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Abstract: Annealing is a popular post-process used to enhance the performance of parts made by
fused filament fabrication. In this work, four different carbon-fiber-based composites were subjected
to two different annealing methods to compare their effectiveness in terms of dimensional stability,
surface roughness, tensile strength, hardness, and flexural strength. The four materials include
PLA-CF, PAHT-CF, PETG-CF, and ABS-CF. The annealing methods involved heating the printed
composites inside an oven in two different ways: placed on a tray and fluidized bed annealing
with sharp sand. Annealing was conducted for a one-hour time interval at different annealing
temperatures selected as per the glass transition temperatures of the four materials. The results
showed that oven annealing provides better results under all scenarios except dimensional stability.
PETG-CF and ABS-CF composites were significantly affected by oven annealing with expansion
along the z-axis as high 8.42% and 18% being observed for PETG-CF and ABS-CF, respectively. Oven
annealing showed better surface finish due to controlled and uniform heating, whereas the abrasive
nature of sand and contact with sand grains caused inconsistencies on the surface of the composites.
Sand annealing showed comparable hardness values to oven annealing. For tensile and flexural
testing, sand annealing showed consistent values for all cases but lower than those obtained by oven
annealing. However, oven annealing values started to decrease at elevated temperatures for PETG-CF
and ABS-CF. This work offers a valuable comparison by highlighting the limitations of conventional
oven annealing in achieving dimensional stability. It provides insights that can be leveraged to
fine-tune designs for optimal results when working with different FFF-printed carbon-fiber-based
composites, ensuring better accuracy and performance across various applications.

Keywords: additive manufacturing; fused filament fabrication; annealing; PLA; PETG; ABS; PAHT;
carbon fiber

1. Introduction

The maturation of additive manufacturing (AM) methods has made them an integral
part of different industrial sectors, including automotive, aerospace, bioprinting, textiles,
electronics, and medical [1–3]. AM methods are characterized by faster prototyping, re-
ducing product development cycles, and enabling rapid iteration and customization [4].
They are creating a massive impact in the world around us and in space as well. A re-
markable example is the European Space Agency’s use of metal AM technology to produce
the first metal part ever manufactured in space [5]. Another one is focused on a self-
winding mechanical watch specifically designed to meet NASA’s standards for activities
conducted by astronauts both inside and outside a spacecraft [6]. These AM examples in
space exploration are offering solutions for manufacturing in extreme environments where
conventional methods are impractical. There are seven categories of AM as per ISO/ASTM
52900:2021. They include binder jetting, directed energy deposition, material extrusion,
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material jetting, powder bed fusion, sheet lamination, and vat polymerization [7]. Out
of these seven categories, material extrusion is one of the most used methods due to its
ease of operation, cost-effectiveness, and range of material availability [8]. Fused filament
fabrication (FFF), also known as fused deposition modeling (FDM), is a material extrusion
process that uses thermoplastics to print parts by depositing melted material through a
heated nozzle layer by layer. However, there are some common challenges associated with
FFF due to the layer-by-layer deposition nature, including rough surface finish with visible
lines, dimensional inaccuracies, and limited mechanical performance, thus limiting their ap-
plicability [9]. There are different ways of overcoming these challenges such as optimization
of process parameters, addition of fibers/particles, and post-processing operations. Process
parameters with significant impact on FFF-printed parts include extrusion temperature,
print speed, line width, layer height, infill pattern/percentage, and print orientation [10,11].
In this context, Butt et al. [12] investigated the effects of layer heights and line widths
on four different FFF-printed thermoplastics (Premium PLA, Graphene Enhanced PLA,
ABS Extrafill, and ASA Extrafill). They showed the limitations associated with the default
printing settings (0.2 mm layer height and 0.4 mm line width) and how layer height as well
as line width can be optimized to achieve desired properties in FFF-printed parts. Shakeri
et al. [13] examined the influence of thickness, infill pattern, number of walls, and layer
height on cylindricity and circularity of FFF-printed Nylon (PA6) parts. They concluded
that a hexagonal infill pattern, thickness of 5 mm, wall layer of 2, and layer height of 1.125
mm were the optimal process parameters for circularity and cylindricity in experiments.
They also developed a linear regression model to observe the relationship between the
control variables with cylindricity and circularity, with the confirmation test showing a
95% acceptance. Vidakis et al. [14] analyzed the impact of six printing parameters on
overall energy printing consumption (EPC), the specific printing energy (SPE), and specific
printing power (SPP) for FFF-printed ABS. They discussed the multi-factor effects and pre-
sented quadratic regression models with ANOVA for the six printing parameters that show
effectiveness for EPC and SPE but not for SPP. Such studies also emphasize the significance
of optimizing process parameters to promote smart, sustainable, and green manufacturing.

