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ARTICLE INFO ABSTRACT

Keywords: Significant advancements have been achieved in the field of computer vision pertaining to the detection of
Occluded face detection human faces. This technological development holds great potential for a wide range of applications including
Facial landmark detection but not limited to identification, surveillance and expression recognition. Unconstrained face identification

Deep learning
Artificial intelligence
Computer vision

has been significantly improved by the advancements in Deep Learning algorithms (DL). However, the
presence of severe occlusion is an ongoing obstacle particularly when it obstructs a substantial section of the
facial area, resulting in the absence of crucial facial characteristics. Furthermore, the limited availability of
comprehensive datasets containing substantially obscured faces exacerbates the problem, impeding the efficacy
of face detection programs. This study presents a new methodology, which incorporates an advanced occluded
face detection (OFD) model, in order to enhance feature extraction and detection network. A dataset was
developed specifically for training and testing the model. The new dataset includes faces with significant
occlusion. The utilization of contextual-based annotation approaches improves the depiction of crucial facial
characteristics. The OFD model exhibits exceptional performance and attaining a notable accuracy rate of
57.84%, a precision rate of 73.70% and a recall rate of 42.63%. These results surpass those achieved by
alternative methods such as YOLO-v3 and Mobilenet-SSD. This study shows the capacity to make substantial
progress in detecting occluded faces, hence offering the ability to make a positive influence on the domains
of identification, surveillance and expression recognition.

1. Introduction defined as the partial or complete blocking of facial features by objects
or clothing, is a considerable obstacle in the field of face detection.

The primary and fundamental phase of any automated system for Occlusion frequently arises in real-world situations as a result of diverse
face processing and facial analysis involves the detection of faces [1,2]. causes, including the presence of face masks, facial hair, sunglasses, or
As a result, scholars are motivated to investigate approaches that religious clothes such as the niqab [4]. The existence of occlusion poses
can improve the accuracy of these systems. The overall effectiveness are a significant obstacle to the precise detection of faces, resulting in a

and precision of face-related applications, such as security monitoring,
facial expression recognition, face identification, and human-computer
interaction, are significantly influenced by the accuracy of the face
detection algorithm [3]. Nevertheless, the phenomenon of occlusion,

decline in the performance of face detection algorithms. The presence
of occlusion hinders the visibility of important facial characteristics,
hence increasing the difficulty of extracting distinguishing information
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and accurately distinguishing faces from the surrounding environment.
Hence, the development of robust face identification models capable of
effectively handling obstructed settings is of utmost significance.

Recent advances in face detection have achieved notable success
in controlled environments with minimal occlusion. However, the un-
resolved matter of developing a robust face identification algorithm
lies in its ability to accurately detect faces despite arbitrary changes
in position and occlusion. One of the main challenges in designing
face detection systems is the limited performance observed when de-
tecting faces that are obstructed. Existing facial detection methods
exhibit a substantial discrepancy in accuracy compared to the ex-
pected effectiveness in scenarios involving significant occlusion [5].
This gap underscores the need for more robust solutions, particularly
in environments where occlusion is prevalent.

Several approaches have been proposed to address the challenge of
partially covered facial photographs, as de-tailed in prior research [6—
8]. However, the persistent issue remains in effectively addressing
facial images that are heavily occluded, when a substantial section
of the face is obscured. There are unsolved inquiries that necessitate
deeper research within the realm of occlusion. Although contemporary
face detectors are at the forefront of technological breakthroughs, they
have difficulties when faced with faces that are severely obscured [9].
The resolution of this challenge has not been fully achieved. The
detection rate of face detection is found to be inversely proportional to
the degree of occlusion, as higher levels of occlusion result in a decrease
in performance.

In recent years, the utilization of Deep Learning (DL) has played
a crucial role in advancing the field of object detection and face
detection. The primary factor contributing to this phenomenon can
be attributed to the implementation of DL and Convolutional Neural
Network (CNN) methodologies. These approaches have demonstrated
exceptional efficacy in extracting relevant features and effectively em-
ploying learning techniques. The aforementioned technological im-
provements have resulted in the development of exceptionally accurate
models for the purpose of face detection [10]. The categorization of
face detection methods utilizing DL-CNN may be generally divided
into two primary categories. The first category includes multi-stage
approaches, exemplified as Faster-RCNN [11]. The second category
consists of single-stage approaches, such as YOLO [12,13]. The multi-
stage approach encompasses a sequence of procedures, including region
proposal, feature extraction and classification. In contrast, the single-
stage technique executes all of these stages within a singular iteration.
Although both systems possess their own set of pros and limitations.
The single-stage strategy has garnered more attention in recent years
owing to its straightforwardness and effectiveness. In this methodology,
the neural network makes direct predictions of both the bounding
boxes and class labels, eliminating the requirement for supplementary
procedures. This enhancement results in improved speed and increased
suitability for real-time applications. The YOLO (You Only Look Once)
model is widely recognized in the field of computer vision for its effec-
tiveness in face identification. It belongs to the single-stage approach,
which is characterized by its ability to efficiently execute regression-
problem tasks. The system is notable not just for its ability to provide
real-time performance indicators, but also for its sophisticated archi-
tecture that incorporates a variety of novel and enhanced components.
The aforementioned features encompass residual skip connections, up
sampling, and the capability to execute detection at three distinct
scales. Anchor boxes are established for detecting objects of varying
sizes on each scale. Every anchor is comprised of a bounding box, which
is defined by its coordinates, objectness score, and class scores.

