and economic 

challenges. This study shows that conventional agents benefit from such engagement by diversifying 

the capabilities present in the system, thereby driving system-wide learning and adaptation. 

While the Agent-Based Model (ABM) provides meaningful insights into the dynamics of inclusion 

within innovation systems, there are certain limitations that require attention. The experiments focused 

heavily on the impact of social levels and learning mechanisms but did not explore the full complexity 

of agents' decision-making processes. Introducing more nuanced decision-making algorithms, which 

account for economic constraints, risk preferences, and policy impacts, could offer deeper insights into 

how different types of interventions shape coevolutionary dynamics. Future research should also 

investigate how varying institutional, cultural, and regulatory environments influence the role of 

marginalized agents in immature innovation systems. Expanding the model in these ways will provide 

a more comprehensive understanding of how to nurture inclusive innovation in a variety of contexts. 

7. Conclusion 

This study provides critical insights into the coevolutionary dynamics of marginalized agents within 

immature innovation systems, particularly in the context of developing countries. By employing an 

Agent-Based Model inspired by Villalba (2023), we demonstrate that marginalized agents—despite 

often having lower formal innovation capabilities—play a vital role in fostering inclusive innovation. 

The model reveals that the complementarity of capabilities between conventional and marginalized 
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agents drives system-wide coevolution, emphasizing the importance of learning, unlearning, and 

adaptive interactions. 

Our findings emphasize the significance of capability complementarity in advancing innovation, 

revealing that higher social thresholds allow greater participation of marginalized agents in innovation 

processes. However, the study also underscores the essential role of capability development: when 

learning processes are absent, the system stagnates, restricting long-term sustainability. Notably, when 

the system is dominated by marginalized agents with limited learning potential, stagnation leads to 

systemic collapse. 

This research advances the understanding of how marginalized agents contribute to the evolution of 

innovation systems by stressing the importance of continuous learning and adaptive coevolution. The 

study illustrates the need for environments that encourage collaboration and capability building, 

enabling innovation systems to become more inclusive, resilient, and capable of addressing both local 

and broader societal challenges. 
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Graph 1. Average of Number of agents in success formulas per experiment. (20 simulations, 200 Time 

Steps)8 

 

Graph 2. Average Total Agents and Excluded/Non-Excluded Agents per Experiment (20 Simulations, 

Time Steps) 

 

 
8 Experiment 2 showed zero agents, so we opted to remove from those graphs. 
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Graph 3. Agent Count Over 200 Time Steps – Single Simulation 

E.1 – SL 2 

 

E1 – SL 4 (Baseline)

 

E.1 – SL 6 

 

E.1 – SL 8

 

E.3 – Complex NOPI 

 

E.3 – Simple NOPI 

 

E.4 – No Learning  
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Graph 4. Average Sustainability Metrics per Experiment (20 Simulations, 200 Time Steps) 

 

 

Graph 5. Sustainability Metrics Over Time – Single Simulation Across 200 Time Steps 

E.1 – SL 2 

 

E1 – SL 4 (Baseline) 

 
E.1 – SL 6 

 

E.1 – SL 8

 
E.3 – Complex NOPI E.3 – Simple NOPI 



22 

 

  
E.4 – No Learning  

 

 

 

Graph 6. Number of Utilized NOPIs – Results from a Single Simulation Over 200 Time Steps 

E.1 – SL 2 

 

E1 – SL 4
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E.1 – SL 6 

 

E.1 – SL 8

 
E.3 – Complex NOPI 

 

E.3 – Simple NOPI 

 
E.4 – No Learning  
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Table 1.  Average Results of Monte Carlo Simulations (200 Time Steps, 20 seeds) 

Variable E 1  

S=2 

E1 S= 

4 

(BL) 

