
Citation: Michael, G.; Shahra, E.Q.;

Basurra, S.; Wu, W.; Jabbar, W.A.

Real-Time Pipeline Fault Detection in

Water Distribution Networks Using

You Only Look Once v8. Sensors 2024,

24, 6982. https://doi.org/10.3390/

s24216982

Academic Editor: Songling Huang

Received: 2 September 2024

Revised: 22 October 2024

Accepted: 28 October 2024

Published: 30 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Pipeline Fault Detection in Water Distribution
Networks Using You Only Look Once v8
Goodnews Michael, Essa Q. Shahra * , Shadi Basurra, Wenyan Wu , Waheb A. Jabbar *

Faculty of Computing, Engineering and Built Environment, Birmingham City University,
Birmingham B4 7RQ, UK; goodnews.michael@mail.bcu.ac.uk (G.M.); shadi.basurra@bcu.ac.uk (S.B.);
wenyan.wu@bcu.ac.uk (W.W.)
* Correspondence: essa.shahra@bcu.ac.uk (E.Q.S.); waheb.abdullah@bcu.ac.uk (W.A.J.)

Abstract: Detecting faulty pipelines in water management systems is crucial for ensuring a reliable
supply of clean water. Traditional inspection methods are often time-consuming, costly, and prone to
errors. This study introduces an AI-based model utilizing images to detect pipeline defects, focusing
on leaks, cracks, and corrosion. The YOLOv8 model is employed for object detection due to its excep-
tional performance in detecting objects, segmentation, pose estimation, tracking, and classification.
By training on a large dataset of labeled images, the model effectively learns to identify visual patterns
associated with pipeline faults. Experiments conducted on a real-world dataset demonstrate that the
AI-based model significantly outperforms traditional methods in detection accuracy. The model also
exhibits robustness to various environmental conditions such as lighting changes, camera angles, and
occlusions, ensuring reliable performance in diverse scenarios. The efficient processing time of the
model enables real-time fault detection in large-scale water distribution networks implementing this
AI-based model offers numerous advantages for water management systems. It reduces dependence
on manual inspections, thereby saving costs and enhancing operational efficiency. Additionally,
the model facilitates proactive maintenance through the early detection of faults, preventing water
loss, contamination, and infrastructure damage. The results from the three conducted experiments
indicate that the model from Experiment 1 achieves a commendable mAP50 of 90% in detecting faulty
pipes, with an overall mAP50 of 74.7%. In contrast, the model from Experiment 3 exhibits superior
overall performance, achieving a mAP50 of 76.1%. This research presents a promising approach to
improving the reliability and sustainability of water management systems through AI-based fault
detection using image analysis.

Keywords: object detection; YOLOv8; image analysis; CNN; annotation; water management system

1. Introduction

Efficient water management systems are vital for the effective distribution and con-
servation of water resources [1]. However, the detection and repair of faulty pipelines
present significant challenges for water utilities, leading to water losses, infrastructure
damage, and increased operational costs [2]. Traditional manual inspection methods are
often time-consuming and insufficient [3]. Advancements in artificial intelligence (AI)
and computer vision offer promising solutions to automate pipeline inspections [4]. This
study introduces an AI-based model that utilizes image analysis to detect faults in water
management pipelines [5]. By employing computer vision techniques, deep learning al-
gorithms, and image processing, the model aims to automate fault detection, facilitating
proactive maintenance and reducing water losses [6,7]. Integrating AI into water man-
agement systems offers numerous benefits, including improved efficiency, cost savings,
enhanced accuracy, and timely response to infrastructure issues [8,9]. Early detection of
pipeline faults is crucial due to the significant water wastage and resource strain caused
by leaks, cracks, and other defects [10]. Timely identification of these issues allows water

Sensors 2024, 24, 6982. https://doi.org/10.3390/s24216982 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24216982
https://doi.org/10.3390/s24216982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3668-6230
https://orcid.org/0000-0002-4823-3685
https://orcid.org/0000-0001-5164-8403
https://doi.org/10.3390/s24216982
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24216982?type=check_update&version=2


Sensors 2024, 24, 6982 2 of 19

utilities to minimize water losses, conserve resources, and mitigate risks such as water
contamination and property damage [11]. The AI-based model analyzes images to identify
specific fault patterns, making it a valuable tool for addressing critical water management
challenges [12].

The research builds on relevant studies that have advanced the understanding and
application of AI-based models for pipeline fault detection. For example, authors in [13]
proposed an AI-based water leak detection system utilizing cloud information management
to enhance leak detection efficiency and accuracy. Similarly, authors in [14] focused on
predicting pipeline failures in water supply networks using logistic regression and support
vector classification. The AI-based model for detecting pipeline faults through images
involves several stages [15]: data collection and integration, data pre-processing and aug-
mentation, utilization of YOLOv8 for object detection [16], transfer learning techniques,
dataset annotation and labeling, model training and validation, and deployment and in-
tegration into existing water management systems. Each component contributes to the
accuracy, reliability, and efficiency of the fault detection process [17,18]. While implement-
ing an AI-based model for pipeline inspection presents challenges such as data availability,
class imbalance, generalization, and real-time inference, the benefits and potential applica-
tions outweigh these difficulties [19]. Early fault detection enables proactive maintenance,
reducing water losses, infrastructure damage, and associated costs. Integrating the AI
model with pipeline monitoring systems facilitates remote inspection, efficient allocation
of maintenance resources, and real-time decision-making [20].

This paper aims to explore case studies and real-world implementations of AI-based
pipeline inspection systems, demonstrating their effectiveness in detecting pipeline faults,
streamlining maintenance efforts, and optimizing water management operations. Under-
standing the capabilities and implications of AI-based models for pipeline fault detection
will help water utilities and stakeholders make informed decisions about adopting these
technologies, ultimately enhancing the efficiency, sustainability, and resilience of their water
management systems. The structure of this paper is as follows: Section 2 presents the most
recent related work, Section 3 explains the methodology applied, Section 4 explains the
experimental design, Section 5 elaborates on the results and discussion from all AI models,
and Section 6 presents a detailed discussion of the results, including comparisons with
findings from other studies. Finally, Section 7 concludes the work and outlines the new
directions for future research.

