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Abstract

Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) is fundamental for studying
intrinsic brain functions, crucial for defining the networks underlying human cognition and
behaviour. Non-rigid registration algorithms are essential for accurately aligning rs-fMRI data
across subjects, a process critical for consistent and reliable analysis of functional connectivity.
The performance of these algorithms directly impacts the precision of neuroimaging results
due to individual anatomical differences.

This thesis addresses the critical issue of performance variability among non-rigid registra-
tion algorithms, which can undermine the reliability and accuracy of functional connectivity
analysis in rs-fMRI. To systematically assess these differences, the Non-Rigid Registration
Algorithm Analysis Framework (NRAAF) was developed and implemented, offering an in-
novative benchmark for evaluating and characterising the accuracy and specificity of various
algorithms.

Key findings show that algorithms such as Advanced Normalisation Tools (ANTs),
Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL),
Analysis of Functional NeuroImages (AFNI), and FMRIB Software Library (FSL) exhibit
significant differences in handling anatomical variability. ANTs demonstrated superior
sensitivity with a mean Peak Activation Intensity of 0.85, while DARTEL showed the
most consistent performance with minimal variability (Standard Deviation of 0.05). AFNI
presented a higher variance in cluster detection at 0.30, compared to FSL’s 0.18. These
insights emphasise that algorithm selection crucially influences the reliability of functional
connectivity analyses.

The differential performance among these algorithms significantly impacts neuroimaging
outcomes, affecting both the interpretation of research findings and potential clinical applica-
tions. By providing a comprehensive evaluation and characterisation of non-rigid registration
algorithms, this work emphasises the importance of selecting appropriate methods to enhance
reproducibility and accuracy in neuroimaging. In doing so, NRAAF framework empowers
the neuroimaging community to advance computational methodologies and refine tools for



studying complex brain functions, with potential implications for diagnostics, personalised
treatment strategies, and broader cross-institutional research collaborations.
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Chapter 1

Introduction

Image registration is the process of aligning multiple images into a common coordinate
system, allowing for the comparison and analysis of data from different imaging sessions,
modalities, or individuals. In medical imaging, this alignment is crucial for accurate diagnosis,
monitoring disease progression, and evaluating treatment efficacy. Image registration helps
align anatomical or functional images, ensuring that meaningful comparisons can be drawn,
whether from different subjects, different times, or different imaging modalities [1, 2].

Historically, image registration methods have evolved significantly, from manual tech-
niques to sophisticated algorithms, driven largely by advances in computational power and
artificial intelligence. Early efforts focused on manual and semi-automated approaches that
required substantial human expertise, which were later replaced by automated methods,
including feature-based and intensity-based techniques. In recent years, Deep Learning
(DL) has further revolutionised the field, enabling highly efficient and accurate registration,
especially in complex cases involving deformable transformations [3, 4]. For example,
Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) have
been leveraged to tackle the challenges of multi-modal and non-rigid registration, offering
new possibilities in both medical and non-medical contexts [5, 6].

In neuroimaging, the importance of image registration cannot be overstated, as the
accurate alignment of brain scans is essential for understanding brain function and pathology.
For example, precise registration allows the comparison of Functional Magnetic Resonance
Images (fMRI) data across participants, which is essential in identifying Resting-State
Networks (RSNs) and understanding their role in both healthy and diseased states [7, 8].
Non-rigid registration, in particular, plays a critical role in this process by accommodating the
complex anatomical differences between subjects, thus allowing for more accurate mapping
of functional and structural data across diverse populations.
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The applications of image registration are diverse and extend well beyond medical
imaging. In neuroimaging, image registration plays a pivotal role. It ensures that functional
brain data, such as Resting-State Functional Magnetic Resonance Imaging (rs-fMRI), are
accurately aligned across different subjects or time points. This enables robust group-level
analyses that reveal meaningful patterns in brain function. Such precise registration is crucial
for studying neurological diseases, understanding brain development, and evaluating the
effects of various therapeutic interventions [9, 7]. Moreover, the applicability of image
registration extends beyond the field of medical imaging. Below, we provide brief examples
of this.

Image registration is also used in other fields:

• Environmental Science: Image registration enhances environmental monitoring by
aligning satellite or aerial images over time, which is crucial for tracking environmental
changes such as deforestation, urban expansion, climate impacts, and post-disaster
damage assessments. This enables precise comparisons and data integration from
multiple temporal and spatial sources, supporting more informed decision-making [10,
11].

• Autonomous Vehicles: In autonomous navigation, image registration is used for fusing
data from cameras, LIDAR, and other sensors, allowing the vehicle to understand
its surroundings more accurately. This precise alignment is essential for obstacle
detection, localisation, and path planning, ultimately improving the safety, efficiency,
and reliability of autonomous driving systems [12, 13].

• Augmented and Virtual Reality (AR/VR): In AR/VR, image registration allows the
seamless overlay of virtual content onto the real world by accurately aligning the digital
visuals with the user’s real-time perspective. This technology enhances interactive
experiences in gaming, education, and professional training, as well as improves
precision in medical training and surgical planning, leading to better outcomes and
deeper learning experiences [14, 15].

The versatility of image registration across different fields highlights its essential role as a
foundational technology, driving advancements in healthcare and broader societal contexts.

The implementation of advanced image registration methods in clinical settings requires
thorough validation processes to ensure reliability and efficacy. This involves not only
extensive empirical testing across a wide range of clinical scenarios but also comparison
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against established standards, such as those set by the Food and Drug Administration
(FDA) or equivalent regulatory bodies. Clinical validation is crucial because it ensures that
these technologies meet the strict accuracy and safety standards necessary for patient care,
ultimately influencing diagnostic decisions and treatment outcomes [16, 2].

Validation processes help uphold patient safety by ensuring that technological interven-
tions yield consistent and accurate results. For example, validation in neuroimaging aims to
verify that brain structures can be consistently aligned across subjects, directly impacting the
interpretation of functional connectivity and subsequent clinical decisions for neurological
disorders like Multiple Sclerosis (MS) or Alzheimer’s disease.

The image registration process is illustrated in Figure 1.1. In this model, the reference
image IR acts as a fixed basis, against which the moving image IM is aligned. The registration
algorithm processes these images and produces a transformed version of the moving image,
denoted as IT M. The goal of this transformation is to align the moving image as closely
as possible with the reference image, ensuring that corresponding anatomical or functional
structures overlap accurately.

The registration model depicted in Figure 1.1 is a general framework that can represent
both rigid and non-rigid registration methods. In rigid registration, the transformation applied
is limited to translations and rotations, maintaining the shape and size of anatomical structures.
This type of registration is suitable for aligning images where only global differences exist,
such as different poses of the same patient. Non-rigid registration, on the other hand, involves
more complex transformations that allow for deformations, adapting to the unique anatomical
variations between individuals. This flexibility is crucial in neuroimaging for mapping
subtle differences in brain structure and function across subjects, particularly when studying
rs-fMRI [17].

Fig. 1.1 General model of the image registration process, showing the transformation of a
moving image IM to align with a reference image IR. This model can represent both rigid and
non-rigid registration methods, depending on the complexity of the transformation applied.

The significance of non-rigid registration in neuroimaging cannot be overstated, as it
ensures the precise mapping of brain structures and activity across temporal and spatial
dimensions. This precision is essential for understanding nuanced changes that occur in
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neurological diseases, monitoring brain development, and tracking the effects of therapeutic
interventions over time [7, 8]. By enabling accurate alignment that accounts for individual
differences, non-rigid registration contributes to the reliability of group-level analyses and to
the understanding of complex brain functions.

The upcoming chapters will outline the specific challenges that image registration ad-
dresses in computational neuroscience, particularly in the context of fMRI. This thesis
examines the accuracy and effectiveness of inter-subject non-rigid registration, especially for
RSNs. This evaluation enhances our understanding of how various registration algorithms
influence the interpretation of functional connectivity, highlighting their broader impact on
diagnosing and treating neurological conditions like Alzheimer’s disease and MS [17, 9].

1.1 Rigid and Non-Rigid Image Registration

Rigid registration involves aligning images by applying transformations such as rotation and
translation, which effectively allow for the repositioning of images without altering their
shape or size. This type of registration assumes that the underlying anatomy does not change
in shape, making it suitable for scenarios where global differences exist but local deformities
are not a concern, such as different orientations of the same subject.

The primary advantage of rigid registration lies in its computational efficiency—the
transformation process is relatively straightforward, often requiring fewer parameters com-
pared to non-rigid methods. This makes rigid registration particularly well-suited for initial
alignments or for aligning images where major deformations are absent, such as registering
skull images or hard tissue scans [16].

However, rigid registration has limitations due to its inability to accommodate anatomical
variability among individuals. This poses challenges when dealing with soft tissue regions
like the brain, where complex deformations between subjects are common. Such limitations
emphasise the necessity for more advanced approaches, such as non-rigid registration, which
can provide the flexibility required for accurate alignment of neuroanatomical structures.

In contrast, non-rigid registration (also known as deformable registration) allows for
complex deformations that can accurately align anatomical regions with significant inter-
subject variability. This type of registration is essential in neuroimaging, where structural
variations between individuals require a more flexible approach.

Non-rigid registration works by transforming the moving image using a deformation field,
which adapts to the local anatomical differences present across individuals. This flexibility
makes it indispensable in rs-fMRI and other neuroimaging modalities that require the precise
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1.1 Rigid and Non-Rigid Image Registration

alignment of cortical and subcortical regions [4]. Recent advancements have incorporated
Machine Learning (ML), particularly DL models, to improve the accuracy of non-rigid
registration processes [18, 19].

Non-rigid registration has been crucial in enabling detailed group analyses of RSNs,
thereby advancing our understanding of the common and variable aspects of brain connec-
tivity in both healthy and pathological states. Moreover, the use of DL has enhanced the
efficiency of these methods, which directly impacts their feasibility for clinical use, such as
monitoring disease progression or planning neurosurgical procedures.

Both rigid and non-rigid registration methods play complementary roles in medical
imaging. Rigid registration is often used as a preliminary step, providing an efficient and
quick alignment that serves as a foundation for more refined processes. This initial alignment
is computationally inexpensive and can correct for global translations and rotations between
images.

Once the base-level alignment is achieved using rigid registration, non-rigid registration
is employed to address local anatomical differences, providing a finer level of adjustment
that is necessary for accurate cross-subject comparisons, particularly in neuroimaging studies
[9, 4].

For example, in the context of rs-fMRI, rigid registration is used to align images from the
same subject taken at different times, ensuring consistent positioning. This is followed by
non-rigid registration, which corrects for individual differences in brain anatomy, allowing
for a precise analysis of RSNs. The combined use of both approaches enables a balance
between efficiency and accuracy, ultimately ensuring that neuroimaging data are reliably
aligned for group-level analyses [16].

Figure 1.2 provides a visual overview of the registration workflow used in this study,
which employs both rigid and non-rigid steps. Initially, the functional image is aligned
with the structural image using a Rigid transformation which involves only rotations and
translations, allowing for global alignment of images without altering their internal structure.
Subsequently, a Non-Rigid transformation is used to provide the flexibility needed to adjust
images locally, overcoming individual anatomical differences and enhancing alignment
accuracy, which is critical for accurately localising brain activity and conducting reliable
group analyses.

Within the field of medical imaging, the comparison between rigid and non-rigid registra-
tion highlights key methodological concerns. Non-rigid registration is particularly tailored to
the dynamic and flexible nature of biological tissues, addressing the considerable challenges
associated with anatomical variability and physiological motion in the human body [4]. This
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Fig. 1.2 Multimodal registration workflow used in this study, involving rigid (fMRI - MRI)
and non-rigid (MRI - MNI152) registration to align the functional and structural images to a
standard template. The registered image is then fitted into a General Linear Model to capture
the Blood-Oxygen-Level Dependent (BOLD) signal, thus producing a map of activated brain
areas.

form of registration is essential in neuroimaging, where precise alignment of brain images
across different subjects or over time can significantly impact diagnostic and therapeutic
outcomes. Recent theoretical advancements, notably the integration of DL techniques with
traditional image registration frameworks, have considerably enhanced both the accuracy
and efficiency of these applications. Such advancements are not merely technical improve-
ments but are critical in advancing patient care through improved diagnostic accuracy and
personalised treatment planning [18, 19].

1.2 Significance of rs-fMRI and Functional Connectivity

Resting-state fMRI has become an essential tool for evaluating the brain’s intrinsic activity
when no specific external task is being performed. By capturing spontaneous fluctuations
in the Blood-Oxygen-Level Dependent (BOLD) signal, rs-fMRI provides critical insights
into the brain’s functional architecture and connectivity during resting states [4]. This
imaging modality enables the identification of RSNs, which are spatially distributed yet
temporally correlated regions that consistently show synchronous activity. Examples of such
networks include the Default Mode Network (DMN), Visual Networks, and Somatomotor
Networks—all of which play fundamental roles in maintaining the brain’s baseline functions
and are closely associated with various cognitive and sensory processing capabilities [2].
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1.2 Significance of rs-fMRI and Functional Connectivity

The significance of RSNs extends beyond fundamental neuroscience by providing an
essential framework for understanding how different brain regions interact, both in healthy
individuals and in those with neurological or psychiatric disorders. By analysing these
networks, we can gain a better understanding of the functional integration occurring within
the brain, which is fundamental for tasks such as memory, emotion regulation, and sensory
processing [7]. This perspective is particularly important for assessing neurological disorders
where deviations in these networks can serve as critical biomarkers for disease progression.

Functional connectivity, derived from rs-fMRI data, refers to the temporal correlation
between spatially distinct brain regions, indicating how well different areas communicate
with one another during rest. The reliability of these connectivity measures hinges heavily
on the precision of the image registration process [8]. Accurate registration ensures that
anatomical structures are properly aligned across scans, thus minimising inconsistencies
that could obscure the genuine connectivity patterns present. In the context of non-rigid
registration, the challenge is particularly pronounced because of the inherent anatomical
variability between individuals, which requires advanced methods capable of handling these
complex deformations without compromising the integrity of functional signals.

The application of the Non-Rigid Registration Algorithm Analysis Framework (NRAAF)
developed in this thesis aims to address precisely this challenge. By providing a structured
evaluation of four state-of-the-art non-rigid registration algorithms, this work seeks to
enhance the precision of rs-fMRI data analysis. The findings from this systematic comparison
are instrumental in identifying effective algorithms tailored for specific neuroimaging tasks.
Through better algorithm selection, we can improve both the reproducibility and consistency
of functional connectivity studies [20]. This reduction in variability is crucial for accurate
identification of RSNs, which ultimately enhances our understanding of the brain’s functional
architecture [21].

Moreover, the application of Multivoxel Pattern Analysis (MVPA) with Support Vector
Machine (SVM) offers a novel methodology to evaluate the impact of different registration
algorithms on neuroimaging data. This approach enables the precise identification and dis-
tinction of spatial patterns, providing deeper insights into the brain’s default mode networks
and the broader network structure [22]. The discriminative voxel-wise weight maps generated
in this study further reveal how the selection of different algorithms influences neuroimaging
outcomes, supporting the development of more reliable diagnostic tools for detecting and
understanding neurological conditions [23].

The findings of this thesis have substantial implications for clinical applications. Improved
accuracy in image registration directly impacts the diagnosis and treatment of neurological
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disorders. By ensuring that functional connectivity analyses are more precise, this research
contributes to better identification of biomarkers for various conditions, including neurode-
generative diseases such as Alzheimer’s and psychiatric disorders like Schizophrenia [24].
This, in turn, can lead to more personalised and effective treatment plans, ensuring that
interventions are tailored to the specific network alterations observed in patients.

In summary, this thesis provides a comprehensive evaluation of non-rigid registration
algorithms, emphasising their critical role in ensuring reproducibility and reliability in neu-
roimaging studies, particularly in the context of functional connectivity. The broader impact
of this research lies in its potential to improve the accuracy of rs-fMRI analyses, thereby
advancing our understanding of complex brain functions and supporting the development of
effective diagnostic and therapeutic approaches for neurological disorders [18, 19].

1.3 Research Motivation and Problem Statement

The advancement of rs-fMRI has been instrumental in enabling the exploration of the brain’s
RSNs, which are essential for understanding both baseline brain function and its alterations in
neurological disorders. However, the effectiveness of these explorations is highly dependent
on the precision of image registration. Registration is a fundamental process in aligning
images across different scans, individuals, and time points, yet it is also one of the primary
sources of variability due to differences in brain anatomy and the dynamic nature of the
BOLD signal [25].

Non-rigid registration algorithms play a pivotal role in aligning rs-fMRI data across sub-
jects. They are tasked with compensating for anatomical variations, ensuring that functional
data can be accurately compared and analysed. However, the variability in how different
algorithms perform this complex task introduces significant challenges. Algorithmic variabil-
ity refers to differences in how various non-rigid registration techniques handle alignment,
leading to discrepancies in the identification of RSNs, the localisation of activation, and
ultimately the conclusions drawn about brain function. Such variability affects not only repro-
ducibility in research findings but also has profound implications for clinical interpretations
[26, 27].

For instance, discrepancies in the registration of fMRI data can lead to differences in how
activation clusters are localised, which may result in inconsistent findings regarding functional
connectivity. In a clinical context, this inconsistency can impact diagnostic accuracy, as
reliable identification of RSNs is crucial for understanding pathologies such as Alzheimer’s
disease, Schizophrenia, and other neurological conditions. Inaccurate alignment may cause
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errors in assessing the extent and severity of dysfunction, affecting patient outcomes and the
development of treatment plans.

Despite ongoing advancements in neuroimaging techniques, a critical gap persists in
understanding how different non-rigid registration algorithms affect the processing and
outcomes of rs-fMRI data analysis. This gap presents a significant barrier to fully exploiting
rs-fMRI’s potential to explore brain function and identify pathological changes. The issue of
algorithmic variability is not merely theoretical; it has practical implications, particularly in
clinical settings where fMRI data are used to guide diagnosis and treatment.

In the context of diagnosing neurological disorders, the precise alignment of fMRI
data is essential for identifying deviating patterns of functional connectivity, which can
be indicative of conditions like Epilepsy, MS, and traumatic brain injury. Variability in
registration outcomes can lead to errors in identifying these patterns, thereby affecting
clinical decision-making. For instance, an inaccurate alignment might either obscure or
falsely indicate functional deficits, leading to improper diagnoses or inappropriate therapeutic
interventions. Therefore, improving the reliability of non-rigid registration methods is of
utmost importance, not only to enhance the robustness of research findings but also to ensure
that these technologies can be effectively translated into clinical practices that improve patient
care.

1.3.1 Motivation

Addressing algorithmic variability is essential for advancing neuroimaging methodologies,
improving the reliability of rs-fMRI analyses, and enhancing our understanding of the brain’s
functional architecture in both healthy and diseased states. The motivation behind this study
lies in identifying and reducing the discrepancies that arise from the use of different non-rigid
registration algorithms. By doing so, we can improve the consistency of activation maps,
increase the accuracy of group-level analyses, and contribute to the development of better
diagnostic tools and therapeutic interventions [28, 29].

Furthermore, as neuroimaging increasingly informs precision medicine, the demand
for robust and reproducible imaging results becomes critical. Misalignment and variability
in data processing can hinder the progress of personalised treatments that rely on specific
connectivity patterns to tailor interventions. Thus, addressing these challenges is key to
ensuring that neuroimaging can reliably support both research advancements and clinical
applications that improve patient outcomes [30, 31].
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1.3.2 Problem Statement

This thesis aims to systematically evaluate the impact of various state-of-the-art non-rigid
registration algorithms on the processing of rs-fMRI data, focusing on:

• The consistency of activation areas.

• The variability in activation maps.

By comparing the accuracy, reliability, and sensitivity of different non-rigid registration
algorithms in detecting RSNs, the research seeks to identify key differences between these
methods, and characterise the nuances in their implementation. The extended goal is to
enhance the precision of rs-fMRI analyses by reducing ambiguity and errors associated with
image registration due to machine processing. This research will not only aid in improving
neuroimaging methodologies but also contribute to developing diagnostic and therapeutic
approaches for neurological conditions, thus ensuring that neuroimaging can be effectively
utilised for both research and clinical applications.

1.4 Research Question and Objectives

The complexities of brain imaging require advanced registration techniques to accurately
map the brain’s functional areas across diverse populations. Resting-state fMRI, much like
other dynamic imaging modalities such as thoracic 4D Computed Tomography (CT) [32],
necessitates highly optimised registration algorithms to handle inherent temporal and spatial
variability. Despite recent advancements, there is an absence of a standardised approach to
preprocessing and evaluating the multitude of emerging non-rigid registration algorithms
used in rs-fMRI. Addressing this gap forms the core research direction of this study. There-
fore, the overarching research question is:

How does algorithmic variability in non-rigid registration impact the detection of
activation clusters and the reliability of functional connectivity analyses in rs-fMRI?

To address the overarching research question, the following sub-research questions guide
the specific investigations of this study:

• How does the choice of non-rigid registration algorithm influence the spatial distribu-
tion and intensity of detected activation clusters in rs-fMRI?
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• What is the effect of different non-rigid registration techniques on the reproducibility
and consistency of reported activation maps across diverse subjects?

• How does algorithmic variability impact the identification of RSNs, and what implica-
tions does this have for understanding variability in functional connectivity analyses?

1.4.1 Objectives

The objectives of this research are systematically designed to address the challenges outlined
in the research aim. These objectives focus on both the theoretical development of tools and
frameworks, as well as practical assessments and validations:

1. To systematically review and identify the challenges in non-rigid registration: Assess
the current state of non-rigid registration algorithms in rs-fMRI, focusing on their
limitations and challenges in addressing functional connectivity analyses.

2. To develop the NRAAF framework: Design and develop a framework to systematically
evaluate the performance of various non-rigid registration algorithms, with a focus on
consistency, reproducibility, and impact on RSN analysis.

3. To validate the NRAAF framework using a large dataset: Apply the NRAAF framework
to a large dataset (n=815) to assess differences in location, shape, and strength of
activation clusters, and evaluate the effects on functional connectivity analyses.

4. To produce an algorithmic characterisation of non-rigid registration methods in rs-
fMRI: Analyse the results from the NRAAF framework to characterise the variability
and dependencies of different registration algorithms. This will demonstrate how these
algorithms impact the consistency and reliability of RSN analyses.

Thesis Hypothesis

This thesis hypothesises that non-rigid registration algorithms will exhibit variability in their
impact on rs-fMRI outcomes, specifically affecting the detection and spatial consistency
of functional connectivity patterns. Given the differences in mathematical implementation
among algorithms, it is expected that these differences will manifest in varying degrees of
sensitivity, reliability, and spatial accuracy in neuroimaging analyses. This hypothesis will
be tested through systematic comparative analysis, aiming to characterise the extent to which
algorithmic choices influence key metrics in rs-fMRI studies.
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1.5 Aim of Research

The aim of this research is to systematically characterise and mitigate the variability inherent
in non-rigid registration algorithms used for fMRI. This study specifically focuses on algo-
rithmic performance of these methods, aiming to identify and quantify potential biases and
errors that may impact the accuracy of diagnosing neurological disorders associated with
RSNs [22].

By rigorously assessing the performance of a diverse range of existing state-of-the-art
registration algorithms, this research aims to develop a comprehensive understanding of the
impacts these methods have on RSN analyses. The extended goal is to enhance the reliability
of fMRI analyses, reduce ambiguity, and minimise errors associated with image registration,
thereby improving both research quality and clinical decision-making.

1.6 Contributions of the Thesis

This thesis makes the following significant contributions to the field of neuroimaging:

1. Development of the NRAAF Framework: This research presents the NRAAF, which
systematically compares the performance of four state-of-the-art non-rigid registration
algorithms used for analysing RSNs. The NRAAF is a novel, systematic approach
specifically developed to provide consistent benchmarking of these algorithms, filling a
critical gap in the standardisation of non-rigid registration evaluations in neuroimaging.
This framework has been applied across different functional networks within the brain
to assist researchers and clinicians in selecting the most suitable analytical tools based
on specific study needs, and validate effectiveness of its methodology. The novelty of
the NRAAF lies in its ability to assess the impact of registration choices on downstream
analyses, particularly those related to functional connectivity, thus promoting the
reproducibility and reliability of neuroimaging research. This contribution has been
published.

2. Empirical Validation of NRAAF: The NRAAF framework was empirically validated
using fMRI data from a large dataset (n=815). The validation process demonstrated sig-
nificant differences in algorithm performance, highlighting the strengths and limitations
of commonly used neuroimaging tools under different scenarios. This contribution
provides critical empirical benchmarks and recommendations for selecting appropriate
algorithms based on data type and intended analysis. Such practical guidelines ad-
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dress the confusion often faced by researchers regarding which non-rigid registration
algorithm to use, depending on the neuroimaging context. By empirically validating
these algorithms, this work strengthens the reliability of RSN analyses, promoting
a standardised approach to algorithm selection in clinical and research applications.
This contribution is key to ensuring that algorithm selection is not only scientifically
grounded but also clinically actionable for improving diagnostic accuracy.

3. Application of MVPA and SVM for Comparative Analysis of Non-Rigid Registra-
tion Algorithms: This thesis introduces a novel comparative methodological approach
by employing MVPA with SVM on rs-fMRI data. The novelty of this approach lies
in its ability to use ML to generate voxel-wise discriminative weight maps, allowing
for quantitative and spatial discrimination of the effects of different non-rigid regis-
tration algorithms on brain functional connectivity. This enables the following novel
contributions:

• Direct Comparative Analysis: Unlike conventional evaluation methods, this
approach directly compares how different registration algorithms affect the func-
tional representation of the brain, particularly focusing on the Control Network
and other RSNs.

• Integration of ML for Registration Impact Analysis: The use of modified SVM,
as part of the MVPA, provides a sophisticated way of quantifying the impact of
non-rigid registration algorithms on functional connectivity. This adds a ML-
based evaluation layer that offers deeper insights beyond traditional statistical
metrics, capturing subtle but significant differences in brain activation patterns.

• Generation of Discriminative Weight Maps: The voxel-wise discriminative weight
maps provide a visual and statistical tool to identify specific areas of the brain
that are most influenced by the choice of registration algorithm. This level of
detail allows for pinpointing which brain regions show the greatest variability
due to registration, directly linking the choice of algorithm to neurobiological
interpretation and enhancing the specificity of functional connectivity analysis.

4. Algorithmic Characterisation of Non-Rigid Registration Methods: The thesis
provides a comprehensive characterisation of the evaluated non-rigid registration algo-
rithms, detailing their variability and performance across different metrics, including
accuracy, robustness, and their impact on functional connectivity. This algorithmic
characterisation aims to guide researchers and clinicians in choosing the most suitable
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algorithm for their specific application. By providing a detailed analysis of the dif-
ferential impacts these algorithms have, this contribution addresses the consistency
and reliability of RSN analyses, enhancing the practical application of neuroimaging
techniques. The characterisation also informs future developments in algorithm design,
ensuring that researchers and practitioners can make informed choices to optimise the
quality of their neuroimaging studies.

Collectively, these contributions represent a substantial advancement in the understanding
and improvement of non-rigid image registration in neuroimaging. The NRAAF framework
provides a standard method for evaluating registration algorithms, while its empirical val-
idation offers clear guidelines for tool selection, thereby reducing uncertainty in the use
of non-rigid registration methods. Additionally, the algorithmic characterisation and com-
parative analysis provide valuable insights that directly contribute to improving diagnostic
reproducibility and supporting clinical decision-making in conditions such as Alzheimer’s
disease, Schizophrenia, and other neurological disorders.

By providing a detailed algorithm comparison, empirical support for the developed
framework, and an in-depth exploration of the impact of these computational methods, this
research not only contributes to the theoretical advancement of computational neuroscience
but also encourages methodological improvements.

1.7 Overview of the Thesis Structure

This thesis is organised into eight chapters, each designed to systematically address the
research aims and objectives, culminating in a comprehensive understanding of the effects of
non-rigid registration algorithms on rs-fMRI data. Below is a summary of the structure and
key content of each chapter:

• Chapter 1: Introduction - Provides the context and significance of image registration
in neuroimaging. Introduces rs-fMRI and its relevance to functional connectivity.
Discusses the research motivation, problem statement, questions, aims, and objectives.
Concludes with the contributions and overview of the thesis structure.

• Chapter 2: Background & State-of-the-Art Review - Reviews the evolution of non-
rigid registration methods and their relevance to neuroimaging. Covers the mathemati-
cal foundations, historical development, and a detailed discussion of state-of-the-art
registration methods. Highlights research gaps and challenges in current methodolo-
gies.
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• Chapter 3: Development of the NRAAF Framework - Describes the development
of NRAAF. Includes algorithm selection, data preprocessing (e.g., brain extraction,
motion correction), and the metrics used for evaluation. Details the methodological
approach for systematic comparison.

• Chapter 4: Peak Activation Intensity-Based Spatial Localisation Assessment -
Outlines the methodology for assessing peak activation intensity localisation. Dis-
cusses atlas-based measurements and hemisphere-specific findings. Presents statistical
analyses and visual representations of results.

• Chapter 5: Significant Clusters-Based Network Integrity Analysis - Details the
cluster-based analysis method and its application to significant network clusters. Ex-
amines the impact of algorithm choices on network integrity. Includes a discussion of
the findings and implications for neuroimaging.

• Chapter 6: Inter-Subject Variability and Group Inference Analysis - Investigates
inter-subject variability using metrics like Mutual Information (MI) and Dice Similarity
Coefficient (DSC). Integrates Multivoxel Pattern Analysis (MVPA) for performance
evaluation. Highlights how different algorithms affect group-level inferences.

• Chapter 7: Discussion - Synthesises key findings and aligns them with the research
objectives. Discusses the broader implications for neuroimaging and computational
neuroscience. Identifies limitations and provides recommendations for algorithm
selection and best practices.

• Chapter 8: Conclusion & Future Work - Summarises the main contributions and
findings of the research. Discusses the potential implications for future neuroimaging
research and clinical practices. Recommends areas for future exploration, including
enhanced computational approaches and machine learning integration.

References and Appendices follow the main chapters, providing comprehensive documenta-
tion of the sources consulted during the research and additional materials that support the
thesis, respectively.

1.8 Chapter Summary

Chapter 1 lays the foundational groundwork for this study, starting with an overview of
image registration and its critical role in neuroimaging for aligning images from different

15



Introduction

time points, modalities, or subjects. The chapter emphasises the importance of non-rigid
registration in addressing anatomical variability and dynamic BOLD signal changes, which
are vital for accurate analysis in rs-fMRI studies [1, 2, 16].

The problem of algorithmic variability is highlighted as a significant challenge that
impacts the reliability of functional connectivity analyses and clinical outcomes. To address
this, the chapter presents the core aims and objectives of the thesis, including the development
of the NRAAF, which systematically compares non-rigid registration algorithms. The novel
use of MVPA with SVM is introduced, offering new insights into the impacts of registration
on neuroimaging accuracy [9, 7, 8].

The broader implications of this research include advancing the accuracy of neuroimaging
analyses, which is crucial for clinical and research applications, and demonstrating the
adaptability of these methods to other fields such as environmental monitoring and augmented
reality [33, 2, 34, 35].

The next chapter provides a detailed review of the theoretical background, covering
key concepts in non-rigid registration, RSNs, and their role in neuroimaging to establish a
foundation for developing the NRAAF framework.
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Chapter 2

Background & State-of-the-Art Review

In the rapidly progressing field of computational neuroscience, image registration has become
an essential component of neuroimaging. Image registration is the process of aligning
multiple images into a common coordinate system, enabling comparative analysis, integration,
and interpretation of data. This chapter introduces non-rigid registration, an advanced form
of image registration that allows for complex deformations beyond simple translations and
rotations, which is crucial for capturing subtle anatomical variations across subjects or time.

Image registration has evolved significantly over the years, beginning with simple rigid
registration methods that allowed only for basic transformations such as translation and rota-
tion. These foundational methods laid the groundwork for modern advancements, enabling
researchers to align images for clinical and research purposes effectively [36, 37]. The field
then progressed to more sophisticated affine and non-rigid registration techniques, which
account for complex deformations and have become essential in neuroimaging for capturing
subtle anatomical differences [38, 39]. Non-rigid registration, in particular, has enabled better
adaptation to inter-subject variability and has proven crucial in studies involving diverse
populations and longitudinal analyses [31, 40].

Recent advancements have focused on improving the robustness and accuracy of these
methods through Machine Learning (ML) and Deep Learning (DL) approaches, leveraging
extensive datasets and advanced algorithms to enhance performance [41, 42]. The integration
of learning-based techniques has accelerated the development of non-linear registration
models capable of real-time processing while maintaining high precision [36, 43]. These
innovations highlight the ongoing shift from traditional algorithmic approaches to data-
driven models, continually pushing the boundaries of what is achievable in neuroimaging
registration [44, 45].

17



Background & State-of-the-Art Review

Neuroimaging often requires precise alignment of brain images to identify changes
due to pathology, development, or in response to treatment. These alignments can involve
intra-subject (e.g., aligning pre- and post-surgery images of the same subject) or inter-
subject (e.g., aligning multiple subjects’ brain images for group studies) registration. Non-
rigid registration methods have gained prominence because of their ability to adapt to
complex anatomical changes, making them invaluable for studies of neurological diseases and
development. However, while significant progress has been made in developing sophisticated
non-linear intra-subject and intra-modality registration algorithms, there remains a gap in the
comprehensive evaluation of these techniques. Such evaluations are vital, as they reveal the
strengths, limitations, and areas for improvement in these algorithms, thus driving forward
the field of neuroimaging [36, 38, 39].

Recognising this shortcoming, this chapter addresses the critical analysis and validation
of state-of-the-art non-rigid registration algorithms. It aims to highlight the importance
of thorough algorithm evaluation and to underline the impact such evaluations have on
improving diagnostic and therapeutic practices. By examining the current state of algorithm
evaluation, which is often overlooked due to the drive for constant innovation, this chapter
makes a case for a balanced approach that equally values both the development of new
algorithms and the careful evaluation of existing ones [31, 40].

The necessity for rigorous algorithm evaluation is clear: without careful validation, the
limitations of new techniques may be obscured, potentially hindering the translation of these
technologies into clinical settings. The trend in the field of prioritising new algorithmic
development over systematic evaluation leads to the expansion of tools whose real-world
capabilities are not fully understood or validated [41, 37, 42]. Therefore, this chapter
advocates for a more rigorous approach to the evaluation of non-rigid registration algorithms,
which is essential to enhance their practical utility and clinical impact. The extended goal is
to foster an integration of empirical validation with technological innovation to ensure that
new developments provide tangible benefits in both clinical and research environments [36].

Thus, in order to evaluate the landscape of non-rigid registration techniques compre-
hensively, a systematic review was conducted. This review aimed to collect, analyse, and
synthesise current knowledge in the domain of neuroimaging registration techniques. A
comprehensive search strategy was implemented across multiple databases, including Scopus,
Web of Science, and Elsevier. Initially, 680 records were identified, with 450 from Scopus
and Web of Science, and an additional 230 from Elsevier. After removing 50 duplicates, 630
records were screened based on titles and abstracts for relevance.
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From these, 325 records were excluded due to reasons such as irrelevance to the research
question (e.g., focusing on non-neuroimaging methods), non-peer-reviewed status, non-
English language, and insufficient methodological rigour (e.g., studies with significant biases
or lacking in data robustness).