Although numerous models for face identification have made no-
table progress in detecting faces in unconstrained environments, they
generally struggle when faced with instances where the face is par-
tially covered. Previous studies have shown that occlusion poses are
a challenge for existing models, such Tiny Face [14], Yolo-Face [15],
and Ultra-Light [16], resulting in decreased performance. The models
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predominantly depend on visual signals and contextual information,
which can become less trustworthy when important facial regions are
obscured. As a result, the accuracy of detection diminishes, leading
to a rise in both false positives and false negatives, so impeding
the overall performance. Hence, it is imperative to develop innova-
tive methodologies that explicitly tackle the difficulties presented by
occlusion.

The drop in performance and poor outcomes observed in current
face detectors when encountering substantial obstruction can be at-
tributed to various probable sources. For instance, the absence of
an annotated dataset of strongly obscured faces contributes to the
widening of the gap. Furthermore, the available datasets lack a sig-
nificant quantity of images that depict faces with varying degrees of
obstruction, which is essential for training occluded face detection
models. Moreover, the existence of a scarcity of unique attributes in
substantially obscured facial images introduces intricacy to the feature
extraction network and constrains its ability to acquire an adequate
amount of distinguishing characteristics from the training data during
the learning phase. This study introduces the Occlusion-Aware Face
Detector (OFD) as a solution to the constraints faced by current face
identification algorithms in contexts with occlusions. The OFD model
has been specifically developed to address the difficulties presented
by occlusion, allowing for precise and resilient face detection, even
in situations with significant occlusion. The performance of the OFD
model was enhanced through the integration of innovative methodolo-
gies, such as the utilization of the Generalized Intersection Over Union
(GIoU) metric as a regression loss function. This improvement resulted
in more precise predictions of bounding boxes. OFD has demonstrated
its ability to enhance accuracy even in scenarios where there is ei-
ther no overlap or only partial overlap. The primary objective of the
proposed model is to revolutionize face detection in situations when
occlusion is present. This is achieved by providing a solution that
transcends the constraints of current methodologies and substantially
improves the accuracy of detection.

The main objective of this research is to develop an effective and
robust face detection model that can accurately detect faces in highly
occluded scenarios, with a specific focus on nigab-occluded faces. These
cases involve faces that are partially or fully covered by objects or
clothing; which is a critical challenge in unconstrained environments,
making detection more challenging. The proposed model aims to over-
come the limitations of existing face detection algorithms by addressing
the challenges posed by niqab occlusion, improving detection accuracy
and reducing false positives and false negatives. While this study con-
centrates on niqab occlusion, we acknowledge the existence of various
other types of facial occlusion, and future research could explore these
areas to evaluate the model’s robustness across different occlusion
types.

The key contributions of this work are as follows:

» Development of a novel face detection model, termed the
Occlusion-Aware Face Detector (OFD), specifically designed to
handle scenarios with occluded faces.

Proposal of a Generalized Intersection Over Union (GIoU) metric
for regression loss function, which significantly improves the
accuracy of bounding box predictions, even in cases of no or
partial overlap.

Construction and utilization of the Nigab-Face dataset, a com-
prehensive dataset containing images of highly occluded faces,
for training and assessing the effectiveness of the proposed OFD
model.

Comparative evaluation of the OFD model against state-of-the-art
face detection models, including MTCNN, Mobilenet-SSD, Tiny-
Face, Ultra-Light and Yolo-Face, demonstrating its superior per-
formance in terms of accuracy, precision, recall and F-measure.
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Fig. 1. Sample of extensively covered faces in various niqab fashion variants.

The remaining sections of this paper are organized as follows:
Section 2 presents background and shows the related work. Section 3
illustrates methodology. Section 4 presents Occluded Face Detection
Construction. Section 5 illustrates results and comparison. Analysis
and discussion are presented in Section 6. Finally, Section 7 gives a
conclusion.

2. Related work
2.1. Occluded face detection

The presence of occluded faces, which refers to faces that are
partially or fully obscured, can arise due to a multi-tude of factors. For
example, the use of medical masks is mandated in some contexts, such
as healthcare facilities or during periods of increased vigilance over
the COVID-19 outbreak. Furthermore, the phenomenon of occluded
faces can be observed in some Muslim countries, where women choose
to wear the niqab. The niqab is a form of facial covering utilized
as a religious custom to obscure individuals’ faces while in public
or in the company of others who are not related to them [17-19].
The illustration presented in 1 showcases instances of prominently
concealed facial features of Muslim women who observe the tradition
of wearing the niqab. The textile garment commonly referred to as the
nigab is also recognized by alternative names such as the burqa or
khimar. The niqab effectively conceals the wearer’s full face, rendering
it nearly imperceptible and entirely obstructed from visual observation.
Consequently, their facial features are significantly obscured, leading to
pronounced occlusion.

A person’s face holds significant importance and serves as a rich
source of information regarding an individual’s race, sex, identity, age,
emotions, and more. It acts as a crucial entry point for various face
processing applications, such as face recognition, face verification, face
tracking, and facial expression detection [20,21]. The aforementioned
technology serves as the fundamental component for the creation of
advanced systems designed for consumer-oriented items such as digital
cameras, mobile phones, and other related entities [22]. The devel-
opment of powerful feature extraction techniques, such as HOG [23],
Local Binary Patterns (LBP) [24], and Integral Channels [25], has made
a substantial contribution to enhancing the precision of face detec-
tion and has be-come popular in real-life applications [26]. The basic
and simple handcrafted features of Haar-cascade enabled this frame-
work to perform well on frontal faces under stable conditions, where
illumination and lighting were mini-mal variants. However, for non-
frontal faces and in unconstrained conditions, such as highly occluded
faces in which images were taken under arbitrary conditions, accuracy
decreases, and the false-positive rate increases dramatically [27].
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2.2. Deep learning approaches

The emerging paradigm of computer vision employs DL and CNN-
based approaches for image recognition, classification, and object local-
ization due to their capability to mimic and automatically extract fea-
tures without the need for handcrafted engineering or manual selection
of appropriate features, as was done in traditional ML approaches [28].
The golden age of DL began in 2012 when a CNN-based architecture
called AlexNet achieved unprecedented success in the ImageNet com-
petition [29]. The current paradigm of computer vision is empowered
by the utilization of DL and CNN for image classification and object
detection due to their ability to learn and extract patterns from training
examples and generalize to similar, unseen [30].

