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Abstract

Machine learning has become prevalent in transforming diverse aspects of our daily lives through intelligent digital
solutions. Advanced disease diagnosis, autonomous vehicular systems, and automated threat detection and tri-

age are some prominent use cases. Furthermore, the increasing use of machine learning in critical national infra-
structures such as smart grids, transport, and natural resources makes it an attractive target for adversaries. The

threat to machine learning systems is aggravated due to the ability of mal-actors to reverse engineer publicly avail-
able models, gaining insight into the algorithms underpinning these models. Focusing on the threat landscape

for machine learning systems, we have conducted an in-depth analysis to critically examine the security and privacy
threats to machine learning and the factors involved in developing these adversarial attacks. Our analysis highlighted
that feature engineering, model architecture, and targeted system knowledge are crucial aspects in formulating these
attacks. Furthermore, one successful attack can lead to other attacks; for instance, poisoning attacks can lead to mem-
bership inference and backdoor attacks. We have also reviewed the literature concerning methods and techniques

to mitigate these threats whilst identifying their limitations including data sanitization, adversarial training, and dif-
ferential privacy. Cleaning and sanitizing datasets may lead to other challenges, including underfitting and affecting
model performance, whereas differential privacy does not completely preserve model’s privacy. Leveraging the analy-
sis of attack surfaces and mitigation techniques, we identify potential research directions to improve the trustworthi-
ness of machine learning systems.

Keywords Adversarial attacks, Scrutiny-by-design, Poisoned dataset, Exploiting integrity, Data sanitization, Differential

privacy

1 Introduction

Machine learning underpins significant advancements
in the digital era by automating systems and making
solutions autonomous and self-learned [1, 2]. Examples
include facial recognition systems [3, 4], spam-filtering
systems [5, 6], securing autonomous vehicle and IoT sys-
tems [7-9], and intelligent firewalls [10, 11] which puts
forward the need for its security evaluation and robust-
ness against adversarial machine learning (AML) attacks.
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Adversaries considerably manipulate machine learning to
degrade the victim’s performance, inject a backdoor, or
exploit its privacy, specifically targeting security-sensitive
applications [12] to disrupt their integrity or secrecy.
Breaching integrity by manipulating training data-
sets or model parameters is a poisoning attack. Some
existing poisoning attacks are feature collision attacks
[13], convex polytope attacks [14], random label flip-
ping attacks [15, 16], and fast gradient sign method
(FGSM) attack [17]. Manipulating the testing dataset is
an evasion attack [18, 19]. Simultaneously, the privacy
of the ML models can be exploited with model inver-
sion or inference attacks to either reveal the parameters
of the targeted model or extrapolate manipulated data
to infer the expected output to analyze and assess the
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functional capabilities of the model. Bhagoji, A.N. [20]
exploited the privacy of the content moderation classi-
fier hosted by Clarifai.

Recent successful attacks on real-time machine learn-
ing systems prove the practicality of adversarial ML
attacks. Zou A. et al. [21] attacked ChatGPT, Claude,
and Bard with inference accuracy of 50% on GPT-4 and
86.6% on GPT-3.5. Also, Gong X. et al. [22] attacked
commercial Alibaba API with a 97% success rate. These
attacks highlight the urge for comprehensive research
to make ML models resilient, specifically focusing on
security-by-design solutions that should focus on the
security and resilience of the development process
rather than particular models.

In this literature review, we have performed a com-
parative analysis of various adversarial attack types that
threaten machine learning model development: poison-
ing, evasion, model inversion, and membership infer-
ence attacks. Comprehensively analyzing the severity,
impact, and limitations of each attack type provides
valuable insights that help shape potential research
directions and address the research questions given
below:

« What are the significant ML adversarial attack types
and attack surfaces to study and analyze?

+ What is the impact of integral entities, including
adversary and targeted domain, in devising adversar-
ial attacks to exploit the victim model/system?

« What are the existing and most effective strategies
and solutions to examine to mitigate ML adversarial
attacks and their limitations concerning ML adver-
sarial attack types?
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+ What are the open challenges and vulnerabilities
identified in ML models, existing mitigation solu-
tions, and open attack surfaces in machine learning?

Correlation between our problem statement, research
questions, and interlinked addressed sections are given
in Fig. 1. Addressing the above-given research questions,
the major contributions that this study makes are listed
as follows:

+ To the best of our knowledge, this is the pioneering
study to conduct an in-depth and critical analysis of
threats to the machine learning systems by analyzing
adversarial machine learning attacks, their severity,
impact, and existing mitigation strategies and their
limitations.

+ Unique analysis criterion is developed to exam-
ine existing research to determine the efficacy of
adversarial attack types that can be implemented on
machine learning. Our criterion analyzes various
attack vectors based on adversary’s capability and
accessibility, victim model, and technical examina-
tion of threat on machine learning model.

+ Four major adversarial ML attack types are studied,
based on the modeling process of machine learning,
in this literature review to conduct detailed examina-
tion of attack vectors and attack surfaces in machine
learning.

o Through deep analysis of threat landscape for
machine learning systems and mitigation techniques
proposed in existing literature, open challenges and
future research directions have been identified to
motivate further research and development in this
area.

Research question 1

> Studying ML ad\er.sana_l attack types and Section 2
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Fig. 1 Structure of this literature review to address research questions
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The structure of the remaining manuscript is as fol-
lows: Section 2 explains various adversarial ML attacks.
Section 3 addresses existing surveys on adversarial
machine learning followed by description of our analy-
sis criteria in Section 4. Section 5 is the state-of-the-art
analysis of existing research studies considering adversar-
ial attack types, and Section 6 explored existing mitiga-
tion strategies and their limitations. Section 7 identified
potential research directions, and Section 8 concludes
this research study.