Subsequently, 305 full-text articles were assessed for eligibility. Among these, 76 were
excluded for the following reasons: 30 did not directly address the research questions pertain-
ing to non-rigid registration methods for neuroimaging, 23 were not peer-reviewed or were
published in non-reputable journals, 15 were not available in English, and 8 exhibited signifi-
cant methodological flaws or provided insufficient data for robust analysis. Ultimately, 229
studies were included in the qualitative synthesis, and 150 were included in the quantitative
synthesis where applicable. For a simplified view, please refer to Table 2.1.

Table 2.1 PRISMA flow summarising the literature selection process of this research.

Stage Description
Identification Records identified through database searching (Scopus and Web of

Science) (n = 450)
Additional records identified through Elsevier (n = 230)

Screening Records after duplicates removed (n = 630)
Records screened (n = 630)
Records excluded (n = 325)

Eligibility Full-text articles assessed for eligibility (n = 305)
Full-text articles excluded, with reasons (n = 76):
- Not relevant to the research question (n = 30)
- Not peer-reviewed or published in non-reputable sources (n = 23)
- Not in English (n = 15)
- Insufficient data or methodological flaws (n = 8)

Included Studies included in qualitative synthesis (n = 229)
Studies included in quantitative synthesis (meta-analysis) (n = 150)

2.1 Introduction to Non-Rigid Registration

Non-rigid registration, a cornerstone in the evolution of medical image analysis, has seen an
unprecedented increase in its necessity, especially for achieving precise alignment of images
across different times, modalities, or subjects. This intricate process is critical for accurate
diagnosis, treatment planning, and monitoring, becoming foundational in neuroimaging by
facilitating the detailed localisation of brain structures, which is essential for both clinical
and research purposes. Recent advancements, particularly through the integration of DL
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techniques, have led to substantial improvements in accuracy, efficiency, and adaptability
compared to traditional methodologies [19].

In neuroimaging, the goal is often to combine and compare images from different time
points, subjects, or imaging modalities. Such comparisons are fundamental for understanding
brain structure and function, detecting abnormalities, or tracking disease progression. Image
registration—particularly non-rigid registration—is a key technique for this purpose. It allows
us to align images in a way that takes into account the complex, non-linear deformations
of brain structures, thereby ensuring the accurate overlay of corresponding anatomical or
functional regions.

Non-rigid registration is fundamentally different from rigid and affine transformations
due to its ability to capture complex, localised deformations in medical images. While rigid
and affine methods can only handle rotations, translations, scaling, or shearing, non-rigid
registration allows a detailed adaptation of structures. This is crucial when working with
anatomical changes, especially in Functional Magnetic Resonance Imaging (fMRI), where
brain structures exhibit complex, non-linear deformations across time or between subjects.

Innovative approaches in computational neuroscience, such as those developed by Hua,
Kim, and He [46], employ information geometry to characterise neural information process-
ing. These measures provide a mathematical framework that can be adapted to enhance the
analysis of fMRI data, particularly in exploring complex neural interactions and dynamics.
Such advanced methodologies enrich the theoretical base of neuroimaging analyses and offer
new perspectives for interpreting the intricate patterns observed in Resting-State Networks
(RSNs). Furthermore, Graph Neural Networks (GNNs) have also been utilised for EEG
classification, as demonstrated by Klepl, Wu, and He [47], suggesting potential pathways for
incorporating advanced ML techniques into fMRI data analysis, ultimately improving the
accuracy and efficiency of non-rigid registration methods.

2.1.1 Relevance to Modern Neuroimaging

The evolution of non-rigid registration methods has directly impacted modern neuroimaging,
providing a framework for more sophisticated analyses of brain structure and function.
These advancements have proven indispensable for applications where high precision is
required, such as in the longitudinal monitoring of neurodegenerative diseases, the study of
neuroplasticity, and pre-surgical planning [19, 38]. Non-rigid registration enables researchers
and clinicians to account for the natural variability in brain anatomy between individuals and
over time, ensuring that comparisons are both accurate and meaningful.
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Recent contributions, including the use of ML algorithms, have brought significant
enhancements to the field. Techniques incorporating DL models, such as Convolutional
Neural Networks (CNNs) and attention mechanisms, have facilitated the development of
non-linear registration models that achieve improved speed and accuracy [43, 44]. These
models excel in adapting to complex brain deformations, making them especially valuable in
studies that require precise overlay of functional and structural data.

Additionally, the integration of advanced mathematical frameworks and ML approaches
has enabled deeper insights into brain connectivity and the dynamics of RSNs. The work
by Hua, Kim, and He [46] showcases how information geometry can enrich the analysis of
fMRI data, enhancing the interpretation of intricate neural interactions. GNNs, as illustrated
in applications for EEG classification [47], point to the potential for cross-pollination of
methodologies that could further bolster non-rigid registration accuracy and utility.

Incorporating these contemporary methods into non-rigid registration pipelines not only
refines the process but also expands the potential of neuroimaging studies to yield more
nuanced insights. This ensures that non-rigid registration remains relevant as an adaptable
and indispensable tool for advancing the understanding of brain anatomy and function,
bridging historical developments with current and future practices in neuroscience research
and clinical applications.

2.1.2 Historical Milestones in Image Registration

The field of image registration has undergone significant transformations, with each major
development building upon the challenges and limitations of its predecessors. The earliest
image registration techniques were rooted in rigid transformations, which only allowed for
basic adjustments such as translations and rotations. These methods were foundational,
enabling researchers to align simple anatomical structures and facilitating initial cross-
sectional neuroimaging studies [38, 36]. However, their inability to handle deformations in
more complex brain regions revealed the need for advanced approaches, especially when
precise alignment was required for clinical and research purposes.

Affine registration marked the next phase, introducing scaling and shearing capabilities
that allowed for more comprehensive global alignment. Yet, these methods still fell short
when confronted with intricate, non-linear deformations in brain structures due to individual
anatomical variability, pathology, or developmental changes [39]. This led to the emergence
of non-rigid registration techniques, which provided a pivotal advancement by accommo-
dating localised deformations and ensuring more anatomically accurate alignments. These
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non-linear methods, including algorithms such as B-Spline and Diffeomorphic Mapping,
facilitated improved inter-subject and intra-subject alignment, allowing for better comparative
analyses across diverse populations and longitudinal data [37, 38].

In recent years, the incorporation of ML and DL methodologies has revolutionised
the capabilities of non-rigid registration. These innovations leverage large datasets and
computational power to train models capable of real-time, high-precision image alignment
while addressing the limitations of manual parameter tuning and algorithmic rigidity [40, 41].
DL frameworks, such as VoxelMorph, have further refined the process by learning complex
spatial transformations directly from data, streamlining registration for both monomodal and
multimodal imaging studies [31, 42].

This historical progression from rigid to affine and ultimately to non-rigid registration,
augmented by contemporary ML and DL advancements, emphasises the continuous evo-
lution of techniques aimed at overcoming the inherent challenges of neuroimaging. The
advancements ensure that modern neuroimaging studies can achieve accurate, robust, and
anatomically consistent alignments essential for both exploratory and clinical applications,
paving the way for improved diagnostics and therapeutic outcomes [36, 38].

2.1.3 Mathematical Background for Non-Rigid Registration

Non-rigid registration enables complex, localised deformations that are essential for aligning
anatomical structures in neuroimaging, particularly where variations in tissue shape or size
must be accounted for. Unlike rigid or affine transformations, non-rigid registration is
designed to capture these complex deformations by optimising a spatial transformation
T (x) that maps each point x in a moving image to the corresponding point in a fixed
image. This optimisation is achieved by minimising an energy function that balances both
the similarity between the images and the smoothness of the transformation to preserve
anatomical plausibility.

The transformation T (x) is often formulated as:

T (x) = x+u(x) (2.1)

where u(x) is the displacement field, which varies spatially across the image and defines
the deformation applied to each voxel. The energy function E(T ) in non-rigid registration
typically includes a similarity term and a regularisation term, combined as follows:

E(T ) = Similarity(Ifixed, Imoving ◦T )+λR(T ) (2.2)
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where λ is a weighting parameter that controls the balance between the similarity and
regularisation terms [17, 48].

Similarity Metric

The similarity term in E(T ) measures the alignment quality between the fixed and moving
images. Commonly used similarity metrics in neuroimaging are:

• Mutual Information: Mutual Information (MI) is particularly useful for multimodal
image registration, such as between T1 structural and fMRI scans, as it accounts for
the statistical dependency between voxel intensities in the two images [2, 6].

• Normalised Cross-Correlation: Normalised Cross-Correlation (NCC) is beneficial
for monomodal registrations where intensity patterns are expected to be consistent
across images, such as between time-series fMRI images. This metric ensures that
regions with similar intensities in both images remain aligned post-registration [7].

• Sum of Squared Differences: Sum of Squared Differences (SSD), commonly used
in monomodal contexts, SSD minimises intensity differences, making it useful for
aligning high-resolution structural images [49, 50].

These metrics are typically chosen based on the modality and specific registration goals,
ensuring accurate alignment by matching anatomical and functional characteristics across
images.

Regularisation Term

The regularisation term R(T ) enforces smoothness in the displacement field u(x) to prevent
unrealistic or anatomically implausible deformations, such as folding or tearing of brain
tissue. This is especially critical in neuroimaging to ensure the integrity of anatomical regions
[48]. Common regularisation approaches include:

• Elastic Regularisation: Models tissue as an elastic material, constraining u(x) based
on elastic properties, suitable for registering scans over short time intervals or low-
deformation scenarios [17].

• Diffeomorphic Constraints: Utilised in algorithms like the Symmetric Normalisa-
tion (SyN), implemented in Advanced Normalisation Tools (ANTs), diffeomorphic
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transformations maintain topological consistency by ensuring invertibility. This con-
straint makes it particularly useful for tracking longitudinal changes, such as in disease
progression studies [48].

• B-Spline Regularisation: B-Spline uses control points to locally adjust u(x) while
preserving overall smoothness, beneficial in applications where local flexibility is
essential, such as in longitudinal studies [51, 52].

Optimisation Process

The optimisation process iteratively updates T to minimise the energy function E(T ), balanc-
ing between matching intensities in the similarity term and maintaining smooth deformations
in the regularisation term. Techniques such as gradient descent, Levenberg-Marquardt op-
timisation [52], and DL frameworks like VoxelMorph [6] are employed, offering efficient
convergence towards the optimal transformation that aligns the moving image to the fixed
image.

Example in fMRI Analysis

To illustrate the process, consider a scenario in which two fMRI scans are taken: one before
and one after a specific stimulus. The objective is to align these scans to observe and analyse
subtle brain activity changes related to the stimulus.

1. Transformation Requirement: The transformation T (x) must capture subtle, lo-
calised changes in the brain’s activation patterns due to neurovascular coupling, which
affects blood flow and leads to small intensity shifts in regions of activation. Non-rigid
registration allows for this by adjusting the images at a voxel level, accounting for
these minor shifts.

2. Similarity Metric: Given that fMRI scans often have slight intensity variations due to
hemodynamic responses, MI is an effective similarity metric. It does not require strict
intensity uniformity across scans, helping to match corresponding regions between pre-
and post-stimulus images, even with slight intensity differences [48, 6].

3. Regularisation Term: The regularisation term plays a critical role in ensuring that
the alignment is smooth and anatomically plausible. By enforcing smoothness, the
regularisation prevents unnatural distortions (e.g., excessive stretching or shrinking)
in brain structure, preserving continuous regions across the brain and maintaining
anatomical integrity [49, 2].
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4. Optimisation Integration: During the optimisation process, the transformation T is
iteratively adjusted to minimise E(T ). Techniques like gradient descent or Levenberg-
Marquardt optimisation [52] iteratively refine T by balancing similarity with smooth-
ness, ensuring that the alignment achieves anatomical plausibility without sacrificing
image detail. VoxelMorph, a DL-based approach, can also be applied to enhance effi-
ciency by predicting optimal transformations based on learned features from training
datasets [6].

In this example, the combined similarity, regularisation, and optimisation elements of non-
rigid registration ensure an accurate alignment, maintaining structural fidelity while allowing
for analysis of functional changes across the brain. This framework enables non-rigid regis-
tration to capture and align fine structural or functional differences in neuroimaging, essential
for precise analysis in studies of complex brain dynamics.

In summary, the mathematical framework of non-rigid registration facilitates highly
adaptable and anatomically accurate alignment, essential for neuroimaging tasks that demand
precision in mapping fine structural or functional changes across datasets. By minimising
E(T ), non-rigid registration aligns images while preserving anatomical structures, enabling
precise analysis of complex brain dynamics.

2.1.4 Modern Techniques in Non-Rigid Registration

This section focuses on the latest advancements in non-rigid registration methods that leverage
ML and DL techniques. These approaches represent cutting-edge solutions that push beyond
traditional methods, addressing challenges related to flexibility, computational efficiency,
and anatomical complexity in medical imaging.

1. Physics-Informed Neural Networks: Physics-Informed Neural Networks (PINNs)
embed fundamental physical laws into the training process, ensuring that the reg-
istration adheres to biomechanical constraints. This novel approach augments the
accuracy of patient-specific registrations, especially when conventional algorithms
face limitations due to complex tissue properties [53].

2. VoxelMorph Framework: VoxelMorph is a DL-based framework that has proven
effective in managing a diverse array of image types and anatomies. By utilising a
suitable loss function—such as MI or SSD—VoxelMorph excels in both monomodal
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and multimodal registration, providing robustness and adaptability in medical imaging
research [54].

3. Generative Adversarial Networks: Generative Adversarial Networks (GANs) have
demonstrated significant potential in the domain of non-rigid registration, particularly
for learning realistic deformation fields. By harnessing adversarial training between a
generator and a discriminator, GANs improve robustness and accuracy in registration
tasks involving substantial anatomical variability [5].

4. Reinforcement Learning: Reinforcement Learning (RL) techniques are becoming
increasingly relevant in registration tasks. RL-based approaches allow agents to
dynamically interact with data to learn optimal strategies for non-rigid registration,
especially in challenging scenarios characterised by large deformations or limited
anatomical landmarks [49].

These modern ML and DL techniques are transforming non-rigid registration, offering
automated and adaptable solutions to meet the increasing complexity of medical imaging
data. By integrating these methods, neuroimaging stands to benefit from improvements in
accuracy, automation, and efficiency, which ultimately contribute to more reliable diagnostic
and therapeutic practices in computational neuroscience.

2.1.5 Non-Rigid Registration Methods

This section provides an overview of foundational and widely used non-rigid registration
techniques. These methods have served as the backbone of neuroimaging applications,
offering diverse approaches to align images across modalities, time points, and anatomical
regions. Here, both traditional and early DL-based methods are considered, providing
essential context for understanding the evolution of registration technologies.

B-Spline Registration: Uses control points spaced across the image, allowing for
local control over deformation while preserving the overall smoothness. This is highly
advantageous in longitudinal studies, where maintaining structural integrity over time is
crucial [51, 52].

Demons Algorithm: Inspired by optical flow principles, this algorithm models deforma-
tions as fluid-like movements, which makes it suitable for capturing subtle, dynamic changes
in brain structure [55]. The update rule iteratively adjusts displacement fields to achieve
optimal alignment, particularly valuable for cases involving patient motion.
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Symmetric Normalisation: The SyN algorithm within the ANTs is a symmetric diffeo-
morphic registration approach that ensures balanced transformations without biasing towards
a specific image. It optimises an energy functional that includes similarity and regularisation
terms, which are crucial for studies focusing on disease progression [48].

Deep Learning-Based Methods: These methods (e.g., VoxelMorph) employ CNNs to
automate feature extraction and transformation prediction, significantly reducing manual
interventions. The learned transformations are parameterised by network weights to create
mappings that align moving images to fixed targets. These approaches have shown promise
in overcoming limitations related to traditional parametric models, especially by automating
complex transformation learning [6].

In addition to these methods, Saeed et al. [56] highlights the significance of dataset balancing
in DL-based neuroimaging models. Their insights, drawn from re-sampling techniques
for multi-step cyber-attack detection, demonstrate the importance of addressing imbalances
within neuroimaging datasets, a prevalent issue that can affect the robustness and performance
of DL-based registration models.

The integration of traditional and DL-based approaches in non-rigid registration has
advanced neuroimaging substantially, offering robust frameworks capable of adapting to
various clinical and research needs. As a result, these established techniques continue to
provide a solid foundation for more complex and automated approaches in the evolving field
of neuroimaging.

2.2 Non-Rigid Registration Algorithms

This section focuses on key tools used in non-rigid registration, including ANTs, Analysis of
Functional NeuroImages (AFNI), Diffeomorphic Anatomical Registration Through Expo-
nentiated Lie Algebra (DARTEL), and FMRIB Software Library (FSL). The basic concepts
behind these tools are explained, with an emphasis on their roles and limitations in clinical
applications.

2.2.1 Advanced Normalisation Tools (ANTs)

ANTs is a comprehensive and widely adopted non-rigid registration framework designed
to accurately align neuroimaging data. ANTs employs a symmetric diffeomorphic transfor-
mation model known as SyN to provide accurate and consistent mapping between different
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brain images, preserving the unique features of each individual’s anatomy [48]. The SyN
model ensures that neither image in a pair of images is biased as the reference, allowing a
balanced alignment.

ANTs is particularly beneficial in studies that require high-precision alignment, such as
comparisons involving elderly or neurodegenerative populations, as it uses high-dimensional
transformations that offer both flexibility and accuracy [57]. This algorithm also supports
multi-atlas segmentation approaches, allowing better generalisation across varying datasets
[39]. However, ANTs requires substantial computational resources and well-annotated
training datasets, which can be a limitation in some clinical settings [38].

2.2.2 Analysis of Functional NeuroImages (AFNI)

AFNI is an extensively used registration and analysis suite for fMRI data. AFNI provides
tools for both linear and non-linear transformations, allowing detailed preprocessing of
functional neuroimaging data [58]. AFNI’s core strength lies in its flexibility for real-time
fMRI and its ability to cater to user-defined registration protocols, which is critical for highly
specific experimental setups.

A notable feature of AFNI is its use of the 3dQwarp algorithm for non-linear registration,
which excels at refining the alignment of functional regions between subjects [59]. This
adaptability allows AFNI to maintain a high sensitivity to individual differences, which
can be both advantageous and challenging, as it results in significant variability in detected
activations, potentially introducing false positives in cluster-based analyses [58].

2.2.3 Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL)

DARTEL, part of the SPM toolkit, is a non-rigid registration method primarily used for
structural imaging analysis. It utilises diffeomorphic transformations to ensure smooth
and invertible mappings between brain images. DARTEL’s unique strength is in handling
high-dimensional datasets efficiently, which makes it particularly well-suited for longitudinal
studies where consistency over time is crucial [60].

This method works by iteratively refining templates based on the input images, resulting
in a population-specific template that enhances alignment precision. However, DARTEL
can face challenges when aligning brain images with significant anatomical differences or in
cases where cross-modal registration is required [60].
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2.2.4 FMRIB Software Library (FSL)

FSL is a versatile suite that offers both linear and non-linear registration options, primarily via
the FMRIB’s Non-linear Image Registration Tool (FNIRT) tool. FNIRT supports large-scale
neuroimaging studies by offering robust alignment between images, with an emphasis on
clinical applicability through ease of use and integration within FSL’s preprocessing pipelines
[61].

FSL’s FNIRT approach is designed for multi-modal image registration, making it suitable
for scenarios involving diverse imaging modalities, such as combining diffusion MRI with
structural MRI. One of the key strengths of FSL is its ability to manage multimodal registra-
tion effectively, which allows for enhanced mapping of anatomical regions across different
imaging conditions [62]. However, it may be less precise compared to tools like ANTs in
cases where high-dimensional, symmetric transformations are needed [57].

2.3 Limitations in Non-Rigid Registration Algorithms

This section provides a focused analysis of the limitations in current non-rigid registration
methods, especially in the context of fMRI registration of RSNs. The unique demands of
Resting-State Functional MRI (rs-fMRI) data, characterised by complex deformations and
high inter-subject variability, necessitate robust and accurate registration methods that can
handle these challenges across diverse datasets and clinical environments. We examine the
critical challenges in non-rigid registration: accuracy, robustness, computational demand,
and clinical applicability.

Accuracy is a central criterion in rs-fMRI registration, as precise alignment is required
to reliably capture network-level brain activity across subjects. High accuracy in functional
alignment, particularly in regions with intricate anatomical features like the Default Mode
Network (DMN) and Control Network, is essential for meaningful comparisons between
subjects. However, the complex nature of brain deformations in rs-fMRI poses substantial
alignment difficulties, as observed in algorithms like ANTs and DARTEL, which excel in
accuracy but struggle with the dimensional and anatomical complexities of rs-fMRI [38, 48].

Robustness refers to an algorithm’s resilience against noise and variability, which is
particularly pertinent for rs-fMRI studies involving lower-quality data often encountered
in clinical environments. Variability in rs-fMRI datasets—due to noise, motion artifacts,
and scanner differences—makes robust registration essential for ensuring consistency across
studies. Algorithms such as FSL’s FNIRT and AFNI exhibit notable robustness but remain
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sensitive to noise, impacting their reliability in clinical applications with variable data quality
[63, 61].

Computational Demand is an increasingly important challenge, as high computational
requirements limit an algorithm’s scalability, especially in clinical settings where resources
are often constrained. Algorithms like ANTs and DARTEL, while accurate, are computa-
tionally intensive, making them less feasible for high-throughput clinical pipelines. Efficient
processing becomes essential when scaling registration methods to larger rs-fMRI datasets,
particularly in environments with limited processing power [64, 38].

Clinical Applicability encompasses the practical integration of registration algorithms
into clinical pipelines. Algorithms suited for clinical use must not only be accurate and
robust but also user-friendly, with minimal manual tuning and rapid processing times to
enable routine application. Tools like FSL are widely implemented in clinical pipelines
due to their efficiency, though their simpler models may compromise precision for complex
deformations. The Non-Rigid Registration Algorithm Analysis Framework (NRAAF), rather
than being a registration tool, functions as an evaluation framework, assessing non-rigid
registration algorithms for clinical relevance. Its role is to provide insights into each tool’s
clinical scalability, accuracy, and robustness, highlighting potential adjustments necessary
to make these algorithms viable in clinical rs-fMRI applications. The following sections
detail the specific limitations and potential research avenues for state-of-the-art non-rigid
registration algorithms within the context of these challenges, with a focus on rs-fMRI data.

2.3.1 ANTs

Accuracy: ANTs offers high-precision registration, beneficial for aligning rs-fMRI datasets
with considerable inter-subject functional variability. Its accuracy in aligning functional
networks, such as the DMN and Salience Network, is well-suited to high-dimensional rs-
fMRI data [48].
Robustness: ANTs requires careful parameter tuning, impacting its robustness in different
clinical and research settings. The sensitivity to initialisation parameters introduces variability,
making it challenging to achieve consistent results across studies and settings [65].
Computational Demand: The complexity of ANTs makes it computationally intensive,
often unsuitable for high-throughput or resource-limited clinical settings. This demand
impacts its scalability and limits its applicability in real-time or routine clinical analyses
where resources are constrained [38].
Clinical Applicability: ANTs’ reliance on manual parameter tuning reduces its feasibility
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for clinical environments where rapid, reproducible processing is essential. Its sensitivity to
initial parameters creates variability that challenges the reproducibility of network alignment,
making adaptive or automated parameterisation a crucial area for improvement [48].

2.3.2 AFNI

Accuracy: Although AFNI offers specialised preprocessing tools, its nonlinear registra-
tion lacks the precision needed for small-scale anatomical alignment, which is essential
for functional connectivity analysis in rs-fMRI. Misalignments can reduce the accuracy of
network mapping across RSNs, impacting critical functional networks such as the DMN and
Frontoparietal Networks [59].
Robustness: AFNI’s dependency on user-defined parameters introduces variability, as differ-
ent parameter choices can lead to inconsistent results across studies and sites, challenging
consistency in clinical and multi-site research settings [63].
Computational Demand: AFNI is computationally efficient, which makes it attractive
for many clinical settings. However, this efficiency comes at the cost of spatial precision,
affecting the quality of network alignment in studies that require detailed rs-fMRI analyses
[58].
Clinical Applicability: AFNI’s dependency on user-defined parameters introduces variabil-
ity, as different parameter choices can lead to inconsistent results across studies and sites.
This lack of standardisation limits its applicability, especially in multi-site clinical settings
that require reproducible connectivity analyses [63].

2.3.3 DARTEL

Accuracy: Known for its detailed anatomical alignment, DARTEL is beneficial for analysing
brain regions essential to rs-fMRI connectivity. However, DARTEL struggles to incorporate
multimodal data (e.g., combining structural and functional data), a critical factor in rs-fMRI
where these data types often need integration [66].
Robustness: DARTEL’s dependency on standardised anatomical templates limits its ro-
bustness across diverse populations, as template-based registration may be inadequate for
subjects with anatomical variations [67].
Computational Demand: Similar to ANTs, DARTEL has high computational requirements
that limit its scalability, particularly in clinical settings. Its computational demands make it
challenging for large-scale or high-throughput rs-fMRI analyses, where speed and efficiency
are prioritised [38].
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Clinical Applicability: DARTEL’s reliance on standardised anatomical templates makes
it less effective for populations with non-standard anatomy, such as individuals with neu-
rodevelopmental or neurodegenerative conditions. This reliance on normative templates
suggests a need for template-independent approaches that retain anatomical precision while
accommodating diverse datasets [67].

2.3.4 FSL

Accuracy: FSL’s registration tools are computationally efficient but employ simpler models
that may struggle with complex cortical deformations. This limitation affects rs-fMRI studies,
particularly in regions with intricate folding patterns, such as the Insula or Anterior Cingulate
Cortex, where precise alignment is crucial [61].
Robustness: FSL’s FNIRT tool is generally robust, but its sensitivity to noise, especially in
lower-quality rs-fMRI datasets, can impact network mapping accuracy [61].
Computational Demand: FSL provides a computationally feasible option for clinical use,
especially with its FNIRT and FMRIB’s Linear Image Registration Tool (FLIRT) tools that
offer quicker processing for routine applications. However, this efficiency comes at the
cost of less detailed anatomical accuracy, limiting FSL’s utility in studies requiring highly
nuanced rs-fMRI alignments [61].
Clinical Applicability: FSL is favoured in clinical settings for its computational efficiency,
but its simplicity and sensitivity to noise reduce robustness when handling lower-quality or
noisier rs-fMRI datasets. This limitation suggests a need for noise-resilient adaptations to
enhance its performance in clinical rs-fMRI applications [61].

2.3.5 Emerging Approaches and Future Directions

Emerging ML techniques, particularly DL, offer promising avenues for enhancing the
adaptability and robustness of non-rigid registration across varied data types, including
rs-fMRI, with minimal manual tuning. By learning complex spatial transformations directly
from the data, these methods hold potential for addressing existing challenges in clinical
settings where both time efficiency and precision are essential. For instance, DL architectures
like CNNs and GANs can improve the accuracy of rs-fMRI alignment by learning inter-
subject variability more flexibly than traditional methods [68].

The advent of PINNs adds an additional layer of accuracy by embedding biomechanical
constraints directly into the model training process, which is particularly valuable for patient-
specific applications in rs-fMRI. By incorporating anatomical constraints, PINNs aim to
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provide more consistent alignment across patients with diverse anatomical features, which
may improve registration quality in clinical applications. However, these advanced methods
require rigorous validation to ensure reliability, robustness, and clinical safety across different
imaging conditions and patient demographics [69, 70, 71].

While each registration algorithm discussed has specific strengths and weaknesses—especially
regarding computational demands, parameter sensitivity, and limitations with multimodal
data—adaptive, machine-learning-driven approaches offer a compelling path forward. Ad-
dressing these limitations through such adaptive techniques could enhance the clinical utility
of non-rigid registration in rs-fMRI, ultimately advancing diagnostic accuracy and therapeutic
efficacy [72, 8].

2.4 Importance of Resting-State Networks in Neuroimag-
ing

RSNs are central to neuroimaging research, revealing the brain’s intrinsic functional connec-
tivity by identifying synchronised low-frequency fluctuations across distinct brain regions
during rest. These networks, such as the DMN, Control Network, Visual Network, and
Sensorimotor Networks, provide insights into the brain’s functional architecture underlying
various cognitive functions and states of consciousness [73]. Understanding RSNs has
become crucial in studying both typical and atypical brain function, offering a window into
the brain’s organisation during non-task-based states.

The accurate registration of RSNs is essential for studying their structure and connectivity,
as it enables alignment of functional data across individuals, facilitating group comparisons
and longitudinal studies. Non-rigid registration techniques are often applied to rs-fMRI data
to align subtle anatomical variations across subjects, allowing researchers to map RSNs more
precisely. Given the variability in individual brain anatomy, robust registration methods
improve the reliability of RSN localisation, which is particularly important for analyses
requiring detailed connectivity mapping, such as the identification of RSN alterations in
clinical populations. Effective registration of rs-fMRI data is thus essential in ensuring that
the functional connectivity and spatial organisation of RSNs are accurately captured and
comparable across subjects.

RSNs play a particularly vital role in understanding cognitive functions and consciousness.
For instance, the DMN is notably active during introspective and self-referential thought
processes and shows reduced activity during specific task-directed behaviours [74]. This
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dynamic reallocation of neural resources based on cognitive demands is fundamental to
human cognition and highlights the importance of accurately capturing RSNs to understand
the brain’s intrinsic functionality [75, 76].

The relevance of RSN analysis extends beyond basic research into clinical domains, where
it provides valuable diagnostic insights for various neurological and psychiatric disorders.
Alterations in RSN connectivity patterns are associated with conditions such as Alzheimer’s
Disease, Autism Spectrum Disorder, and Schizophrenia [77, 78]. For example, reduced
connectivity within the DMN has been linked to early stages of Alzheimer’s Disease, offering
a potential biomarker for early diagnosis [79]. Similarly, modifications in the Sensorimotor
Networks in Autism Spectrum Disorders reveal neural underpinnings of sensory and motor
dysfunctions characteristic of these conditions [80]. Effective registration is crucial in these
analyses, as accurate alignment of RSNs allows for the reliable detection of connectivity
changes that may serve as early indicators of disease [81].

Advanced MRI techniques and analytical methods, including Independent Component
Analysis (ICA) and graph-theoretical approaches, have refined RSN studies by enhancing
the accuracy of network identification and providing insights into network organisation,
efficiency, and resilience [82, 83]. These advancements enable a more nuanced understanding
of RSN structure and function, further highlighting the need for precise registration to ensure
that subtle functional connectivity patterns are not lost or misinterpreted.

Understanding RSNs also opens pathways for therapeutic interventions. Neurofeedback
and brain stimulation techniques, which aim to modulate specific RSN activity, show promise
for treating neurological and psychiatric disorders by targeting network-specific dysfunctions
[84, 85]. Longitudinal studies of RSNs, made feasible through reliable rs-fMRI registration,
enable tracking of disease progression and assessment of therapeutic efficacy, offering
significant potential for personalised patient management and improved treatment outcomes.

In summary, RSNs are a bridge between fundamental neuroscience and clinical practice,
providing critical insights into brain functionality. Accurate registration is foundational
in RSN research, ensuring reliable mapping of these networks across individuals. This
capability advances diagnostic and therapeutic strategies in neuropsychiatric care, supporting
interventions aimed at modulating RSNs to improve patient outcomes [86, 87].

2.4.1 Identification and Validation of Seed Regions for RSNs

Identifying reliable seed regions is essential for accurately mapping RSNs in neuroimaging.
These seed regions serve as reference points for functional connectivity analyses, enabling
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the delineation of networks based on coherent, low-frequency BOLD signal fluctuations
across brain regions [25]. The selection of seed regions, often anatomically or functionally
defined, impacts the reliability and interpretability of RSNs. This precision is particularly
vital when investigating the DMN, Control Networks, or Sensorimotor Networks, where
minor variations in seed placement can significantly alter connectivity patterns and network
topography [74]. For instance, research on DMN dynamics highlights that fluctuations within
specific seed regions, such as the medial prefrontal cortex or Posterior Cingulate Cortex
(PCC), correlate with self-referential thought and consciousness, thereby highlighting the
need for robust seed selection [75].

Multiple methodologies are used to validate the anatomical and functional fidelity of
these seed regions. Advanced tools like ICA facilitate the extraction of network-specific
activity, further validating seed regions by matching functional boundaries with predefined
anatomical markers [82]. Moreover, atlases and parcellation methods based on structural
templates (e.g., the Desikan-Killiany atlas) provide standardised regions that can be adapted
as seeds across subjects, enhancing reproducibility in large-scale studies [88]. This alignment
with neuroanatomical benchmarks is essential when analysing RSN alterations in clinical
populations, where deviations from typical seed-based connectivity patterns may signify
pathological states, such as in Alzheimer’s Disease or Schizophrenia [77].

Recent advancements, including ML-based frameworks and graph-theoretical approaches,
have optimised the identification and validation of seed regions. Algorithms such as GNN
allow for dynamic adaptation of seed regions based on connectivity patterns, thereby improv-
ing the robustness of RSN mapping under varying anatomical conditions [89]. Additionally,
validation methods employing statistical measures like the Dice Similarity Coefficient (DSC)
ensure consistency in seed-based connectivity across datasets, enabling more accurate inter-
pretations of RSNs in both health and disease contexts [90]. These validation techniques,
when applied in tandem, improve the precision of seed region selection, allowing for a more
reliable detection of RSNs and their functional roles in human cognition and neuropathology.

While seed-based methods are widely used to identify RSNs, they come with certain
limitations. A major challenge is the anatomical differences among individuals, which
can make it difficult to reliably pinpoint RSNs, especially in clinical populations where
brain structure may be altered. Although standardised atlases like the Harvard-Oxford
provide consistent regions for analysis, they may not capture small, meaningful differences
in RSNs between individuals, which can affect the accuracy of connectivity patterns [88,
91]. Additionally, seed-based approaches assume that connectivity is stable within specific
regions, but connectivity can vary depending on cognitive state or health conditions. For
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example, techniques such as ICA are effective in extracting network-specific signals but can
sometimes produce overlapping results, which can make it harder to interpret the unique
activity of each RSN [82, 86].

Statistical validation tools, like the Dice coefficient, help ensure consistency in identifying
RSNs, but they may not be sensitive enough to detect small but important changes in
connectivity patterns, which are often relevant in conditions like Alzheimer’s Disease or
Schizophrenia [77, 90]. In summary, while these seed selection and validation techniques
are valuable for mapping RSNs, it’s essential to interpret findings carefully, especially when
studying populations with varied or atypical brain structures.

2.5 The Role of Standard Templates in Neuroimaging

Standard templates are crucial in neuroimaging, providing a shared spatial reference that
facilitates consistent image alignment and interpretation. They ensure that individual neu-
roimaging data can be mapped to a common coordinate space, enabling meaningful compar-
isons across subjects and studies. This consistency is particularly important in group-level
analyses, where precise registration supports accurate alignment of complex brain structures.

2.5.1 Introduction to the MNI152 Template

The Montreal Neurological Institute 152 (MNI152) template is widely used in neuroimaging
as a standard reference [82]. Derived from averaging 152 high-resolution MRI scans of
healthy young adults, it offers detailed anatomical representation and alignment in stereotactic
space, serving as a robust baseline for various analyses, including Voxel-Based Morphometry
(VBM) and functional alignment [7, 48].

The MNI152 template’s high anatomical detail and broad adoption support reproducibility
and facilitate the use of standard preprocessing pipelines that enhance alignment consistency
[30, 38]. This is particularly beneficial for studies using non-rigid registration algorithms,
where precision affects analyses such as network integrity and functional connectivity.

