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ABSTRACT 

Floods and droughts are among the most devastating natural disasters, significantly impacting 

environmental and socio-economic systems. With climate change exacerbating these risks, it is 

crucial to develop robust frameworks in assessing and mitigating the risk. This thesis aims to 

develop a hybrid integrated framework for flood and drought risk assessment, combining multiple 

methodologies and modern predictive techniques. The research employs a combination of 

Interpretive Structural Modelling (ISM), Causal Loop Diagrams (CLD), and network theory to 

build the framework. Statistical and machine learning methods are used to calculate and test the 

framework, ensuring a comprehensive analysis. The integrated framework effectively identifies and 

assesses key risk factors and their interdependencies. The spatio-temporal mapping revealed 

significant trends in flood and drought occurrences. Despite the presence of flooding risk partly 

due to more intense rainfalls, the risk of drought coexists on a river basin scale. Validation using 

Receiver Operating Characteristic (ROC) curves demonstrated the model's accuracy. Sensitivity 

analysis highlighted critical variables such as community resilience, precipitation, access to 

transportation networks, and reservoirs, which contribute significantly to the variance of predicted 

risks. Other parameters aid in the accuracy of these predictions, while factors like elevation and 

slope assist with the spatial distribution of the risks. The developed framework has shaped and 

enhanced substantial understanding of flood and drought risks, providing a robust basis for future 

research. Future work should focus on integrating more diverse datasets and exploring long-term 

climate impacts to further refine and improve the assessment process. 

Keywords: Flood risk assessment, drought risk assessment, hybrid integrated framework, spatio-

temporal mapping, climate change, advanced analytical techniques, sensitivity analysis, receiver 

operating characteristic (ROC).  
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1 INTRODUCTION 

"In the face of uncertainty, the only certainty is resilience. Understanding the dynamics of natural 

hazards such as floods and droughts is not just about predicting outcomes but about building 

adaptive and resilient communities." 
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1.1 BACKGROUND AND RATIONALE 

The risk of flood and drought on a river basin scale encapsulates the likelihood and potential 

consequences of extreme hydrological events disrupting the balance of water availability within a 

specific river basin (Hirabayashi et al., 2013; Trenberth et al., 2014). Flood risk refers to the 

potential for increase in flood level to inundate land, affecting communities, agriculture, and 

infrastructure, driven by factors like intense rainfall, snowmelt, or dam failures (Field, 2012; 

Kundzewicz et al, 2014; Paprotny et al, 2018). Conversely, drought risk characterizes periods of 

insufficient water supply due to prolonged below-average precipitation, or demand increase 

leading to water scarcity that impacts water quality, ecosystem services, and socio-economic 

activities (Vogel et al., 2015, Haile et al., 2020; Christian et al., 2021; Lesk and Anderson., 2021). 

Assessing these risks involves evaluating the vulnerability and exposure of the basin's natural and 

human systems to these extreme events, underpinned by climate variability and change, land use 

practices, and water management policies (Van Loon and Van Lanen 2013). 

Flooding and drought risk are intertwined complex issues, which lie in the middle of many fields. 

Review of case studies that explore natural phenomena such as droughts, floods, the coexistence 

of droughts and floods (DFC), and urban-related aspects reveals that the interdisciplinary literature 

spans a broad array of fields, including earth science, climate studies, biology, hydrology, water 

resources, disaster research, and urban planning, among others (Hoa and Vinh, 2018). 

A changing climate is intimately linked to changes in the hydrological cycle (Huang et al 2015). 

Therefore, considering the temporal element of change in climate, adds to the dynamic 

complexities of assessing and projecting these risks (Wu et al., 2017).  On one hand, anticipated 

changes in settlement patterns and the impacts of climate change are poised to escalate the risk of 

floods and droughts on a global scale (Milly et al, 2002; Hirabayashi et al, 2013; Winsemius et al, 

2015; Arnell & Gosling, 2016). On another hand, it signifies the importance of spatio-temporal 

trends of drought and flood events as analysis highlights the impact of timing and sequence of 

atmospheric alternations on such hydro-hazards (Zaroug et al., 2014) leading to a more in-depth 

investigation of the joint probabilities of continuous hydrological droughts and floods. 

Combination of these events in the basin scale causes extra sensitivity to the distribution of water 

resources and other consecutive risk factors (AghaKouchak et al., 2015; Wu et al., 2017). For 

instance, there are several observations that such factors affect the urban planning and regional 
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geo-politics in a way that updated development states need to be transferred to the hydrodynamic 

models to inform the flood risk assessments models (Löwe et al., 2017). These multi-perspective, 

retrospective and regional studies need access to various large and reliable datasets to offer a 

foundation for uniformity across methodologies, crucial for regulators aiming to evaluate and 

compare different proposed plans (Hall et al., 2020). 

It also requires progress of statistical modelling to infer the past and current circumstances to 

enhance the capacity of projecting the dynamic of flood and drought risk fluctuations in time and 

space (Serinaldi and Kilsby, 2014). Some of these models include extreme value perception, which 

is of main concern for simulating catastrophic scenarios often caused by single or a limited set of 

causes. Whereas, in design and implementation of water resources management scenarios, the 

number and frequency of less severe events are deemed to be more practical (Prosdocimi et al., 

2014).  

Highlighting these dimensions enhances water management in many ways. One is encouraging the 

integration of social aspects with hydro-climatological insights for a comprehensive understanding 

of flood and drought (Urquijo and De Stefano, 2016). Next would be identifying often overlooked 

vulnerability factors, enabling the development of user-centric strategies, which addresses the 

necessity of transforming scientific knowledge into actionable insights for policy-making and 

governance (Wheater, 2015). 

Next of such enhanements could be emphasizing the importance of documenting drought and 

flood impacts to better characterize and manage them (Urquijo and De Stefano, 2016). When 

considering droughts and floods from a long-term viewpoint, it's evident that priorities vary 

significantly between highly developed and regulated river basins and those that are more natural 

and less developed finally, stressing the need for effective communication between governmental 

bodies and water users to improve risk response coordination (Grobicki et al., 2015). Research 

suggested the creation of mitigation approaches aimed at diminishing the vulnerabilities of 

individuals and communities to changes in hydro-meteorological patterns, heightened variability, 

and extreme occurrences, additionally, prioritise efforts to bridge the discrepancy between water 

supply and demand (Bergkamp et al 2003). 

https://en.wikipedia.org/wiki/Urban_development
https://en.wikipedia.org/wiki/Flood_risk
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Therefore, adopting an integrated approach from the outset is crucial for mitigating long-term 

costs and minimizing anthropogenic impacts on the natural dynamics of river basins (Grobicki et 

al., 2015). 

River basins are dynamic systems where water availability and risk are influenced by natural 

processes and human activities. The impact of flood and drought events is exacerbated by factors 

such as urbanization, deforestation, and agricultural practices, which alter land use and water 

management strategies. Furthermore, socio-economic factors, including population growth, 

economic development, and community resilience, play significant roles in shaping vulnerability 

and exposure to these hydrological hazards (Arora and Mishra, 2019). 

Current methodologies for assessing flood and drought risks often rely heavily on quantitative 

analyses of hydrological variables, such as precipitation and river flow rates and sometimes 

consider the properties of the events such as the severity instead of the concept of risk. However, 

these approaches may not fully account for the broader socio-economic impacts and the adaptive 

capacities of communities. There is a pressing need for a holistic framework that integrates diverse 

parameters, including socio-economic factors, environmental consciousness, and community 

preparedness, to provide a more comprehensive assessment of flood and drought risks at the river 

basin scale (Adger, 2006; Merz et al., 2010a; Mechler et al., 2014). 

Despite considerable advancements in hydrological modelling and risk assessment, a significant 

gap exists in frameworks to holistically integrate both natural and human dimensions of flood and 

drought risks (Pahl-Wostl, 2007; Ward et al., 2011; Withile et al., 2014). This gap is particularly 

pronounced in the context of climate change, where the need to understand and mitigate these 

risks is increasingly urgent. A comprehensive, integrative framework that encompasses a wide array 

of risk factors and their interconnections is critically needed (Summers et al., 2017; Jha et al., 2020). 

The justification for this research lies in its potential to significantly advance our understanding of 

assessing flood and drought risks in the face of climate change. By incorporating a broader range 

of risk factors beyond traditional hydrological indicators, the proposed framework offers a more 

nuanced view of vulnerabilities and exposures. This comprehensive approach is crucial for 

developing targeted, effective mitigation and adaptation strategies that can enhance community 

resilience and sustainable water resource management (Allan et al., 2023). 

Initially, this research sought to identify the most impactful parameters and their interconnections 
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for assessing flood and drought risks by gathering expert opinions. To achieve this, an open-ended 

questionnaire was distributed online, and several experts were invited to participate in interviews. 

However, the first round of efforts revealed significant challenges. Given the interdisciplinary 

nature of the research and the broad range of relevant fields, it became evident that obtaining 

sufficient credible insights across all targeted concepts within the time constraints of a PhD was 

not feasible. Furthermore, cross-verifying the interconnections between risk parameters from 

different disciplines proved equally challenging. 

Recognizing these limitations, the experience informed a critical shift in methodology. Instead of 

relying on expert elicitation, the research pivoted towards conducting a systematic literature review. 

This approach utilized open-coded latent content analysis to systematically extract parameters 

across diverse disciplines. In addition to identifying key parameters, this method enabled the 

extraction of supplementary data, including datasets, weights, coding schemes, and insights from 

published studies. This adjustment allowed for a more comprehensive and rigorous foundation 

for assessing flood and drought risks, while addressing the challenges encountered in the initial 

approach. 

The study aims to develop an integrative, adaptable framework accompanied by a geometric index 

for the simultaneous assessment of flood and drought risks in river basins. This framework is 

designed to capture the complexity of risk factors, including the interplay between natural hazards 

and socio-economic vulnerabilities, to support effective risk management, adaptation and 

mitigation strategies. 

1.2 A IMS AND OBJECTIVES 

Floods and droughts represent two opposing yet interconnected extremes of the hydrological 

cycle, with profound and often devastating impacts on ecosystems, economies, and societies. 

Traditionally, these phenomena have been studied in isolation, leading to fragmented and often 

incomplete risk management approaches. However, with the increasing variability and 

unpredictability of climate patterns, there is a growing and urgent need to assess these risks 

concurrently to address their complex interactions and compounded effects effectively. 

This research directly addresses this gap by proposing a comprehensive framework designed to 

evaluate flood and drought risks holistically. The framework not only considers the physical and 
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environmental factors driving these hazards but also integrates socio-economic variables that 

significantly influence vulnerability and resilience. By employing a diverse set of analytical methods 

and modeling techniques, the framework captures the multifaceted and interconnected nature of 

hydrological risks. The proposed approach aims to serve as a practical tool for policymakers, 

planners, and stakeholders engaged in river basin management, water resources modeling, and 

environmental service provision. It is envisioned to enhance decision-making processes, enabling 

a more integrated and adaptive response to the challenges posed by floods and droughts in an era 

of increasing climatic uncertainty. 

The primary aim of this research is to develop and validate a comprehensive general framework 

for the simultaneous assessment of flood and drought risks at the river basin scale. 

This framework seeks to integrate advanced statistical analyses, complex system modelling, and 

fractal mathematics to enhance the understanding of hydrological extremes and inform effective 

risk management strategies. By doing so, it aims to enhance the understanding of the complex 

interactions between flooding and drought risks, ultimately informing effective risk management 

strategies and sustainable water resource planning in regions susceptible to these hydrological 

extremes. 

In order to meet the mentioned overarching aim of developing a simultaneous flood and drought 

risk assessment at the river basin scale, three main specific objectives were addressed. 

I. To identify and elucidate deep interrelations, latent themes and data in flood and drought 

risk by applying advanced statistical analysis. 

The goal of objective one is to systematically explore and elucidate the complex interrelationships 

and latent themes present in existing flood and drought risk literature. This objective employs a 

combination of advanced methods that fall under statistical analysis, correlation measures, 

similarity measures, and clustering algorithms to uncover hidden structures, generate insights, and 

establish a foundation for a comprehensive risk assessment framework. By using both quantitative 

measures such as Pearson and Spearman correlations, co-occurrence matrices, and cosine 

similarity as well as unsupervised clustering algorithms from machine learning and data mining, 

including DBSCAN and hierarchical clustering, this research aims to produce a sophisticated, 

multi-dimensional analysis of the latent content from literature. 
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II. To develop an integrative framework using Interpretive Structural Modelling (ISM), 

network theory, causal loop diagrams, and cross-entropy analysis to encapsulate key risk 

factors and their interdependencies in flood and drought risk assessment. 

The second objective of this research is to develop a comprehensive framework that integrates the 

key risk factors identified in Objective One, focusing on understanding their interdependencies 

through advanced modelling and analytical approaches. This framework employs Interpretive 

Structural Modelling (ISM), network theory metrics, cross-entropy analysis, and causal loop 

diagrams (CLDs) to explore, model, and quantify the complex relationships between flood and 

drought risk factors. The ultimate aim is to create a dynamic model that captures these 

relationships and provides a structural view that informs decision-making processes for effective 

risk management. 

The methodology used in Objective Two relies on system dynamics and network analysis, creating 

an integrative approach that goes beyond traditional risk assessments. By combining ISM to build 

structural models, network metrics to evaluate connectivity and influence, and cross-entropy 

analysis to rank risk factors, this objective offers a comprehensive pathway to understanding flood 

and drought risks. 

III. To validate the developed framework, conduct sensitivity analysis, and introduce a 

Combined Flood and Drought Risk Index (CFDRI) for predictive risk mapping using 

spatial analysis, efficiency testing, and trend analysis of hydrological risks. 

The third objective of this research focuses on validating the integrative framework developed in 

Objective Two, conducting sensitivity and uncertainty analyses, and introducing a novel Combined 

Flood and Drought Risk Index (CFDRI). This objective aims to quantify and evaluate flood and 

drought risks through advanced spatial analysis and to ensure the accuracy and reliability of the 

model by employing various validation, sensitivity, and trend analysis techniques. 

The methodology for Objective Three includes spatial analysis for data classification and fuzzy 

modelling, validation tests using overlay methods and ROC curves, sensitivity and uncertainty 

analysis to understand model robustness, and trend analysis to examine changes in risk over time. 

Importantly, the CFDRI is developed by combining similar input variables using spatial measures 

such as fractal geometry to represent the spatial distribution maps. The culmination of these efforts 
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is a predictive tool that provides monthly risk maps for the coming year, guiding stakeholders in 

proactive risk management. 

1.3 STUDY SITE 

Geographically, The third objective of this research focuses on validation, sensitivity analysis, and 

the development of a Combined Flood and Drought Risk Index (CFDRI), specifically applied to 

the River Severn Basin. The decision to focus on the River Severn Basin is justified due to its 

unique combination of hydrological characteristics, its geographical and socio-economic 

importance, and the wealth of historical data available. These factors make the River Severn an 

ideal case study for understanding and quantifying the risks of both flooding and droughts, 

providing insights that can potentially inform risk management in other similarly complex river 

basins. 

The River Severn Basin covers over 21,000 km², including parts of both Wales and England. It 

encompasses not only the main river but also its numerous tributaries and a major river network, 

which extend its influence over a wide area of the surrounding countryside, affecting both the 

environment and the settlements of more than 5 million people within its reach. The river's length 

allows it to boast a varied geography, from its upland source through the rolling hills and fertile 

plains of the Midlands, to the wide tidal estuary. Its estuary is one of the largest and most important 

in the UK, noted for its high tidal range (Figure 1.1). The River Severn is the longest river in the 

United Kingdom, stretching for about 354 km. Its journey begins in the Cambrian Mountains of 

mid-Wales, specifically at an elevation on Plynlimon near Llanidloes, Powys. From this remote 

source, the river traverses the scenic landscapes of Wales and England, before reaching the Severn 

Estuary. This estuary then widens to form the boundary between England and South Wales, 

eventually merging with the Bristol Channel.  
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Error! Not a valid bookmark self-reference.Figure 1.1. Map of River Severn basin district including its major 

rivers. 

In terms of hydrology, the average flow rate of the River Severn varies significantly along its course, 

influenced by rainfall, the catchment area, and water abstraction for various uses. At its mouth, the 

average flow rate is around 107 m³/s, though this can vary widely with seasonal changes and 

upstream rainfall (Environment Agency, 2022). The River Severn plays a crucial role in the ecology, 

economy, and history of the regions it flows through, supporting diverse habitats, providing water 

for homes, agriculture, and industry, and historically enabling trade and settlement along its banks. 

The River Severn Basin presents a compelling case for studying flood and drought risks due to its 

unique hydrological and ecological characteristics, coupled with its historical vulnerability to these 

extreme weather events. The basin's geographical extent, encompassing diverse landscapes across 

Wales and England, has historically been a hotspot for both flooding and drought conditions 

(Jones et al., 2019). This dichotomy is underpinned by the basin's complex climatic interactions 

and varied topography, which contribute to significant fluctuations in water availability and flow 

rates, thereby exacerbating the risk of both floods and droughts. For instance, the lower reaches 

of the Severn have experienced some of the UK's most severe flooding events, notably in recent 
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decades, highlighting the basin's susceptibility to extreme rainfall and tidal surges (Smith & Davies, 

2021). Conversely, the upper catchments have faced drought conditions, affecting water supply 

and quality (Brown & Clarke, 2020). 

The transboundary nature of the Severn Basin, straddling Wales and England, adds layers of 

complexity to water management and conservation efforts, necessitating coordinated policy 

responses and interventions to mitigate these risks. Ecologically, the basin supports a rich 

biodiversity, including habitats of national and international importance, which are sensitive to 

changes in water levels, making the study of flood and drought dynamics critical for preserving the 

basin's ecological integrity. 

Industrially, the River Severn is vital for supporting key sectors such as agriculture, manufacturing, 

and energy production, including the operation of hydroelectric power stations and cooling water 

for nuclear power plants. These industries not only contribute significantly to the regional 

economy but also depend on the reliable management of water resources, highlighting the 

economic imperatives of understanding and mitigating flood and drought risks. 

Furthermore, the wealth of available hydrological and meteorological data for the Severn Basin, 

facilitated by a long history of monitoring and research, provides an invaluable resource for 

scientists and policymakers aiming to model water flow dynamics, predict future scenarios, and 

devise effective management strategies. This extensive data repository enables a comprehensive 

analysis of temporal and spatial patterns of floods and droughts, underpinning evidence-based 

decision-making processes. In the upcoming methods and materials chapter, a comprehensive 

exploration of the data and risk-related aspects of the River Severn Basin will be provided. 

Given these factors, the River Severn Basin emerges as an exemplary study area for examining the 

coexistence of flooding and drought risks. Its significance is magnified by the need to balance 

ecological preservation with the demands of industrial and agricultural stakeholders, amidst the 

challenges posed by climate change and increasing human activity. Through targeted research and 

adaptive management, insights gained from the Severn Basin can inform broader strategies for 

enhancing resilience to water-related extremes in similar transboundary basins globally. 
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1.4 CHAPTER SUMMARY AND THESIS STRUCTURE  

This thesis follows a traditional structure, divided into eight distinct chapters. Three chapters are 

specifically devoted to presenting the results and analysing the data obtained from the research. 