DL and CNN approaches for object detection can be grouped into
two main categories: multi-stage and single-stage approaches. Multi-
stage detection, like Region-Proposal-based Networks (RPN), generates
proposals and redirects the output to a second stage for classification.
The RPN architecture comprises two different networks: the first gener-
ates Region of Interest (ROI) proposals around 2000 for an image, and
the second classifies the proposed ROI. Most region-based approaches
are variations of those introduced in [31,32]. The second category is
the single-stage approach, where the coordinates of bounding boxes
and face object scores are regressed in one single pass, making it faster
than RPN. The models You Only Look Once (YOLO) [18] and Single
Shot MultiBox Detector (SSD) [33] are the most common face detection
models belonging to this category. RPN and CNN were introduced by
Xia and Zhang [34] as a successful implementation of DL CNN for
detecting occluded faces. An effective face detector proposed in [35]
utilized anchor-level attention focusing on features in face regions for
detecting occluded faces with masks and sunglasses.

2.3. Applications of face detection

Face detection, as a part of facial recognition, is integrated into
artificial intelligence (AI) technologies applied in various fields, includ-
ing security, law enforcement, biometrics, health, safety, banking, and
retail [36]. The market value of facial recognition was USD 3.72 billion
in 2020 and is estimated to reach USD 11.62 billion by 2026 [37].
The COVID-19 pandemic has accelerated the development of these
emerging technologies. Research by the National Institute of Standards
and Technology (NIST) indicates that since the pandemic began, sev-
eral facial recognition algorithms have improved rapidly in detecting
occluded and masked faces, with an error rate reduced to ten times
less than before the pandemic [38]. This derived technology leaders’
companies to allocate a competitive position in this field. They have
a great impact to the improvement of face detection and facial recog-
nition as a part of their Al system. Giant companies such as Google
for example was behind the development of single shot face detection
model SSD [39].

Facial recognition project (Facenet) introduced by google and
achieved state-of-the-art results on LFW bench-mark dataset [40]. This
technology is embedded in Google Photos apps and it is used to
automatically categorize and classify photos based on people’s faces,
which is highly important in the field of biometrics. Facebook also
announced the DeepFace program, which was able to determine with
97.25% of accuracy whether the two photographed faces belong to the
same person [41].

2.4. Current directions

Recent advancements in face detection technology focus on ad-
dressing ongoing challenges and vulnerabilities. For instance, in [42],
researchers developed an optimal combinatorial detector designed to
effectively tackle issues related to large-scale variations, occluded faces,
and imbalanced samples caused by small faces. Additionally, [43]
highlighted the vulnerability of modern face recognition systems to
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backdoor attacks, underscoring the necessity for further investigation
to address these threats and enhance the security of face recognition
technology. Furthermore, [44] proposed a solution aimed at improving
face recognition in the presence of occlusions by integrating occlusion
detection and reconstruction techniques, which enhances the accuracy
and reliability of recognition systems. Lastly, [45] introduced a single-
stage face swapping model that achieves competitive performance by
incorporating an adaptive Feature Fusion Attention and Interpreted
Feature Similarity Regularization, allowing for the adaptive fusion of
attribute features and features conditioned on identity information.

3. Methodology
3.1. Defining degree of occlusion

This research aims to develop an improved face detection model
that can efficiently recognize faces with significant occlusion, such as
those obscured by niqabs. The extent of facial blockage in individuals
wearing niqab varies between 50% and 90% and more where most of
the features are hidden. Researchers attempted to establish a definition
for occluded faces based on the extent of occlusion. For instance, in
the work of Yang and Luo [9], they divided faces into three classifi-
cations: faces with no occlusion, partially obstructed faces and heavily
obstructed faces. Partial occlusion referred to cases where 1% to 30% of
the face area was covered, while heavy occlusion was defined as situa-
tions where more than 30% of the face area was obscured or blocked. In
another study [46], the face was segmented into four primary regions,
as depicted in Fig. 2, namely the chin, mouth, nose and eyes. They
measured the level of occlusion by quantifying the number of occluded
regions. Weak occlusion was defined as one to two occluded regions,
medium occlusion was characterized by three occluded regions and
heavy occlusion was identified when all four regions were obstructed.
However, there is a concern that the classification may be too loose
when categorizing extensively obstructed faces as those with over 30%
coverage. Describing highly occluded faces in this manner may not
adequately capture the full spectrum of heavily and fully occluded
faces. To address this issue, following the method outlined in [46],
we propose extending the categorization of facial parts into five equal
segments, including the forehead, both eyes, the nose, the mouth and
the chin. This allows for a more precise differentiation between heavily
occluded and fully occluded faces based on the number of occluded
areas.

Fig. 2 illustrates the level of occlusion. The four facial regions
defined by [46] are illustrated in Fig. 2(a). In Fig. 2(b), an extended
five-region model is presented. In Fig. 2(c), we overlay the extended
five regions with the four regions from [46] to emphasize and highlight
the differences between the two definitions. In addition, an example of
a heavily occluded face is shown in Fig. 2(c), with four occluded regions
based on [46]. However, when overlaid with the extended five regions,
the degree of occlusion is approximately 50%. This suggests that utiliz-
ing of the extended five face regions enables a clearer measurement of
occlusion.