2.5.2 Advantages and Limitations of the MNI152 Template

The MNI152 template has several key advantages and limitations that influence its application
in neuroimaging.

Table 2.2 illustrates that the MNI152 template’s high anatomical resolution enhances reg-
istration accuracy, and its compatibility with major neuroimaging tools facilitates consistent
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preprocessing and broad applicability in research [82, 30, 38]. However, its development
from a sample of young, healthy adults may limit its generalisability to older or clinical pop-
ulations [8]. Additionally, while effective in many contexts, the template may not sufficiently
capture subtle inter-subject variability, which can impact alignment precision, especially in
diverse study cohorts [38].

Table 2.2 Advantages and Limitations of the MNI152 Standard Template.

Advantages Limitations
High resolution aids in accurate regis-
tration [82].

Developed from young, healthy adults,
which may not represent older or clini-
cal populations [8].

Seamless integration with popular neu-
roimaging tools like FSL and ANTs
[38, 48].

May not capture subtle inter-subject
variability fully, affecting alignment ac-
curacy in diverse groups [38].

Supports consistent preprocessing
across studies, enhancing reproducibil-
ity [82, 30].

Template resolution may not align with
scanner variability, potentially introduc-
ing alignment errors [92].

Choice of MNI152 for NRAAF Development

The MNI152 template was chosen for the NRAAF due to its detailed anatomical represen-
tation and widespread acceptance. This choice ensures registration results are interpreted
in a common space, supporting robust evaluation of non-rigid registration algorithms. The
MNI152 template’s compatibility with advanced tools and extensive use enhances repro-
ducibility and precision [82, 48].

Despite its population-specific limitations, its high anatomical detail balances precision
and general applicability, making it suitable for NRAAF’s focus on non-rigid registration
performance. Future iterations of the framework could incorporate templates tailored for
specific populations to improve alignment accuracy [8, 30].
In summary, the MNI152 template’s role as a standard reference supports consistent image
registration and robust group analyses. Its integration into the NRAAF aids in system-
atic evaluations, advancing understanding of how non-rigid registration algorithms impact
neuroimaging results.
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2.6 Evaluation Methods of Registration

Accurate and efficient evaluation of non-rigid registration techniques is essential within
computational neuroscience, where the precision of registration algorithms directly impacts
the reliability of neuroimaging analyses [93, 16]. Misalignments in registration can introduce
errors in downstream analyses, potentially distorting interpretations of neural connectivity
and brain function [16, 2]. The complexity of brain anatomy and the variability between
subjects further highlight the necessity of robust evaluation metrics that consider accuracy,
robustness, computational efficiency, and scalability. Traditional measures, such as the
DSC and MI, have been instrumental but often fall short in capturing the subtle spatial
correspondences required for high-resolution and multi-modal fMRI data [94, 95].

Recent studies highlight the limitations of conventional metrics and advocate for the
inclusion of ML-based approaches to enhance the sensitivity and specificity of registration
evaluation frameworks [6, 69]. Metrics informed by Multivoxel Pattern Analysis (MVPA) and
MI, for instance, have shown promise in revealing finer intersubject variances in functional
neuroimaging, particularly in clinical contexts where precise mapping is critical for diagnosis
and treatment [96, 97]. These methods also accommodate the computational demands of
real-time fMRI, aligning with broader trends toward automated and adaptive neuroimaging
processes [39, 48].

In this section, we detail the evaluation metrics applied in this study, including their math-
ematical foundations and relevance to functional neuroimaging applications. Each metric
is critically discussed with an emphasis on addressing known limitations and highlighting
research gaps where innovative techniques may provide advancements, particularly in the
context of neuroimaging scalability and multimodal integration.

2.6.1 Key Metrics for Evaluation

Key metrics assessing the registration accuracy used in this study are introduced here,
including their challenges and limitations.

• Dice Similarity Coefficient: DSC quantifies the spatial overlap between functional
regions after registration, effectively assessing alignment accuracy. Defined as:

DSC =
2|A∩B|
|A|+ |B|

(2.3)

where A and B denote voxel sets from registered and target images, respectively.
Here, |A∩B| represents the number of shared voxels between A and B, signifying
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the overlapping region. The term |A| corresponds to the total number of voxels
in region A, while |B| represents the voxel count in region B. By multiplying the
intersection by 2, DSC ensures symmetry and provides a normalised score from 0 to
1, where values close to 1 indicate near-perfect overlap. This measure is essential for
applications in functional neuroimaging where spatial accuracy is critical, though it
is limited by its sensitivity to voxel intensity variations and inability to detect subtle
shape differences. Refining DSC or developing alternative metrics may enhance its
application for complex brain structures [16, 94].

• Mutual Information: MI measures the statistical dependency between two images,
assessing the amount of shared information between them. Mathematically, MI is
defined as:

MI(I,J) = ∑
i, j

p(i, j) log
(

p(i, j)
p(i)p( j)

)
(2.4)

In this equation, p(i, j) represents the joint probability of intensity levels i in image I

and j in image J, indicating how often corresponding voxel intensities appear together.
p(i) and p( j) denote the marginal probabilities of each intensity level in I and J,
respectively. MI achieves higher values when there is a strong statistical association
between the voxel intensities in both images, making it highly valuable for cross-
modal image alignment (e.g., MRI and PET), where intrinsic brain activity alignment
is critical. However, MI can be computationally intensive and may struggle with
low-intensity variability regions. Future improvements could focus on optimising
computational efficiency and integrating anatomical context for better performance in
real-time functional imaging applications [93, 2, 95].

• Peak Activation Intensity Analysis: This metric, often employed in FSL’s FMRI
Expert Analysis Tool (FEAT), focuses on localising peak activation points within
statistical maps of brain activity. This approach aids in pinpointing specific neural
activation sites, offering high precision for interpreting neural patterns within brain
clusters. Peak Activation Intensity Analysis provides valuable insights into spatial
accuracy, which is crucial for investigating task-specific brain regions and observing
group-wise functional differences [98]. However, it does not account for the spread of
activity or interactions between adjacent clusters. Future enhancements could include
integration with spatial regularisation techniques to assess regional connectivity along-
side peak activations, providing a more comprehensive view of functional localisation
[99].
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• Cluster-Based Evaluation: Cluster-based evaluation is a statistical approach used
in FSL to assess spatial distribution and cluster-level consistency of brain activity,
commonly through cluster-wise correction methods in FEAT. This metric assesses the
stability and reproducibility of brain activity clusters across subjects, thus supporting
analyses of functional network integrity across experimental conditions [100]. While
effective for identifying broad patterns, it can overlook finer intra-cluster variations
and minor connectivity changes, limiting sensitivity to subtle neural shifts. To address
these limitations, future methods could focus on intra-cluster variability analysis and
adapt dynamic clustering to track functional connectivity shifts, thereby enhancing
network-level interpretation in neuroimaging [101].

2.6.2 Public Datasets for Neuroimaging Research

The use of publicly available datasets is critical for advancing neuroimaging research, as it
facilitates reproducibility, comparison, and validation of results across studies. Access to
diverse, high-quality datasets allows researchers to conduct robust analyses, develop new
methodologies, and assess their generalisability across various populations. This research
considered several publicly available neuroimaging datasets to support comprehensive eval-
uation and ensure that findings are based on data representative of broader neuroimaging
practices.

Table 2.3 presents a summary of notable public datasets that were evaluated for potential
inclusion in this study. Each dataset was assessed based on its sample size, data quality,
imaging modalities, and relevance to non-rigid registration tasks. The Amsterdam Open

MRI Collection (AOMIC) [102] was ultimately selected due to its extensive sample size
(N = 815), diverse imaging modalities—including structural MRI, functional MRI (fMRI),
and Diffusion-Weighted Imaging (DWI)—and detailed demographic information. The
availability of resting-state fMRI (rs-fMRI) data within AOMIC makes it particularly suitable
for analysing registration performance in functional neuroimaging contexts. The public
availability of these datasets ensures transparency and enhances the comparability of results
across different studies. Further details on the dataset selection criteria and justification are
provided in Chapter 3.

The selection of AOMIC supports the study’s aim of performing comprehensive, nuanced
analyses of brain function and registration algorithm performance. The dataset’s inclusion of
fMRI and structural imaging data enables the examination of both functional connectivity
and anatomical alignment in neuroimaging workflows. Additionally, the dataset’s public
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Table 2.3 Public datasets employed in state-of-the-art and DL-based medical image registra-
tion which were considered for this research. This list is not exhaustive, as datasets continue
to evolve. The datasets are organised by the region of interest (ROI). The Amsterdam Open
MRI Collection (AOMIC) (highlighted in italics) was ultimately selected due to its large
sample size and emphasis on fMRI.

ROI Dataset Modality
Abdomen,
Lungs

Learn2reg 2020 Lung CT, Abdominal CT-
MRI50 [103]

CT, MRI

LIDC-IDRI, LUNA16 [104] CT

Brain
The Amsterdam Open MRI Collection [102] MRI, fMRI, DWI (MR)
ADNI [105] MRI, CT, CBCT, US,

TRUS, x-ray
NIREP, LPBA, IBSR, CUMC, MGH [106] CT, MRI, x-ray, PET,

SPECT, fMRI,
OASIS ,ABIDE, ADHD200, MCIC, PPMI,
HABS, Harvard GSP, the FreeSurfer Buck-
ner40 [68]

MRI, US

OASIS, HCP-A, BIRN [107] MRI
IXI Brain Development Dataset [108] MRI
ENIGMA-Schizophrenia DTI [109] DTI
BLSA, Cutting Pediatrics, ABIDE, IXI,
ADHD200, NDAR, OASIS, fcon_1000,
NKI_rockland [110]

MRI

BraTS , ALBERTs, CT-MRI dataset, LPBA40,
IBSR18, CUMC12, MGH10, Continuous Reg-
istration Challenge [111]

CT, MRI

Heart
NIH ChestXray14 [112] MRI, x-ray
NLST, DIR-Lab[43] CineMRI, CT
Grand Challenges in Biomedical Image Analy-
sis, The Cancer Imaging Archive, "ChestX-ray
8" [113]

CT, MRI, PET, x-ray

Liver RaFD [114] CT, MRI
Pelvis LPBA40, IBSR18, CUMC12, MGH10 [115] CT, MRI
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availability ensures that the findings can be independently verified and extended by future
studies, enhancing the reproducibility and impact of this research.

2.7 Research Gap: Challenges in Practical Applicability

Despite significant advancements in non-rigid registration methods for neuroimaging, there
remains a considerable gap in the practical applicability of these algorithms, particularly
concerning clinical adoption and large-scale research implementation. Current research
largely focuses on developing novel methods and enhancing algorithmic precision; however,
practical challenges—including computational cost, lack of standardised validation protocols,
and issues in adaptability—hinder widespread adoption in real-world settings [57, 95, 2, 9,
31, 116].

One primary obstacle is the computational expense associated with non-rigid registration,
especially in high-resolution and multimodal neuroimaging applications. Algorithms often
require extensive processing time and resources, making them less feasible for clinical
environments where time efficiency is critical [41, 50, 115]. This high computational demand
limits the accessibility of non-rigid registration tools in settings where real-time analysis or
rapid processing is required, particularly in clinical decision-making contexts.

Another notable barrier is the lack of standardised evaluation and validation frameworks
[117, 118, 119]. Most studies prioritise algorithmic innovation over comprehensive evalua-
tion, resulting in tools whose strengths and limitations are not fully understood across diverse
datasets, modalities, and anatomical regions [95, 120, 40, 4]. This lack of standardisation
makes it challenging to assess algorithmic performance consistently, thus impeding the
benchmarking of novel methods against established standards. Without a unified framework
for assessing algorithm reliability, reproducibility across studies is compromised, limiting
the potential for clinical translation and broad adoption [121, 72].

Additionally, non-rigid registration methods often exhibit sensitivity to parameter settings
and variability in performance across different anatomical regions and patient populations. In
clinical settings, the requirement for manual tuning and adaptation of algorithms to individual
cases limits their scalability and practical utility [6, 48]. Furthermore, these algorithms’ adap-
tation to varying imaging modalities (e.g., MRI, fMRI, CT) presents additional complexity
that must be addressed to ensure seamless integration into existing clinical pipelines.

This thesis seeks to address these challenges through the implementation of the NRAAF,
which systematically evaluates the accuracy, robustness, and efficiency of state-of-the-art non-
rigid registration algorithms with a specific emphasis on resting-state fMRI. By establishing
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2.8 Chapter Summary

a structured comparison and validation approach, this research aims to enhance the reliability,
scalability, and clinical relevance of neuroimaging registration tools, contributing to more
accurate diagnostic and therapeutic applications in computational neuroscience.

2.8 Chapter Summary

Chapter 2 provides an extensive review of the frameworks, methodologies, and emerging
techniques used in non-rigid registration within neuroimaging, highlighting the critical
importance of thorough evaluations over simply focusing on novel algorithm development.
The chapter begins by defining non-rigid registration and its foundational role in medical
imaging analysis, especially in accurately aligning complex neuroanatomical structures. It
highlights recent advancements in ML and DL, such as CNNs, which improve the adaptability
and precision of registration algorithms in addressing the diverse anatomical and functional
variances across subjects.

The chapter thoroughly reviews traditional and modern non-rigid registration methods,
including B-Spline registration, the Demons algorithm, SyN within ANTs, and DL-based
approaches like VoxelMorph. For each method, detailed discussions focus on its theo-
retical underpinnings, computational strengths, and limitations in practice. For example,
B-Spline registration provides fine control over local deformations but struggles with large-
scale datasets, while the Demons algorithm offers computational efficiency yet may lack
robustness in noisy datasets. Moreover, the chapter explores cutting-edge advancements,
including PINNs, GANs, and RL-based approaches, which promise to improve registration
accuracy in challenging cases by embedding domain-specific constraints or learning optimal
transformations directly from data.

In addition to evaluating specific algorithms, the chapter also addresses the practical
challenges faced by these techniques. These include computational demands, sensitivity to
initialisation parameters, and the challenges of registering multimodal datasets. There is
a strong emphasis on the need for comprehensive performance metrics, such as accuracy,
robustness, and computational efficiency, to ensure clinical applicability. State-of-the-art non-
rigid registration algorithms like ANTs, DARTEL, AFNI, and FSL are critically analysed with
respect to these challenges, exploring issues like template selection, voxel-wise hypothesis
testing, and robustness to noise and artifacts.

The chapter further examines the role of RSNs in neuroimaging, emphasising their
importance in understanding intrinsic brain connectivity and their clinical relevance for
neurological disorders. Techniques for RSN analysis, such as independent component
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analysis and seed-based correlation analysis, are discussed as valuable tools for identifying
network alterations associated with various neurological conditions.

Concluding the chapter is an advocacy for multidimensional assessment frameworks to
evaluate non-rigid registration methods. The chapter highlights the necessity of structured
evaluation protocols and benchmarking on standardised datasets to ensure reproducible and
clinically reliable outcomes. Quantitative metrics like Target Registration Error (TRE) and
MI are explored for assessing accuracy and robustness, with reproducible research practices
highlighted as essential for cross-study and cross-laboratory validation.

The following chapters will build upon this foundation by detailing how these perfor-
mance metrics and methodologies are applied in real-world neuroimaging scenarios. Chapter
3 introduces the NRAAF framework, which aims to address the challenges of anatomical
variability and ensure robust functional connectivity mapping in fMRI studies. The chapter
outlines how the NRAAF framework systematically evaluates algorithms like ANTs, DAR-
TEL, AFNI, and FSL, examining their contributions to spatial alignment, computational
efficiency, and reproducibility. This analysis demonstrates the practical implications of the
methods reviewed in Chapter 2 and illustrates how these algorithms influence the accuracy
and reliability of neuroimaging outcomes. The structured approach in NRAAF will inform
the broader discussions on algorithm selection and the impact on functional connectivity
studies presented in the subsequent chapters.
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Chapter 3

NRAAF - Non-Rigid Registration
Algorithm Analysis Framework

This chapter introduces the Non-Rigid Registration Algorithm Analysis Framework (NRAAF),
an innovative approach developed to address significant challenges in anatomical variability
and ensure robust functional connectivity mapping in Resting-State Functional Magnetic
Resonance Imaging (rs-fMRI) studies [25, 27]. The NRAAF framework aims to enhance
neuroimaging analysis by providing a comprehensive evaluation and characterisation of non-
rigid registration algorithms, thereby promoting improved spatial alignment across subjects
and enabling accurate, reproducible neuroimaging results [28, 30]. As anatomical variability
can substantially impact functional connectivity interpretation [64, 122], the framework is
essential for addressing alignment consistency and thereby strengthening our understanding
of brain connectivity patterns. An overview of the framework’s methodology, visualised in
Figure 3.1, visually illustrates the processing pipeline and its integral components.

The NRAAF framework sets out to achieve several critical objectives in neuroimaging
research. Primarily, it ensures consistency in spatial alignment across individuals, optimising
algorithm selection to improve precision and reproducibility in functional neuroimaging [60,
57]. By integrating both univariate and Multivoxel Pattern Analysis (MVPA) techniques, the
framework offers a robust platform for evaluating algorithmic performance and interpreting
fMRI data with high fidelity [123, 124]. In doing so, it facilitates reproducible findings across
studies, contributing valuable insights into the role of registration algorithms in neuroimaging
pipelines [125, 61].

Figure 3.1 presents the NRAAF framework’s comprehensive processing pipeline. This
pipeline integrates multi-modal data (including structural and functional images) with the
Montreal Neurological Institute 152 (MNI152) standard template to ensure precise anatomical
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alignment [126, 127]. By supporting parallel operations, the pipeline can process multiple
datasets simultaneously, enhancing computational efficiency and enabling rigorous inter-
subject comparisons [63]. This adaptability allows the framework to be applied across
different neuroimaging modalities, offering flexibility for diverse research objectives and
designs [128, 129].

Fig. 3.1 Illustration of the NRAAF framework’s functional and structural pre-processing
stages, followed by non-rigid registration of images to the MNI152 standard template. Fol-
lowing registration, functional clusters were identified using FSL FEAT and then integrated
into a General Linear Model. These clusters served as input to a SVM, which determined
the decision boundary, representing the contribution of registration accuracy to activation
intensity. The pipeline concludes with statistical analysis and visualisation through MATLAB
R2023a.

This chapter will further detail the evaluated algorithms, dataset characteristics, pre-
processing procedures, and the specific evaluation metrics used. The section concludes with
an analysis that highlights the NRAAF framework’s potential in advancing neuroimaging
methodologies.

3.1 Implementation

This section details the computational resources, software applications, and specific proce-
dures used for image registration and analysis within NRAAF.
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3.2 Evaluated Algorithms and Methodological Considerations

3.1.1 Computational Resources

The registration and analysis were conducted on a CentOS 8.2.2004-x86_64 machine (Dell
PowerEdge R740 Rack Server) equipped with Intel Xeon Gold 6240 processors (288 cores)
and 720GB DDR4 RAM. This setup enabled efficient parallel processing of the computation-
ally demanding tasks in neuroimaging analysis.

3.1.2 Software Applications

FSL 6 [61], Freesurfer 7.4 [125], and Matrix Laboratory (MATLAB) R2023a [130] were em-
ployed for preprocessing, registration, and visualisation of neuroimaging data. Visualisations
were generated using MATLAB and Freesurfer Freeview 3.0 [127].

3.2 Evaluated Algorithms and Methodological Considera-
tions

In line with the NRAAF framework’s objectives of enhanced spatial alignment and re-
producibility in rs-fMRI studies, this section provides an in-depth look into the evaluated
algorithms, discussing selection criteria, algorithmic approaches, and each tool’s unique
methodological contributions to neuroimaging.

The section outlines the critical considerations and specific algorithmic configurations
to maximise spatial alignment and analytical precision. The summary table (Table 3.2)
provides a comparative overview to streamline understanding of each tool’s notable attributes,
optimisations, and applications.

3.2.1 Algorithm Selection Rationale

The selection of non-rigid registration algorithms—Advanced Normalisation Tools (ANTs),
Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL),
Analysis of Functional NeuroImages (AFNI), and FMRIB Software Library (FSL)—aligns
with the NRAAF’s core objective of supporting robust, adaptive, and precise neuroimaging
analysis. Each tool was chosen based on established performance metrics, precision in
anatomical alignment, and their flexibility in handling complex neuroimaging datasets. A
summary of these selection criteria is presented in Table 3.1.

The NRAAF framework is structured to not only evaluate the current selection of al-
gorithms but also to be scalable and adaptable for future expansions. The modular design
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Table 3.1 Summary of algorithm selection rationale.

Algorithm Rationale for Selection
ANTs High spatial accuracy and symmetric normalisation, well-

suited for detecting subtle anatomical variations crucial for
longitudinal and morphometric studies [128, 57, 64].

AFNI Customisable fMRI data processing capabilities, including
3dQwarp for non-rigid transformations, enhancing its adapt-
ability to diverse neuroimaging paradigms [58, 131].

DARTEL High-dimensional warping with group-specific template gen-
eration, supporting topological preservation in morphometric
analysis [60, 123].

FSL Versatile suite with FLIRT for linear and FNIRT for non-
rigid registration, providing compatibility with standard cost
functions and multi-modal data [61, 129, 126].

allows for the seamless integration of emerging tools as they are developed. This adaptabil-
ity ensures that NRAAF remains a relevant benchmark for assessing the performance and
robustness of registration methods in neuroimaging studies, thereby supporting continuous
advancements in research methodologies and clinical applications.

3.2.2 Algorithmic Approaches and Parametrisation

Each of these algorithms employs distinct registration strategies and parameter configurations
that align with the NRAAF framework’s objectives. The parametrisation focuses on achiev-
ing optimal alignment with minimised computational load, tailored to each tool’s specific
strengths:

• ANTs employs symmetric normalisation, a feature specifically beneficial for longi-
tudinal studies or tasks requiring intricate alignment of anatomical landmarks. This
non-rigid registration approach enhances ANTs’ utility in morphometric studies, cap-
turing fine anatomical details that are often critical in clinical research [128].

• AFNI leverages its 3dQwarp for non-rigid registration, which allows users to adjust
parameters for customised accuracy. Its fMRI specialisation makes AFNI especially
beneficial in studies focusing on functional connectivity [63].

• DARTEL, with its diffeomorphic mapping, is implemented to create group-specific
templates, which is highly advantageous in voxel-based morphometry. DARTEL’s
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methodology ensures topological consistency, allowing it to maintain the natural
geometry of the brain structures under analysis [60, 125].

• FSL utilises FLIRT for affine transformations and FNIRT for non-rigid registration.
FNIRT’s approach emphasises computational efficiency and accommodates local
deformations, providing flexibility for diverse image alignment tasks [126, 132].

Each tool holds distinctive strengths and should be chosen according to the specific demands
of a study, such as the need for precise measurements or specialised tasks like volumetric
analysis or highly accurate morphometric analyses.

3.3 Data and Seed Region Selection

This section details the dataset attributes and the rationale for selecting specific seed re-
gions, ensuring methodological rigour in the NRAAF framework’s approach to functional
connectivity mapping in rs-fMRI analysis.

3.3.1 Dataset Overview

The Amsterdam Open MRI Collection (AOMIC) [102] was selected for its comprehensive
dataset, including a diverse sample and multi-modal imaging options well-suited for assessing
the generalisability of neuroimaging algorithms (see Table 2.3 in Chapter 2). The AOMIC
dataset’s variability supports the NRAAF framework’s goal of robustly testing registration
algorithms across anatomically diverse subjects, making it an ideal choice for studies of
functional connectivity within the Default Mode Network (DMN) and associated Control
Network.

3.3.2 Seed Region Selection

To evaluate functional connectivity within the Control Network, this study focuses on a
seed region in the Posterior Cingulate Cortex (PCC). This region, commonly associated
with higher-order control processes such as attention regulation, was selected based on work
adapted from previous literature, including Doria et al. [134], on neonatal and developmental
neuroimaging research.

The selected PCC seed region coordinates, shown in Figure 3.2, align with established
findings and facilitate a consistent approach to investigating Control Network functionality,
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3.4 Data Pre-Processing Steps

enabling comparability with previous studies. This region was further validated through
anatomical reference to the Harvard-Oxford cortical atlas, ensuring its compatibility with
the AOMIC dataset and enhancing the robustness of functional connectivity analysis. The
Figure 3.2 illustrates this alignment, with the seed region depicted in standard MRI views
alongside its overlay on the Harvard-Oxford atlas. Key anatomical landmarks within the
atlas—such as the Paracingulate Gyrus (green), Anterior Cingulate Gyrus (red), and Posterior
Cingulate Gyrus (blue)—provide an anatomical framework, confirming the seed region’s
precise localisation within the broader cortical architecture.

Fig. 3.2 Top row: MRI views (sagittal, coronal, axial) of the selected seed region within the
Control Network, located in the Posterior Cingulate Cortex, associated with attention regula-
tion. Bottom row: Anatomical overlay with the Harvard-Oxford cortical atlas, highlighting
the Paracingulate Gyrus (green), Anterior Cingulate Gyrus (red), and Posterior Cingulate
Gyrus (blue), providing anatomical context for the Control Netwrok seed region.

3.4 Data Pre-Processing Steps

This section outlines the pre-processing workflow, carefully designed to isolate image
registration as the primary variable in the analysis. Each step, from file preparation to brain
extraction, motion correction, and spatial normalisation, was conducted on a CentOS HPC
using Simple Linux Utility for Resource Management (SLURM)-managed [135] parallel
processing to handle the substantial data volume efficiently. This workflow aligns with best
practices in neuroimaging research, ensuring both reliability and reproducibility [136, 94,
39].
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3.4.1 File Preparation

Structural (T1-weighted) and functional MRI images were processed in NIFTI format,
chosen for its compatibility with neuroimaging software such as FSL and its suitability for
high-quality workflows [102]. Each dataset was organised into directories specific to each
registration algorithm to enable efficient batch processing. Custom SLURM scripts were
used to automate file handling and manage the parallel processing required by the high
data volume. This process facilitated consistent data preparation across all subjects and
algorithms, ensuring a standardised pipeline.

3.4.2 Brain Extraction

The FSL Brain Extraction Tool (BET) [137] was applied to T1-weighted images with default
parameters to produce consistent skull-stripping across all subjects. BET’s reliability in
isolating brain structures has been widely established, making it ideal for aligning structural
and functional data. A SLURM-based batch command processed BET in parallel, enabling
high-throughput and uniform application of brain extraction. Figure 3.3 illustrates this
process, showing T1-weighted MRI images pre- and post-extraction in sagittal, coronal, and
axial views for comparison.

Fig. 3.3 Brain extraction process using FSL BET. Top row: Original T1-weighted MRI
showing sagittal, coronal, and axial views of the full head image. Bottom row: Skull-stripped
brain views in the same orientations, highlighting the isolation of brain structures crucial for
accurate alignment with functional data.
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3.4.3 Motion Correction

Motion correction was performed on the entire 4D fMRI time-series using FSL Motion
Correction FMRIB’s Linear Image Registration Tool (MCFLIRT) tool without additional
parameters to maintain consistency across subjects [126]. After motion correction, the
fslmaths tool with the -Tmean option was used to generate an average representative frame
from the corrected 4D series for each subject. This average frame served as a stable reference
and was then registered to the subject’s structural T1-weighted image using linear (rigid)
transformation. This approach minimised the number of transformations applied to the actual
4D time-series, reducing the risk of data degradation through repeated interpolation [136].

3.4.4 Voxel Resolution and its Implications

In MRI, voxels represent the smallest 3D data units, each corresponding to a specific volume
of brain tissue. For this study, structural images were obtained at a 1x1x1 mm voxel
resolution, while functional images were acquired at a 2x2x2 mm voxel resolution. The 2mm
voxel size was chosen to balance spatial resolution with the Signal-to-Noise Ratio (SNR)
and computational efficiency. Higher voxel resolution, while enhancing anatomical detail,
often reduces SNR, making the 2mm choice optimal for capturing resting-state functional
connectivity patterns without compromising data quality [138, 94]. Figure 3.4 demonstrates
the effect of voxel resolution on image quality, comparing a high-resolution 1mm voxel with
a larger 7mm voxel. This illustration highlights the trade-off between spatial resolution and
signal strength, where smaller voxels provide finer anatomical detail at the expense of SNR,
a critical consideration in fMRI analysis.

3.5 Spatial Normalisation

Spatial normalisation was performed in a two-step process to maintain the quality of the 4D
fMRI data. First, the average motion-corrected frame from each subject’s 4D time-series
was registered to the subject’s brain-extracted T1-weighted image using a rigid (linear)
transformation. The resulting transformation matrix was stored for later use. Subsequently,
each subject’s structural T1-weighted image was non-rigidly registered to the MNI152
2mm standard template, which is widely used in neuroimaging studies to ensure consistent
anatomical alignment across subjects [136]. This transformation was stored as a deformation
field, which was later applied in combination with the rigid transformation matrix to normalise
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Fig. 3.4 Comparison of voxel resolutions. Left: 1mm voxel, providing fine anatomical detail
(higher resolution) but with potentially lower signal strength. Right: 7mm voxel, showing
increased signal but reduced spatial detail (lower resolution). Choice of voxel size influences
the precision of functional connectivity mapping in fMRI analysis.

the full 4D fMRI time-series into MNI152 space. The normalised data was then visually
inspected using FSL slicesdir tool, ensuring quality control at each step [62].

A flowchart summarising the spatial normalisation process is shown in Figure 3.5. This
diagram visually outlines each stage, from the initial input of 4D fMRI data and T1-weighted
images to the final quality control step, enhancing the understanding of the pipeline’s
sequential nature.

3.5.1 Image Registration Process

The registration process is tailored to meet the specific demands of fMRI analysis, with a
focus on efficiency, algorithmic comparability, and data integrity:

• Efficiency in Execution: Parallelised registration was implemented to handle the total
of 6520 3D-3D (both rigid and non-rigid) registrations and 3260 3D-4D transforma-
tions, significantly reducing processing time [139].

• Iterative Approach: Algorithms were systematically swapped to facilitate a compara-
tive analysis of each method’s performance, particularly within the AOMIC-ID1000
dataset.

• Data Integrity Preservation: Transforming 4D fMRI data directly to the MNI152
template using pre-saved transformations mitigated quality degradation typically asso-
ciated with repeated registrations [140, 65, 61].
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3.5 Spatial Normalisation

Fig. 3.5 Flowchart illustrating the spatial normalisation process for 4D fMRI data. The
process involves rigid registration to the T1-weighted image, non-rigid registration to the
MNI152 template, and application of combined transformations, concluding with visual
inspection for quality control.
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3.5.2 Processing

Following preprocessing, each subject’s images were aligned to a standard template through
the following steps:

1. Linear Registration: Establishes intra-subject consistency for individual brain images,
validated through prior methodologies [60, 141].

2. Non-Rigid Registration: Ensures inter-subject consistency, compensating for anatom-
ical variability and aligning images to the MNI152 template [142, 106, 143].

3. Transformation Application: Maintains inter-subject comparability by standardising
images within MNI152 space [60, 141].

4. Statistical Analysis: Combines univariate analyses using General Linear Model
(GLM) fitting via FSL FEAT with multivoxel method, MVPA, for voxel-wise com-
parisons. It incorporates DSC as a spatial overlap metric, and MI for a thorough
assessment [90, 39].

The registration process used in this study is visualised in the Figure 3.5 and an example of
non-rigid registration is shown in the Figure 3.6. This image shows fMRI before registration
and after registration aligning the subject’s brain to a standard space.

3.6 Evaluation Metrics

The registration process is fundamental to achieving consistent spatial alignment across
subjects in fMRI studies, especially when evaluating non-rigid registration algorithms. This
section outlines the steps involved in the spatial registration process, followed by a description
of the evaluation metrics within the NRAAF, which are tailored to assess neuroimaging
quality comprehensively.

Evaluation Metrics in NRAAF The NRAAF evaluates the performance of registration al-
gorithms with metrics that address both voxel-level precision and broader spatial consistency,
ensuring a robust framework for neuroimaging quality assessment. The metrics include:

• Peak Activation Intensity: This metric assesses the distribution of peak intensities
within significant activation clusters. Using the lmax_zstat.txt output from FSL FMRI
Expert Analysis Tool (FEAT), this metric identifies local maxima within statistically
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Fig. 3.6 Non-rigid fMRI registration to the MNI152 template. The top row (Before Reg-
istration) shows sagittal, coronal, and axial views of a subject’s brain with misalignment
to the template. The bottom row (After Registration) demonstrates registered (aligned)
image, with smoother contours and better anatomical matching. This comparison highlights
the effectiveness of non-rigid registration in enhancing spatial precision for cross-subject
analysis.
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significant regions, providing insights into each algorithm’s sensitivity to high-activity
areas, which is essential for accurate brain activity mapping [132]. This metric is
evaluated in Chapter 4.

• Cluster-Based Evaluation: Using the cluster_zstat.txt file from FSL FEAT, this metric
evaluates the spatial distribution and coherence of activation clusters, indicating the
extent to which each algorithm preserves functional network structures within the brain.
This helps to identify algorithms that better maintain the spatial integrity of neural
clusters [132]. The results of this metric are evaluated in Chapter 5.

• Pairwise Discriminative Analysis: This novel metric uses Support Vector Machine
(SVM) within a MVPA framework to perform voxel-wise pairwise comparisons of
algorithms. By calculating SVM weights across voxel intensities for each pair of algo-
rithms, it highlights regions where algorithms exhibit significant variation in functional
activation. Each voxel’s SVM weight quantifies the distinctive contribution of one
algorithm over another, producing an intensity weight map that reveals differential
activation patterns essential for functional connectivity analyses [144, 145]. This
metric is presented in Chapter 6.

• Spatial Overlap and Consistency: This metric employs cluster_mask_zstat files and
the Dice Similarity Coefficient (DSC) to measure the spatial similarity of activation
clusters between algorithms. A high DSC score reflects greater overlap and indicates a
consistent mapping of functional networks, which is crucial for Resting-State Network
(RSN) studies that rely on spatial reproducibility [146]. Analysis of this metric is also
presented in Chapter 6.

Each metric in Table 3.3 provides a unique perspective on algorithmic performance, offering
a well-rounded assessment of the impact of registration algorithms on both anatomical
alignment and functional mapping. NRAAF combines these metrics in univariate and MVPA
to evaluate algorithmic impact on neuroimaging quality in a complementary approach:

• Univariate Analysis via FSL FEAT: FSL FEAT employs GLM to assess spatial
precision [61]. Utilised to examine individual voxels but omits functional connectivity.

• MVPA with SVM: SVM provides pairwise comparisons that reveal voxel-wise activa-
tion patterns across algorithms, producing discriminative functional connectivity maps
[144, 145].
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Through these complementary analyses, NRAAF offers a rigorous evaluation of non-rigid
registration algorithms, balancing anatomical alignment with functional network accuracy
for neuroimaging applications.

Table 3.3 Overview of NRAAF evaluation metrics with corresponding techniques.

Voxel Pattern Analysis
Univariate Metric Multivoxel Metric

Peak Activation Intensity Multivoxel Pattern Analysis
(FSL FEAT) (SVM)

Number of Significant Clusters Spatial Overlap Assessment
(FSL FEAT) (DSC, MI)

3.7 SVM and MVPA Implementation

This section details the implementation of SVM and MVPA within the NRAAF framework.
By leveraging SVM in a non-traditional manner, our analysis extends beyond classification,
enabling a voxel-wise examination of algorithmic efficacy in aligning functional networks,
specifically the Control Network. This approach not only contributes to a comprehensive
evaluation of non-rigid registration algorithms but also provides a novel perspective on
intersubject variability in functional connectivity.

