Efficient Textual Similarity using Semantic
MinHashing

1% Waqas Nawaz

Islamic University of Madinah,
Madinah, Saudi Arabia
wnawaz @iu.edu.sa

Abstract—Quantifying the likeness between words, sentences,
paragraphs, and documents plays a crucial role in various
applications of natural language processing (NLP). As Bert,
Elmo, and Roberta exemplified, contemporary methodologies
leverage neural networks to generate embeddings, necessitating
substantial data and training time for cutting-edge performance.
Alternatively, semantic similarity metrics are based on knowledge
bases like WordNet, using approaches such as the shortest
path between words. MinHashing, a nimble technique, quickly
approximates Jaccard similarity scores for document pairs. In
this study, we propose employing MinHashing to gauge semantic
scores by enhancing original documents with information from
semantic networks, incorporating relationships such as syn-
onyms, antonyms, hyponyms, and hypernyms. This augmentation
improves lexical similarity based on semantic insights. The
MinHash algorithm calculates compact signatures for extended
vectors, mitigating dimensionality concerns. The similarity of
these signatures reflects the semantic score between the docu-
ments. Our method achieves approximately 64% accuracy in the
MRPC and SICK data sets.

Index Terms—MinHashing, Semantic similarity, WordNet,
Natural Language Processing (NLP), Jaccard similarity, Algo-
rithm

I. INTRODUCTION

Semantic text similarity is one of the fundamental chal-
lenges in many natural language processing (NLP) tasks such
as question answering in biomedical [1], automatic machine
translations [2], and automatic text summarization [3] to name
a few. Natural language is a vibrant resource where different
words with non-identical lexical structures are said to be
semantically similar if their meaning is the same. For instance,
the words destination and last stop technically have the same
meaning with different linguistic structures. Similarly, the
meaning of a word depends on the context; for example,
the word crash has different meanings in automobiles, the
stock market, and parties in our daily lives. To understand
the context, researchers have developed various approaches
in which the similarity and relatedness between concepts are
modeled in the form of graph-like structures such as WordNet
[4], BabelNet [5], MeSH [6] and word embeddings such as
word2vec [7]. Modern deep learning models like Elmo [§]

This research is funded by the Deanship of Scientific Research of the
Islamic University of Madinah, KSA, under the research groups (first) project
no. 956.

2" Maryam Baig
Department of Information Systems, Department of Computer Science,
NUCES-FAST University,
Islamabad, Pakistan
maryam-baig @hotmail.com

37 Kifayat Ullah Khan
College of Accountancy, Finance and Economics,
Birmingham City Business School,
Birmingham City University, UK
kifayat.khan@bcu.ac.uk

and BERT [9] are trained to classify text based on word
embeddings, practical in text summarization and resolving
word-sense disambiguation. These state-of-the-art techniques
require a lot of data and hours of training over expensive
resources to produce reasonable results.

The emergence of big data in the NLP domain requires
a scalable approach for quick estimations and analysis. Min-
Hashing [10] is a highly scalable technique that quickly esti-
mates the similarity (Jaccard) between two sets. This approach
has been used in Locality Sensitive Hashing for Cross-Lingual
Similarity [11], Graph Summarization [12], and Estimating
Web Document Similarity [13]. To obtain decent results, we
aim to determine the semantic similarity between documents
without training on gigabytes of data. Textual similarity, a.k.a.
lexical similarity, is efficiently computed through K-shingle
tokens and MinHash algorithm [13]. However, this technique
fails to consider semantics as illustrated in Fig. 1. In D1 and
D2, different or synonymous words tell the same information
that a person is good. If we measure the similarity score
by MinHashing with stop words, it approximates 60%; while
removing the stop words, the score drops to 0 when these
words are 100% similar semantically. Integrating knowledge
into the word vectors in the MinHashing approach is expected
to produce reasonable results efficiently.