3.2. Dataset construction and preprocessing

In order to train DL CNN models for face detection, a significant
dataset containing a wide range of samples is necessary. Nevertheless,
current face identification datasets are deficient in terms of having
an adequate number of substantially occluded face samples. In order
to fill this void, we generated a Nigab-Face collection by extracting
photos from diverse web sources. The gathered dataset underwent
meticulous cleansing to exclude extraneous and substandard photos.
This dataset serves as the basis for training and assessing our OFD
model. The collection had at least 12000 photos showing faces with
a significant amount of occlusion. Social media platforms including
Pinterest, Facebook, Instagram, and YouTube were the specific sources
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for photos. Nevertheless, acquiring a large number of photographs
from many online sources simultaneously proved to be a challenging
endeavor.

The search and download process was managed using the image
scraping technique. Image scraping is a method employed to search for
a substantial amount of data/images on indexed webpages, get and save
the pertinent images according to a systematic indexing system. Scrapy,
a widely utilized open-source framework for Python, is extensively
employed for the purpose of locating and retrieving images [47]. Em-
ploying keyword and picture similarity searches for web crawling and
scraping yielded a substantial dataset of images, a significant portion of
which were duplicates or unrelated. This set comprised photos devoid
of facial features and photographs solely focused on frontal faces,
amounting to around 140 000. A substantial quantity of images required
a clearing process, which was carried out.

The initial stage of dataset cleaning entailed a meticulous inspec-
tion and scanning of images to detect any extraneous, substandard
or distorted images. The subsequent action is eliminating superfluous
and undesirable images. For example, in [48], two individuals were
employed to manually inspect images and verify that each image
contained a face. They also eliminated any images that fell outside the
scope of their dataset. In the study [49], researchers manually elimi-
nated undesirable images, including those lacking facial features and
those with low quality and inadequate resolution. Furthermore, [49]
employed manual cleaning to eliminate images without occluded faces.
Hence, the process of dataset cleaning primarily entails the use of filters
and the manual elimination of undesirable images that are incongruous
with the dataset’s intended purpose, such as low-resolution, distorted
and duplicated images. Fig. 3 depicts typical sample images from the
Nigab dataset. The images illustrate various occlusion levels, including
nigab-occluded faces, which are central to our study.

The gathered images were refined to eliminate any image that solely
featured an unobstructed, straightforward-facing face. Nonetheless, the
task of manually cleaning such an extensive quantity of images was a
substantial obstacle. In order to tackle this issue, we utilized the haar-
cascade face identification algorithm [50] to automatically eliminate
straightforward frontal faces from the dataset.

3.3. Annotation and labeling

Manual dataset annotation and labeling are critical tasks. Thye
involve a substantial amount of manual and repetitive work. The
performance of any DL face detection model heavily depends on the
accuracy of the training dataset. In addition, precise labeling is a crucial
factor for maintaining dataset integrity. Various annotation methods
and techniques exist. For instance we can find bounding box, poly-
gon annotation, cuboid annotation and semantic segmentation [51].
However, bounding box annotation is the most commonly used method
in practical and industrial applications [52]. It has proven to be very
useful for object detection labeling and it is easy to implement. State-
of-the-art face detectors rely on accurate bounding box annotations
provided in famous and standard face detection datasets such as wider
face [46] and malaf [53]. A bounding box is a rectangular shape
manually drawn on the target face in an image using certain annotation
tools. The annotator draws a rectangle on the targeted object from
the upper-left corner to the lower-right corner, determined by (x,y)
coordinates. It can be represented by two points (x;, ;) and (x5, y,) or
by one coordinate point (x;, y;) and width and height (w, h).

3.4. Contextual-based labeling

The contextual information has been given less attention in the
existing face detection models [54]. However, contextual information
such as head, head’s pose and shoulders can play an important role
in detecting difficult faces such as on heavily occluded faces, where
faces are mostly covered. Highly occluded faces are difficult to be
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(a) (b)

(c) (d)

Fig. 2. Faces heavily obscured in varying degrees of occlusion.

Fig. 3. Sample images from the Nigab dataset showing high levels of occlusion.

detected due to the lack of visual information, while the larger regions
within their context can provide more information about the face and
its context which could be used as features representation for better
detection. As [55] has highlighted, contextual information plays a
critical role in addressing the occlusion problem in face detection.

Contextual information includes features that surround the occluded
face, such as the head pose, shoulders and some background portions
near the face region. Therefore, it extends beyond information within
the face alone, encompassing body-related details. For instance, faces
are often accompanied by the human body and even when faces are
occluded. They can still be located by considering the entire body [56].
This contextual information becomes crucial in detecting challenging
faces, particularly those heavily occluded.

The concept of using contextual information involves providing
additional information around the face and its context. This allows
feature extraction networks in DL CNN models to learn not only from
facial features but also from contextual features [57-59]. Fig. 4 illus-
trates an example of an occluded face extracted in two different ways:
Fig. 4(a) with no contextual information and Fig. 4(b) with contextual
information about the head’s pose and shoulders.

4. Occluded face detection construction

Occluded Face Detection model (OFD) consists of two intercon-
nected networks, which are feature extraction and detection network.
Darknet-53 network is used as the backbone of feature extraction of the
proposed OFD model. It was introduced in YOLO-v3 object detection

(a) Conventional Labeling

(b) Contextual Labeling

Fig. 4. An occluded face: (a) no contextual information; and (b) with contextual
information.
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by [60]. It comprised of two major components: Feature extraction
network and detection network. Feature extraction network is fed with
images as inputs and obtains feature embeddings at three different
scales. Then, the obtained features are fed into three branches of the
detection network to get bounding boxes and class information.