E1  

S=6 

E1  

S=8 

E3 – 

Complex 

Nopis  

E3 – Less 

Comples 

Nopis 

E4 – Zero 

Learning 

totalAgents 49.64 48.12 48.15 48.30 84.76 82.78 84.39 

agentsInSuccessFormulas 37.29 35.31 34.35 35.41 61.58 64.02 66.21 

agentsInSuccessFormulasExcluded 2.47 2.68 2.94 7.12 1.74 1.63 9.10 

totalExcludedAgents 4.25 4.65 5.38 11.42 3.99 3.88 22.01 

totalNonExcludedAgents 45.39 43.47 42.77 36.88 80.76 78.90 62.39 

totalAgentsCEA 13.88 13.57 12.17 0.00 22.84 22.21 37.67 

ceaExcluded 0.96 1.22 1.53 0.00 0.57 0.59 13.81 

sustainable 19.46 18.85 18.90 17.40 27.97 24.00 26.72 

equitable 12.53 12.13 12.18 12.14 19.02 17.25 18.15 

viable 3.63 3.80 3.71 5.22 8.30 11.81 9.35 

economic 1.44 1.29 1.27 1.35 5.08 6.70 5.83 

supportable 7.29 7.33 7.21 6.45 11.66 9.39 11.60 

social 2.78 2.61 2.61 2.64 5.93 5.59 5.82 

ecological 2.41 2.12 2.27 3.09 4.48 5.77 4.61 

equitableNoLink 6.20 6.04 6.56 7.96 7.64 8.96 7.48 

viableNoLink 3.17 3.43 3.35 4.95 4.27 8.68 6.79 

economicNoLink 1.24 1.16 1.14 1.24 2.00 4.14 3.88 

supportableNoLink 3.30 3.34 3.45 3.82 4.40 4.42 4.96 

socialNoLink 1.18 0.94 0.93 1.35 1.84 2.47 2.82 

ecologicalNoLink 1.91 1.63 1.81 2.71 2.03 4.14 2.99 

agents 49.64 48.12 48.15 48.30 84.76 82.78 84.39 

inclusive 20.99 13.30 6.48 0.00 14.50 13.46 16.26 

excluded 4.25 4.65 5.38 11.42 3.99 3.88 22.01 
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Annex 1. Variable Definitions and Corresponding Code References 

The code is available upon request from the authors 

Names for the paper Names from the code Explanation 

time steps Ticks Number of time steps or iterations in the simulation 

totalAgents Total agentes Total number of agents in the system 

totalNonExcludedAgents Total Agentes no excluidos Total number of non-excluded agents 

totalExcludedAgents Total Agentes excluidos Number of excluded agents 

agentsInSuccessFormulas 
Agentes en formulas de éxito 

(SF) 
Number of agents in successful formulas 

agentsInSuccessFormulasExcluded 
Agentes en formulas de éxito 

excluidos (SF Exclu) 
Number of excluded agents in successful formulas 

agentsInSuccessFormulasNotExcl

uded 

Agentes en formulas de éxito 

no excluidos (SF No Exclu) 
Agents not excluded in successful formulas 

totalAgentsCEA Total Agentes CEA 
Total number of agents with teaching learning 

capability (CEA) 

ceaExcluded CEA excluidos 
Number of excluded agents in teaching learning 

processes 

ceaNotExcluded CEA no excluidos 
Number of not-excluded agents in teaching learning 

processes 

sustainable sostenible Number of agents with sustainable directionality  

equitable equitativo Number of agents with equitable directionality 

viable viable Number of agents with viable directionality 

economic economico Number of agents with economic directionality 

supportable soportable Number of agents with supportable directionality 

social social Number of agents with social directionality 

ecological ecologico Number of agents with Ecological directionality  

undefined indefinido Number of agents with undefined directionality  

nopis Nopis 

Needs, opportunities, problems and ideas in the 

system that require targeted capabilities from agents 

to be addressed 

conventionalNopis Nopis convencionales Number of conventional NOPIs in the system 

inclusiveNopis Nopis inclusivas Number of Inclusive NOPIs in the system 

conventionalWithLinks Convencionales con enlaces Number of conventional NOPIs addressed by agents 

inclusiveWithLinks Inclusivas con enlaces Number of inclusive NOPIs addressed by agents 

hybridExploiter explotadorhibrido 
Hybrid agents (conventional and excluded) who 

exploit knowledge 

conventionalIntermediary intermediarioconvencional Conventional intermediaries 

conventionalExploiter explotadorconvencional Conventional exploiters of scientific knowledge  

excludedExploiter explotadorexcluido Excluded exploiters of traditional knowledge 

hybridExplorer exploradorhibrido 
Hybrid agents (scientific and excluded) who 

explorer knowledge 

scientificExplorer exploradorcientifico Conventional explorers of scientific knowledge 

inclusiveIntermediary intermediarioinclusivo Inclusive intermediaries 

excludedExplorer exploradorexcluido Excluded explorers of traditional knowledge 

allExcluded todosexcluido 
Excluded agents who have all of capabilities for 

inclusion  
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Names for the paper Names from the code Explanation 

circle circle 
Excluded agents who have a low level in all of their 

capabilities for inclusion 

allConventional todosconvencional 
Conventional agents who have all innovation 

capabilities  

highCost Costo_ alto High transaction cost between agents 

mediumHigh medio_alto Medium-high transaction cost between agents 

medium medio Medium transaction cost between agents 

mediumLow medio_bajo Medium-low transaction cost between agents 

low bajo Low transaction cost between agents 

averageCapabilitiesSF Promedio Capacidades SF Average capabilities in success formulas 

averageCapabilities Promedio Capacidades Average overall capabilities of all of agents 

averageInclusiveCapabilitiesSF 
Promedio Capacidades SF 

Inclusivas 

Average of capabilities for inclusion in success 

formulas 

averageConventionalCapabilitiesS

F 

Promedio Capacidades SF 

Convencionales 

Average of innovation capabilities in success 

formulas 

sexeSF Sexe SF Surplus stock of agents in success formula 

sexeSystem Sexe System Surplus stock of agents in the overall system 

accumulatedSexeSF Acum Sexe SF 
Accumulated surplus stock of agents in success 

formula 

accumulatedSexeSystem Acum Sexe System 
Accumulated surplus stock of agents in the overall 