In this paper, we propose an efficient technique inspired by
MinHashing to compute the semantic similarity of documents.
We model the data so that it preserves the semantic informa-
tion of a document by increasing the syntactical similarity of
the documents achieved by embedding related concepts in the
extending vector representation of the document. We transform
the documents into tokens to form a vector of words, where we
obtain the associated words for each token from the knowledge
base like WordNet. The idea is to add knowledge to the
word vectors using a well-structured knowledge base. These
vectors are then encoded to pass them on to the MinHash
algorithm. The MinHashing technique produces signatures
against those vectors as codes such that similar words get
similar MinHash values. These extended encoded vectors are
then passed through a set of hash functions to obtain their
short signatures. These signatures are meant to preserve the
similarity of the documents, which is approximately equal to
the Jaccard similarity. Our approach not only measures the

Synonyms

D1: He is a nice person

Synonyms

D2: He has a decent soul ——
J

D1: ['nice, 'person']

D2: ['decent’, 'soul']

Lexical Similarity = 0

Semantic Similarity = 1

Fig. 1. Problem Illustration

structural similarity of the documents but semantic similarity
as well in O(mnk +m?k) run time complexity, which is
the complexity of the MinHash algorithm. This method can
be helpful in computational linguistics to find semantically
similar items, such as tweets, research articles, and clustering
semantically similar documents on a large scale.

II. LITERATURE REVIEW

This section briefly discusses closely related existing stud-
ies in the context of semantic similarity computations using
knowledge bases, MinHash algorithms, and applications.

A. MinHashing Techniques

MinHashing is frequently used to find similar items in
extensive data sets to estimate the Jaccard similarity between
two sets. It represents large sets in small signatures while
preserving the similarity among the entities. The probability
of two sets having the same MinHash value is approximately
equal to the sets’ Jaccard Similarity (Intersection over Union)
[10]. Since it is costly to generate random permutations over
a large set explicitly, universal hashing is used on indexes to
produce permutations. Many variations have been introduced
in MinHashing to improve its efficiency and effectiveness. The
standard MinHash considers all elements equally, while the
weighted MinHash associates a probability with each com-
ponent according to its importance [14]. The added weights
increase the bias of the items in the sets, thus improving the
score’s accuracy. The B-bit MinHash approach [15] limits the
fingerprint size to reduce space complexity, where B is an
arbitrary number and the fingerprint represents an item in the
set, i.e., hash value. However, it may miss some elements
in the sets if their hash value does not occur in b-bits, or
it may override an existing element. On the other hand, the
one-permutation MinHash technique [16] limits the number
of permutations to 1, assuming that the hash value will not
collide, which is very unlikely and only depends on the type of
data being used. None of these variants considers the semantics
while estimating the similarity between items efficiently.

Finding similar documents is one of the problems solved
by MinHashing-based approaches [10]. The documents are
represented in the form of sets. Since MinHash approximates
the Jaccard similarity of the sets, we can compute the lexical
similarity of the documents. MinHash has also been used
to measure cross-lingual similarity [11]. Wikipedia Corpus is
available in multiple languages. The association of multilin-
gual documents has been exploited to obtain similar cross-

lingual documents. In the graph summarization, [12], a bias-
free MinHash clusters similar nodes together. The similarity of
the web documents has been computed using K-shingle tokens
with MinHashing [13]. This approach tokenizes the documents
into K-shingles so that structurally (non-semantically) similar
documents can be grouped.

B. Knowledge-base Approaches

There are several studies on the estimation of the semantic
similarity score that depends on the knowledge bases and
ontologies like WordNet' [4], MeSH? [6], BabelNet® [5],
SENSUS* [17], Wikipedia °. These knowledge bases are struc-
tured hierarchically while preserving the concepts and words’
relatedness so that similar words are grouped. Longitude,
depth, and density are the main factors that can be translated
into semantics for similar terms. Based on factors, semantic
measures can be categorized as; Structure-based measures
[18], [19], Information content measures [20], [21], Feature-
based measures [22], and hybrid measures [23], [24]. These
measures give semantic scores between two concepts or words.
Structure-based measures [18], [19], relying on the is-a rela-
tionship in a single ontology, have limitations, as the distance
between similar words can vary in the network. Information
content methods [20], [21] are computationally expensive,
considering both ontology and corpus for the computation
of probability-based similarity. Feature-based methods [22]
assess similarity by comparing properties or relationships of
terms from knowledge bases. Hybrid approaches combine
these techniques, but feature-based methods are preferable for
cross-ontology similarity. Despite their utility, these methods
are computationally expensive to measure semantic similar-
ity. The authors in [23] proposed a graph-based approach,
extracting relations from a semantic network for each key-
word to compute semantic similarity. However, this method
is not exhaustive or scalable. Another study [24] focuses on
semantically similar scientific articles, calculating similarity
based on synonyms, “is-a” and “part of” relations in titles,
abstracts, and keywords. This approach, while limiting the use
of information, is also computationally expensive.