The other chapters include an introductory section that lays the groundwork for the study, a 

literature review that offers a critical evaluation of the current knowledge, a chapter outlining the 

research methodology, and another chapter providing an in-depth explanation of the methods and 

materials used in the research. Finally, the concluding chapter summarizes the key findings and 

highlights the study's contributions to the field. This structure ensures a clear, logical flow, guiding 

the reader smoothly from the initial stages of the research to the final conclusions. 

Chapter 2 reports a thorough systematic examination of the existing literature on flood and 

drought risks. It accomplishes this by developing a specialized database, which is created through 

analysing the contents found in carefully selected peer reviewed publications. These publications 

include case studies as well as published opinions of the experts in the field. To minimize bias in 

this extensive review, the examination adopts an innovative approach using graph theory, 

specifically science mapping (Fasihi et al., 2021). This method is instrumental in discerning the 

most significant contributions from the array of publications, ensuring a focus on the most 

impactful insights.The primary goal of this segment of the research is to amass a comprehensive 

repository of reliable information. This repository is intended to facilitate further investigation into 

the most pertinent areas and variables that interact to influence flood and drought risks at the river 

basin scale. Additionally, this chapter aims to support the identification of available cutting-edge 

methodologies and datasets. These tools are crucial for enhancing the ability to assess and, ideally, 

forecast the risks associated with flooding and drought. Through this diligent inquiry, the chapter 

lays a solid foundation for advancing our understanding and management of these environmental 

challenges. 

Chapter three provides a comprehensive description of the research methodology, including a 

detailed account of the systematic literature review and the methods employed throughout the 

study. It begins by outlining the procedures for accessing, screening, and selecting relevant 

literature, followed by the preparation of a database that fulfils the initial requirements of the 

research. The chapter then details the development of a framework through interpretive structural 

modelling (ISM), focusing on the pairwise relationships between various parameters. This section 
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includes an analysis of the hierarchy of these parameters and their roles within the overall 

information flow, ultimately identifying the most significant risk factors detected by the 

framework. These factors are critical for assessing flood and drought risks, with the application of 

network theory enhancing the selection of the most influential pathways for risk assessment within 

the framework. The final section of the chapter explains the approach for quantifying, validating, 

and modelling the spatial-temporal dynamics of concurrent flood and drought risks. This includes 

the application of fuzzy logic and sensitivity analysis to refine the analysis and improve the accuracy 

of risk assessment. 

The fourth chapter is dedicated to providing a detailed account of the methods and materials used 

in this research, offering a closer examination of the processes and tools that supported the study. 

This chapter also introduces the study site, offering an in-depth understanding of the geographical 

and environmental context where the research is applied. This chapter is critical because it 

establishes the foundation for replicability and transparency, allowing future researchers to 

understand the practical steps taken during the study and how these were aligned with the study’s 

objectives. Moreover, understanding both the methods and the context of the study site is essential 

for interpreting the results and ensuring the broader applicability of the findings. 

Chapter five marks the initial phase of the thesis where specific preliminary results of the study are 

presented. It provides an analysis of publication trends related to flooding and drought risks over 

the past twenty years, highlighting the principal fields contributing to the body of knowledge within 

a river basin context. Through the application of statistical and hierarchical analyses, the chapter 

delves deeper into these fields, examining their interconnections, identifying potential overlaps, 

and delineating the parameters that define them. Ultimately, it culminates in the creation of a 

comprehensive table of parameters. This table, featuring a network of directed influential links, 

serves as a tool for assessing the risks associated with flooding and drought. 

Chapter six builds upon the work completed in the preceding chapter, utilizing the identified 

parameters and their connections. It begins by employing Interpretive Structural Modelling along 

with Causal Loop Diagrams to establish a comprehensive framework. Following this, the chapter 

proceeds to identify driving forces and dependencies through the use of a reachability matrix, 

which helps in analysing the hierarchy and significance of each parameter. 
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Subsequently, the chapter applies graph theory techniques to explore various characteristics of 

each parameter (or node) within the framework, utilizing a series of network metrics. This analysis 

leads to the compilation of a list of parameters that are ranked highest according to these metrics. 

Finally, the chapter incorporates a cross-entropy algorithm to determine the most influential 

parameters overall. These parameters are significant in their contribution to the pathways within 

the framework designed to assess the concurrent risks of flooding and drought. 

In chapter 7, by choosing specific pathways for evaluating flood and drought risks, the focus shifts 

to an in-depth analysis of these risks within the River Severn basin. It employs fuzzy logic functions 

to approximate the risks, taking into account a variety of parameters that contribute to the risk 

factors. The risk maps generated from this process are subsequently validated using sophisticated 

statistical models that draw on historical data and reports. Additionally, the chapter examines the 

sensitivity of results to changes in the input parameters. The complexity of the risk maps' geometry 

is considered as an independent metric. When this complexity is integrated with the extent of areas 

affected by various levels of risk, a comprehensive index for combined flood and drought risk is 

developed. This innovative approach offers a nuanced understanding of the risks, providing a 

valuable tool for assessing and mitigating flood and drought risks in the River Severn basin. 

Chapter 8, encapsulates the comprehensive journey of this study on flooding and drought risks at 

the river basin scale. It begins with a brief overview of the research objectives, highlighting the 

innovative methodology adopted ranging from systematic literature review to the application of 

interpretive structural modelling and network theory for a nuanced understanding of the risks. Key 

findings from the analysis of publication trends, parameter interconnections, and risk assessment 

frameworks would be summarized, showcasing its contributions to the field through the 

development of a robust risk assessment framework. The synopsis also articulates the theoretical 

and practical implications of this work, underscoring how it advances existing knowledge and 

offers valuable insights for managing flood and drought risks. Acknowledgment of limitations and 

suggestions for future research directions are outlined, pointing towards areas where further 

investigations could yield additional significant insights. Finally, the segment concludes by 

reflecting on the broader significance of its findings for environmental management and policy-

making, emphasizing the study’s role in enhancing communities’ capacity to predict and mitigate 

the impacts of these natural hazards. 
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2 BRIDGING DISCIPLINES: COMPREHENSIVE 

LITERATURE REVIEW ON INTEGRATED FLOOD 

AND DROUGHT RISK ASSESSMENT: METHODS, 

MODELS, AND APPLICATIONS 
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2.1 PURPOSE AND SCOPE OF THE LITERATURE REVIEW OF THIS STUDY  

The primary aim of this literature review is to establish a comprehensive understanding of the 

existing body of knowledge specifically related to the assessment of flood and drought risks. This 

involves critically analysing previous research to identify key concepts, methodologies, and 

findings that are pertinent to the simultaneous evaluation of these hydrological hazards. The review 

seeks to highlight both theoretical advancements and practical applications in the field, thereby 

providing a robust foundation for the development of an integrated risk assessment framework. 

Flood and drought risk assessments are critical components of effective water resource 

management, especially in the context of increasing climate variability and change. By 

systematically reviewing the literature, this chapter aims to identify the strengths and limitations of 

current methodologies, explore the spatial and temporal dimensions of flood and drought risks, 

and understand the interactions between these phenomena. This is particularly important because 

traditional approaches often treat flood and drought risks in isolation, failing to account for their 

interconnected nature and the potential for compound events. The literature review also seeks to 

synthesize findings from a diverse range of studies to provide a coherent narrative that underscores 

the importance of integrated risk assessment. By doing so, it addresses the complexity and 

interdependence of hydrological hazards, which demand more comprehensive and adaptive 

management strategies. The review will identify critical variables and methodological approaches 

that will inform the empirical analysis and the development of the risk assessment framework 

presented in this thesis. 

By focusing on these specific objectives, the literature review will ensure that the research is 

grounded in existing knowledge while also identifying gaps and opportunities for further 

investigation. This will not only contextualize the research within the broader academic discourse 

but also justify the research questions and hypotheses posed in the study, thereby contributing to 

the advancement of flood and drought risk management practices. 

The literature review is structured to systematically cover the breadth and depth of research 

pertinent to flood and drought risk assessment. It begins with a background section, which 

introduces fundamental concepts and theoretical frameworks that underpin the study of 

hydrological hazards. This includes a review of key definitions, principles, and models that have 
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been developed over time. By grounding the review in these foundational theories, the chapter 

ensures a clear and consistent conceptual framework for the analysis that is delivered in subsequent  

chapters. 

Following the theoretical background, the review delves into specific sections dedicated to flood 

risk assessment and drought risk assessment. These sections trace the historical evolution of risk 

assessment methodologies, highlighting significant advancements and current best practices. For 

flood risk assessment, the review covers a range of approaches from early empirical methods to 

modern probabilistic and deterministic models (Merz et al., 2010a; Di Baldassarre et al., 2010). 

Similarly, the section on drought risk assessment examines methodologies from traditional indices 

to sophisticated hydrological and agricultural models (Vicente-Serrano et al., 2012; Mishra & Singh, 

2010). A subsequent section addresses the emerging field of combined understanding of flood and 

drought phenomenon and modelling. This part of the review emphasizes the need of an integrated 

approach, discussing some studies that have attempted to jointly assess these hydro-hazards and 

the challenges they encountered (Van Loon & Van Lanen, 2013; Grobicki et al., 2015; Wang et al., 

2017; Leitner et al., 2020; Mai et al., 2020; Ward et al., 2020b; Eamen et al., 2021).  

The concluding sections of this chapter provide detailed explanations of validation, sensitivity, and 

uncertainty analyses to clarify their significance and rationale for inclusion. These discussions are 

designed to equip readers with the necessary context to comprehend the results presented in the 

final data chapters, emphasizing the critical role these analyses play in ensuring the accuracy, 

reliability, and meaningful interpretation of the findings. 

2.2 THEORETICAL BACKGROUND OF FLOOD AND DROUGHT RISKS  

Flood and drought risk assessments are pivotal in managing and mitigating the impacts of these 

hydrological extremes. To establish a comprehensive understanding, it is essential to define and 

explain the key concepts and theories underpinning these assessments. 

Risk is fundamentally the probability of an adverse event occurring and the potential consequences 

of that event. It is a concept widely used across various disciplines, including finance, health, 

environmental science, and disaster management. According to the International Organization for 

Standardization (ISO), risk is defined as the "effect of uncertainty on objectives," which can be 

positive or negative. Flood and drought risks are specific types of risks associated with extreme 
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hydrological events. These risks differ from the phenomena themselves (the occurrence of floods 

or droughts) and their mere probability of happening. Flood and drought risks are more 

comprehensive than just the probability of occurrence, encompassing both the likelihood of these 

events occurring and the potential impacts they might have on the affected regions. 

Flood risk is the likelihood of a flood event occurring and the potential adverse impacts it might 

cause. This encompasses the susceptibility of a region to flooding combined with the potential 

damage to property, infrastructure, human health, and the environment. The assessment of flood 

risk involves understanding flood hazards, exposure, and vulnerability (Kron, 2005; Merz et al., 

2010b) whilst flood phenomenon is the actual occurrence of excess water inundating land areas, 

typically due to heavy rainfall, storm surges, or river overflow (Kundzewicz et al., 2014; Ward et 

al., 2011). For example, the risk of flooding in a coastal city might include the probability of storm 

surges and high tides, the city's topography and drainage capacity, and the potential damage to 

residential areas, businesses, and critical infrastructure. 

Drought risk refers to the likelihood of a drought event and its potential impacts. This includes 

the susceptibility of an area to drought conditions and the potential consequences for water 

resources, agriculture, ecosystems, and human livelihoods. Drought risk assessment involves 

analysing climatic conditions, soil moisture, water demand, and the resilience of the affected 

systems (Wilhite, 2000; Mishra & Singh, 2010). Drought phenomenon mainly describes the actual 

occurrence of prolonged periods of insufficient rainfall leading to water shortages (Um et al., 

2017). However, the risk of drought in an agricultural region, for instance, regardless of possible 

causes, might include the probability of below-average rainfall, the water retention capacity of the 

soil, and the potential impacts on crop yields, livestock, and local economies (Van Loon, 2015; 

Hao & Singh, 2015). (Van Loon, 2015; Hao & Singh, 2015). 

2.2.1 Influencing components of risk  

Risk i Risk is influenced by three main components: hazard, exposure, and vulnerability (IPCC, 

2014). Hazard refers to the potential occurrence of a natural or human-induced physical event, 

such as heavy rainfall leading to floods or prolonged dry spells leading to droughts. Exposure is 

defined as the presence of people, livelihoods, environmental services and resources, 

infrastructure, or economic, social, or cultural assets in areas that may be adversely affected. For 
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instance, urban areas located in floodplains or agricultural regions that rely on consistent rainfall 

are considered highly exposed. Vulnerability represents the propensity or predisposition to be 

adversely affected and includes various physical, social, economic, and environmental factors. 

Examples of vulnerability include poorly constructed buildings, a lack of emergency preparedness, 

or reliance on a single water source. Together, these components determine the overall risk by 

combining the likelihood of an event, the elements exposed to it, and the susceptibility of those 

elements to damage or loss.s influenced by three main components: hazard, exposure, and 

vulnerability (IPCC, 2014). 

2.2.2 Combining susceptibility and impact in flood and drought risk 

assessments 

The assessment of flood and drought risks goes beyond merely estimating the probability of these 

events. It involves a comprehensive evaluation of the region's susceptibility to these events and 

the potential impacts. This includes the physical characteristics of the region, the resilience of the 

built environment, socio-economic factors, and the capacity to respond and recover (Adger, 2006; 

Cutter et al., 2008). For a region prone to both floods and droughts, risk assessment might involve 

evaluating flood-prone areas using hydrological models and identifying drought-prone regions 

based on climatic data (Susceptibility Analysis). Next, estimating potential damages to 

infrastructure, loss of agricultural productivity, economic costs, and social disruptions (Impact 

Assessment). And eventually, creating a comprehensive risk map that highlights areas with the 

highest combined risk of floods and droughts, aiding in targeted mitigation and adaptation 

strategies as laid by Field et al. (2012) (Integrated Risk Map). 

Flood risk assessment at the river basin scale involves evaluating the potential adverse effects of 

flooding on the environment, economic activities, and human health (Field et al., 2012). 

Understanding these impacts is essential for effective risk management and planning, helping to 

prioritize resources and mitigation measures to reduce vulnerabilities and improve resilience. For 

instance, flooding can lead to habitat destruction, disrupt local economies by damaging agricultural 

land and infrastructure, and pose significant health risks, including the spread of waterborne 

diseases and the increased burden on healthcare services. Flood risk is typically quantified as a 

function of hazard, exposure, and vulnerability. The hazard component encompasses the 

probability and magnitude of flood events, often derived from hydrological models and historical 
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data (Smith & Ward, 1998). Exposure refers to the presence of people, property, and infrastructure 

in flood-prone areas, while vulnerability assesses the susceptibility of these elements to harm 

(UNISDR, 2009).Drought risk assessment similarly involves the evaluation of the potential 

adverse impacts of droughts, focusing on sectors such as agriculture, water resources, and 

ecosystems. Drought risk is a function of hazard, exposure, and vulnerability, where the hazard 

includes the frequency, duration, and intensity of drought conditions. These are typically assessed 

using meteorological and hydrological indices such as the Standardized Precipitation Index (SPI) 

and the Palmer Drought Severity Index (PDSI) (Mishra & Singh, 2010). Exposure encompasses 

the elements at risk within the drought-affected area, and vulnerability includes factors such as 

socioeconomic status, agricultural dependency, and water management practices. 

Given the interconnected nature of hydrological hazards, there is an increasing recognition of the 

need for integrated risk assessments that simultaneously consider flood and drought risks. This 

integrated approach recognizes the potential for compound events, where the occurrence of one 

hazard influences the likelihood and impact of the other. For instance, drought conditions can 

reduce soil moisture and increase runoff during subsequent rainfall events, exacerbating flood risks 

(Van Loon et al., 2016). 

2.3 DEVELOPMENT OF FLOOD AND DROUGHT RISK ASSESSMENT :  

UNDERSTANDING AND METHODOLOGY  

The body of knowledge surrounding flood and drought risk assessment has undergone significant 

evolution over the past century, reflecting advancements in scientific understanding, technological 

development, and policy frameworks. Early to mid-20th century approaches to flood and drought 

risk assessment were predominantly empirical and qualitative, focusing on historical events and 

anecdotal evidence. These methods were limited by the availability of data and often lacked the 

precision required for effective risk management, resulting in reactive rather than proactive 

responses (Smith & Ward, 1998; Pender & Neelz, 2007; Wilhite, 2000). 

Systematic analysis of hundreds of peer-reviewed publications provides a comprehensive overview 

of the themes contributing to flood and drought research over the last two decades (Fasihi et al., 

2021). The horizontal axis at the bottom of Figure 1 displays the publication years, while the left 

vertical axis quantifies the percentage contribution of each theme to flood and drought studies. 
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The right vertical axis, represented by the red trend line, indicates the number of publications per 

year. Additionally, several key legislative acts and initiatives influencing the water sector are marked 

along the timeline to illustrate potential trends and shifts in research focus. 

The analysis identified 13 primary themes that have shaped flood and drought research during this 

period. In the first decade, co-analysis of flood and drought accounted for approximately 10% of 

the total research publications. Over time, there has been a notable increase in publications, likely 

driven by key legislative developments and the enhanced availability of open-access data platforms. 

Initially, only a few themes contributed to the simultaneous study of floods and droughts, with 

"Hydrology" consistently dominating the discourse across all years. However, in recent years, the 

research focus has broadened significantly, incorporating themes from social sciences, such as 

economy, insurance, sociology, and urban planning. This shift highlights a growing 

interdisciplinary approach to addressing these complex challenges. 

The contrast between flood and drought two extremes of the hydrological spectrum—emphasizes 

the dual challenge they present. Building resilience against such extreme events requires a long-

term, multifaceted approach that includes comprehensive planning, adaptation, and 

interdisciplinary collaboration. This section discusses major legislations and frameworks that have 

guided water hazard management and policy development, as illustrated in Figure 1. 

One of the earliest significant efforts was the Water Framework Directive (WFD), introduced in 

2000, which provided guidelines for preserving both natural and artificial water bodies. In 2002, 

the Integrated Water Resource Management (IWRM) framework was adopted, aiming to balance 

economic efficiency, environmental sustainability, and social equity. Subsequently, the Hyogo 

Framework for Action (2005–2015) was launched under the International Strategy for Disaster 

Reduction, emphasizing risk reduction from natural hazards. 

In 2007, the UN Convention to Combat Desertification focused on mitigating drought impacts 

while promoting sustainability. Two years later, the World Meteorological Organization (WMO) 

introduced the Global Framework for Climate Services, providing critical climate change 

information to improve resilience. Finally, in 2015, the United Nations endorsed the Sendai 

Framework, which aims to guide disaster risk reduction efforts until 2030, acknowledging the need 

for a more comprehensive approach to managing water-related hazards in the context of a 

changing climate. 
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Figure 2.1 portrays the evolution of the research landscape, illustrating a transition from an initial 

focus predominantly on hydrology to a more diverse and interdisciplinary field. This 

transformation underscores the increasing recognition of social, economic, and interdisciplinary 

approaches in understanding and addressing the impacts of floods and droughts. 