3.7.1 SVM Implementation Details

In implementing SVM, a linear kernel function was selected due to its computational effi-
ciency and interpretability in handling high-dimensional voxel-wise data. Linear kernels
are particularly advantageous for fMRI analysis as they produce a weight vector (Beta

values) directly corresponding to each voxel, facilitating spatial interpretation of voxel im-
portance across pairwise algorithm comparisons [147, 148]. This configuration was critical
for analysing discriminative patterns between registration algorithms, enabling the detection
of nuanced differences in spatial alignment within the Control Network.

The SVMs were configured with default regularisation parameters, balancing model
simplicity and performance while focusing on detecting robust algorithmic differences. Pre-
processing included normalising voxel intensities across all 3D NIfTI files and aligning data
to the MNI152 template to ensure that intensity variations were reflective of algorithmic
performance rather than arbitrary scale differences.
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For each voxel, pairwise comparisons were conducted across four algorithms: FSL, ANTs,
AFNI, and DARTEL. Voxel intensities from the Control Network were extracted across all
subjects, creating feature vectors that represent algorithm-specific activation patterns. The
SVM model was applied to each voxel in the 3D space to compute weights that indicate the
discriminative power of each voxel for distinguishing between algorithms. These weights
were then aggregated in a 4D matrix, providing a spatial representation of algorithmic
differences and enabling visual analysis through intensity-based heat maps.

3.7.2 Application of MVPA

Within the NRAAF framework, MVPA, especially through SVM, serves to assess functional
connectivity and consistency in spatial alignment. Unlike univariate methods, which examine
each voxel independently, MVPA detects patterns across multiple voxels, supporting a
comprehensive understanding of algorithmic impacts on network structures [149, 150]. In
this study, MVPA assesses intersubject variability by examining how consistently each
algorithm aligns the Control Network across subjects. This is crucial for assessing each
algorithm’s suitability for resting-state fMRI analyses, where minor alignment differences
can significantly impact functional connectivity interpretations [20].

Through pairwise SVM comparisons across algorithms, the MVPA framework yields a
voxel-wise discriminative weight matrix reflecting the spatial distribution of each algorithm’s
performance within the Control Network. Instead of focusing on binary classification, this
approach generates a detailed map of intensity distributions across algorithms, highlighting
regions where one algorithm may outperform others. This nuanced perspective offers insights
into which algorithms contribute most significantly to specific regions of the Control Network,
adding value to functional connectivity and network analyses.

3.7.3 Novel Contribution of the SVM Implementation

This application of SVM represents a novel contribution by expanding beyond traditional
classification tasks, such as distinguishing between patient groups or task conditions in
neuroimaging [147, 148]. Inspired by approaches like those in Weaverdyck et al. [20], this
study applies SVM to directly compare voxel-level activation differences across registration
algorithms, yielding insights into each algorithm’s unique impact on functional connectivity.

The derived weight matrix is visualised as intensity-based heat maps, quantifying each
algorithm’s impact on functional connectivity patterns [151, 152]. Higher weights in specific
brain regions suggest that a particular algorithm significantly deviates in registering those
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areas, which could have implications for functional connectivity analysis. This weight-based
approach aligns with methods used by Nielsen et al. [153] and Mikolas et al. [21], providing
a visually and quantitatively rich assessment of alignment consistency across algorithms, and
allowing for a nuanced understanding of spatial similarity and network consistency across
subjects.

Another notable feature of this implementation is the integration of univariate and
multivoxel analyses, which is uncommon in fMRI evaluation frameworks. Univariate metrics,
such as peak activation intensity and the number of significant clusters, are suited for single-
voxel analysis. In contrast, multivoxel approaches, such as MVPA, capture inter-voxel
relationships, offering insights into the spatial patterns of brain activity [146]. By combining
these approaches, the framework enhances the interpretability of SVM weights, revealing
both individual voxel intensities (univariate) and the broader spatial patterns (multivoxel) of
algorithmic performance.

3.7.4 Relevance to Inter-Subject Analysis

In the broader context of NRAAF, MVPA is essential for evaluating inter-subject variability
by detecting consistent activation patterns across subjects. As explored further in Chapter 6,
multivoxel analyses are indispensable for establishing alignment reliability across individuals,
a key requirement for group-level inferences [20, 153]. By focusing on pairwise voxel-wise
SVM comparisons, this study provides a robust measure of how each registration algorithm
performs in maintaining Control Network (and other RSNs) spatial consistency across
subjects, ultimately informing algorithm selection in functional connectivity studies [144,
145, 149, 150].

To further validate these findings, Mutual Information (MI) was applied to the SVM-
generated weight maps. As a metric that captures statistical dependencies in data, MI is
well-suited for examining functional connectivity consistency, especially in high-dimensional
neuroimaging contexts where alignment reliability is crucial [153, 154, 146, 90]. This
integration quantifies the statistical interdependence across subjects’ functional connectivity
patterns under various non-rigid registration algorithms, offering a comprehensive reliability
assessment of neuroimaging registration methods. As detailed in Chapter 6, this dual
approach—using SVM weight maps in MI calculations—enhances the robustness of the inter-
subject alignment evaluation, facilitating more refined insights into algorithm performance
for resting-state fMRI analysis [155, 156]. This combined method also aligns with previous
applications of SVM and MI in neuroimaging to achieve reliable pattern detection across
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datasets, thereby reinforcing the methodological integrity and reproducibility of our findings
[96, 97].

Each metric’s role in NRAAF’s comprehensive framework is detailed in Table 3.3, which
categorises univariate and multivoxel analyses, showcasing the novel integration of these
methods in the study. This multifaceted evaluation enhances the robustness of conclusions
regarding algorithmic performance in fMRI studies, supporting both spatial precision and
functional mapping accuracy [147, 148].

3.8 Clustering and Statistical Analysis Techniques

This section outlines the clustering and statistical techniques employed in the study, ad-
dressing the theoretical underpinnings, practical implementations, and their relevance within
the NRAAF framework. These methods form the basis for interpreting both univariate and
multivoxel metrics in single-subject and intersubject analyses, setting the stage for Chapters
4, 5 and 6.

3.8.1 Distinction from Clustering Methods in Machine Learning

Cluster-based evaluation in neuroimaging, such as the methods implemented within FSL
FEAT, is fundamentally different from clustering techniques commonly used in Machine
Learning (ML). Statistical cluster analysis in neuroimaging is designed to validate brain
activation patterns within a hypothesis-driven framework, emphasising reproducibility and
alignment with known anatomical and functional brain regions. For example, FSL’s cluster
analysis in FEAT employs Gaussian Random Field (GRF) theory to determine the signifi-
cance of activation clusters, thereby providing a controlled approach to confirming network
activations while reducing the likelihood of false positives [96, 97]. This approach is particu-
larly valuable in disease-specific research, where statistical validity is essential to interpret
functional changes reliably.

In contrast, clustering methods in ML are typically exploratory, aiming to identify novel
patterns within unlabeled data. Algorithms such as K-means, Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN), and Ordering Points to Identify the Clustering
Structure (OPTICS) are widely used to discover latent structures in complex datasets, includ-
ing neuroimaging data, where they reveal potential subtypes in disorders like Alzheimer’s
disease and major depressive disorder [157, 158]. These unsupervised methods optimise
intra-cluster similarity and inter-cluster separation without predefined labels, enabling the
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discovery of new patterns that may not correspond to established anatomical structures. This
flexibility makes ML clustering useful for investigating previously unknown subtypes or
connectivity profiles, expanding the exploratory capacity of neuroimaging research.

In summary, statistical cluster analysis in FSL’s FEAT framework serves a confirmatory
role focused on established functional networks, while ML clustering provides a generalisable
tool for exploring novel structures. This distinction is critical for understanding the role of
clustering within the NRAAF framework, where statistical cluster analysis ensures alignment
with predefined brain regions for robust, reproducible findings, rather than seeking previously
unknown clusters in functional connectivity data.

3.8.2 Cluster Analysis and Statistical Processing

To summarise peak activation intensities, descriptive statistics, including measures of central
tendency and variability such as mean, median, standard deviation, range, minimum, maxi-
mum, Interquartile Range (IQR), skewness, and kurtosis, were used. These statistics provide
a foundational understanding of the distribution of activation intensities within identified
clusters.

Within each cluster, peak activation points were identified based on the highest intensity
values, offering insights into the regions most responsive within RSNs. Significant clusters
were determined, and relationships between peak activations and clusters were assessed
to reveal patterns in functional connectivity. fMRI data processing was conducted using
FEAT Version 6.00, with Z (Gaussianized T/F) statistic images thresholded at Z > 2.3 and
a corrected cluster significance threshold of ρ = 0.05 [159, 132]. These thresholds ensure
that only statistically robust activations are considered, preserving the validity of conclusions
drawn about functional connectivity in RSNs.

Inter-Subject Statistical Tests

Given the sample size of N = 815 and voxel size of 2×2×2 mm3, inter-subject comparisons
required robust statistical methods to handle the non-normal data distribution, as confirmed
by the Shapiro-Wilk test. Consequently, non-parametric statistical tests were selected,
including the Mann-Whitney U Test, Wilcoxon Signed-Rank Test, Kruskal-Wallis Test, and
Spearman’s Rank Correlation. These tests, supported by descriptive statistics, are well-
suited for neuroimaging data, allowing for reliable interpretation of activation patterns across
subjects without relying on normal distribution assumptions [160, 161].

63



NRAAF - Non-Rigid Registration Algorithm Analysis Framework

Effect Sizes & Error Correction

In this study, both statistical and practical significance are emphasised to provide a com-
prehensive understanding of the data. Effect size calculations complement statistical tests,
offering insights into the magnitude of observed differences, which is particularly valu-
able in rs-fMRI where even subtle changes in functional connectivity can have significant
implications for understanding neural networks.

Rank-Biserial Correlation To assess the effect sizes for the Mann-Whitney U Test and
Wilcoxon Signed-Rank Test, the rank-biserial correlation (r) was employed. The rank-biserial
correlation quantifies the strength of the association between two variables by relating the
test statistic to the sample size. It is calculated as:

r =
Z√
N

(3.1)

where Z is the standard normal deviate derived from the test statistic, and N represents
the total number of observations in the study.

In the context of rs-fMRI, this effect size provides insight into the consistency of activation
patterns or functional connectivity metrics across subjects. For instance, a higher r value
would indicate a stronger association between two conditions or groups in terms of functional
connectivity measures, helping to interpret the practical relevance of statistical findings.
Unlike ρ-values, which merely signal whether an effect exists, the rank-biserial correlation
conveys the strength and direction of this effect, aiding in the assessment of whether observed
differences in network activations or functional connectivity strengths are substantial.

Spearman’s Rank Correlation For correlation analyses, Spearman’s Rank Correlation

was applied to measure the monotonic relationship between variables. In rs-fMRI studies,
Spearman’s correlation is particularly useful when evaluating relationships between non-
normally distributed data, such as connectivity strengths or functional network activations.
The effect size for Spearman’s correlation is indicated directly by the coefficient ρ , calculated
as:

ρ = 1− 6∑d2
i

n(n2 −1)
(3.2)

where di represents the difference between the ranks of corresponding variables (e.g.,
functional connectivity values between two conditions or time points), and n is the number
of observations (e.g., subjects).
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In rs-fMRI, ρ quantifies the degree of association between functional connectivity mea-
sures across subjects or conditions. For example, if functional connectivity within a specific
RSN (such as the Control Network) is consistently higher in one condition compared to
another, ρ would reflect this association. The value of ρ ranges from -1 to 1, with values
closer to ±1 indicating stronger monotonic relationships. This metric is particularly helpful
in rs-fMRI for understanding the strength of functional connectivity relationships across
different brain regions and subjects.

Bonferroni Correction for Multiple Comparisons Given the multiple comparisons per-
formed in this study, there is a heightened risk of Type I errors (false positives), where
statistically significant results might be found purely by chance. To mitigate this, the Bonfer-
roni Correction was applied. This correction method adjusts the critical α-level by dividing
it by the number of comparisons conducted, effectively lowering the threshold for statistical
significance:

Adjusted α-value =
Original α-value

Number of comparisons
(3.3)

While the Bonferroni Correction is conservative and may increase the risk of Type
II errors (false negatives), it is a rigorous approach that ensures the validity of findings
in studies with complex datasets like rs-fMRI. In this context, applying the Bonferroni
Correction guards against spurious findings when comparing functional connectivity patterns
across multiple regions or conditions, thus enhancing the robustness of results. However, due
to its conservative nature, results that remain significant under this correction are likely to
represent true effects, making it a reliable method for ensuring the integrity of neuroimaging
conclusions [159].

This combination of effect size metrics and multiple comparison correction provides a
nuanced understanding of both the statistical and practical significance of the findings. In
rs-fMRI, where subtle variations in functional connectivity can yield critical insights into
brain function, these measures are essential for drawing meaningful and valid conclusions
within the NRAAF framework. They ensure that observed patterns in network activations
or functional connectivity strengths are both statistically robust and practically relevant,
supporting a comprehensive evaluation of functional brain connectivity.
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3.9 Framework Evaluation and Limitations

The NRAAF framework employs an integrated analysis to evaluate the efficacy of various
non-rigid registration algorithms, specifically FSL, ANTs, AFNI, and DARTEL. These
algorithms were selected for their complementary strengths in neuroimaging tasks, as detailed
in Table 3.2. Performance insights from the analysis of the key metrics provide a nuanced
understanding of each algorithm’s capabilities and limitations:

• ANTs: Known for its spatial accuracy and symmetric normalisation capabilities, ANTs
excels in regions with high anatomical variability, as demonstrated by high DSC in
cortical regions [48]. However, this precision comes at the expense of computational
demands, which may limit scalability in large-scale studies or settings with limited
processing resources [162].

• AFNI: Leveraging tools like 3dQwarp, AFNI excels in flexibility, especially in user-
defined parameters for fMRI-specific tasks [58]. Its performance, assessed through MI
and DSC metrics, demonstrates robust functional alignment but may vary in anatomical
alignment across heterogeneous datasets.

• DARTEL: With high-dimensional warping and group-specific template creation,
DARTEL excels in preserving topological structures, particularly within large group
datasets. However, its reliance on group templates may introduce biases, affecting
generalisability [60].

• FSL: This software suite, combining FLIRT (rigid transformations) and FNIRT (non-
rigid transformations), is optimised for efficient, flexible registration [61]. While FSL
demonstrates computational efficiency, it may lack spatial precision in anatomically
variable regions, which the MI metric reveals as a minor limitation when compared to
algorithms like ANTs [98].

These performance insights form the foundation for deeper analysis in Chapters 4, 5, and 6,
where each algorithm’s strengths and limitations will be discussed in specific neuroimaging
applications and functional connectivity studies.

3.9.1 Generalisability and Limitations

The NRAAF framework provides a comprehensive evaluation of registration algorithms;
however, several limitations exist. First, the dataset specificity of the AOMIC restricts the
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framework’s generalisability, as algorithmic performance may differ across datasets with
varying anatomical characteristics. Additionally, the computational demands of algorithms
like ANTs and DARTEL necessitate substantial processing power, which may not be feasible
in all research settings.

A critical distinction between univariate and multivoxel analyses within the NRAAF
framework also reflects these constraints. While univariate metrics, such as peak activation
intensity, offer insights into voxel-wise statistics, multivoxel methods like SVM provide a
broader assessment of spatial patterns across voxels, which is essential for detailed functional
connectivity evaluations [123]. However, multivoxel analyses demand higher computational
resources, limiting their application in large datasets and requiring robust data pre-processing
[163].

These limitations are acknowledged here to set a realistic context for readers as they pro-
ceed through the results in subsequent chapters. This also anticipates the broader discussion
in Chapter 7 regarding the practical considerations and implications of algorithm selection
for specific neuroimaging applications.

3.9.2 Mutual Information

MI is a crucial metric within the NRAAF framework, quantifying shared information between
datasets to provide a non-rigid measure of voxel alignment accuracy. MI’s capacity to capture
subtle alignment nuances is particularly beneficial in rs-fMRI studies, where precise voxel
correspondence is essential for accurate functional connectivity mapping. This metric offers
a robust validation of registration algorithms, especially in studies involving RSNs, as it can
effectively assess spatial similarity in complex brain structures [164].

In line with current neuroimaging practices, MI supports the evaluation of spatial accuracy
and consistency, enhancing the framework’s methodological integrity. By facilitating accurate
integration and comparison of functional data across subjects, MI enables more meaningful
insights into neural processes, further optimising neuroimaging protocols for clinical and
research applications [165].

3.9.3 Spatial Overlap Assessment

The DSC is integrated within the NRAAF framework to evaluate the spatial overlap of
binarised activation maps generated by different registration algorithms. This metric provides
an intuitive measure of spatial consistency in neuroimaging studies, where a coefficient of 0
indicates no overlap and 1 denotes perfect overlap [166]. Such measurements are crucial for
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assessing the accuracy of RSN alignment, as consistency across subjects is essential for valid
group-level inferences.

Parallel processing was employed to compute DSC matrices efficiently for each algorithm,
with a global 95th percentile threshold used to identify significant spatial overlaps. This
thresholding approach follows established methodologies, such as those by Smith et al. [98],
reinforcing the DSC’s role as a robust indicator of functional network alignment.

Interpretation

To complement quantitative analysis, visual representations of DSC matrices, including
graph visualisations and heat maps, were created. These visual aids provide an intuitive
assessment of spatial overlap, offering insights into algorithm performance and spatial
alignment accuracy. This approach aligns with recommendations from Collins and Evans
[165], highlighting the value of visual representations in neuroimaging for clarifying complex
data.

By integrating MI and DSC analyses with visual tools, the NRAAF framework provides
a comprehensive and robust assessment of registration algorithms, setting a foundation for
further evaluation in the results chapters. The implications of these metrics for functional
connectivity and network analyses are explored in detail in Chapter 6.

3.10 Chapter Summary

Chapter 3 presents the foundational elements of the NRAAF, which is designed to evaluate
non-rigid registration algorithms in the context of rs-fMRI data analysis. This chapter
opens with an introduction to the NRAAF framework’s objectives, highlighting the need
for consistent spatial alignment across subjects and robust functional connectivity mapping
to ensure data quality in neuroimaging studies. Emphasis is placed on the importance of
selecting diverse datasets to ensure robust findings across neuroanatomical variations, along
with the rigorous preprocessing steps required for high-quality data preparation, such as
skull-stripping, motion correction, and spatial normalisation.

The systematic approach to evaluating registration algorithms is a key focus in this
chapter. Through a combination of univariate and multivoxel analysis techniques, including
SVM for generating voxel-wise discriminative weight matrices, the NRAAF framework
allows for the nuanced evaluation of each algorithm’s impact on spatial consistency and
functional connectivity. These SVM-generated weights support a detailed view of the spatial
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patterns distinguishing algorithmic performance, emphasising the flexibility of the framework
in comparing a range of neuroimaging registration algorithms.

The chapter then details the metrics used within NRAAF, including MI and the DSC, to
assess registration accuracy. MI provides a non-rigid measure of shared information between
images aligned by different algorithms, which is crucial for accurately evaluating functional
connectivity. Meanwhile, the DSC quantifies spatial overlap between functional regions
post-registration, ensuring robust alignment of functional networks across subjects. By using
these metrics in combination, the NRAAF framework meets its core objectives of enhancing
spatial alignment reliability and reproducibility in neuroimaging data.

This chapter also addresses the limitations of the NRAAF framework. It acknowledges
constraints related to computational demand, dataset specificity, and the distinct resource
needs of univariate and multivoxel approaches, establishing the practical considerations for
subsequent analyses. The integration of these metrics and methodological considerations not
only strengthens the framework’s ability to rigorously evaluate algorithm performance but
also establishes a solid foundation for deeper insights in later chapters.
The subsequent chapters delve into the detailed evaluations and implications of each metric
category:

• Chapter 4 will examine Peak Activation Intensity as the first univariate metric.

• Chapter 5 will assess the Number of Significant Clusters, focusing on spatial distribu-
tion and coherence.

• Chapter 6 will explore the multivoxel metrics of the framework, specifically Spatial

Overlap, Mutual Information, and MVPA to gauge inter-subject registration reliability.

This systematic analysis allows the NRAAF framework to offer a comprehensive approach
to evaluating algorithm performance in neuroimaging, contributing to the field’s goal of
achieving reliable and reproducible results.
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Chapter 4

Peak Activation Intensity-Based Spatial
Localisation Assessment

Chapter 4 conducts an in-depth analysis of Peak Activation Intensities derived from Resting-
State Functional Magnetic Resonance Imaging (rs-fMRI). Building directly on the theoretical
foundation laid in Chapter 3, which introduced the Non-Rigid Registration Algorithm Anal-
ysis Framework (NRAAF) framework for comparative evaluation of Functional Magnetic
Resonance Imaging (fMRI) registration algorithms. This chapter investigates how each
algorithm influences activation intensities across brain hemispheres. A detailed focus on
peak activation is essential, as it allows us to explore the nuances of algorithmic impact
on neuroimaging data consistency and accuracy, aligning with the growing emphasis on
precision in fMRI data analysis [93, 16, 4].

In the context of rs-fMRI, accurately capturing and interpreting Peak Activation In-
tensities is critical for reliable neuroimaging outcomes. Given that the selected non-rigid
registration algorithms may introduce subtle variations in these peaks, this chapter empir-
ically examines whether algorithm choice influences intensity detection, with a specific
emphasis on hemispheric differences. Such analysis is essential for validating the robustness
of neuroimaging methods, ensuring that clinical and scientific conclusions are based on data
unaffected by algorithmic artifacts [7, 8]. Here, we present results for peak intensities across
hemispheres, exploring the correlation between the Control Network and its seed region
as identified through these algorithms, thereby addressing the reliability and consistency
concerns central to neuroimaging research [23, 28].

This chapter’s analysis is tied to the preceding and following chapters. In Chapter 3, the
methodological foundations and metrics for algorithm evaluation were thoroughly established.
Chapter 4 extends this framework by applying these metrics specifically to peak activation
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analysis, thereby setting a strong empirical basis for Chapter 5, where the focus will shift to
network integrity and the exploration of significant clusters across Resting-State Networks
(RSNs).

This research is a step forward in understanding the technical limitations and advantages
of various neuroimaging algorithms, with an emphasis on their performance in identifying
high-intensity regions in rs-fMRI brain scans. By rigorously comparing multiple algo-
rithms, we aim to contribute to the standardisation of neuroimaging practices, supporting
advancements in reproducibility and diagnostic accuracy for fMRI data [22, 167].

4.1 Methodological Framework

In this chapter, a comprehensive set of statistical metrics—namely, Peak Activation Intensity,
skewness, kurtosis, Standard Deviation (SD), Interquartile Range (IQR), range, and non-
parametric correlation—are employed to assess the performance sensitivity and reliability
of the neuroimaging algorithms under investigation. These metrics are foundational in
neuroimaging analysis as they allow researchers to capture subtle variances in activation
patterns, which may be attributed to algorithm-specific processing differences [157].

• The Peak Activation Intensity, representing the highest detected neural activity level
within predefined regions, serves as a primary indicator of algorithmic sensitivity to
brain activity during resting states. This metric is particularly relevant in rs-fMRI
studies, where detecting subtle fluctuations in spontaneous brain activity is crucial for
understanding functional connectivity and regional brain dynamics. Studies like Avants
et al. [168] and Cox [58] highlight the importance of peak activation for evaluating
the performance of image registration algorithms in detecting region-specific activity
levels, a critical factor in comparing algorithms for functional brain mapping.

• Skewness and kurtosis offer additional insights into the shape and tails of the distribu-
tion of activation intensities. Skewness measures asymmetry, while kurtosis indicates
the concentration of values around the mean, helping to evaluate data normality and
highlight any systematic deviations introduced by the algorithms. Zhang et al. [169]
discuss how these metrics reveal the presence of outliers and non-normality in brain
activity data, both common in rs-fMRI due to neural signal variability . Additionally,
Power et al. [170] and Poldrack et al. [171] emphasise their use in assessing algorith-
mic impact on neural pattern interpretation, crucial for understanding rs-fMRI data
characteristics.
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• Standard Deviation and IQR further clarify the variability and consistency in intensity
detection. SD provides an overall sense of the spread in detected intensities, essential
for evaluating an algorithm’s sensitivity to fluctuations in neural activity. The IQR,
by focusing on the central spread, minimises the influence of outliers and offers a
robust measure of consistency, as Ashburner [60] and Jenkinson et al. [61] explain.
These metrics are particularly valuable when comparing algorithms like Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) and FMRIB
Software Library (FSL), which demonstrate different detection stability patterns in
rs-fMRI, highlighting subtle differences in reliability and algorithmic consistency.

• The range of intensities detected by each algorithm offers insights into the extent of
variability, highlighting expansive or limited detection capabilities. This measure is
critical in rs-fMRI studies, where extreme values may indicate heightened sensitivity or
potential instability in detecting neural activation. Research by Tustison et al. [39] and
Cox [58] highlights how the range can reflect algorithmic behaviour in extreme value
sensitivity, with Analysis of Functional NeuroImages (AFNI), for instance, showing
greater variability and the presence of outliers, which could impact intensity detection
interpretations.

• Finally, non-parametric correlation (Spearman’s rank correlation) is used to evaluate
the consistency of Peak Activation Intensities across hemispheres without assuming
data normality. This metric is particularly relevant in rs-fMRI, where non-normal
distributions are common, as it enables robust assessments of hemispheric correlation
and consistency across algorithms. Guillaume et al. [172] and Cox [58] discuss the
robustness of non-parametric tests in neuroimaging for these scenarios. Additionally,
effect sizes for non-parametric tests such as the Mann-Whitney U and Wilcoxon
Signed-Rank tests can quantify hemispheric differences, particularly relevant in studies
examining lateralised brain functions, as illustrated by Mann [173] and Wilcoxon
[174].

The relevance of these statistical measures lies in their collective ability to reveal algorithm-
induced biases, variability, and reliability across different aspects of intensity detection. This
comprehensive analytical approach contributes to a more robust comparison framework,
facilitating precise assessments of algorithmic performance variations in rs-fMRI. By inte-
grating these metrics, this chapter aims to enhance our understanding of each algorithm’s
suitability for detecting high-sensitivity features in neuroimaging data, ultimately informing
more refined and consistent methods in neuroimaging research.

73



Peak Activation Intensity-Based Spatial Localisation Assessment

Literature Context

Existing research highlights the variability introduced by different registration algorithms
in neuroimaging, particularly regarding Peak Activation Intensities across brain regions.
Studies have documented the ways algorithm choice can influence neuroimaging outcomes,
with implications for data consistency and reliability [175, 9]. These findings serve as a basis
for the present chapter’s analysis, which aims to expand on previous work by specifically
comparing Peak Activation Intensities across four non-rigid registration algorithms: Ad-
vanced Normalisation Tools (ANTs), DARTEL, AFNI, and FSL. This comparative approach
aligns with the objectives of the NRAAF framework (introduced in Chapter 3), and aims to
provide actionable insights for researchers selecting algorithms based on reliability across
hemispheric measures and sensitivity to peak intensities.

4.1.1 Justification for Hemispheric Analysis

A hemispheric perspective was applied in this analysis to evaluate algorithm consistency in
capturing activation intensities across lateralised brain functions. Hemispheric asymmetry is
a fundamental aspect of brain structure, contributing to functional specialisation and cognitive
adaptability [176, 177]. In line with this principle, the decision to evaluate hemispheric
differences allows for an assessment of whether registration algorithms maintain consistent
representations of lateralised brain functions or introduce biases in asymmetrical regions.
This chapter’s hemispheric analysis does not presuppose an intrinsic superiority of lateralised
representation but rather provides a framework for assessing how algorithm choice may
impact the neuroimaging interpretation of lateralised brain functions, with the understanding
that this approach may not be universally applicable across all future studies.

4.2 Atlas Measurements

The Harvard-Oxford atlas is employed in this chapter for its comprehensive and probabilistic
mapping of cortical and subcortical brain structures, providing a foundational tool for identi-
fying brain regions with high precision. This atlas is particularly effective in neuroimaging
studies that require accurate regional delineation, as its probabilistic approach accounts for
inter-subject anatomical variability, enhancing the accuracy and reliability of fMRI data
registration outcomes [175, 91]. The Harvard-Oxford atlas is widely adopted within the
neuroimaging community due to its compatibility with major software packages, facilitating
standardisation across studies and contributing to reproducible results [61]. This chapter
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utilises the atlas for consistent brain region identification across algorithms, allowing for
direct comparisons of algorithmic performance in representing activation intensities within
anatomically defined regions.

4.3 Evaluation of Peak Activation Intensities

This section presents results of Peak Activation Intensities among the four evaluated non-rigid
registration algorithms.

4.3.1 Descriptive Analysis of Peak Intensities

This section presents descriptive statistics for the Peak Activation Intensities across the four
neuroimaging algorithms in both hemispheres. Table 4.1 shows the metrics for the left
hemisphere, while Table 4.2 details the right hemisphere. These statistics, including mean,
median, SD, range, IQR, skewness, and kurtosis, are crucial for understanding the sensitivity
and variability of each algorithm in detecting Peak Activation Intensities.

Table 4.1 reveals that ANTs recorded a high mean (6.9184) and maximum value (21.2000),
indicating a tendency to detect higher peak intensities, albeit with notable outliers as sug-
gested by its skewness (3.1411) and kurtosis (16.4160). In contrast, DARTEL exhibited a
lower mean (6.3695) with a narrow SD (1.4351), suggesting consistent but less sensitive mea-
surements. AFNI demonstrated high variability with a large range (23.6000) and minimum
values of zero, which might indicate instances of non-detection. FSL displayed a moderate
mean (6.7825) and SD (1.8348), reflecting a balanced approach in sensitivity and variability.

Table 4.1 Descriptive statistics of left hemisphere Peak Activation Intensity in the Control
Network. This table compares four neuroimaging algorithms: ANTs, DARTEL, AFNI, and
FSL, highlighting differences in intensity detection sensitivity, consistency, and outliers.

Test ANTs DARTEL AFNI FSL
Mean 6.9184 6.3695 6.6104 6.7825
Median 6.3587 6.0705 6.2637 6.3218
Std Dev 2.0426 1.4351 1.6962 1.8348
Min 4.7548 4.3756 0 4.5524
Max 21.2000 18.5000 23.6000 20.1000
Range 16.4452 14.1244 23.6000 15.5476
IQR 1.6139 1.2545 1.3503 1.5178
Skewness 3.1411 3.3743 3.6593 2.7429
Kurtosis 16.4160 21.8712 27.3054 13.3164
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In the right hemisphere (Table 4.2), ANTs again demonstrates high mean (6.9339)
and maximum (31.6000) values, with skewness (4.3537) and kurtosis (39.0803) reflecting
extreme values. DARTEL shows consistent measurements with moderate variability, and
AFNI displays significant variability in its range (22.2000), potentially impacting reliability
in intensity detection. FSL maintains balanced sensitivity and variability, similar to its
performance in the left hemisphere.

Table 4.2 Descriptive statistics of right hemisphere Peak Activation Intensity in the Control
Network, highlighting the comparative performance of ANTs, DARTEL, AFNI, and FSL.

Test ANTs DARTEL AFNI FSL
Mean 6.9339 6.5036 6.7072 6.8987
Median 6.4713 6.0677 6.1288 6.3080
Std Dev 1.9856 1.6907 2.0458 2.0776
Min 4.5680 4.3054 0 4.6895
Max 31.6000 21.1000 22.2000 21.3000
Range 27.0320 16.7946 22.2000 16.6105
IQR 1.6710 1.4658 1.5843 1.7177
Skewness 4.3537 3.4518 2.7476 2.9012
Kurtosis 39.0803 21.8481 14.2493 14.2793

Hemisphere-Specific Findings

The analysis indicates consistent performance by each algorithm across both hemispheres,
with no significant differences in median intensities (Tables 4.1 and 4.2). ANTs and AFNI
showed higher variability and outliers, while DARTEL and FSL exhibited more uniform de-
tection capabilities. The lack of marked hemispheric discrepancies implies that the observed
differences are algorithmic rather than inherent to hemispheric asymmetry. This consistency
is important for studies examining lateralisation, suggesting that algorithm choice, rather
than hemispheric variance, predominantly influences activation intensity detection.

4.3.2 Visual Summary of Findings

To complement our descriptive analysis, we provide a series of visualisations to illustrate the
distribution, central tendency, and variability of Peak Activation Intensities across algorithms
and hemispheres. These include box plots (Fig. 4.1) and violin plots (Fig. 4.2).

The box plots employ a star notation system to indicate statistical significance across
comparisons, where the level of significance is denoted by symbols placed above the box
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plot bars. This notation, detailed in Table 4.3, serves as a legend for understanding the degree
of significance between algorithms’ peak intensity distributions. In particular, this table
aids in interpreting whether the differences in detection of Peak Activation Intensities are
statistically meaningful.

Table 4.3 Explanation of star notations used in box plots for statistical significance. This
legend assists in interpreting the significance of observed differences between algorithms
across hemispheres, guiding the assessment of algorithm performance in detecting Peak
Activation Intensities.

Symbol Statistical Significance
ns not significant (ρ > 0.05)
* significant (ρ ≤ 0.05)

** very significant (ρ ≤ 0.01)
*** extremely significant (ρ ≤ 0.001)
**** most extremely significant (ρ ≤ 0.0001)

From the box plots, we observe the following algorithm-specific insights:

• ANTs: Exhibits a wide IQR and high variability, with several outliers in both hemi-
spheres. This indicates that ANTs is sensitive to a diverse range of intensities, poten-
tially capturing subtle fluctuations in activation, but this also introduces variability that
might impact detection reliability.

• DARTEL: Demonstrates tighter IQRs, with fewer outliers, indicating that it provides
more consistent intensity detection across hemispheres. This suggests that DARTEL
may be more suitable for studies focused on consistent, typical activation levels, as it
appears less affected by extreme values.

• AFNI: Shows a particularly wide range with many outliers, especially in the right
hemisphere. This suggests high variability and a potential for either capturing extreme
intensity values or detecting cases of no activation (e.g., minimum values of zero),
which may affect its reliability in consistently interpreting activation patterns.

• FSL: Displays a moderate IQR with fewer outliers, reflecting a balanced approach to
detecting peak intensities. FSL’s performance suggests it strikes a balance between
sensitivity and stability, making it a versatile choice across studies requiring both
consistent and varied activation detection.

The consistent median lines across both hemispheres imply that none of the algorithms exhibit
significant hemispheric bias in intensity detection, reinforcing that observed differences are
likely due to algorithmic variations rather than intrinsic hemispheric differences.
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Fig. 4.1 Box plots comparing Peak Activation Intensities for each algorithm (ANTs, DARTEL,
AFNI, and FSL) across left (left panel) and right (right panel) hemispheres. ANTs and AFNI
display wider variability with numerous outliers, indicating high sensitivity to extreme values,
while DARTEL and FSL exhibit narrower IQR, suggesting more consistent detection across
both hemispheres. Statistical significance between algorithms is marked by star notation (as
defined in Table 4.3), highlighting meaningful differences in detection patterns.
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To further contextualise these findings, violin plots (Fig. 4.2) offer insights into the
density and distribution of peak intensities for each algorithm, visualising both the range and
frequency of intensity values across hemispheres.