2. Related Works

This review highlights the applications of AI techniques in water resource manage-
ment, emphasizing their potential to improve practices by detecting pipeline faults, op-
timizing water distribution, and enhancing efficiency and sustainability. Vanijjirattikhan
et al. [21] proposed an AI-based water leak detection system utilizing cloud information
management to enhance leak detection efficiency and accuracy. The system trains ma-
chine learning algorithms on leakage sound data, with the Deep Neural Network (DNN)
outperforming the Support Vector Machine (SVM) and matching the performance of the
Convolutional Neural Network (CNN) with a simpler structure. Field trials showed that
novice operators achieved over 90% leak pinpointing accuracy, comparable to experts. Hu
et al. [22] introduced the DBSCAN-MFCN method for detecting leakages in urban water
supply networks. This approach combined density-based spatial clustering (DBSCAN)
and multiscale fully convolutional networks (MFCN) to reduce complexity by zoning the
water network. The DBSCAN-MFCN method outperformed traditional techniques like
SVM, NBC, and KNN, improving detection efficiency by 78%, 72%, and 28%, respectively.
Wang et al. [23] developed a framework for assessing sewer conditions using computer
vision and deep learning on CCTV inspection videos. The framework, employing Faster
R-CNN and semantic segmentation models, achieved high accuracy in defect detection
with average precision, recall, and F1-scores of 88.99%, 87.96%, and 88.21%, respectively.
This system supports automated sewer assessment and maintenance planning, consistent



Sensors 2024, 24, 6982 3 of 19

with professional inspector evaluations. Niu and Feng [24] evaluated five AI methods
(ANN, ANFIS, ELM, GPR, and SVM) for daily streamflow prediction. Their study showed
that SVM, GPR, and ELM outperformed ANN and ANFIS, highlighting the importance of
selecting appropriate models based on reservoir characteristics. Ahn et al. [25] discussed
high-frequency Acoustic Emission (AE) systems for pipeline condition monitoring, com-
bining Genetic Algorithm (GA) for feature selection, Principal Component Analysis (PCA)
for preprocessing, and AI and SVM for fault classification. They introduced Intensified
Envelope Analysis (IEA) as a signal-preprocessing method, showing that GA and IEA
improved classification performance over PCA and envelope analysis.

Robles-Velasco et al. [26] proposed incorporating failure probability and consequences
into a comprehensive tool for optimal pipe replacement planning. Applied to a Span-
ish city’s water supply network, this methodology suggested that replacing 3% of the
network’s pipes annually could prevent about 30% of failures, demonstrating a feasible
approach to reduce unexpected failures. Shukla and Piratla (2020) addressed the challenge
of leak detection in buried pipelines using a deep-learning algorithm. Their approach
involved scalogram images of vibration signals from accelerometers on the pipeline surface,
achieving up to 95% detection accuracy for PVC pipelines. This method minimized human
intervention in leak detection. All papers reviewed above have been summarized in Table 1.

Table 1. Summary of research papers used in the literature review.

Ref. Topic Implemented AI Results

[21] AI-based acoustic leak detection in water
distribution systems Deep learning algorithms and CNNs

Effectiveness of deep learning
techniques in accurately detecting
pipeline faults

[23]
Towards an automated condition assessment
framework of underground sewer pipes based
on closed-circuit television (CCTV) images

R-CNN (Regional Convolution Neural
Network)

Average precision, recall, and F1-score
of 88.99%, 87.96%, and 88.21%,
respectively

[22]
Novel leakage detection and water loss
management of urban water supply network
using multiscale neural networks

DBSCAN-MFCN, which combines
DBSCAN algorithm with MFCN
algorithm; SVM, Naïve bayes
Classifier (NBC), k-Nearest Neighbor
(KNN)

DBSCAN-MFCN accuracy is 78% over
SVM, 72% over NBC, 28% over KNN

[24]

Evaluating the performances of several AI
methods in forecasting daily streamflow time
series for sustainable water resource
management

AANN, ANFIS, Extreme Learning,
ELM, GPR, SVM

All five AI methods achieved
satisfactory forecasting results;
however, SVM, GPR, and ELM
outperform ANN and ANFIS in terms
of the chosen evaluation benchmarks

[25]
AI-based machine learning considering flow
and temperature of the pipeline for leak early
detection using acoustic emission

GA, PCA SVM

The performance of GA for feature
selection and IEA preprocessing is
superior to PCA and envelope
analysis in terms of fault classification
accuracy

[27]
Leakage detection in water pipelines using
supervised classification of acceleration
signals

CNN model adapted from pre-trained
Alexnet network

CNN model achieves 95% accuracy in
detecting PVC leaks and 98% accuracy
using carefully selected acceleration
signal data

[26]
Prediction of pipe failures in water supply
networks using logistic regression and
support vector classification

Logistic regression and support vector
classification

SVM achieved the highest WQC
prediction accuracy at 97.01%

3. Methodology

The process of object detection involves several critical stages, as illustrated in Figure 1.
It begins with data collection, where a comprehensive dataset of labeled images is curated,
ensuring that it includes diverse and representative samples of the objects to be detected.
In the data preprocessing stage, images are resized, normalized, and augmented through
techniques such as flipping, rotation, and scaling to improve the model’s robustness and
generalization capabilities. During model selection, a suitable architecture, such as YOLOv8,
is chosen based on the specific task requirements, carefully balancing speed and accuracy.



Sensors 2024, 24, 6982 4 of 19

The training and validation phase involves dividing the dataset into training and validation
sets, training the model on the former, and tuning hyperparameters while monitoring
performance on the latter to prevent overfitting. Finally, the evaluation stage uses metrics
like mean average precision (mAP), precision, recall, and F1-score to rigorously assess the
model’s performance, ensuring it meets the necessary standards for accuracy and reliability
in detecting objects in new, unseen images.