 

 

 

 

 

Figure 2.1. Trends in Themes and Publications on Flood and Drought Research (2003–2020), with a red 

line indicating the number of publications per year (Fasihi et al., 2021). 

The mid-20th century marked a pivotal shift in both flood and drought risk assessments with the 

development of specialized models and indices. For floods, hydrological and hydraulic models 

enabled the simulation of river flow and floodplain dynamics, providing a more systematic and 

quantitative basis for risk assessment. Tools like the Hydrologic Engineering Center's River 

Analysis System (HEC-RAS) and two-dimensional hydraulic models such as MIKE FLOOD 

became possible due to advancements in computing power, allowing for detailed and accurate 

floodplain mapping (Brunner, 2016; DHI, 2017). 

 

In the context of droughts, the introduction of the Palmer Drought Severity Index (PDSI) in 1965 

provided a standardized method for assessing drought conditions using precipitation, temperature, 

and soil moisture data (Palmer, 1965). This was followed by the development of the Standardized 

Precipitation Index (SPI) in the late 20th century, which offered a versatile and statistically robust 

approach for assessing different types of droughts across various timescales (McKee et al., 1993). 

The integration of Geographic Information Systems (GIS) and remote sensing technologies 

further revolutionized risk assessment methodologies for both floods and droughts during the late 
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20th century. In flood risk assessment, these tools enabled the spatial analysis of hazards, exposure, 

and vulnerability, resulting in the creation of detailed flood risk maps essential for urban planning 

and disaster management (Foody, 2003; Melesse et al., 2007). Similarly, remote sensing 

technologies such as the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced 

drought monitoring by providing global-scale data on vegetation health and soil moisture 

conditions (Kogan, 1997). Probabilistic approaches also gained prominence, particularly in flood 

risk assessment, where statistical techniques like the Gumbel distribution were used to estimate 

the probability and magnitude of extreme flood events, thereby informing infrastructure design 

and safety margins (Naghavi et al., 2020). These methods were complemented by water balance 

models, such as the Variable Infiltration Capacity (VIC) model and the Water Evaluation And 

Planning (WEAP) system, which simulated water availability under various climatic scenarios, 

facilitating a deeper understanding of drought mechanisms (Liang et al., 1994; Yates et al., 2005). 

Contemporary methodologies for flood and drought risk assessment are characterized by the 

integration of advanced computational models, big data analytics, and remote sensing 

technologies. For floods, hydrodynamic models like HEC-RAS and MIKE FLOOD simulate 

water movement to predict flood extents and depths, while probabilistic models estimate the 

likelihood of extreme events (Brunner, 2016; DHI, 2017). Similarly, advanced meteorological and 

hydrological models, such as the VIC and Community Land Model (CLM), play a critical role in 

drought assessment by providing detailed simulations of soil moisture, evapotranspiration, and 

runoff (Liang et al., 1994; Oleson et al., 2010). 

Remote sensing continues to be a cornerstone of both flood and drought assessments. 

Technologies like Synthetic Aperture Radar (SAR) and the Soil Moisture Active Passive (SMAP) 

satellite provide real-time data that can be integrated into GIS platforms, enabling continuous 

monitoring and rapid response capabilities (Anderson et al., 2011; Entekhabi et al., 2010). These 

advancements facilitate the spatial analysis of both floods and droughts, offering higher resolution 

and accuracy than ever before. 

Data analytics, particularly machine learning techniques, have gained traction in recent years. 

Methods such as Random Forests, Support Vector Machines (SVM), and XGBoost are employed 

to model complex, non-linear relationships between predictors and outcomes in both flood and 

drought contexts. For instance, these models have been used to predict flood susceptibility and 
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drought occurrences based on meteorological and hydrological inputs, enhancing predictive 

capabilities and situational awareness (Chen & Guestrin, 2016; Mosavi et al., 2018). 

Flood and drought risk assessments increasingly recognize the necessity of adopting integrated 

frameworks that combine hydrodynamic modelling, probabilistic approaches, and socio-economic 

analysis. While such frameworks attempt to address the full risk management cycle—from 

assessment and mitigation to emergency response and recovery—significant gaps remain, 

underscoring the need for further research. Global initiatives like the Sendai Framework for 

Disaster Risk Reduction and the European Union's Floods Directive (UNISDR, 2015; European 

Commission, 2007) highlight a shift toward multi-disciplinary approaches but often fall short of 

offering practical solutions for capturing the interconnectedness of flood and drought risks within 

a unified model. 

Despite advancements in technological tools and socio-economic integration, the current 

frameworks lack a cohesive approach to addressing the dynamic and interdependent nature of 

flood and drought risks, particularly within the context of a changing climate and socio-economic 

scenarios. This is where the current research becomes critical filling the gaps in understanding the 

feedback loops and cascading effects between these hydrological extremes. Existing 

methodologies often fragment the inclusion of socio-economic and environmental factors or fail 

to account for their interplay with hydrodynamic and probabilistic modelling. 

This study aims to bridge these gaps by developing a comprehensive framework that incorporates 

the interconnected dynamics of flood and drought risks, while addressing their socio-economic, 

ecological, and infrastructural dimensions. By leveraging advanced technologies and exploring 

innovative methodologies, this research will not only provide deeper insights into these 

interdependencies but also offer scalable, adaptive solutions tailored to the specific challenges of 

river basin contexts. In doing so, it will contribute to advancing the field of flood and drought risk 

assessment, addressing limitations in current frameworks, and promoting a more integrated and 

forward-looking approach to managing these complex hazards. 
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2.4 GEOGRAPHICAL TRENDS IN FLOOD AND DROUGHT EXAMPLES :  

INSIGHTS,  GAPS,  AND REGIONAL EXAMPLES  

To assess flooding and drought risk effectively, it is crucial to understand the geographical nuances 

and trends in the research focus (Figure 2.1). This could help identify regions with more data and 

guide future studies to ensure a comprehensive global understanding of these risks. 

Figure 2.2 illustrates the percentage of flood and drought case studies per country or region, with 

23.33% of investigated reports and peer reviewed publications not specifying any region. This 

could indicate a focus on broader issues, methodological papers, or global datasets that do not 

relate to a specific location. 

 

  

Figure 2.2. Geographical distribution of case studies investigated within the selected papers in the context of 

flood and drought research. 

China and the USA stand out with over 12% and 11% of the case studies, respectively. This 

suggests a significant focus on these countries, potentially due to their large geographical areas, 

varied climates, and the presence of both flood and drought challenges. Global studies account 

for over 7%, indicating a considerable amount of research aimed at understanding floods and 

droughts from an international perspective. Australia and Europe also have a relatively high 

percentage of case studies, which may reflect their active research communities and the impacts 

of climate variability on these regions. Some areas with lower percentages could indicate either a 

lack of research focus or fewer instances of floods and droughts. However, this could also reflect 

a lack of reporting or data collection capabilities. Notably, sub-Saharan Africa (Africa-SS) and 
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regions like Amazonia have percentages exceeding 1%, which could suggest a growing research 

interest in these areas, possibly due to their vulnerability to climate change and its impacts. Many 

countries have a percentage of around 0.16%, which could imply either a single study or a small 

number of studies relative to the dataset size. This could indicate regions where case studies are 

less common or possibly underrepresented in research. The distribution points to a concentration 

of case studies in certain areas, which could correlate with the prevalence of flood and drought 

events, data availability, research funding, or the presence of research institutions. The analysis also 

suggests potential gaps in case studies in some regions. These gaps could benefit from increased 

research attention, especially considering climate change's global implications on water-related 

hazards. 

The following paragraphs present examples of regions that have recently faced flood and/or 

drought events, highlighting how these regions have identified, assessed, or managed their impacts. 

This section aims to provide a broader context for the temporal evolution of flood and drought 

assessment approaches, further developing the theoretical background discussed earlier and linking 

it to the current needs of flood and drought risk assessment modelling. 

Thames Estuary 2100 (TE2100) Project, in the United Kingdom is a comprehensive flood risk 

management plan designed to protect London and the Thames Estuary from tidal flooding until 

the end of the 21st century. The project employs a combination of hydrodynamic modelling, 

probabilistic risk assessment, and socio-economic analysis to evaluate future flood scenarios under 

different climate change projections. Key outcomes include the development of adaptive flood 

defences and the implementation of sustainable urban drainage systems (SUDS) (Environment 

Agency, 2012). The International Commission for the Protection of the Rhine (ICPR) has 

implemented a transboundary flood risk management plan for the Rhine River, which flows 

through multiple European countries. The plan integrates hydrological modelling, GIS-based risk 

mapping, and early warning systems to enhance flood preparedness and response. The ICPR's 

efforts have led to significant reductions in flood risk through structural and non-structural 

measures, including river restoration projects and community engagement initiatives (ICPR, 2015). 

In southeast Asia, the Mekong Delta faces significant flood risks due to its low-lying topography 

and high population density. The Vietnamese government, in collaboration with international 

organizations, has developed a flood risk management strategy that combines hydrodynamic 
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modelling, land use planning, and community-based approaches. Key initiatives include the 

construction of flood control infrastructure, the promotion of flood-resilient agricultural practices, 

and the establishment of early warning systems (GSO, 2019). Additionally, the Yellow River basin 

is one of the most flood-prone areas in China, with a long history of catastrophic flooding. The 

Chinese government has implemented an integrated flood management strategy that includes 

structural measures, such as the construction of dams and levees, and non-structural measures, 

such as floodplain zoning and reforestation. Advanced hydrodynamic models and remote sensing 

technologies are employed to monitor and predict flood events, enhancing the effectiveness of 

flood mitigation efforts (Zhang et al., 2014). 

Following the devastating impact of Hurricane Katrina in 2005, New Orleans, USA, has adopted 

a comprehensive flood risk management approach that combines hydrodynamic modelling, 

probabilistic risk assessment, and infrastructure improvements. The construction of the Hurricane 

and Storm Damage Risk Reduction System (HSDRRS) includes levees, floodwalls, and pump 

stations designed to withstand extreme flood events. The city's resilience strategy also emphasizes 

community engagement and the restoration of natural buffers such as wetlands (USACE, 2013). 

California Drought, USA: California has faced severe drought conditions over the past decade, 

prompting the implementation of advanced drought risk assessment methodologies. The state 

employs a combination of remote sensing technologies, such as MODIS and Landsat, to monitor 

soil moisture and vegetation health. The California Drought Early Warning System integrates these 

data with hydrological models and socio-economic indicators to provide real-time drought 

assessments and inform water management policies. Key findings highlight the importance of 

adaptive management strategies and the integration of diverse data sources to enhance drought 

resilience (Lund et al., 2018). 

Horn of Africa Drought: The Horn of Africa region frequently experiences severe droughts, 

significantly impacting food security and livelihoods. The Famine Early Warning Systems Network 

(FEWS NET) employs satellite data, climate models, and ground-based observations to monitor 

drought conditions and predict food insecurity outcomes. The integration of these data sources 

enables timely interventions and resource allocation, mitigating the impacts of droughts on 

vulnerable populations. Findings emphasize the critical role of early warning systems and 

international collaboration in managing drought risks (Verdin et al., 2005). 
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Murray-Darling Basin, Australia: In the Murray-Darling Basin has been implemented 

comprehensive drought risk assessment frameworks to manage its water resources effectively. The 

Basin Plan incorporates hydrological models, remote sensing data, and climate projections to 

assess drought risks and guide water allocation decisions. The use of the SPEI and other drought 

indices allows for the assessment of both short-term and long-term drought conditions. Key 

findings from this case study highlight the importance of integrated water management practices 

and the use of advanced modelling techniques to ensure sustainable water use in drought-prone 

regions (MDBA, 2012). 

Iberian Peninsula, Europe: The Iberian Peninsula has experienced increasing drought frequency 

and severity, necessitating advanced drought risk assessment methodologies. Spain and Portugal 

utilize a combination of remote sensing data, meteorological models, and drought indices such as 

the SPEI and SPI to monitor and manage drought risks. The European Drought Observatory 

(EDO) plays a crucial role in providing comprehensive drought assessments and early warning 

information. Key findings highlight the need for coordinated water management policies and the 

integration of socio-economic data to enhance drought resilience in the region (Garcia-Herrera et 

al., 2007). 

Iran’s drought, Middle east: Iran faces significant drought challenges, particularly in arid and semi-

arid regions. The country employs advanced hydrological models and remote sensing technologies 

to monitor drought conditions and manage water resources. The Iranian National Drought 

Warning and Monitoring System (NDWMS) integrates climatic data, drought indices, and socio-

economic indicators to provide real-time drought assessments. Key findings emphasize the 

importance of sustainable water management practices and the need for regional cooperation to 

address shared water resources and mitigate drought impacts (Raziei et al., 2014). 

North China Plain Drought: The North China Plain is a critical agricultural region that frequently 

experiences severe droughts. China employs a combination of hydrological models, remote 

sensing data, and drought indices such as the PDSI and SPEI to monitor drought conditions and 

inform water management decisions. The China Drought Monitoring and Early Warning System 

(CDMEWS) integrates these data sources to provide comprehensive drought assessments and 

early warning information. Key findings highlight the importance of modern irrigation techniques, 
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sustainable agricultural practices, and government policies in mitigating drought impacts (Wang et 

al., 2012). 

The missing link between these various flood and drought risk management projects as examples 

of common practice is the absence of an integrated, cross-disciplinary framework that holistically 

addresses the interdependencies between flood and drought risks within a river basin context. 

While many projects concentrate on either flood or drought risks, employing methodologies such 

as hydrodynamic modelling, GIS-based risk mapping, or remote sensing, they often fail to explore 

the complex interactions between these two extremes. For instance, how drought conditions might 

influence flood patterns through soil desiccation or reduced vegetation cover, or how floods might 

replenish water resources during drought periods, is rarely considered systematically. This lack of 

integration under changing climate and socio-economic scenarios highlights a significant 

knowledge gap. 

Moreover, the socio-economic, ecological, and infrastructure resilience components, while 

included in some studies, are typically addressed in a fragmented manner. This partial approach 

leaves gaps in understanding the cascading hazards and feedback loops within the risk landscape. 

For instance, while some projects incorporate adaptive urban drainage systems or early warning 

frameworks, the inclusion of broader socio-economic and ecological interconnections in these 

models remains inconsistent. 

Another critical missing link is the lack of standardization in methodologies and metrics across 

regions. While region-specific advancements are notable, the absence of shared frameworks and 

comparable metrics limits the ability to scale or transfer adaptive practices globally. This issue is 

further compounded in transboundary regions, where common water resources are often 

governed by conflicting national policies. Without a consistent, collaborative transboundary 

perspective, efforts to address flood and drought risks in interconnected systems remain 

fragmented, undermining the potential for broader, more resilient solutions. 

Ultimately, these gaps underline the need for a comprehensive framework that combines flood 

and drought risk assessments. Such a framework would integrate socio-economic, ecological, and 

infrastructure dimensions into a cohesive system while encouraging cross-regional and 

transboundary collaboration, standardizing methodologies, and fostering adaptive risk 

management approaches that are scalable and globally applicable. 
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The results from the published outputs of these projects and similar ones have played a pivotal 

role in shaping the overall structure of this research by providing critical insights, guidance, and a 

deeper understanding of methodologies, datasets, and their limitations. These outputs served as a 

foundation for identifying effective approaches and adapting them to address the unique 

challenges of integrated flood and drought risk assessment. They highlighted the strengths and 

limitations of region-specific practices, offering valuable lessons that informed the development 

of a more cohesive and scalable framework in this study. 

For instance, the use of hydrodynamic modelling and probabilistic risk assessments, as employed 

in the Thames Estuary 2100 Project, emphasized the importance of combining predictive tools 

with socio-economic analysis to evaluate future risks comprehensively. Similarly, the integration 

of remote sensing technologies and early warning systems in the Mekong Delta and California 

Drought projects demonstrated the potential of advanced data acquisition and monitoring 

techniques, while also exposing challenges such as data accessibility, resolution, and the need for 

localized calibration. 

The findings from these projects also provided guidance on the benefits of multi-disciplinary 

approaches, such as coupling hydrological models with socio-economic indicators, as seen in the 

Rhine River and North China Plain studies. These insights underscored the necessity of addressing 

cross-sectoral interdependencies and incorporating diverse data sources, such as satellite imagery, 

GIS mapping, and climate projections, to create a robust risk assessment framework. However, 

the limitations observed in these projects, such as the fragmented inclusion of socio-economic and 

ecological resilience or the lack of standardization in methodologies, helped identify critical gaps 

that this research aimed to address. By synthesizing the benefits of existing approaches while 

acknowledging their shortcomings, this study was able to adopt best practices, refine 

methodologies, and design an integrated model tailored to the complex interplay between flood 

and drought risks within a river basin context. 

Ultimately, the lessons learned from these outputs not only shaped the conceptual framework of 

this research but also informed the choice of methodologies, the design of case studies, and the 

interpretation of results. They provided a roadmap for leveraging strengths while addressing 

limitations, ensuring that this research contributes to advancing a holistic, adaptable, and globally 

relevant approach to flood and drought risk assessment. 
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2.5 IMPORTANCE OF INTEGRATING FLOOD AND DROUGHT RISK 

ASSESSMENT 

As explained in sections 2.3 and 2.4 assessing flood and drought risks together in an integrated 

manner is crucial for several reasons, particularly in the context of climate change and increasing 

environmental variability. Traditionally, flood and drought risk assessments have been conducted 

in isolation, focusing on the unique characteristics and impacts of each hazard. However, this 

approach fails to capture the complex interactions and feedback mechanisms that exist between 

these two hydrological extremes. 

Floods and droughts are often interconnected, with each influencing the occurrence, severity, and 

impacts of the other. For example, prolonged drought conditions can reduce soil moisture, 

increase soil compaction, and decrease vegetation cover, leading to higher runoff and more severe 

flooding when heavy rainfall occurs. Conversely, floods can alter groundwater recharge rates and 

affect the availability of water resources during subsequent dry periods (Van Loon et al., 2016). 

Thus, an integrated assessment provides a more holistic understanding of the hydrological cycle 

and the cumulative impacts of these events on the environment and society.in addition to this 

rationale, implications of climate change and resource management are parameters that demand 

attention when assessing these risks. 

Climate Change Implications: Climate change exacerbates the need for integrated assessments as 

it intensifies both flood and drought events. Increased temperatures and altered precipitation 

patterns contribute to the frequency and severity of these extremes. The Intergovernmental Panel 

on Climate Change (IPCC) highlights that regions prone to drought may also experience flash 

floods, leading to complex risk scenarios that single-hazard assessments cannot adequately address 

(IPCC, 2014). An integrated approach enables the development of more resilient strategies that 

consider the multifaceted nature of climate risks. 

Resource Management and Policy Development: Effective water resource management and policy 

development require an integrated understanding of flood and drought risks. Water scarcity during 

droughts and the excess of water during floods both demand comprehensive planning and 

management strategies. For instance, the allocation of water resources, infrastructure 

development, and emergency response measures must be designed to handle both extremes. 
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Integrated assessments provide policymakers with the necessary information to make informed 

decisions that optimize resource use and enhance community resilience (Wang et al., 2017). 