The second option to enhance the performance of FFF-printed parts is the incorpora-
tion of particles, fibers, or nanomaterial reinforcements to form composite materials [15,16].
Abderrafai et al. [17] investigated the effects of carbon fibers concentration and type, infill
pattern, and environmental temperatures on FFF-printed Polyamide 12. They observed
an increase of 6.3 times in tensile modulus and 2.15 times for tensile strength, compared
to unreinforced material. They also reported that addition of carbon fibers into a PA12
matrix improves both its stiffness and strength but reduces the ductility. Similarly, Chicos
et al. [18] studied the influence of infill density on mechanical and thermal properties of
short carbon-fiber-reinforced polyamide composites. They reported the highest tensile and
flexural strengths as well as lowering of glass transition temperature at 100% infill and
25% infill, respectively. They also recorded lower temperatures of onset degradation at
high infill densities (100% and 75%) compared to lower ones (50% and 25%). Therefore,
addition of carbon fibers can enhance mechanical properties, making the products more
applicable for load-bearing engineering applications. However, optimization of processing
parameters cannot be overlooked.

Identification and utilization of effective post-processing operations is the third option
that can enhance the performance of FFF-printed parts. Annealing is a popular post-
process that can relieve internal stresses and enhance the properties of thermoplastics.
Arjun et al. [19] investigated the effect of process parameters and thermal annealing on the
tensile strength of FFF-printed composite carbon fiber PLA. They reported an increase of
14% in tensile strength based on a set of optimal combinations that include an infill density
of 90%, gyroid printing pattern, 230 ◦C nozzle temperature, 0.1 mm layer height, 40 mm/s
print speed, and annealing at 95 ◦C for 120 min. This work highlights the effectiveness
of optimizing the process parameters and utilizing post-processing methods to enhance
mechanical properties. Bhandari et al. [20] analyzed the impact of different annealing
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temperatures and time intervals on the tensile properties of PETG-CF and PLA-CF. They
showed that the interlayer tensile strength of PETG-CF and PLA-CF composites increased
by three times and two times, respectively. Annealing for longer durations shows better
results but temperatures vary as PLA-CF showed a major increase in interlayer tensile
strength at 90 ◦C, whereas the same was observed for PETG-CF at 120 ◦C. Seok et al. [21]
studied the effects of annealing for strength enhancement of FDM-printed ABS reinforced
with recycled carbon fiber (rCF) content of 10 wt% and 20 wt%. They used three different
annealing temperatures (105 ◦C, 125 ◦C, and 175 ◦C) and time intervals (0.5 h, 2 h, and
4 h). They reported an increase in tensile and flexural strengths with 20 wt% rCF at
105 ◦C and 175 ◦C, respectively. This work not only highlights the impact of annealing
but also sheds light on the effect of recycling carbon fibers, promoting sustainability and
cost-effectiveness efforts.

Given the significant importance of mechanical performance in critical applications,
understanding the influence of annealing on FFF-printed composites is crucial. Moreover,
it is critical to analyze the effectiveness of different annealing methods on the performance
of composite materials. This can provide an alternative to the conventional oven annealing
to ensure desired properties in FFF-printed parts. Therefore, this paper aims to analyze
and compare the effects of two annealing methods on the performance of four composite
thermoplastics. By identifying the optimal annealing parameters for two different methods,
this study seeks to provide valuable insights into improving the performance and reliability
of FFF-printed carbon fiber composites for different engineering applications.

2. Methodology
2.1. Material and Manufacturing Process

Four different thermoplastics reinforced with carbon fibers were used in this work.
They include PLA, nylon, PETG, and ABS. From here onwards, they will be referred to as
PLA-CF [22], PAHT-CF [23], PETG-CF [24], and ABS-CF [25]. The first three composites
were sourced from Bambu Lab (Shenzen, China) and the fourth was purchased from IEMAI
3D (Guangdong, China). The composites were printed using Bambu Lab X1E 3D Printer
(Shenzen, China) with a build volume of 256 × 256 × 256 mm3, air purification, and
active chamber heating. Three different parts were manufactured, and their dimensions
were based on British and International Standards. They include a BS EN ISO 527-2:2012
tensile test sample [26], a BS EN ISO 868:2003 hardness test sample [27] and a BS EN ISO
178:2019 three-point flexural testing sample [28]. All the composites were printed in the flat
orientation with the same settings of speed as 50 mm/s, 100% infill with rectilinear pattern,
100% flow, 0.2 mm layer height, and 0.4 mm nozzle. The printing parameters relevant to
the material are shown in Table 1.

Table 1. Printing parameters for composites.