Figure 1. Traditional pipeline for object detection (Yolov8).

3.1. Data Collection

In this work, high-resolution images were captured using drones to encompass diverse
pipeline locations and scenarios, providing the raw data for the YOLOv8 model. The dataset
is meticulously organized into three directories: ‘train’, ‘val’, and ‘test’. The training set
comprises 248 images, the validation set includes 60 images, and the test set contains
38 images, all uniformly resized to dimensions of 640 × 640 pixels, shown in Figure 2.
Initially, the dataset is unlabeled and requires thorough annotation. For the purpose of
this work, two object categories are defined: ‘pipe’ and ‘faulty pipe’, ensuring precise
classification and detection of pipeline conditions.

Figure 2. Samples from dataset.

3.2. Data Annotation

Data annotation is vital for developing object detection models, as it involves labeling
objects within images to provide the model with the necessary information for learning.
Object detection, a fundamental task in computer vision, involves identifying and locating



Sensors 2024, 24, 6982 5 of 19

objects within images or videos. YOLOv8 is known for its speed and accuracy in these tasks.
Creating high-quality annotations is crucial as the dataset quality significantly impacts the
model’s performance.

3.2.1. Annotation Stages

The annotation process includes the following steps:

• Selection of Annotation Tool: An appropriate tool is chosen to facilitate the labeling
process. Common tools include LabelImg, VGG Image Annotator (VIA), and Labelbox.

• Labeling Objects: Annotators mark and label objects of interest within the images. For
pipeline inspection, this may include pipes, valves, junctions, or anomalies.

• Annotation Format: Annotations follow specific formats such as Pascal VOC, COCO,
or YOLO. In this project, the YOLO format is used, including class labels, bounding
box coordinates, and image dimensions.

• Quality Control: A quality control process ensures accuracy and consistency through
regular checks and reviews of annotated images. Annotators use guidelines and
reference images to maintain consistency.

3.2.2. Annotation Process for the Data Directory

Upon completing the annotation stages, careful tool selection is crucial to avoid errors
during model execution. For this project, the LabelImg tool was initially employed. The
LabelImg library provides a user-friendly interface with primary functions accessible on
the left side of the window.

The annotation operation sequence: “Open Dir” > “Create RectBox” > “Enter Category
Name” > “Save” as presented in Figure 3. During the annotation process for images in the
“train” and “valid” directories using the LabelImg tool, several issues were encountered.
The user interface occasionally glitched, requiring reloading and causing an incomplete
label directory. To mitigate this, annotations were performed in batches and consolidated
into a single directory. However, this led to inconsistencies in label categories, with some
batches having two categories and others only one. As the model expected two label
categories, these inconsistencies triggered errors, necessitating a complete redo of the
annotation process, which could take weeks depending on the dataset’s size. To address
these challenges, the CVAT annotation tool was used. CVAT offers similar annotation
processes and formats to LabelImg but allows for pausing and resuming annotations, and
labels are predefined at the outset to ensure consistency. After completing the annotations,
the label directory is exported in YOLO format, ensuring a streamlined and consistent
process as shown in Figure 4.

Figure 3. Label image UI.



Sensors 2024, 24, 6982 6 of 19

Figure 4. Labeled data after annotation.

3.3. Dataset Splitting

The annotation of the dataset provides information about the objects present in each
image. These typically include the following:

• Bounding Boxes: Annotations specify the coordinates of bounding boxes around
the objects of interest in the images. Bounding boxes are represented by pairs of
coordinates, often in the format (x_min, y_min, x_max, y_max), which define the
top-left and bottom-right corners of the box.

• Class Labels: Each object within a bounding box is associated with a class label. In
this case, ‘pipe’ which is represented as ‘0’, and faulty_pipe which is denoted as ‘1’.
Class labels help the model distinguish between different object categories.

• Image Information: Annotations often include information about the image itself,
such as the image dimensions or a unique image identifier.

The text file containing bounding box coordinates and object classes is associated with
a distinct image identifier. The labels for the training and validation datasets are placed in
separate directories named ‘train’ and ‘valid’, respectively. These directories are located
within another directory labeled ‘labels’. Simultaneously, the image directories for training,
validation, and testing are stored in a directory called ‘images’. It is crucial to adhere to
this precise folder structure and nomenclature for the YOLOv8 model to successfully locate
and utilize the dataset. Subsequently, we generate a YAML file that includes paths to the
directories housing the training, validation, and testing images, along with the associated
object classes. This ensemble of images, labels, and the YAML file is organized within a
dedicated ‘YOLO’ directory. This annotated dataset serves as the foundation for training
the YOLOv8 model, enabling it to acquire the capability to detect and categorize objects
within the images.

3.4. Data Visualization

Data visualization is essential in the scientific method, as effective visual represen-
tations help scientists understand their data thoroughly and communicate their findings
clearly [28]. The image aspect ratio, which is the ratio of an image’s width to its height, is a
key attribute in fields such as photography, design, computer vision, and web development.
This ratio affects how an image is displayed across different screens and media. Ensuring
uniform image sizes is critical for training the YOLOv8 model. Figure 5 confirms that all



Sensors 2024, 24, 6982 7 of 19

images in the training and validation directories have an aspect ratio of 1.0, indicating uni-
formity in image dimensions without any significantly large or small sizes. It is essential to
visualize the distribution of bounding box aspect ratios in both the training and validation
label directories, as this provides insights into the range of box sizes. Any irregularities
in the annotations may necessitate a re-evaluation of the annotation process. Figure 6
indicates that most bounding boxes correspond to relatively smaller objects, indicating that
the process can move forward as planned.

Figure 5. Histogram of image aspect ratio for validation data.

Figure 6. Histogram of bounding box aspect ratio for training data.

