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A B S T R A C T

This paper proposes methods to upstage the best-known defences against query-based black-box attacks.
These benchmark defences incorporate gaussian noise into input data during inference to achieve state-of-the-
art performance in protecting image classification models against the most advanced query-based black-box
attacks. Even so there is a need to improve upon them; for example, the widely benchmarked Random noise
defense (RND) method has demonstrated limited robustness – achieving only 53.5% and 18.1% with a ResNet-
50 model on the CIFAR-10 and ImageNet datasets, respectively – against the square attack, which is commonly
regarded as the state-of-the-art black-box attack. Therefore, in this work, we propose two alternatives to
gaussian noise addition at inference time: random crop-resize and random rotation of the input images.
Although these transformations are generally used for data augmentation while training to improve model
invariance and generalisation, their protective potential against query-based black-box attacks at inference
time is unexplored. Therefore, for the first time, we report that for such well-trained models either of the two
transformations can also blunt powerful query-based black-box attacks when used at inference time on three
popular datasets. The results show that the proposed randomised transformations outperform RND in terms of
robust accuracy against a strong adversary that uses a high budget of 100,000 queries based on expectation
over transformation (EOT) of 10, by 0.9% on the CIFAR-10 dataset, 9.4% on the ImageNet dataset and 1.6% on
the Tiny ImageNet dataset. Crucially, in two even tougher attack settings, that is, high-confidence adversarial
examples and EOT-50 adversary, these transformations are even more effective as the margin of improvement
over the benchmarks increases further.
1. Introduction

Adversarial examples are carefully crafted inputs that fool machine
learning (ML) models into misclassifying the data (Biggio et al., 2013;
Szegedy et al., 2014). The methods for fooling or attacking ML clas-
sifiers vary depending on the capabilities of the adversary and can be
categorised as either white-box or black-box. With a white-box method
an adversary has complete access to the parameters, architecture and
the training process of the model, while with a black-box method, the
adversary has no such knowledge (Yuan et al., 2019). Depending on the
level of opacity in a black-box method, the adversarial insight may be
limited to only accessing model outputs, such as predicted probabilities
or class labels. In more transparent scenarios, adversaries might even
access the underlying training dataset (Carlini et al., 2019).
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Although white-box attacks are the most harmful they are not
always practical because they require access to the model parameters
either directly or through parameter extraction attacks (Carlini et al.,
2020); black-box methods are thus typically the first line of attack for
most practical settings. Therefore, based on the significance of black-
box attacks, this paper is concerned with improving the state-of-the-art
defences against the black-box methods.

Various approaches have been in practice to blunt the adversarial
attacks. They were partially countered by the development of tech-
niques such as adversarial training (AT) (Goodfellow et al., 2015), which
was later improved upon by Aleks et al. (2018); it remains the method
of choice for achieving inherent adversarial robustness (Athalye et al.,
2018). Other defence methods proposed are based on input preprocess-
ing (Aprilpyone & Kiya, 2021; Guo et al., 2018; Kurakin et al., 2016)
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and detection of adversarial examples (Chakraborty et al., 2021; Xu
et al., 2017). Most input preprocessing techniques were later shown
o be ineffective by the development of adaptive attacks by Ali et al.

(2022), Athalye et al. (2018) and Tramer et al. (2020). This is because
these defences often rely on gradient obfuscation to hinder attack
methods; however, adaptive attacks can circumvent this obfuscation,
thereby undermining the defences’ effectiveness.

A more successful class of input preprocessing defences against
dversarial attacks alters the input data stochastically by adding ran-
om noise; some variations of these defences add random noise during
raining (Cohen et al., 2019), whereas other works only add it during

inference (Byun et al., 2022; Gu et al., 2023; Guo et al., 2018; Jia et al.,
2023; Nguyen et al., 2023; Qin et al., 2021; Xie et al., 2017). While
he efficacy of these methods as a defence against white-box attacks
as been challenged (Gao et al., 2022; Gnecco-Heredia et al., 2023;

Lucas et al., 2023), against black-box attacks stochastic methods such
s the Random Noise defense (RND) (Qin et al., 2021) and Adversarial
Attack on Attackers (AAA) (Chen et al., 2022) have been shown to be
ffective. Later, AAA technique, which introduces noise at the output
ogits, was shown to be vulnerable to decision-based attacks (Nguyen

et al., 2023). However, the RND method has enjoyed some popularity
nd become the state-of-the-art benchmark to improve upon in this line
f work (Zheng et al., 2023).

Despite achieving top-standing, previous work shows that RND
eeds further improvement because it has achieved limited robustness
n popular datasets. For example, it achieves a robust accuracy of only

14.8% on Tiny ImageNet (Deng et al., 2009) with a PreActResNet18
model, and 53.5% and 18.1% robust accuracy with a ResNet-50 model
on CIFAR-10 and ImageNet datasets, respectively.

This paper aims to improve upon the best-known defence against
the best query-based black-box attack under intense attack-settings.
Therefore:

• we compare our proposed alternative methods against RND;
• we test all the newly proposed as well as the benchmark defences

against the state-of-art in query-based black-box attacks i.e. the
square attack (Andriushchenko et al., 2020; Qin et al., 2021);

• and to intensify the attack and stress-test the defences, we modify
square attack by averaging model-predictions over multiple for-
ward passes (an approach termed Expectation over Transformation
or EOT (Athalye et al., 2018)) to make the classification decision;
this averaging provides greater information to the adversary than
a single prediction and allows it a greater chance to beat the
defences (Nguyen et al., 2023; Qin et al., 2021).

The proposals to defend against black-box attacks that we test in
this work are two randomised transformations: random resized crop-
ping and random rotation. Such transformations are used to augment
raining data to improve the invariance of models to changes in the

input images that do not change their classification, and hence improve
model generalisation; however, we show for the first time that they
can also effectively defend the models against query-based black-box
attacks.