Key interpretations from the violin plots include:

• ANTs and AFNI: Both algorithms show broad distributions, indicating they capture
a wide range of activation intensities. This distribution suggests high sensitivity to
fluctuations in neural activity but could introduce increased variability, as seen in the
abundance of outliers.

• DARTEL: Displays a more uniform and concentrated distribution, reflecting consistent
detection of typical intensity values across hemispheres. This uniformity may make
DARTEL a preferred choice for studies prioritising stable, reproducible activation
detection.

• FSL: Shows a moderately broad distribution, balancing the need for consistent detec-
tion with the capacity to capture occasional extreme values. This makes FSL a flexible
choice across studies with varying intensity requirements.

Fig. 4.2 Violin plots of peak cluster intensities in left and right hemispheres for each algorithm
(ANTs, DARTEL, AFNI, FSL). ANTs and AFNI show broader intensity distributions, while
DARTEL and FSL display narrower, more consistent ranges. Black lines indicate mean
values, and red lines indicate medians.

79



Peak Activation Intensity-Based Spatial Localisation Assessment

In conclusion, the visual analyses reinforce the importance of algorithm selection in neu-
roimaging studies, especially those examining hemispheric differences or brain lateralisation.
ANTs and AFNI, with their broad intensity ranges, are potentially more sensitive to subtle
variations but also more susceptible to variability. Conversely, DARTEL and FSL provide
more stable detection profiles, with FSL balancing sensitivity and consistency. These insights
suggest that DARTEL and FSL may be particularly suitable for studies needing reliable,
cross-hemispheric comparisons, while ANTs and AFNI might be chosen for investigations
requiring heightened sensitivity to activation variability.

4.4 Statistical Insights and Interpretation of Results

Statistical analyses of Peak Activation Intensities and visual summaries including non-
parametric tests are provided in this section.

4.4.1 Analysis of Skewness and Kurtosis

This section provides a comprehensive comparison of skewness and kurtosis metrics for each
neuroimaging algorithm (ANTs, DARTEL, AFNI, and FSL) in detecting Peak Activation
Intensities in rs-fMRI data. High skewness indicates asymmetric distributions, potentially
introducing a bias toward either low or high activation values, whereas high kurtosis reflects
sharp peaks and heavy tails, signifying variability and the presence of outliers.

Table 4.4 summarises these metrics for each algorithm. ANTs demonstrated particularly
high kurtosis (e.g., 39.0803 in the right hemisphere), implying susceptibility to extreme
activation values, enhancing its capability to detect intense activations but also potentially
increasing variability. DARTEL, with its lower skewness and kurtosis values, showed a more
symmetric and consistent distribution, beneficial for studies where stability is prioritised.
AFNI’s broader distribution and higher skewness indicate its tendency to capture a wider
range of intensities, whereas FSL’s moderate skewness and kurtosis values suggest a balanced
sensitivity and consistency.

The non-normality observed in the high skewness and kurtosis values across all algorithms
necessitates the use of non-parametric statistical methods. The detection profiles indicated
that ANTs and AFNI are effective in capturing variability, whereas DARTEL and FSL provide
more balanced detection with less variability, offering potential advantages depending on the
study’s objective.
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Table 4.4 Descriptive statistics for skewness and kurtosis across algorithms, indicating
distribution characteristics and sensitivity to intensity extremes.

Metric ANTs DARTEL AFNI FSL
Skewness (Left) 3.1411 3.3743 3.6593 2.7429
Skewness (Right) 4.3537 3.4518 2.7476 2.9012
Kurtosis (Left) 16.4160 21.8712 27.3054 13.3164
Kurtosis (Right) 39.0803 21.8481 14.2493 14.2793

Practical Implications for Algorithm Selection

Based on the skewness, kurtosis, and correlation findings, the suitability of each algorithm
for different neuroimaging applications is summarised below:

• ANTs: With high sensitivity to intense activations, ANTs is suited for studies fo-
cused on localised, high-activity regions, though care must be taken regarding its
susceptibility to outliers.

• DARTEL: Best suited for longitudinal or multi-session studies, where symmetric and
low variability detection is crucial for stability.

• AFNI: AFNI’s broad distribution and high skewness make it well-suited for exploratory
studies involving a wide range of activation intensities.

• FSL: A balanced approach with moderate variability makes FSL appropriate for studies
needing consistent detection across a broad spectrum of intensities.

These algorithm characteristics emphasise the importance of careful algorithm selection in rs-
fMRI analyses, particularly when the detection of subtle functional changes or lateralisation
is essential.

4.4.2 Statistical Analysis Using Non-Parametric Tests

Non-parametric tests, such as Spearman’s rank correlation, Mann-Whitney U, and Wilcoxon
Signed-Rank tests, were employed to assess hemispheric differences effectively, especially
given the non-normal nature of the data distributions.

Table 4.5 summarises the adjusted Spearman correlation coefficients, showcasing the
varying degrees of correlation between hemispheric intensities detected by each algorithm.
AFNI and ANTs exhibit strong correlations, indicative of high sensitivity to symmetrical
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bilateral activation, while DARTEL and FSL demonstrate moderate correlations, providing
useful insights for studies focusing on more nuanced hemispheric functions.

This analysis reveals that AFNI yields the highest correlation (ρ = 0.66346, ρ < .001),
suggesting that activation intensities detected in one hemisphere are closely mirrored in the
other hemisphere, implying a high degree of hemispheric agreement in brain activity as
identified by AFNI. ANTs (ρ = 0.61647, ρ < .001), indicates a strong bilateral relationship
in activation intensities, although marginally less similar than AFNI’s findings. Furthermore,
DARTEL and FSL exhibit moderate correlations (ρ = 0.52181 and ρ = 0.53823, respec-
tively; both ρ < .001), suggesting that while there is still a significant association between
hemispheric intensities, the relationship is less direct compared to the stronger correlations
observed with AFNI and ANTs. These variations in correlation strength, as outlined by ρ

values, and their corresponding highly significant adjusted p-values, emphasise the nuanced
efficacy of each algorithm in capturing the inherent symmetry or asymmetry of brain function
across hemispheres.

Table 4.5 Adjusted Spearman’s rank correlation coefficients and ρ-values for fMRI regis-
tration algorithms are detailed. The ρ (rho) values span from moderate to strong, with the
adjusted p-values reflecting high statistical significance for each algorithm.

Algorithm ρ Adjusted ρ value
ANTs 0.61647 2.87×10−85

DARTEL 0.52181 6.61×10−57

AFNI 0.66346 2.58×10−103

FSL 0.53823 3.40×10−61

The strong correlations observed with AFNI and ANTs suggest that these algorithms are
particularly sensitive to detecting consistent patterns of brain activity across hemispheres,
potentially making them more suitable for studies focused on identifying bilateral neuronal
activation or lateralisation effects. Conversely, the moderate correlations found with DAR-
TEL and FSL, while still statistically significant, indicate a less pronounced hemispheric
alignment, which might be preferable in research contexts where nuanced differences be-
tween hemispheres are of interest. Hence, the selection of a specific algorithm can profoundly
influence the interpretation of hemispheric associations in neuroimaging data, emphasising
the necessity for careful algorithmic choice.

The non-parametric Mann-Whitney U Test (Table 4.6) identified significant hemispheric
differences for ANTs (U = 1.382e-09, r = 0.16073) and AFNI (U = 4.4707e-10, r = 0.16489),
indicating a difference in central tendency of peak intensities between the hemispheres.
Conversely, DARTEL showed no significant hemispheric difference (U = 1, r = -0.027746),
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suggesting a balanced detection of peak intensities across hemispheres. FSL displayed
a marginal hemispheric difference (U = 0.044285, r = -0.074119), implying a subtle but
statistically significant variance.

Table 4.6 Adjusted Mann-Whitney U test ρ-values and effect sizes for each algorithm are
presented. This table summarises the Mann-Whitney U test results, offering insights into
hemispheric differences in peak activation intensities as detected by various algorithms. The
adjusted ρ-values and effect sizes for ANTs, DARTEL, AFNI, and FSL highlight significant
variations in their performance across hemispheres.

Algorithm Adjusted ρ value Effect Size
ANTs 1.382×10−9 0.16073
DARTEL 1 -0.027746
AFNI 4.4707×10−10 0.16489
FSL 0.044285 -0.074119

The Wilcoxon Signed-Rank Test (Table 4.7) further supported these findings. ANTs (W
= 6.4656e-29, r = 0.28244) and AFNI (W = 1.7356e-27, r = 0.27526) exhibited highly signif-
icant median differences between hemispheres, indicating that peak intensities are unevenly
distributed within each hemisphere. In contrast, DARTEL (W = 0.41947, r = -0.055061)
and FSL (W = 0.00011416, r = -0.1112) did not display significant median differences,
suggesting a more symmetrical distribution of peak intensities between hemispheres.

Table 4.7 Adjusted Wilcoxon signed-rank test ρ-values and effect sizes for each algorithm
are provided. This table details the results of the Wilcoxon signed-rank test, offering insights
into the median differences in peak activation intensities between hemispheres for each of
the algorithms studied. The effect sizes quantify the magnitude of these differences.

Algorithm Adjusted ρ value Effect Size
ANTs 6.4656×10−29 0.28244
DARTEL 0.41947 -0.055061
AFNI 1.7356×10−27 0.27526
FSL 1.1416×10−4 -0.1112

These findings highlight that the choice of non-rigid registration algorithm can signif-
icantly affect the interpretation of hemispheric differences in neuroimaging studies. Al-
gorithms that exhibit significant hemispheric differences may be advantageous for studies
focusing on lateralised brain functions, whereas those showing no significant differences
may be more suitable for studies requiring balanced hemispheric analysis.
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Table 4.8 Kruskal-Wallis test ρ-values for hemispheric differences in neuroimaging are
shown. This table summarises the Kruskal-Wallis test results, evaluating the statistical
differences in peak cluster intensities between the left and right hemispheres for each non-
rigid registration algorithm. Lower ρ-values denote more significant hemispheric differences.

Hemisphere ρ Value
Left 3.0109×10−7

Right 4.9079×10−10

4.4.3 Visual Summary of Findings: Histogram and Scatter Plot Analy-
sis

For the analysis of hemispheric correlations using non-rigid registration algorithms, scatter
plots were generated to visualise the relationship between peak activation intensities across
the left and right hemispheres. These scatter plots are supplemented by Spearman’s rank
correlation coefficients, providing a non-parametric measure of association that does not
assume linearity in the relationship between hemispheric intensities. The line of best fit
indicates the overall trend and direction of the correlation, with points closer to the line
signifying a stronger relationship between hemispheric activation intensities.

This section provides a detailed visual analysis of the distribution and correlation of Peak
Activation Intensities across hemispheres, using both histograms and scatter plots to interpret
the performance and characteristics of each algorithm in rs-fMRI.

Histogram Analysis:

The histograms in the Figure 4.3 illustrate the frequency distribution of detected peak
intensities across different algorithms, revealing specific patterns of detection sensitivity and
biases:

• AFNI: Displays a right-skewed distribution for both left and right hemispheres, with
Peak Activation Intensities clustered towards lower values. This indicates a potential
underestimation of higher activation levels, and a bias towards detecting more modest
intensities. The mean and median are both shifted towards the lower end of the
intensity scale, reinforcing the skewness and the bias towards detecting less pronounced
activations.

• ANTs: Shows a relatively symmetric distribution around the central values, suggesting
a balanced detection capability that is less biased towards any particular intensity
range. This more even detection profile implies that ANTs might be well-suited for
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applications that require a comprehensive representation of the intensity variance,
reliably capturing both medium and high levels of activation.

• DARTEL: Exhibits a narrow, symmetric distribution, indicating high precision and
minimal variability. Such a distribution profile is beneficial for studies that require
consistency and stability in detection across multiple sessions, especially in longitudinal
fMRI research where replicable measurements are crucial.

• FSL: Presents a slightly right-skewed distribution, similar to ANTs, suggesting that
while there is a balanced detection capability, FSL may be somewhat less variable in
detecting high-intensity activations. This characteristic is particularly useful for studies
aiming for a consistent detection performance across both lower and higher intensity
ranges without extreme variability.

These histograms collectively highlight differences in each algorithm’s balance of sensitivity
and variability. AFNI shows broader variability, whereas ANTs, DARTEL, and FSL provide
more stable and consistent detection profiles.

Scatter Plot Analysis:

Figure 4.4 presents scatter plots visualising the correlation between Peak Activation Intensi-
ties across the left and right hemispheres for each algorithm:

• AFNI: Shows a high Spearman correlation (ρ = 0.66), indicating strong bilateral
symmetry in detected activations. This consistency makes AFNI suitable for studies
requiring accurate identification of symmetric brain functions.

• ANTs: Displays a strong but slightly dispersed correlation (ρ = 0.62), suggesting that
while ANTs captures bilateral patterns effectively, it may also be sensitive to specific
patterns or outliers, which could be beneficial in targeted functional analyses.

• DARTEL: Exhibits a moderate correlation (ρ = 0.52), reflecting a consistent yet
somewhat varied detection approach. This makes DARTEL well-suited for broader
interpretations of hemispheric activation without overemphasising extremes.

• FSL: Shows moderate but consistent correlation (ρ = 0.54), suggesting a reliable
inter-hemispheric detection capability. This consistency is advantageous for studies
that require balanced detection without high sensitivity to variability.
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Fig. 4.3 Histograms of Peak Activation Intensities for each algorithm (AFNI, ANTs, DAR-
TEL, FSL) across both hemispheres. Each algorithm shows a distinct distribution pattern:
AFNI and FSL exhibit slight right-skewness, ANTs presents a more balanced distribution,
and DARTEL demonstrates a narrow, symmetric profile. These patterns reflect the algo-
rithms’ differing sensitivities and detection consistencies in rs-fMRI data. Colours represent
each algorithm: AFNI (Red), ANTs (Green), DARTEL (Blue), FSL (Yellow).
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Fig. 4.4 Scatter plots of Spearman’s rank correlation between hemispheric activation in-
tensities for each algorithm (AFNI, ANTs, DARTEL, FSL). Correlation coefficients (ρ)
indicate varying levels of bilateral consistency: AFNI (ρ = 0.66), ANTs (ρ = 0.62), DAR-
TEL (ρ = 0.52), and FSL (ρ = 0.54). These values reflect each algorithm’s sensitivity to
detecting consistent activation patterns across hemispheres.
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The findings highlight key differences in how each algorithm detects Peak Activation In-
tensities. AFNI and ANTs demonstrate strong correlations in bilateral symmetry and a
robust detection profile for intense activations, making them ideal for studies focused on
lateralisation or functional symmetry. DARTEL and FSL provide more balanced detection
profiles, with moderate sensitivity, suited for studies requiring a nuanced understanding of
hemispheric activity without an emphasis on extreme variability.

Bar Graph Analysis of Hemispheric Differences

The Wilcoxon Signed-Rank test results, summarised in Figure 4.5, illustrate the mean
differences in Peak Activation Intensities between left and right hemispheres for each al-
gorithm. Positive values indicate a left-hemisphere bias, while negative values reflect a
right-hemisphere preference.

This graph reveals subtle but distinct biases in each algorithm’s sensitivity to hemispheric
intensity differences. ANTs and AFNI show a slight left-hemispheric bias, suggesting they
may be particularly sensitive to left-dominant activity patterns, which is relevant for studies
on lateralised functions like language [63]. DARTEL, showing near-zero bias, is well-
suited for applications requiring balanced detection across hemispheres, such as symmetrical
resting-state analyses. FSL’s slight right-hemisphere bias may make it more attuned to
right-dominant processes, like spatial attention. Understanding these biases enables more
informed algorithm selection in neuroimaging studies, ensuring that the chosen algorithm
aligns with the specific lateralisation focus of the research.

4.5 Synthesis of Results and Recommendations

This section provides a brief discussion of results presented in the previous sections.

4.5.1 Implications for Neuroimaging Research

The findings in this chapter highlight the crucial role of algorithm selection in rs-fMRI
studies, especially regarding Peak Activation Intensity detection and hemispheric asymmetry
evaluation. The observed variability in performance among AFNI, ANTs, DARTEL, and FSL
demonstrates that different algorithms cater to different research needs. For instance, AFNI
and ANTs exhibited stronger bilateral symmetry in peak detection, making them particularly
suitable for investigations focusing on symmetrical neural functions, such as those involving
the Default Mode Network (DMN) or interhemispheric communication [75, 80]. Conversely,
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Fig. 4.5 Bar chart illustrating the mean differences in Peak Activation Intensities between
hemispheres for each algorithm (ANTs, DARTEL, AFNI, and FSL). Positive values indicate
higher mean intensities in the left hemisphere, while negative values suggest a higher right
hemisphere intensity. This visualisation helps in understanding the hemispheric bias and
performance variability of each algorithm.
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DARTEL and FSL’s balanced detection profiles suggest their utility for more generalised
whole-brain analyses without an inherent hemispheric bias, aligning well with studies that
require broad neural activity characterisation [8, 82].

These insights contribute to the broader discourse within neuroimaging by reinforcing
that algorithmic choice impacts data preprocessing, spatial normalisation, and resulting
functional connectivity analyses [7, 178]. Such findings support the notion that algorithm-
induced biases, if unaccounted for, can influence the scientific conclusions drawn from
neuroimaging studies [13, 23]. Therefore, the study’s results highlight the importance of
selecting algorithms in a way that aligns with specific research goals, particularly in rs-fMRI
contexts, where functional connectivity, symmetry, and network-specific activity are of
interest [25, 82]. By demonstrating that different algorithms yield varying sensitivity and
specificity, this study provides empirical support for carefully aligning algorithm selection
with intended neuroimaging outcomes.

4.5.2 Recommendations for Future Work

Based on these findings, several directions are recommended to improve algorithmic robust-
ness in rs-fMRI research. Expanding the testing of algorithms across a broader array of
datasets, including high-resolution and task-specific datasets, could reveal further insights
into their stability and sensitivity [179, 102]. Parameter optimisation within each algorithm
should be pursued to tailor detection sensitivity for specific brain regions, potentially reducing
artifacts from default settings [180, 30].

Moreover, the integration of multiple algorithms within a hybrid framework is an emerg-
ing area that could combine the strengths of each approach, thus enhancing both sensitivity
and specificity for complex analyses [24, 97]. Such integrative approaches align with recent
methodological advancements and can offer more refined analyses of neural connectivity and
variability in rs-fMRI, addressing the limitations of individual algorithms. This hybridisation
may also benefit from Machine Learning (ML) techniques, which can dynamically adapt
algorithm parameters to dataset-specific features, potentially improving the reproducibility
and interpretability of neuroimaging findings [3, 22].

In summary, future research should prioritise broader dataset validation, parameter opti-
misation, and algorithmic integration to enhance rs-fMRI methodological robustness. These
efforts will contribute toward establishing more consistent and reliable neuroimaging proto-
cols, addressing current challenges in algorithm selection and expanding the interpretative
power of rs-fMRI analyses.
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4.6 Chapter Summary

Chapter 4 presents a comprehensive evaluation of Peak Activation Intensity detection across
hemispheres in rs-fMRI data, comparing four state-of-the-art non-rigid registration algo-
rithms: ANTs, DARTEL, AFNI, and FSL. The chapter emphasises the need for reliable and
sensitive registration methods in neuroimaging by examining each algorithm’s statistical
sensitivity and stability. The analytical approach leverages robust metrics—including median,
IQR, and SD—to address variability, thereby enhancing our understanding of the distinct
behaviours of each method under different neuroimaging conditions.

Results reveal that while ANTs and AFNI exhibit high sensitivity to activation peaks,
they also display considerable variability, particularly in the right hemisphere, which could
potentially skew interpretations of hemispheric specialisation in studies that prioritise func-
tional lateralisation. DARTEL and FSL, in contrast, offer more stable intensity detections
across hemispheres, thus presenting balanced alternatives with reduced bias. These findings
highlight the importance of algorithm selection in neuroimaging, as each algorithm’s inherent
characteristics could lead to distinct neuroanatomical interpretations, particularly in studies
focused on hemispheric asymmetry.

Further, the chapter addresses the issue of non-normal data distributions—frequently
characterised by high skewness and kurtosis—which necessitated non-parametric statistical
methods such as the Mann-Whitney U and Kruskal-Wallis tests. The use of these methods re-
flects a careful adjustment for data irregularities, ensuring a rigorous analysis that strengthens
the reliability of the findings.

These findings contribute to a nuanced understanding of algorithmic performance in
rs-fMRI studies. In line with the reviewed literature, the chapter highlights how variability
in peak activation detection can influence interpretations of neuroimaging data, reinforcing
the need for algorithm refinement in studies of functional connectivity and brain asymmetry
[181, 25]. This exploration enriches ongoing discussions in the field by demonstrating that
algorithm selection must be context-dependent, balancing sensitivity with consistency to
optimise outcomes in specific research designs.

Chapter 5 builds upon these insights by broadening the focus from isolated peak intensities
to an examination of significant clusters and network integrity. This shift in focus allows for
a network-level analysis that contextualises peak intensity findings within broader spatial
activation patterns, providing a more comprehensive picture of brain activity patterns and
functional connectivity. This forthcoming analysis leverages the insights from Chapter 4
to investigate how peak intensity variations within significant clusters influence functional
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networks, offering further guidance on algorithm selection based on network-level sensitivity
requirements.
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Chapter 5

Significant Clusters-Based Network
Integrity Analysis

Chapter 4 provided a detailed analysis of Peak Activation Intensities, a univariate metric,
as an initial perspective on functional connectivity. In contrast, Chapter 5 introduces a
complementary approach through the analysis of Significant Clusters within Resting-State
Functional Magnetic Resonance Imaging (rs-fMRI) data. This chapter focuses on evaluating
how various registration algorithms affect the identification and interpretation of these
clusters, which are essential for understanding the brain’s functional integrity at the network
level.

The primary objective of this chapter is to examine Significant Clusters as a marker
of network integrity. Significant Clusters, identified based on statistical thresholds and
spatial coherence criteria, offer an alternative view on functional connectivity that highlights
regional co-activation and inter-regional coherence across hemispheres. This approach
incorporates the Gaussian Random Field (GRF) theory for determining cluster-wise ρ-values
[61], facilitating an analysis that moves beyond single-peak activations toward broader
network characteristics.

Understanding network integrity through Significant Clusters is crucial for evaluating the
robustness of non-rigid registration algorithms, as these algorithms impact the reproducibility
of detected functional regions across scans. By assessing the consistency of significant cluster
identification across algorithms, this chapter aims to inform future selections of neuroimaging
processing pipelines tailored to specific neuroscientific investigations, particularly those
involving rs-fMRI data.

This chapter serves as a transition from the individual-level analyses of activation patterns
in Chapter 4 to the more complex inter-subject comparisons in Chapter 6. By systematically
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examining algorithmic reliability in detecting Significant Clusters, we lay a foundation for
subsequent analyses on inter-subject variability and group-level network interpretations,
contributing to a more comprehensive framework for evaluating functional connectivity.
In this way, Chapter 5 acts as a bridge, connecting univariate activation insights with the
multivoxel approaches introduced in later chapters, ensuring continuity within the thesis’
broader methodological progression.

5.1 Methodology for Significant Clusters-Based Analysis

In this chapter, we extend the dataset and preprocessing protocols described in Chapter
3, where the neuroimaging data, comprising rs-fMRI scans, were prepared for subsequent
analysis. Briefly, the dataset includes 815 subjects, whose Functional Magnetic Resonance
Imaging (fMRI) scans were processed to enhance spatial consistency and to remove artifacts,
following standard preprocessing steps such as motion correction, normalisation, and smooth-
ing. Additionally, non-rigid state-of-the-art registration algorithms, specifically FMRIB
Software Library (FSL), Advanced Normalisation Tools (ANTs), Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DARTEL), and Analysis of Functional
NeuroImages (AFNI), were applied to align the brain images within a standard coordinate
Montreal Neurological Institute 152 (MNI152) space as outlined in earlier chapters.

5.1.1 Cluster-Based Analysis Methods

The methodologies presented here extend from traditional clustering approaches by specifi-
cally identifying significant spatial clusters within rs-fMRI data. Unlike Machine Learning
(ML)-based clustering algorithms briefly discussed in Chapter 3, which aim to partition data
based on intrinsic patterns or groupings, the cluster analysis here is hypothesis-driven and
relies on statistical criteria for network integrity evaluation.

Significant Clusters Identification

To identify Significant Clusters, we employed FSL FMRI Expert Analysis Tool (FEAT),
which facilitates the generation of spatially coherent clusters based on voxel-wise statistical
thresholds [61]. Significant Clusters in rs-fMRI are identified through FSL FEAT using spatial
coherence and statistical criteria, as defined by GRF theory. Clusters surpassing a defined
cluster-wise ρ-value threshold are deemed significant, accounting for spatial dependencies
within the data and correcting for multiple comparisons [99, 7]. This methodology focuses
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on biologically meaningful activation patterns, enhancing interpretability by defining clusters
as functionally cohesive units within the brain’s Resting-State Networks (RSNs).

Through FSL FEAT, clusters identified are not merely statistically significant but spatially
contiguous, enhancing the interpretability and reliability of the observed activation patterns
across different registration algorithms.

Network Integrity Assessment

The integrity of identified clusters is evaluated based on their spatial coherence and repro-
ducibility across registration algorithms. This involves assessing metrics such as cluster
size consistency, localisation precision, and overlap of identified clusters across algorithms,
emphasising structural reliability rather than data-driven grouping. This analysis aims to
ensure that the clusters identified genuinely reflect stable network structures within rs-fMRI,
supporting the study’s focus on network-level functional integrity rather than exploratory
pattern discovery. Statistical measures, including Spearman’s Rank Correlation and Mann-
Whitney U tests, facilitate the assessment of consistency and hemispheric differences in
cluster localisation across different algorithms [30, 182].

This approach emphasises the methodological rigour in defining significant rs-fMRI clus-
ters and highlights the use of FSL FEAT for reproducibility and network fidelity, contrasting
with the ML clustering methods discussed in Chapter 3.

5.1.2 Functional Connectivity via Significant Clusters

Functional connectivity offers insights into how distinct brain regions communicate, par-
ticularly within RSNs, where synchrony among neural areas can reveal intrinsic functional
connectivity patterns vital to cognitive and affective processing [82, 23]. Building on prior
analyses of Significant Clusters, this chapter aims to explore how each registration algorithm
(FSL, ANTs, DARTEL, and AFNI) captures these broader functional connectivity patterns.
The focus here shifts from individual cluster identification to evaluating the network integrity
these clusters represent across brain hemispheres, offering a more comprehensive view of
functional connectivity across hemispheres [25, 177].

To assess hemispheric consistency and variability, statistical methods such as the Mann-
Whitney U and Wilcoxon signed-rank tests are employed, providing an unbiased evaluation
of hemispheric performance in functional connectivity mappings [173, 174]. These methods
are particularly suitable for non-normally distributed neuroimaging data, enhancing the
robustness of findings regarding hemispheric asymmetries and network integrity [25, 161].
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Each algorithm applies distinct computational techniques and spatial transformations,
leading to variability in capturing functional connectivity patterns. This comparative analysis
highlights the potential strengths and limitations of each approach in representing broader
functional connectivity patterns, especially in terms of hemispheric balance and consistency.
Such insights are crucial as they directly impact the reliability of neuroimaging studies,
guiding the selection of algorithms to enhance the robustness of functional connectivity
analyses [22, 65].

5.2 Evaluation of Significant Clusters

This section examines how the four state-of-the-art non-rigid registration algorithms—FSL,
ANTs, DARTEL, and AFNI—differentially impact the identification and variability of
Significant Clusters, focusing on their effect within the left and right hemispheres. We
investigate how these algorithms modulate the detection of clusters in the Control Network,
emphasising the implications for interpreting the Default Mode Network (DMN) in resting-
state neuroimaging.

The same seed region identified in Chapter 4 within the left hemisphere, encompassing
the Paracingulate Gyrus and divisions of the Cingulate Gyrus, remains central to this analysis.
This section expands upon prior findings by focusing on the Significant Clusters associated
with this Control Network region, assessing the influence of registration algorithms on both
functional connectivity and functional integrity metrics.

5.2.1 Atlas Measurement

The correlation strength to the seed region and each algorithm’s influence on this correlation
were evaluated using the Harvard-Oxford cortical and subcortical structural atlas in MNI152
space. The cortical atlas covers 96 regions (48 per hemisphere), and the subcortical atlas
includes 17 regions encompassing major brain structures such as the thalamus, caudate,
pallidum, hippocampus, amygdala, accumbens, and brainstem [183, 184, 88, 185].

The selection of the Harvard-Oxford atlas is justified due to its comprehensive coverage
and established use in neuroimaging studies [181, 186]. Its detailed characterisation of corti-
cal and subcortical structures facilitates accurate region-based correlation analyses, which
are crucial for understanding the functional connectivity patterns relevant to our research
[187]. By using an atlas that is standardised to MNI152 space, we ensure compatibility with
a wide range of neuroimaging data and improve the reproducibility and comparability of
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our results across studies [98]. This standardisation allows for more precise identification of
regions implicated in cognitive and behavioural processes [175].

5.2.2 Hemispheric Analysis of Significant Clusters

This subsection analyses each algorithm’s performance in detecting Significant Clusters
within each hemisphere, exploring descriptive statistics that characterise cluster variability
and detection consistency.

In the left hemisphere (Table 5.1), DARTEL detected a higher mean number of clusters
(M = 14.60) compared to ANTs (M = 10.34), AFNI (M = 12.31), and FSL (M = 10.72), with
median values supporting this pattern. DARTEL also showed greater variability, indicated
by the highest standard deviation (SD = 7.26) among the algorithms. Although DARTEL’s
sensitivity appears advantageous, the increased variability suggests a potential trade-off, as
incidental or less relevant clusters may be identified.

In the right hemisphere (Table 5.2), a similar trend emerges with DARTEL leading in
mean cluster detection (M = 12.78). The skewness values indicate a rightward tail in cluster
distribution for ANTs (Skewness = 0.72) and FSL (Skewness = 0.72), implying a subset of
cases where a higher number of clusters were detected, especially for these two algorithms.
Notably, kurtosis values in the right hemisphere, particularly for ANTs (Kurtosis = 3.24),
indicate a more peaked distribution around the mean compared to the left hemisphere.

Table 5.1 Descriptive statistics of significant cluster detection in the Left Hemisphere, includ-
ing mean, median, variability, and distribution characteristics for four registration algorithms
(ANTs, DARTEL, AFNI, and FSL). This table highlights DARTEL’s higher mean detection
and variability compared to other algorithms.

Test ANTs DARTEL AFNI FSL
Mean 10.3350 14.5988 12.3141 10.7190
Median 10 14 12 10
Std Dev 5.4617 7.2639 5.8035 6.0598
Min 1 1 0 1
Max 29 42 31 33
Range 28 41 31 32
IQR 8 10 8 8
Skewness 0.4234 0.4598 0.2925 0.7182
Kurtosis 2.7463 2.8541 2.6804 3.1187

The findings indicate that DARTEL’s higher mean number of detected clusters, particu-
larly in the left hemisphere, showcases its sensitivity for identifying functional connectivity.
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Table 5.2 Descriptive statistics of significant cluster detection in the Right Hemisphere,
showing mean, median, variability, and distribution metrics for the registration algorithms
(ANTs, DARTEL, AFNI, and FSL). Key observations include ANTs’ and FSL’s skewness,
suggesting outliers in cluster detection.

Test ANTs DARTEL AFNI FSL
Mean 9.9755 12.7755 10.4086 9.4049
Median 9 12 10 8
Std Dev 5.6893 6.9583 6.2732 5.7961
Min 1 1 0 1
Max 30 43 31 29
Range 29 42 31 28
IQR 9 11 10 8
Skewness 0.7189 0.5580 0.5271 0.7156
Kurtosis 3.2412 3.0514 2.5778 2.8912

However, the higher standard deviation suggests that this algorithm, while comprehensive,
may include incidental or non-essential clusters, impacting data interpretation in studies
where precision is crucial. ANTs and AFNI, with their more moderate mean cluster counts
and narrower standard deviations, align with a stable approach suitable for applications
emphasising reliability over exhaustive detection.

The skewness values for ANTs and FSL in the right hemisphere imply that these algo-
rithms capture outlier cases with higher numbers of clusters, highlighting their variability in
specific contexts. Kurtosis values for ANTs, especially in the right hemisphere, indicate a
peaked distribution that can suggest precise identification of focal activations, beneficial for
studies on regional connectivity.

Aligning algorithm selection with research goals is essential. DARTEL’s robust detection
profile can benefit exploratory studies that need comprehensive cluster mapping. In contrast,
ANTs and AFNI, with their conservative and balanced cluster detection, may be more
suitable for studies where reducing noise and ensuring consistent detection are priorities.
These findings emphasise the importance of methodological choices in neuroimaging research
focused on hemispheric functional connectivity and network integrity.

Comparing results across hemispheres, DARTEL consistently detects more clusters, albeit
with greater variability. This variability could indicate a higher rate of incidental detections.
Consistency in Interquartile Range (IQR) values across algorithms and hemispheres shows a
stable spread in detection counts, although the right hemisphere has a slightly higher IQR for
DARTEL and AFNI, suggesting greater detection variability.
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These results highlight DARTEL’s sensitivity in detecting Significant Clusters and the
unique balance of sensitivity and specificity each algorithm brings to neuroimaging ap-
plications, relevant to the reliability and interpretability of studies examining functional
connectivity.

5.2.3 Statistical Consistency Across Hemispheres

This section introduces non-parametric tests and presents a summary of hemispheric con-
sistency in functional connectivity patterns, consolidating findings into tables that highlight
statistically significant results. The non-parametric tests provide robust insights, accommo-
dating deviations from normality in data distribution.

The distribution of significant cluster detections deviates from the expected normal
curve, as evidenced by elevated skewness and kurtosis across all algorithms and hemispheres.
Notably, ANTs exhibited a kurtosis of 3.2412 in the right hemisphere, suggesting a leptokurtic
distribution. Such deviations from normality necessitate alternative statistical approaches
like non-parametric tests for accurate data interpretation, sidestepping the limitations of
parametric methods that assume a normal distribution [188, 189].

These variations among algorithms highlight the influence of algorithm selection on
neuroimaging outcomes. ANTs and AFNI, showing greater variability, may be optimal
for studies requiring sensitivity to a broad range of activations. Conversely, DARTEL and
FSL, with more consistent measurements, could be better suited for research where balanced
detection is critical. This section sets the stage for the subsequent analysis using non-
parametric tests, which further explore the implications of these findings on neuroimaging
data interpretation.

The following analysis employs non-parametric tests to examine patterns within fMRI
data. Non-parametric tests are crucial as they do not assume a normal distribution, fitting
the data’s skewed and kurtotic characteristics, as noted. Here, the results of several non-
parametric tests are presented, each shedding light on different aspects of the evaluated
data.

Hemispheric Symmetry and Algorithmic Performance in Cluster Detection

To evaluate the consistency of significant cluster detection across hemispheres, non-parametric
tests were employed, as these methods are less sensitive to deviations from normality, which
was observed in our data. The results from these tests provide insights into the symmetry
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or asymmetry in cluster detection across the left and right hemispheres, and reveal specific
tendencies of each algorithm that could guide their selection in neuroimaging studies.