3.5. YoloV8 Architecture

The architecture of YOLOv8, as shown in Figure 7, builds on the foundation of
YOLOv5 with key enhancements, particularly the introduction of the C2f module, which
combines high-level features with contextual information to boost detection accuracy [29].
YOLOv8 utilizes an anchor-free model, directly predicting object centers with a decoupled
head that processes objectness, classification, and regression tasks independently, leading
to improved overall accuracy [30]. The output layer uses a sigmoid function for objectness



Sensors 2024, 24, 6982 8 of 19

scores and a softmax function for class probabilities. For loss functions, YOLOv8 employs
CIoU and DFL for bounding box loss and binary cross-entropy for classification loss,
yielding better performance, especially for detecting smaller objects. Additionally, YOLOv8
introduces YOLOv8-Seg, a semantic segmentation model using the CSPDarknet53 feature
extractor and C2f module, achieving state-of-the-art results in both object detection and
semantic segmentation while maintaining high speed and efficiency [31]. YOLOv8 can be
executed via the command line interface (CLI) or as a PIP package, offering integrations
for labeling, training, and deployment. In terms of performance, YOLOv8x achieved an
average precision (AP) of 53.9% on the MS COCO test-dev 2017 dataset with a 640-pixel
image size, outperforming YOLOv5, which had an AP of 50.7% on the same input size.
This evaluation, conducted on an NVIDIA A100 with TensorRT, demonstrated a processing
speed of 280 frames per second (FPS) [32].

Figure 7. The architecture of Yolov8.

4. Experimental Design

We begin by installing Ultralytics to initiate the setup of the YOLOv8 model after
preparing our data for training. Ultralytics is a popular open-source framework for working
with YOLOv8 and other YOLO variants. It simplifies the implementation and training
of object detection models, offering features like multi-scale training, multi-GPU support,
and integration with PyTorch. The YOLO models can be customized to suit specific tasks,
adjusting architecture, hyperparameters, and data augmentation. YOLOv8 introduced
five different scaled variants, which are YOLOv8n (nano), YOLOv8s (small), YOLOv8m
(medium), YOLOv8l (large), and YOLOv8x (extra-large).

YOLOv8m was chosen as it provides a balanced trade-off between detection accuracy
and computational efficiency, making it ideal for real-time applications like pipeline fault
detection. It offers improved accuracy compared to smaller models while maintaining
faster inference times than larger models, ensuring timely detection without overburdening
computational resources.

For this training, the YOLOv8m (medium) model is loaded from a pre-trained check-
point file named “yolov8m.pt” and assigned to the variable “model”. The training process
is initiated by calling the variable model and setting the parameters of the base model. The
output of the training process is stored in the result variable.

4.1. Experiment for Base Model

In the context of real-time object detection, certain parameters need to be considered
carefully to optimize performance. Key parameters include input size, which determines
the dimensions of images processed by the model; smaller sizes generally result in faster
inference times due to the reduced number of pixels. Batch size is another critical factor, as
it refers to the number of images processed simultaneously during inference. A smaller
batch size can lead to reduced latency, allowing for quicker responses essential in real-
time applications.

Additionally, the model size—whether small, medium, or large—affects both speed
and accuracy. Smaller models are typically faster and more memory-efficient, making them



Sensors 2024, 24, 6982 9 of 19

suitable for real-time applications, particularly on devices with limited resources. The
confidence threshold is also vital, as it sets the minimum score for predictions to be deemed
valid. Lowering this threshold can increase the number of detections, but it may also result
in more false positives. Striking the right balance is crucial to ensuring that only relevant
and confident detections trigger responses, thus enhancing overall efficiency.

In the context of real-time detection and proactive maintenance, the confidence thresh-
old plays a critical role in balancing early fault detection and system reliability. A lower
threshold can help detect potential faults earlier by identifying issues even when the
confidence level is low, making it useful for catching early-stage problems.

Finally, the mean average precision (mAP) provides insight into the model’s overall
performance in detecting objects across various classes and Intersection over Union (IoU)
thresholds. While mAP does not directly impact real-time processing speed, a high score
reflects a robust model capable of effective detection in real-time scenarios. By meticu-
lously evaluating these parameters, developers can significantly enhance the effectiveness
and reliability of real-time object detection systems. Table 2 shows the other important
parameters used.

Table 2. Experiment setup for the model training.

Parameter Value

task: detect

mode: train

model: yolov8m.pt

epochs: 50

patience: 50

batch: 16

imgsz: 640

optimizer: auto

verbose: true

close_mosaic: 10

fraction: 1.0

overlap_mask: true

mask_ratio: 4

iou: 0.7

max_det: 300

augment: false

boxes: true

box: 7.5

format: torchscript

momentum: 0.937

weight_decay: 0.0005

warmup_epochs: 3.0

warmup_momentum: 0.8

mosaic: 1.0

4.2. Training Visualization

The visualization process in YOLOv8 training provides valuable insights into the
model’s performance and learning progress. By tracking metrics like precision, recall, and
mAP@50, and visualizing predictions with confidence scores, one can effectively monitor
and improve the model’s object detection capabilities. This process ensures that the model
is accurately and reliably detecting objects, which is crucial for practical applications such
as pipeline inspection using drone-captured images. Figure 8, illustrates the initial labeling
of the dataset prior to the commencement of the training process. These labels represent



Sensors 2024, 24, 6982 10 of 19

the ground truth, serving as the benchmark for evaluating the model’s performance. As
shown in Figure 9, the progression of the YOLOv8 model’s learning during training is
depicted, highlighting the evolution of its predictive accuracy over the course of several
iterations. In the early stages of training, the model’s predictions exhibit lower accuracy,
as the model is still in the process of learning to identify and differentiate between the
various features and object classes in the dataset. However, as training progresses, there
is a noticeable improvement in prediction accuracy, which is reflected in the increasing
percentage of correctly identified objects. This improvement signifies the model’s growing
ability to generalize from the labeled data, effectively capturing the underlying patterns
associated with pipeline defects.

Figure 8. Label data before training.

Figure 9. Predicted label during the training Batch 0.