We find that randomised transformations are more effective than
andomised noise defence at mitigating query-based black-box attacks.

On ImageNet dataset (Russakovsky et al., 2015) we show that the
robust accuracy of a ResNet-50 model (He et al., 2016) with inference-
time random cropping-resizing and random rotation is 9.4% and 7.5%
better respectively than that of RND (Qin et al., 2021) under the
EOT-10 square attack.

On Tiny ImageNet (Deng et al., 2009) with a PreActResNet18 model
randomised crop-resize improves robust accuracy over RND by 1.6%,

hile random rotation improves the robust accuracy by 0.8% under
OT-10 square attack.

On CIFAR-10 dataset (Krizhevsky & Hinton, 2009) we find that
n ResNet-50 random rotation beats RND by 0.9%, while random
 f

2 
cropping-resizing achieves the same performance as RND under the
OT-10 square attack.

Encouraged by these results, we also explored the proposed trans-
formations in more strenuous circumstances. We test the defences
against high-confidence adversarial examples that are generated by
decreasing the confidence on the correct label for the entire set of attack
terations unlike stopping the attack at the misclassification iteration.
n a scenario where high-confidence adversarial examples determine
ttack success rate, randomised transformations outperform RND on
IFAR-10 by more than 8.0% and on ImageNet by around 16.0%.

Addtionally, to ensure a robust evaluation of defences, previous
studies (Nguyen et al., 2023; Qin et al., 2021) test the defences under
EOT-10 adversary. We take it a step further and rigorously test defences
gainst a strong adversary of EOT-50. The original RND work (Qin

et al., 2021) suggests that using more than 10 EOT steps has a lim-
ited effect on the defence. However, our results suggest that RND
s significantly vulnerable to larger EOT steps while random trans-

formations are not. Under an EOT-50 adversary, the improvement is
significantly higher as random rotation beats RND by 4.6% and random
cropping-resizing beats RND by 3.5% on ResNet-18 architecture.

Furthermore, we have also compared our proposed transformations
against the recently proposed variation of RND, Randomised feature
defense (RFD) which adds gaussian noise in between the layers of the
model (Nguyen et al., 2023). Our results show an improvement of
randomised transformations over RFD.

Consequently, the results reported in this paper are significant
because it has been argued that the more a model becomes invariant to
randomisation the more adversarially vulnerable it becomes in white-
box settings and if the model is variant to the randomness of the
defence then it achieves a lower clean accuracy. However, our results
further emphasise the effectiveness of randomisation as a defence
against query-based black-box attacks, as the trade-off between the
drop in clean accuracy vs. a gain in robust accuracy is not symmetric
(large gain in robust accuracy for a low drop in clean accuracy). These
results are the main contributions of the paper.

To summarise, the main contributions of the paper are as follows.

1. We find that randomised transformations are more effective
than randomised noise at mitigating query-based black-box at-
tacks. The impact of these transformations as a defence against
query-based black-box attacks has not been previously explored.

2. We demonstrate the efficacy of these transformations across
three popular datasets, that is, ImageNet, Tiny ImageNet and
CIFAR-10 across a variety of well-known image classification
models.

3. We add to the evidence in the literature that randomisation
based methods can favourably counter the drop in clean accu-
racy by disproportionately improving the robust accuracy; in
fact, the increase in robust accuracy is much greater than the
drop in clean accuracy.

4. We find that RND is significantly vulnerable to EOT-50 adversary
while randomised transformations are not.

5. As another evidence of the efficacy of the proposed transforma-
tions in challenging circumstances we show that the randomised
transformation defence effectively counters high-confidence ad-
versarial examples unlike RND, which is vulnerable to them.

The rest of the paper is outlined as follows. In Section 2, work
related to black-box attacks and defences against black-box attacks
is presented, Section 3 introduces preliminary information for under-
standing the aim of defences against black-box attacks, our proposed
methodology is presented in Section 4 and the experimental results
re discussed in Section 5. Lastly, the study’s limitations are reviewed,
ollowed by the concluding remarks in Section 6.
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2. Related work

In this section, we introduce black-box attacks, defences that were
sed to counter black-box attacks, and the latest attacks that aim to
ypass a few of the defences.

2.1. Black-box attacks and their weakness

Query-based black-box attacks are efficient at creating adversar-
ial examples that can sometimes perform as well as white-box at-
tacks (Andriushchenko et al., 2020). Many methods have been pro-
osed such as one based on evolutionary strategies (Ilyas et al., 2018),

genetic techniques (Wang et al., 2020) and random search meth-
ds (Andriushchenko et al., 2020). Black-box attacks are crucial as

they help uncover gradient obfuscation (Athalye et al., 2018), which
can give a false sense of adversarial robustness. Croce and Hein (2020)
ave proposed Auto-attack (AA), which is an ensemble of attacks that
as become almost a standard to reliably test a model’s adversarial

robustness (Croce & Hein, 2020). The square attack is a part of AA;
his highlights the significance and esteem that it enjoys in the field.

However, recent work has shown that black-box attacks are vulner-
ble to small perturbations to input data, also called Random Noise
efense (RND). Therefore, Byun et al. (2022) and Qin et al. (2021) have

shown that black-box attacks are vulnerable to adding random noise
o input images at inference time. The RND method when combined
ith adversarial training has been claimed to give superior robustness

against black-box attacks as compared to models that are not adversar-
ially trained. The work in Chen et al. (2022) perturbs the output logits
to counter black-box attacks while that in Nguyen et al. (2023) perturbs
the features in the model to diminish the black-box attack capabilities.
Therefore, Dong et al. (2020) and Lucas et al. (2023) have called for the
development of powerful black-box attacks that can remain effective
under random noise. Even so, while RND remains the defence to beat,
some other defences have been breached, which we summarise next.