Several regions have begun to recognize the importance of integrated assessments. Consequently, 

studies and frameworks have been developed to integrate flood and drought risk assessments, 

showcasing innovative methodologies and successful applications. For example, the Murray-

Darling Basin in Australia faces both severe droughts and floods. The Basin Plan incorporates 

integrated risk assessment methods to manage water resources effectively, ensuring sustainable use 

during droughts and mitigating flood risks (MDBA, 2012). Similarly, the Rhine River Basin in 

Europe employs integrated flood and drought management strategies to address the cumulative 

impacts of these hazards on water quality, ecosystem health, and economic activities (Krysanova 

et al., 2008). Multi-Hazard Risk Assessment Frameworks: The Multi-Hazard Risk Assessment 

(MHRA) framework is one such approach that simultaneously evaluates multiple hazards, 

including floods and droughts. This framework employs spatial analysis and statistical methods to 

identify regions at high risk of both hazards. By integrating data on precipitation, soil moisture, 

land use, and socio-economic factors, MHRA provides a comprehensive risk profile that supports 

the development of targeted mitigation strategies (Kappes et al., 2012). 

Integrated hydrological models, such as the VIC model and the WEAP system, are used to simulate 

the combined impacts of flood and drought events. However, these do not count in the concept 

of risk and view the problem through a single hydrologic lens. These models incorporate climatic 

data, hydrological processes, and human activities to predict water availability and distribution 

under various scenarios. For example, the WEAP system has been applied in the Sacramento-San 

Joaquin Basin in California to assess the combined impacts of drought and flood risks on water 

resources and agricultural productivity (Yates et al., 2005). Remote sensing and GIS technologies 

are pivotal in integrated risk assessments, providing high-resolution data on hydrological variables 

and land surface conditions. The integration of satellite imagery with GIS enables the continuous 

monitoring of flood and drought conditions, facilitating real-time decision-making. For instance, 

the European Space Agency's (ESA) Copernicus program employs remote sensing data to monitor 

soil moisture, precipitation, and vegetation health, supporting integrated flood and drought risk 

assessments across Europe (ESA, 2020 Chen & Guestrin, 2016; Lu et al., 2019). System dynamics 

and network analysis methodologies have been employed to understand the complex interactions 

between flood and drought risks. These approaches model the feedback loops and causal 
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relationships between hydrological, environmental, and socio-economic factors. For example, the 

Causal Loop Diagram (CLD) methodology has been used to identify critical pathways and leverage 

points for mitigating the combined impacts of floods and droughts in the Ganges-Brahmaputra-

Meghna Basin (Sterman, 2000; Gain et al., 2011). 

The integrated flood and drought risk assessments in the Murray-Darling Basin, the Rhine River 

Basin, and the Yellow River Basin exemplify promising methodologies for addressing these dual 

hazards. However, they also reveal critical limitations that warrant attention. A significant shortfall 

lies in the lack of diverse perspectives, particularly the inadequate integration of socio-economic 

factors into water resource management. Socio-economic dynamics, which play a pivotal role in 

managing water resources impacting local communities, agriculture, industry, and broader 

economic activities are often insufficiently addressed. These sectors, being both prominent 

stakeholders and primary risk bearers, disproportionately suffer the consequences of floods and 

droughts. For instance, while the Murray-Darling Basin Plan emphasizes sustainable water use, it 

fails to fully integrate socio-economic assessments that account for the diverse vulnerabilities of 

key stakeholders, such as local farmers, industries, and Indigenous communities, who are heavily 

reliant on these water resources. This omission creates a disconnect between scientific risk 

assessments and the lived realities of affected populations, thereby limiting the practical application 

and effectiveness of risk reduction strategies. 

Similarly, the Rhine River Basin's integrated strategy, which emphasizes international coordination 

and water quality improvements, does not adequately address the ambiguity and uncertainty 

surrounding the impacts on diverse water resource users. The nuanced effects of floods and 

droughts on various sectors agriculture, urban communities, and ecosystem services—are 

insufficiently articulated, resulting in a lack of clear causality. This vagueness can lead to generalized 

solutions that fail to address the specific needs of individual stakeholders, potentially exacerbating 

inequities. 

In the Yellow River Basin, the application of integrated hydrological models and remote sensing 

data provides a solid technical foundation for managing floods and droughts. However, these 

efforts lack a comprehensive socio-economic analysis that bridges the gap between physical 

hazards and their broader human implications. The primary focus on ensuring water security and 

supporting sustainable agriculture overlooks the disproportionate impacts on marginalized 
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communities and small-scale farmers, who are particularly vulnerable to hydrological variability. 

Moreover, the complex interdependencies between floods, droughts, and socio-economic 

resilience remain underexplored. This limits the understanding of how one hazard may exacerbate 

the other or how adaptive measures in one sector could inadvertently create vulnerabilities in 

another. 

While these examples of integrated approaches represent progress, they fall short of addressing 

key gaps. The omission of a robust socio-economic perspective, the lack of clarity in causal 

pathways linking hazards to impacts, and the insufficient consideration of the diverse needs and 

vulnerabilities of all water users are significant shortcomings. To build resilience effectively, these 

assessments must transcend technical and environmental dimensions, incorporating a more 

comprehensive socio-economic framework. Additionally, addressing uncertainties, stakeholder 

dynamics, and the cascading effects of hydrological extremes will be critical for fostering equitable 

and adaptive solutions to flood and drought risks. 

2.6 OVERVIEW OF METHODS ,  DATA AND TECHNICAL CAPACITIES 

UTILIZED IN FLOOD AND DROUGHT ANALYSIS  

As elaborated in previous sections, researchers have explored water-related hazards from various 

perspectives, employing numerous methodologies and indices that often differ fundamentally. 

Modelling flood and drought events necessitates the use of comprehensive data and integrated 

approaches, which must be both unbiased and robust (Ward et al., 2020b). The first step toward 

achieving an unbiased integration of flood and drought modelling frameworks is to systematically 

review the existing literature. Such a review begins by identifying relevant publications based on 

predefined search terms across available databases, thus reducing potential biases that may stem 

from authors favoring particular subfields or methodologies. 

In the next phase, the various approaches and indices used in the literature to describe flood and 

drought phenomena were extracted using the content analysis method. The extracted dataset was 

subsequently used to generate a weighted, undirected network representing the relationships 

among methods and indices (Figure 2.3). 
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Figure 2.3. Network of Methods and Indices Utilized in Defining and Evaluating Flood and Drought-

Related Topics, (Fasihi et al., 2021). 

The size of each node in Figure 3 reflects its central role in communication within the science map 

derived from the analyzed literature. As shown in the figure, "Statistical Analysis," remote sensing 

(RS), and Mann-Kendall (M-Kendall) tests emerged as the most widely applied approaches for 

investigating both flood and drought subjects. The key index serving as the common link between 

these methods and thus controlling the flow of information in many of these studies—is the 

"Standardized Precipitation Index (SPI)." The weighted edges in Figure 3 illustrate the repetition 

of connections between nodes (methods and indices).  Remote sensing is notably interconnected 

with terrestrial indices, such as Land Cover Land Use (LCLU), Normalized Difference Vegetation 

Index (NDVI), and Transformed Difference Vegetation Index (TDVI). Additionally, the strong 

link between "hydrologic modelling" and Water Storage Capacity (WSC) underscores their 

frequent joint application in flood and drought assessments. Key nodes within the network of 

methods and indices, based on their degree and betweenness centrality, include "Statistical 

Analysis," "M-Kendall," "RS," and "SPI". These methods and indices are among the most 

frequently used and function as hubs, facilitating connections across different clusters or domains. 

Another noteworthy finding from this review is the diversity of subsets of indices applied in 

combination with specific methods and other indices. Figure 2.4 offers a different perspective of 
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the methods and indices network, which clearly illustrates the clusters that have formed and 

highlights the critical nodes distinguishing these clusters. 

 

Figure 2.4. Newman-Girvan Clustered Network Visualization of Methods and Indices in Flood and 

Drought Research: Key Nodes, Clusters, and Interconnections. 

Researchers have predominantly used meteorological and climatological subsets of indices and 

methods in combination with statistical analysis and the Mann-Kendall test to describe flood and 

drought events concurrently. This observation is particularly evident in the upper and lower right 

sections of the layout in Figure 2.4. 

Upon analyzing Figure 4, it becomes evident that "SPI" serves as a central hub within this network, 

linking many of the indices used across different studies. The SPI is integral in connecting remote 

sensing ("RS") and Mann-Kendall methods, which are employed alongside numerous 

meteorological, hydrological, terrestrial, economic, and sociological indices, as illustrated in the 

lower right corner of Figure 4. This scientograph effectively captures the various approaches 

utilized by researchers and provides insight into how novel combinations of methods and indices 

could potentially advance the modelling of simultaneous flood and drought analysis. Such 

combinations can help identify particular methods and indices to form a conceptual framework 
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for integrated risk assessment. Figure 4 suggests that a basic version of the conceptual framework 

sufficient for robust analysis could integrate remotely sensed terrestrial information with economic 

analyses, using indices such as the Gross State Domestic Product ("GSDP") and Human 

Development Index ("HDI"), both linked to hydrological parameters through "SPI." 

Assessing risk from multiple perspectives and themes of research significantly enhances the 

robustness and applicability of integrated flood and drought risk assessments. Considering 

different perspectives, including hydrological, meteorological, environmental, and socio-economic 

factors, offers a holistic view of risk factors and their interconnections. For example, incorporating 

socio-economic data into hydrological models helps identify vulnerable populations and critical 

infrastructure, thereby improving risk mitigation strategies (Bouwer et al., 2010). Thematic 

research focusing on aspects like land use changes, urbanization, and agricultural practices provides 

valuable insights into how human activities impact hydrological extremes, including flood and 

drought risks. Understanding these interactions is essential for devising sustainable land and water 

management practices that mitigate vulnerability to these hazards. Research has demonstrated, for 

instance, that deforestation and urban sprawl can exacerbate flood risks by reducing natural water 

absorption and increasing runoff (Bradshaw et al., 2007). 

In addition, thematic studies on climate variability and change contribute to predicting future risk 

scenarios, thus enabling proactive planning and adaptation measures. Research on climate models 

and projections supplies crucial data on anticipated changes in precipitation patterns, temperature, 

and extreme weather events, which is vital for mitigating future flood and drought risks (Trenberth, 

2011). 

The methods and concepts employed in this research, including the systematic literature review, 

systematic content analysis using quantitative methods, causal feedback loops integrated with 

interpretive structural modelling, network analysis applied to these causal loops, and geospatial and 

remote sensing techniques, collectively provide a robust and nuanced framework for flood and 

drought risk assessment. Driving from the studied literature, each of these approaches were used 

individually or in series to assess flood and drought related concepts. However, in this research, a 

combination of them are chosen to address the inherent complexities of flood and drought 

dynamics, ensuring comprehensive insights into their underlying mechanisms and impacts. 
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The systematic literature review forms the foundation of this research by capturing a wide 

spectrum of existing knowledge and mitigating potential biases. This method goes beyond the 

traditional narrative review by systematically integrating data from diverse studies, enabling a 

rigorous and unbiased synthesis of knowledge. By identifying critical gaps in existing frameworks 

and methodologies, this approach paves the way for developing innovative and effective solutions. 

While narrative reviews are valuable for providing context, they lack the methodological rigor to 

consistently synthesize diverse perspectives. The systematic review used here ensures a thorough 

and unbiased examination of available data, setting a reliable groundwork for the subsequent 

phases of the research. 

The systematic content analysis using quantitative methods further strengthens the research by 

systematically extracting and analyzing the approaches and indices used in existing studies. Unlike 

qualitative approaches, which may introduce subjectivity, quantitative content analysis ensures 

objectivity and reproducibility. This approach not only identifies prevailing trends and patterns but 

also clarifies the relationships between methods and indices. Although qualitative methods are 

essential for exploring depth in specific contexts, they often fail to identify overarching trends 

across large datasets. The quantitative methods used here allow for an unbiased and systematic 

examination of the literature, making it possible to establish clear, data-driven connections 

between methods and themes. 

The development of causal feedback loops integrated with interpretive structural modelling 

provides a dynamic perspective on how different variables interact within the flood and drought 

systems. This approach offers a distinct advantage over static models by addressing the cyclical 

and interconnected nature of hydrological, socio-economic, and environmental factors. Traditional 

cause-and-effect analyses, while valuable, are often inadequate for capturing the complexity of 

multi-layered systems where variables influence each other over time. Interpretive structural 

modelling adds depth by revealing hierarchies and interdependencies among these variables, 

enabling a comprehensive understanding of systemic interactions that static models fail to capture. 

The application of network analysis to these causal loops enriches the research by illuminating the 

interdependencies and critical pathways within the flood and drought frameworks. Network 

analysis excels in identifying key nodes and connections, making it a powerful tool for analyzing 

system resilience and vulnerabilities. Compared to standalone regression analyses or independent 
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variable assessments, network analysis offers a holistic view of system dynamics, identifying critical 

pathways and potential intervention points. This integrative approach provides insights that are 

crucial for effective risk mitigation, insights that simpler models may overlook. 

The inclusion of geospatial and remote sensing techniques further distinguishes this research by 

enabling high-resolution, real-time data acquisition for monitoring and early warning systems. 

Unlike traditional data collection methods, which are often limited in spatial and temporal 

coverage, remote sensing provides comprehensive, continuous data that captures regional and 

global dynamics. By integrating this data into geospatial frameworks, the research enhances its 

ability to monitor and respond to hazard dynamics effectively. While in-situ measurements are 

valuable for localized assessments, they lack the broad coverage and real-time capabilities of 

remote sensing, which are essential for addressing large-scale hazards like floods and droughts. 

This research also incorporates statistical approaches, machine learning, and sensitivity and 

uncertainty analyses into these geospatial methods, further enhancing their predictive accuracy and 

robustness. Machine learning algorithms, such as Random Forests and Support Vector Machines, 

are leveraged to identify complex, non-linear relationships between variables, offering superior 

predictive capabilities compared to conventional statistical models. Sensitivity and uncertainty 

analyses ensure that the outputs of the models are reliable and account for the range of possible 

outcomes. Unlike deterministic models, which may oversimplify risk scenarios, these advanced 

methods provide a more realistic and comprehensive understanding of the risks associated with 

floods and droughts. 

When compared to other possible solutions, such as purely deterministic models, qualitative 

assessments, or standalone statistical approaches, the methods adopted in this research stand out 

for their integrative, adaptive, and resilient framework. This multi-dimensional approach captures 

the physical, socio-economic, and environmental aspects of flood and drought risks, bridging the 

gap between scientific research and practical application. By combining systematic literature 

reviews, quantitative content analysis, causal modelling, network analysis, and geospatial 

techniques enhanced with machine learning and statistical methods—this research provides a 

cohesive and forward-looking framework. 

Ultimately, this integrated methodology provides a balanced approach that combines scientific 

rigor with practical relevance, offering insights that can contribute to more effective flood and 
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drought risk management strategies in real-world scenarios. The resulting framework is uniquely 

positioned to mitigate the impacts of floods and droughts on both human and environmental 

systems, offering innovative and scalable solutions for water resource management in a rapidly 

changing world. 

2.6.1 Systematic literature review 

Integrating various research themes also facilitates interdisciplinary collaboration, leading to 

innovative solutions and comprehensive risk management approaches. It is essential to obtain 

perspective and information from various fields and sources Thus, conducting a systematic 

literature review (SLR) is essential for synthesizing credible and comprehensive information on 

complex, broad, and extensively studied subjects like flood and drought risk assessments. The 

systematic approach ensures that the review process is rigorous, transparent, and reproducible, 

thereby enhancing the reliability and validity of the findings. 

An SLR helps in reaching a consensus on the relevant themes, variables, and their interconnections 

by systematically collecting, evaluating, and synthesizing research evidence. This method reduces 

the likelihood of overlooking critical studies and ensures that diverse perspectives and findings are 

considered. By integrating findings from multiple studies, an SLR provides a holistic view of the 

current state of knowledge and identifies gaps that need further exploration (Tranfield, Denyer & 

Smart, 2003). One of the main advantages of an SLR is its ability to minimize bias. Bias can arise 

from selective inclusion of studies, publication bias, or researcher bias. The systematic approach 

employs predefined criteria for selecting studies, which helps in reducing the subjective influence 

of the reviewers. Furthermore, using systematic content analysis allows for the extraction of 

relevant information in a structured manner, ensuring consistency and transparency in the analysis 

process (Petticrew & Roberts, 2006).  

Systematic content analysis involves coding and categorizing qualitative data to identify patterns 

and themes. This method reduces bias by ensuring that the data extraction process is consistent 

and objective. Content analysis facilitates the identification of key variables and their 

interrelationships, which are critical for understanding the complex dynamics of flood and drought 

risks. By systematically analysing the content of the selected studies, researchers can derive 

meaningful insights and develop robust frameworks for risk assessment (Hsieh & Shannon, 2005). 
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2.6.2 Application of systematic content analysis: quantitative methods 

Quantitative and statistical methods play a crucial role in synthesizing data and drawing 

conclusions from the extracted content. These methods include the use of co-occurrence matrices, 

correlation analysis, and clustering algorithms to analyse the relationships between variables and 

identify key themes. A co-occurrence matrix is a tool used to quantify the frequency with which 

pairs of themes or variables appear together in the literature. This matrix helps in identifying the 

most commonly associated variables, providing insights into the underlying structure of the 

research domain. For instance, in flood and drought risk assessment, a co-occurrence matrix can 

highlight the interplay between variables such as precipitation patterns, land use changes, and 

socio-economic factors (Beguería et al., 2009; Mourão & Nunes, 2016; Liu et al., 2017). 

The Spearman correlation coefficient is a non-parametric measure of the strength and direction of 

the association between two ranked variables. It is particularly useful in identifying monotonic 

relationships between variables in the literature. By calculating Spearman correlation coefficients 

for pairs of variables, researchers can determine the degree of association and identify key factors 

that influence flood and drought risks (Mukaka, 2012; Kisi and Ay, 2014; Pingale et al., 2016). 

Cosine similarity indices measure the cosine of the angle between two non-zero vectors in a 

multi-dimensional space, representing the similarity in the pattern of co-occurrences rather than 

their magnitude. This metric is valuable for comparing the similarity between different sets of 

variables and identifying clusters of closely related themes. In the context of risk assessment, cosine 

similarity can help in grouping variables that exhibit similar patterns of association, thereby 

facilitating a more nuanced understanding of the interconnections (Singhal, 2001; Huang et al., 

2016; Ren et al., 2016). 

Clustering algorithms are essential for identifying key variables and their interactions in complex 

datasets. These algorithms group similar data points together based on predefined criteria, 

revealing underlying patterns and structures. One of the highly cited of such methods is K-means 

clustering algorithm that partitions data into K clusters based on the distance between data points. 

Each cluster is defined by its centroid, and the algorithm iteratively adjusts the centroids to 

minimize the variance within clusters. In flood and drought risk assessment, K-means clustering 

can be used to group regions with similar risk profiles or to identify clusters of variables that exhibit 
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similar behaviors (MacQueen, 1967; Dabanlı et al., 2016; Shafizadeh-Moghadam et al., 2018). 