Sensors 2024, 24, 6982 11 of 19

5. Results
5.1. Results from Experiment 1

The results include a weight folder containing the optimal model to be used for
prediction stored in a folder-“Best.pt”. The fitness score is determined by a weighted
blend of four metrics, which include [Precision (P), Recall (R), mAP at 0.5 IoU threshold
(mAP@0.5), and mAP from 0.5 to 0.95 IoU thresholds (mAP@0.5:0.95)] as shown in Table 3.
The confusion matrix, normalized confusion matrix, F1 confidence curve, precision curve,
recall curve, precision-recall curve, and loss functions have been measured and evaluated
as shown in Figure 10. The training time for this experiment was 4.773 h.

Table 3. Summary of Experiment 1.

Class Images Instances P R mAP50

all 48 112 0.76 0.71 0.74

pipe 48 94 0.71 0.68 0.65

faulty pipe 48 18 0.85 0.82 0.90

Figure 10. Confusion matrix.

In Figure 11, the X-axis represents the confidence threshold values from 0 to 1, and the
Y-axis represents the corresponding F1-scores. We can see that as we adjust the confidence
threshold, the F1-score changes, reflecting the trade-off between precision and recall. Ini-
tially, at low thresholds, the F1-score is low due to high false positives. As the confidence
threshold increases, the F1-score improves, eventually reaching an optimal peak where
the balance between precision and recall is achieved. This optimal balance occurs for all
classes, resulting in an F1-score of approximately 60 at a confidence threshold of 0.316.

In Figure 12, the X-axis represents the confidence threshold values from 0 to 1, and
the Y-axis represents the corresponding precision. As the confidence threshold increases,
the precision improves. At low thresholds, many predictions are classified as positive,
including many false positives, resulting in lower precision. As the threshold increases, the
model becomes more conservative, reducing false positives and improving precision. This
conservative trend is observed across all classes, yielding a precision of 1.0 at a confidence
threshold of 0.753. Further increasing the confidence threshold does not significantly
enhance precision, as the model is already highly selective at this point.



Sensors 2024, 24, 6982 12 of 19

Figure 11. F1 confidence curve.

Figure 12. Precision confidence curve.

In Figure 13, the X-axis represents the confidence threshold values from 0 to 1, and
the Y-axis represents the corresponding recall. At low thresholds, recall is high because the
model classifies almost all predictions as positive, including many true positives. As the
threshold increases, recall decreases because the model becomes more selective, missing
some true positives.

Figure 14, the X-axis represents recall, and the Y-axis represents precision. At the
beginning of the curve (lower recall values), precision is typically high because the model
is highly confident in its few positive predictions. As recall increases (moving right on the
X-axis), the model identifies more true positives but may also include more false positives,
causing precision to decrease. The curve often shows a trade-off between precision and
recall: increasing recall reduces precision and vice versa.

Based on Figure 15, the evaluation of the Experiment 1 model demonstrated significant
effectiveness in the domains of object detection and classification, with notable performance
improvements across all metrics. During the training process, we observed a consistent
decline in both localization and classification losses, indicating that the model was effec-
tively learning and refining its predictions. This trend continued into the validation phase,
where the model exhibited strong generalization capabilities on previously unseen data.



Sensors 2024, 24, 6982 13 of 19

Both precision and recall metrics showed steady increases, signifying that the model not
only identified more relevant objects over time but also did so with increasing accuracy.
These improvements were further validated by rising average precision scores across var-
ious IoU thresholds, from moderate to strict, underscoring the model’s robustness. The
comprehensive advancements across all metrics highlight YOLOv8’s efficiency in handling
complex object detection tasks. The results suggest that this model is highly applicable to
real-world scenarios, delivering reliable and accurate detections across diverse conditions.

Figure 13. Recall confidence curve.

Figure 14. Precision vs. recall curve.



Sensors 2024, 24, 6982 14 of 19

Figure 15. Loss function vs. mAP.

5.2. Results from Experiment 2

In this training process, we load the YOLOv8l (large) model from a pre-trained check-
point file labeled “yolov8l.pt” and associate it with the variable “model1”. We made the
following adjustments to the model’s training configuration: the batch size was reduced
from 16 to 8, and the number of training epochs was extended to 100 to enhance optimiza-
tion. The AP score for each label and the mAP at iou 50 and iou 75 threshold with a training
time of 17.621 h, as shown in Table 4.

Table 4. AP and mAP for Experiment 2.

Class Images Instances P R mAP50

all 48 112 0.78 0.74 0.72

pipe 48 94 0.70 0.66 0.63

faulty pipe 48 18 0.77 0.0.75 0.80

5.3. Results from Experiment 3

To train this model, the batch size was set to 64 and epochs at 50 as a decline in
performance was seen after the iou threshold of 50 for Experiment 2. The iou threshold
parameter was set to 0.2 rather than 0.7. The Ap score for each label and the mAP at iou 50
and iou 75 threshold with a training time of 4.947 h, as shown in Table 5.

Table 5. AP and mAP for Experiment 3.

Class Images Instances P R mAP50

all 48 112 0.76 0.68 0.76

pipe 48 94 0.70 0.62 0.69

faulty pipe 48 18 0.88 0.72 0.83

6. Discussion

Three models were trained with different parameter configurations to enhance
their accuracy.

• Experiment 1: Serving as the base model, it was trained for 50 epochs, with a batch
size of 16, and took 4.773 h. The mean average precision (mAP) at an intersection over
union (IoU) threshold of 50% for the “pipe” label, “faulty pipe” label, and both labels
combined were 65.1%, 90.0%, and 74.7%, respectively.



Sensors 2024, 24, 6982 15 of 19

• Experiment 2: This experiment involved training for 100 epochs, using a batch size of
8, and took 17.621 h. The mAP at a 50% IoU (Intersection over Union) threshold for
the “pipe” label, “faulty pipe” label, and both labels combined were 63.6%, 80.1%, and
72.4%, respectively.