4.1. Features extraction network

The main distinction between ML and CNN is that while features are
manually handcrafted and designed in ML, in CNN features extraction
is generated automatically and combined with classifier [61]. Darknet-
53 consists of 53 layers that use the residual network as shortcut
connections. The network uses (3 x 3) and (1 x 1) convolutional layers
each layer is followed by batch normalization layers and Leaky ReLU
activation layer. Regardless of the great performance of darknet-53
compared to dark-net-19, the overall performance of face detection is
negatively affected in conditions with high levels of occlusion [62].
The challenge of high occluded faces is due to two main issues, the
first issue is the limitation of learned representative features due to
the obstruction which masks most of the salient face features [34]. The
second issue is related to the network structure that can play a major
role in feature extraction [63]. Representative features in occluded
faces are inherently limited, as discussed previously and are further
reduced on the feature map through multiple dimension reductions.
Therefore, subsequent layers may struggle to capture sufficient in-
formation, leading to less representative features and consequently a
degradation in the effectiveness of classification.

4.2. Improved feature extraction network

Feature extraction holds great significance in deep models [64,65].
Effective feature extraction is not merely a supplementary process but a
foundational aspect of deep learning models that can make or break the
model’s performance [66]. Our methodology builds upon these insights.
The feature map on darknet-53 is reduced due to several dimension,
which are remarked as an advantage characteristic of the darknet-53 for
object detection. Reduction leads to reduce the computation processing,
which was a drawback of darknet-19. However, the feature map of
occluded faces already suffers from limited representative features. As a
result, several dimension reductions diminish the extraction network’s
ability to gather these features. Making it unsuitable for single-class
object detection, such as in occluded faces [63]. To address this, en-
abling the feature extraction network on darknet-53 to extract available
features before the reduction of the feature map can aid in obtaining
more representative features. Thus, in this work, the architecture of the
initial Darknet-53 network is enhanced by adding more layers to the
first two residual networks, aiming to attain further facial represen-
tative features. Fig. 5 shows the two network structures. Darknet-53
is represented in Fig. 5(a) and the improved network structure is
illustrated in Fig. 5(b).

4.3. Improved detection network

The prediction of YOLO is regressed as a vector which is defined as:
SXSX(BX5+C) (€Y

where S x S is the grid cell i of the input image, B representing the
number of bounding-boxes prediction for each grid cell i (i.e., x;;, y;;,
h;; and w;; and the confidence score c), C is the abjectness class.
Therefore, the loss function is categorized into three sections: co-
ordinate loss, confidence loss and object-class loss. Coordinate loss
involves the coordinate points (x, y) and the width and height (w, k) loss
of the predicted bounding box. Confidence loss indicates how certain
the algorithm is that the box contains an object. The loss associated
with the object-class score denotes the predicted object in multi-class
object detection. However, in the case of face detection, there is only
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one object (a face). YOLO-v3 uses Intersection over Union (IoU) as a
measurement distance for confidence loss to evaluate how closely the
predicted bounding box aligns with the ground truth (GT). IoU is the
most commonly used evaluation metric in both object detection and
face detection [67]. It calculates a scale-invariant normalized measure
of two bounding boxes:

ToU = |An B|/|AU B| )

There are two cases for IoU:

1. when there is overlapping between GT and predicted bounding
box.

» IoU =1 this indicates the best fit as the predicted and GT
are almost the same.

« JIoU < 1 and > 0, a threshold of ToU > 0.5 indicates
positive prediction.

2. If no overlapping the value of IoU = 0.

The problem of YOLO-v3 lays in this case when there is no over-
lapping i.e., (IoU set to 0). The limitation is that in the no overlapping
case, the value is set to 0 regardless of how close the two bounding
boxes are to the GT. This is important as the CNN loss function uses
backward propagation to adjust the wights based on loss decrease.
When IoU is set to 0 regardless of how close the bounding boxes
from the GT, it causes CNN to ignore the instance which degrades the
detection performance and increases the complexity of the training in
terms of long convergence and training time. Eq. (3) below shows the
two cases with three IoU states (case 1: ToU = 0, case 2: IoU is less
than 1 and greater than 0 and case 3: IoU = 0).

1 best fit
(land)0 overlapping (IoU > 0.5
positive prediction)

IoU = 3

0 no overlapping

Therefore, there is a way for loss improvement by adopting Gener-
alized Intersection Over Union (GIoU) proposed by [68]. GIoU has a
gradient in all possible cases, including non-overlapping situations that
considerably improved its performance. GIoU is represented in Eq. (4).

C (AUB)
lcurvb @

GloU = IoU —
IC|

where C is the smallest ellipsoids rectangle of A and B. The reason for
using GIoU over IoU as the regression loss function for the prediction
box is driven by its superior ability to precisely capture the overlap
between the two rectangular boxes [68].

The overall concept is illustrated in Fig. 6. The green rectangle
represents the ground truth bounding boxes and the red one is for the
predicted bounding boxes.

5. Results and comparison

To obtain a precise evaluation of the performance of the proposed
OFD model, we conducted a comparison with numerous cutting-edge
face detection models that are recognized for their high effectiveness
in different situations. We conducted our selection process by eval-
uating models that have consistently achieved high performance on
benchmark datasets, with a specific focus on their ability to handle
occlusion. The selection of models, including MTCNN, Mobilenet-SSD,
TinyFace, Ultra-Light and YOLOv3 were based on their popularity,
extensive usage, and the accessibility of pre-trained weights.
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Fig. 6. The placement of IoU categorized into: (a) non-overlapping; (b) positive
overlapping and (c) fit IoU = 1.