2 Adversarial machine learning

Machine learning is considerably used in automating
digital systems [23, 24], which makes it a tempting tar-
get for adversaries to attack and potentially harm the
interconnected systems. These security violations origi-
nated in a distinctive domain associated with the secu-
rity of machine learning known as adversarial machine
learning [25]. Adversarial machine learning deals with
malicious attempts to exploit vulnerabilities in machine
learning. Every adversarial attempt is classified within
one of the attack types: poisoning, evasion, model inver-
sion, or membership inference attacks. The development
of an adversarial attack focuses on many other factors,
including targeting significant processing phases, attack
surfaces, capability, intention, knowledge of the adver-
sary, and availability of the victim model. Based on the
machine learning development process, significant attack
types on machine learning are described as follows.
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2.1 Adversarial attack types-based on model processing
and development
2.1.1 Poisoning attack
Training a machine learning model with the pre-pro-
cessed dataset is the initial development phase, which
also allows adversaries to adversaries to poison it. Poi-
soning attacks manipulate datasets by injecting falsified
samples or perturbing the existing data samples to infect
the training process and mislead the classification at test
time. Poisoning the dataset is possible in two formats to
disrupt the labeling strategy of the victim model known
as label poisoning attack [26]. Feature perturbation, leav-
ing the integrated label as is, is known as a clean-label
poisoning attack [27]. The attack surface for poisoning
attacks on machine learning is highlighted in Fig. 2.

2.1.2 Evasion attack

Attacking the machine learning model at test time is
called an evasion attack. This attack intends to mislead
the testing data to reduce the testing accuracy of the tar-
geted model [28]. The ultimate objective of this attack
is to misconstruct the testing input to harm the test-
time integrity of machine learning. Malware generative
recurrent neural network (MalRNN) is a deep learning-
based approach developed to trigger evasion attacks on
machine learning-based malware detection systems [29].
MalRNN evades three malware detection systems that
show the expedience of evasion attacks. In addition, this
attack triggers the importance of reliable security solu-
tions to mitigate vulnerabilities in machine learning
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against evasion attacks. Attack surface for evasion attacks
on machine learning is highlighted in Fig. 3.

2.1.3 Model inversion attack

The objective of this attack is to disrupt the privacy of
machine learning. Model inversion attack is the type of
attack in which an adversary tries to steal the developed
ML model by replicating its underlying behavior, query-
ing it with different datasets. An adversary extracts the
baseline model representation through a model inversion
attack and can regenerate the training data of the model.
D. Usynin et al. [30] designed a framework for a model
inversion attack on a collaborative machine learning
model, demonstrating its success. It also highlights the
impact of model inversion attacks on transfer machine
learning models. Attack surface for model inversion
attacks on machine learning is highlighted in Fig. 4.

2.1.4 Membership inference attack

A membership inference attack is another privacy attack
that infers the victim model and extracts its training
data, privacy settings, and model parameters. In this type
of attack, the adversary has access to query the victim
model under attack and can analyze the output gathered
from the queried results. The adversary can regenerate
the training dataset of the targeted adversarial machine
learning model by analyzing the gathered queried results.
The attack surface for membership inference attacks on
machine learning is highlighted in Fig. 5.
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Overall, machine learning model processing is at high
risk of adversarial attacks. Machine learning pertains to
several security and privacy vulnerabilities that exist and
are exploitable at various layers of the machine learning
modeling process that must be addressed adequately to
mitigate adversarial attacks on machine learning models.

2.2 Adversarial attack types-based on knowledge
of adversary

Adversarial attacks rely on the adversary’s knowledge of
the ML model under attack. When designing an adver-
sarial attack, the adversary can have complete to zero
knowledge of the target. The design of machine learning
adversarial attacks is highly dependent on the knowledge
of the adversary. Sub-categorizing adversarial attacks
based on the adversary’s knowledge is given as follows:

2.2.1 Black box attack

Black box attack is an adversarial attack for which the
adversary has zero knowledge of the victim [31-33] that
is put under attack. The targeted system is considered a
black box for the adversary, which is the most realistic
scenario because the adversary usually does not know
the target system. Threat models and attack vectors are
considered untargeted with the adversary’s intention to
reduce the overall accuracy of the targeted model. Tar-
geted attacks can not be the scenario with the black box
attack model, as the adversary does not know the victim
model to exploit it with a specific targeted attack vector.
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2.2.2 Gray box attack this case, an adversary may have some knowledge either
When an adversary has partial knowledge of the target regarding the dataset, dataset distribution, or some
system, that kind of attack is called a gray box attack. In  settings of the machine learning system that is to be
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attacked [34—36]. This type of attack is more applicable to
open-source systems or systems with low-security meas-
ures applied to it.

2.2.3 White box attack

White box attack is an adversarial attack where an adver-
sary has complete knowledge of the targeted system
[37-39]. This attack type is an ideal scenario where the
assumption relies on the adversary having all the details
of the system to be attacked. Threat models for this attack
are developed considering the adversary has complete
configurational knowledge of the targeted system. The
white box attacks are primarily designed to achieve a spe-
cific target. These types of attacks are more applicable to
poisoning and evasion attacks.

2.3 Adversarial attack types-based on capability

and intention of adversary
Following the capability and intention of adversaries to
attack the victim model, adversarial attacks on machine
learning are additionally sub-categorized into two sub-
stantial types, highlighted below.

2.3.1 Targeted attack

Targeted attacks on machine learning systems, in adver-
sarial settings, are formulated based on certain specified
goals and targets that are the objectives of that adversarial
attack [40—42]. M.K Puttagunta et al. [43] have provided
a detailed synopsis of targeted and un-targeted attacks in
automated medical systems. These attacks are based on
the adversary’s deep understanding of the targeted model
and its vulnerabilities to exploit and are based on distinct
aims to achieve. With this attack, the attacker has at least
baseline knowledge of either the victim model or its data-
set and can not be a black box attack.