# Materials Nozzle Temperature (◦C) Bed Temperature (◦C)

1 PLA-CF 230 45
2 PAHT-CF 290 100
3 PETG-CF 255 70
4 ABS-CF 240 95

2.2. Annealing Methods

The composite materials were subjected to two different annealing methods inside
a Thermo Scientific Heraeus Oven (Nottinghamshire, UK). The annealing time interval
was one hour [29], with temperatures as shown in Table 2. The annealing temperatures
were chosen as per the glass transition temperature (Tg) of the four materials to ensure a
structured approach for assessing the response of the materials across a range of thermal
exposures. As shown in Table 2, four different temperatures were chosen. The first temper-
ature is below the Tg to serve as a control point to observe any pre-Tg physical changes
without inducing substantial molecular motion, allowing the polymer chains to remain
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relatively fixed. At this temperature, stress relief could still occur gradually, providing
insight into any minor changes in the internal stress distribution without significant soften-
ing. The second temperature value is at the Tg where the softening process would initiate,
enabling chain mobility and relaxation of internal stresses. This can lead to increased
ductility and potentially affect surface and bulk properties while allowing the material to
retain structural stability. The third temperature value is above Tg where chain mobility
increases, allowing for further relaxation and realignment of polymer chains. The fourth
temperature is well above the Tg and is expected to maximize molecular rearrangement
without degrading the material. At this higher temperature, the polymer chains can realign
and potentially even improve mechanical properties. This gradient approach to annealing
helps characterize the mechanical and thermal responses of the materials at strategic points
relative to Tg, offering a clear profile of how each temperature affects stress relief, stability,
and overall material performance.

Table 2. Annealing temperatures for the composites (* glass transition temperature, ◦C).

Materials Annealing Temperatures (◦C)

PLA-CF

53
63 *
73
83

PAHT-CF and PETG-CF

60
70 *
80
90

ABS-CF

95
105 *
115
125

For annealing, the samples were placed in the oven according to the specified anneal-
ing methods and subjected to the designated temperature and duration. After the annealing
time elapsed, the oven was turned off and the samples were left to cool inside the oven until
they reached room temperature. The first method was conventional annealing, where the
samples were placed on a tray (L × W × H; 300 mm × 210 mm × 40 mm) and placed in the
oven at a specified temperature, then allowed to cool after the time has elapsed. The second
method was fluidized bed annealing with sharp sand (will be referred to as sand annealing),
and the samples were submerged in the sand bed to be uniformly annealed. The tray was
filled with sand to a height of 30 mm and the samples were placed midway deep in the sand.
For this work, sharp sand was used, which typically contains larger particles with angular
edges. The angular shape of the particles in sharp sand allows for better contact between
them, which promotes more efficient heat transfer. The two annealing methods present a
different way of heating the samples and each method offers unique advantages in terms of
heat transfer and temperature control, with the controlled cooling process playing a crucial
role in minimizing residual stress and enhancing mechanical properties.

2.3. Measurements and Experimental Testing

All the measurements were taken before and after annealing to ascertain the impact
of annealing on the samples. K-type thermocouples, with an operating range of −100 ◦C
to 500 ◦C, were fixed to the surface of the samples with heat resistant Kapton tape. They
were connected to a data logger OM-HL-EH-TC 3927 (Omega, Norwalk, CT, USA) and the
temperature distribution on the samples was recorded starting from room temperature to
annealing and finally coming back to room temperature after cooling.

The dimensions of the dog-bone tensile samples were measured using a digital Vernier
caliper and surface roughness analysis was undertaken using a Mitutoyo Surftest SJ-210
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(Andover, UK) contact-type surface profilometer [30] as per ISO 21920-2:2021 [31]. Three
measurements were taken on each sample with a measuring speed of 0.5 mm/s. After
surface analysis, the dog-bone samples were subjected to tensile test on an INSTRON 3382
Universal Testing Machine with a speed of 1 mm/min as per BS EN ISO 527-2:2012 [26].

The square samples were subjected to indentation hardness as per BS EN ISO 868:2003 [27]
using a Shore D durometer. The indentation was measured on five different points to obtain
an average hardness value. The hardness test was followed by three-point flexural testing
of the rectangular sample on an INSTRON 3382 Universal Testing Machine with a speed of
2 mm/min as per BS EN ISO 178:2019 [28].

3. Results and Discussions
3.1. Dimensional Analysis

Shrinkage or expansion of thermoplastics is common post annealing due to the relaxing
of the internal stresses [29,32]. The changes could be observed along any of the three axes
(x, y, and z) and were attributed to the way FFF-printed samples cool, where internal
tensions, stresses, and entrapped air bubbles become locked between the layers during
the solidification process. The dimensions of the four composites were measured using
a digital Vernier caliper and their deviations for the two annealing methods are shown
in Table 3.

Table 3. Dimensional analysis for the composites.