Similarly, Hierarchical clustering builds a tree-like structure of nested clusters by successively 

merging or splitting clusters based on their similarity. This method provides a visual representation 

of the data hierarchy, which is useful for understanding the relationships between different 

variables and identifying key drivers of risk. Hierarchical clustering is particularly advantageous 

when the number of clusters is not known a priori (Johnson, 1967; Rahmati et al., 2016; Khalid et 

al., 2018). DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-

based clustering algorithm that identifies clusters based on the density of data points. It is 

particularly effective in detecting clusters of varying shapes and sizes and is robust to noise and 

outliers. In the context of risk assessment, DBSCAN can help in identifying spatial clusters of 

high-risk areas and understanding the spatial distribution of flood and drought risks (Ester et al., 

1996; Acharya et al, 2017; Pham et al., 2018). 

2.6.3 Creating causal feedback loops integrated with Interpretive Structural 

Modelling 

In the flood and drought literature, several key concepts underscore the importance of 

understanding causal pathways and network interactions. For instance, the hydrological cycle and 

its components, such as precipitation, evapotranspiration, and runoff, are fundamental to both 

flood and drought dynamics (Kundzewicz et al., 2014). Studies have shown that changes in one 

component can lead to cascading effects across the system, exacerbating risks (Van Loon et al., 

2016). 

Flood risk assessments often focus on the interplay between natural and anthropogenic factors, 

including land use changes, urbanization, and climate variability (Merz et al., 2010a). Similarly, 

drought risk assessments consider factors such as soil moisture, vegetation health, and water 

resource management (Wilhite, 2000). Both types of assessments benefit from identifying causal 

pathways that highlight how these variables interact over time and space. 

Causal pathways help identify how different factors contribute to flood and drought risks, 

providing a clear visualization of the relationships and feedback loops within the system. For 

example, a causal pathway in flood risk might illustrate how heavy precipitation leads to increased 

runoff, which is then exacerbated by urban impermeability, resulting in flooding (Few et al., 2004). 



 

58 

In drought risk, a pathway might show how prolonged lack of rainfall reduces soil moisture, leading 

to agricultural stress and water scarcity (Mishra & Singh, 2010). 

2.6.3.1 ISM Applications in Flood and Drought Studies 

Interpretive Structural Modelling (ISM) has been extensively applied in various fields to 

understand complex systems, including flood and drought studies. ISM helps in structuring 

complex issues into a comprehensive model by identifying and summarizing relationships among 

specific variables (Warfield, 1974).  

In flood risk studies, ISM has been used to analyse the interdependencies between different risk 

factors, such as hydrological variables, land use, and socio-economic factors (Saha et al., 2018). By 

creating a hierarchical structure of these factors, ISM enables researchers to identify key drivers 

and leverage points for effective risk management. 

Similarly, in drought risk assessments, ISM has been applied to understand the interactions 

between climatic variables, agricultural practices, and water management strategies (Sharma & 

Joshi, 2018). This approach helps in identifying critical factors that influence drought resilience 

and guides the development of targeted mitigation strategies. 

2.6.4 Introducing the network analysis into the created causal loop 

The integration of network analysis into flood and drought risk assessment is rooted in the need 

to understand and manage the intricate interactions between various risk factors. Traditional risk 

assessment methods often fall short in capturing these complex interdependencies, which can 

significantly impact the efficacy of mitigation strategies. Causal pathways and network metrics, 

when applied through advanced methodologies like Interpretive Structural Modelling (ISM) and 

Causal Loop Diagrams (CLD), provide a robust framework for comprehensively analysing these 

risks. 

Applying network analysis metrics to the ISM-generated framework provides additional insights 

into the structure and dynamics of the risk system. Metrics such as betweenness centrality, 

closeness centrality, authority, and hub scores help identify key variables and interactions that are 

critical for risk management (Freeman, 1977; Kleinberg, 1999). Several studies have demonstrated 
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the effectiveness of integrating ISM and network analysis in flood and drought risk assessments. 

For instance, Saha et al. (2018) used ISM to structure the interrelationships between urbanization, 

climate change, and flood risks, identifying critical factors that enhance urban flood resilience. 

Similarly, Sharma & Joshi (2018) applied ISM to drought risk assessment in India, highlighting the 

key drivers of drought vulnerability and resilience. By merging ISM with network metrics, 

researchers can develop a comprehensive understanding of the complex interactions within flood 

and drought risk systems. This integrated approach enables the identification of critical pathways 

and influential variables, guiding the development of effective mitigation and adaptation strategies. 

For example, betweenness centrality can identify variables that act as bridges between different 

parts of the network, indicating critical points for intervention. Closeness centrality highlights 

variables that can quickly influence or be influenced by others, essential for understanding rapid 

risk escalation or mitigation. Authority and hub scores identify key sources and disseminators of 

influence within the network, guiding targeted risk management efforts. 

After identifying the value of each node within the causal framework using the ISM-CLD approach 

and rating them based on various network metrics, the next step is to narrow down these variables 

to the main risk factors. These selected factors will then be modelled for a spatio-temporal 

investigation at a river basin scale. 

2.6.4.1 Cross entropy Monte Carlo algorithm for variable selection 

To streamline the selection process of the most critical variables, the Cross Entropy Monte Carlo 

algorithm is employed. This algorithm is particularly effective in optimizing complex systems and 

has been applied in various fields to identify top-performing parameters based on multiple criteria 

(Rubinstein & Kroese, 2004). 

The Cross Entropy algorithm works by generating a sample of solutions, evaluating them, and 

then updating the sampling distribution to focus on the best solutions. This iterative process 

continues until convergence is achieved, resulting in the identification of the top-ranked variables 

based on the overall metrics of the network. This algorithm is well-suited for multi-criteria 

optimization problems, where multiple network metrics such as betweenness centrality, closeness 

centrality, authority, and hub scores need to be considered simultaneously. This ensures that the 
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selected variables are robust and influential across various aspects of the network (Kroese et al., 

2011).  

By systematically evaluating a large number of potential solutions, the Cross Entropy algorithm 

reduces the risk of bias that might arise from subjective judgment or selective inclusion of 

variables. This enhances the reliability of the selection process and ensures that the most critical 

factors are identified (Rubinstein & Kroese, 2004). Selecting the top-ranked variables using this 

algorithm improves the predictive power and accuracy of the subsequent risk models. These 

models can then be used for detailed spatio-temporal analysis, providing valuable insights into the 

dynamics of flood and drought risks at the river basin scale (De Boer et al., 2005). 

2.6.5 Geospatial and remote sensing techniques in flood and drought risk 

assessment 

Flood and drought risks pose significant challenges to sustainable development and disaster 

management. Traditional risk assessment methods often fall short in providing timely, accurate, 

and spatially comprehensive data required for effective mitigation and response. This is where 

Geographic Information Systems (GIS) and remote sensing technologies become indispensable. 

Floods and droughts are dynamic and spatially heterogeneous phenomena. They impact vast and 

often remote areas, making ground-based observations logistically challenging and time-

consuming. Traditional methods, relying on historical records and localized measurements, lack 

the capability to capture real-time changes and the spatial extent of these hazards. Moreover, these 

conventional approaches may not integrate various types of data, such as climatic, hydrological, 

and socio-economic factors, essential for a holistic risk assessment. GIS and remote sensing 

provide the tools necessary to overcome these limitations. Remote sensing offers high-resolution, 

real-time data from satellite and aerial sensors, covering large and inaccessible areas. This data 

includes critical variables such as precipitation, soil moisture, vegetation health, and surface water 

bodies, essential for monitoring flood and drought conditions. GIS, on the other hand, allows for 

the integration and analysis of this spatial data, facilitating the creation of detailed and accurate risk 

maps. The ability to overlay multiple data layers enables a comprehensive assessment of 

vulnerability, exposure, and potential impacts. Advantages of geospatial over other techniques 

could be explained as follows. 
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Remote sensing provides a synoptic view that ground-based observations cannot match, ensuring 

comprehensive spatial coverage and real-time monitoring capabilities (Cracknell, 2018). GIS 

integrates diverse datasets, including topography, land use, hydrology, and socio-economic data, 

offering a multi-dimensional perspective crucial for effective risk assessment (Goodchild, 2009). 

Additionally, the combination of GIS and remote sensing enhances predictive accuracy through 

advanced spatial analysis and modelling techniques, enabling better-informed decision-making and 

proactive risk management (Li et al., 2019). Remote sensing data is available at various temporal 

scales, from daily to monthly, allowing for timely updates and continuous monitoring, which is 

vital for early warning systems and rapid response strategies (NASA, 2020). 

Traditional methods, however, have notable limitations. These include limited spatial and temporal 

resolution, which makes it difficult to capture the detailed dynamics of flood and drought events. 

Conventional approaches may also fail to effectively integrate the diverse types of data needed for 

a comprehensive risk assessment, leading to incomplete or biased analyses. Furthermore, ground-

based observations and manual data collection are resource-intensive and may not be feasible for 

large or remote areas. 

In conclusion, the integration of GIS and remote sensing in flood and drought risk assessments 

addresses the limitations of traditional methods by providing high-resolution, real-time, and 

comprehensive spatial data, enhancing the overall effectiveness and efficiency of risk management 

strategies. 

2.7 SPATIAL DATA AND ANALYSIS  

2.7.1 Types of spatial data used 

A comprehensive understanding of flood and drought risks relies on the integration of diverse 

datasets, including topographical, hydrological, land use, and climatic data, each of which plays a 

critical role in assessing and mitigating these hazards. This research benefited from using a range 

of data across many disciplines as described in section 4.11. 

Topographical data, typically obtained from Digital Elevation Models (DEMs), is crucial for flood 

risk assessment as it provides detailed information on terrain elevation and slope. DEMs are 

instrumental in modelling water flow, identifying flood-prone areas, and assessing the impact of 
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terrain on flood dynamics (Gesch et al., 2002). Hydrological data, which includes information on 

river discharge, water levels, precipitation, and soil moisture, is essential for understanding the 

hydrological processes driving flood and drought events. This data is sourced from ground-based 

monitoring stations and satellite-based sensors like SMAP and GRACE (Entekhabi et al., 2010). 

Land use and land cover (LULC) data, derived from remote sensing imagery, offers insights into 

the distribution of natural and human-modified landscapes. This data is critical for assessing the 

impact of land use changes, such as deforestation, urbanization, and agricultural practices, on flood 

and drought risks (Foody, 2003). Climatic data, which includes temperature, humidity, and 

precipitation patterns, is equally vital for drought risk assessment. Typically obtained from 

meteorological stations and satellite-based platforms like MODIS and TRMM, climatic data helps 

identify trends and anomalies that may signal the onset of drought conditions (Li et al., 2019). 

2.7.2 Spatial analytical techniques employed 

A range of spatial analytical techniques has been employed to deepen our understanding of flood 

and drought dynamics, integrating varied datasets and advancing predictive methodologies. Spatial 

analysis methods, including overlay analysis, buffering, and spatial interpolation, combine multiple 

data layers to pinpoint at-risk areas, model the extent and impact of floods and droughts, and 

generate visual risk maps (Longley et al., 2015). Hydrological modelling tools like HEC-RAS and 

SWAT use spatial data to simulate water movement within watersheds, predicting flood extents, 

depths, durations, and the effects of various scenarios on water availability and quality. These 

models are indispensable for understanding hazard dynamics and informing mitigation strategies 

(Neitsch et al., 2011). 

Remote sensing analysis complements these techniques by extracting environmental insights from 

satellite imagery. Approaches such as the Normalized Difference Vegetation Index (NDVI) and 

Soil Moisture Index (SMI) enable monitoring of vegetation health and soil moisture, providing 

early drought warnings. Flood extent mapping with Synthetic Aperture Radar (SAR) imagery is 

another vital application, offering detailed insights into flood impacts (Jensen, 2015). Furthermore, 

machine learning and data mining techniques bolster these methodologies by processing large 

spatial datasets, uncovering patterns, and enhancing the predictive power of risk models. These 
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advanced methods identify key risk factors and enable the development of models with high 

accuracy in forecasting future flood and drought events (Mosavi et al., 2018). 

2.8 SPATIO-TEMPORAL ASSESSMENT OF FLOOD AND DROUGHT RISK :  

NECESSITY ,  BENEFITS ,  AND LIMITATIONS OF FUZZY LOGIC AND 

MACHINE LEARNING TECHNIQUES  

2.8.1 Necessity of using advanced methods in risk assessment 

The increasing frequency and severity of floods and droughts due to climate change and 

anthropogenic factors necessitate the use of advanced methods for spatio-temporal risk 

assessment. Traditional risk assessment methods often fail to capture the complex, non-linear 

interactions between various risk factors and do not adequately address the inherent uncertainties 

in environmental systems. Advanced methods like Fuzzy Logic and Machine Learning provide 

robust frameworks for integrating diverse datasets, handling uncertainty, and making accurate 

predictions, thereby enhancing the effectiveness of risk management strategies (Wang & Elhag, 

2007; Beven, 2009). 

2.8.2 Application of fuzzy logic and fuzzy overlay function in risk mapping 

Fuzzy logic is a mathematical approach that deals with imprecision and uncertainty, making it 

particularly suitable for environmental risk assessments where data is often incomplete or vague. 

The fuzzy overlay function combines multiple criteria maps, allowing for the integration of various 

risk factors into a single, comprehensive risk map. This method assigns membership values to each 

criterion, reflecting the degree to which they belong to specific risk categories (Zadeh, 1965; Ross, 

2010). It has a range of benefits such as handling uncertainty, integration of diverse data and 

flexibility. Fuzzy logic effectively handles the uncertainty and imprecision inherent in 

environmental data, providing more realistic risk assessments (Zimmermann, 2010).It allows for 

the integration of diverse data types, including qualitative and quantitative information, enhancing 

the comprehensiveness of risk assessments (Ghosh & Kar, 2018). The fuzzy overlay function is 

highly flexible and can be adapted to different spatial scales and study areas (Pradhan, 2011).  

However, it comes with some limitations. The implementation of fuzzy logic requires a deep 

understanding of the system and the ability to define appropriate membership functions and rules 

(Ross, 2010). The selection of membership functions and thresholds can be subjective, potentially 
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introducing bias into the assessment (McBratney & Odeh, 1997). Lastly, fuzzy logic models can 

be computationally intensive, especially when dealing with large datasets and multiple criteria (Jiang 

& Eastman, 2000). 

2.8.3 Machine learning algorithms for risk prediction and trend analysis  

Machine learning (ML) algorithms, such as XGBoost, have gained popularity for their ability to 

analyse large datasets, identify patterns, and make accurate predictions. XGBoost, an optimized 

gradient boosting algorithm, is particularly effective for regression and classification tasks, making 

it suitable for predicting flood and drought risks and analysing trends (Chen & Guestrin, 2016). 

Benefits of applying such methods could be high predictive accuracy, scalability and automation. 

XGBoost and other ML algorithms provide high predictive accuracy by leveraging large datasets 

and learning complex patterns (Friedman, 2001). These algorithms are highly scalable and can 

handle large datasets efficiently, making them suitable for regional and global risk assessments 

(Chen & Guestrin, 2016). Machine learning models can be automated to continuously update 

predictions based on new data, providing real-time risk assessments (Breiman, 2001). 

Limitations of these models could be grouped into data dependency, interpretability and 

sometimes overfitting. The accuracy of ML models heavily depends on the quality and quantity of 

input data. Incomplete or biased data can lead to inaccurate predictions (Domingos, 2012). ML 

models, especially complex ones like XGBoost, can be difficult to interpret, making it challenging 

to understand the underlying mechanisms driving the predictions (Rudin, 2019). There is a risk of 

overfitting, where the model performs well on training data but poorly on unseen data, 

necessitating careful model validation and tuning (Hawkins, 2004). 

The integration of Fuzzy Logic and Machine Learning techniques into the spatio-temporal 

assessment of flood and drought risks addresses the limitations of traditional methods and 

enhances the accuracy and comprehensiveness of risk predictions. While each method has its 

benefits and limitations, their combined application provides a robust framework for managing 

environmental risks in a rapidly changing climate. The extensive literature underscores the 

necessity of these advanced techniques, highlighting their critical role in contemporary risk 

assessment practices. 
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2.9 VALIDATION TECHNIQUES FOR PREDICTED RISK MAPS  

Validation of risk maps is a crucial step in ensuring their accuracy, reliability, and practical utility. 

Without robust validation, the predictions made by these maps can be misleading, leading to 

inadequate or misplaced risk management strategies. Effective validation techniques help in 

assessing the performance of risk models, identifying their strengths and weaknesses, and 

providing confidence in their use for decision-making processes (Pontius & Millones, 2011). 

Receiver Operating Characteristic (ROC) curves are a widely used method for evaluating the 

performance of binary classifiers. In the context of risk maps, ROC curves plot the true positive 

rate against the false positive rate at various threshold settings, providing a comprehensive measure 

of the model's discriminatory power (Fawcett, 2006). The area under the ROC Curve (AUC) is 

particularly informative, summarizing the model's overall ability to distinguish between different 

risk levels. This approach provides a comprehensive evaluation without being dependant on 

thresholds. ROC curves provide a thorough evaluation of the model's performance across all 

possible thresholds, offering insights into its sensitivity and specificity (Swets, 1988). Unlike other 

metrics, ROC curves do not depend on a specific threshold, making them versatile and broadly 

applicable (Hanley & McNeil, 1982). However, these benefits come with some restrictions, such 

as binary limitation and data imbalance. ROC curves are primarily designed for binary 

classification, which may not fully capture the complexity of multi-class risk assessments (Fawcett, 

2006). In cases of highly imbalanced data, ROC curves might not provide a clear indication of 

model performance, necessitating additional metrics (Davis & Goadrich, 2006). 

Spatial Overlay and Percentage of Agreement are some other simpler validation techniques used 

in spatial analysis. Spatial overlay techniques involve comparing the predicted risk maps with 

historical data or observed events to assess their accuracy. This method visually and quantitatively 

evaluates the spatial congruence between predicted and actual risk areas (Goodchild, 1994). On 

the other note, the percentage of agreement metric calculates the proportion of correctly predicted 

risk areas relative to the total number of areas assessed. It provides a straightforward measure of 

model accuracy (Foody, 2002). Both spatial overlay and percentage of agreement are easy to 

interpret and communicate to stakeholders, facilitating their practical use (Goodchild, 1994). These 

methods allow for a direct comparison of predicted and observed risk areas, highlighting specific 

regions of agreement or discrepancy (Foody, 2002). However, the interpretation of spatial overlays 
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can be subjective, depending on the visual assessment and the criteria used for comparison 

(Pontius & Millones, 2011). And the percentage of agreement is a simplistic metric that may not 

capture the nuances of model performance, especially in complex systems (Foody, 2002). Other 

validation techniques may involve Kappa Statistic and Cross-Validation. 