Uhttps://wordnet.princeton.edu/
Zhttps://www.ncbi.nlm.nih.gov/mesh/

3https://babelnet.org/
“https://www.isi.edu/natural-language/resources/sensus.html
Shttps://dumps.wikimedia.org/

- -

Documents Tokens Semantic
Computation
]
oceo
e ()
©) O
0®0® 5600
o
Candidate Minhashing
Pairs

Fig. 2. High-level Overview of the Proposed Solution

C. Corpus-based Approaches

Recently, word embeddings and autoencoders have been
in the limelight. It represents a document in the form of
vectors, and there are several techniques, some of which are
Word2vec [25], Glove [26], and fastText [27]. Word2Vec’s
[25] embeddings help improve most NLP tasks, but subword
information is not captured. FastText [27] uses the word2vec
model and improves its efficiency and performance, helping to
capture the context of subwords. However, Glove [26] aims to
bring word prediction algorithms and word statistics together
in the corpus. It considers the corpus’s co-occurrence statistics
and the effectiveness of prediction-based approaches. These
techniques are not contextual, meaning they do not believe the
context in which the word is used, hence losing the semantics.
ELMo [8] introduced contextualized embedding that captures
semantics with context. BERT [28] uses auto-encoders for
text representation in the form of vectors. KnowBert [29] is a
generic and efficient model for incorporating prior knowledge
into a deep neural network. Train entity linkers by self-
supervision on unlabeled data, resulting in general-purpose
knowledge-enhanced representations that may be used for
various downstream applications.

D. Summary

The survey on document clustering based on semantic sim-
ilarity reveals that most methods employ the term-frequency
inverse document-frequency or WordNet as a knowledge base
to derive semantic information, utilizing K-means clustering
and its variants for document clustering. In particular, none
of the techniques explored using the MinHashing technique to
compute semantic similarity. MinHashing, typically employed
in clustering, can effectively estimate the Jaccard similarity,
providing a scalable approach amid rapidly growing data.
While machine learning and deep learning models are applied
in word-sense disambiguation, they demand extensive pre-
training on large corpora. In contrast, Jaccard similarity and
MinHash present efficient and scalable alternatives to ap-
proximating similarity while preserving semantic information,

especially when working with word embeddings represented
as vectors in sentence pairs.

III. METHODOLOGY

In this section, we discuss the proposed solution as briefly
illustrated in Fig. 2. We aim to capture the semantically similar
candidate pairs through MinHashing. The knowledge bases
like WordNet provide semantic information in synonyms,
antonyms, meronyms, etc. These relationships between words
can be modeled in such a way that it can increase the bias,
which in turn captures the semantics of the documents.

The objective is to provide a scalable solution for finding
semantically similar documents by exploiting the relationships
of words in the taxonomy. The associations between words
such as “is-a”, “part-of’, and “has-a” provide a basis for
exploring the semantics. MinHash provides the advantage of
scalability, as each instance is reduced to a fixed-size signature.
The following subsections discuss the proposed approach step
by step. Fig. 3 shows the flow chart of the process, which is
discussed later.

Input String

Remave punctuations
and stop words

‘While words in list

True

Min-hashing

Inputevl, ev2

l

Compute Min-hash
Signatures

Concept Extraction

Knowledge
base

Get concepts fora l

T .

If concepts exist?

Compute Semantic
Similarity Score

Tm o

Add word and the
concepts to the
extended vector

]

Return Extended

False

Enrichment

|dd word to extendead|
wvector

Fig. 3. Flow of the semantic score computation

MinHashing is widely used to calculate the syntactical
similarity of documents in information management systems
[22], to search encrypted data [30], and to summarize graphs
[12]. We can embed semantic information in the original
vector using knowledge bases such as WordNet to get the
semantic similarity score. MinHash takes data in the form
of sets to perform the computation. This can be achieved by
transforming documents into words. Assume that we have two
documents, i.e., d1 and d2.

dl: [’he’, ’is’, ’a’, ’nice’, 'person’]
d2: [’he’, ’has’,’a’, ’decent’, ’soul’]

After removing the stop words, the vectors will have words
that add meaning to the sentence.

dl: ['nice’, person’]
d2: [’decent’,’soul’]

We can see that the documents are similar to each other
syntactically, approximately 50%. Still, they are 100% similar
semantically, meaning that both sentences have the same
meaning, but their similarity score is meager. For considering
the semantics, we propose to obtain closely related words from
the semantic network, as shown in Fig. 4, to be used in the
enrichment phase.