5.1. Training and validation

The experiments were carried out using the available hardware and
software during the evaluation and testing phase. A single machine
(desktop PC) with the following specifications was used for implement-
ing and testing: Intel Core i7-6700 CPU @ 3.40 GHz with 16 GB RAM,
NVIDIA GeForce 750 GPU with 512 CUDA cores and 1 GB memory. The
PC was equipped with the Ubuntu 16.0 operating system. Additionally,
Python with TensorFlow and other relevant libraries were utilized.

The Nigab-dataset, created to train and test the suggested model,
was divided into three subcategories: training, validation, and testing.
The images are divided into three sets, with each group accounting
for 50%, 10% and 40% of the total. The training and validation sets
were employed in the training procedure. The training setups included
standard and effective techniques in DL, including transfer learning

and data augmentation. These strategies enhance the efficiency of the
training process and optimize the performance of the models. Data
augmentation is a method that involves applying transformations to
images while preserving their labeling. It is commonly used to enhance
the accuracy of CNN-Based models and prevent overfitting of the model
during training by applying it to the training images [69]. Four image
augmentation techniques were employed: image rotation, scaling, hor-
izontal flipping and cropping. A random selection of rotation angles
ranging from 5 to 25 degrees was employed.

However, despite the benefits of transfer learning and data aug-
mentation, these techniques may still face limitations when dealing
with heavily occluded faces. Data augmentation, while effective in
introducing variability, may not fully capture the complexity of severe
occlusions. Similarly, transfer learning, which relies on pre-trained
models, may be limited if the original dataset lacks sufficient occlusion
examples.

The OFD model underwent training, validation and fine-tuning
using the training set of the Nigab-Face dataset. The supplied image
dimensions were set to the default size of (416 x 416). The given batch
size is 64, indicating that 64 images must be inputted to the network
for each iteration. It was then partitioned into a subdivision of four.
This is because the limited memory of the GPU makes it challenging to
accommodate all batches of images simultaneously. The stochastic gra-
dient descent algorithm (SGD) was trained using the optimizer, with an
initial learning rate of 0.001 and a momentum of 0.9. Following 10 000
cycles, the learning rate underwent a slow decrease. The total number
of iterations needed for one epoch was 87. The model was trained over
a span of 2000 epochs, divided into 10 separate experiments, with each
experiment consisting of 200 epochs. An epoch refers to a single round
of passing all training datasets through the network.
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Table 1
Results of Precision, Recall, F-Measure and AP.

Face-detection models Precision Recall F-Measure AP
Mobilenet-SSD 57.59% 13.38% 21.71% 21.83%
TinyFace 41.65% 20.54% 27.51% 17.58%
Ultra-Light 23.10% 14.92% 18.13% 5.57%
MTCNN 52.93% 6.85% 12.13% 15.38%
YOLO-v3 68.98% 7.79% 14.% 33.71%
OFD 73.70% 42.63% 54.02% 50.34%

5.2. Experimental results

We conducted extensive experiments to evaluate the performance
of the OFD model. The evaluation metrics included Precision, Recall,
F-measure and Average Precision (AP). Precision quantifies the ratio of
correctly detected faces to the total number of detected faces. Recall
captures the proportion of true positive faces that were successfully
detected and F-measure combines precision and recall into a single
score and providing a balanced assessment of overall performance.
AP is calculated by taking the area under the precision-recall curve.
It summarizes the performance across various levels of precision and
recall and provides a single scalar value that represents the overall
quality of the model.

The benchmark detectors included in the evaluation are:

Multitask Cascaded face detection CNN (MTCNN): A Python li-
brary based on [70].

Mobilenet-SSD which is a real-time object detection model from
Google optimized for mobile devices [71].

Tiny Face, A face detection model designed specifically for detect-
ing small faces [14].

YOLO-v3: A real-time object detection model [60].

Ultra-light detector: A small and fast face detection model trained
on the VOC dataset [72].

The comparative evaluation, as depicted in Table 1 and Fig. 7,
demonstrated that the OFD model surpassed state-of-the-art face detec-
tion methods in terms of many evaluation metrics. The precision of the
OFD model is 73.70%. The first model outperformed the second-best
model by an increase of 4.72%. In addition, the OFD model demon-
strated outstanding recall, with a rate of 42.63%, which indicates its
capacity to recognize a significant percentage of obscured faces. The
F-Measure, which is a harmonic mean of precision and recall, was
determined for the OFD model at a value of 54.02%, as shown in
Table 1. The OFD model demonstrated exceptional AP, with a remark-
able rate of 50.34%. This surpassed the nearest comparable model,
YOLO-v3 by a significant margin of 16.63%. The results showcase the
efficacy of our model in reliably detecting heavily occluded faces, as
compared to MTCNN, TinyFace, Ultra-Light, Mobilenet-SSD and YOLO-
v3. The suggested OFD model exhibits superior effectiveness compared
to existing state-of-the-art algorithms.

The comparison results for correctly detected faces True Positives
(T P) between the proposed OFD and the five related detector models
are presented in Table 2 and Fig. 8. OFD demonstrated the highest per-
formance among the other five detector models, accurately detecting
42% of the total ground-truth dataset used for testing. However, among
the five compared detector models, TinyFace performed the best with
a detection rate of only 20%. In contrast, Ultra-Light, MobileNet-SSD,
YOLO-v3 and MTCNN achieved detection rates of 14%, 13%, 8% and
7% respectively.