2.3.2 Untargeted attack

Unlike a targeted attack, the untargeted attack is intended
to disrupt the victim model in any way without any pre-
defined objectives [44—46]. This type of attack is intended
to identify the vulnerabilities of the victim machine
learning model irrespective of achieving any significant
goals. Generally, these attacks are black box in nature
and do not explicitly define any particular data points
to be used for attack, rather than the adversary intends
to degrade the overall performance of the attacked ML
model. Subpopulation data poisoning attack [47] is one
of the case studies of untargeted adversarial attacks on
machine learning.
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3 Existing surveys

The research study [48] has surveyed the applicabil-
ity and implication of adversarial attacks on machine
learning-based cybersecurity applications, highlight-
ing their impact. Various cyber security applications,
including intrusion detection systems (IDS), biometric
systems, cyber-physical systems, and spam filtering, are
studied in detail from an adversarial threat perspective
on how ML systems can be attacked and their integ-
rity, confidentiality, or availability is breached, aligning
knowledge and capabilities of adversaries. Also, it high-
lights the existing mitigation solutions against these
attacks and their limitations. In conclusion, various
attacks are in place that are posing threats to machine
learning-based cyber security applications, which need
to be addressed proactively. Although adversaries are
designing more critical and complex attacks, designing
complacent adversarial attacks is difficult. Overall, pro-
active defense systems are increasingly needed against
these attacks, specifically in the cyber security domain.

M. Goldblum et al. [49] shed light on the dataset
processing vulnerabilities in ML model development.
Various dataset exploits and their countermeasures are
reviewed in [49] to analyze the security issues in the
training and processing datasets. Many training-only
attacks, such as bi-level optimization, label flipping,
and feature collision attacks, are highlighted, specifi-
cally on deep neural networks (DNN). Similarly, some
backdoor attacks are also studied. This research paper
highlights the need to mitigate dataset poisoning,
which is critical and complex.

On the other hand, M. Regaki and S. Garcia [50] shed
light on adversarial privacy attacks that pose another
critical threat to machine learning. They studied litera-
ture from the past 7 years, with forty papers explaining
the severity of privacy attacks in adversarial machine
learning and their countermeasures. In this survey
paper [50], authors have questioned the practical suc-
cess of machine learning privacy attacks. Implementing
membership inference, model extraction, reconstruc-
tion, and property inference attacks are discussed,
focusing on centralized and distributed machine learn-
ing. Most attacks studied in this literature are limited to
only neural networks. Some defense strategies against
ML privacy attacks are also put forward, including dif-
ferential privacy and regularization. But the authors
thrive towards the research need in two significant
directions, as given below:

+ The practical implementation of the privacy attacks
on real machine learning systems to prove the the-
oretical concepts
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+ Addressing limitations and enhancements of the pro-
posed mitigation solutions to improve the privacy of
machine learning models

The survey [51] provides a detailed synopsis of machine
learning poisoning attacks. Questions addressed in this
survey are the analysis of poisoning attack surface that
leverages dataset poisoning to contaminate the training
process of machine learning and model poisoning, which
manipulates the machine learning model processing.
Poisoning attacks studies in this literature study are the
label flipping, p-tampering, and bi-level optimization on
centralized machine learning, and gradient-based meth-
ods and generative approaches, including feature colli-
sion, are explored in the context of deep learning. Passive
and active defense approaches are studied along with
their complexities and limitations to mitigate poisoning
attacks. In conclusion, limitations and further research
exploration directions are identified that should be con-
sidered to address poisoning attacks in machine learning,
which is still a significant and critical task to achieve.

The survey [51] provides a detailed synopsis of machine
learning poisoning attacks. Questions addressed in this
survey are the analysis of the dataset and model poison-
ing attack surfaces. Poisoning attacks in this literature
study are the label flipping, p-tampering, and bi-level
optimization on centralized machine learning. Gradient-
based methods and generative approaches, including
feature collision, are explored in deep learning. Passive
and active defense approaches are studied along with
their complexities and limitations to mitigate poisoning
attacks. In conclusion, further research directions are
identified to address poisoning attacks in machine learn-
ing (Table 1).
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A. Shafee and T. A. Awaad [53] studied privacy threats
in machine learning, specifically deep learning, highlight-
ing issues and limitations in existing countermeasures.
Cryptographic and perturbation techniques are studied
in detail. Homomorphic encryption, functional encryp-
tion, and secure multi-party computation protocols are
analyzed, determining their effect on enhancing the pri-
vacy of deep learning algorithms. Differential privacy is
studied across various deep learning model layers to ana-
lyze its effectiveness in preserving privacy. The limita-
tions of applying perturbation techniques and encryption
mechanisms to secure deep learning from adversarial
privacy attacks are explained. The researchers have
highlighted several open research directions that help
improve the privacy and confidentiality of deep learning
and should not downgrade the performance and applica-
bility of deep learning algorithms.