Materials
Annealing

Temperature (◦C)
Oven Annealing Sand Annealing

Length (%) Width (%) Thickness (%) Length (%) Width (%) Thickness (%)

PLA-CF

53 −0.12 0.63 −0.75 −0.29 −0.25 2.50

63 −0.29 1.75 −1.25 −1.76 −0.25 2.83

73 −0.59 1.37 0.25 −2.35 −0.85 4.92

83 −2.35 −1.23 2.75 −2.94 −0.60 6.92

PAHT-CF

60 −0.59 2.73 2.67 −0.59 2.20 1.83

70 −0.59 2.33 2.75 −0.59 2.58 2.33

80 −0.59 1.65 3.83 −0.59 2.73 2.75

90 −1.18 2.78 5.75 −1.18 2.58 2.92

PETG-CF

60 −0.59 0.55 1.33 −0.59 0.50 0.67

70 −1.18 0.23 2.33 −1.18 0.18 1.50

80 −2.35 −0.90 3.58 −1.76 −0.40 2.08

90 −3.65 −2.30 8.42 −2.35 −0.63 3.33

ABS-CF

95 −1.18 0.27 2.17 −1.18 0.78 0.25

105 −2.94 −1.02 6.58 −1.18 0.52 1.42

115 −5.29 −3.15 14.75 −2.35 −1.68 7.42

125 −7.65 −4.77 18.08 −3.53 −1.90 7.58

It is clear from Table 3 that the highest variations were observed at the highest an-
nealing temperatures. This is due to the material softening more at elevated temperatures,
causing greater changes in size as internal stresses are released unevenly. Along the y-axis
(width), PLA-CF experienced almost twice the shrinkage with oven annealing (1.23%)
compared to sand annealing (0.6%). The values were comparable for changes along the
x-axis (length). However, the major difference was observed along the z-axis (thickness)
as sand annealing showed an expansion of 6.92% compared to 2.75% for oven annealing.
It is to be noted that the difference in heat distribution between sand annealing and oven
annealing plays a significant role in the crystallization behavior and thermal expansion
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of PLA-CF. Oven annealing generally provides more uniform heating due to controlled
convection, allowing for consistent crystallization and slower thermal expansion across the
material. This uniform heat exposure encourages gradual crystallization, which reinforces
the polymer matrix and contributes to improved mechanical properties [29,32]. The tem-
perature distribution data between oven and sand annealing is shown in Figure 1. For sand
annealing, a more gradual temperature rise and cooling cycle can be observed in Figure 1
due to the thermal insulating effect of the sand particles. This gradual heating minimizes
thermal shock, facilitates stable crystallization, and reduces overall internal stresses as well
as dimensional distortions. However, the pronounced directional sensitivities of PLA-CF
composites can lead to anisotropic expansion during sand annealing due to uneven heat
absorption. This effect is especially noticeable along the z-axis, where the material flow is
more constrained during FFF, thereby intensifying dimensional changes in that direction.
Additionally, due to PLA’s lower glass transition temperature (63 ◦C) and higher suscep-
tibility to thermal degradation, sand annealing can cause localized expansion along the
z-axis. These expansions may not fully revert during cooling, resulting in dimensional
changes after thermal treatment [33]. This effect is more pronounced in PLA-CF than in
higher-temperature-resistant materials like PETG-CF or PAHT-CF, which exhibit better
stability due to their inherently higher crystallinity potential and thermal resistance.
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For PAHT-CF, both annealing methods showed similar values for length and width.
However, the main difference was observed for the thickness (z-axis) where the expansion
increased with high annealing temperature. At 90 ◦C, sand annealing showed an expan-
sion of 2.92% compared to 5.75% for oven annealing. This demonstrates the dimensional
stability provided by sand annealing due to the extra support of the sand particles during
the annealing process. This contrasts with PLA-CF, where sand annealing showed more
expansion, thus highlighting the effectiveness of different annealing methods. The same
pattern was observed for both PETG-CF and ABS-CF, with sand annealing showing excep-
tional dimensional stability at all temperatures along the three axes. The highest expansion
for PETG-CF for oven annealing was 8.42%, compared to 3.33% for sand annealing. For
ABS-CF, 18.08% expansion was observed for oven annealing, compared to 7.58% for sand
annealing. These results make sand annealing better suited for the composite materials
when dimensional stability is a prime consideration, except for PLA-CF due to its inherent
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material properties. Sand annealing provides a more uniform heating across the surface
of the samples, while oven annealing provides a more gradual, less direct heat exposure.
In the case of PLA-CF, this localized heating in the sand bed could promote more thermal
expansion, resulting in a greater thickness increase, especially since the material is sensitive
to both crystallization and expansion during heat treatment [33,34]. Overall, sand anneal-
ing showed better dimensional stability for all materials (except PLA-CF) by physically
constraining the parts and preventing excessive deformation during softening.