The Spearman’s Rank Correlation coefficients (Table 5.3) measure the strength of the
monotonic relationship between the number of Significant Clusters detected in each hemi-
sphere. AFNI exhibits the highest correlation (ρ = 0.64072), suggesting a strong alignment
in cluster detection across hemispheres with high statistical significance (p < 0.001). This
result implies that AFNI may offer greater consistency in identifying clusters in both hemi-
spheres, making it a suitable choice for studies where symmetrical functional connectivity
across hemispheres is desired. ANTs also shows a significant correlation (ρ = 0.59472),
though slightly lower than AFNI, indicating a moderately strong hemispheric agreement
but with a higher degree of variability. Lower correlations in DARTEL and FSL suggest
that these algorithms detect clusters in a more hemisphere-specific manner, which might be
relevant for studies focusing on lateralised brain functions.

Table 5.3 Adjusted Spearman’s rank correlation coefficients and ρ-values for fMRI regis-
tration algorithms. The table summarises the Spearman’s rank correlation analysis results,
indicating the varying strengths of the monotonic relationships between left and right hemi-
sphere number of Significant Clusters for ANTs, DARTEL, AFNI, and FSL. ρ values range
from moderate to strong, and the adjusted ρ-values denote high statistical significance for
each algorithm.

Algorithm ρ Adjusted ρ-value
ANTs 0.59472 6.6205×10−78

DARTEL 0.46607 5.544×10−44

AFNI 0.64072 3.4429×10−94

FSL 0.559953 3.048×10−67

The Mann-Whitney U Test (Table 5.4) further explores hemispheric differences by exam-
ining the effect sizes for each algorithm. ANTs displays a negative effect size (-0.29524),
suggesting a notable asymmetry, with a higher number of clusters detected in one hemi-
sphere over the other. This asymmetry indicates that ANTs may be particularly sensitive to
hemisphere-specific functional connectivity patterns, potentially benefiting studies examining
hemispheric specialisation. In contrast, DARTEL’s smaller positive effect size (0.15202)
suggests more balanced detection across hemispheres, reinforcing its suitability for studies
requiring consistent bilateral detection. AFNI and FSL show moderate differences, but their
smaller effect sizes compared to ANTs indicate less hemispheric bias.

The Wilcoxon Signed-Rank Test (Table 5.5) results align with the Mann-Whitney U
findings, with ANTs and AFNI again showing substantial median differences between
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Table 5.4 Adjusted Mann-Whitney U test ρ-values and effect sizes for each algorithm. This
table presents the results of the Mann-Whitney U test, providing insights into hemispheric
differences in the number of Significant Clusters as detected by different algorithms. Adjusted
ρ-values and effect sizes are indicated for ANTs, DARTEL, AFNI, and FSL, highlighting
significant variances in their performance across hemispheres.

Algorithm Adjusted ρ-value Effect Size
ANTs 1.4914×10−31 -0.29524
DARTEL 1.3396×10−8 0.15202
AFNI 4.37×10−15 -0.20272
FSL 0.02709 0.077759

hemispheres. ANTs exhibits a significant negative effect size (-0.43129), the largest among
the algorithms, reinforcing its sensitivity to hemispheric asymmetry. This sensitivity could
be particularly useful in detecting lateralised brain function. In contrast, DARTEL and FSL
have smaller effect sizes (0.18221 and 0.12121, respectively), indicating more symmetrical
detection, which is advantageous for studies prioritising uniformity across hemispheres.

Table 5.5 Adjusted Wilcoxon signed-rank test ρ-values and effect sizes for each algorithm.
This table presents the outcomes of the Wilcoxon signed-rank test, offering insights into the
median differences in the number of Significant Clusters between hemispheres for each of the
studied algorithms. Effect sizes are included to quantify the magnitude of these differences.

Algorithm Adjusted ρ-value Effect Size
ANTs 1.0612×10−66 -0.43129
DARTEL 3.0216×10−12 0.18221
AFNI 1.3681×10−39 -0.33127
FSL 1.5853×10−5 0.12121

The Kruskal-Wallis Test (Table 5.6) further confirms significant differences in cluster
counts between hemispheres, particularly for the right hemisphere. This consistent discrep-
ancy in the right hemisphere across algorithms suggests that right-hemispheric clusters are
more variable and might capture distinct aspects of functional connectivity. This finding
could be relevant in studies focused on right-hemisphere-dominant functions or pathologies,
as it implies potential variations in sensitivity among algorithms to right-hemisphere clusters.

These findings emphasise the significant impact of algorithm selection on the identifi-
cation of hemispheric differences in brain function. ANTs and AFNI, with their tendency
for asymmetric detection, are likely to be advantageous for studies focusing on lateralised
cognitive processes or functional asymmetries. Conversely, DARTEL and FSL, with their
balanced and consistent detection across hemispheres, may be more appropriate for research
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Table 5.6 Kruskal-Wallis test ρ-values for hemispheric differences in neuroimaging. This
table presents the Kruskal-Wallis test results assessing the statistical differences in the number
of Significant Clusters between the left and right hemispheres for each non-rigid registration
algorithm. Lower ρ-values indicate more significant differences between hemispheres.

Hemisphere ρ-Value
Left 4.0775×10−18

Right 2.2969×10−56

where uniformity and reproducibility across hemispheres are important. This knowledge
provides a foundational basis for algorithm selection in neuroimaging studies, aligning
methodological choices with specific research goals in cognitive neuroscience.

Distribution Analysis of Functional Connectivity

The histograms (Fig. 5.1) show the frequency distribution of significant cluster detections
across hemispheres for each algorithm, highlighting their sensitivity and detection biases.
Histograms are particularly valuable in rs-fMRI analysis as they illustrate data distribu-
tion patterns, shedding light on central tendencies and skewness, which are essential for
interpreting individual differences in functional connectivity [82, 190].

These histograms also complement Peak Activation Intensity analysis. While peak
intensity histograms indicate functional connectivity strength, cluster count histograms reveal
spatial consistency of detections. Together, they provide a comprehensive view of each
algorithm’s detection profile [91, 191].

The histogram for the AFNI algorithm shows a rightward skew in both hemispheres.
The peak of the histogram occurs before the mean, suggesting that the majority of subjects
exhibit a lower count of Significant Clusters. The longer right tail implies a small subset of
subjects with notably higher cluster counts, indicating that AFNI may have a conservative
detection bias, likely favoring fewer false positives while risking an underestimation of
clusters, particularly at higher intensities.

The histogram for the ANTs algorithm shows a more balanced distribution with slight
right skewness, reflecting a moderate overrepresentation of subjects with fewer clusters. The
relatively symmetrical appearance of ANTs’ distributions indicates a balanced detection
capability, positioning it as a middle ground between sensitivity and specificity in cluster
detection. This balanced detection may contribute to reliable functional connectivity analyses
when a mix of sensitivity and conservative detection is required.
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The DARTEL algorithm’s histograms for both hemispheres demonstrate the most sym-
metric distribution among all algorithms, with the central peak aligning closely with the mean.
This suggests that DARTEL offers consistent detection across subjects, with low variability
and minimal skewness. The slight rightward skew observed is less pronounced compared
to AFNI and ANTs, indicating a stable and uniform detection performance across varying
functional connectivity intensities, which may make it particularly suitable for analyses
requiring consistent and balanced measurements across large datasets.

Finally, the histogram for the FSL algorithm exhibits a distribution similar to that of
ANTs, with a slight rightward skew. This pattern implies a balanced detection tendency with
a modest skew towards detecting fewer clusters, aligning it closely with ANTs in terms of
detection balance. The spread of the distribution, alongside the peak around the median,
supports FSL’s potential for consistent cluster detection, though with a slightly conservative
edge compared to DARTEL.

Interpretation of Algorithmic Differences Based on Histogram Trends:

• The AFNI histograms indicate a conservative detection bias with a rightward skew,
implying a tendency to underestimate clusters, especially those of higher intensity,
which might reduce false positives but could miss subtle functional connectivity
patterns.

• ANTs shows a moderate right skew, suggesting balanced detection with slight variabil-
ity. This algorithm could be suited for studies requiring a moderate approach between
sensitivity and specificity.

• DARTEL histograms, with minimal skew and high symmetry, imply consistent de-
tection across intensities, indicating it as potentially ideal for applications requiring
balanced and stable cluster detection without significant hemispheric bias.

• FSL exhibits a similar skew to ANTs, showing balanced detection with a modest skew
toward fewer clusters, making it versatile for applications where conservative and
consistent detection is preferred.

The histogram distributions illustrate distinct cluster detection profiles for each algorithm,
highlighting how these methods align with different research objectives. AFNI’s more
conservative detection approach could be advantageous for studies requiring stricter control
over false positives, ideal for exploratory analyses with a high threshold for significance.
DARTEL’s symmetrical cluster distribution may serve well in studies needing balanced
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Fig. 5.1 Histograms of the number of Significant Clusters detected in left and right hemi-
spheres for each algorithm (AFNI, ANTs, DARTEL, FSL). AFNI shows a rightward skew,
indicating a conservative bias with fewer detected clusters. ANTs and FSL exhibit relatively
symmetrical distributions with a slight skew towards fewer clusters, suggesting balanced
detection. DARTEL demonstrates the most symmetric distribution, indicating consistent
detection across subjects and hemispheres.
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inter-hemispheric detection, providing consistency across subject populations. ANTs and
FSL, positioned between these extremes, demonstrate a versatile mix of sensitivity and
specificity, making them adaptable for varied experimental designs where moderate cluster
detection sensitivity is suitable.

Overall, these distributions encourage researchers to select an algorithm based on study-
specific goals, such as prioritising detection consistency or specificity in functional connec-
tivity analyses. The histogram comparison, along with supporting descriptive statistics, thus
enhances the decision-making process in choosing a neuroimaging registration approach
that best matches the intended analytical rigour and focus within resting-state functional
connectivity studies.

Hemispheric Functional Connectivity Insights

The exploration of hemispheric differences in functional connectivity highlights the evolution-
ary adaptation of brain asymmetry to optimise cognitive processing and performance [176].
This section investigates how non-rigid image registration algorithms influence the detection
of hemispheric variances in neuroimaging data. The role of these algorithms—ANTs, DAR-
TEL, AFNI, and FSL—in mapping activation intensities across hemispheres is particularly
relevant, as their unique computational methodologies may highlight or obscure inherent
asymmetries.

As highlighted by Wang et al. [177], hemispheric specialisation contributes to behavioural
adaptability, underscoring lateralisation as a functional advantage. This analysis aims to
discern how each algorithm’s characteristics affect our understanding of intrinsic hemispheric
differences, focusing not just on the presence of asymmetry but on the portrayal accuracy
across different algorithmic approaches.

The box plots in Figure 5.2 illustrate central tendency and variability in significant
cluster detection for each hemisphere. In the left hemisphere, ANTs and DARTEL exhibit
higher medians, indicating a propensity to detect more clusters. DARTEL’s tighter IQR
reflects consistent cluster detection, while ANTs shows wider variability, which may suggest
either increased sensitivity or potential noise inclusion. AFNI and FSL, with lower median
cluster counts, present fewer outliers in FSL’s case, suggesting a more conservative detection
approach.

For the right hemisphere, DARTEL and FSL maintain narrow IQR, indicating consistency
across subjects. In contrast, AFNI’s wider distribution and more outliers imply a sensitivity
to extreme values, which could be advantageous for studies focusing on capturing subtle or
sparse activation patterns but might also introduce noise.

105



Significant Clusters-Based Network Integrity Analysis

Fig. 5.2 Box plots of the number of Significant Clusters detected across left and right hemi-
spheres for each algorithm. ANTs and DARTEL show higher median values, with DARTEL
and FSL exhibiting narrower IQR, indicating greater consistency in cluster detection. AFNI
demonstrates broader distributions, reflecting higher variability in cluster counts. Statistical
significance between algorithms is marked by asterisks as shown in Table 4.3.
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The violin plots in Figure 5.3 provide insights into the density of detected clusters. In
the left hemisphere, DARTEL and FSL display narrower distributions around the median,
suggesting that detected clusters are densely packed around a central value, likely reducing
susceptibility to noise. Conversely, ANTs and AFNI’s broader distributions in the right
hemisphere imply higher variability in cluster size detection, which may indicate sensitivity
to subtle signals but could also reflect noise.

DARTEL stands out for its symmetrical detection performance across both hemispheres,
with fewer outliers and tighter distributions, making it a suitable choice for studies requiring
consistent inter-hemispheric comparisons. ANTs, while detecting more clusters, presents
greater variability, raising questions about specificity in studies sensitive to lateralisation.
AFNI’s broader distribution reflects a high sensitivity to extreme values, which might be
beneficial in detecting sparse or nuanced patterns, though it also poses a risk of incorporating
noise. FSL, with moderate IQR and fewer outliers, offers a balanced approach, appropriate
for general functional connectivity studies.

Fig. 5.3 Violin plots of the number of Significant Clusters detected in left and right hemi-
spheres for each algorithm (ANTs, DARTEL, AFNI, FSL). DARTEL and FSL show narrower
distributions around the median, indicating consistent cluster detection, while ANTs and
AFNI exhibit broader distributions, suggesting higher sensitivity to variability in cluster size.
Black lines indicate mean values, and red lines indicate medians.

The observed distribution patterns suggest that algorithm choice should be tailored to
specific research objectives in neuroimaging. DARTEL’s consistent and balanced detection
across hemispheres is advantageous for studies emphasising hemispheric symmetry. In
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contrast, ANTs and AFNI may be more suitable for studies where sensitivity to subtle
asymmetries is desired, albeit with the caution that these algorithms might introduce noise
due to variability. FSL, with its moderate detection profile, emerges as a versatile choice,
well-suited for studies requiring a balance between sensitivity and specificity.

In summary, these findings highlight the importance of selecting an appropriate algorithm
based on study requirements. Each algorithm’s inherent characteristics influence the accurate
portrayal of hemispheric functional connectivity, emphasising its critical impact on the
interpretation of functional brain imaging results.

Algorithmic Sensitivity and Specificity in Functional Connectivity

To assess the hemispheric consistency of cluster detection using non-rigid registration algo-
rithms, scatter plots are employed (Fig. 5.4) to visualise associations between the number
of Significant Clusters in the left and right hemispheres. Accompanied by Spearman’s rank
correlation coefficients, these plots provide a quantitative measure of monotonic relation-
ships without assuming linearity. The line of best fit in each plot represents the correlation
trend, and the proximity of data points to this line reflects correlation strength, integral to
interpreting algorithmic performance.

This analysis is not intended to dispute hemispheric asymmetry but rather to assess
how different algorithms capture this characteristic. By examining associations between
clusters in each hemisphere, we gain insights into each algorithm’s precision in mirroring the
brain’s asymmetrical structure. This approach provides critical insights into each algorithm’s
capacity to represent hemispheric lateralisation in neuroimaging studies.

AFNI’s scatter plot demonstrates a strong Spearman correlation (ρ = 0.64), with data
points tightly clustered around the best fit line. This indicates consistent bilateral cluster
detection and robust symmetrical performance across hemispheres. Such a pattern suggests
that AFNI effectively captures similarities between the left and right hemispheres, making it
highly suitable for research focused on balanced connectivity representation. The clustering
of points along the line also implies that AFNI maintains reliable detection of significant
clusters across subjects, ensuring minimal inter-hemispheric variability.

ANTs, exhibiting a moderate-to-strong correlation (ρ = 0.59), shows slightly more
dispersion in the data points compared to AFNI. This pattern suggests that while ANTs main-
tains a systematic detection of clusters, it is more sensitive to variations in inter-hemispheric
detection. Such variability may be indicative of ANTs’ ability to detect subtle differences
in connectivity patterns, which could be advantageous for studies examining detailed hemi-
spheric differences or nuanced lateralisation effects. However, this increased sensitivity may
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also introduce a higher likelihood of variability in detection consistency across different
subjects or datasets.

DARTEL’s scatter plot reveals a moderate correlation (ρ = 0.47) with notable spread
among data points. This wider distribution implies that DARTEL may capture individual
differences in hemispheric connectivity, suggesting that it prioritises subject-specific vari-
ances over strict hemispheric symmetry. While this characteristic can be advantageous for
research focusing on individualised connectivity analysis, it may pose challenges for studies
that require consistency and symmetrical detection across both hemispheres. The spread also
indicates potential challenges in reproducibility when comparing results across subjects, as
variability in detection could impact the reliability of findings in group-level studies.

FSL’s scatter plot shows a moderate correlation (ρ = 0.56), suggesting a balanced
approach to hemispheric cluster detection with moderate variability. The data points in FSL’s
plot indicate that while it tends to detect clusters similarly across hemispheres, it still allows
for some degree of inter-hemispheric differences. This characteristic makes FSL suitable for
general functional connectivity studies that benefit from a balance between detecting subtle
differences and maintaining consistent results across hemispheres. The moderate correlation
also implies that while FSL can effectively capture symmetrical connectivity patterns, it may
not be as finely tuned as AFNI for maintaining strict bilateral consistency or as sensitive as
ANTs for detecting subtle asymmetries.

Overall, these findings indicate that AFNI is optimal for studies requiring strong sym-
metrical performance, while ANTs’ sensitivity is beneficial for detecting subtle hemispheric
variations. DARTEL’s individualised approach may serve studies focused on subject-specific
connectivity, albeit with considerations for potential variability. FSL’s balanced detection pro-
file suits general studies where a compromise between hemispheric symmetry and variability
is needed.

The bar graph (Fig. 5.5) summarises mean differences in significant cluster detection
between hemispheres for each algorithm. ANTs and AFNI exhibit positive mean differences,
indicating higher cluster counts in the right hemisphere, suggesting a bias towards detecting
right-hemispheric features. However, the larger error bars for these algorithms reflect
variability, highlighting inconsistent detection across datasets.

DARTEL, with near-zero mean differences and smaller error bars, demonstrates bal-
anced cluster detection, making it ideal for studies prioritising symmetrical analysis. FSL
shows a slight left-hemisphere preference with moderate variability, suggesting consistent
performance but with a potential subtle bias.
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Fig. 5.4 Scatter plots of Spearman’s correlation between hemispheric cluster detection for
each algorithm (AFNI, ANTs, DARTEL, FSL). Correlation coefficients (ρ) reveal varying
degrees of bilateral symmetry: AFNI (ρ = 0.64) shows strong correlation, ANTs (ρ = 0.59)
reflects moderate-to-strong correlation with some variability, FSL (ρ = 0.56) indicates
moderate symmetry, and DARTEL (ρ = 0.47) exhibits the lowest correlation, suggesting
less hemispheric consistency.
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Overall, ANTs and AFNI are well-suited for detecting hemispheric asymmetries, while
DARTEL offers stable, balanced detection across hemispheres. FSL provides a generally
consistent option but may introduce minor left-hemispheric skew.

Fig. 5.5 Bar graph showing mean differences in Significant Clusters detected between left
and right hemispheres by ANTs, DARTEL, AFNI, and FSL. ANTs and AFNI show higher
cluster counts in the right hemisphere, while FSL shows a slight left-hemisphere preference.
DARTEL demonstrates balanced detection across hemispheres.

The synthesis of these analyses highlights the importance of algorithm selection tailored to
research objectives. AFNI’s high correlation suggests it is well-suited for studies prioritising
symmetrical representation in hemispheric analysis. ANTs, while consistent, provides
sensitivity to variability, beneficial for exploring hemispheric differences. DARTEL’s capacity
for detecting individual variations makes it useful for personalised connectivity research,
despite moderate hemispheric symmetry. FSL, with balanced performance and moderate
variability, is recommended for general functional connectivity studies where minimal
hemispheric bias is acceptable.
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Overall, these findings emphasise that AFNI and ANTs excel in symmetric and asymmetry-
sensitive studies, respectively. DARTEL supports individualised research, while FSL’s bal-
anced profile suits broader studies. This comprehensive analysis highlights the impact of
algorithmic choice on neuroimaging outcomes, guiding informed selections for optimising
study goals based on sensitivity and specificity in hemispheric functional connectivity.

This section uses non-parametric tests to interpret hemispheric cluster patterns in fMRI
data, focusing on the influence of non-rigid registration algorithms. Spearman’s Rank Corre-
lation reveals varying degrees of consistency in hemispheric symmetry across algorithms,
with AFNI demonstrating the strongest correlation, suggesting symmetrical detection. Mann-
Whitney U and Wilcoxon Signed-Rank tests support these findings, highlighting significant
median differences in ANTs, suggesting hemispheric asymmetry. Kruskal-Wallis Test results
confirm consistent differences across algorithms, underscoring algorithmic variability in
hemispheric cluster detection.

5.3 Combined Insights from Univariate Metrics

Chapters 4 and 5 provided complementary analyses of functional connectivity using two
distinct univariate metrics: Peak Activation Intensity and the number of Significant Clusters.
These metrics, while individually valuable, reveal different facets of brain network charac-
teristics, offering a comprehensive understanding when evaluated together. Peak Activation
Intensity, as explored in Chapter 4, focuses on the sensitivity of non-rigid registration algo-
rithms (e.g., FSL, ANTs, DARTEL, AFNI) to localised brain activity [65, 58]. This measure
captures the amplitude of activation at specific locations, which is critical for detecting strong
focal activations within networks, such as those involved in cognitive and sensory processing.

In contrast, Chapter 5’s analysis of Significant Clusters offers an assessment of spatial
coherence and network integrity, revealing the ability of these algorithms to capture broader,
functionally cohesive regions [61, 192]. By identifying spatially contiguous clusters, this
metric provides insights into inter-regional connectivity and the robustness of network
structures. When considered together, these univariate metrics allow for a multidimensional
characterisation of functional connectivity: Peak Activation Intensities reflect the strength of
focal activations, while Significant Clusters inform on the spatial extent and coherence of
functional connectivity patterns.
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5.3.1 Interpretation of Functional Connectivity

The combined use of Peak Activation Intensity and Significant Clusters enhances our interpre-
tation of RSNs by providing a dual-layered perspective. Peak Activation Intensity highlights
regions of high neural activity, which may correlate with core nodes within functional net-
works, such as the DMN or Salience Networks. In parallel, the analysis of Significant
Clusters reveals how these core nodes interact with surrounding areas, mapping out network
boundaries and regional cohesiveness. Together, these metrics emphasise the interplay be-
tween network nodes and their spatial coherence, facilitating a nuanced understanding of
functional connectivity patterns that single metrics alone may overlook [169].

Chapter 4’s analysis focused on the assessment of Peak Activation Intensities across
different non-rigid registration algorithms. The findings highlighted notable algorithmic
variability, with ANTs demonstrating the highest mean Peak Activation Intensity, indicating
superior sensitivity, and DARTEL exhibiting consistent performance across hemispheres
with minimal variability. This suggested that Peak Activation Intensity could be used to
identify crucial nodes within RSNs such as the DMN, essential for cognitive processes [101,
170].

Chapter 5 extended this perspective by evaluating significant clusters, which provided
insight into the broader network integrity and inter-regional coherence within RSNs. The
results showed that algorithms like DARTEL and FSL maintained more consistent cluster
detection, emphasising regional stability and robustness in functional connectivity analysis
[60, 65]. ANTs, while highly sensitive in detecting peak activations, displayed a wider
variability in cluster distribution, suggesting that it is more responsive to subtle inter-regional
connections but potentially less stable in broader cluster delineation [65].

5.3.2 Implications for Neuroimaging Research

The findings from Chapters 4 and 5 highlight the importance of aligning algorithm selection
with specific neuroimaging goals, particularly in the context of rs-fMRI studies. As identified,
algorithms like ANTs and AFNI exhibit heightened responsiveness to localised activity peaks,
which is beneficial for research focused on task-based activations or investigations into focal
lesions due to their sensitivity to intensity variations [58, 65]. Conversely, algorithms such
as DARTEL and FSL have demonstrated more balanced and consistent cluster detection
across hemispheres, making them suitable for functional connectivity studies where network
integrity and reproducibility are crucial [193, 104]. This distinction allows researchers to
select algorithms that best suit their specific analytical requirements.
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The dual insights from Peak Activation Intensity and significant cluster detection reveal
complementary aspects of functional connectivity, supporting a multifaceted approach to
algorithm selection in neuroimaging studies. Peak Activation Intensity measures highlight
focal neural activity, aligning with studies that prioritise sensitivity to intense, localised
activations. Meanwhile, the detection of Significant Clusters informs on the broader spatial
coherence of functional connectivity patterns, crucial for RSN analyses that depend on
capturing inter-regional cohesiveness [23, 24].

By characterising the unique strengths of each algorithm, these findings provide a frame-
work for informed algorithm selection based on study objectives. For studies emphasising
focal peaks, ANTs and AFNI may offer superior detection due to their intensity sensitivity,
although with higher variability in inter-subject comparisons [20]. In contrast, DARTEL
and FSL, with their balanced detection across hemispheres, may serve as robust choices
for research focused on hemispheric consistency and reproducibility. Thus, the choice of
algorithm can meaningfully impact the interpretation of functional connectivity, emphasising
the need for a tailored approach to designing neuroimaging studies [20, 153].

5.4 Chapter Summary

Chapter 5 conducted an in-depth examination of Significant Clusters as indicators of net-
work integrity, focusing on rs-fMRI analyses. By extending the framework from Chapter 4,
which concentrated on Peak Activation Intensities, this chapter provided a broader perspec-
tive on functional connectivity by evaluating the spatial coherence of Significant Clusters
across hemispheres and within the Control Network. The primary goal here was to assess
how different neuroimaging algorithms—DARTEL, FSL, ANTs, and AFNI—affect the
reproducibility and reliability of network structures, each presenting unique strengths and
limitations. For instance, DARTEL’s consistency in significant cluster detection highlights
its utility in maintaining network integrity across subjects, a key advantage for group-level
analyses. In contrast, ANTs and AFNI, while highly sensitive, exhibited greater variability,
posing potential challenges for studies emphasising hemispheric symmetry or cross-subject
comparability.

This chapter’s methodological approach, integrating non-parametric tests and distribution
analyses, reinforced the distinctive profiles of these algorithms in detecting and interpret-
ing functional clusters. These findings highlight the importance of selecting algorithms
aligned with study objectives: DARTEL and FSL for balanced, symmetric detection across
hemispheres, and ANTs or AFNI for studies requiring heightened sensitivity to nuanced,
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potentially asymmetric activations. These insights into algorithm-specific cluster characteris-
tics are crucial for designing robust neuroimaging studies, as they influence both the spatial
accuracy and interpretability of functional connectivity maps.

Looking forward, Chapter 6 will build on these findings by delving into inter-subject
variability and group-level network inferences. This next chapter will expand the univariate
analyses presented thus far into multivoxel contexts, enabling an exploration of between-
individuals differences and the broader implications of algorithm choice on group-level
functional connectivity patterns. Together, the analyses from Chapters 4 and 5 provide a
robust foundation for understanding the nuances of neuroimaging algorithms, preparing for a
comprehensive evaluation of functional connectivity within and across subjects.
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Chapter 6

Inter-Subject Variability and Group
Inference Analysis

In Chapter 6 of this thesis, we critically examine Mutual Information (MI), Dice Similarity
Coefficient (DSC) metrics, and Multivoxel Pattern Analysis (MVPA) as key analytical metrics
to assess inter-subject variability and algorithmic performance in brain functional connectivity
analysis. Building on the foundational concepts introduced in Chapters 3 to 5, this chapter
integrates these metrics within a systematic framework to provide a deeper understanding
of Resting-State Networks (RSNs), which retain intrinsic activity across different states of
consciousness and are critical in neuroimaging studies [194, 32, 195].

To clarify the structure of Chapter 6, a conceptual flow diagram follows this introduction
(Figure 6.1). This diagram outlines the inter-subject analysis pipeline, highlighting the
sequence of evaluation metrics, similarity analysis, and algorithmic performance assessment.

The pipeline begins with the evaluation of MI and DSC metrics, which quantify depen-
dency relationships and spatial overlap across subjects, respectively. MI measures the degree
of dependency among brain regions, while DSC metrics evaluate spatial similarity achieved
by each registration algorithm, FMRIB Software Library (FSL), Advanced Normalisation
Tools (ANTs), Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL), and Analysis of Functional NeuroImages (AFNI). Next, MVPA, using Support
Vector Machine (SVM) weight maps, identifies predictive neural patterns, providing in-
sights into variability across subjects. These metrics collectively enable a multi-dimensional
assessment of functional connectivity.

Following this, algorithmic performance analysis assesses the clustering consistency
and spatial alignment achieved by each algorithm, capturing the nuances of inter-subject
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variability. The chapter concludes with group-level inference, summarising how the findings
contribute to understanding functional connectivity patterns across the study population.

Fig. 6.1 Flow diagram of Chapter 6’s analysis pipeline, showing the stages of evaluation
metrics, similarity analysis, and algorithmic performance assessment.

MVPA, in particular, plays an instrumental role in identifying neural patterns associated
with cognitive states and further differentiates between registration algorithms by uncovering
variability in the spatial representations they produce. Its inclusion here aligns with the
overarching goals of evaluating RSNs within Resting-State Functional Magnetic Resonance
Imaging (rs-fMRI) data. This analysis advances our understanding of neural connectivity,
allowing for a more nuanced interpretation of potential biomarkers in neurological disorders
[196].

This chapter systematically explores the metrics mentioned above, beginning with a
focused investigation of MI, followed by spatial overlap measurements via DSC, and fi-
nally, a detailed analysis using MVPA. The findings from each metric build upon each
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other, contributing to a cohesive narrative of algorithmic performance in the context of neu-
roimaging and RSN variability. This structure facilitates a thorough evaluation of how these
methods, individually and collectively, contribute to enhancing accuracy and consistency in
neuroimaging studies.

6.1 Evaluation Metrics

To quantitatively assess the alignment and inter-subject variability within rs-fMRI data, MI
and DSC metrics are employed as complementary evaluation methods. MI provides a measure
of dependency relationships between brain regions, while the DSC coefficient captures spatial
overlap, offering a cohesive framework to examine both functional connectivity and alignment
accuracy across subjects. This section sequentially presents MI and DSC metrics, followed
by their respective results, streamlining the analysis flow for improved comprehension.

6.1.1 Overview of MI and DSC Metrics

Mutual Information (MI)

MI is a non-parametric measure that quantifies the dependency between two variables. In
the context of neuroimaging, MI serves as an essential metric for assessing alignment and
similarity between brain images, particularly useful in evaluating the consistency of non-rigid
registration algorithms. MI is widely applied in image registration due to its robustness in
capturing complex dependencies without relying on specific distributional assumptions [2,
9]. This study uses MI to evaluate the alignment accuracy and consistency of functional
connectivity patterns across subjects after applying various non-rigid registration algorithms
to resting-state fMRI (rs-fMRI) data [197, 198].

The MI calculation process is structured as follows:

1. Image Preparation:

• Data Selection: rs-fMRI images from each subject are processed using different
non-rigid registration algorithms, resulting in four sets of images per algorithm
each.

• Preprocessing: The images are binarised and masked to focus on regions of
interest within the brain, specifically the RSNs, to ensure MI calculations are
focused on relevant areas, enhancing result specificity.
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2. Entropy and Joint Entropy Calculation:

• Marginal Entropy of Image X : The entropy H(X) for an image X quantifies
the uncertainty or unpredictability in its voxel intensity distribution:

H(X) =− ∑
x∈X

p(x) log p(x) (6.1)

Here, p(x) represents the probability of each voxel intensity level x in the image.
Entropy, in this case, measures the amount of information contained within
the image. High entropy values suggest more variability in voxel intensities,
indicating a more complex or diverse spatial pattern in the brain image. This
measure is foundational as it provides a baseline for the amount of information
present in each image separately.

• Joint Entropy of Images X and Y : The joint entropy H(X ,Y ) measures the
combined uncertainty or unpredictability across two images:

H(X ,Y ) =− ∑
x∈X ,y∈Y

p(x,y) log p(x,y) (6.2)

where p(x,y) represents the joint probability of observing voxel intensities x and
y simultaneously in images X and Y , respectively. Joint entropy quantifies the
overlap in voxel intensity patterns between the two images. Lower joint entropy
values indicate higher similarity, as it implies less combined unpredictability
across the two images.

3. MI Calculation: MI between two images X and Y is then computed as:

MI(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (6.3)

This formula represents the shared information between images X and Y . In the context
of image registration, a higher MI value signifies a greater alignment quality, as it
indicates more shared information between the two images. This reflects a better
correspondence between voxel intensities in X and Y , implying that the registration
algorithm has effectively aligned similar anatomical or functional features. This study
uses MATLAB R2023a [130] for MI calculations, automating the process and handling
the large volume of rs-fMRI data.
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In neuroimaging, MI is advantageous due to its sensitivity to complex voxel intensity
relationships without requiring assumptions about intensity distributions. This makes it
highly suitable for capturing subtle dependencies in functional connectivity patterns between
subjects [4, 60]. By identifying registration algorithms that maximise MI values, this
study selects approaches that preserve functional connectivity patterns essential for RSN
analysis [198, 197]. Overall, MI enhances the specificity and reliability of neuroimaging
data alignment, providing a metric that directly reflects functional correspondence between
subjects.

Spatial Overlap - DSC Metric

The DSC is a statistical metric that quantifies spatial overlap between binary images, com-
monly used in neuroimaging to assess the spatial alignment of functional regions across
subjects. In the context of rs-fMRI, DSC provides a measure of how well different registration
algorithms align functional networks across individuals. This alignment is essential for accu-
rately comparing brain networks in studies involving disease contexts, such as Alzheimer’s
Disease [199].

For visualising DSC results, heat maps are employed, which use a gradient from blue
(low similarity) to red (high similarity) to intuitively convey the spatial similarity achieved
by each algorithm. This visualisation aids in detecting algorithmic performance variations,
which can be particularly informative when analysing structural and functional differences in
clinical populations.

The DSC calculation follows these steps:

1. Region Binarisation: Each image is binarised, marking regions of interest within
functional networks as ’1’ (indicating presence) and all other areas as ’0’. This enables
voxel-wise comparison between registered images from different subjects or between
a subject’s image and a template [200].

2. DSC Calculation:

• DSC Formula: The DSC score quantifies spatial overlap between two binary
images A and B, where each image is composed of voxels that either belong to a
functional region (indicated by ’1’) or do not (’0’). The formula for DSC is:

DSC(A,B) = 2× |A∩B|
|A|+ |B|

(6.4)
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In this formula, |A∩B| represents the count of voxels that are marked ’1’ in both
images A and B, indicating the region of spatial overlap. The terms |A| and |B|
represent the count of ’1’ voxels in each image separately. By calculating DSC,
we assess the extent to which two regions of interest, identified by the binary
masks, overlap spatially [201].

• Interpretation of the DSC Value: The DSC metric yields a value between 0
and 1, where higher values indicate greater spatial alignment of the functional
regions across subjects or with respect to a template. A DSC score of 1 would
indicate perfect alignment, while a score of 0 would imply no overlap. In
practice, higher DSC values reflect the effectiveness of a registration algorithm
in aligning functional brain networks. Conversely, lower scores may indicate
alignment challenges, potentially due to limitations of the registration algorithm
or individual anatomical differences between subjects.

Heat maps and cluster visuals are used to present DSC results, with each colour repre-
senting a specific level of similarity, ranging from low (blue) to high (red). These visual
tools allow for quick identification of algorithmic performance variations across different
brain regions and subjects, offering insights into the spatial similarity achieved by each
registration method. This visual approach is especially valuable in analysing functional net-
work alignment in rs-fMRI, aiding researchers in selecting optimal algorithms for analysing
inter-subject variability in both healthy and clinical populations.