4 Criteria defined for literature analysis

We have conducted an in-depth literature review to ana-
lyze the complexity and criticality of existing research
studies. The specific criteria developed for this detailed
literature study are given in Fig. 6. Our comprehensive
analysis criteria are designed based on adversarial attack
types, which are further scaled down to study literature
based on machine learning algorithms, datasets used to
develop machine learning models, and the exploited vul-
nerability of machine learning algorithms. Another entity
to analyze the adversarial attack and its severity is the
adversary based on its knowledge and goals defined for
the targeted attack on machine learning. At last, we have
examined the adversarial attack severity and its impact
based on the existing literature. Our developed crite-
ria for literature analysis are given in Fig. 6. A detailed

Table 1 Comparison of related existing surveys which are peer-reviewed and focusing adversarial machine learning attacks

Research paper Publication year Surveytype Analysisof  Analysis Analysis on (domain) Solutions Limitations
all attack criteria/ examined identified
types protocol

l. Rosenberg et al. [48] 2021 Traditional X X Cyber security v v

M. Goldblum et al. [49] 2020 Traditional v X Data poisoning v v

M. Rigaki et al. [50] 2021 Traditional X X Privacy attacks v v

Z.Wang etal. [51] 2022 Traditional X v Poisoning attacks v b’

M. Pitropakis et al. [52] 2019 Systematic X v Machine learning v v

A.Shafee et al. [53] 2021 Traditional ¥ X Privacy attacks v v

P.Bountakas et al. [54] 2023 Traditional X X Audio, cyber-security, NLP, v v

computer vision

N. Martins et al. [55] 2020 Systematic ¥ v Intrusion and malware detec- v v

tion

G.R. Machado et al. [56] 2021 Traditional X X Image classification v v

A. Alotaibi et al. [57] 2023 Traditional X x Intrusion detection system v x

This study 2023 Traditional v/ v AML attack types v v
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modular overview of our analysis criteria is given as
follows:

» Adversarial attack types. The base dimension of our
developed criteria is the adversarial attack types.
These attack types leverage us to analyze the process-
level vulnerabilities of the machine learning model.
The attack types included for analysis are poisoning,
evasion, model inversion, and membership inference
attacks, which can be further used to devise several
adversarial attacks based on these types. Analyzing
existing studies based on these attack types, we have
comprehensively provided a thorough summation
of adaptability, implication and comparison of these
attack types.

+ Machine learning model/algorithm. The machine
learning algorithm/model is also an essential aspect
of our analysis as it provides the technical interpre-
tation of the attack design under study. It is consid-
ered an influential factor in identifying the design
and complexity of adversarial attacks. Also, it helps
us to highlight the impact of attack type on individual
machine learning algorithms.

« Exploited vulnerability of machine learning algo-
rithm. Exploiting machine learning vulnerability is
another essential factor in developing the attack vec-
tor to manipulate the machine learning model. This
dimension helps in the technical assessment of the
attack success against the targeted machine learning
model. Exact annotation of the breached vulnerabil-
ity helps analyze security issues in machine learning
algorithms and align research directions to address
these issues.

+ Knowledge level of adversary in devising adversarial
attack. Analyzing the knowledge of the adversary of
the targeted model helps us better understand the
attack development. Knowledge of adversary scaled
from zero knowledge to completed knowledge of the
targeted model or system. The adversary’s knowledge
is considered an important benchmark when design-

ing these adversarial attacks. It helps analyze the
impact of attacks from existing studies and compares
the complexity and implication of each adversarial
attack type.

o Identifying goals of adversary. Another significant
dimension is the detailed synopsis of the adversary’s
goals and objectives set with the devised attack. Ana-
lyzing the intention and goals of the adversary leads
to the justification of the severity of the adversarial
attack. This dimension also helps technically and sys-
tematically determine security violations in the tar-
geted model or system.

o Attack severity and impact with respect to existing
literature. After analyzing adversarial attacks with
the above mentioned dimensions, we comprehen-
sively determine the attack severity and impact on
the attacked model. Analyzing the attack severity will
provide us ground to study the complexity and prac-
tical implication of adversarial attack types.

4.1 Literature review method

For providing clear and significant state-of-the-art anal-
ysis, our selection process comprises of the key con-
cepts, defined in Section 2. In total, four reviewers have
reviewed the selected papers and further refinement is
particularly based on our inclusion criteria which is given
as follows.

The inclusion criteria are as follows: we have selected
papers that are either peer-reviewed articles or confer-
ence papers and should not go beyond 2017 as their pub-
lication year. Each paper should focused on individual
adversarial attack against machine learning model and
provide the technical insights of the attack development.
Also, for selecting mitigation solutions papers, we have
focused on the papers that provide the technical details
of the developed solution and their experimental results
when implemented against adversarial attack.

The exclusion criteria are as follows: for further refine-
ment of the selected papers, we have excluded all the
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papers that comprises of the comparative analysis of
various adversarial attacks on machine learning model or
does not provide the experimental results and insights of
their developed attack and its impact on the targeted ML
model.

Based on the above defined inclusion and exclusion cri-
teria, we have developed our state-of-the-art dataset to
conduct our literature analysis. For capturing inter-rater
reliability of the reviewers, the Cohen’s Kappa scores for
each of the reviewers are 0.90, 0.93, 0.80, and 0.84, sub-
sequently. For the detailed adversarial machine learning
landscape analysis, keyword popularity is visible in Fig. 7
which highlight the impact of adversarial machine learn-
ing on various domains such as deep learning is highly
inter-linked with adversarial attacks which is further
affected with membership inference and model inversion
attacks. Also, poisoning attacks have impacted cyberse-
curity, intrusion detection, and networks related applica-
tions, whereas geographical distribution of the selected
papers is shown in Fig. 8 which highlight significant con-
tributions of different countries in this domain.

4.2 Process of examining research studies

The process to examine existing literature is given in
Fig. 9. This literature study has extensively examined

covid-19

adversqf@l attack

adversariallexamples deepll.ea\ming

network intrusion detection

adversarial Wﬂne learning
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research studies based on the adversarial attack types,
studying the victim model, adversary goals, capability,
attack vector, threat model, exploited features of the
targeted model, and its impact. Concluding our exami-
nation process, we have provided detailed insights into
the studied attack vector from a critical standpoint and
in-depth forensics of the complete attack development
process, highlighting and comparing the most threaten-
ing attack vectors exploiting various attack surfaces of
machine learning.