3.2. Surface Roughness Analaysis

The FFF-printed composite samples were submerged in sand and placed in a tray to
be annealed inside an oven. Contact with sand could have adverse effects on the surface
roughness of the samples due to abrasion. Moreover, the layer-by-layer nature of the FDM
process introduces distinct layer lines, which exacerbate the challenges associated with
achieving a smooth surface finish [12,35,36]. Therefore, this test was performed to assess
the impact of varying annealing conditions and contact media on the surface roughness
of the composite samples. For this purpose, a Surftest SJ-210 (Mitutoyo, Kawasaki, Japan)
contact-type surface profilometer was used and all the samples were measured with the
traverse direction being diagonally across the building direction at an angle of 45◦. The
average surface roughness (Ra) values measured along the length of the samples are shown
in Figure 2.
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The surface roughness results from Figure 1 show that oven annealing yielded lower
surface roughness values compared to unannealed as well as sand annealed samples. This is
because oven annealing tends to provide better control over the annealing process, leading
to more uniform surface finishes due to consistent heating. On the other hand, sand anneal-
ing, while better for dimensional accuracy (Section 3.1), led to higher surface roughness
due to physical contact with sand grains and abrasions. In the case of PLA-CF (Figure 2a)
and PAHT-CF (Figure 2b), oven annealing showed significantly lower surface roughness
values compared to sand annealing. However, these improvements were observed at lower
temperatures with surface smoothing due to recrystallization and softening while worsen-
ing at high temperatures due to expansion and uneven shrinkage [35]. Sand annealing for
PLA-CF and PAHT-CF showed higher but consistent values at all temperatures, indicting a
controlled albeit ineffective process to improve surface finish.

For PETG-CF (Figure 2c), the oven annealing values were consistent but only slightly
lower than unannealed samples. The lowest value of 6.6 µm (compared to 7 µm for
unannealed samples) was observed at 60 ◦C, meaning that the surface roughness of PETG-
CF samples was not significantly affected by annealing. Surface roughness values for sand
annealing were higher than oven annealing and kept increasing with high temperatures,
with a value of 7.9 µm at 60 ◦C. ABS-CF (Figure 2d) showed better surface finish due to
better layer adhesion at lower oven annealing temperatures. However, higher temperatures
led to an increase in roughness values due to uneven shrinkage and fiber movement. The
lowest value of 6.9 µm and the highest value of 7.9 µm (compared to 8.4 µm for unannealed
samples) were observed at oven annealing temperatures of 95 ◦C and 125 ◦C, respectively.
Sand annealing surface roughness values were consistent and comparable to annealed
samples. It is clear from these results that oven annealing at lower temperatures is better
suited for good surface finish because it offers more controlled and uniform heating, leading
to fewer thermal gradients, reducing warping and uneven surface textures [19–21]. On the
other hand, the abrasive nature of sand and contact with sand grains cause inconsistencies
on the surface of the samples during sand annealing, leading to poor surface finish.

3.3. Tensile Testing

Annealing is an established post-process used to improve the tensile properties of
thermoplastics [19,20,29] and this work is comparing two different methods to ascertain
the impact on the tensile strength of four carbon fiber composites. The results of the
tensile testing are shown in Figure 3. Both methods demonstrated higher values compared
to unannealed samples, highlighting the positive effects of annealing. Figure 3a shows a
gradual increase in tensile strength with increased annealing temperatures for both methods.
However, the increase is more significant in the case of oven annealing compared to sand
annealing. The highest values were observed at the highest temperature of 83 ◦C, indicating
that the heat helped in relieving internal stresses and promoting better layer bonding [19,34].
An increase of 23.2% was observed for oven annealing at 83 ◦C, compared to unannealed
PLA-CF. On the other hand, an increase of 13% was observed for sand annealing at the
same temperature, highlighting the effectiveness of oven annealing. A similar pattern was
observed for PAHT-CF (Figure 3b), with the tensile strength increasing with increased
annealing temperature. Polyamide benefits from annealing-induced crystallization due to
improvement in crystallinity and stabilization of the internal structure [37]. The highest
increase was observed at 90 ◦C as 26% for oven annealing, compared to unannealed PAHT-
CF. The increase in tensile strength for sand annealing was only 8.6% at the same annealing
temperature. These results show the effectiveness of oven annealing to increase tensile
strength for the two semi-crystalline materials.
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A different pattern was observed for the two amorphous materials. PETG-CF showed
an increase in tensile strength to a certain annealing temperature before sharply declining.
Tensile strength increased until 80 ◦C, showing an increase of 18.3% for PETG-CF (Figure 3c).
However, there was a sharp decline at 90 ◦C, indicating that excessive temperature can
soften the material without significantly increasing strength [38]. There was minimal
increase in tensile strength for sand annealing, with the values staying consistent through
all the annealing temperatures. ABS-CF experienced the highest dimensional deformation
along the z-axis (Section 3.1) for oven annealing. Despite these changes in dimensions, no
significant improvements in tensile strength were observed. The highest tensile strength
was observed at 115 ◦C, showing an increase of 16.5% (Figure 3d), compared to unannealed
ABS-CF. The tensile strength decreased at 125 ◦C, indicating limited improvement in
interlayer adhesion at elevated temperatures [39]. On the other hand, sand annealing did
not demonstrate any significant changes in tensile strength.