The Kappa statistic measures the agreement between predicted and observed data, accounting for 

the agreement occurring by chance. It provides a more rigorous assessment than the percentage 

of agreement but can be sensitive to data imbalance (Cohen, 1960). Kappa accounts for chance 

agreement, providing a more accurate reflection of model performance (Landis & Koch, 1977). It 

is a widely accepted measure in various fields, facilitating comparisons across studies (Viera & 

Garrett, 2005). But Kappa can be influenced by the prevalence of classes in the data, potentially 

leading to misleading results in imbalanced datasets (Pontius & Millones, 2011). Additionally, the 

interpretation of Kappa values can be complex, particularly in the context of multiple classes or 

categories (Viera & Garrett, 2005). 

On the other hand, cross-validation involves partitioning the data into subsets, using some for 

training and others for validation, to assess model performance. This method helps in estimating 

the model's predictive accuracy and robustness (Kohavi, 1995). It provides a robust estimate of 

model performance by averaging results across multiple iterations (Stone, 1974). And helps in 

understanding the trade-off between model bias and variance, guiding model selection and tuning 

(Hastie, Tibshirani & Friedman, 2009). However, it is computationally intensive, especially with 

large datasets or complex models (Arlot & Celisse, 2010). And the results of cross-validation can 

depend on how the data is partitioned, potentially leading to variability in performance estimates 

(Kohavi, 1995). 

2.10 SENSITIVITY ANALYSIS AND FEATURE IMPORTANCE IN FLOOD AND 

DROUGHT RISK ASSESSMENT  

In the context of flood and drought risk assessment, understanding which variables or features 

most significantly impact the model's predictions is crucial for effective risk management and 

mitigation strategies. Sensitivity analysis and feature importance assessments help in identifying 

the key drivers of risk and understanding how variations in input data influence the outcomes 

(Saltelli et al., 2008; Pappenberger et al., 2008).  
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Sensitivity analysis is a method used to determine how different values of an input variable impact 

a particular output variable under a given set of assumptions. It is essential in risk assessment to 

identify which parameters most influence the model's results. Sobol's sensitivity analysis is a 

variance-based method that decomposes the variance of the output of a model into fractions 

attributed to different inputs or sets of inputs (Sobol, 2001). This method is highly effective for 

complex models as it considers the interaction effects between variables. Main benefits of this 

model are its ability in decomposition and independence to models whereas it could be 

computationally intense and relatively difficult to interpret (Homma & Saltelli, 1996; Saltelli, 2002; 

Saltelli et al., 2008; Iooss and Lemaître, 2015).  

Feature importance measures the contribution of each feature to the model's predictions. It helps 

in understanding which variables are most influential in driving the risk assessment model. There 

are many approaches for assessing feature importance such as Random Forest, Permutation 

Importance, XGBoost and Principal Component Regression (PCR). 

Random Forests provide feature importance scores based on the mean decrease in impurity 

(Breiman, 2001). They are effective for high-dimensional datasets and can capture non-linear 

relationships between variables. Slightly different, Permutation importance assesses the change in 

model accuracy when the values of a feature are randomly shuffled. This method provides an 

intuitive measure of feature importance (Breiman, 2001). XGBoost is an optimized gradient 

boosting algorithm that provides feature importance scores based on the contribution of each 

feature to the reduction in loss (Chen & Guestrin, 2016). It is particularly effective for large-scale 

datasets and complex models. 

PCR on the other hand, combines Principal Component Analysis (PCA) with linear regression. It 

reduces the dimensionality of the data and then performs regression on the principal components. 

PCR helps in identifying the most significant features that explain the variance in the data (Jolliffe, 

2002). 

Methods like permutation importance and random forests provide clear, interpretable measures 

of feature importance (Louppe et al., 2013). Algorithms like XGBoost and random forests can 

capture non-linear relationships between features, offering a more nuanced understanding of 

feature importance (Chen & Guestrin, 2016). However, Feature importance scores can be model-

specific, and different models might provide different importance rankings for the same dataset 
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(Strobl et al., 2007). Some methods, particularly those involving ensemble models, can be 

computationally intensive (Friedman, 2001). 

Both sensitivity analysis and feature importance assessment are crucial in identifying the key drivers 

of flood and drought risks. Methods like Sobol's index provide a detailed understanding of how 

variations in input variables affect model outputs, while feature importance techniques such as 

random forests, permutation importance, XGBoost, and PCR offer insights into the significance 

of individual features. Uncertainty analysis, including approaches like bagging with XGBoost, is 

essential for quantifying and mitigating the inherent variability in risk predictions. These methods 

collectively enhance the robustness and reliability of flood and drought risk assessments, 

facilitating better decision-making and risk management strategies. 

2.11 UNCERTAINTY ANALYSIS IN RISK ASSESSMENT  

Uncertainty analysis is critical in risk assessment as it quantifies the degree of uncertainty in model 

predictions. Understanding and addressing uncertainty helps in making more robust and reliable 

risk management decisions (Beven & Binley, 1992). There are some limitations to progress further 

with uncertainty analysis in the context of this research, such as intrinsic variability in natural 

systems, complexity of the model and its interactions, data limitations regarding the risk values and 

not different properties of the phenomena.  

2.11.1 Approaches for assessing uncertainty 

Aleatoric uncertainty refers to the inherent variability associated with the natural randomness of 

the system being modelled. It is important to quantify this type of uncertainty to understand the 

range of possible outcomes and their likelihood. Bagging (Bootstrap Aggregating) is an ensemble 

technique that improves the stability and accuracy of machine learning algorithms by reducing 

variance. When combined with XGBoost, bagging helps in assessing and mitigating aleatoric 

uncertainty by generating multiple versions of the model and averaging their predictions (Breiman, 

1996). Bagging helps in reducing the variance of the model, leading to more stable and reliable 

predictions (Breiman, 1996). Additionally, combining bagging with XGBoost leverages the 

strengths of both techniques, enhancing the overall predictive performance (Chen & Guestrin, 

2016). However, the process of creating multiple models and aggregating their predictions can be 
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computationally demanding (Bühlmann & Yu, 2002). And implementing bagging with XGBoost 

requires careful tuning and validation to ensure optimal performance (Breiman, 1996). 

2.12 IDENTIFIED GAPS IN THE LITERATURE  

The current body of research on flood and drought risk assessment has made significant strides, 

yet there remain several critical gaps and limitations that warrant further investigation. One major 

gap is the lack of integration between flood and drought risk assessments. While numerous studies 

focus on either flood risk (Merz et al., 2010a; Kundzewicz et al., 2014) or drought risk (Wilhite, 

2000; Mishra & Singh, 2010) individually, integrated assessments that consider both hazards 

concurrently are still scarce. Such integration is particularly crucial because the occurrence of one 

event can often exacerbate the impacts of the other, especially in regions that are vulnerable to 

both phenomena. Another gap lies in the insufficient capture of spatio-temporal dynamics. Many 

existing studies fail to adequately incorporate changing climatic and land-use patterns over time, 

which are essential for accurate risk assessments. The current models often lack the sophistication 

to address these evolving patterns effectively (Ward et al., 2011; Van Loon, 2015). 

Moreover, there is a pressing need for more comprehensive approaches to uncertainty and 

sensitivity analysis in flood and drought risk assessments. Although methods such as Sobol’s index 

(Pappenberger et al., 2008) and permutation importance (Strobl et al., 2007) have been applied in 

some studies, these approaches are not yet universally adopted, and their applications are often 

limited to specific contexts or regions. The use of advanced machine learning techniques, such as 

XGBoost, for identifying key risk factors is relatively new in this research area. While these 

techniques show promise, more work is required to validate their effectiveness and establish best 

practices for their application (Mosavi et al., 2018; Qi et al., 2018). Model validation is another 

significant gap. Many studies do not adequately validate their risk models using robust techniques 

like ROC curves or cross-validation, which casts doubt on the reliability and generalizability of 

their findings (Pontius & Millones, 2011; Fawcett, 2006). Proper validation is crucial to ensure that 

these models can be reliably applied in real-world scenarios. 

Lastly, there is a shortage of interdisciplinary approaches that integrate physical sciences, social 

sciences, and policy analysis to address flood and drought risks in a holistic manner. 

Interdisciplinary integration is vital for the development of effective mitigation and adaptation 
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strategies (Adger, 2006; Cutter et al., 2008).Such integration is essential for developing effective 

mitigation and adaptation strategies (Adger, 2006; Cutter et al., 2008). 

2.12.1 Future research directions 

To address these gaps, several potential avenues for future research can be suggested. Firstly, the 

development of integrated risk models that consider both flood and drought risks, including their 

interactions and cumulative impacts, is essential. Such models should capture the complex 

interdependencies between these hazards (Wang et al., 2017). 

Advances in GIS and remote sensing technologies should also be utilized to create more 

sophisticated spatio-temporal models that can accurately predict flood and drought risks under 

different climate change and land-use scenarios (Goodchild, 1994; Ghosh & Kar, 2018). Enhanced 

spatio-temporal modelling will improve the accuracy of predictions and support proactive risk 

management. There is also a need for more comprehensive uncertainty analysis frameworks. 

Future research should incorporate multiple methods, such as Bayesian approaches and ensemble 

modelling, to better quantify and manage uncertainty in risk assessments (Beven & Binley, 1992; 

Efron & Tibshirani, 1993). Comprehensive uncertainty analysis will make these models more 

reliable for decision-making. Further research should explore the application of machine learning 

techniques like XGBoost, random forests, and neural networks in flood and drought risk 

assessments. These methods have the potential to significantly improve the accuracy and 

robustness of predictions, enabling more reliable assessments of risk (Chen & Guestrin, 2016; 

Breiman, 2001). Robust model validation techniques should be employed in future studies to 

ensure reliability. Techniques such as ROC curves, k-fold cross-validation, and bootstrapping 

should be used to validate risk models, thereby enhancing the credibility and applicability of 

research findings (Hanley & McNeil, 1982; Kohavi, 1995). 

Finally, interdisciplinary research that combines insights from hydrology, climatology, sociology, 

economics, and policy studies is crucial for addressing flood and drought risks comprehensively. 

By embracing interdisciplinary approaches, more effective and sustainable risk management 

strategies can be developed (Adger, 2006; Cutter et al., 2008). 
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2.13 SUMMARY OF KEY FINDINGS  

The literature review comprehensively examined various methodologies, frameworks, and models 

relevant to flood and drought risk assessments. Historically, flood risk assessment methodologies 

have evolved from simplistic deterministic models to more sophisticated probabilistic and 

statistical approaches that incorporate multiple variables and uncertainties (Di Baldassarre et al., 

2010; Kundzewicz et al., 2014). Current methods emphasize the integration of Geographic 

Information Systems (GIS) and remote sensing technologies, which facilitate the spatial analysis 

and visualization of risk factors (Melesse et al., 2007; Foody, 2003). Additionally, the review 

highlighted the increasing use of machine learning algorithms, such as XGBoost and Random 

Forest, in predicting flood and drought risks due to their ability to handle complex datasets and 

improve prediction accuracy (Chen & Guestrin, 2016; Breiman, 2001). 

Similarly, drought risk assessment has transitioned from basic meteorological indices to more 

comprehensive hydrological and ecological models that consider a range of environmental and 

socio-economic factors (Mishra & Singh, 2010; Van Loon, 2015). Contemporary approaches 

incorporate satellite-based remote sensing data and advanced statistical methods to enhance the 

accuracy and timeliness of drought predictions (Anderson et al., 2011; Kogan, 1997). The review 

also underscored the importance of integrated risk assessments that combine flood and drought 

analyses, recognizing the interconnected nature of these hazards and the need for holistic 

management strategies (Krysanova et al., 2008; Kappes et al., 2012). 

The reviewed literature provides a robust foundation for the current study, which aims to develop 

an integrated framework for assessing flood and drought risks in river basin contexts. The 

historical evolution and advancements in flood and drought risk methodologies underscore the 

necessity of employing sophisticated tools and technologies, such as GIS, remote sensing, and 

machine learning algorithms, in contemporary risk assessments. These tools will be instrumental 

in collecting, analysing, and synthesizing spatial and temporal data, thereby enhancing the accuracy 

and reliability of risk predictions. 

Furthermore, the insights gained from existing integrated approaches highlight the benefits of 

combining flood and drought risk assessments to develop a more comprehensive understanding 

of these interrelated hazards. By leveraging the strengths of various models and frameworks 
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discussed in the literature, the current study aims to address identified gaps, such as the need for 

more detailed spatiotemporal analyses and the integration of diverse data sources. This integrated 

assessment approach will facilitate the identification of critical risk factors and the development of 

effective mitigation and adaptation strategies, ultimately contributing to more resilient water 

resource management in the face of climate change and increasing environmental variability 

(Kundzewicz et al., 2014; Merz et al., 2010b). 

The following points conclude the gaps derived from reviewing the literature. 

Integration of Feedback Loops in Risk Assessment: Many existing studies on flood and drought risk 

assessments fail to capture dynamic feedback mechanisms that influence both hazards. The  

approach of using causal feedback loops integrated with interpretive structural modeling addresses 

this gap by providing a more holistic and interactive understanding of the interdependencies 

between flood and drought events. 

Lack of Combined Network and Structural Analysis: Current flood and drought risk assessments often 

utilize network analysis or structural modeling independently. There is a gap in integrating these 

two approaches to better represent and quantify the relationships and influence of variables within 

the system. This research's introduction of network analysis into causal feedback loops addresses 

this limitation, offering a deeper understanding of key nodes and connections. 

Limited Use of Advanced Geospatial Techniques: While many studies use basic remote sensing and GIS 

approaches, they often lack the integration of advanced machine learning and sensitivity analysis 

to improve accuracy. Conducted research fills this gap by combining remote sensing with statistical 

approaches and machine learning techniques, providing enhanced spatial and temporal risk 

predictions. 

Underrepresentation of Socio-Economic Factors in Hydrological Models: The inclusion of socio-economic 

data in risk models remains underdeveloped, particularly in capturing the influence of human 

activities on hydrological extremes. This research emphasizes the integration of socio-economic 

indices, which adds depth to the assessment and links physical hazards to their broader societal 

implications, addressing this underrepresentation. 

Scalable Framework for Diverse Regional Contexts: Existing methodologies often fail to provide a 

scalable and adaptable framework applicable across different geographical regions. This research 
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approach, which leverages systematic literature review to identify universally applicable methods 

and indices, aims to create a flexible framework capable of being tailored to diverse regional and 

socio-economic contexts. 
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3.1 CHAPTER INTRODUCTION  

The methodologies employed to investigate complex environmental challenges, such as flood and 

drought risks, are indispensable for crafting effective strategies to manage these hydrological 

extremes, especially in the context of a changing climate. Floods and droughts represent inherently 

intricate phenomena, shaped by a confluence of physical, socio-economic, and environmental 

factors that interact across varying scales and timeframes. Addressing these challenges requires a 

methodological framework that integrates diverse data sources, accounts for temporal dynamics, 

and generates insights that are both actionable and adaptable for stakeholders. A holistic and 

structured research approach not only enhances our understanding of these risks but also lays the 

foundation for strategies that mitigate their impacts on both human communities and natural 

ecosystems. 

Aligned with the Research Onion Framework (Saunders et al., 2009), this study adopts a pragmatist 

research philosophy, combining both quantitative and qualitative methods to comprehensively 

address flood and drought risks. The abductive research approach allows for an iterative process 

of moving between theoretical frameworks and empirical data, continuously refining insights. The 

research strategies employed include statistical analysis, interpretive structural modelling (ISM), 

and system dynamics modelling via causal loop diagrams (CLDs), aimed at constructing a robust 

and integrative framework. The study utilizes a mixed-methods design, blending quantitative data 

analysis with qualitative modelling techniques to enrich the research outcomes. With a longitudinal 

time horizon, the research captures the temporal evolution and variations of risk factors, ensuring 

dynamic adaptability of the framework. Data collection and analysis are carried out using advanced 

statistical tools for literature synthesis, specialized modelling software for ISM and CLD, and 

fractal geometry to develop a unified flood and drought risk indicator, enhancing the study's 

capacity for predictive and applied insights. 

3.2 OVERVIEW OF THE RESEARCH APPROACH  

This detailed overview of the research approach sets the stage for the subsequent discussion, which 

focuses on the specific methodologies employed for data collection and analysis. These techniques 

form the backbone of the framework designed to address flood and drought risk assessments. The 
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next section will offer an in-depth exploration of how these data-driven methods are utilized to 

achieve the study's objectives, providing critical insights into their application and significance. 

The structured steps in this research are represented in the following diagram (Figure 3.1), 

illustrating the hierarchical interactions necessary to achieve the overarching aim of developing a 

simultaneous flood and drought risk assessment at the river basin scale. Each box in the diagram 

corresponds to specific objectives and reflects the sequential processes essential for constructing 

a robust and integrative framework. 

The first box is directly linked to Objective I, which focuses on identifying and elucidating the 

deep interrelations, latent themes, and critical data involved in flood and drought risks. This is 

achieved through advanced statistical analysis, laying the groundwork for the study by uncovering 

key parameters that influence these hydrological extremes. 

 

Figure 3.1. Hierarchical Framework for Simultaneous Flood and Drought Risk Assessment: Objectives and 

Methodological Flow. 

The subsequent three boxes (boxes 2-4) align with Objective II, which emphasizes the 

development of an integrative framework. Using Interpretive Structural Modelling (ISM), network 

theory, causal loop diagrams, and cross-entropy analysis, these steps progressively capture the 

interdependencies and dynamics among key risk factors. Together, they highlight the framework's 
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ability to encapsulate complex relationships and provide a comprehensive understanding of flood 

and drought risks. The final box corresponds to Objective III, focusing on the validation of the 

developed framework. This step includes conducting sensitivity analyses and introducing the 

Combined Flood and Drought Risk Index (CFDRI), which plays a pivotal role in predictive risk 

mapping. This process ensures the framework's accuracy and adaptability by leveraging spatial 

analysis, efficiency testing, and trend evaluations of hydrological risks. Together, the steps outlined 

in the diagram support the broader aim of simultaneous flood and drought risk assessment. Each 

stage builds upon the previous one, contributing to the framework's development and validation. 

These processes are elaborated further in the following sections, offering detailed insights into the 

methodologies and analytical approaches employed in this research. 

The presented hierarchical framework, particularly from the fourth step onward, offers practical 

utility for catchment planning services and environmental service providers by providing a 

structured, data-driven approach to assess flood and drought risks over space and time. This 

methodology offers flexibility and a comprehensive perspective, making it a valuable tool for 

stakeholders engaged in water resource management and hazard mitigation. The development of 

the Combined Flood and Drought Risk Index (CFDRI) enables environmental service providers 

to quantify risks through a unified metric. This approach effectively captures the dual threats of 

floods and droughts, offering insights into how these risks evolve together within a catchment. 

For catchment planning, this step identifies critical hotspots where these hazards are most 

significant, guiding resource allocation efforts, such as flood defences or improvements in water 

storage systems. 