This literature review examined considerable research
studies based on the above-developed criteria focusing
adversarial attack types.

Attacks examination, based on our analysis criteria,
allows us to interpret the complete development life
cycle of the adversarial attack. Studying attacks with
the described dimensions reverse engineer the attack
development, answering how different knowledge lev-
els help in exploiting targeting system and, also, what
features can be exploited with various attack types. At
last, concluding the analysis of all the concerned enti-
ties, we have provided the impact and practicality of
various adversarial machine learning attacks. Based on
the criteria explained in Section 4, the filtered studies
from literature are mentioned in Tables 2, 3, 4, and 5
for detailed analysis as part of this research study.

membership inference attack

differential privacy

federated learning

model invegsion attack

deep neural network

machiWarning

poisonifig attacks

adversarial learning

intrusiondetection

internetf things

membership inference
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Fig. 7 Keywords analysis-a threat landscape of adversarial machine learning
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5 State-of-the-art analysis-AML attack types

Our study put forward an in-depth and comparative
analysis based on four major adversarial attack types
on machine learning. For the detailed forensics of vari-
ous adversarial attack vectors, comprehensive criteria
are devised to analyze each of the attack vectors and
their entities in detail. Examination of each attack vec-
tor based on attack type analyzed victim threatened
features, adversary, its capability and knowledge and
attack vector and the severe impact of the attack vector
on the victim model or algorithm. A hierarchical sum-
mary of articles studied for attack analysis is given in
Fig. 10. Detailed analysis of examined attacks is given
from Sections 5.1, 5.2, 5.3, and 5.4, analyzing attack
vectors concerning their integrated attack type and
surface.

5.1 Poisoning attack

F. A. Yerlikaya et al. [16] designed two label-flipping
attacks to perturb six machine-learning algorithms with
four datasets. Attacks are developed to poison binary
classifiers to reduce model performance. M. Jagielski
et al. [47] proposed an ML poisoning attack named sub-
population attack in which clustered attack points are
injected, so their identification is difficult. It is a black box
attack that manipulates data points by feature or cluster
matching. Existing security techniques, training a regres-
sion model (TRIM), activation clustering, removing
outliers on negative impact (RONI), and spectral signa-
tures, are also applied to mitigate this attack but are inef-
fective against subpopulation data poisoning attack. In
study [58], the poisoning and evasion attacks on machine
learning are designed to highlight the transferability at
the training and testing time of model development. It
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Fig. 10 State-of-the-art-AML attack types

highlights the threat of transferring poison from the sur-
rogate to the victim model. A gradient-based optimiza-
tion framework is developed to transfer poison that
manipulates the gradient of input samples of training and
testing datasets. This study has analyzed and highlighted
the security vulnerabilities in transfer machine learning,
proving empirically. This research study identifies major
factors that breach integrity, making the poisoning and
evasion attack successful in transfer machine learning:
the attacker’s optimization objectives, gradient alignment
of surrogate and target model, and model complexity.

C. Zhu et al. [14] have also demonstrated the trans-
ferability of poisoning attacks in machine learning by
implementing polytope attacks in deep neural networks.
The impact of the poisoning attack is explained in this
clean-label poisoning attack in which the adversary has
poisoned only 1% of the training dataset, disrupting the
results by 50%. Convex polytope attack is implemented
on various deep neural networks as case studies in this
research showed the sustainability and consequence of
poisoning attack in transfer machine learning. This study
confirmed the reliability and effectiveness of a convex
polytope attack, comparing it with a feature collision
attack. Also, it demonstrated the success and sustain-
ability of transferability of convex polytope attack even
in black box setting where the adversary does not know
the dataset of the victim model and still achieves almost
the same results as when the adversary has a 50% overlap

with the target dataset. Concluding this research has for-
mulated improvements in the transferability of poisoning
attacks by turning on the dropout rate and implement-
ing convex polytope objectives in multiple layers of neu-
ral networks. This research enforces the need to secure
machine learning, specifically neural networks, from poi-
soning attacks in various adversarial settings.

The research study [59], particularly forensic security
vulnerabilities and defense solutions of linear regression,
focuses on poisoning attacks on linear regression models
with gradient-based optimization and statistical attack
strategies. This study has proposed a new optimiza-
tion framework to poison linear regression in a gray box
attack setting by evaluating the limitations of existing
attacks. Another statistical-based poisoning attack is
also introduced in this study, which maximizes loss by
introducing poisonous points at the very corner of the
boundary by exploiting the security of noise-resilient and
adversarially-resilient regression. However, TRIM has
been proposed, proving to be more effective in mitigat-
ing poisoning attacks in the linear regression model but
ineffective against subpopulation attack, thus proving the
severity of the poisoning attack in adversarial settings.

5.2 Evasion attack

Malware classifiers are also affected by adversarial
attacks. In study [62], the researchers have developed
a test time attack on an Android malware classifier to
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disrupt its classification outcome. The attack devel-
oped in this research is a black box, which extracts the
opcodes with the n-Grams strategy from the disassem-
bled Android application packages (APK) and trans-
forms benign samples into malicious ones with a random
search technique. This attack is experimented with five
different malware detectors. It proves the effectiveness of
a test time attack that evades the machine learning model
and misclassifies the test time classification results. As
a result, machine learning-based malware detectors,
including Drebin, detection malware in android (MaM-
aDriod), with an accuracy of 81% and 75%, respectively,
and some others failed to detect malicious Android
applications.