The distinct heat transfer and thermal conductivity properties between sand and
oven annealing impact the tensile strength of semi-crystalline (PLA-CF, PAHT-CF) and
amorphous (PETG-CF, ABS-CF) composites due to differences in temperature uniformity
and rate of thermal exposure. Oven annealing provides more uniform heat distribution,
which is beneficial for semi-crystalline composites like PLA-CF and PAHT-CF. This even
heating enhances molecular alignment and crystalline structure, improving tensile strength
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by reducing residual stresses and enabling more complete crystallization [29,32]. In con-
trast, sand annealing typically leads to more gradual heating and cooling, but it can create
localized hot spots due to sand’s lower thermal conductivity. For semi-crystalline materials,
this may disrupt uniform crystallinity formation and lead to weaker interlayer bonding,
resulting in lower tensile strength increase compared to oven-annealed samples. For amor-
phous materials, however, the gradual temperature change in sand annealing generally
has less impact on their non-crystalline structure, leading to more consistent mechanical
properties regardless of the method. These results indicate that oven annealing is more
suited to enhance the tensile strength of both semi-crystalline and amorphous materials,
with the former showing a more significant increase compared to the latter due to their
sensitivity to thermal treatment and inherent crystalline structure.

3.4. Hardness Testing

Oven annealing has been shown to impact the surface hardness of thermoplastics [29,38].
However, sand annealing with the irregular contact and abrasive nature of the sand could
lead to different results. Therefore, it is crucial to assess the hardness of the four composites to
ascertain the effects of the two annealing methods. It is to be noted that annealing temperatures
and time intervals can affect the hardness values. An average of five values were taken from
each square sample, equidistant from each other. The results of Shore D hardness are shown
in Figure 4. It is evident that annealed samples for both methods showed higher values
compared to the unannealed ones, indicating the positive effect of annealing.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 11 of 19 
 

 

  

 
Figure 4. Hardness testing results: (a) PLA-CF; (b) PAHT-CF; (c) PETG-CF; (d) ABS-CF. 

As seen in Figure 4a, the hardness values peaked at the lowest annealing temperature 
of 53 °C for both oven and sand annealing. This is also consistent with the surface 
roughness and dimensional analysis where the smallest surface roughness (Section 3.2) 
and dimensional deviation (Section 3.1) were observed at the lowest annealing 
temperature. As the temperature increased, the hardness values decreased for both 
methods due to material softening. It is important to note that oven annealing yielded 
slightly higher values compared to sand annealing at all temperatures. The highest oven 
annealing values showed an increase of 6% compared to unannealed PLA-CF samples. In 
case of PAHT-CF (Figure 4b), the hardness values increase slightly as the temperatures 
increased, with the highest values being observed at the highest temperature of 90 °C for 
both oven and sand annealing. Compared to unannealed PAHT-CF samples, oven 
annealing resulted in a 5.4% increase, while sand annealing led to a 3.5% increase. 

PETG-CF samples (Figure 4c) showed a similar pattern to their tensile testing with 
the highest values being observed at 80 °C before declining. Oven annealing showed the 
highest increase of 7.6% at 80 °C for oven annealing (compared to unannealed PETG-CF 
samples) whereas sand annealing demonstrated consistent values at all temperatures. 
However, the standard deviation of sand annealed samples was higher compared to over 
annealed ones due to the localized variations resulting from the sand’s uneven thermal 

Figure 4. Hardness testing results: (a) PLA-CF; (b) PAHT-CF; (c) PETG-CF; (d) ABS-CF.



J. Manuf. Mater. Process. 2024, 8, 252 11 of 18

As seen in Figure 4a, the hardness values peaked at the lowest annealing tempera-
ture of 53 ◦C for both oven and sand annealing. This is also consistent with the surface
roughness and dimensional analysis where the smallest surface roughness (Section 3.2) and
dimensional deviation (Section 3.1) were observed at the lowest annealing temperature.
As the temperature increased, the hardness values decreased for both methods due to
material softening. It is important to note that oven annealing yielded slightly higher
values compared to sand annealing at all temperatures. The highest oven annealing values
showed an increase of 6% compared to unannealed PLA-CF samples. In case of PAHT-CF
(Figure 4b), the hardness values increase slightly as the temperatures increased, with the
highest values being observed at the highest temperature of 90 ◦C for both oven and sand
annealing. Compared to unannealed PAHT-CF samples, oven annealing resulted in a 5.4%
increase, while sand annealing led to a 3.5% increase.