Tokens
Document

Tokenize

7

I
s

B : : ; : : ‘Word N
. : 1 : ‘ ‘
W[TTT1] [

Concepts

Fig. 4. Concept Extraction Mechanism

This vector is then encoded as a sequence passed to the
MinHash algorithm to calculate the scores. For example, the
word ’nice’ has a synonym ’decent’, and the word ’decent’
has ’nice’ as its synonym; we can see that both words occur
in synsets of each other. Similarly, words like ’person’ and
’soul’ are synonyms in WordNet. Adding these words to the
word vector will increase the bias of the semantic terms, which
add meaning to a phrase or sentence, causing the collisions in
the MinHash and resulting in the increased score in terms
of semantics. The semantic similarity of the above sentences
can be estimated in three steps. Each of the above steps is
discussed below in detail.

A. Step 1: Concept extraction

This phase extracts concepts from a knowledge base to en-
rich feature vectors. Knowledge bases preserve the semantics
between words in the form of different relationships such as
synonyms, antonyms, hyponyms, hypernyms, and meronyms,
and we call these relationships concepts. The feature vector
after the pre-processing contains only the meaningful terms,
hence removing the bias added due to stop words. The con-
cepts are obtained against each word in the original sentence
vector. The number of concepts obtained against each word
may vary (it can be zero). Fig. 4 shows the concept extraction

phase where related concepts are obtained against each vector.
We emphasize the following relationships.

I
[Quick jH (Fast]
I

[Slow j “—> [Sluggishj

Laggard

Fig. 5. The illustration of Synonym-Antonym relationship, where solid-line
represents synonyms-relation and dotted-line shows the antonyms.

Hypernym

-Color
(General) -

[Purple) (Red] (Blue J (Green]

-

/

Hyponym
(Specific)

(Crimsonj [Violet) [La\'ender)

Fig. 6. Hyponym-Hypernym Relationship

e Synonyms: Two words having the same meaning are
called synonyms of each other, like big is the synonym of
large. WordNet contains synonyms in the form of synsets,
which are lists of grouped words with similar meanings.
The context changes as we move away from a word by
replacing it with its synonyms.

« Antonyms: Two words having opposite meanings are
called antonyms, such as big is an antonym of small.
Some words may or may not have opposite words.
Multiple words have the same opposite meaning. The
synonym-anonym relationship can be seen in Fig. 5

o Hyponyms: The words having a specific example of a
general word are hyponyms of each other; for example,
color is a general word, and red is a specific color, so
red is the hyponym of color. If we consider WordNet as
a tree, the leaves of each node are the specific terms of
its general form at the node. For this research, we have
considered one-hop away hyponyms, as there is much
less chance of concepts colliding if we go deeper into
specific words, which can be seen through Fig. 6.

o Hypernyms: In contrast to hyponyms, hypernyms are the
general form of a specific word. For example, color is the
hypernym of Red, as it represents a broader meaning, as
shown in Fig. 6. Therefore, if different colors are used in
a sentence, we can add color for each word to increase
semantic similarity. For this research, we have considered
concepts up to three hops away from hypernyms, as there
is a chance of getting common words for two closely
related words.

WordNet is rich in synonyms, as shown in Fig. 7. The

number of concepts obtained for each relation against each

token was counted to analyze the resourcefulness of WordNet.
It gives a significantly high average of 115 for synonyms,
while antonyms are very few. In addition to antonyms, the
number of hyponyms and hypernyms is insignificant compared
to synonyms.