Similarly, the stealthiness of the evasion attack is
explained by another attack named the Jacobian-based
saliency map attack (JSMA). JSMA is developed against
IDS and is designed on a multi-layer perceptron algo-
rithm. Targeted misclassification is intended to be
achieved when the adversary has intended to classify
malware traffic in network intrusion detection sys-
tems (NIDS) as benign. The experimental analysis uses
the white box setting to devise this evasion attack and
achieved maximum accuracy drop to 29% with the
TRabID 2017 dataset. Hence, it proved the malignant
approach to threat machine learning-based applications
in cybersecurity, subsequently highlighting the test time
security vulnerabilities in neural networks.

Based on our devised criteria, we have also exam-
ined the sensitivity of evasion and causative attacks [63]
against deep learning to technically shed light on the
existing security vulnerabilities in deep learning that
can be exploited by adversaries to harm the system. This
research devised an adversarial perturbation approach
and tested it with text and image datasets. At first, an
evasion attack is performed, followed by the exploratory
attack intended to infer the trained classification model
and extract its private tuning parameters. The explora-
tory attack is a black box query-based attack replicating
the victim model based on the obtained query outputs.
With the replicated model, this attack is further intended
to poison labels of testing samples and fool the deep
learning model with an evasion attack.

5.3 Model inversion attack

Adversarial attacks also threaten the privacy of machine
learning. Research study [67] experimentally revealed the
privacy attack during inference in collaborative machine
learning and argued that a single malicious participant
could infer the target system and steal the confidential
information of the targeted system. This attack is suc-
cessful in all three settings with complete knowledge,
zero knowledge, and query-free attack setting. The
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confidential tuning parameters are extracted, specifi-
cally with a regularized maximum likelihood estimation
technique in which the adversary follows the Euclidean
distance estimation and finds the optimal sample with
the least variation. In conclusion, this research high-
lighted the potential of inference attacks that demand
attention to mitigate and ensure privacy preservation of
deep learning. S. Basu et al. [68] demonstrated the pri-
vacy issues in machine learning algorithms by inverting
a deep neural network (DNN) with a model inversion
attack. This research study implemented the model inver-
sion attack on the facial recognition system and extracted
the class representation of the model. The attack devel-
oped in this research has baseline knowledge of the tar-
get system. A generative adversarial network is integrated
to generate input samples and invert the victim model,
highlighting the effectiveness of generative Al in invert-
ing the model. Another framework, named generative
adversarial model inversion (GAMIN), by U. Aivodji and
others [69] is also based on generative adversarial net-
works to craft adversarial images to query the targeted
model and extract its details by comparative output
resemblance. The major threat disclosed with adversar-
ial networks is that even without prior knowledge of the
system under attack, the adversary can extract its con-
fidential settings parameters and invert it. M. Khosravy
et al. [75] also developed a model inversion attack on a
deep neural network-based face recognition system. It is
a gray box attack as the adversary has partial knowledge
of the system under attack, including the model structure
and its parameters. This attack extracts the model con-
figurations by reconstructing images based on the confi-
dence achieved from the targeted model, hence inverting
the targeted CNN model. Concluding all the mentioned
attacks, the emphasis is on the privacy preservation of
machine learning, which is a primary consideration in
constructing trustworthy and resilient AI/ML that over-
come adversarial attacks.

5.4 Membership inference attack

The membership inference attack (MIA) is another pri-
vacy risk to machine learning and deep learning. Yang
Zou et al. [73] have comprehensively studied mem-
bership inference attacks on deep learning models in
transfer learning mode. 95% accuracy, area under curve
(AUC), is achieved with the membership inference attack
performed to determine if the input instance is part of
the training dataset of the targeted model. Three attacks
originated in three different transfer learning modes as
part of this research. When the adversary has access to
the teacher model, the adversary targets the trained stu-
dent model, and the adversary infers the teacher model
dataset with access to the student model. This study



Paracha et al. EURASIP Journal on Information Security ~ (2024) 2024:10

implemented a surrogate model based on ResNet20
convolutional neural networks with derived and student
datasets and determined the membership inference of
the victim model. This attack vector is quite adequate in
demonstrating the capability of the inference attack on
machine learning to exploit its privacy even with lim-
ited access or information of the victim model. Another
potential privacy attack is mentioned in [72], where the
attacker acquired an automated recommender system
membership inference. The attack is declared zero-
knowledge. However, this study interrogates a serious
privacy threat on the recommender system’s sensitive
user data, which adversaries can reveal with the deter-
mined query-based attack. Here, the inference attack is
defined by three recommender algorithms: item-based
collaborative filtering, latent factor model, and neural
collaborative filtering by implementing a shadow model
to mimic the training dataset of the victim, which ulti-
mately jeopardizes its privacy.

6 Mitigation strategies and limitations

Various mitigation techniques are also developed to
secure machine learning models alongside the above-
mentioned adversarial attacks. However, the existing

mitigating poisoning
attack

Mitigation strategies - _
AML attacks

mitigating
evasion attack

mitigating model inversion
and membersip inference
attacks

Fig. 11 State-of-the-art of mitigation techniques-AML attack types

{nd sersarial training o
L Region-based ®————————®X_Cao et al. [89], 2017

Page 17 of 23

solutions are subjective and attack-focused, which can-
not guard targeted models when attacked with new tech-
niques. Also, proposed security solutions have several
limitations that should be considered to keep the integ-
rity of machine learning intact, making AI/ML secure
and trustworthy. A hierarchical description of analyzed
mitigation techniques, based on adversarial attack types,
is given in Fig. 11. A detailed analysis of existing security
solutions based on adversarial attack types is given as
follows:

6.1 Mitigating poisoning attack

6.1.1 Data sanitization

Pre-processing training datasets and removing erroneous
or poisoned data points is known as data sanitization.
However, this reduction may lead to a lessened dataset,
increasing underfitting issues in model development. S.
Venkatesan et al. [76] proposed a solution to overcome
the limitations of data sanitization by creating random
training data subsets to train ten ensemble classifiers to
balance the poisoning effect. This mechanism reduces
poisoning effects while training NIDS to 30%. Similarly,
another data sanitization derivative is applied to mal-
ware detection systems to mitigate clean label poisoning