Predictive mapping capabilities allow stakeholders to visualize how flood and drought risks vary 

across time and space under different climatic and land-use scenarios. This is especially useful for 

informing decisions about zoning, land-use planning, and locating critical infrastructure. The 

availability of spatio-temporal data also helps anticipate ecological impacts, such as shifts in 

wetland ecosystems or changes in agricultural water availability. This, in turn, supports proactive 

strategies like floodplain restoration or the implementation of sustainable irrigation systems. The 

framework's validation and sensitivity analysis ensure that it remains robust and adaptable to 

various catchment conditions. By examining how risk factors respond to changes such as increased 

rainfall, urbanization, or vegetation loss, stakeholders can develop adaptive strategies to mitigate 

risks under uncertain future conditions. This process also provides tools for climate adaptation 
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planning, including nature-based solutions like reforestation or enhancing existing flood control 

measures to cope with extreme events. This approach is inherently scalable, making it applicable 

to catchments of different sizes and complexities. Whether used in small urban watersheds or large 

transboundary basins, the framework accounts for both localized and system-wide risks. 

Environmental service providers can leverage this methodology to design strategies that address 

both hydrological extremes while promoting sustainable natural resource use. For example, 

managing reservoirs to mitigate flood peaks while maintaining adequate storage for droughts 

becomes feasible with such tools. The framework is not restricted to technical assessments but 

bridges the gap between scientific analysis and actionable insights. By integrating socio-economic 

factors and spatial trends, it addresses the needs of diverse stakeholders, including policymakers, 

local communities, and industries reliant on stable water supplies. This ensures that solutions are 

inclusive, economically viable, and environmentally sustainable. 

Overall, adopting this framework equips catchment planners and environmental service providers 

with an effective tool to assess and manage flood and drought risks. Its focus on spatio-temporal 

dynamics and predictive modelling supports better resource allocation and strategic planning, 

enhancing resilience against these hydrological challenges. 

3.3 METHODOLOGICAL STEPS TO FIND THE PAIRWISE CONNECTIONS  

The methodological approach adopted to achieve the first objective is systematically presented in 

Figure 3.2. The flowchart outlines a step-by-step process that begins with a systematic review of 

peer-reviewed literature, progresses through systematic content analysis using open-coded texts, 

and culminates in information extraction and data synthesis using quantitative techniques. These 

techniques include constructing a co-occurrence matrix and applying statistical tools such as the 

Spearman correlation coefficient, Cosine similarity index, and clustering algorithms. Together, 

these methods identify critical variables influencing flood and drought risks and analyse their 

interconnections at the river basin scale. 
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Figure 3.2. Methodological flowchart of data synthesis from systematic review and quantitative analysis. 

As outlined in Section 1.1, this research utilized a systematic literature review as its foundational 

methodology, both to critically appraise existing studies and to systematically gather relevant data. 

Unlike traditional literature reviews, which are often narrative in nature and may be influenced by 

the subjective choices of the reviewer, a systematic literature review follows a rigorous and 

transparent process. This approach involves the application of clearly defined inclusion and 

exclusion criteria, comprehensive search strategies, and reproducible coding processes, ensuring 

that the resulting analysis is both unbiased and methodologically robust. 

By adopting a systematic approach, this research was able to extract not only key themes and 

methodologies but also interrelated risk parameters and their connections across diverse 

disciplines. This level of detail and precision far exceeds the capabilities of traditional reviews, 

which often focus on providing a general overview of the literature without delving into nuanced 

interdependencies. Moreover, the systematic process reduces the potential for author bias, 

enabling a broader, more comprehensive synthesis of knowledge. 

The resulting analysis provides a solid foundation for constructing an integrative framework to 

assess flood and drought risks. This framework benefits from the systematic approach’s ability to 

incorporate diverse perspectives and methodologies, ensuring that the knowledge base is 
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expansive, interdisciplinary, and methodologically sound critical qualities for addressing the 

complex and multifaceted nature of hydrological risks. 

The systematic review initiated an exhaustive exploration of literature related to flood and drought 

concepts, with a particular emphasis on associated risk factors. Comprehensive searches were 

conducted using databases like Scopus and Web of Science, guided by keywords refined during 

the background research phase. The publications were then screened based on specific inclusion 

criteria, such as publication date, language, and relevance to the central research question. This 

process focused on developing an integrated framework capable of concurrently assessing flood 

and drought risks by identifying the parameters driving these phenomena. 

Table 3.1 outlines the systematic steps undertaken to locate and extract relevant information from 

the reviewed publications. This structured and meticulous approach ensured comprehensive and 

unbiased literature coverage, forming a strong foundation for the subsequent stages of the 

research. 

Table 3.1. Steps taken in the systematic literature review to find and extract information from publications. 

Step Definition Performed Remarks 

Define the research 
question 

Articulate the research question or 
hypothesis to identify relevant 

keywords and search terms 

What are the causes of 
flood and drought risk at 

a river basin scale? 

 

Develop a search 
strategy 

Identify keywords and phrases 
plus using Boolean operators 

"flood" AND "drought," 
combined with one or 
more of the following 

root words: "risk," 
"framework," "cause," 

and "analysis." 

Used “*” to include 
various types of the 

words such as “flooded”, 
“flooding” and 

“droughts” 

Select databases Choose appropriate academic 
databases and search engines. 

Web of Science and 
Scopus 

extensive coverage of 
scientific and 

environmental literature 

Search the databases Enter the developed search terms 
and apply filters 

Language and publication 
date filters were applied 

 

Screen the results Review titles and abstracts for 
relevance. Exclude clearly 
irrelevant papers and apply 

predefined inclusion and exclusion 
criteria. 

2000 onwards, in English, 
focusing on flood and 

drought risks. 

Study type, quality rigor, 
duplicate publication, 

outdated methodologies 
were also some of other 

exclusion criteria. 
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Retrieve full texts Obtain the full-text versions of 
selected studies for a detailed 

review. 

Full text downloaded 
whenever possible. 

Tried alternative paths 
such as direct request 

from the authors if the 
publication was not 

provided through library 
resources. 

Content analysis and 
data extraction 

Develop a standardized form or 
use software tools to 

systematically extract relevant 
information from the studies. 

Combined excel and 
word document to record 

and manifest the 
extracted data and open 

code the latent content of 
publications. 

Quantitative methods 
used to analyse some 

correlation and clustering 
of thematised content. 

Quality assessment Evaluate the quality of the studies 
using established criteria or 

checklists relevant to the field of 
study. 

A combination of 
publication metrics and 
peer review assessments 
of papers were applied. 

 

Data synthesis Summarize and synthesize the 
extracted data, identifying 

common themes and patterns. 

Matrices, charts and 
narratives used to 

summarise the acquired 
information. 

 

Document the 
process 

Maintain a detailed record of the 
search strategy, databases used, 
keywords, and filtering criteria. 

Document the number of articles 
identified, screened, and included 

in the review. 

A separate account was 
created to maintain 

records. A review paper 
was published from this 
systematic research early 

results.  

 

Review and update Periodically review and update the 
search strategy and results to 

include the latest research 
developments. 

The database was updated 
and included in the 

research. 

 

The research question, "What are the causes of flood and drought risk at a river basin scale?" 

directed the systematic review, ensuring a targeted and precise approach. a Boolean keyword search 

strategy specifically designed to conduct a structured and comprehensive search on flood and 

drought risk assessments (Figure 3.3). This approach ensures that the systematic literature review 

captures a broad collection of publications addressing key aspects such as integrated frameworks, 

modeling techniques, and socio-economic considerations. By combining hazard-specific terms 

(e.g., "flood" and "drought") with keywords related to risk evaluation and methodologies such as 

"risk," "framework," "cause," and "analysis”, this search framework facilitates the identification of 

relevant interdisciplinary literature. The strategy aims to encompass diverse factors influencing 

flood and drought phenomena, particularly at the river basin scale, ensuring a holistic and inclusive 

foundation for the research. Filters were applied to refine the search, restricting the results to 
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studies published in English after the year 2000 and categorized as peer-reviewed articles or 

institutional/governmental reports. 

 

Figure 3.3. Boolean keyword search strategy for systematic literature review on flood and drought risk 

assessments. 

The inclusion criteria for the systematic literature review were carefully chosen to ensure relevance, 

credibility, and alignment with the research objectives. These criteria include the relevance of 

studies to the research objectives, peer-reviewed publication status, publication date, language, and 

the geographical and thematic scope. Specifically, studies were required to directly address flood 

and/or drought risks at the river basin scale or related concepts, such as hydrological modelling, 

risk assessment frameworks, socio-economic impacts, or mitigation strategies. This ensured 

alignment with the overarching research aim. Only peer-reviewed articles or 

institutional/governmental reports were included to maintain the credibility and scientific rigor of 

the selected sources (Table 3.2). The review focused on studies published from the year 2000 

onwards to capture recent advancements, methodologies, and technologies, ensuring the relevance 

of the findings to contemporary climate and hydrological challenges. To maintain consistency and 

accessibility during the review process, only studies published in English were considered, unless 

critical works in other languages were available with translations. Additionally, studies had to 

explicitly address parameters, methods, or case studies related to river basins or hydrological 

extremes, such as floods and droughts, to provide meaningful insights into spatial and temporal 

dynamics relevant to the research question. Titles and abstracts were carefully reviewed to exclude 

irrelevant works, with additional criteria such as quality rigor and methodological relevance applied 

to ensure the inclusion of impactful studies. 
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Table 3.2. Distribution and types of sources included in the study. 

Publication Type  The quantity of sources 
Peer reviewed Journal papers 707 
 

Book chapters 18 
Grey literature Institutional reports 38 
 

Datasets 6 
 

Conference papers 217 
 

Institutional reports 38 
Total 

 
981 

The project's Excel database was prepared for analysis using the open-source software KNIME, 

enabling the cleaning of inevitable human-induced data entry errors and separating cells containing 

multiple values into distinct fields. Following this preparation, the cleaned data were imported into 

a Tableau dashboard to facilitate the visualization of data trends and analytical querying, including 

relational data analyses. In alignment with the study’s specific research questions, the analysis 

examined the relational connections among the four themes of inquiry. Each variable was assessed 

both individually (as independent variables) and in relation to other variables (as dependent 

variables) (Table 3.3). The results of this analysis are elaborated further in the Results and 

Discussion sections. 

Table 3.3. Analysis matrix for interpreting the manifest and latent data. 

  
Discipline (M) Terminology (L) Case Studies (L) Definition (L) 

Independent 
variable 

Overview 
(frequency) 

(L/M) 

X X X X 

 Temporal 
frequency (i.e., 

time) (M) 

X X X X 

 Publication type 
(M) 

N/A X X X 

 Publication origin 
(M) 

X X X X 

Dependent 
variable 

Discipline (M) X X X X 

Subsequently, these annotations were coded and integrated with the manifest data recorded in 

Excel, enabling a relational analysis that identified and grouped similar and dissimilar headings. 
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This process facilitated the identification of sub-themes and their relationships. Sections 5.2 and 

5.3 present the qualitative findings from this analysis, while the datasets were further merged 

(section 5.3 onwards) to enable a quantitative exploration such as co-occurance, Spearman and 

cosine similarity martices. This integration transformed qualitative insights into quantifiable 

metrics, enhancing methodological rigor and supporting a more detailed thematic and relational 

analysis (Elo & Kyngäs, 2008; Khirfan et al., 2020). The quantitative outcomes are further 

discussed in Sections 5.3 onward. 

literature represents a diverse disciplinary and sub-disciplinary contexts through which flood and 

drought risks are studied and addressed, as categorized by the SCImago Journal Rank (SJR) (Table 

3.4). By outlining the broad range of disciplines and their corresponding sub-disciplines, the table 

provides an important backdrop to the process of latent content extraction and subsequent 

content analysis, underscoring the multidisciplinary nature of flood and drought research. 

Incorporating these classifications into the research ensures that the latent content extraction 

process captures a wide spectrum of perspectives and methodologies. For example, fields like 

Environmental Science and Engineering contribute foundational hydrological and structural 

insights, while Economics and Business or Social Sciences provide the socio-economic and policy 

dimensions essential for comprehensive risk assessment. Similarly, disciplines like Geospatial 

Science and Computer Science enrich the research with advanced analytical tools such as GIS, 

remote sensing, and machine learning. This classification system highlights the diverse 

methodologies and thematic focus areas across disciplines, aiding in identifying relevant themes, 

datasets, and risk factors for analysis. It rationalizes the inclusion of specific parameters during 

content analysis, ensuring a balanced representation of both natural and human dimensions of 

flood and drought risks. For example, integrating contributions from Natural Hazards and Disaster 

Science helps assess vulnerabilities, while insights from Psychology and Behavioural Science 

contribute to understanding risk perception and decision-making under uncertainty. 

Table 3.4, is used between latent content extraction and content analysis, to serve as a bridge that 

links the data extraction process with the analytical phase. It ensures that the extracted latent 

content is systematically categorized, evaluated, and contextualized, aligning with the 

multidimensional objectives of this research. This approach further ensures that the developed 
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framework reflects the interconnectivity of these disciplines, facilitating an integrated flood and 

drought risk assessment. 

Table 3.4. Flood and drought risk discipline classifications and their corresponding sub-disciplines, as 

designated by SJR. 

Flood and/or drought disciplines 
tackled by source 

The sub-disciplines (discussed under each of disciplines) 
 

Agricultural, Irrigation and 
Biological Sciences 

Soil Science; Agronomy and Crop Science; Forestry; Ecology; Irrigation Systems and 
Water Management; Crop Water Use Efficiency; Drought-Resilient Agricultural (e.g., 
Kumar et al., 2017) 

Climatology Climate Modelling and Scenarios; Extreme Weather Events; Climate Variability and 
Trends; Regional and Global Climatology (e.g., Cerveny et al., 2011) 

Computer Science and 
Mathematics 

Artificial Intelligence (AI) and Machine Learning; Data Mining; Computational 
Mechanics; Modelling and Simulation (e.g., Walker et al., 2013) 

Earth and Planetary Sciences Hydrology; Geophysics; Meteorology and Atmospheric Science; Geochemistry and 
Geophysics; Geology (e.g., Camacho Guerreiro et al., 2021) 

Economics and Business Cost-Benefit Analysis of Risk Management; Water Pricing and Economics of Water 
Scarcity; Risk Financing and Insurance for Water-Related Disasters; Economic 
Valuation of Ecosystem Services; Environmental Economics; Risk Management; 
Sustainable Development; Resource Economics (e.g., Van Dijk et al., 2013) 

Environmental Science Environmental Management; Environmental Monitoring; Water Science and 
Technology; Climate Change; Ecological Modelling; Pollution and Remediation (e.g., 
Doody et al., 2014) 

Ecology and Biodiversity 
Conservation 

Wetland Ecology; Riparian Buffer Zones; Biodiversity Conservation and Floodplain 
Ecosystems; Habitat Restoration and Conservation Planning (e.g., Johnson et al., 
2020) 

Engineering Civil and Structural Engineering; Water Resources Engineering; Environmental 
Engineering; Hydraulic Engineering; River Basin Management; Hydraulic Structures 
(e.g.; dams; levees); Sediment Transport and Erosion Control; Floodplain Hydraulics 

Geospatial Science Geographic Information Systems (GIS); Remote Sensing; Spatial Analysis and 
Cartography; Land Use and Spatial Planning (e.g., Wang & Xie 2018) 

Health Sciences Environmental Health; Public Health and Epidemiology; Waterborne Diseases; 
Occupational Safety and Health; Health Risk Assessment (e.g., De Alwis & Noy, 2019) 

Law and Governance Environmental Law and Policy; Water Rights and Allocation; International Water Law 
(Transboundary Management); Disaster Governance (e.g., Haer et al., 2019) 

Natural Hazards and Disaster 
Science 

Disaster Risk Reduction; Vulnerability and Resilience Studies; Hazard Modelling; 
Emergency Preparedness and Response (e.g., Yang & Liu, 2020) 

Natural Resources Management Watershed Management; Sustainable Forestry; Water Allocation for Competing Uses; 
Integrated Resource Management (e.g., Shuster et al., 2005) 

Psychology and Behavioural 
Science 

Risk Perception and Behavioural Change; Community Engagement and Public 
Awareness; Decision-Making under Uncertainty; Psychological Impacts of Disasters 
(e.g., Paat & Schroter., 2008) 

Social Sciences, Humanitarian 
Studies and Development 

Geography; Planning and Development; Urban Studies; Public Administration; Risk 
Assessment; Policy and Administration; Social Vulnerability and Risk Perception; 
Community Resilience; Human Geography; Cultural Adaptation and Coping 
Mechanisms; Livelihoods and Food Security; Migration and Displacement due to 
Water-Related Hazards; Community Development under Hydrological Stress (e.g., 
Wong-Parodi et al., 2016) 

Telecommunications and 
Information Systems 

Early Warning Systems; Data Communication for Emergency Services; Decision 
Support Systems; Sensor Networks for Environmental Monitoring (e.g., McNutt et al., 
2017) 

Urban and Regional Planning Sustainable Urban Development; Green Infrastructure and Nature-Based Solutions; 
Land Use Planning for Risk Reduction; Critical Infrastructure Protection (e.g., 
Kalantari et al., 2018) 
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A rigorous content analysis of selected papers followed, extracting key information on research 

themes, geographical coverage, parameters, and the interconnections between these factors. This 

step was essential in understanding the diverse methodologies employed in existing studies and 

revealing complex relationships influencing flood and drought hazards. Data extraction and 

organization were performed using a dual approach. Explicit characteristics of each source, such 

as title, year, type, and geographical scope, were recorded in an Excel file (Table 3.5), while latent 

content was annotated and open-coded in a Word document. The Word document captured 

nuanced insights in an annotated bibliography format, categorized under specific headings to 

minimize subjectivity. Headings included but not limited to data, process, methods and modelling, 

case study, research comparison, subjects and statistics and study compliance. 

Table 3.5. A sample from the produced database of the most cited papers in the literature on flood and 

drought. 

Author(s) Publication 
year 

Title Publication 
type 

Details Citations Keywords 

Manuela I. 
Brunner, 
Louise J. 

Slater, Lena 
M. 

Tallaksen, 
Martyn P. 

Clark 

2021 Challenges 
in modeling 

and 
predicting 
floods and 
droughts: A 

review 
 

Journal 
Paper (Peer 
reviewed) 

Highly 
detailed 

220 droughts, floods, forecasting, 
hydrologic 

extremes, prediction 

 

The compiled resources were systematically classified, enabling the derivation of numerous 

insights. By analyzing the content, keywords, and methodologies across disciplines, and 

incorporating network theory, a series of scientographs were created to visualize the relationships 

between key topics and parameters, as detailed in Section 2.5 (Fasihi et al., 2021). These 

scientographs illustrate the interconnections between themes and disciplines, shedding light on 

how flood and drought risk assessments are interconnected across various fields of study. 

Geographical and temporal trends of projects, along with global agreements and expert opinions 

on flood and drought risk issues, were also extracted. This analysis, highlighted in Sections 2.5 and 

5.2, captures the interrelationships between the disciplines involved and identifies the major 

parameters representing each field. These findings provide a comprehensive view of how different 

disciplines contribute to understanding the risks of floods and droughts over time and across 

regions. 

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wat2.1520
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Beyond qualitative analysis, quantitative assessments were performed to identify the most 

influential collaborations among disciplines. This analysis concluded with the identification of the 

most significant and mutual pairwise connections between the causes of flood and drought risks, 

offering valuable insights into the shared drivers and interdependencies of these hydrological 

extremes. 