Average Concepts Extracted over 7k

sentences

140 -
7 115
2120
[
g 100
=1
o 80
‘g 60
8 40
2 20 5 16 9
Z 0
i

Synonyms Antonyms Hyponyms Hypernyms
Relationships

Fig. 7. Average number of concepts obtained for each relation

Each of the above relations is independent of the other;
therefore, only one relationship is considered to make
a meaningful enriched word vector. In the example be-
low, we obtained synonyms from the extraction process of
the words ’decent’, ’person’, ’nice’, and ’soul’. The ex-
tracted concepts for person are [’individual’, ’somebody’,
’someone’, ’mortal’, ’person’, ’soul’] and for soul are
[’individual’,’somebody’,’someone’, ’psyche’,mortal’, ’per-
son’,’soulfulness’,’soul’]. We can see that few synonyms are
common for both person and soul.

B. Step 2: Vector enrichment

This phase is responsible for the formation of extended
vectors. These vectors are obtained by adding extracted terms
to the original vector so that the representation of each token
increases by its related terms, as given in the following Eq. 1.

N
> T+ Cy @)
=1

where C is the concept for Tokens T from 1 to N (N is the
number of tokens per document, and t is the size of the concept
vector). To remain in the context, a threshold value of t=3
is determined for enrichment, which means that we will use
the first three values of the extracted concepts for each word,
which results in enriched vectors called extended vectors. If
two words are related, the extracted word set must have at
least one similar word, causing the collision. The process is
demonstrated in Fig. 8. The output of this phase is an encoded
vector, which is encoded using a straightforward approach, i.e.,
each word is given a number in a sequence starting from 1,
where similar words get the same identification number.

The formation of extended vectors depends on one relation-
ship at a time. Using the synonyms obtained from extraction
phase, the resulting extended vectors are: evl = ["nice’, *good’,
’decent’, *gracious’, ‘person’, “individual’, ’somebody’, *some-
one’] and ev2 = [’decent’, ’good’, ’nice’, ’dainty, ’soul’,
’individual’, ’somebody’, ’someone’]. The extended vectors

Encoding

Vectorization ‘

—

Concepts

Fig. 8. Enrichment Phase

are now highly similar as each word is present in both vectors,
increasing the representation of the similar words. The size of
the extended vectors adds to the complexity of the space by
a factor of t. The size of the extended vector is given by
size(ev) = n-+txn where n is the size of the original vector,
and ¢ is the threshold that determines the number of concepts
to be added to the extended vector. Fig 9 shows the average
increase in the extended vector for the relationships used in
this research.

Average Size of Extended Vector over 7k
sentences

40

Number of Concepts
(=]
=]

Synonyms Antonyms Hyponyms Hypernyms

Relationships

Fig. 9. Average size of extended vectors after vectorization

The size of the extended vector is directly proportional to
the threshold, that is, size(ev) o< t where ev is the extended
vector, and t is the threshold that determines the number of
concepts used for each token. The higher the threshold, the
larger the size of the extended vector, and vice versa. In Fig
9, synonyms give the maximum size of the extended vectors
when the threshold is 3, where hypernyms are half the size of
the synonyms, and antonyms result in the smallest vector size.

C. Step 3: MinHashing

MinHash algorithm represents large sets into more miniature
representations by hashing, therefore significantly reducing the
size of the sets to be compared quickly while preserving the
similarity of the sets. Leveraging this property of MinHash to
reduce the size of the extended vectors and obtain equal-sized

encoded vectors where the size of the vectors depends on the
number of hash functions used.

docl doc2
D D

Vectorization Hash Hash Hash
Function1 Function2 Function 3

] — Minlushing

1 2 3
>

/_» " m, m,

Signature Matrix

Row 1

Row 2

MinHash (@, b) = no. of collisions

Extended Vectors

Fig. 10. An overview of MinHashing strategy

The k-length vectors obtained from the MinHash algo-
rithm are then compared to calculate the MinHash seman-
tic similarity score (ms3), which is given by the formula
ms3(sigl, sig2) = mumber Ofkw”iswns where sigl and sig2
are a set of integers that preserve the semantics and similarity
of the two documents, obtained from MinHash, and k is an
arbitrary number of hash functions used to calculate signatures.
This score is approximately equal to the Jaccard similarity
of the semantic set, ranging between O and 1. The extended
vectors evl and ev2 obtained in the previous section give
a significant similarity score of 0.8, which shows that the
two sentences are highly similar despite the structure of the
sentences, making them different from each other.

We omit the detailed discussion about the proposed algo-
rithms due to space limitations.