2.2. Adaptive black-box attacks

Although the RND poses a challenge to black-box attacks, adaptive
lack-box attacks have been developed to counter some other defences
hat attempt to mitigate black-box attacks. For example, they have been
ble to overcome (Feng et al., 2023) the so-called Stateful defence
odels (SDM) (Chen et al., 2020; Choi et al., 2023; Juuti et al., 2019;

Li et al., 2022) that work by rejecting queries that are similar based on
comparing past queries using a defence specific metric. These attacks
counter the defence by using rejection sampling to pick queries that
will not cause a model to detect collision.

Along a separate line of work (Sitawarin et al., 2022) have shown
hat using model-specific (non-randomised) resizing, cropping, or quan-
isation as part of data pre-processing can weaken the attack perfor-
ance of decision-based black-box attacks but only until these mod-

ifications are unknown to the attacker. Therefore, to counter these
reprocessors, they develop attacks that first reverse-engineer the pre-
rocessors and then develop adversarial examples. However, their work
oes not consider the widely used 𝑙∞ distance metric to limit the
aximum adversarial perturbation and uses only the 𝑙2 distance met-

ic. Furthermore, their work also does not consider defences that use
andomisation during the inference stage.

Since RND method is currently considered the best defence against
lack-box attacks, in the following section we introduce the defence
echanism of random noise defences against black-box attacks. More-

ver, we also describe the mechanism of randomised transformations.
3 
3. Preliminaries

3.1. Threat model

Consider a machine learning classifier 𝐶 that classifies inputs 𝐱 ∈ R𝑑

into labels 𝑦𝑝𝑟𝑒𝑑 ∈ Z𝑘 as 𝐶 ∶ R𝑑 → {1,… , 𝑘} where 𝑑 is the dimension
f the input and 𝑘 is the number of classes. 𝑦 ∈ Z𝑘 is the true label or
lass of a given input. The goal of the classifier is to classify the inputs
s 𝐶(𝐱) = 𝑦 for all input instances. In contrast, the objective of the
dversary is to alter the input instance as 𝐱𝑎𝑑 𝑣 = 𝐱+ 𝛿 so that 𝐶(𝐱𝑎𝑑 𝑣) ≠
(Carlini et al., 2019). The adversarial input 𝐱𝑎𝑑 𝑣 is perturbed in such a

way that it is close to the original instance 𝑥 according to an 𝑙𝑝 distance
metric of the form ∥𝐱 − 𝐱𝑎𝑑 𝑣∥𝑝 ≤ 𝜖 where 𝑝 can be any metric 𝑙2, 𝑙0 or
∞, but is still misclassified by the classifier. The distance metric ensures
hat no input feature or combination of features is changed more than
he allowed budget, and this is given by 𝜖.

Our focus in this work is on the 𝑙∞ distance metric and we assume
hat adversaries can access the score outputs (logits) of the model as in

the conventional case of black-box attacks across this line of work.

3.2. Random noise defense

In an untargeted black-box attack (where the objective is only
o make the model misclassify), the attack can be described as the

following optimisation problem:

min
𝐱𝑎𝑑 𝑣 ∈𝑅(𝐱)

𝑓 (𝐱𝑎𝑑 𝑣) = min
𝐱𝑎𝑑 𝑣 ∈𝑅(𝐱)

(𝑦(𝐱𝑎𝑑 𝑣) − max
𝑗 ≠ 𝑦

𝑗 (𝐱𝑎𝑑 𝑣)) (1)

where  is the attacked model, 𝑗 denotes the logit w.r.t class j,
𝑅(𝐱) = {𝐱𝑎𝑑 𝑣| ∥ 𝐱 − 𝐱𝑎𝑑 𝑣∥𝑝 ≤ 𝜖} is used to represent an 𝑙𝑝 ball
round 𝐱. Thus, the attacker tries to minimise the difference of logit
cores between the right and wrong classification. Note the attacker
esires this difference to go below 0; therefore, the more negative the
ifference the greater is the confidence of the model in misclassifying
he example.

To search for 𝐱𝑎𝑑 𝑣 black-box attacks (Andriushchenko et al., 2020;
Ilyas et al., 2018; Wang et al., 2020) use random perturbations 𝒖 to
alter the clean example 𝒙. The search is supposed to be moving in the
right direction if:
ℎ(𝐱) = 𝑓 (𝐱 + 𝜇𝐮) − 𝑓 (𝐱) < 0 (2)

where 𝜇 is the perturbation size.
Random noise defense (RND) (Qin et al., 2021) and small noise

defense (SND) (Byun et al., 2022) attempt to misguide a black-box
attacker in search of an adversarial example by adding gaussian noise
𝝂𝟏, 𝝂𝟐 ∼  (𝟎, 𝐈), based on a factor 𝜈, to attacker’s queries to thwart the
attacker’s estimation of adversarial success as below:

𝑔(𝐱) = 𝑓 (𝐱 + 𝜇𝐮 + 𝜈𝝂𝟏) − 𝑓 (𝐱 + 𝜈𝝂𝟐) (3)

The addition of randomised 𝝂𝟏 and 𝝂𝟐 misleads the attacker’s estimate
f a valuable attack direction. Qin et al. (2021) claim that the adversar-

ial robustness (robustness gains) will be significantly higher when the
defender’s noise is larger than the attacker’s noise (added to the clean
example to find an adversarial example). However, the defender cannot
arbitrarily increase 𝜈 excessively because it can decrease accuracy on
the non-adversarial examples (natural accuracy or clean accuracy).