In terms of false negatives (FN), OFD exhibited the lowest rate
compared to the other models. Regarding false positives (F P), while
OFD outperformed Ultra-Light and TinyFace, YOLO-v3, MTCNN and
MobileNet achieved better results in this aspect, respectively. In accu-
racy, OFD surpasses Mobilenet-SSD, TinyFace, Ultra-Light, MTCNN and
YOLO-v3 in precise face detection, particularly across varying sizes,
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orientations and occlusion levels. Finally, in term of accuracy, OFD
model achieved an impressive 57.84% accuracy, surpassing the YOLO-
v3, by 50%. Its standout capability lies in identifying both visible
and partially obscured faces, making it a robust choice for addressing
challenges in face detection scenarios.

While the proposed methodology has shown strong performance in
controlled environments, it is crucial to as-sess its effectiveness in real-
world scenarios, where challenges such as varying lighting, occlusions,
and complex backgrounds and blurry or distorted races exist. To this
end, we evaluated the OFD model on a diverse range of real-world
scenes, including crowded settings and scenes with blare significant
occlusion. The model achieved good precision and recall values. How-
ever, in certain challenging conditions, such as heavy occlusion, the
false positive (FP) rate remained elevated. The processing speed was
recorded at 30 FPS on an NVIDIA GTX-RTX 2080, underscoring the
trade-off between accuracy and speed.

Fig. 9 illustrates the model’s performance in real-world scenarios,
highlighting both successful detections and instances where the model
produced FPs. These examples provide a clear picture of how the model
performs in practical applications and the specific challenges it faces.

To ensure a comprehensive and up-to-date evaluation, we included
a recent detection method published in 2023 in our comparison.
Specifically, a RetinaNet-based single-stage face detector, proposed
by Mamieva et al. (2023) [73]. The comparison, shown in Table 3,
highlights the performance of YOLO-3, which serves as the backbone
for the OFD model achieved an AP of 33% and a detection speed of
19 FPS on our dataset. In contrast, Mamieva et al. (2023) reported a
higher AP of 37, but with a slower speed of 11.1 FPS on the wider
face dataset. Since the implementation code for Mamieva’s model
was unavailable, we relied on their published re-sults for comparison.
Despite the difference in performance, the faster detection speed of the
YOLOv3 model makes it more suitable for real-time applications.

Fig. 10 demonstrates how increasing levels of occlusion affect the
model’s detection performance, high-lighting the strengths and limita-
tions of our approach in handling different occlusion scenario.

5.3. Ablation experiment

To evaluate the effectiveness of the proposed contextual-based la-
beling technique, we conducted a comparative analysis with the con-
ventional labeling method, which is the standard technique used for
face detection annota-tion. For this evaluation, we utilized a subset
of 1200 randomly selected images from the Niqab-Face dataset. The
images were divided into training (50%), validation (10%), and testing
(40%) sets. Two distinct labeling methods were applied to the training
images: (a) Traditional Labeling: (no contextual) A bounding box was
drawn solely around the face. (b) Contextual-based Labeling: In addi-
tion to the face, surrounding contextual information such as parts of
the head, neck, and shoulders was included within the bounding box
to enrich the feature set.

These two labeling techniques were used to train two face detec-
tion models: Model-1, trained using the traditional labeling method
(no contextual information). And Model-2, trained using the proposed
contextual-based labeling method. Both models were tested on the same
test set, and their performance was evaluated using common metrics,
including TP, FP, FN, Accuracy, Precision, Recall, and F-measure. The
results shown in Table 4. demonstrate a significant improvement in per-
formance when contextual infor-mation is included. Model-2 achieved
a 13.3% improvement in F-measure (74.8% vs. 63.6%) and a 13.6% in-
crease in accuracy (59.1% vs. 45.5%). Additionally, the false positive
rate was reduced by 4.4% in the context-based model, indicating fewer
incorrect detections.

These results support the hypothesis that incorporating contextual
information around the face can enhance the performance of occluded
face detection models. This is particularly beneficial in cases of heavy
occlusion, where parts of the face are obscured. By including surround-
ing features such as the neck and shoulders, the model is better able
to extract meaningful representations, leading to improved detection
accuracy and reduced errors.
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Table 2
Comparison result of TP, FP, FN, Accuracy, FLOPs, FPS and detection time.
Face-detection models TP FP FN Accuracy FLOPs FPS Detection time
Mobilenet-SSD 512 377 3314 13.38% ~1.14 GFLOPs 30-60 30 ms
TinyFace 786 1101 3040 20.54% ~1.2 FLOPs 40-50 40 ms
Ultra-Light 571 1901 3255 14.92% 109 MFLOPs 50-60 25 ms
MTCNN 262 233 3564 6.85% 1.4 GFLOPs 50-60 45 ms
YOLO-v3 298 134 3528 7.7% 140 GFLOPs 45-55 22 ms
OFD 1631 582 2195 57.84% 140 GFLOPs 55-60 24 ms
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Fig. 9. Examples of detection result from test dataset.

Table 3
Comparison with RetinaNet model.
Model AP FPs Notes
YOLOv3 (OFD Backbone) 33% 19 Tested on custom-dataset dataset.
RetinaNet [73] 37% 11.1  Results obtained from published work.
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Fig. 10. Relationship curve of facial occlusion rate and detection rate.
Table 4
Comparison result of traditional labeling with contextual -base labeling.
Method TP FP FN Accuracy Precision Recall F-Measure
Traditional labeling 201 10 230 45.5% 95.2% 51.5% 63.6%
Context-based labeling 261 1 179 59.1% 99.6% 59.9% 74.8%