S. Venkatesan et al. [74], 2021
[75], 2022
—@A. Paudice et al. [76], 2018

P. W. Koh et al. [77], 2021

P. PK Chan et al. [78], 2018

Samson Ho et a
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~®T.Y. Liuetal [79], 2023

o—i.
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—e 3 2
Model hardening =< G.Taoetal. [81], 2022

%G Apruzzese et al. [82], 2020

J. Lin et al. [83], 2022
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\ " ®U.Ahmed et a 2022

H.Rafiq et al 30 2022
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attacks [77]. This approach is an enhancement, provided
in [76]. Furthermore, the study [78] has proposed another
approach to label sanitization to reduce the impact of
overfitting and underfitting issues, whereas P. W. Koh and
others [79] have introduced three sophisticated poison-
ing attacks by introducing cluster-based poisoning that
breached the sanitization solutions, highlighted above.

RONI is also a derivation of data sanitization proposed
by Patrick P. K. Chan and others [80], which removes
poisoned data samples by analyzing the negative impact
of each data sample that reduces classification accuracy.
However, it also leads to underfitting issues that lessen
the flexibility and increase true negatives at test time.

6.1.2 Adding adversarial noise to data samples

Training the ML model with an adversarially developed
dataset allows the trained model to identify poisoned
samples at test time. T. Y. Liu et al. [81] have boosted
the immunity of the model by adding specifically crafted
noise samples in the dataset during training, which is
effective against bulls-eye polytope, gradient masking
and sleeper agent attacks. Another study [82] has intro-
duced adversarial noise into the intermediate layer of
CNN to mitigate FGSM attacks.

6.1.3 Adversarial training

Training an ML model with adversarial data samples
allows it to be resilient against poisoning attacks. TRIM
is one of the techniques used to adversarially train mod-
els with a residual subset of a dataset with a minimum
error rate. M. Jagielski and others [59] have designed and
experimented with this TRIM algorithm against adver-
sarial poisoning attacks against linear regression algo-
rithm to solve optimization problems. This approach
has reduced the error rate to approximately 6%. It per-
forms robustly compared to random sample consensus
(RANSAC), a data sanitization derivative, whereas TRIM
and RONI security techniques failed against the subpop-
ulation attack developed in [47].

6.1.4 Model hardening

Another innovative technique to mitigate poisoning
attacks is model hardening, in which the model is trained
until it leads to large class distances where it should not
accept outliers. This technique makes it challenging for
an adversary to poison the model. G. Tao et al. [83] pro-
posed a model hardening mechanism with additional
training to increase the class distances and challenge the
label-flipping attack. The study [84] hardens random for-
est algorithm to mitigate poisoning impact on an IDS.
Moreover, it also leads to mitigate backdoor attacks
against neural networks. It reduces misclassification up
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to 80%, but it is still only effective against label-flipping
backdoor attacks.

6.2 Mitigating evasion attack

6.2.1 Adversarial training

Adversarial training is a prominent mechanism to miti-
gate evasion attacks in machine learning. A particular
dataset part is intentionally poisoned to lessen the test
time evasion and make the model adversarially robust
[85]. It allows the victim to be aware of adversarial sam-
ples if injected at test time to detect and defend itself if
attacked by an adversary. U. Ahmed et al. [86] proposed
adversarial training by classifying adversarial and nor-
mal data samples followed by centroid-based cluster-
ing of features and calculating the cosine similarity and
centroid of the image vector. The research [87] to train
independent models to reduce fabricated classification
attacks and [88] guards against Carlini and Wagner and
FGSM attacks.

6.2.2 Model hardening

The hardening machine learning model also applies to
developing a wall of security in machine learning against
adversarial attacks at test time. Evasion attacks are also
mitigated with the help of a training model until they
reach the state of hardening, which activates the model
to evade adversaries and mitigate attack impact. Adver-
sarially crafted samples are injected intentionally during
the machine learning model training to evade the system
until it reaches the state of hardening, making the victim
model resilient and robust. These poisoned input data
samples evade the system and are then marked as poi-
soned in the system to identify similar patterns if injected
by the adversary at test time. G. Apruzzese et al. [89] has
introduced a similar strategy to mitigate evasion attacks
in botnet detection systems by deep reinforcement learn-
ing. They have developed an agent based on deep rein-
forcement learning capable of generating adversarial
samples to evade the targeted botnet and then including
these adversarially generated samples into the targeted
system marked as malicious to make the model under-
stand the pattern of adversarial samples if attacked dur-
ing test time, whereas research study [90] used model
hardening to secure ML-based IoT system. A thresh-
old is specified that trains the model properly with the
legitimate and illegitimate dataset that makes the botnet
detector robust against evasion attacks.

6.2.3 Region-based classification

X. Cao et al. [91] have designed a classification mecha-
nism based on region rather than individual sample
points. The researchers provided this technique based
on the assumption that the adversarial points lie near the
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classification boundary. A hypercube-centered classifi-
cation approach is determined by omitting single-point-
based classification at test time to reduce the impact of
adversarial points.