There are a couple of variations of RND based on where the noise
is added. Random feature defence (Nguyen et al., 2023) adds noise to
the inputs at the feature level to counter black-box attacks while AAA
introduces noise on the output logits of the model.

These approaches have set the benchmarks in warding off black-box
ttacks; however, their performance can still improve. For example,
ND achieves a robust accuracy of 14.8% on Tiny ImageNet (Deng

et al., 2009) with a PreActResNet18 model, and 53.5% and 18.1%
robust accuracy with a ResNet-50 model on CIFAR-10 and ImageNet
atasets, respectively. Hence, we have proposed randomised transfor-

mations to improve mitigation of black-box attacks.
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3.3. Random transformation defense

As part of data augmentation, input data transformations that ran-
domly change the input images are commonly used to augment the
training dataset with additional data to improve model generalisa-
tion and invariance to visual artefacts, which are neutral to human
observers but can mislead a neural network. However, here we em-
phasise that these transformations when used during inference time
also mislead the attacker trying to find adversarial directions. Under
these random transformations, the equation that the attacker uses to
find adversarial directions is given by:

𝑚(𝐱) = 𝑓 (𝑡𝑟1 (𝐱 + 𝜇𝐮)) − 𝑓 (𝑡𝑟2 (𝐱)) (4)

where 𝑡𝑟 is a random transformation, which could include random
cropping-resizing, random rotation, random cropping-padding, etc. The
transformation is applied during the inference stage. Random trans-
formations misleads the attacker from finding useful adversarial di-
rections. Therefore, one event of a transformation such as 𝑡𝑟1 might
misguide the attacker by giving a higher loss value but another event
of the same transformation may produce a completely incongruent
outcome. The resulting confusion can effectively reduce the attack
performance.

4. Proposed methodology

4.1. Randomised transformations

Randomised transformations during inference time were proposed
by Guo et al. (2018) and Xie et al. (2017) for countering adversarial
attacks. Although they were later shown to be ineffective in preventing
white-box attacks (Athalye et al., 2018) their effectiveness for coun-
tering query-based black-box attacks was not explored. In this work,
we propose random cropping-resizing and random rotation to counter
query-based black-box attacks and rigorously test their efficacy on
well-established benchmark models and datasets.

Each time an inference is made, a randomised transformation ran-
domly shifts the orientation or locations of the pixel values within
the image, due to which the adversarial gradients are not estimated
correctly. This is because the slight randomised variations in pixel
locations lead to conflicting loss directions for each query, hence suc-
cessfully misguiding the attacker. Moreover, we employ the proposed
transformations with the adversarially trained models; this is based
on the results of Qin et al. (2021), which showed that employing
random transformation or random noise injection during inference
time is most effective when combined with an adversarially robust
model i.e. a model trained using adversarial retraining (Aleks et al.,
2018). Therefore, in this work, we only consider models that are
trained adversarially and aim to improve their adversarial robustness
to state-of-the-art black-box attack, that is, square attack. Therefore,
randomisation is used to complement adversarially trained models.

Since randomised transformations cause significant changes to the
input, we assess their performance by aggregating their predictions
over multiple forward passes. The predictions from the multiple for-
ward passes are combined using voting to form a final prediction. The
label with the most votes becomes the classified label. We find that this
leads to better performance when using randomised transformations
than simply aggregating the logits over multiple predictions or using
a single forward pass to form a prediction. Although the query time
of the model is slightly increased, it comes with the benefit of better
defence performance as will be shown in later sections.

Next, we detail the two proposed transformations.
4 
Fig. 1. Original image of a Goldfish from the ImageNet dataset.

Fig. 2. Random cropping-resizing variants of an image of a Goldfish from the ImageNet
dataset. Our preliminary experiments revealed superior performance of 80% cropping
value over smaller cropping values.

4.1.1. Random cropping-resizing
This transformation works by cropping a random size of an image,

and resizing it to the original shape accepted by the model. We set the
cropping limit to 80% of the image after which the image is resized
to 32 × 32 × 3 for the CIFAR-10 dataset, 64 × 64 × 3 for Tiny
ImageNet dataset and 224 × 224 × 3 for the ImageNet dataset. We use
bilinear interpolation for resizing. Based on preliminary experiments,
we use the 80% limit because it better preserves clean accuracy while
successfully mitigating black-box attacks.

For visual demonstration, the original image of a Goldfish is shown
in Fig. 1 while its transformations are given in Fig. 2.

4.1.2. Random rotation
Random rotation rotates the image using a random angle. We set

the range of the random angle as [−10◦ , 10◦ ] and find it effective for
the experiments conducted here. The parameter choice largely depends
on the model’s invariance to these transformations. Subsequent studies
could aim to develop strategies for identifying the most resilient param-
eters, taking into account the characteristics of different models and
datasets.

Note, in this transformation the original size of the image is main-
tained. The image is only rotated using the random angle during the
inference stage and the randomised rotation misguides the attacker
to incorrect directions instead of the adversarial directions, which
compromises attack performance. An example of this transformation
is given in Fig. 3.

4.2. Evaluation

4.2.1. Attacker capabilities
To ensure that the defences are tested reliably, we set the attacker’s

budget to 100,000 queries for EOT-10 attack and 500,000 queries for
EOT-50 attack. All of our evaluations are made under the strong Expec-
tation Over Transformation (EOT) (Athalye et al., 2018) attack strategy
that averages the predictions before calculating attack directions. We
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Fig. 3. Random rotation variants of an image of a Goldfish from the ImageNet dataset.

set EOT to 10 or 50 to evaluate the defence performance under the
square attack (Andriushchenko et al., 2020). The square attack is a
powerful black-box attack, evident from the fact that it is the best-
performing attack against RND as reported by Qin et al. (2021). The
square attack is run for 10,000 iterations with default settings.