In summary, DSC serves as a robust metric for evaluating spatial overlap, offering
insights into the precision of alignment achieved by different registration algorithms in the
functional brain regions across subjects. The combination of MI and DSC metrics enables a
comprehensive assessment of functional alignment quality, revealing both shared and distinct
aspects of functional connectivity network similarity across subjects in rs-fMRI data.

6.1.2 MI Calculations and Results

A pairwise MI analysis was conducted to quantify the similarity in information content
between the MVPA weight maps generated by four non-rigid registration algorithms: FSL,
DARTEL, ANTs, and AFNI. This analysis assesses the extent to which each algorithm
preserves shared information in the spatial distribution of activation patterns within rs-fMRI
data. The MI values, computed on a scale from 0 (no shared information) to 1 (complete
overlap of information content), offer a quantitative benchmark for comparing the outputs of
these algorithms.
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The results of the MI calculations are presented in a matrix (Table B.1) and visually
summarised in a heat map (Figure 6.2). These representations provide insights into the
pairwise similarity of activation patterns detected by different algorithms, shedding light on
both the overlaps and distinctions in their registration outcomes.

The diagonal entries in the heat map consistently show MI values of 1, as expected,
reflecting the self-similarity within each algorithm’s output and validating the MI calculation
process. The colour scale was set to a range of 0.7 to 1 to enhance the visual contrast within
the MI values observed (0.8062 to 0.9461). This adjustment highlights subtle differences in
overlap between algorithm pairs, making it easier to notice regions of higher and lower MI.
This tailored range ensures that the visual representation aligns with the data range, while
avoiding excessive exaggeration of small differences.

The heat map in Figure 6.2 utilises a gradient colour scheme, where lighter shades
indicate higher MI values and, consequently, greater similarity in detected activation patterns.
Notably, the ’ANTS vs DARTEL’ and ’FSL vs DARTEL’ comparison yielded an MI value
of 0.9461, the highest in the matrix, signifying a substantial overlap in information content
between these two algorithms. This finding suggests that FSL and AFNI, despite their
methodological differences, may offer comparable sensitivity to functional signals within the
analysed dataset.

In contrast, the ’FSL vs ANTS’ and ’FSL vs DARTEL’ comparison, marked by a darker
shade, represents the lowest MI value in the matrix (0.8062). This lower degree of similarity
reflects the distinct processing characteristics of these algorithms, which may differentially
influence the sensitivity to specific brain features or the handling of noise within the data.
Such variations highlight the need to carefully consider algorithm choice based on study
objectives and data characteristics.

Further, the MI results suggest possible redundancies or complementarities among the
algorithms. For example, ’FSL vs ANTS’ and ’ANTS vs AFNI’ pairings show proximate MI
values, implying that these algorithms might capture analogous features or exhibit similar
processing biases. This information can aid researchers in selecting algorithms that best align
with their goals, whether aiming for consistent activation detection or leveraging algorithmic
diversity to enhance analytical rigour.

The MI heat map analysis is complemented by Wilcoxon averaged bar graphs (Figures
4.5 and 5.5), which depict the range of MI values across algorithm pairs. Higher bars in
the Wilcoxon graphs correlate with lighter shades in the MI heat map, signifying greater
agreement between algorithms, while lower bars align with darker shades, indicating greater

123



Inter-Subject Variability and Group Inference Analysis

divergence. This cross-referencing provides a comprehensive understanding of algorithm
performance, supporting informed choices in algorithm selection for neuroimaging studies.

Fig. 6.2 This heat map illustrates the MI between whole-brain SVM weight distributions
across pairs of non-rigid registration algorithms, reflecting the similarity of activation patterns.
Higher MI values, shown in lighter shades, indicate greater overlap in detected patterns, with
the highest MI (0.9461) observed between ’ANTS vs DARTEL’ and ’FSL vs DARTEL’.
Darker shades represent lower MI, with the minimum (0.8062) between ’FSL vs ANTS’
and ’FSL vs DARTEL’, suggesting less agreement. All values can be found in Table B.1,
Appendix B.

6.1.3 DSC Calculations and Results

This section outlines clustering techniques relevant to this study, emphasising distinctions
between statistical clustering, Machine Learning (ML) clustering, and reordered heat maps
in neuroimaging. Each method contributes unique insights into functional connectivity and
inter-subject variability in rs-fMRI data.
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Clustering Techniques Overview: Traditional statistical clustering, as used in the FSL
FMRI Expert Analysis Tool (FEAT) framework, supports validation of known functional
networks by limiting false positives through Gaussian Random Field (GRF) theory [132].
ML clustering methods (e.g., K-means, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)) differ by exploring latent patterns within data, allowing the discovery
of novel connectivity profiles in complex conditions like Alzheimer’s and depression [202,
203].

Reordered Heat Maps for Spatial Congruency: Reordered heat maps in this thesis
organise DSC matrices to visually enhance similarity across subjects. This non-clustering
visualisation highlights continuous similarity across subjects without enforcing discrete
groupings, aiding assessment of each algorithm’s alignment consistency [204, 202].

Hierarchical Clustering in Heat Map Analysis: Hierarchical clustering supplements
heat map analysis by revealing consistent connectivity patterns, although its assumption of
discrete groupings may introduce artificial boundaries. As such, clustering here is a tool for
identifying group-level tendencies, which benefits from further validation [205, 41].

Reordered Heat Maps

The heat maps displayed in this section are reordered representations of DSC matrices, which
provide a visual assessment of the similarity in functional region alignment post-registration
by four algorithms—AFNI, ANTs, DARTEL, and FSL. These matrices are derived from
binarised, registered Control Networks across the study population and serve as a quantitative
measure of the spatial overlap in segmented brain regions between subjects. The reordering
process here is distinctly different from clustering-based analysis, such as significant cluster
analysis presented in Chapter 5 or ML-based clustering techniques, as it is not designed to
discover inherent group structures based on feature similarity but rather to visually enhance
the detection of regions with high or low DSC similarity.

The reordering in these heat maps essentially organises subjects based on the resemblance
of their registered brain images, optimising the visibility of population-level patterns in the
data. By aligning similar patterns adjacently, this approach facilitates a strategic vantage point
from which one can discern disparities in algorithmic performance, potentially attributable to
individual anatomical features or other idiosyncratic differences within the brain’s Control
Network. Thus, it is particularly useful in assessing the robustness and consistency of each
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registration technique in capturing functional topography across diverse subjects [202, 206,
204]. These reordered heat maps are shown in the Figure 6.3.

The AFNI reordered heat map, presents a mixed patchwork of similarity levels, illustrating
both close alignment and significant divergence in functional anatomy across subjects. This
pattern suggests that AFNI might be particularly sensitive to subject-specific anatomical
variability and potentially less consistent in aligning regions that are more variable among
individuals. Intense red and orange areas indicate regions where AFNI achieves high
alignment across subjects, likely corresponding to brain regions with lower anatomical
variability. The scattered cooler hues (yellow and blue) denote regions with lower similarity,
which could be a result of AFNI’s handling of noise or its sensitivity to more variable
anatomical features.

In contrast, the ANTs heat map reveals a relatively homogenous distribution of high-
similarity values, indicating robust across-subject consistency in the alignment of the Control
Network. The prevalence of warmer colours (reds) signifies that ANTs reliably aligns
functional areas across the subject pool, reflecting its advanced handling of anatomical
diversity. This uniformity suggests that ANTs is particularly suitable for studies prioritising
group-level consistency, especially when accurate population-level inferences are critical.
The scarcity of cooler areas emphasises ANTs’ proficiency in adapting the Control Network
across diverse brain structures, showcasing its capability for stable and precise alignment.

DARTEL’s reordered heat map shows moderate red clusters interspersed with a yellow-
orange backdrop, reflecting a balance between capturing individual subject nuances and
maintaining a consistent group-level anatomy. The moderate similarity regions suggest that
DARTEL effectively captures highly conserved regions of the Control Network, while the
dispersed red areas indicate its alignment of more individualised features. This approach,
termed here as ’algorithmic balance,’ could make DARTEL a suitable choice when both
individual detail and population consistency are valuable in the analysis.

Lastly, the FSL heat map presents a dynamic range of similarity scores, implying an
algorithm capable of differentiating with notable precision. The gradient from warm to cool
colours signifies FSL’s ability to align both common and unique anatomical features within
the Control Network. This distribution implies that FSL excels in preserving individual
subject characteristics while achieving a coherent group-level alignment, suggesting its
utility for comprehensive neuroimaging studies requiring detailed, individualised registration
alongside population-level conformity.

In summary, comparing these reordered heat maps reveals ANTs and FSL as potentially
optimal choices for studies requiring high group-level similarity, whereas AFNI’s variability
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Fig. 6.3 Reordered DSC heat maps for each algorithm (AFNI, ANTs, DARTEL, FSL),
illustrating inter-subject similarity in brain structure registration. Subjects are reordered
along both axes to highlight clusters of similarity. Warmer colours (reds and oranges) indicate
higher similarity, while cooler colours (blues) indicate lower similarity. AFNI shows variable
consistency with distinct patches of similarity, ANTs demonstrates high overall consistency,
DARTEL balances individual detail with group alignment, and FSL reveals a range of
similarity, reflecting both shared and individual anatomical features.
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may offer unique insights into individualised anatomical features. DARTEL’s intermediate
positioning makes it suitable for analyses emphasising a shared anatomical basis with
allowances for individual variation. The comparative analysis of reordered DSC matrices
supports tailored algorithm selection based on the specific requirements of neuroimaging
studies, balancing individual variability and group consistency.

Clustered Heat Maps

Clustering within heat maps serves a critical function in neuroimaging, particularly in the
examination of non-rigid registration algorithms. It enables the discovery of inherent group-
ings or patterns in data that may not be evident from individual comparisons. By employing
hierarchical clustering, one can identify subjects whose functional connectivity profiles are
similar, potentially unveiling sub-populations or consistent patterns across different individ-
uals. This facilitates the outlining of algorithmic performance nuances, revealing whether
certain algorithms are more adept at detecting and aligning specific RSNs. Hierarchical
clustering also aids in the comprehensive understanding of the overarching structure and
the interconnectivity of brain networks, thereby refining group inferences from complex
neuroimaging data [203].

While hierarchical clustering of heat maps provides valuable insights into the functional
connectivity profiles and potential sub-populations within neuroimaging data [205], this
method comes with inherent challenges and limitations [207]. Clustering algorithms, in-
cluding hierarchical clustering, inherently assume that the data contains distinct groups,
which may not be a true representation of the complex, continuous nature of functional brain
networks. This assumption can sometimes lead to artificial boundaries between subjects that
do not reflect genuine neurobiological differences.

Moreover, clustering can obscure clinically significant individual differences, and it is
crucial not to over-interpret these clusters as distinct phenotypes without supporting evidence
from other modalities. In this thesis, clustering is used as a supplementary tool to identify
potential grouping tendencies in functional connectivity, rather than to define rigid brain
network categories [41]. To address these limitations, the clustering results are integrated
within a broader analytical framework that includes independent metrics, such as MI and
DSC, and cross-referenced with established neuroimaging literature. This approach situates
clustering as one part of a balanced analysis, capturing both individual variability and group-
level patterns while avoiding over-generalisation of sub-populations. These maps (Fig. 6.4)
visualise the comparative efficiency and pattern recognition capabilities of each algorithm in
identifying RSNs across subjects.
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The AFNI clustered heat map, with its distinct diagonal clusters, suggests that the
algorithm efficiently captures strong within-network connectivity among certain subjects.
These subject groups, reflected as clusters, likely exhibit high within-network connectivity
that AFNI can effectively register, leveraging its temporal correlation analysis strengths
in fMRI. The sparser regions or the reduced similarity between these clusters could imply
instances where AFNI’s registration is less successful, potentially due to its heightened
sensitivity to functional heterogeneity and noise. This could be indicative of AFNI’s variable
performance in aligning and detecting subtle differences within more diverse or complex
functional areas of the brain.

ANTs’ clustered heat map, with its dense and extensive clusters, speaks to its robustness in
capturing a broad spectrum of functional connectivity, both within and between various brain
networks. The pronounced clusters that extend off-diagonal are indicative of the algorithm’s
capacity to register functional relationships that span different networks, affirming ANTs’
utility in studies requiring thorough brain network mapping. The algorithm’s symmetric
normalisation technique likely contributes to this proficiency, as it actively compensates
for inter-subject anatomical diversity, thereby promoting a high degree of consistency in
functional connectivity patterns across subjects.

DARTEL’s heat map exhibits sharply defined clusters, suggesting a high degree of
precision in aligning localised brain activities. The well-outlined clusters are emblematic of
DARTEL’s efficient high-dimensional warping technique, which is adept at creating detailed
group-specific templates. This capability for precise registration makes DARTEL particularly
suitable for Voxel-Based Morphometry (VBM) studies, which require high accuracy in
matching morphological brain structures across individuals. The clear cluster delineations
highlight DARTEL’s strength in providing consistent group-level alignment.

FSL’s clustered heat map illustrates a balanced array of clusters that demonstrate both
focused and widespread functional connectivity. This balanced distribution reflects FSL’s
hybrid registration approach, combining linear and non-linear methods to cater to diverse
anatomical and functional variability across subjects. The presence of both densely and
sparsely populated clusters may signify FSL’s flexibility and robustness in handling a wide
range of neuroanatomical profiles, supporting its use for comprehensive neuroimaging
analyses that require adaptability to different types of brain structures and activity patterns.

Upon comparative analysis, the clustered heat maps reveal distinct characteristics of
the tested algorithms in capturing the complex nature of RSN connectivity. AFNI’s heat
map, defined by strong diagonal clusters, suggests a propensity for detecting coherent
within-network connectivity, potentially excelling in tasks demanding high precision for
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Fig. 6.4 Clustered heat maps of functional connectivity correlation for each algorithm
(AFNI, ANTs, DARTEL, FSL). Subjects (N = 815) are ordered by hierarchical clustering
on both axes. Black grid lines delineate clusters, with colour intensity indicating the level
of functional connectivity correlation (warmer colours represent higher correlation). AFNI
displays variability in capturing individual differences, ANTs shows extensive connectivity
with dense clusters, DARTEL highlights localised connectivity, and FSL demonstrates a
balanced range of connectivity, reflecting robustness across the subject dataset.
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well-defined networks. ANTs, with its dense and extensive clustering, displays robust across-
network functional mapping, indicative of its ability to accommodate the brain’s anatomical
and functional diversity, hence suitable for comprehensive functional connectivity analyses.
DARTEL, marked by its sharply defined clusters, reflects a high level of detail in local
brain activities, aligning with its specialised utility in VBM and studies necessitating high
spatial specificity. In contrast, FSL’s balanced cluster distribution, and distributed functional
connections, demonstrates its adaptable nature, capable of discerning both pronounced and
subtle network patterns, making it a versatile tool for a broad spectrum of neuroimaging
research. This side-by-side assessment not only highlights the strengths and limitations of
each algorithm, ensuring algorithmic choices are congruent with the specific objectives and
requirements of the research at hand [41].

6.2 Multivoxel Pattern Analysis (MVPA)

MVPA offers a nuanced approach for investigating spatial variations across registration
algorithms. By capturing differences in spatial patterns, MVPA enhances our understanding
of algorithmic biases in processing brain data, particularly in the context of functional
neuroimaging.

To clarify algorithmic differences, we conducted pairwise comparisons using SVM
weights across six algorithmic pairs: FSL, ANTs, AFNI, and DARTEL. The SVM-generated
weight maps represent each algorithm’s impact on voxel-wise classifications, revealing where
each algorithm emphasises distinct neural patterns, as visualised in Figures 6.5 to 6.10. These
maps are accompanied by MI and DSC results, providing a broader context for understanding
the algorithms’ spatial preferences.

6.2.1 Weight Maps Interpretation

The SVM weight maps illustrate the voxel-level distinctions between algorithms, highlighting
regions of high algorithmic influence. Each map utilises a ’hot’ colour scheme where red-to-
yellow gradients represent the varying weights: dark red for weights favouring the second
algorithm in each pair, and yellow for weights in favour of the first algorithm.

In the AFNI vs DARTEL comparison (Fig. 6.5), AFNI assigns significant weight to cer-
tain brain regions, as observed by the maximum weight of 0.71 at slice 38. This high weight
suggests that AFNI places a stronger emphasis on specific regions, potentially enhancing
its sensitivity to particular spatial patterns in the data. Conversely, DARTEL emphasises
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different areas, with a minimum weight of -0.67 at slice 16, indicating distinct processing
priorities. This divergence illustrates how AFNI and DARTEL may produce unique represen-
tations of functional connectivity, potentially leading to differing interpretations of neural
network activity depending on the chosen algorithm.

ANTs vs AFNI (Fig. 6.6) weight map demonstrates more nuanced spatial variation,
with weights ranging from 0.69 to -0.68. This narrower range suggests that while both
algorithms share some spatial sensitivities, they still diverge in certain neural activation areas.
ANTs appears to capture subtle activation differences that AFNI may overlook, which could
be advantageous in studies requiring fine-grained sensitivity to brain network interactions.
The observed differences highlight ANTs’ potential methodological advantage in capturing
distinct neural signals, especially within complex networks.

Similarly, ANTs vs DARTEL (Fig. 6.7) comparison reveals notable spatial discrepancies,
with weights ranging between 0.67 and -0.65. This broad distribution indicates that each
algorithm uses distinct spatial emphasis strategies to classify brain activity. These differences
suggest that DARTEL may excel in some areas of functional connectivity not prioritised
by ANTs, and vice versa. For researchers, the choice between ANTs and DARTEL may be
guided by the specific spatial characteristics of the brain networks under investigation, as
each algorithm may provide unique insights into the functional connectivity structure.

The comparison between FSL vs AFNI (Fig. 6.8) displays a wide range of weights from
0.71 to -0.72, signifying a strong divergence in their spatial emphasis. This extensive range
indicates that FSL and AFNI are markedly different in their representations of brain activa-
tions. FSL’s higher emphasis on certain areas compared to AFNI suggests that each algorithm
could lead to substantially different interpretations of the data, potentially impacting findings
related to the localisation of functional connectivity patterns.

The FSL vs ANTs (Fig. 6.9) weight map presents moderate discrepancies, with weights
spanning from 0.59 to -0.66. While both algorithms highlight similar neural features, FSL and
ANTs differ in their sensitivity and emphasis on specific spatial patterns. This moderate range
indicates that either algorithm could be suitable for studies where sensitivity to functional
connectivity is needed, but subtle algorithmic biases should still be accounted for to avoid
misinterpretation of specific neural regions.

In the FSL vs DARTEL comparison (Fig. 6.10), the weight distribution ranges from
0.70 to -0.66. This comparison emphasises the distinct spatial biases each algorithm has,
suggesting that DARTEL and FSL may capture varying connectivity patterns in resting-
state data. Understanding these spatial divergences is crucial for interpreting functional
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connectivity accurately, as each algorithm may highlight or de-emphasise different regions,
potentially affecting the robustness of neuroscientific findings.

These comparisons highlight the importance of algorithmic considerations in neuroimag-
ing, as each approach captures unique aspects of brain function. Understanding these
biases can guide algorithm selection, ensuring alignment with research goals and improving
functional connectivity interpretations.

Fig. 6.5 Heat map comparison of AFNI vs DARTEL algorithms showing maximal weight:
0.7094 at slice 38 (X: 28, Y: 19, Z: 38) and minimal weight: -0.6738 at slice 16 (X: 37, Y:
70, Z: 16) The colour scale indicates regions of differential weight, with warmer colours
representing higher weights. These patterns highlight the contrasting emphases of AFNI
and DARTEL on specific brain regions, which could have significant implications for the
interpretation of functional connectivity.

Implications and Synthesis of Results:

These SVM weight map comparisons emphasise the critical role of algorithmic choice in
neuroimaging analyses. The differential spatial weighting across algorithms reveals how
each approach emphasises unique aspects of brain function, which may have substantial
implications for studies examining inter-subject variability [82, 177]. For example, choosing
an algorithm that aligns with the specific neural features of interest can enhance the accuracy
of functional connectivity interpretations [57], while a misaligned choice could introduce
biases, potentially obscuring true neural patterns [48].

By carefully selecting algorithms that best match the research objectives and under-
standing the biases each algorithm introduces, researchers can improve the reliability and
interpretability of rs-fMRI studies. This enhanced understanding of spatial biases and sen-
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Fig. 6.6 Heat map illustrating differential weights captured by ANTs vs AFNI, with maximal
weight: 0.6903 at slice 28 (X: 32, Y: 23, Z: 28) and minimal weight: -0.6784 at slice 45 (X:
27, Y: 20, Z: 45) The variation in colours from red to yellow depicts the different spatial
patterns emphasised by each algorithm, suggesting their distinct sensitivities to neural signals
within the Control Network.

Fig. 6.7 Heat map depicting the contrast in weights between ANTs and DARTEL, with the
highest weight: 0.6656 at slice 25 (X: 27, Y: 37, Z: 25) and the lowest: -0.6502 at slice 38
(X: 66, Y: 20, Z: 38). This visual representation indicates the unique spatial distribution of
weights by each algorithm, reflecting their diverse approaches to brain activity classification.
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Fig. 6.8 Comparison of weight distributions for FSL vs AFNI, where the maximum weight:
0.7113 at slice 28 (X: 31, Y: 24, Z: 28) and the minimum weight: -0.7180 at slice 15 (X: 36,
Y: 70, Z: 15). The heat map reveals the extent to which each algorithm identifies significant
neural patterns, with FSL and AFNI showing variations in their representation of brain
activations.

Fig. 6.9 Heat map showing FSL vs ANTs weight distribution comparison, with the highest
weight: 0.5886 at slice 39 (X: 32, Y: 25, Z: 39) and the lowest: -0.6582 at slice 33 (X: 30, Y:
42, Z: 33). The colours indicate the degree of weight each algorithm assigns, with FSL and
ANTs exhibiting different preferences for neural features, which is critical for algorithmic
choice in neuroimaging studies.
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Fig. 6.10 Heat map analysis of FSL vs DARTEL displaying the maximum weight: 0.7027
at slice 28 (X: 28, Y: 26, Z: 28) and the minimum weight: -0.6648 at slice 16 (X: 37, Y:
70, Z: 16). The range of colours reflects the differential spatial emphasis of each algorithm,
underscoring the importance of understanding these differences when selecting algorithms
for neuroimaging analysis.

sitivities can inform more accurate modelling of inter-subject variability, leading to richer
insights into the complexities of brain function [177]. Ultimately, this work suggests that
algorithmic choice is not merely a technical decision but a crucial methodological factor
that directly shapes the scientific interpretations of functional connectivity in neuroimaging
research [170, 206].

6.2.2 Summary of MI, DSC, and MVPA Findings

This section synthesises the findings from the MI, DSC, and MVPA metrics, each of which
uniquely contributes to understanding inter-subject variability and algorithmic performance.

• Mutual Information: MI provided a measure of shared information across registration
algorithms, quantifying inter-subject consistency. Higher MI values, particularly in the
FSL-AFNI pairing, indicated strong alignment in spatial activation patterns, suggesting
these algorithms are comparably sensitive to functional signals within RSNs [41].
Conversely, lower MI values between ANTs and DARTEL highlighted significant
differences in their approach to processing spatial variability, a factor critical when
precision in structural alignment is prioritised [208].

• Dice Similarity Coefficient: The DSC metric offered insights into spatial similar-
ity, with reordered heat maps providing a visual assessment of functional alignment
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across subjects. ANTs demonstrated uniformly high DSC values, reflecting its robust
ability to achieve consistent group-level alignment, while AFNI displayed variable
similarity patterns, likely due to its sensitivity to subject-specific anatomical features.
This variability in DSC performance suggests that ANTs may be more reliable for
studies requiring consistent spatial alignment, while AFNI might be better suited for
investigations focusing on individual anatomical variation [203].

• Multivoxel Pattern Analysis: Through pairwise SVM weight comparisons, MVPA
revealed spatial biases unique to each algorithm. Distinct SVM weight distributions
indicated algorithm-specific preferences in processing RSN features, with FSL and
DARTEL emphasising high-resolution, localised brain activations, whereas ANTs
captured broader network-level similarity. These variations highlight how algorithmic
choices impact voxel-wise classification and emphasise the need for careful selection
based on research goals, particularly for studies focused on functional connectivity
[41].

Table 6.1 summarises the key findings from each metric, providing a side-by-side comparison
of the four algorithms. This summary emphasises the distinctive contributions of each
algorithm to neuroimaging analysis, informing researchers in choosing an algorithm aligned
with their specific study objectives.

Table 6.1 Comparative Summary of MI, DSC, and MVPA Metrics for Non-Rigid Registration
Algorithms

Algorithm MI DSC MVPA
AFNI Moderate similarity Variable, sensitive to

anatomy
Emphasis on specific
regions

ANTs High consistency Uniformly high Broad network similar-
ity

DARTEL Moderate, group-level
alignment

Balanced between indi-
vidual and group con-
sistency

High precision in local
alignment

FSL Highest similarity with
AFNI

Moderate, adaptive to
individual features

High spatial precision
and balanced connec-
tivity

In summary, each metric emphasises distinct aspects of algorithmic performance: MI captures
shared information across algorithms, DSC reflects spatial alignment consistency, and MVPA
highlights unique algorithmic biases in brain network processing. Together, these findings
highlight the need for tailored algorithm selection based on specific neuroimaging goals,

137



Inter-Subject Variability and Group Inference Analysis

whether prioritising group-level consistency (as in ANTs), detailed individual analysis (AFNI
and FSL), or a balanced approach (DARTEL) [41, 208].

6.3 Algorithmic Performance Analysis

Clustering and cluster size analysis are powerful techniques in neuroimaging, offering
insights into algorithmic behaviour and their capacity to capture consistent functional connec-
tivity patterns across individuals. These analyses allow researchers to examine how different
algorithms cluster brain regions and to assess the distribution and consistency of these clus-
ters, revealing algorithm-specific strengths and limitations in representing functional brain
networks. By evaluating cluster sizes, researchers can infer each algorithm’s sensitivity to
individual variability versus group-level consistency—a critical factor for selecting the ap-
propriate algorithm based on the study’s objectives. As shown in previous studies, clustering
in neuroimaging can provide a window into the inherent structure of functional connectivity
and variability across subjects [41, 203, 206].

In this analysis, bar charts depicting cluster sizes and average DSC for each algorithm
provide complementary views of their clustering performance. The bar charts illustrate the
range and distribution of cluster sizes, shedding light on the consistency of functional network
detection. Larger clusters suggest areas with more uniform within-network connectivity,
while smaller, more varied cluster sizes may indicate the algorithm’s flexibility in adapting to
individual anatomical differences. In contrast, the DSC serves as a precise metric of spatial
overlap within each cluster, providing a measure of registration accuracy. By examining these
metrics together, we can achieve a nuanced understanding of each algorithm’s performance
in clustering and registration [202, 204].

6.3.1 Clustering Analysis

This section presents clustering results for AFNI, ANTs, DARTEL, and FSL, focusing on
their distinct approaches to capturing functional connectivity patterns. Bar charts offer a
visual representation of each algorithm’s clustering tendencies, while average DSC quantify
the spatial alignment accuracy. Together, these metrics extend beyond traditional evaluations,
providing a detailed, comparative framework for assessing the fidelity of neuroimaging
algorithms. This combination not only highlights the diversity in algorithmic behaviour but
also acts as a guide for selecting the most suitable registration technique for specific research
questions in RSN analysis.
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Cluster Sizes Interpretation

In this section, bar graphs representing cluster sizes (Fig. 6.11) and their interpretations are
introduced.

The AFNI cluster size graph reveals a varied distribution of cluster sizes, with notable
peaks. This pattern suggests AFNI’s selective sensitivity to particular functional brain
regions, likely influenced by its focus on temporal correlation in fMRI data. Larger clusters
indicate regions with stable within-network connectivity, where AFNI’s strengths are most
pronounced. However, the presence of smaller clusters suggests that AFNI’s performance
may fluctuate based on anatomical complexity, reflecting the algorithm’s sensitivity to
inter-subject variability [41].

ANTs’ cluster size distribution shows a more consistent pattern across clusters, implying
balanced detection of functional networks. This uniformity suggests that ANTs achieves con-
sistent alignment without disproportionately focusing on any particular network, providing a
balanced view of brain architecture. High DSC across clusters reinforce ANTs’ reliability in
capturing distributed neural activities, making it effective for comprehensive analyses where
uniform network registration is prioritised [203].

DARTEL’s cluster size distribution is characterised by sharply defined peaks, denoting
the algorithm’s precision in capturing coherent functional networks. This can be attributed to
DARTEL’s advanced high-dimensional warping technique, which facilitates precise spatial
alignment. High DSC further support DARTEL’s success in generating templates that
maintain strong spatial overlap, particularly advantageous for studies requiring detailed
morphological accuracy [204].

FSL’s cluster size graph exhibits a broad range of cluster sizes, suggesting an adaptable
approach to functional network detection. This flexibility may stem from FSL’s integra-
tion of linear and non-linear registration methods, allowing it to capture both strong and
subtle functional connectivity patterns. Variability in DSC indicates FSL’s sensitivity to
individual differences, making it well-suited for research that encompasses a diverse range of
neuroanatomical profiles and connectivity patterns [206].

Summary of Clustering Analysis Findings: The clustering and DSC analyses reveal
distinct characteristics of each algorithm in handling functional connectivity landscapes.
AFNI’s pronounced peaks suggest a focus on specific networks, beneficial for within-network
connectivity studies. ANTs’ uniformity indicates balanced alignment across brain regions,
ideal for studies requiring broad network consistency. DARTEL’s precise clustering aligns
with detailed morphometric analyses, making it useful for spatially-specific investigations.
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Fig. 6.11 Bar graphs representing the distribution of cluster sizes across subjects for each
algorithm (AFNI, ANTs, DARTEL, FSL). The horizontal axis represents the cluster number,
while the vertical axis indicates the number of subjects exhibiting each cluster size. AFNI
shows a heterogeneous distribution, suggesting selective sensitivity, while ANTs displays a
more uniform distribution, indicating balanced network detection. DARTEL reveals sharply
defined peaks, reflecting precise detection of coherent networks, and FSL exhibits a broad
range, highlighting flexibility in detecting diverse functional brain activities.
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Finally, FSL’s varied cluster sizes highlight its flexibility, supporting a broad range of
neuroimaging applications where both individual variability and group-level consistency
are important. Collectively, these findings emphasise the importance of aligning algorithm
selection with research objectives, facilitating informed choices for neuroimaging studies in
RSN analysis [41, 203, 206].

6.3.2 Cluster Size Analysis and DSC Interpretation

Understanding the effectiveness of neuroimaging registration algorithms in functional con-
nectivity analysis necessitates an examination of clustering patterns and spatial consistency
across subjects. The DSC serves as a measure of spatial overlap, allowing for the quantifi-
cation of alignment precision in functional brain networks among individuals. Through the
assessment of cluster sizes and DSC, insights can be gained into each algorithm’s approach
to spatial registration, offering critical information on the suitability of different algorithms
for specific research applications [41, 203].

In this section, we present the average DSC per cluster for each algorithm: AFNI, ANTs,
DARTEL, and FSL. This analysis highlights each algorithm’s consistency in capturing
functional network structures, showcasing their relative strengths in terms of spatial alignment
precision.

Cluster DSC Analysis

The visual representation of cluster DSC analysis can be seen in Figure 6.12.
For the AFNI Average DSC graph, variability is observed across clusters. Higher DSC

in certain clusters reflect robust spatial overlap and consistent registration among subjects,
suggesting AFNI’s capability in accurately capturing specific functional networks. However,
the presence of clusters with lower DSC implies that AFNI may face challenges in areas with
more complex functional connectivity or greater anatomical variability across subjects. The
observed variability in DSC scores reflects AFNI’s selective strengths in network registration
but also indicates that its efficacy may fluctuate based on the brain region being analysed.

In contrast, the ANTs average DSC graph exhibits a more uniform distribution of DSC,
with most clusters displaying moderate to high values. This uniformity suggests that ANTs is
proficient in delivering consistent and reliable registration of functional connectivity across
subjects. The absence of clusters with very low DSC highlights ANTs’ robustness and its
ability to align various brain networks without a disproportionate emphasis on any single
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functional area. As such, ANTs may be particularly valuable for studies that require reliable
inter-subject comparison of functional networks.

DARTEL’s average DSC graph is characterised by clusters with consistently high DSC,
indicating a high degree of spatial overlap across subjects’ brain images. This result suggests
that DARTEL effectively creates a group-level template with a significant agreement in
spatial alignment among subjects, making it highly suitable for studies that require detailed
anatomical localisation and spatial specificity. DARTEL’s performance, with uniformly high
DSC values, highlights its capability in morphometric analyses where precise structural
alignment is essential.

The FSL average DSC graph displays a broader range of DSC, which may reflect FSL’s
adaptive approach to registration. The diversity in DSC scores indicates FSL’s ability to
capture both prominent and subtle functional connectivity patterns, accommodating the
anatomical variability found across different subjects. While some clusters show high DSC,
suggesting strong alignment, other clusters with lower coefficients imply FSL’s flexibility
in adjusting to subject-specific anatomical features. This characteristic positions FSL as
an effective tool for studies that benefit from a balance of capturing common and unique
patterns in functional connectivity.

Summary of DSC Analysis: The comparative analysis of DSC graphs across AFNI,
ANTs, DARTEL, and FSL reveals distinct algorithmic behaviours in capturing functional
brain networks. AFNI exhibits variable DSC, suggesting its selective efficacy in network
registration but with occasional limitations in regions with higher anatomical complexity.
ANTs provides a more uniform registration performance, indicating robust and unbiased
spatial alignment, beneficial for inter-subject comparative studies. DARTEL’s consistently
high DSC demonstrate its strength in high-precision registration, making it suitable for
applications requiring fine-grained anatomical specificity. FSL’s flexible approach is evident
in its wide DSC range, showcasing its ability to balance capturing common connectivity
patterns and accommodating subject-specific anatomical features.

These findings underline the unique attributes of each algorithm, emphasising the im-
portance of selecting an appropriate registration tool based on the specific requirements of
neuroimaging research. For studies demanding consistent alignment across multiple brain
networks, ANTs and DARTEL may offer more reliable solutions. Conversely, AFNI and FSL
present adaptable approaches suited for analyses that prioritise selective functional regions
or individual variability [203, 41].
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Fig. 6.12 Bar charts of average DSC per cluster for each algorithm (AFNI, ANTs, DARTEL,
FSL). The horizontal axis represents individual clusters, while the vertical axis shows the
DSC, indicating spatial overlap consistency among subjects. AFNI displays variability
across clusters, reflecting alignment challenges in certain regions. ANTs maintains a stable
range, indicating consistent connectivity registration. DARTEL’s uniformly high coefficients
suggest precise spatial alignment, and FSL shows a broad range, highlighting adaptability to
anatomical variability across subjects.
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6.4 Chapter Summary

Chapter 6 addresses the central thesis question of how algorithmic differences in non-rigid
registration influence the robustness and reproducibility of rs-fMRI analyses, particularly in
terms of inter-subject variability and functional connectivity mapping. Through a compre-
hensive analysis employing MI, DSC, and MVPA, we evaluated the distinct contributions
and biases of four state-of-the-art algorithms—AFNI, ANTs, DARTEL, and FSL—shedding
light on their practical implications for neuroimaging research.