PETG-CF samples (Figure 4c) showed a similar pattern to their tensile testing with
the highest values being observed at 80 ◦C before declining. Oven annealing showed
the highest increase of 7.6% at 80 ◦C for oven annealing (compared to unannealed PETG-
CF samples) whereas sand annealing demonstrated consistent values at all temperatures.
However, the standard deviation of sand annealed samples was higher compared to over
annealed ones due to the localized variations resulting from the sand’s uneven thermal
conductivity. ABS-CF (Figure 4d) demonstrated the same behavior as PETG-CF with the
hardness values initially increasing before sharply declining. The highest values showed
an increase of 4.1% (compared to unannealed ABS-CF samples) at 115 ◦C before decreasing
to 2.3% at 125 ◦C. It is evident that hardness values did not increase significantly due to
annealing, but oven annealing proved to be effective in enhancing the surface hardness to a
larger extent compared to sand annealing. This is due to sand annealing’s variable thermal
conductivity and irregular surface contact that can result in localized cooling rates, which
may lead to non-uniform hardness.

3.5. Flexural Testing

Three-point flexural testing has been used in this work to ascertain the flex or bend-
ing properties of the FFF-printed composites. The results from the testing are shown
in Figure 5. All annealed samples showed higher values compared to their unannealed
counterparts [38]. It is to be noted that oven annealing yielded higher flexural strength
compared to sand annealing in all cases and the values increased with rising annealing
temperature. For PLA-CF (Figure 5a), an increase of 17.3% was observed at the highest
annealing temperature of 83 ◦C, compared to the unannealed samples. On the other hand,
sand annealing only showed an increase of 9.2% at the same temperature. This is a common
theme in flexural testing for all materials. Oven annealing demonstrated an increase in
flexural strength with rising annealing temperatures, but the increase is less significant
compared to oven annealing. This can be attributed to the uniform heat distribution that
allows for better bonding between layers and stress relief during oven annealing. How-
ever, sand annealing can present varying thermal conductivity and inconsistencies due to
uneven sand distribution, leading to less reliable improvements. Figure 5b showed that
the flexural strength of PAHT-CF samples increased by 21.3% (at the highest annealing
temperature) compared to unannealed PAHT-CF samples, whereas sand annealing only
showed an increase of 8.2%. At the highest temperature of 90 ◦C, annealed PETG-CF
samples (Figure 5c) showed an increase of 17% and 9.6% for oven annealing and sand
annealing, respectively. Annealed ABS-CF samples (Figure 5d) showed the highest increase
of 20% at 125 ◦C for oven annealing as opposed to 11.4% for sand annealing, compared
to unannealed samples. These results indicate the effectiveness of oven annealing for
enhancing the flexural strength of FFF-printed carbon fiber composites.
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4. Material Quality Characterization

It is important to highlight the limitations of the different methods to ensure opti-
mal results can be achieved. This work is focused on four carbon-fiber-based composites
manufactured by FFF and subjected to two different annealing methods. The preceding
sections have demonstrated the effect of these methods on dimensional accuracy, surface
roughness, tensile, hardness, and flexural performance with varying degrees of effective-
ness. Therefore, it is imperative to identify the optimal set of parameters to achieve the
desired properties in PLA-CF, PAHT-CF, PETG-CF, and ABS-CF parts. It has been observed
that the semi-crystalline materials (PLA-CF and PAHT-CF) behave differently from the
amorphous ones (PETG-CF and ABS-CF) due to their structure and response to heat. In
the case of semi-crystalline materials, PAHT-CF is a high-temperature engineering-grade
carbon-fiber-reinforced nylon, designed for high strength-to-weight ratio and excellent
temperature resistant applications. Examples include aircraft components like brackets,
housings, and ducts, as well as industrial tooling such as jigs, fixtures, and molds.

As per the results reported in this study, if the focus is on mechanical properties
(tensile, hardness, flexural), then oven annealing should be the preferred choice. However,
to produce a more robust final product, additional considerations should be made for
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surface roughness and dimensional stability. Including these parameters will help in
delivering a more complete solution that meets both functional and aesthetic requirements
for high-performance applications. To better represent the parameters with the annealing
temperatures, overlay contour plots for oven and sand annealing are shown in Figure 6.
The black in-lines represent the overlay contour for flexural strength, whereas the red
in-lines show the percentage difference for the z-axis (thickness). In this context, consider
that a PAHT-CF product is required with a high dimensional stability (Table 3), maximum
surface roughness of 6.1 µm, tensile strength of over 66 MPa, hardness of over 75 HD, and
flexural strength of more than 89 MPa. While most oven annealing scenarios are well-
suited for this application, they fall short in delivering the desired dimensional stability
(as shown in Table 4), especially at elevated temperature of 90 ◦C where sand annealing
showed an expansion of 2.92% compared to 5.75% for oven annealing along the z-axis
(thickness). Therefore, sand annealing is the preferred choice for applications requiring high
dimensional stability. As can be seen in Table 4, either of the two annealing temperatures
can be chosen for the product as the difference between the two is minimal.