For each EOT step, the prediction is received over a single random
transform variant. However, by using 10 or 50 steps of EOT, the predic-
tions are averaged out over 10 or 50 different random transformation
variants, ensuring a reliable evaluation as that is close to how the model
will be used in practical settings. For evaluation purposes, the adversary
uses EOT to generate adversarial examples, and at each iteration of the
attack, we test if the adversarial example generated at each iteration is
successful at fooling the model over a model that uses voting over 10
different predictions. All the randomised defences are evaluated in the
same manner to ensure reliable evaluation.

Algorithm 1 Confident Square Attack (C-SQA)
Require: 𝑓 , x, 𝜖, 𝑁 , 𝑀 (EOT iterations), label 𝑦𝑡𝑟𝑢𝑒 → {1, ..., 𝑘}, image size 𝑤,

number of colour channels 𝑐
1: x𝑎𝑑 𝑣 ← 𝑖𝑛𝑖𝑡(x)
2: 𝑙∗ ← 𝐿(𝑓 (x), 𝑦)
3: for all iterations in 𝑁 do
4: ℎ(𝑖) ← side length of the square to modify
5: 𝜹 ← P(𝜖, ℎ(𝑖), 𝑤, 𝑐, x𝑎𝑑 𝑣, x)
6: x𝑎𝑑 𝑣𝑛𝑒𝑤 ← Project x𝑎𝑑 𝑣 + 𝜹 onto {z ∈ R𝑑 : ‖z − x‖𝑝 ≤ 𝜖} ∩ [0, 1]𝑑
7: 𝑙𝑛𝑒𝑤 ← 1

𝑀

∑𝑀
𝑗=0 𝐿(𝑓 (x𝑎𝑑 𝑣𝑛𝑒𝑤), 𝑦)

8: if 𝑙𝑛𝑒𝑤 < 𝑙∗ then
9: x𝑎𝑑 𝑣 ← x𝑎𝑑 𝑣𝑛𝑒𝑤

10: 𝑙∗ ← 𝑙𝑛𝑒𝑤
11: end if
12: end for
13: return x𝑎𝑑 𝑣

4.2.2. Confident attack
Typically, black-box attacks stop once an adversarial example is

found (Wu et al., 2021) to save query budget; however, under randomi-
sation based testing this can produce examples that were simply lucky
to be adversarial and fail to remain so when tested again. Therefore,
to evaluate the defences, we also use confident black-box attacks as
an additional measure during our experiments; these attacks keep
optimising the adversarial loss until a specified number of queries has
elapsed, even after a misclassification has occurred.

Confident attacks aim to generate adversarial examples that con-
tinue to remain adversarial under random effects. In other words, the
adversarial examples are more reliable. However, if a defence can
stop the attacker from creating confident adversarial examples then it
shows that the defence can truly mitigate attacks. The algorithm for
5 
Fig. 4. Illustration of how the model prediction is used for random transformation
defences in this work.

the confident square attack is given in Algorithm 1; it is identical to
the original square attack except for our additions on line 3 and line
7 which include running the algorithm until the complete number of
iterations have exhausted and averaging of predictions for calculating
the new loss value. Further details about the square attack algorithm
are provided in the original work (Andriushchenko et al., 2020).

5. Experimental results

5.1. Experimental settings

We evaluate the randomised defences on three datasets: CIFAR-10,
Tiny ImageNet and ImageNet. We use the models and settings similar
to the one used by Qin et al. (2021). Therefore, we randomly sample
1000 images from the CIFAR-10 test set and 1000 images from the
validation set provided by Huang and Zhang (2019) that were also used
by Qin et al. (2021). To further improve the rigour of experiments,
unlike Qin et al. (2021) we also evaluate our proposals on the Tiny
ImageNet: we use 500 images randomly sampled from the test set.
The models used for CIFAR-10 include a pre-trained ResNet-50 trained
with 𝑙∞ distance of 8∕255 by Robustness Library (Engstrom et al.,
2019), a pre-trained Wide-ResNet-28-10 by Gowal et al. (2020), and
a ResNet-18 adversarially trained by us; using an 𝑙∞ distance of 8∕255
and TRADES (Zhang et al., 2019) as the loss function. The ResNet-50
is used for EOT-10 attack experiments while Wide-ResNet-28-10 and
ResNet-18 are used for EOT-50 attack experiments.

The model used for ImageNet is ResNet-50 trained with 𝑙∞ distance
of 4∕255 by Engstrom et al. (2019). We train a PreActResNet18 model
on Tiny ImageNet using adversarial training with TRADES (Zhang et al.,
2019) as a loss function, and set the 𝑙 distance to 8∕255.
∞
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Table 1
Performance of randomised defences on CIFAR-10, ImageNet and Tiny ImageNet datasets under square attack (Andriushchenko et al., 2020). The best-performing defence is
ighlighted in bold. The second best-performing defence is highlighted in bold italics.
Dataset Test samples Model architecture Attack EOT steps Defense technique Clean accuracy (%) Attack failures Robust accuracy (%)

CIFAR-10 1000 ResNet-50 10

AT 88.7 322 32.2
AT+RND (Qin et al., 2021) 87.8 535 53.5
AT+Crop-Resize (Ours) 88.1 535 53.5
AT+Rotation (Ours) 88.7 544 54.4

ImageNet 1000 ResNet-50 10

AT 61.6 98 9.8
AT+RND (Qin et al., 2021) 56.7 181 18.1
AT+Crop-Resize (Ours) 59.9 275 27.5
AT+Rotation (Ours) 59.1 256 25.6

Tiny ImageNet 500 PreActResNet-18 10

AT 39.2 43 8.6
AT+RND (Qin et al., 2021) 36.0 74 14.8
AT+Crop-Resize (Ours) 40.0 82 16.4
AT+Rotation (Ours) 37.4 78 15.6
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The 𝑙∞ distance of the attack is set to 12.75∕255 for all models and
efences used in this work. We use the square attack with default set-
ings as it is a powerful attack giving the best attack performance (Qin
t al., 2021) and part of the auto-attack ensemble (Croce & Hein, 2020).