• Experiment 3: In this experiment, the model was trained for 50 epochs with a batch
size of 64, and the training duration was 4.947 h. The mAP at a 50% IoU threshold for
the “pipe” label, “faulty pipe” label, and both labels combined were 69.1%, 83.2%, and
76.1%, respectively.

The experiments offered valuable insights into how various training parameters
impacted model performance, especially in object detection accuracy. Adjustments in batch
size and epochs had a marked influence on outcomes. Smaller batch sizes allowed more
frequent weight updates, enabling the model to capture finer patterns, but introduced
instability during extended training. Conversely, larger batch sizes provided more stable
learning but sometimes missed subtle details. Similarly, increasing the number of epochs
enhanced accuracy but also increased the risk of overfitting if not carefully managed. Key
configuration elements like learning rate and data augmentation techniques played a crucial
role in determining the model’s adaptability and effectiveness across different scenarios.
Fine-tuning these parameters was essential for achieving consistent and reliable results,
emphasizing the importance of a balanced approach in the experimental design. Regarding
performance evaluation, a higher IoU threshold (above 50%) resulted in decreased detection
accuracy, particularly for the “pipe” label, where predicted bounding boxes often fell short
of the 0.7 IoU threshold used during training. Nevertheless, Table 6 shows that the model
in Experiment 1 achieved a strong mAP50 of 90% for detecting faulty pipes, though its
overall mAP50 was 74.7%. In comparison, the model from Experiment 3 exhibited better
overall performance with a mAP50 of 76.1%, making it a leading candidate for further
testing and possible deployment. These findings underscore the critical role of parameter
optimization in enhancing detection capabilities within water management systems.

Table 6. Results comparison.

Training
Time/h

%mAP50
for Pipe

%mAP50
for Faulty Pipe

%mAp50
for All

Experiment 1 4.773 65.1 90.0 74.7

Experiment 2 17.621 63.6 80.1 72.4

Experiment 3 4.947 69.1 83.2 76.1

6.1. Testing the Model

Experiments on an AI-based faulty pipe detection system using the YOLOv8 model
revealed a clear distinction between faulty and normal pipes. The model achieved a robust
detection rate of 90% for faulty pipes as shown in Figure 16, demonstrating its effectiveness
in identifying critical anomalies crucial for maintenance and safety applications. However,
the model’s accuracy in detecting normal pipes varied significantly, ranging from 51% to
75% as shown in Figures 17a and 17b, respectively. This inconsistency suggests potential
challenges in consistently recognizing normal pipes, likely due to insufficient representation
in the training dataset or visual overlap with non-target elements.

These findings emphasize the need for further refinement in model training and
parameter tuning to enhance its performance, particularly in achieving more consistent
detection across different conditions. While the model shows great potential for critical
fault detection, there is also a clear opportunity to improve its general detection accuracy
to ensure reliable performance in a broader range of scenarios.



Sensors 2024, 24, 6982 16 of 19

Figure 16. Test image detecting a faulty pipe.

(a) (b)

Figure 17. Test image detecting a pipe.

6.2. Comparison with Others

We discussed the performance of YOLOv8 in comparison to other models as shown
in Table 7. YOLOv8 has emerged as a standout model in the realm of object detection,
particularly for pipeline fault detection in water management systems. With an impressive
speed of 280 frames per second (FPS), YOLOv8 is exceptionally fast, making it highly
suitable for applications that require real-time processing, such as surveillance and au-
tonomous navigation. The model’s accuracy is noteworthy, achieving a mean average
precision (mAP) ranging from 72% to 76.1%. This performance places YOLOv8 on par
with contemporary detection models, addressing the critical need for precision in various
object detection tasks. Additionally, YOLOv8’s lightweight architecture facilitates efficient
deployment, especially in environments with limited computational resources, making it
a versatile choice for practical applications. Its high degree of optimization for real-time
detection further enhances its effectiveness in scenarios where rapid decision-making is
crucial, demonstrating its strengths in speed, accuracy, and robustness.



Sensors 2024, 24, 6982 17 of 19

Table 7. Comparsion with other works.

Ref. Model Speed
(FPS)

Accuracy
(mAP %)

Model
Size

Real-Time
Suitability Complexity

Our study YOLOv8 280 72–76 Light-
weight

Yes Low

[33] R-CNN 2–3 66–69 Large Not High

[34] Faster
R-CNN 7–9 70–75 Large Moderate

speed Medium

[35]
SSD
Single
Shot

22–30 40–50 Medium Yes Medium

In contrast, R-CNN operates at a significantly slower speed of 2–3 FPS, rendering
it unsuitable for real-time applications. While it compensates for this limitation with re-
spectable accuracy, achieving an mAP of 66–69%, R-CNN is better suited for tasks that
prioritize object localization quality over speed. The larger model size presents challenges
for deployment in resource-constrained environments, necessitating more powerful compu-
tational capabilities. Moreover, the high complexity of R-CNN models demands substantial
computational resources, limiting their application to environments equipped with the nec-
essary infrastructure. As a result, R-CNN excels in scenarios where precision is paramount,
particularly in high-quality object localization tasks.

Faster R-CNN offers a modest improvement over its predecessor, achieving speeds of
7–9 FPS. Although this model can handle slightly more complex tasks, it still falls short of
real-time capabilities. The accuracy of Faster R-CNN ranges from 70% to 75% mAP, making
it suitable for general object detection applications. However, like R-CNN, it also suffers
from a larger model size, which can affect deployment in resource-limited settings. The
moderate speed allows it to be viable for applications that can tolerate slight delays, yet its
medium complexity makes it more accessible than R-CNN while still requiring significant
computational power. Consequently, Faster R-CNN serves effectively in general object
detection tasks across various domains, providing a balance between accuracy and speed.