6. Analysis and discussion

The OFD model demonstrates strong performance in accurately
identifying T P when compared to other models. However, this comes
at the expense of a higher rate of FP. Striking a balance between
achieving a higher T P rate while maintaining a manageable F P rate is
crucial. One remarkable strength of OFD lies in its capacity to success-
fully detect more than 40% of correctly identified faces, underscoring
its effectiveness in face detection. Conversely, the model’s relatively
elevated F P rate indicates a tendency to identify non-faces or irrelevant
patterns as faces. One contributing factor to this higher F P rate may be
linked to the complexity of the dataset used for training. This dataset
includes heavily occluded faces, which pose a significant challenge to
detection. Occluded faces obscure a substantial portion of facial fea-
tures, making their detection difficult due to reduced visibility caused
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by the occlusion. An in-depth analysis was conducted to explore how
various adjustments to the model’s parameters and training methods
impacted the balance between TP and FP. We adjusted some key pa-
rameters such as detection thresh-olds and non-maximum suppression
to refine the sensitivity of the model to distinguish between true facial
features and non-face regions, therefore reducing FP but not sacrificing
TP. Another impact was the Occlusion degree, We further analyzed
the impact of different levels of occlusion on the model’s performance.
We identified that the FP rate was particularly high in cases where
over 60% of the face was occluded. Metrics such as Precision, Recall,
and F1-Score were used to assess the impact of the change, providing
a comprehensive understanding of how the TP/FP trade-off could be
optimized. This challenge highlights the model’s ability to distinguish
truly visible facial characteristics. While OFD excels in producing more
TP, its increased F P rate may result in unnecessary processing of non-
face regions, potentially affecting the overall system efficiency. It is
important to recognize that achieving an optimal trade-off between T P
and F P requires careful tuning and iterative experimentation. Address-
ing these challenges in the field of ML demands ongoing refinements
to the model, its parameters and the input data.

The evaluation results highlight the insufficient performance of all
the compared face detection models when tested on Nigab-benchmark
dataset. Notably, while TinyFace achieved the highest T P result among
the compared models. It accurately detected only 21% of the total
number of ground-truth images. This performance is significantly lower
than that of OFD, which demonstrates twice the accuracy. This exam-
ination brings to light several key assumptions that provide insights
into the challenges faced by contemporary face detection models when
addressing extensively obscured faces, ultimately leading to a decline
in their performance.

The extent of occlusion itself, as seen in cases involving faces
concealed with nigabs, poses a substantial obstacle to detection. These
concealed faces obscure a significant portion of distinct facial fea-
tures, making it challenging for face detectors to distinguish important
features that differentiate faces from the background. Consequently,
the performance of these detectors diminishes. In addition, the short-
comings are intertwined with the training datasets used for the face
detection models, along with the examples employed during their
training phase. The models under consideration, including TinyFace,
were trained on publicly available datasets such as Widerface and
FDDB. However, these datasets inadequately represent images featuring
heavily occluded faces, such as those concealed with nigabs. The lack of
relevant training examples for highly occluded faces inevitably results
in reduced performance when detecting faces in heavily occluded sce-
narios. It is reasonable to anticipate less favorable detection outcomes
from models lacking exposure to training examples that resemble the
scenarios encountered during testing.
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Furthermore, the performance of models on specific datasets may
not directly generalize to other types of occluded facial images, which
can limit the model’s overall ability to generalize across various occlu-
sion patterns, lighting conditions, and image quality. To address these
limitations, it is essential to incorporate a more diverse set of training
images that represent a wider range of occlusion scenarios. Techniques
such as domain adaptation may also be explored to enhance the model’s
robustness and generalization capabilities.

7. Conclusion

Existing face detection models struggle to detect heavily occluded
faces. This study proposes a new method that addresses this challenge
by first creating a dataset of heavily occluded faces and then using a
context-based annotation technique to improve feature representation.
The proposed method is then used to train a DL CNN model tailored
for detecting occluded faces. The results demonstrate that the pro-
posed model outperforms state-of-the-art face detection models, such as
MTCNN, Mobilenet-SSD, TinyFace, Ultra-Light and YOLO-v3, in terms
of accuracy, precision, recall and F-measure. The evaluation outcomes
highlight the limitations of current face detection models in excelling
within scenarios involving significant occlusion, particularly those with
niqab-covered faces. While these models manage to achieve reasonably
good true positive rates, their performance is hindered by the intricate
nature of occluded faces and the limitations inherent in their training
data. Addressing these challenges necessitates the creation of refined
training datasets and specialized techniques tailored to highly occluded
faces, thereby enabling the development of more robust face detection
models suited for such scenarios. This study highlights the potential
of the proposed approach to improve the detection of occluded faces,
which could benefit applications such as face identification, safety
surveillance and facial expression recognition.

While this study contributes significantly to detecting heavily oc-
cluded faces, it is important to acknowledge its limitations. The dataset
may not cover the full variety of occlusion types or real-world sce-
narios, potentially impacting generalizability. Environmental factors,
such as lighting conditions and background clutter, were not exten-
sively tested, and the model’s computational complexity may hinder
real-time application. Future work should focus on expanding the
dataset to include a broader range of occlusion patterns, optimizing
the model for improved speed and efficiency, and exploring the in-
tegration of contextual information to enhance detection accuracy.
Additionally, incorporating face image super-resolution techniques as
noted in [74] could improve performance by enhancing feature extrac-
tion, reducing false positives, and increasing resilience to variations
in image quality. Super-resolution techniques elevate the resolution
of low-quality images, making facial features clearer and enabling
more accurate detection, especially in challenging conditions like low-
resolution surveillance footage or poor lighting. While there are com-
putational trade-offs, the potential gains in detection accuracy make
this approach valuable. Another notable work incorporates Deep Fusion
Network, which focuses on global and local facial features to provide a
more comprehensive understanding of facial structure, further improv-
ing feature extraction and detection accuracy [75]. By addressing these
limitations, subsequent research can build on these findings and further
advance the field of face detection in challenging conditions.
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