Furthermore, the experiments are conducted on two machines, one
with Intel core i9 CPU, Nvidia GeForce RTX 3080 Ti GPU and 32 GB of
RAM, and the other with Intel core i7 CPU, Nvidia Quadro T1000 GPU
and 16 GB of RAM.

5.1.1. Data augmentations
Typically, to improve model invariance and generalisation, data

augmentations based on various transformations such as those pro-
posed in this paper are used during the training stage. We follow this
good practice and use such well-trained models for our experiments.

This augmentation also makes sense for the defences we propose
because a model untrained over these augmentations can simply mis-
classify even a clean example when it goes through the proposed
transformations. Note, that this training is not a limitation of our
method because, as discussed above, such invariance is desirable for
a good model in any case. Moreover, previous work by Rebuffi et al.
(2021) has already shown that data augmentation approaches can
improve adversarial robustness.

The robustness library (Engstrom et al., 2019) uses random re-
ized cropping, random horizontal flip and colour jitter for the Ima-
eNet model, while it uses random cropping, random horizontal flip,
olour jitter and random rotation for the CIFAR-10 model. Further-
ore, we use random resized cropping and random rotation to train

he PreActResNet18 model on TinyImageNet and ResNet-18 model on
IFAR-10.

5.2. Defences evaluated

We evaluate our proposed randomised transformation based de-
fences against the RND (Qin et al., 2021). Although RND, being so
successful, is the main benchmark, we also report indicative results on
its variation, random feature defense (RFD) (Nguyen et al., 2023) as dis-
cussed in Section 3.2 and random cropping-padding (Xie et al., 2017),
as discussed in Section 4.1. AAA (Chen et al., 2022) was not evaluated
s it is vulnerable to decision-based attacks as shown by Nguyen et al.

(2023).
Therefore, we compare random cropping-resizing, and random ro-

tation with RND (Qin et al., 2021) on all datasets for a comprehen-
sive comparison. However, for comparisons with random cropping-
adding (Xie et al., 2017) and randomised feature defence (Nguyen

et al., 2023) we use the first 200 samples of the 1000 samples from
he ImageNet validation set.

Our experiments reveal that square attack gives the best attack
performance, better than decision-based attacks, on defences that use
nput-level randomisation. This is supported by the results of Qin et al.

(2021). For this reason, we evaluate the defences using square attack.
6 
5.2.1. Model prediction
We modify the prediction of the models used for random trans-

formation slightly. The final model prediction is taken after aggre-
gation over 10 or 50 different variants of a random transformation
for non-confidence increasing attacks. Under EOT-10 attack we take
aggregation over 10 transformations whereas for EOT-50 attack we
take aggregation over 50 transformations. We utilise this technique
for all models used in this work that use randomisation during the
inference stage (except for RND). This ensures that clean accuracy is not
significantly affected. For random transformations and random feature
defence (Nguyen et al., 2023), we use voting to get the final prediction,
whereas for RND we sum the logits over different predictions to select
the predicted label since it is closer to the original work. The illustration
of model prediction is given in Fig. 4.

Furthermore, the model prediction for confidence-increasing at-
tacks uses aggregation over 100 transformations once the adversarial
examples are generated after utilising the attack budget. During the
adversarial example generation (attack), the attacker uses 10 EOT steps
to average out the randomness.

5.3. Metrics

We report the results by using both robust accuracy and attack
ailures. To generate the results without confidence-based attacks, we
sed the code provided by Qin et al. (2022). On the other hand, to

generate the results with attacks that are modified to increase the
confidence of the misclassification, we use the adversarial robustness
toolbox (ART) (Nicolae et al., 2018). We also report the clean accuracy
of the models, which is the prediction test accuracy on data that is not
erturbed. To measure the clean accuracy, we take a majority vote over
0 forward passes as per Fig. 4 for every randomised defence technique
xcept in the case of ablation study where we use a single forward pass.

5.4. Results

5.4.1. CIFAR-10
We report the results on CIFAR-10 under the regular square attack

ith EOT-10 and EOT-50, along with the confidence-increasing square
ttack. The EOT-10 results are reported in Table 1, while the EOT-50
esults are reported in Table 4. The results under confidence increasing

attack are reported in Table 2.
The results under EOT-10 show that the random rotation defence is

he best-performing defence with a robust accuracy of 54.4%. Our pro-
osed transformations give a competitive performance that improves
ver regular adversarially trained (AT) model with no defence by more
han 21.0%. Additionally, under EOT-50 attacks the margin of improve-
ent increases significantly. With Wide-ResNet-28-10, random rotation

mproves over RND by 4.6%, and random cropping-resizing beats RND
by 3.5% whereas with ResNet-18 architecture, random rotation beats
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Table 2
Performance of randomised defences on CIFAR-10 and ImageNet datasets under confident square attack (C-SQA). The best-performing defence is highlighted in bold. The second
best-performing defence is highlighted in bold italics.

Dataset Test samples Model architecture Attack EOT steps Defense technique Attack failures Robust accuracy (%)

CIFAR-10 1000 ResNet-50 10 AT+RND (Qin et al., 2021) 543 54.3
AT+Crop-Resize (Ours) 628 62.8
AT+Rotation (Ours) 627 62.7

ImageNet 200 ResNet-50 10 AT+RND (Qin et al., 2021) 39 19.5
AT+Crop-Resize (Ours) 73 36.5
AT+Rotation (Ours) 71 35.5
Table 3
Performance of additional randomised defences on first 200 samples from the 1000 random samples of the ImageNet validation set under square attack (Andriushchenko et al.,
2020). The best-performing model is highlighted in bold. The second best-performing defence is highlighted in bold italics.