SSD (Single Shot Detector) operates at a speed of 22–30 FPS, allowing it to achieve
real-time detection capabilities. However, it does not match the performance of YOLOv8
in terms of speed and accuracy. With an accuracy range of 40–50% mAP, SSD may not
provide sufficient precision for high-stakes applications that require high detection rates.
The medium size of the SSD model allows for a balance between resource requirements
and detection capabilities, facilitating deployment in various environments. Its medium
complexity also enables easier implementation, making it accessible for a wide range of
applications. SSD is particularly suitable for scenarios where a balance between speed and
accuracy is needed, such as in mobile applications that may not demand the highest levels
of precision.

In summary, the comparison of these object detection models highlights the distinct ad-
vantages and limitations each one presents. YOLOv8 stands out for its speed and accuracy,
making it a prime candidate for real-time object detection tasks. Meanwhile, R-CNN and
Faster R-CNN, while offering solid performance in specific applications, are hindered by
their slower processing speeds and higher resource demands. SSD offers a balance between
speed and accuracy but does not reach the performance levels of YOLOv8. The findings
underscore the importance of selecting the appropriate model based on specific use-case
requirements, taking into account factors such as speed, accuracy, and computational
complexity to meet the diverse needs of various object detection applications.

7. Conclusions and Future Work

YOLOv8 demonstrated strong potential in detecting pipeline faults within water man-
agement systems, consistently delivering robust performance across various experimental
settings. Notably, Experiment 3 highlighted the model’s adaptability under different con-
figurations, achieving the highest average performance with an mAP50 of 76.1%. This



Sensors 2024, 24, 6982 18 of 19

success was attributed to the strategic tuning of batch size and epoch duration, effectively
balancing accuracy and efficiency. The findings emphasize the model’s strengths, including
its speed, real-time detection capabilities, and resilience under diverse conditions such as
varying lighting and camera angles. Meticulous dataset preparation and annotation were
critical in enhancing the model’s accuracy, especially in distinguishing between normal and
faulty pipes. Combined with YOLOv8’s advanced features, such as its anchor-free architec-
ture, these efforts led to high detection rates, particularly in identifying critical anomalies
essential for proactive maintenance. While the model shows promise, challenges remain
as it moves toward real-world deployment. Ensuring its scalability for larger operations,
addressing class imbalance, and minimizing noise in data are key areas for future work.

Research will focus on optimizing the model for broader scenarios, refining data
augmentation techniques, and exploring more sophisticated hyperparameter tuning. Col-
laboration with industry stakeholders will be essential to fine-tune the model’s real-time
processing and integrate it seamlessly into existing water management infrastructures.
Additionally, limitations identified in this study, such as inconsistencies in detecting nor-
mal pipes, present opportunities for further improvement. Addressing these issues will
enhance the model’s reliability and efficiency, paving the way for its application in water
management systems worldwide.

Author Contributions: G.M., E.Q.S., S.B. conceived of the presented idea. G.M., E.Q.S., S.B., W.W.,
and W.A.J., developed the theory and performed the computation. G.M. planned and carried out
the simulations. E.Q.S., S.B., W.W. and W.A.J. verified the analytical method. G.M. wrote the draft
of the manuscript with input from all authors. E.Q.S., S.B., W.W. and W.A.J. revised and edited the
manuscript. E.Q.S. and S.B. supervised the project. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from thecorre-
sponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jain, S.K.; Singh, V.P. Water Resources Systems Planning and Management; Elsevier: Amsterdam, The Netherlands, 2023.
2. Taiwo, R.; Shaban, I.A.; Zayed, T. Development of sustainable water infrastructure: A proper understanding of water pipe failure.

J. Clean. Prod. 2023, 398, 136653. [CrossRef]
3. Shahra, E.Q.; Wu, W. Water contaminants detection using sensor placement approach in smart water networks. J. Ambient. Intell.

Humaniz. Comput. 2023, 14, 4971–4986. [CrossRef]
4. Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence

and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022,
141, 104440. [CrossRef]

5. Reddy, P.S.; Ghodke, P.K. Image Analysis Using Artificial Intelligence in Chemical Engineering Processes: Current Trends and
Future Directions. In Image Processing and Intelligent Computing Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 79–100.

6. Bello, R.W.; Oladipo, M.A. Mask YOLOv7-based drone vision system for automated cattle detection and counting. In Artificial
Intelligence and Applications; Bello, R.-W., Oladipo, M.A., Eds.; Bon View Publishing Pte Ltd.: Singapore, 2024. [CrossRef]

7. Vajiram, J.; Sivakumar, S.; Jena, R.; Maurya, U. Epilepsy Detection by Different Modalities with the Use of AI-Assisted Models. In
Proceedings of the Artificial Intelligence and Applications, Corfu, Greece, 27–30 June 2024; Volume 2, pp. 233–246.

8. Shahra, E.Q.; Wu, W.; Basurra, S.; Aneiba, A. Intelligent Edge-Cloud Framework for Water Quality Monitoring in Water
Distribution System. Water 2024, 16, 196. [CrossRef]

9. Krishnan, S.R.; Nallakaruppan, M.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart water
resource management using Artificial Intelligence—A review. Sustainability 2022, 14, 13384. [CrossRef]

10. Razvarz, S.; Jafari, R.; Gegov, A.; Razvarz, S.; Jafari, R.; Gegov, A. A review on different pipeline defect detection techniques. In
Flow Modelling and Control in Pipeline Systems: A Formal Systematic Approach; Springer: Cham, Switzerland, 2021; pp. 25–57.

11. Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges
and solutions. Water 2021, 13, 490. [CrossRef]

http://doi.org/10.1016/j.jclepro.2023.136653
http://dx.doi.org/10.1007/s12652-020-02262-x
http://dx.doi.org/10.1016/j.autcon.2022.104440
http://dx.doi.org/10.47852/bonviewAIA42021603
http://dx.doi.org/10.3390/w16020196
http://dx.doi.org/10.3390/su142013384
http://dx.doi.org/10.3390/w13040490


Sensors 2024, 24, 6982 19 of 19

12. Onalaja, J.; Shahra, E.Q.; Basurra, S.; Jabbar, W.A. Image Classifier for an Online Footwear Marketplace to Distinguish between
Counterfeit and Real Sneakers for Resale. Sensors 2024, 24, 3030. [CrossRef]

13. Kotwal, M.V.S.; Pati, S.; Patil, J. Review On Ai And Iot Based Integrated Smart Water Management And Distribution System.
Educ. Adm. Theory Pract. 2024, 30, 594–605.