6.3 Mitigating model inversion and membership inference
attacks

6.3.1 Differential privacy and sparsity

To preserve the privacy of machine learning models, one
of the profound solutions is differential privacy. It makes
it difficult for the adversary to analyze the output and
extract the victim’s confidential information. J. Chen et al.
[71] have used differential privacy applied with stochastic
gradient descent on Lasso and CNN neural to preserve
genomic data privacy. H. Phan et al. [92] improves DNN
robustness by implementing differential privacy with the
logarithmic relation between the privacy budget and the
accuracy of the targeted model. They have empirically
analyzed genomic data for phenotype prediction with a
white box attack, whereas Q. Zhang et al. [66] improves
differential privacy by implementing it at class and sub-
class level, proving the minimal probability of model
inversion attack at dataset only. Class and sub-class level
differential privacy is more effective and robust than
simple record-level differential privacy, providing more
Euclidean distance between original and inverted data
samples. However, it is tested with neural networks only
with Face24 and MNIST datasets. Also, this type of dif-
ferential privacy requires high computational resources,
whereas the study [93] highlights trade-offs of data pri-
vacy and assuring its trustworthiness. K. Pan et al. [94]
implemented differential privacy to mitigate privacy
attacks and data leaks against generative adversarial net-
works, whereas the floating-point attack mentioned in
[95] has invalidated differential privacy implemented to
preserve privacy of machine learning models.

6.3.2 Probability randomization

Adversarial privacy attacks, specifically membership
inference attacks, target machine learning classifiers and
infer input datasets by interpreting the confidence score
and probability of the queried output. Adding noise to
the output or intentionally interrupting the confidence
probability score leads to the privacy preservation of
machine learning, preventing adversaries from infer-
ring confidential details of the victim model. Member-
ship inference guard (MemGuard) [74] is one of the
solutions designed to preserve the privacy of machine
learning models against membership inference attacks
by adding randomized noise to each of the score vectors
with a specified probability of accuracy loss and makes
machine learning-based binary classifier resilient to miti-
gate membership inference attack. However, the solution

Page 19 of 23

is only tested for securing neural networks under the
black box attack settings.

6.3.3 Pre-training

Z. Chen et al. [96] have proposed a model-preserv-
ing framework to preserve the security of deep learn-
ing models while training models by combining model
parameters and training data. Z. Chen et al. [97] have
introduced a new framework to pre-train an ML-based
model to preserve privacy by enforcing less confidence in
the queried results between members and non-members.
Z. Yang and others [98] have introduced another model
to statistically in-distinguish the confidence scores of
members and non-members.

7 Potential research directions-AML attack types
Machine learning is at the edge of adversarial attacks that
threaten the security and privacy of machine learning.
In this literature review, we have analyzed the existing
adversarial attacks on machine learning, their mitigation
strategies, and limitations based on adversarial machine
learning attack types. Based on these attack types, the
following are the potential research directions that can be
extended as future research.

+ To make machine learning safe and resilient against
security attacks that disrupt its integrity, we need
to improve mitigation solutions and develop solu-
tions that make machine learning secure by design
and robustify its model development process. Some
prominent solutions are highlighted in existing litera-
ture but are subjective to mitigate vulnerabilities of a
particular system to secure that specific domain or
system environment but can not fight any new attack
if implemented.

+ Another important perspective towards trustworthy
machine learning is preserving its privacy against
model inversion attacks [30, 75, 99, 100] and mem-
bership inference attacks [101-103] that violates its
secrecy. Both of these attacks need to be addressed to
preserve the privacy of machine learning and make
machine learning explainable and reliable to use.

+ Identifying the reliability, integrity, and usability of
machine learning in security-sensitive applications
such as financial recognition systems [104—106],
medical diagnostic applications [107, 108], medical
imaging systems [43, 109, 110], and cyber defenses
[111-113] is potentially a critical and open research
challenge. The significance and prevalence of secure
and trustworthy machine learning are prominently
highlighted by its use in these domains. At the same
time, persisting threats and existing vulnerabilities
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should be of greater concern to be resolved signifi-
cantly to ensure the reliable use of machine learning.

+ Another important research direction is the practi-
cal implications of theoretical adversarial attacks on
machine learning. Many research studies and sur-
veys claimed that most of the adversarial attacks are
highlighted in a theoretical manner [114] and maybe
just implemented as white box attacks, which are less
credible practically. The practical implication of these
attacks and defenses is an open research challenge
that should be particularly considered to highlight
the impact of adversarial attacks in reality.

Overall, many security and privacy-preserving solutions
are provided in the literature. Still, to the best of our
knowledge, security solutions and strategies given in the
literature are very subjective in nature and target specific
attack vectors with limited datasets in particular domains
or systems to be implemented. Context-aware solutions
against these adversarial attacks on machine learning are
a potential research challenge that should be focused on.

8 Conclusion

We have conducted a comprehensive study to analyze
different types of adversarial attacks, their development
process, and their impact alongside defenses and limita-
tions. For the in-depth analysis, various aspects of mali-
cious attempts are studied, including the adversary’s
knowledge and accessibility, adaptations to algorithms,
vulnerability, and feature exploitation. Existing defense
mechanisms are also studied to mitigate adversarial
attacks, including data sanitization, outlier detection,
adversarial training, and differential privacy and sparsity.
Moreover, their limitations and successful attacks that
breached these security techniques are highlighted to
provide a structured ground and deeper insights for fur-
ther investigations. Our study provides a detailed com-
parative analysis of adversarial attack types, investigating
the significance of various technical aspects and provid-
ing deeper insights into their development process.

Our analysis highlights the ability of adversaries to
develop adversarial attacks to breach machine learning
security and privacy. Poisoning attacks are identified as
a major threat to machine learning, whereas practical
implications of inference attacks, such as attacks devel-
oped in [21] against large language models, highlighted
their impact. We have concluded that the public avail-
ability of the datasets and models gives provenance to the
adversaries to exploit ML models even with zero knowl-
edge of the targeted models. Also, adversarial attacks are
transferable, allowing adversaries to penetrate the tar-
geted model with the help of surrogate models. For exam-
ple, the attack developed in [14] is transferable. Also, it is
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important to consider the security of the machine learn-
ing development process while developing mitigation
solutions to counter adversarial attacks.
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