Dataset Test samples Model architecture Attack EOT steps Defense technique Clean accuracy (%) Attack failures Robust accuracy (%)

ImageNet 200 ResNet-50 10

AT+RND (Qin et al., 2021) 69.0 37 18.5
AT+Crop-Pad (Xie et al., 2017) 69.0 56 28.0
AT+RFD (Nguyen et al., 2023) 75.0 49 24.5
AT+Crop-Resize (Ours) 72.5 63 31.5
AT+Rotation (Ours) 72.0 58 29.0
Table 4
Performance of randomised defences on randomly sampled 1000 samples from the CIFAR-10 dataset square attack (Andriushchenko et al., 2020). The best-performing model is
highlighted in bold. The second best-performing defence is highlighted in bold italics.

Dataset Test samples Model architecture Attack EOT steps Defense technique Clean accuracy (%) Attack failures Robust accuracy (%)

CIFAR-10 1000

ResNet-18 50

AT 82.7 361 36.1
AT+RND (Qin et al., 2021) 80.9 461 46.1
AT+Crop-Resize (Ours) 81.6 484 48.4
AT+Rotation (Ours) 82.2 498 49.8

Wide-ResNet-28-10
(Zagoruyko &
Komodakis, 2016)

50

AT 89.9 483 48.3
AT+RND (Qin et al., 2021) 88.4 586 58.6
AT+Crop-Resize (Ours) 88.5 621 62.1
AT+Rotation (Ours) 88.8 632 63.2
Fig. 5. The attack success rate graph of the randomised defences on square attack with
EOT-50 on ResNet-18 model architecture and CIFAR-10 dataset. The attack success rate
is measured across the iterations of the attack.

RND by 3.7% and random cropping-resizing beats RND by 2.3%. The
attack success rate graph for the defences are given in Fig. 5.

Moreover, the results in Table 2 show that under a confidence-
increasing attack, where the full attack budget is utilised and strong ad-
versarial examples are created. Our proposed random transformations
outperform random noise defence by more than 8.0%. This suggests
that random transformations are better than random noise defence at
misguiding the attacker from finding adversarial regions to come up
with confident adversarial examples. This demonstrates that random
transformations are a more effective defence than noise-based defences.

5.4.2. ImageNet
The results on the ImageNet dataset are also reported on both the

regular square attack and the confident square attack. We compare RND
7 
with our proposed transformations over 1000 samples. Our proposed
randomised cropping-resizing improves significantly over RND by giv-
ing an improvement of 9.4%. Randomised rotation also improves over
RND by 7.5%. The results are reported in Table 1.

Additionally, we compare the performance of RND and our pro-
posed randomised transformations over the confident square attack in
Table 2. The results show that the robust accuracy of all randomised
defences is improved. The improvement is explained by the fact that
finding confident adversarial examples is slightly more challenging
than finding an input that causes misclassification by chance over a
huge budget when the model is being tested under a stochastic tech-
nique. Our proposed randomised transformations are more effective at
misguiding the attack from finding confident adversarial regions on
both CIFAR-10 and ImageNet datasets. Randomised cropping-resizing
gives a robust accuracy of 36.5% while RND gives a robust accuracy of
only 19.5%.

5.4.3. Tiny ImageNet
We perform experiments on Tiny ImageNet to further establish the

improvement of our proposed randomised transformations. The results
on the Tiny ImageNet using a PreActResNet18 are given in Table 1.
According to the results, RND gives a robust accuracy of 14.8% while
random crop-resize improves on it and takes it to 16.4%. On the other
hand, random rotation also improves the robust accuracy by 0.6%. The
results confirm the improvement of randomised transformations over
RND.

5.4.4. Indicative comparison with RFD and random padding-cropping
Encouraged by previous results, we also present a preliminary com-

parison with RFD and randomised cropping-padding as mentioned in
Section 5.2. We use 200 samples for comparison as we use an expensive
budget of 10,000 iterations combined with 10 EOT steps.

The different randomisation techniques to counter black-box at-
tack are compared in Table 3. We use the RND (Qin et al., 2021)
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Table 5
Ablation study results to evaluate the performance of randomised defences with a single forward pass under square attack (Andriushchenko et al., 2020). The best-performing
model is highlighted in bold. The second best-performing defence is highlighted in bold italics.

Dataset Test samples Model architecture Attack EOT steps Defense technique Clean accuracy (%) Attack failures Robust accuracy (%)

CIFAR-10 1000 ResNet-18 50

AT 82.7 361 36.1
AT+RND (Qin et al., 2021) 81.5 374 37.4
AT+Crop-Resize (Ours) 80.2 264 26.4
AT+Rotation (Ours) 79.4 390 39.0

ImageNet 200 ResNet-50 10

AT 75.0 21 10.5
AT+RND (Qin et al., 2021) 69.0 34 17.0
AT+Crop-Resize (Ours) 71.5 48 24.0
AT+Rotation (Ours) 69.5 52 26.0
method with defender noise set to 0.05. For the RFD defence, a noise
of 0.03 is introduced after each layer block of ResNet-50. The re-
sults show that random transformation defences outperform random
noise defence such as RND and RFD by 3.5%. Moreover, randomised
cropping-resizing outperforms all other defences by giving the highest
robust accuracy of 31.5%.