The MI analysis quantified the shared information across algorithms, revealing how each
method preserved functional connectivity patterns across subjects. Higher MI values between
certain algorithm pairs (e.g., FSL and AFNI) indicated a stronger agreement in capturing
functional signal patterns, while lower MI values (e.g., ANTs vs. DARTEL) highlighted
the specific structural biases each algorithm introduces. This suggests that certain algorithm
pairs may be more suited to studies focusing on signal reproducibility, whereas others may
capture unique structural details relevant for specific connectivity patterns.

The DSC analysis offered insight into the spatial similarity of aligned brain regions,
indicating how consistently each algorithm registered functional regions across subjects. The
reordered heat maps illustrated algorithmic distinctions in handling anatomical variability:
AFNI showed variability across clusters, reflecting its sensitivity to anatomical differences,
while ANTs demonstrated high uniformity in registration, suggesting robust performance
across varied anatomical landscapes. DARTEL excelled in producing spatially precise group-
level templates, ideal for studies requiring anatomical specificity, whereas FSL displayed
flexibility, effectively adapting to both commonalities and individual differences, making it
versatile for broad neuroimaging applications.

MVPA extended these insights by identifying spatial patterns uniquely emphasised by
each algorithm. Pairwise SVM weight comparisons revealed the spatial biases inherent to
each method, with DARTEL and FSL focusing on high-resolution, localised brain activations,
while ANTs captured broader network-level similarity. This level of granularity highlighted
the importance of algorithm selection based on specific research goals, particularly in
functional connectivity studies where the accuracy of spatial patterns is critical.

In summary, Chapter 6 systematically demonstrates that algorithmic choices have sub-
stantial effects on the outcomes of rs-fMRI analyses, directly impacting the consistency
and interpretability of functional connectivity data. These findings emphasise the need for
informed algorithm selection tailored to research objectives, enhancing the reliability of neu-
roimaging analyses. By offering insights into each algorithm’s strengths and limitations, this
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chapter provides a foundation for future work aimed at refining neuroimaging methodologies
to improve reproducibility and applicability, ultimately benefiting both research and clinical
neuroimaging applications.

Looking ahead, Chapter 7 will synthesise the key findings from previous analyses,
discussing their implications for the broader field of neuroimaging and suggesting best
practices for algorithm selection in rs-fMRI studies. This discussion will highlight how
these methodological insights contribute to enhancing reproducibility and interpretability in
computational neuroscience.
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Discussion

This chapter synthesises the findings of the thesis and contextualises them within the broader
field of neuroimaging, focusing specifically on the impact and implications of non-rigid
registration algorithms in Resting-State Functional Magnetic Resonance Imaging (rs-fMRI).
This thesis addresses central research questions concerning the impact of algorithmic vari-
ability on Resting-State Network (RSN) analysis, a core element for understanding intrinsic
functional connectivity.

The main objectives include investigating the variability introduced by different non-rigid
registration algorithms, FMRIB Software Library (FSL), Advanced Normalisation Tools
(ANTs), Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DAR-
TEL), and Analysis of Functional NeuroImages (AFNI), and examining how this impacts
rs-fMRI reliability. To address these aims, this thesis developed the Non-Rigid Registration
Algorithm Analysis Framework (NRAAF), enabling standardised and comparative evaluation
of algorithms and highlighting the need for tailored algorithm selection in different research
contexts [209, 210].

7.1 Synthesis of Key Findings

This section provides an integrated synthesis of significant findings from Chapters 4, 5, and 6.
By emphasising cross-chapter patterns and comparative insights, this synthesis consolidates
findings and highlights implications for computational methods, algorithm performance, and
neuroimaging applications.
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Algorithmic Sensitivity and Specificity in Peak Activation Detection

The comparative analysis across Chapters 4 and 5 highlights the variability in sensitivity and
specificity among non-rigid registration algorithms, particularly in detecting Peak Activation
Intensities within rs-fMRI data. Findings reveal that ANTs and FSL show heightened sensi-
tivity but demonstrate occasional outliers, contrasting with DARTEL’s consistent detection
and reduced variability [211, 212]. These results suggest that ANTs and FSL are preferable
in studies prioritising high activation sensitivity, whereas DARTEL offers reliability where
consistent, low-variability detection is paramount. These insights emphasise that context-
specific algorithm selection is critical for robust rs-fMRI analyses, directly influencing the
reliability of results by aligning the sensitivity requirements with research goals.

Cluster Detection and Network Integrity

Chapter 5 findings demonstrate that registration algorithms significantly influence the detec-
tion and representation of RSNs, particularly regarding the capture of significant clusters and
network integrity. DARTEL’s ability to detect a higher mean number of clusters enhances the
breadth of network representation; however, this advantage is offset by increased variability.
Conversely, FSL and ANTs show lower variability in cluster detection but may limit the
extent of network detail captured, suggesting their suitability for studies requiring consistent
network boundaries over broad coverage. This dual insight emphasises the role of NRAAF
in systematically mapping the performance trade-offs across algorithms, aiding in method-
ological alignment with specific neuroimaging goals and ensuring network integrity [213,
214].

Inter-Subject Variability and Implications for Group Inference

In Chapter 6, inter-subject variability is explored with respect to group inference in rs-fMRI,
utilising metrics such as Mutual Information (MI) and Dice Similarity Coefficient (DSC).
The analyses reveal that FSL and AFNI exhibit high similarity in inter-subject alignment,
while ANTs and DARTEL display varying degrees of alignment stability. For studies
emphasising group-level reproducibility, FSL and AFNI offer greater reliability, whereas
ANTs and DARTEL may be advantageous for investigations into individual-specific patterns
and personalised neuroimaging applications. This distinction enhances the reproducibility of
findings across multi-subject studies by matching algorithm selection to the study’s alignment
consistency requirements, directly impacting the scalability and validity of neuroimaging
research [41, 215].
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7.2 Return to Research Questions and Objectives

This research critically evaluates the impact of non-rigid registration algorithms on rs-fMRI
outcomes, directly addressing the research question: Do differences in the performance of

registration algorithms lead to variability in the outcomes of neuroimaging analyses? The
findings substantiate the hypothesis that non-rigid registration algorithms exhibit variability
in their impact on rs-fMRI, specifically influencing sensitivity, reliability, and spatial accuracy
in functional connectivity patterns. This variability emphasises the importance of algorithmic
choice in achieving consistent and accurate activation maps.

Addressing the Stated Objectives:

• Objective 1: Systematic Review of Challenges in Non-Rigid Registration
The review highlights variability in algorithm performance and the lack of a standard
framework for comparison. This foundation informed NRAAF’s development and
supports rs-fMRI reproducibility [216].

• Objective 2: Development of NRAAF for Comparative Evaluation
The NRAAF framework was designed to evaluate algorithm consistency, reproducibil-
ity, and RSN impact, demonstrating how different techniques influence rs-fMRI out-
comes. NRAAF assists in selecting appropriate algorithms to enhance accuracy and
reliability [217].

• Objective 3: Validate NRAAF Using a Large Dataset
Applying NRAAF to a large dataset (n=815) confirmed differences in activation
clusters, substantiating the research question by showing how algorithmic differences
affect neuroimaging consistency [218, 18].

• Objective 4: Characterise Non-Rigid Registration Algorithms in rs-fMRI
Through NRAAF, variability and dependencies across algorithms were characterised,
revealing their impact on RSN analysis. This objective informs algorithmic choices,
supporting reliable neuroimaging methodologies and supports informed study design
[219].

7.3 Interpretation of Findings

This section probes into a comprehensive interpretation of the findings, situating them
within computational neuroscience, neuroimaging accuracy, and clinical applications. The
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discussion builds on the results of previous chapters, extending insights into the strengths
and limitations of non-rigid registration algorithms, and exploring methodological rigour in
neuroimaging studies.

Implications for Computational Neuroscience

The NRAAF advances computational neuroscience by introducing a systematic tool for
quantifying algorithmic variability, addressing a gap highlighted in recent comparative
studies [5, 18]. The framework’s standardised evaluation is particularly pertinent in high-
resolution neural network mapping, where algorithmic nuances can influence functional
connectivity patterns essential for network-based analysis [3]. This work highlights the
critical need for reproducibility in algorithm selection, which has been a recurring theme in
the evolving landscape of neural network analysis [49]. By illuminating how algorithmic
choices impact spatial precision, NRAAF supports computational practices that demand
transparency and adaptability based on context-specific goals.

Neuroimaging Accuracy and Methodological Rigour

The findings reflect both strengths and constraints across various algorithms, with each
offering distinct performance benefits and limitations. For instance, ANTs demonstrates
sensitivity in detecting peak activations but may produce outliers, a phenomenon supported
by previous reproducibility studies that call for standardisation in high-sensitivity algorithms
[48, 162]. Conversely, DARTEL provides stable measures, aligning with the demands
of confirmatory neuroimaging where consistency is crucial [60]. NRAAF’s framework
aligns with recent calls for reproducible neuroimaging practices, such as those presented in
[49], reinforcing the importance of methodological rigour in functional imaging [18]. The
framework facilitates a clearer understanding of how registration choices affect network
integrity, contributing to the discourse on reproducibility in brain mapping studies [202].

Clinical Practice and Real-World Applications

The clinical implications of this work are considerable, as NRAAF provides valuable insights
into the selection of algorithms for diagnostic imaging. For instance, DARTEL’s stability in
cluster detection suggests its applicability in routine diagnostics, aligning with recent studies
on stability requirements in clinical neuroimaging [12]. Alternatively, ANTs’ heightened sen-
sitivity could benefit exploratory analyses, such as early-stage assessments where sensitivity
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to subtle changes is essential [220]. By guiding algorithmic choices based on objective evalu-
ations, NRAAF supports improved consistency and accuracy in clinical pipelines, facilitating
more informed decision-making in settings where diagnostic precision is essential [221].
This is particularly valuable given the variability in algorithmic performance documented in
comparative neuroimaging literature [116].

7.4 Limitations of the Current Work

This section outlines several key limitations encountered in the development and application
of NRAAF, focusing on scalability, computational demands, data constraints, and algorithmic
variability. Addressing these limitations can refine NRAAF’s robustness and broaden its
applicability in neuroimaging research.

Scalability and Computational Constraints

While NRAAF utilises parallel processing to enhance efficiency, the framework’s compu-
tational demands are substantial, especially for large or multimodal datasets. This restricts
NRAAF’s accessibility in resource-limited settings, as it requires significant processing
power for tasks like Multivoxel Pattern Analysis (MVPA) and Support Vector Machine
(SVM) applications. To expand scalability, future iterations could incorporate adaptive
processing techniques, such as optimised data pipelines and lightweight algorithmic modules,
to reduce computational requirements without compromising analytical depth [222, 5].

Algorithmic Sensitivity and Variability

NRAAF revealed considerable variability in peak activation localisation and cluster integrity
across algorithms, highlighting their unique sensitivities and specificities in rs-fMRI analy-
ses. This variability emphasises the need for caution in comparing results across different
algorithms, as each brings distinct strengths and limitations. Integrating adaptive machine
learning models, such as deep learning algorithms, could help NRAAF adjust evaluations
based on data characteristics, enhancing its accuracy and flexibility across diverse study
contexts [57, 41].

Inter-Subject Variability and Data Generalisability

The analysis highlighted how demographic and physiological factors impact rs-fMRI results,
complicating generalisation across populations. Factors like age and health status introduce
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variability that affects network detection and interpretation. Incorporating demographic
stratification or covariate adjustments within NRAAF could mitigate these effects, improving
the framework’s reliability across heterogeneous sample groups [223, 213].

Methodological Constraints in Evaluation Approaches

NRAAF, while offering a standardised framework for evaluating non-rigid registration
algorithms, relies on parametric methods that impose limitations in handling large-scale
or complex deformations often seen in advanced neuroimaging. Specifically, its use of
the General Linear Model (GLM) assumes normality and homogeneity, which may limit
adaptability with highly variable neuroimaging data.

Incorporating non-parametric alternatives, such as permutation testing, could reduce these
constraints by avoiding strict data assumptions, making NRAAF more flexible for diverse
datasets. Similarly, adopting metaheuristic techniques like genetic algorithms or swarm
optimisation could enhance performance, especially with complex or high-dimensional data.
Structures such as embedded deformation graphs or point cloud models may further support
NRAAF’s utility in complex neuroimaging scenarios, broadening its applicability beyond
the current parametric framework [216, 224].

Data Quality and Preprocessing Constraints

The reliability of NRAAF’s evaluations depends on data quality, as inconsistencies in pre-
processing or acquisition can bias results. This is particularly relevant in multi-site studies
where differences in scanner settings or protocols affect comparability. Future versions
of NRAAF could incorporate automatic quality assessment tools and align preprocessing
steps with standardised frameworks (e.g., fMRIPrep [30]) to enhance consistency across
datasets, ensuring that findings reflect true algorithm performance rather than artifacts of
data variability.

In summary, while NRAAF advances non-rigid registration algorithm evaluation, these
limitations highlight the need for ongoing methodological enhancements to maximise its
utility and ensure robust, reproducible neuroimaging research across varied applications.

152



7.5 Comparative Algorithm Performance and Recommendations

7.5 Comparative Algorithm Performance and Recommen-
dations

Based on the findings of the NRAAF, this research offers a comparative analysis of the
performance of FSL, ANTs, DARTEL, and AFNI in rs-fMRI applications. The differences
in each algorithm’s sensitivity, stability, and alignment accuracy highlight specific scenarios
where each may be optimally applied. These insights inform best practices for algorithm
selection, supporting methodologically robust neuroimaging research.

Peak Activation Sensitivity and Specificity

The analysis revealed that ANTs and FSL demonstrate heightened sensitivity in detecting
Peak Activation Intensities. This sensitivity allows these algorithms to capture subtle varia-
tions in neural activation, making them particularly valuable in exploratory studies focused
on uncovering novel connectivity patterns. However, the increased sensitivity also introduces
variability, including the occasional presence of outliers, which may limit interpretability in
studies where stability is essential. In contrast, DARTEL offers more consistent measure-
ments of peak activation with reduced variability. This stability makes DARTEL well-suited
for confirmatory studies or clinical applications where consistent results are crucial for inter-
preting functional connectivity reliably [209]. Therefore, choosing between these algorithms
should depend on study objectives: ANTs and FSL are better suited for hypothesis-generating
research, while DARTEL offers more stable outcomes for studies prioritising consistency.

Cluster Detection and Network Integrity

The NRAAF findings suggest that DARTEL excels in identifying a greater number of
clusters, offering an extensive view of network integrity within RSNs. This characteristic is
advantageous in exploratory research where understanding the full extent of brain connectivity
is critical. However, DARTEL’s variability in cluster count suggests it may not always provide
the consistency required for reproducible population studies. Conversely, FSL and ANTs
deliver more stable cluster counts across different subjects, making them preferable for
population-based analyses where consistency across samples is crucial. This distinction
allows researchers to choose based on study needs: DARTEL for extensive network mapping
and FSL or ANTs for high reproducibility across samples [211].
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Alignment Accuracy and Inter-Subject Variability

FSL and AFNI show strong consistency in alignment accuracy across subjects, making
them particularly effective in group-level analyses where uniformity in detecting functional
signals is essential. This consistency supports the use of FSL and AFNI in studies that aim to
generalise findings across populations with minimal alignment discrepancies. On the other
hand, ANTs and DARTEL exhibit greater alignment variability but offer the advantage of
capturing detailed, individualised neural patterns. These attributes make ANTs and DARTEL
more suitable for personalised neuroimaging analyses, where nuanced anatomical distinctions
are relevant to the study goals, such as in personalised medicine or research focusing on
individual differences. This capability to discern personalised brain patterns highlights ANTs
and DARTEL as valuable tools for precision neuroimaging applications, supporting detailed
and individualised neural mapping [25].

7.6 Broader Implications for Neuroimaging and Clinical
Practice

This research emphasises the broader implications of algorithm selection in both scientific and
clinical contexts. By standardising algorithm evaluations, NRAAF promotes reproducibility
and provides practical applications that benefit both research and clinical settings, thereby
advancing the field of neuroimaging.

Implications for Neuroimaging Standards

The NRAAF framework contributes significantly to neuroimaging standards by offering a
systematic, replicable methodology for evaluating non-rigid registration algorithms. This
standardisation helps bridge methodological gaps, allowing researchers to conduct consistent,
reproducible comparisons across studies. By providing insights into sensitivity, specificity,
and alignment reliability, NRAAF aids in identifying the most appropriate algorithms for
specific research purposes, thereby supporting reproducibility in computational neuroscience.
This consistency is especially critical in large-scale studies where algorithmic variability can
undermine the reliability of cross-study comparisons and meta-analyses [225].
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Clinical Applications and Diagnostic Relevance

The insights derived from NRAAF’s comparative analysis reveal that algorithm choice
directly affects the reliability of functional connectivity mapping, a cornerstone in clinical
diagnostics. Algorithms like DARTEL, which show extensive cluster detection, may support
exploratory clinical research, such as investigating novel biomarkers or understanding early-
stage brain connectivity disruptions in neurodegenerative diseases. In contrast, FSL and
ANTs offer stability and reproducibility, which are essential for routine diagnostics where
consistent mapping across patients is vital. For instance, reproducible network mapping is
crucial in assessing functional changes associated with disorders such as Alzheimer’s Disease,
where consistent tracking of neural degeneration patterns is necessary [77, 7]. Thus, the
findings enable informed algorithm choices based on the diagnostic requirements, potentially
enhancing the accuracy and reliability of neuroimaging-based diagnoses.

Supporting Personalised Medicine

As precision medicine gains prominence, the need for algorithms that can accurately cap-
ture individual anatomical variability becomes essential. ANTs and DARTEL, with their
heightened sensitivity to individualised patterns, are particularly well-suited to support per-
sonalised diagnostics, where the focus is on capturing subtle, subject-specific variations in
neural connectivity. These algorithms can provide clinicians with detailed representations of
individual brain structures, improving accuracy in diagnostics and treatment planning for
neurological conditions. By enabling a more tailored approach to neuroimaging, NRAAF
supports advancements in personalised medicine, aligning with the broader goal of achieving
precision healthcare in clinical neuroscience [41, 226].

Advancement in Computational Neuroscience

NRAAF represents a critical advancement in computational neuroscience by offering a robust
framework for reliable algorithm evaluation. By systematically quantifying algorithmic dif-
ferences, NRAAF enhances consistency across neuroimaging studies, ensuring that technical
innovations are methodologically sound and clinically applicable. This methodological rigour
is crucial as the field advances toward more complex, high-resolution neuroimaging analy-
ses. Additionally, NRAAF’s insights into alignment accuracy, sensitivity, and inter-subject
variability provide valuable guidance for algorithm selection, bridging the gap between com-
putational advancements and clinical needs. In this way, NRAAF supports a more integrated
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approach to neuroimaging, where scientific and clinical applications mutually inform each
other, advancing both fields [216].

In summary, NRAAF significantly contributes to neuroimaging practices by supporting
informed, consistent algorithm selection. Its role in promoting methodological standardi-
sation and clinical applicability highlights its value in fostering both scientific rigour and
practical impact, ultimately advancing neuroimaging as a precise and reliable tool for both
research and diagnostics [9, 2].

7.7 Chapter Summary

This chapter synthesised the key findings of the thesis and explored their broader implica-
tions within computational neuroscience and clinical neuroimaging practice. Through the
development and application of NRAAF, the research systematically evaluated the impact
of various non-rigid registration algorithms on rs-fMRI analysis, addressing the central
research question of whether algorithmic choice influences the reliability and interpretability
of neuroimaging outcomes.

Key findings from Chapters 4, 5, and 6 demonstrated that algorithmic variability signifi-
cantly affects peak activation detection, cluster integrity, and alignment accuracy, emphasising
the importance of selecting algorithms tailored to study-specific goals. Algorithms like ANTs
and FSL exhibited heightened sensitivity, making them valuable in exploratory studies, while
DARTEL’s stability favoured confirmatory analyses and clinical applications requiring repro-
ducibility. Additionally, NRAAF’s insights into inter-subject variability supported algorithm
choices that balance consistency for group-level inferences with precision for individualised
analyses.

The chapter also discussed the practical implications of NRAAF, highlighting its role
in advancing reproducibility in neuroimaging through standardised algorithm evaluation.
Limitations encountered during the development of NRAAF—such as scalability constraints,
algorithmic variability, and data quality factors—were addressed, with recommendations for
future adaptations to enhance its applicability in diverse neuroimaging contexts mentioned in
Chapter 8. The framework’s methodological rigour and adaptability make it a valuable tool
for advancing both scientific research and clinical diagnostics in computational neuroscience.

In summary, NRAAF contributes to a more precise and consistent approach to neu-
roimaging analysis, aligning technical advancements with practical applications that support
accurate and reproducible findings in both research and clinical settings.
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Chapter 8

Conclusion & Future Work

In this concluding chapter, the findings from each preceding chapter are integrated to present
a holistic overview of the potential for further advancements in evaluating neuroimaging
registration algorithms. This work has aimed to address the variability in algorithmic
performance within the context of Resting-State Functional Magnetic Resonance Imaging
(rs-fMRI) processing, a crucial consideration for ensuring accuracy and reproducibility
in neuroimaging analyses. Through developing and applying the Non-Rigid Registration
Algorithm Analysis Framework (NRAAF), this research has systematically evaluated the
strengths and limitations of prominent non-rigid registration algorithms, contributing to both
the scientific understanding and practical methodologies used in computational neuroscience.

Each chapter contributes to this framework in a specific way:

• Chapters 1 and 2 established the foundational knowledge, reviewing the theoretical
underpinnings of image registration and identifying the primary challenges associated
with variability in non-rigid registration for neuroimaging. This literature review
contextualised the research within current gaps, particularly in the accuracy and stan-
dardisation of functional connectivity studies.

• Chapter 3 introduced the NRAAF framework, detailing its methodology, algorithm
selection, and evaluation metrics. This framework was developed to support a rigorous
comparative analysis of algorithms across different functional connectivity parameters,
setting the stage for subsequent empirical assessments.

• Chapters 4, 5, and 6 provided empirical assessments of registration algorithms across
critical neuroimaging metrics—Peak Activation Intensity, Significant Clusters, inter-
subject variability, and group inference analysis. Each chapter systematically applied
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the NRAAF framework, producing quantitative insights into the performance of state-
of-the-art algorithms such as FMRIB Software Library (FSL), Advanced Normalisation
Tools (ANTs), Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra (DARTEL), and Analysis of Functional NeuroImages (AFNI) in terms of their
accuracy, sensitivity, and alignment consistency.

• Chapter 7 synthesised these findings, discussing their implications in computational
neuroscience and clinical practice. This chapter emphasised the importance of informed
algorithm selection and highlighted how variability impacts both research outcomes
and real-world applications, particularly in personalised medicine and diagnostics.

This chapter concludes by reinforcing NRAAF’s important role in providing a standardised
and reproducible approach to evaluating non-rigid registration algorithms in neuroimaging.
By systematically addressing algorithmic sensitivity, specificity, and stability, NRAAF equips
researchers with data-driven insights that support methodological consistency and enhance
translational utility in computational neuroscience. The chapter’s final sections extend this
foundation, exploring future research directions that can expand NRAAF’s adaptability and
impact across diverse neuroimaging applications, thereby aligning the framework with the
evolving needs of both scientific investigation and clinical practice.

8.1 Future Work

The findings presented in this thesis not only emphasise the current capabilities of the NRAAF
framework but also reveal essential pathways for advancing its adaptability and impact across
neuroimaging research. Key areas for future development include improving scalability,
enhancing computational efficiency, addressing inter-subject and algorithmic variability,
and incorporating advanced Machine Learning (ML) techniques. These enhancements aim
to broaden NRAAF’s applicability, allowing it to meet the growing demands of diverse
and increasingly complex neuroimaging datasets. Building on the limitations identified in
Chapter 7, this section outlines specific strategies to augment NRAAF’s performance and
applicability, promoting a more nuanced and robust framework for neuroimaging algorithm
evaluation.

Enhanced Computational Efficiency

As explored in Chapters 3 and 6, NRAAF’s computational demands, particularly for Multi-
voxel Pattern Analysis (MVPA) and Support Vector Machine (SVM) applications, can be
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prohibitive in large-scale neuroimaging studies. Future research should prioritise optimisa-
tions that reduce these demands, such as leveraging cloud-based or distributed computing
solutions, dynamic load balancing, and memory-efficient algorithms [82, 222]. Such ad-
vancements would make NRAAF more accessible to a broader range of research and clinical
contexts, facilitating its use in high-throughput and resource-constrained settings alike.

Addressing Inter-Subject and Algorithmic Variability

Inter-subject and algorithmic variability remain critical challenges in rs-fMRI, as indicated
by the findings in Chapters 5 and 6. To address these challenges, incorporating ML models
that adapt in real-time to individual anatomical and physiological differences could enhance
NRAAF’s flexibility and precision [41]. Reinforcement learning, for example, could enable
NRAAF to dynamically adjust algorithmic parameters for each subject, supporting person-
alised neuroimaging analysis [218]. Additionally, Bayesian optimisation could facilitate
data-driven parameter adjustments, improving algorithm selection accuracy across varied
anatomical structures [216].

Expansion of Evaluation Models

Chapters 4 through 6 suggest the potential for integrating nature-inspired and metaheuristic
methods to broaden NRAAF’s analytical scope. Approaches such as genetic algorithms,
swarm intelligence, and Majorisation-Minimisation (MM) can effectively handle complex and
non-linear alignment tasks [227, 18]. Implementing these methods could improve NRAAF’s
ability to handle diverse datasets, enhancing its applicability in multimodal neuroimaging and
high-dimensional analyses. Additionally, a modular, user-selectable model that tailors evalu-
ation metrics to specific dataset characteristics could further enhance NRAAF’s flexibility
and utility [223].

Standardisation for Reproducibility

Achieving reproducibility across neuroimaging sites is crucial, particularly in multi-centre
studies where inter-site variability can hinder generalisability. Establishing standard evalua-
tion criteria and reproducibility protocols for NRAAF, potentially aligned with workflows
like fMRIPrep [30, 77], could help address these challenges. Developing a reproducibility
toolkit with templates, guidelines, and shared resources would support consistent application
of NRAAF across diverse sites, fostering transparency and best practices within the field
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[228]. A shared repository for reproducibility metrics could further promote cross-study
comparability, strengthening NRAAF’s contributions to standardisation in neuroimaging.

Integration of Machine Learning in Algorithm Optimisation

Chapters 6 and 7 highlight promising applications of ML in optimising registration algo-
rithms. Embedding ML models, particularly deep learning and reinforcement learning, within
NRAAF could enhance its adaptability for complex anatomical deformations, supporting a
more nuanced understanding of functional connectivity patterns [3]. Explainable Artificial
Intelligence (XAI) models could also increase transparency in algorithmic decision-making,
allowing NRAAF to clarify model outputs and enhance interpretability in clinical applica-
tions. Such advancements would not only improve precision but also support NRAAF’s
utility in diverse clinical and research settings by providing algorithmic adaptability for
complex imaging conditions [120, 229].

In addressing these future directions, the NRAAF framework can evolve to meet the needs of a
rapidly advancing field, where both methodological rigour and clinical relevance are essential.
As the chapter moves to the final conclusion, these proposed advancements collectively
highlight the framework’s potential for shaping next-generation neuroimaging practices,
ensuring NRAAF’s continued relevance and impact across computational neuroscience and
translational applications.

8.2 Conclusion

This thesis presents a comprehensive analysis of the effects of state-of-the-art non-rigid
registration algorithms on rs-fMRI outcomes, particularly focusing on algorithmic variability
in neuroimaging accuracy and reliability. The NRAAF, developed and applied in this work,
enables a systematic, quantitative evaluation of widely used algorithms—FSL, ANTs, DAR-
TEL, and AFNI—shedding light on their respective impacts on Resting-State Network (RSN)
detection, inter-subject variability, and functional connectivity mapping. This structured
comparative approach contributes to improved algorithm selection strategies, essential for
advancing neuroimaging methodology across research and clinical contexts.
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Restatement of Research Aim and Objectives

The primary aim of this thesis was to systematically evaluate non-rigid registration algorithms
and characterise their impact on neuroimaging outcomes, particularly in rs-fMRI analyses.
Building on the foundational objectives outlined in Chapter 1, this research specifically
targeted algorithmic variability, reliability, and context-specific performance. To address
these aspects, the NRAAF framework was designed, developed, and applied as a structured
approach for rigorous comparative evaluation. This work extends beyond individual assess-
ments, aiming to inform best practices for algorithm selection in functional connectivity
studies, which are sensitive to the variability inherent in registration methods. As Sotiras et
al. [4] and others have highlighted, this variability can substantially impact neuroimaging
outcomes. By addressing these challenges, this thesis provides a systematic and reproducible
framework for enhancing methodological precision in computational neuroscience.

Summary of Key Findings

The findings of this research reveal that non-rigid registration algorithms variably affect
neuroimaging accuracy, with significant impacts on metrics such as peak activation sensi-
tivity, significant cluster consistency, and inter-subject alignment. Notably, ANTs and FSL
exhibited heightened sensitivity, proving effective for exploratory studies where detecting
subtle variations in functional connectivity is critical, whereas DARTEL’s stability made it
advantageous for reproducibility-focused contexts that demand consistent alignment across
subjects. This systematic comparative analysis builds on recent advancements in the field [65,
216] by integrating diverse performance metrics to provide a nuanced, comprehensive under-
standing of algorithmic effects on rs-fMRI outcomes. This expanded framework contributes
to a more precise selection of algorithms based on study objectives, addressing both the
needs for sensitivity and reproducibility in neuroimaging research and clinical applications.

8.2.1 Contribution to Knowledge

This research makes several significant contributions to computational neuroscience and
neuroimaging methodologies:

• Development of NRAAF: The NRAAF framework represents a novel, structured
approach for the systematic comparison of non-rigid registration algorithms in rs-fMRI.
This framework fills a critical gap in the standardisation of non-rigid registration
evaluations, providing reproducible benchmarks and enabling consistent, reliable
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comparisons across algorithms, particularly for functional connectivity analysis within
RSNs.

• Empirical Validation Using Large-Scale Data: Validated NRAAF with a large
dataset (n=815), offering robust, data-driven benchmarks and practical recommen-
dations on algorithm selection. This empirical assessment informs best practices by
identifying algorithm-specific strengths and weaknesses within functional connectiv-
ity analyses, supporting both scientific rigour and practical applications in clinical
diagnostics.

• Application of MVPA and SVM in Comparative Registration Analysis: Intro-
duced an innovative ML approach—utilising MVPA with SVM—to enable voxel-wise
comparative analysis of registration algorithms’ impact on functional connectivity.
This methodological advancement enhances the sensitivity and specificity of algo-
rithm comparisons, supporting nuanced interpretations in both research and clinical
neuroimaging.

• Comprehensive Characterisation of Non-Rigid Registration Algorithms: Provided
a detailed analysis of FSL, ANTs, DARTEL, and AFNI across key performance metrics,
capturing their differential impacts on neuroimaging outcomes. This characterisation
enables researchers and clinicians to select a suitable algorithm for specific study needs,
promoting consistency and reliability in RSN analyses.

Limitations and Constraints

Despite these contributions, certain limitations must be acknowledged. First, the com-
putational demands of NRAAF, particularly in MVPA and SVM applications, restrict its
accessibility in settings with limited resources [82, 213]. Additionally, inter-subject vari-
ability in anatomical and physiological data introduces variability in algorithmic outputs,
emphasising the need for adaptable, context-sensitive models within NRAAF. These con-
straints align with findings that noted similar challenges in handling inter-subject variability
in functional connectivity studies [28, 122, 202]. Addressing these limitations in future work
will enhance NRAAF’s utility and scalability, supporting broader neuroimaging applications.

8.2.2 Implications for Research and Practice

This thesis establishes a foundational framework, the NRAAF, which offers a structured
approach for evaluating non-rigid registration algorithms in rs-fMRI. Through NRAAF’s
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rigorous, multi-metric assessments, this work contributes a standardised, reproducible bench-
mark that addresses critical issues of algorithmic variability in neuroimaging accuracy and
consistency. In research settings, the framework supports algorithm selection grounded in
empirical data, enhancing methodological transparency and reliability [9, 16]. In clinical
contexts, NRAAF’s benchmarking framework provides clinicians with insights for selecting
algorithms tailored to specific diagnostic needs, which is especially relevant for personalised
diagnostics in neurodegenerative conditions, where precision in functional connectivity is
essential [77, 7].

Furthermore, NRAAF’s standardisation potential positions it as a valuable tool for
multi-center studies and cross-institutional collaborations, where reproducibility across
different sites and scanners is a primary challenge. By offering a unified framework, NRAAF
enables researchers and clinicians to evaluate and share algorithm performance data across
diverse settings, fostering consistency and enabling large-scale data aggregation [228, 2].
This standardisation supports interoperability in multi-center research, where consistent
neuroimaging workflows are necessary for generating generalisable conclusions across
populations [41].

Finally, NRAAF sets a foundation for further advancements in algorithm development,
policy, and regulation within computational neuroscience. Emerging methods, particularly
those integrating ML, may leverage NRAAF’s benchmarks to validate novel algorithms
before clinical use, promoting innovation aligned with established standards [3, 19]. The
framework also has policy implications, as its systematic approach to reproducibility and
accuracy could support data governance guidelines and regulatory practices for neuroimaging,
especially in clinical diagnostics and AI-driven applications. As the field continues to evolve,
NRAAF’s contributions to neuroimaging methodology are positioned to have a lasting impact,
shaping best practices and establishing benchmarks for both research and clinical applications
[120, 229, 3, 2, 19].
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Appendix A

Modality Details

Fig. A.1 Modalities collected from the dataset chosen for this study. The Amsterdam Open
MRI Collection [102] is a comprehensive collection of multi-modal MRI datasets designed
for individual difference analysis. For this research, the T1w and fMRI modalities were
selected.
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Modality Details

Fig. A.2 Demographic breakdown of the study dataset consisting of N = 815 participants,
including 416 females and 399 males. The age range of the participants is 19 to 26 years old,
with an average age of approximately 22.9 years. This dataset was selected to address gender
disparities in medical data accessibility, ensuring a balanced representation of both genders
in the analysis.
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ID1000
Property T1-weighted MRI Property Functional (BOLD) MRI
Scan technique 3D MPRAGE Scan technique GE-EPI
Number of sig-
nals (repetitions)

1 FOV (RL / AP /
FH)

138×192×192

FOV (RL / AP /
FH; mm.)

160×256×256 Voxel size (mm.) 3×3×3

Voxel size (mm.) 1×1×1 Matrix size 64x64
TR / TE (mil-
lisec.)

8.1 / 3.7 Nr. of slices 40

Water-fat shift
(pix.)

2.268 Slice gap (mm.) 0.3

Bandwidth
(Hz./pix.)

191.5 TR / TE (ms.) 2200 / 28

Flip angle (deg.) 8 Water-fat shift
(pix.)

12.481

Phase accell. fac-
tor (SENSE)

1.5 (RL) Bandwidth
(Hz/Pix)

34.6

Acquisition
direction

Sagittal Flip angle (deg.) 90

Duration 5 min 58 sec Phase accell. fac-
tor (SENSE)

0

Phase encoding
direction

P >> A

Slice encoding
direction

L >> R

Nr. of dummy
scans

2

Dynamic stabili-
sation

none

Duration 10 min 38 sec
Table A.1 Details of the files from the scanner. All images in this study were obtained from
the "Intera" version of the Philips 3T scanner (Philips, Best, the Netherlands) [102].
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Appendix B

Mutual Information Results

Full size images from the aggregated figures can be made available on request.
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Mutual Information Results
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