14. Robles-Velasco, A.; Cortés, P.; Muñuzuri, J.; Onieva, L. Estimation of a logistic regression model by a genetic algorithm to predict
pipe failures in sewer networks. OR Spectr. 2021, 43, 759–776. [CrossRef]

15. Dawood, T.; Elwakil, E.; Novoa, H.M.; Delgado, J.F.G. Artificial intelligence for the modeling of water pipes deterioration
mechanisms. Autom. Constr. 2020, 120, 103398. [CrossRef]

16. Wu, T.; Dong, Y. YOLO-SE: Improved YOLOv8 for remote sensing object detection and recognition. Appl. Sci. 2023, 13, 12977.
[CrossRef]

17. Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart water technology for efficient water resource management:
A review. Energies 2020, 13, 6268. [CrossRef]

18. Shahra, E.Q.; Basurra, S.; Wu, W. Real-time multi-class classification of water quality using MLP and ensemble learning. In
Proceedings of the International Congress on Information and Communication Technology, London, UK, 20–23 February 2023;
pp. 481–491.

19. Konya, A.; Nematzadeh, P. Recent applications of AI to environmental disciplines: A review. Sci. Total Environ. 2024, 906, 167705.
[CrossRef]

20. Odili, P.O.; Daudu, C.D.; Adefemi, A.; Ekemezie, I.O.; Usiagu, G.S. Integrating advanced technologies in corrosion and inspection
management for oil and gas operations. Eng. Sci. Technol. J. 2024, 5, 597–611. [CrossRef]

21. Vanijjirattikhan, R.; Khomsay, S.; Kitbutrawat, N.; Khomsay, K.; Supakchukul, U.; Udomsuk, S.; Suwatthikul, J.; Oumtrakul, N.;
Anusart, K. AI-based acoustic leak detection in water distribution systems. Results Eng. 2022, 15, 100557. [CrossRef]

22. Hu, X.; Han, Y.; Yu, B.; Geng, Z.; Fan, J. Novel leakage detection and water loss management of urban water supply network
using multiscale neural networks. J. Clean. Prod. 2021, 278, 123611. [CrossRef]

23. Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis
and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673. [CrossRef]

24. Niu, W.J.; Feng, Z.K. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time
series for sustainable water resources management. Sustain. Cities Soc. 2021, 64, 102562. [CrossRef]

25. Ahn, B.; Kim, J.; Choi, B. Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak
early detection using acoustic emission. Eng. Fract. Mech. 2019, 210, 381–392. [CrossRef]

26. Robles-Velasco, A.; Cortés, P.; Muñuzuri, J.; Onieva, L. Prediction of pipe failures in water supply networks using logistic
regression and support vector classification. Reliab. Eng. Syst. Saf. 2020, 196, 106754. [CrossRef]

27. Shukla, H.; Piratla, K. Leakage detection in water pipelines using supervised classification of acceleration signals. Autom. Constr.
2020, 117, 103256. [CrossRef]

28. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
29. Chen, W.; Luo, J.; Zhang, F.; Tian, Z. A review of object detection: Datasets, performance evaluation, architecture, applications

and current trends. Multimed. Tools Appl. 2024, 83, 65603–65661. [CrossRef]
30. Bai, R.; Shen, F.; Wang, M.; Lu, J.; Zhang, Z. Improving detection capabilities of YOLOv8-n for small objects in remote sensing

imagery: Towards better precision with simplified model complexity. Res. Sq. 2023. [CrossRef]
31. Paul, A.; Machavaram, R.; Kumar, D.; Nagar, H. Smart solutions for capsicum Harvesting: Unleashing the power of YOLO for

Detection, Segmentation, growth stage Classification, Counting, and real-time mobile identification. Comput. Electron. Agric.
2024, 219, 108832. [CrossRef]

32. Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A review on yolov8 and its advancements. In Proceedings of the International
Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 18–20 November 2024; pp. 529–545.

33. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef]

35. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Cham, Switzerland, 2016; pp. 21–37.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s24103030
http://dx.doi.org/10.1007/s00291-020-00614-9
http://dx.doi.org/10.1016/j.autcon.2020.103398
http://dx.doi.org/10.3390/app132412977
http://dx.doi.org/10.3390/en13236268
http://dx.doi.org/10.1016/j.scitotenv.2023.167705
http://dx.doi.org/10.51594/estj.v5i2.835
http://dx.doi.org/10.1016/j.rineng.2022.100557
http://dx.doi.org/10.1016/j.jclepro.2020.123611
http://dx.doi.org/10.1016/j.cej.2020.126673
http://dx.doi.org/10.1016/j.scs.2020.102562
http://dx.doi.org/10.1016/j.engfracmech.2018.03.010
http://dx.doi.org/10.1016/j.ress.2019.106754
http://dx.doi.org/10.1016/j.autcon.2020.103256
http://dx.doi.org/10.21105/joss.03021
http://dx.doi.org/10.1007/s11042-023-17949-4
http://dx.doi.org/10.21203/rs.3.rs-3085871/v1
http://dx.doi.org/10.1016/j.compag.2024.108832
http://dx.doi.org/10.1109/TPAMI.2016.2577031

	Introduction
	Related Works
	Methodology
	Data Collection
	Data Annotation
	Annotation Stages
	Annotation Process for the Data Directory 

	Dataset Splitting 
	Data Visualization
	YoloV8 Architecture

	 Experimental Design
	 Experiment for Base Model
	 Training Visualization 

	Results
	Results from Experiment 1
	Results from Experiment 2
	Results from Experiment 3

	Discussion
	Testing the Model 
	Comparison with Others

	Conclusions and Future Work
	References