IV. EMPIRICAL ANALYSIS
A. Datasets

The proposed approach is tested on two viral datasets; one
is the Microsoft Research Paraphrase Corpus (MRPC) [31],
which consists of 5,800 pairs of sentences in the English
language, annotated by humans. The sentences are rephrased,
meaning the pair have the same meaning, but their syntactical
structure is different. The pairs are annotated in terms of qual-
ity. A score of 1 is given to the pair with good paraphrasing,
while 0O is assigned to low-quality pairs. Sentence-involving
compositional knowledge (SICK) dataset [32] consists of
10,000 pairs of sentences in English. Each pair of sentences
is annotated for relatedness in meaning, giving a relatedness
score that ranges between 1-5. This score has been normalized
using a threshold of 2.5. Values greater than this threshold are
classified as 1 and O otherwise. It also contains the annotations
of entailment that are out of the scope of this report. We used

the relatedness score to obtain the performance statistics for
our approach.

B. Computing environment

The hardware used is a standard PC with Intel(R) Core(TM)
15-10210U CPU @ 1.60GHz 2.11GHz processor and 16GB
RAM running 64-bit Windows 10 for the development and
testing of the proposed approach. However, this implemen-
tation could be efficiently run on a low-resource machine to
compare two documents.

The proposed method is implemented using the Natural
Language Processing Toolkit (NLTK)® in Python 37. We have
used ntlk corpus for WordNet for the concept extraction phase.
Other than this regex tokenizer, stop words and n-grams have
been used from NLTK. Pandas package is used to read and
process data.

Evaluations have been performed using the sklearn metrics
library®. Evaluation metrics include the accuracy score and
the entire classification report that consists of precision, recall,
and the F1 score, as well as sensitivity and specificity. Scores
ranging from 0-1 are classified as 0 and 1 using a threshold
of 0.5.

C. Results and discussion

The results are obtained at different levels, as different
relations are exploited to obtain a semantic score. As men-
tioned in the methodology section, we focus on four relations:
synonyms, antonyms, hyponyms, and hypernyms. For each
relation, we have obtained the precision, recall, and F1 score
along with specificity and sensitivity. These metrics show the
performance of our approach on the aforementioned datasets.

TABLE I
EVALUATION ON SYNONYMS
Metrics
Datasets | Measure Precision | Recall | F1 Score
Sensitivity | 0.79 0.61 0.69
MRPC e ificity | 045 066 | 0.54
Sensitivity | 0.99 050 | 0.66
SICK —secificity | 0.2 096 [038
TABLE II
EVALUATION ON ANTONYMS
Metrics
Datasets | Measure Precision | Recall | FI Score
Sensitivity | 0.78 0.62 0.69
MRPC I~ e ificity | 045 065 053
Sensitivity | 0.99 050 | 0.66
SICK —specificity [0.2 096 | 038

¢ Synonyms Synonymous words have similar meanings.
WordNet is rich in synonyms, as shown in Fig. 7. For
simplicity, we used < three concepts for each word in
the original sentence in the enrichment phase. Using this

Ohttps://www.nltk.org/
"https://www.python.org/downloads/
8https://scikit-learn.org/stable/

TABLE III
EVALUATION ON HYPONYMS

Metrics
Datasets | Measure Precision | Recall | F1 Score
Sensitivity | 0.76 0.68 0.72
MRPC e ificity | 0.46 056 [0.50
Sensitivity | 0.97 056 | 0.71
SICK —specificity 10.25 091 [039
TABLE IV
EVALUATION ON HYPERNYMS
Metrics
Datasets | Measure Precision | Recall | F1 Score
Sensitivity | 0.76 0.69 0.72
MRPC e ificity | 0.46 055 [0.30
Sensitivity | 0.98 056 | 0.71
SICK —specificity 0.2 092 039

approach, we obtained an accuracy 63% in the MRPC
and 56% in the SICK data set. Table I shows the detailed
classification report. It shows an F1 score of 0.69 on
MRPC and 0.66 on SICK for positive class. F1 score
shows that we have relatively low false positives and low
false negatives, which means that our approach accurately
classifies true positives and true negatives with little error.
The precision goes very high to 0.99 on the SICK dataset
for synonyms.