Table 4. Description of optimal combinations for PAHT-CF.

Annealing
Method

Annealing
Temperature (◦C) z-Axis (%) Surface

Roughness (µm)
Tensile

Strength (MPa) Hardness (HD) Flexural Strength
(MPa)

Oven
70 2.75 4.6 71.4 76.6 92.8
80 3.83 5.2 75 77 98.4
90 5.75 5.5 77.5 77 104

Sand
80 2.75 6.0 66.2 75.1 89
90 2.92 6.0 66.8 75.6 92.8

Sand annealing is superior to oven annealing in terms of maintaining dimensional
integrity (except PLA-CF). However, if the focus is shifted to exclude dimensional stability
as it is a serious issue for all the oven annealed materials (except PLA-CF), then the outcome
would be different. Figure 7 shows the overlayed contour plots for the amorphous material
PETG-CF. This material delivers smooth and consistent print quality. The addition of
carbon fiber enhances mechanical properties by providing a unique texture and significantly
improved strength. These features make it especially well-suited for high-stress applications
where both durability and a premium surface finish are critical. Typical examples include
protective casings and automotive interior components such as mounts and brackets. For
a PETG-CF product, consider a maximum surface roughness of 7.4 µm, tensile strength
of over 36 MPa, hardness of over 75 HD, and flexural strength of more than 87 MPa. In
this case, all the oven annealing scenarios fulfil the requirements, as opposed to only two
sand annealing scenarios (at 70 ◦C and 80 ◦C), making oven annealing the obvious choice.
This analysis plays a crucial role in quantifying the results, enabling users to understand
the limitations of the two annealing methods for different materials. By identifying the
best practices, users can achieve optimal results tailored to specific applications, thereby
improving the efficiency and performance of the manufacturing process.
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5. Conclusions

This study provides a novel comparative analysis of two annealing methods, i.e.,
conventional oven annealing and fluidized bed annealing with sharp sand on FFF-printed
carbon-fiber-reinforced polymers, including semi-crystalline (PLA-CF and PAHT-CF,) and
amorphous (PETG, CF and ABS-CF) materials. By examining key properties such as di-
mensional stability, tensile strength, surface roughness, hardness, and flexural strength,
the study not only highlights each method’s advantages and limitations for specific com-
posite types but also identifies optimal annealing parameters. This dual-method approach
offers a tailored strategy for post-processing FFF composites, expanding alternatives to
conventional oven annealing and improving the performance and reliability of 3D-printed
composites in engineering applications. The following conclusions were drawn from
the study:

1. Sand annealing provided better dimensional stability to all the composites (except
PLA-CF due to its low thermal stability), whereas oven annealing showed deviations
along the z-axis as high as 18% for ABS-CF, compared to 7.58% observed for sand
annealing at the highest annealing temperature of 125 ◦C.

2. The controlled and uniform heating of oven annealing demonstrated better surface
finish compared to sand annealing. The surface roughness values increased with
increasing annealing temperatures for oven annealing, but sand annealing showed
consistent albeit higher values for all the composites.

3. Tensile testing demonstrated the effectiveness of oven annealing over sand anneal-
ing with higher tensile strengths in all cases. For the semi-crystalline materials, the
tensile strength increased with increasing annealing temperature. However, the amor-
phous materials showed a decline at the highest annealing temperature as excessive
temperature can soften the material without significantly increasing strength.

4. The difference between the two annealing methods in terms of hardness values is
minimal, indicating their effectiveness in enhancing this aspect for the composites at
all temperatures.

5. Oven annealing showed higher flexural strength for all the four composites that
increased with increasing annealing temperatures. Sand annealing also demonstrated
a similar pattern albeit with lower values, compared to oven annealing.

For future work, the parameters could be changed to ascertain the impact of the
different annealing methods. These changes include increasing the annealing time interval
and temperature as well as changing the type of sand used and the depth at which the
samples are submerged. By carefully manipulating these variables, the performance of
the printed carbon-fiber-based composites can be significantly enhanced. This level of
control allows manufacturers to refine printed parts to meet the specific demands of high-
performance functional applications. As a result, the tailored composites can meet stringent
requirements, including increased load-bearing capacity and dimensional stability, making
them ideal for use in challenging environments where standard materials would fail.
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