5.4.5. Ablation study
We perform two ablation studies, the first on CIFAR-10 and Ima-

geNet to show how accumulating the predictions over multiple ran-
domised forward passes helps to increase the robustness of the model
to query-based black-box attacks. We also conduct another ablation
study to investigate the underlying reason behind the success of the
proposed random transformations. We find that for these transforma-
tions to be successful randomisation plays a critical role as motivated
in Section 3.3.

The results for the first ablation study are given in Table 5. We
see that using a single forward pass significantly hinders the defence
performance. On CIFAR-10, the robust accuracy of RND decreases
from 46.1% to 37.4%, while the robust accuracy of random rota-
tion decreases from 49.8% to 39.0%. The robust accuracy of random
cropping-resizing also decreases. The regular AT model is unaffected
as no randomisation component affects its performance. On ImageNet,
the robust accuracy of each defence also decreases on a single forward
pass.

To explain what makes the randomised transformation work, we
add a second ablation study to measure robust accuracy for randomised
rotation defence by fixing the rotation angle to a specific value, instead
of selecting from multiple random angles. Similarly, we measure the
robust accuracy of random resized-cropping by fixing the cropping size
to a specific value. The reason behind this ablation study is that one
hypothesis for its success could be that as a result of these randomised
transformations, parts of the images are cropped out; we want to
understand whether it is the cropping alone that helps robustness by
simply taking out the parts that the attacker might have perturbed or
is it the mechanism of randomisation that plays a critical role.

The experiments are conducted using a ResNet-18 model on the
CIFAR-10 dataset. The robust accuracies for rotation angles 1,5 and
10 are 36.1%, 31.7%, and 26.6%, respectively. In comparison, the
robust accuracy of the natural (undefended) model is 36.1%, which
is significantly higher than the accuracies at fixed angles of 5 and
10 degrees. Similarly, the robust accuracies of resized-cropping when
we fix the cropping scale to 80% and 90% are 32.3% and 31.6%,
respectively. This shows that an attacker can circumvent cropped-out
parts of images to find adversarial noise within other parts of the image.
Consequently, it is the randomisation procedure (randomly choosing
from multiple angles or cropping sizes) that results in higher robustness
of the proposed pre-processing defences.

5.4.6. Increasing attacker noise
To evaluate the impact of increasing attacker noise (𝜖) on robust-

ness, we perform additional experiments on CIFAR-10 with ResNet-18
model under EOT-50. Qin et al. (2021) suggest that for RND to be
effective, the defender noise must be increased as the attacker noise
8 
Fig. 6. The improvement in robust accuracy of transformation based defences over
RND as attacker noise is increased.

increases. However, this is a challenge as the attacker noise is unknown
in all practical settings. In addition, adding higher defender noise can
degrade image quality. Therefore, we increase defender noise and keep
it the same as the attacker noise in line with the experimental settings in
the original work by Qin et al. (2021). On the other hand, our proposed
transformations use the same parameter settings, which gives them
the edge over RND. The results are reported in Fig. 6. We observe a
clear increase of robust accuracy improvement of transformation based
defences over RND as attacker noise is increased. We attribute the
poor performance of RND to the higher degradation caused by pixel
level noise added by RND. We also hypothesise that on datasets more
sensitive to noise, the performance of RND might suffer considerably
in comparison to transformation based defences.

5.4.7. Statistical significance test
To test the improvements for statistical significance, we calculated

p-values on CIFAR-10 and ImageNet. For CIFAR-10 we used ResNet-
18 model under EOT-50 on 1000 samples, whereas for ImageNet we
used ResNet-50 under EOT-10 on the first 200 samples. To calculate
p-values we have used McNemar test (McNemar, 1947), which can
be used to measure the statistical significance between the accuracy
calculations (Atik & Ipbuker, 2021). On CIFAR-10, the 𝑝-value for
improvement of random rotation over RND is 1.03 × 10−7 while for
random resized-cropping over RND it is 0.031. On ImageNet, the 𝑝-
value for improvement of random rotation over RND is 2.10 × 10−7
while for random resized-cropping over RND it is 8.04 × 10−7. In most
of the cases the p-values are extremely low (of the order 10−7); in all of
the cases they are less than 0.05. Hence the significance of difference
is clearly established.

6. Limitations, future work and conclusion

6.1. Limitations and future work

Nguyen et al. (2023) and Qin et al. (2021) have pointed out that
randomised defences work to mitigate query-based black-box attacks,
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and their performance against mitigating transferability attacks re-
mains an open problem. Additionally, all randomised defences may
also be vulnerable to an attacker with higher number of EOTs (>500).

lthough we have tried to evaluate performance on EOT-50, their
obustness might drop further against EOT > 500 at a cost of a higher
umber of queries. The effect of higher EOTs and its potential to be
pplied in a realistic setting along with transferability attack evaluation
s left for future investigation.

6.2. Conclusion

In this work, we have proposed random transformations such as
andom resized cropping and random rotation as a more effective
efence to mitigate black-box attacks. Experimental results demonstrate
he improvement over previously proposed SOTA methods such as
ND. We observe that data augmentations during training help with the
efencive abilities of the proposed transformations. Furthermore, we
lso observe that randomised transformations such as random rotation
nd random resized-cropping perform better than noise-based defences.
hile RND adds pixel-level noise on top of the attacker’s noise, which
ight significantly degrade image quality resulting in lower robustness,

he proposed transformations crop out the image and then extrapolate,
hich is a fundamentally different operation.

It is also noteworthy that against confidence-based attacks, the
improvement over the RND increases even further across all the tests.

his further reinforces the potential of the proposed randomised trans-
formations. Furthermore, we find that it is not only the transformations
hat improve the adversarial robustness, but their combinations with
andomisation that plays a critical role.

Despite these improvements, it is important to note that these trans-
formations can also be used together with RND and/or in concatenation
with each other. However, this investigation is left for future.
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