Antonyms Antonyms are words that have opposite mean-
ings. WordNet is not very rich in antonyms, as shown
in Fig. 7; on average, only five antonyms are obtained
for more than 7k sentences, a significantly small number
compared to synonyms. The notion behind using the
antonyms is that the two words may have the exact oppo-
site meaning word, thus reducing the size of the extended
vector. Since the antonyms occurrences are very low,
we cannot rely on antonyms for enrichment. However,
the antonyms give an accuracy score of 55% and 63%
on the SICK and MRPC datasets, respectively. Table
IT shows the statistics obtained after enrichment with
antonyms containing precision, recall, and F1 score. The
scores show that there is not much difference between
the metrics score of synonyms and antonyms, even when
very few are obtained on average for a sentence.
Hyponyms Hyponymy is a relation between words from
general to specific. If we consider WordNet as a graph,
then the hyponyms are the leaflets of a node. As we move
down the graph, the leaves contain more specific terms;
for example, red is the hyponym of the word color. So, the
notion behind using hyponyms is to use particular terms
that are one hop away from the node word. Hypnonyms
are pretty reasonable in numbers compared to antonyms
but still significantly less than synonyms. We obtained
61% accuracy on SICK and 64% on MRPC. The F1
score has increased to 0.72 and 0.71 for the MRPC
and SICK data sets, respectively, as shown in Table III.
The improved metrics show that hyponymy is a more
meaningful relationship in terms of capturing semantics

Hypernyms Accuracy (%)

64
64
63 63

i 62 62

62
61

61

9

MRPC SICK

(=
n

(=
s}

Accuracy

Ln

Datasets

mhopl wmhop2? mhop3

Fig. 11. Accuracy Scores for Hypernyms up to 3 hops away

from WordNet compared to synonyms and antonyms.

o Hypernyms Hypernymy is the relationship between
words from specific to general. It is the opposite of
hyponymy, just as synonyms and antonyms. For example,
color is the hypernom of the word Red. This relationship
is attractive; two or more leaves may end up in the
same word, hence better chances of collision. We can
better generalize the terms used in a document using
this relationship. However, the accuracy obtained is 61%
on SICK and 64% on MRPC, which is similar to the
accuracy of the hyponyms. Table IV shows the scores of
the metrics, which are also similar to those of hyponym:s.

Since hypernyms can generalize, we have tested our ap-
proach on three-hops away hypernyms, which means that
three-hops-away words are more general terms. Fig 11 shows
the accuracy scores for hypernyms up to 3 hops away. It can
be seen that there is no significant change in accuracy. So,
we can conclude that the words three hops away from the
given word do not significantly affect the semantic similarity
obtained from our proposed method.

The comparison of the accuracy scores of all relationships
used in this article is shown in Fig. 12. It can be seen that
Hypernyms give the most consistent result, since they have
the same accuracy score of 64% on both datasets, which is
also the maximum.

V. CONCLUSION AND FUTURE WORK

Addressing semantic similarity remains challenging due
to the traditional trade-off between accuracy and computa-
tional complexity. Past knowledge-based approaches lacked
a holistic view of document semantics, while corpus-based
methods required extensive training on massive datasets. To
overcome this, we leveraged MinHash techniques for efficient
lexical similarity estimation. Our proposed method enhances
document vectors by incorporating knowledge-based concepts,
resulting in extended vectors emphasizing similar words. Ex-
perimentally, hypernyms demonstrated the most promising
result, achieving 64% accuracy on MRPC and SICK data sets
with minimal pre-processing.

Accuracy

Accuracy Score for All Relations (%)

64 64 64
64 63 63
" 60
58 56
56 -
54
52
50
MEPC SICK
Datasets
B Synonyms Antonyms mHyponyms mHypernyms

Fig. 12. Accuracy Scores for All Relationships used for Enrichment

Our approach has significant potential for data mining, facil-
itating semantic analysis, and clustering semantically similar
documents to achieve meaningful results. Future directions
include exploring additional word relationships, leveraging
part-of-speech tags for deeper semantic understanding, and
combining multiple relations in a distinct vector space for
comprehensive embeddings.

[1]

[2]

[3]

[4]
[5

=

[6]

[7

—

[8]

[9]

[10]

[11]

REFERENCES

S. J. Athenikos and H. Han, “Biomedical question answering: A survey,”
Computer methods and programs in biomedicine, vol. 99, no. 1, pp. 1-
24, 2010.

M. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” CoRR, vol. abs/1508.04025,
2015. [Online]. Available: http://arxiv.org/abs/1508.04025

Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou, and X. Zhou,
“Semantics-aware bert for language understanding,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 9628-9635.

G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 3941, 1995.

R. Navigli and S. P. Ponzetto, “BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic
network,” Artificial Intelligence, vol. 193, pp. 217-250, 2012.

S. J. Nelson, D. Johnston, and B. L. Humphreys, “Relationships in med-
ical subject headings, relationships in the organization of knowledge,”
Bean and Green, eds. Kluwer Academic Publishers, pp. 171-84, 2001.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” CoRR, vol. abs/1810.04805, 2018. [Online]. Available:
http://arxiv.org/abs/1810.04805

A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), 1997, pp. 21-29.

F. Ture, T. Elsayed, and J. Lin, “No free lunch: Brute force vs. locality-
sensitive hashing for cross-lingual pairwise similarity,” in Proceedings
of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 01 2011, pp. 943-952.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

K. U. Khan, W. Nawaz, and Y.-K. Lee, “Set-based unified approach for
summarization of a multi-attributed graph,” World Wide Web, vol. 20,
no. 3, pp. 543-570, 2017.

M. Manna and G. Abdulameer, “Web documents similarity using k-
shingle tokens and minhash technique,” Journal of Engineering and
Applied Sciences, vol. 13, pp. 1499-1505, 05 2018.

W. Wu, B. Li, L. Chen, J. Gao, and C. Zhang, “A review for weighted
minhash algorithms,” IEEE Transactions on Knowledge and Data En-
gineering, vol. PP, pp. 1-1, 09 2020.

P. Li and C. Konig, “B-bit minwise hashing,” in Proceedings of the
19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
671-680. [Online]. Available: https://doi.org/10.1145/1772690.1772759
A. Shrivastava and P. Li, “Densifying one permutation hashing via
rotation for fast near neighbor search,” in Proceedings of the 31st Inter-
national Conference on Machine Learning, ser. ICML'14. JMLR.org,
2014.

K. Knight and S. K. Luk, “Building a large-scale knowledge base for
machine translation,” in AAAZ vol. 94, 1994, pp. 773-778.

C. Leacock and M. Chodorow, “Combining local context and wordnet
similarity for word sense identification,” WordNet: An electronic lexical
database, vol. 49, no. 2, pp. 265-283, 1998.

R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and
application of a metric on semantic nets,” IEEE transactions on systems,
man, and cybernetics, vol. 19, no. 1, pp. 17-30, 1989.

P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” Journal of artificial intelligence research, vol. 11, pp. 95-130,
1999.

J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” arXiv preprint cmp-lg/9709008, 1997.
E. Petrakis, G. Varelas, A. Chliaoutakis, and P. Raftopoulou, “X-
similarity: Computing semantic similarity between concepts from dif-
ferent ontologies.” JDIM, vol. 4, pp. 233-237, 12 2006.

P. Chahal, M. Singh, and S. Kumar, “An ontology based approach
for finding semantic similarity between web documents,” International
Journal of Current Engineering and Technology, vol. 3, no. 5, pp. 1925—
1931, 2013.

M. Nasab and R. Javidan, “A new approach for finding semantic
similar scientific articles,” Journal of Advanced Computer Science &
Technology, vol. 4, 12 2015.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

M. E. Peters, M. Neumann, R. L. Logan IV, R. Schwartz, V. Joshi,
S. Singh, and N. A. Smith, “Knowledge enhanced contextual word
representations,” arXiv preprint arXiv:1909.04164, 2019.

M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity search
over encrypted data,” in 2012 IEEE 28th International Conference on
Data Engineering. 1EEE, 2012, pp. 1156-1167.

W. B. Dolan and C. Brockett, “Automatically constructing a corpus
of sentential paraphrases,” in Proceedings of the Third International
Workshop on Paraphrasing (IWP2005), 2005. [Online]. Available:
https://aclanthology.org/105-5002

M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, R. Zam-
parelli et al., “A sick cure for the evaluation of compositional distribu-
tional semantic models.” in Lrec. Reykjavik, 2014, pp. 216-223.