system 

costsSF Costos SF Costs of agents in success formulas 

costsSystem Costos System Costs of agents in the overall system 

accumulatedCostsSF Acum Costos SF Accumulated costs of agents in success formula 

accumulatedCostsSystem Acum Costos System Accumulated costs of agents in the overall system 

benefitsSF Beneficios SF Benefits from Nopis in success formulas 

benefitsSystem Beneficios System Benefits from Nopis in the overall system 

accumulatedBenefitsSF Acum Beneficios SF 
Accumulated benefits from Nopis in success 

formulas 

accumulatedBenefitsSystem Acum Benficios System 
Accumulated benefits from Nopis in the overall 

system 

accumulatedCapabilitiesSF Acum Capacidades SF Accumulated capabilities in success formulas 

variationsCapabilitiesSF Variaciones Capadidades SF Variations in capabilities in success formulas 

variationsCapabilities Variaciones Capadidades Variations in capabilities in overall system 

ceaLinksCounter Contador Links CEA Counter of teaching learning process links 

end FIN End of the simulation or system analysis 
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Annex 2. Initial Values by Scenario  

(Only the modified values for each experiment are reported in the experiment columns) 

Parameter 

Initia

l 

value  

E 1  

S=2 

E1 S= 

4 

(BL) 

E1  

S=6 

E1  

S=8 

E2 

 

S=4 

E2 

 

S=8 

E3 – 

Comp

lex 

Nopis  

E3 – 

Less 

Comp

lex 

Nopis 

E4 – 

Zero 

Learn

ing 

Inclusion level (S) 4 2 4 6 8  8    

Initial number of nopis 50          

Initial number of agents  50          

Percentage of excluded agents 45%     100% 100%    

Percentage of complex Nopis 50%       100% 10%  

NOPI birth rate 3%          

Agents birth rate 20%          

Learning factor by use of 

capabilities 
3%     

  
  0% 

Unlearning factor by use of 

capabilities 
2%     

  
   

Learning factor by teaching 

learning processes 

0,13

% 
    

  
   

learning processes time (ticks) 4           

Maximum surplus stock 6000          

Maximum life cycle time of 

innovations 
120     

  
   

Maximum volatility of NOPI 60          

Benefits from NOPIs by 

conventional attribute 
40     

  
   

Benefits from NOPIs by 

inclusive attribute 
20     

  
   

Maintenance costs of innovation 

capabilities 
4     

  
   

Maintenance costs of capabilities 

for inclusion 
1     

  
   

High transaction cost between 

agents 
1.0     

  
   

Medium-high transaction cost 

between agents 
0,7     

  
   

Medium transaction cost 

between agents 
0,5     

  
   

Medium-low transaction cost 

between agents 
0,3     

  
   

Low transaction cost between 

agents 
0,1     

  
   

* Experiment 2 modifies the initial agent distribution. 
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Annex 3. Summary of Experiments and Key Insights 

Experiment Focus Scenarios  Insights/Outcomes 

Experiment 

1: Social 

Level 

Impact of social 

level on inclusion 

of marginalized 

agents 

Social 

levels: 2, 

4 

(baseline), 

6, 8 

- Higher social levels (6, 8) increase the inclusion of marginalized 

agents in innovation.  

- Social level 8 shows more agents with agency/TLSM capabilities 

interacting with NOPIs.  

- Extreme inclusion at social level 8 risks higher exclusion of other 

agents. 

Experiment 

2: Changes in 

Initial Agent 

Configuration 

Impact of agent 

composition on 

system dynamics 

Formal 

Agents 

Only vs. 

Informal 

Agents 

Only 

- Formal Agents Only scenario limits inclusion; driven by 

conventional market-focused innovation.  

- Informal Agents Only boosts inclusion but lacks formal innovation 

capabilities.  

- System dynamics change significantly depending on the initial 

agent composition. 

Experiment 

3: Initial 

NOPI 

Configuration 

NOPI complexity 

and its effect on 

agent engagement 

Non-

Complex 

NOPIs vs. 

Complex 

NOPIs 

- Non-Complex NOPIs allow for broader agent participation due to 

low barriers.  

- Complex NOPIs demand high capabilities, fostering specialization 

but limiting access to marginalized agents. 

Experiment 

4: Absence of 

Learning 

Effect of 

eliminating 

learning/unlearning 

on system 

dynamics 

No 

Learning 

scenario 

(learning 

factors set 

to zero) 

- No Learning leads to static system dynamics.  

- Despite higher short-term inclusion of marginalized agents, long-

term innovation stagnates.  

- Learning is essential for system adaptability and sustained growth. 

 

 