3.4 FROM PAIRWISE CONNECTIONS TO CAUSAL PATHWAYS OF FLOOD 

AND DROUGHT RISK  

The methodological processes fulfilling the second objective of the research, which is to develop 

an integrative framework using interpretive structural modelling, network theory, causal loop 

diagrams, and cross-entropy analysis to encapsulate key risk factors and their interdependencies in 

flood and drought risk assessment is illustrated in the following diagram (Figure 3.4). These 

processes correspond directly to Boxes 2, 3, and 4 presented in the methodology overview (Figure 

3.1). 

The first diagram demonstrates the use of network metrics to uncover and quantify the 

relationships and interdependencies between variables identified during earlier stages of the 

research. Metrics such as betweenness and closeness, authority and hub scores, eigenvector 

centrality, indegree and outdegree, as well as eccentricity and connected components allow for a 

structured analysis of how variables interact within the broader system. These metrics enable the 

identification of critical nodes and connections within the network, which inform the causal 

relationships required for building a robust flood and drought risk framework. 

This approach aligns with Box 2 of the methodology overview by showcasing the detailed 

analytical process of using network metrics to establish and quantify the relationships between the 

key variables. The metrics help prioritize factors and dependencies, ensuring that the integrative 

framework accurately captures the most influential elements of the flood and drought system. The 

second diagram represents the hierarchical structuring of these relationships using interpretive 

structural modelling. This process organizes the identified variables into a hierarchy of interactions, 

allowing the study to distinguish between foundational factors and more dependent variables. This 

step is critical for constructing a clear, actionable structure that lays the groundwork for causal 

loop diagrams. The hierarchical structuring directly feeds into the creation of causal loop diagrams 

as outlined in Box 4 (Figure 3.1). These loops visually represent feedback mechanisms and 
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interdependencies identified through interpretive structural modelling and network metrics. 

Together, these steps ensure a comprehensive understanding of how variables influence each other 

dynamically. By integrating these analytical steps, the diagrams demonstrate how the study moves 

beyond static or fragmented analyses to capture the complex and interdependent nature of flood 

and drought risks. This iterative and structured approach lays the foundation for achieving the 

study's overarching aim of constructing a simultaneous risk assessment framework for flood and 

drought at the river basin scale. 

The methodology begins with constructing a Structural Self-Interaction Matrix (SSIM) to detail 

pairwise interactions (explained through previous sections of this chapter) among various 

parameters through pairwise comparisons. This SSIM (symbols explained in section 4.6) then 

serves as the foundation for creating an initial reachability matrix by translating the VAXO matrix 

into binary form, facilitating the identification of direct and indirect parameter interactions. 

Subsequently, the Final Reachability Matrix is developed to examine transitive relationships, 

enabling the assessment of the framework's hierarchical structure through Level Partitioning. 

Finally, “Matrice d'Impacts Croisés Multiplication Appliquée à un Classement” MICMAC Analysis 

is applied, emphasizing the importance of understanding the hierarchical organization of elements 

and their interconnections, a key aspect in effective risk management planning and control. The 

subsequent step involves developing and interpreting the causal paths (Eshun and Chan, 2021).  

Figure 3.4. Flowchart of methodologies and processes used to identify the essential causal pathways to 

assess flood and drought risk. 
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These causal paths and parameters are treated as network edges and analysed using various metrics 

such as betweenness and closeness centrality, authority, and hub scores. Parameters are then 

ordered based on their performance across 11 network metrics. The top 25% of parameters in 

each metric are selected for input into the Cross Entropy algorithm, which identifies the final 30 

parameters with the most influential interactions in assessing flood and drought risk. Finally, these 

parameters are reintegrated into Causal Loop Diagrams (CLDs) to extract the essential pathways 

for flood and drought risk assessment. These steps provide the framework mentioned in second 

objective and partially the overall aim of the research (Figure 3.4). 

3.5 METHODS USED TO CREATE AND ANALYSING RISK MAPS FROM 

CAUSAL PATHWAYS  

In the final section of this study, corresponding to the third objective of this research, a prominent 

river basin (River Severn Basin District) is selected for spatiotemporal analysis of the essential 

causal pathways identified in earlier steps.  

 

Figure 3.5. Methodological approach used to estimate flood and drought risk at the river basin scale. 

This process begins with the collection of spatial data for various basin parameters, followed by 

the application of the fuzzy overlay function to estimate monthly risk maps for flood and drought. 
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These maps are then validated and tested for efficiency using Receiver Operating Characteristic 

(ROC) curves.  

The temporality of risk and the sensitivity of these maps to input variables are assessed. 

Subsequently, an XGBoost algorithm, combined with trend analysis, is used to predict risks for 

the coming year. Finally, these risk maps are tested for efficiency against observed flood events, 

and an aleatoric uncertainty analysis is performed. The overall methodology of this section is 

provided in Figure 3.5. 
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4 METHODS, ANALYTICAL TECHNIQUES AND 

DATASETS 
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4.1 INTRODUCTION TO METHODS CHAPTER  

The primary goal of this thesis is to develop a framework for simultaneously assessing flood and 

drought risks at a river basin scale. To achieve this goal, three specific objectives were pursued. 

The methods used to address each of these objectives are thoroughly explained in separate 

sections. 

To perform a statistical analysis of thematic co-occurrence matrices of research and practice in 

flood and drought risk literature to elucidate major variables in play and their interrelations (Section 

4.2). 

To develop an integrative framework that encapsulates key risk factors and their interdependencies 

(Section 4.5). 

To validate the framework and create a mutual flood and drought risk indicator for river basins 

(Section 4.10). 

4.2 QUANTITATIVE ANALYSIS OF CO-OCCURRENCE THEMES IN FLOOD 

AND DROUGHT RESEARCH  

The methodology behind acquiring qualitative understanding of themes responsible to analyse 

flood and drought risk was explained in section 3.2. In this section, mhe methodology used to 

analyse thematic co-occurrence in flood and drought research involved a combination of several 

analytical techniques and applications. These methods were aimed at grouping fields and subfields, 

identifying parameters, and exploring interconnections within the research (Mourão and Nunes, 

2016). The primary methods used include co-occurrence matrix analysis, distribution analysis of 

pairwise theme co-occurrence, linear and non-linear correlation assessments, and clustering 

techniques. Each method provided unique insights into the relationships between research themes, 

ultimately contributing to a robust framework for flood and drought risk assessment. By 

combining these methodologies, the analysis provides a comprehensive view of how different 

research themes are interconnected, identifies emerging fields, and guides the selection of 

parameters for flood and drought risk assessment frameworks. This holistic approach enhances 

the understanding of thematic dynamics and informs strategic research planning. 
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4.2.1 Co-Occurrence Matrix: Description and Equation 

A co-occurrence matrix is a fundamental tool used in data analysis to study the frequency with 

which pairs of items (such as words, themes, or categories) appear together in a dataset. In the 

context of research, a co-occurrence matrix helps identify and quantify the relationships between 

different themes or fields by counting how often they appear together in the same documents. 

This matrix provides insights into the interconnectedness and associations among various research 

areas, which can be crucial for identifying trends, gaps, and potential areas for interdisciplinary 

research.  

Structurally, the co-occurrence matrix is a square matrix where rows and columns represent the 

different themes or categories being studied and each cell (i,j) contains a value that indicates the 

number of times theme i and theme j co-occur in the dataset. To enhance interpretation, the matrix 

is often visualized using a heatmap, where colours represent the frequency of co-occurrence, 

suggesting strength of associations. The co-occurrence matrix can be formally defined using the 

following steps.  

Let D be a collection of documents, and 𝑇={t1,t2,…,tn} be the set of themes. Next a binary matrix 

B (m rows and n columns) where each row represents a document, and each column represents a 

theme. The element bij is 1 if theme tj appears in document di and 0 otherwise.  

The co-occurrence matrix C is computed by multiplying the binary matrix B with its transpose BT 

(Equation 4.1). The element Cij of the co-occurrence matrix represents the number of documents 

in which themes ti and tj co-occur (Equation 3.2). 

𝐶 = 𝐵𝑇 . 𝐵      Eq. 4.1 

𝐶𝑖𝑗 = ∑ 𝑏𝑘𝑖
𝑚
𝑘=1 ⋅ 𝑏𝑘𝑗      Eq. 4.2 

Consider a simplified example with three themes (T1, T2, T3) and four documents (D1, D2, D3, 

D4). So, document-Theme Matrix B and co-occurrence matrix C could be like equation 4.3 and 

4.4, respectively. 



 

94 

   𝐵 =  (

1 1 0
0 1 1
1 0 1
1 1 1

)     Eq. 4.3 

   

𝐶 =  𝐵𝑇 . 𝐵 =  (
3 2 2
2 3 2
2 2 3

)     Eq. 4.4 

Some of the initial applications of this matrix can be concluded as the following.  

• Complementarity and Interdisciplinary Research: Co-occurrences indicate that specific 

thematic pairings are consistently considered together, suggesting complementarity in 

flood and drought research. Combining insights from diverse themes leads to a more 

holistic understanding of environmental studies due to their interdisciplinary nature. 

• Identifying Research Gaps: Less frequently associated topics may offer opportunities for 

innovative perspectives and solutions that are not typically associated with each other. 

• Trends and Evolution: Emerging themes may indicate shifts in focus due to environmental 

challenges or technological advances, perhaps reflecting temporal trends. 

• Strategic Planning for Future Research: By understanding the current landscape of research 

themes, institutions and policymakers can strategically fund and promote studies in areas 

that bridge well-established and emerging fields, fostering innovation and comprehensive 

knowledge development. 

4.2.2 Correlation matrix: Description and Equation 

A correlation matrix is a table showing correlation coefficients between sets of variables. Each 

random variable (RV) in the table is correlated with each of the other values in the table. This 

matrix is symmetric because the correlation between X and Y is the same as Y and X. The purpose 

of a correlation matrix is to summarize data, as an input into a more advanced analysis, and as a 

diagnostic for advanced analyses. A common use is to assess relationships between numerical 

variables. 
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4.2.2.1 Pearson correlation coefficient 

The Pearson correlation coefficient, often used in these matrices, is defined for two variables X 

and Y as: the ratio between their covariance and standard deviation of each of them (Equation 4.5) 

(Lee Rodgers and Nicewander, 1988). 

𝜌𝑋,𝑌 =
∑(𝑋𝑖−𝑋)(𝑌𝑖−𝑌)

√∑(𝑋𝑖−𝑋)
2

∑(𝑌𝑖−𝑌)
2
    Eq. 4.5 

where Xi and Yi  are individual observations of variables X and Y. 𝑋̅ and 𝑌̅ are the means of X 

and Y. 

4.2.2.2 Spearman correlation coefficient 

The Spearman correlation coefficient, also known as Spearman's rank correlation coefficient or 

Spearman's rho (𝜌), is a non-parametric measure of rank correlation. It assesses how well the 

relationship between two variables can be described using a monotonic function. Unlike the 

Pearson correlation, which measures linear relationships and assumes that the data are normally 

distributed, Spearman's correlation does not require a normal distribution and is less sensitive to 

outliers and skewed distributions (Myers and Sirois, 2004). 

Spearman's correlation evaluates the monotonic relationship between two variables based on the 

ranks of the data rather than the raw data itself. This means it assesses whether the data in one 

variable increase or decrease consistently in relation to the data in the other variable. It's particularly 

useful when the data do not meet the assumptions necessary for Pearson correlation and for 

ordinal data where ranking is more appropriate than using actual values. 

Spearman's correlation coefficient can be calculated using the following steps. Firstly, assign ranks 

to the data for each variable. If there are ties, assign to each tied value the average of the ranks that 

they would have otherwise occupied. Next, compute the difference between the ranks of 

corresponding values (Equation 4.6). 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
      Eq. 4.6 
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Where di is the difference between the ranks of corresponding values of the two variables, and n 

is the number of observations. A Spearman correlation of +1/-1 implies a perfect 

positive/negative monotonic relationship, meaning as one variable increases, the other variable 

consistently increases/decreases. A Spearman correlation of 0 implies no monotonic relationship. 

4.2.2.3 Cosine similarity index 

Cosine similarity index (Equation 4.7), on the other hand, measures the cosine of the angle between 

two non-zero vectors in a multi-dimensional space, which in the context of co-occurrence data, 

represents the similarity in the pattern of co-occurrences rather than the magnitude (Salton & 

McGill, 1983). A value of 1 indicates that the two vectors are in the same direction (high similarity), 

while 0 indicates orthogonality (no similarity). When interpreting these metrics together in the 

context of co-occurrence of research themes, it's crucial to consider that Pearson and Spearman 

coefficients reveal the direction and type of relationship (linear or monotonic), whereas cosine 

similarity focuses on the degree of overlap in the presence of themes. Together, they can provide 

a comprehensive understanding of the relationships between themes, revealing not only which 

themes tend to co-occur but also the nature of their co-occurrence patterns, be they consistent, 

linear, or merely frequent. 

cos(𝜃) =
𝑨⋅𝑩

|𝑨||𝑩|
      Eq. 4.7 

Where 𝑨 ⋅ 𝑩 is the dot product of vectors 𝑨 𝑎𝑛𝑑 𝑩. |𝑨| 𝑎𝑛𝑑 |𝑩| are the Euclidean norms (or 

magnitudes) of the vectors 𝑨 𝑎𝑛𝑑 𝑩, respectively. 

The dot product of two vectors 𝑨 = [𝑎1, 𝑎2, … , 𝑎𝑛] 𝑎𝑛𝑑 𝑩 = [𝑏1, 𝑏2, … , 𝑏𝑛] is calculated as 

equation 4.8. 

𝑨 ⋅ 𝑩 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛   Eq. 4.8 

 

The norm (or magnitude) of a vector 𝑨 (and B similarly) is calculated as equation 3.9. 

|𝑨| = √𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2     Eq. 4.9 

Plugging these into the cosine similarity formula gives equation 4.10. 
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cos(𝜃) =
𝑎1𝑏1+𝑎2𝑏2+⋯+𝑎𝑛𝑏𝑛

√𝑎1
2+𝑎2

2+⋯+𝑎𝑛
2 √𝑏1

2+𝑏2
2+⋯+𝑏𝑛

2
                   Eq. 4.10 

Some of the possible combinations of the characteristics of these three matrices are explained 

below. 

• Consistent Findings: Themes that show similar correlation or similarity patterns across all 

three measures indicate robust relationships worth exploring further, as they suggest that 

the themes are related regardless of the statistical method used. 

• Differences Between Pearson and Spearman: A significant difference between Pearson and 

Spearman correlations could indicate that the relationship between the two themes is 

nonlinear. For instance, themes with a higher Spearman correlation compared to Pearson 

may be related nonlinearly but consistently. 

• High Cosine Similarity with Low Correlation: If two themes have a high cosine similarity 

but low Pearson or Spearman correlation, this might suggest that the themes co-occur 

frequently but not necessarily in a way that is linearly or monotonically consistent. It could 

also indicate a few studies with very high co-occurrence counts affecting the cosine 

similarity. 

• Contradictory Signs: If Pearson and Spearman's correlations have opposite signs, this 

could warrant a closer look. A nonlinear relationship may be present, or outliers or data 

distribution characteristics are affecting the Pearson correlation. 

• Outliers and Distribution: Since Pearson is sensitive to outliers, while Spearman is not, 

comparing the two can provide insights into the influence of extreme values. If Spearman's 

correlation is significantly higher than Pearson's, it might suggest that outliers are present 

and affecting the Pearson calculation. 

4.3 DBSCAN  CLUSTERING APPROACH IN THE CONTEXT OF CO-

OCCURRENCE MATRIX 

4.3.1 DBSCAN Clustering Approach 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a popular clustering 

algorithm used to identify clusters in large spatial datasets by looking for areas of high density 

separated by areas of low density. It is particularly well-suited for datasets with noise and outliers. 

The DBSCAN algorithm requires two parameters: the radius 𝜖 (eps) and the minimum number of 
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points (𝑚𝑖𝑛𝑃𝑡𝑠)required to form a dense region (Ester et al., 1996). In the context of the co-

occurrence matrix prepared in this research, the DBSCAN clustering approach and the knee 

method can be used to identify clusters of themes that frequently co-occur.  Steps of DBSCAN 

could be summarized as follows: 

• Initialization: Choose an arbitrary starting point that has not been visited. 

• Density Reachability: Retrieve all points density-reachable from the starting point with 

respect to 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠. A point 𝑝 is directly density-reachable from a point 𝑞 if 𝑝 is 

within the 𝜖-neighbourhood of 𝑞 and 𝑞 is a core point (contains at least 𝑚𝑖𝑛𝑃𝑡𝑠 points 

within its 𝜖 -neighbourhood). 

• Cluster Formation: If 𝑝 is a core point, a cluster is formed. If 𝑝 is a border point (reachable 

from a core point but less than 𝑚𝑖𝑛𝑃𝑡𝑠), it is added to the cluster. 

• Iteration: This process continues until all points have been visited. 

• Noise Identification: Points that are not reachable from any core point are classified as 

noise. 

Determining the optimal 𝜖 value is crucial for the effectiveness of DBSCAN. The knee method 

(or elbow method) is commonly used to find this optimal value (Equation 4.12).  

There are 6 general steps to cluster themes which are as follows: 

First, it is needed to calculate cosine similarity (Equation 4.10), next subtract it from 1 to produce 

cosine dissimilarity. Next step is to calculate k-distance for each point (Equation 4.11) 

𝑑𝑖,𝑘 = k-th smallest distance from point 𝑖   Eq. 4.11 

Step 4 is to plot k-distance and find the optimal Knee point curvature using concept of derivative 

(Equation 4.12). 

𝜅 =
|𝑓′′(𝑥)|

(1+(𝑓′(𝑥))
2

)
3/2     Eq. 4.12 

The fifth step is defining neighbourhood for DBSCAN (Equation 4.13). 

𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷 ∣ dist(𝑝, 𝑞) ≤ 𝜖}   Eq. 4.13 
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And the final step is to check core point condition for DBSCAN (Equation 4.14) 

|𝑁𝜖(𝑝)| ≥ minPts     Eq. 4.14 

4.4 APPLYING HIERARCHICAL CLUSTERING TO CO-OCCURRENCE DATA 

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. 

It can be divided into two main types. Agglomerative (Bottom-Up) clustering, which is the most 

common type. It starts with each observation as its own cluster and iteratively merges the most 

similar clusters until all observations are in one single cluster. Second type is Divisive (Top-Down) 

Clustering (Murtagh and Legendre, 2014). This method starts with all observations in a single 

cluster and iteratively splits the least similar clusters until each observation is in its own cluster. 

This research benefited from Agglomerative Hierarchical Clustering. Firstly, this method 

computes the distance matrix for two points 𝑨 and 𝑩 in Euclidean space (Equation 4.15). 

Distance(𝑨, 𝑩) = √∑ (𝑎𝑖 − 𝑏𝑖)2𝑛
𝑖=1    Eq. 4.15 

Next is finding distance between clusters. Different linkage criteria can be used to determine the 

distance between clusters. Equation (4.16) calculates the minimum linkage. 

𝑑(𝐴, 𝐵) = 𝑚𝑖𝑛{ Distance(𝑎, 𝑏): 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  Eq. 4.16 

In this segment, complete linkage also called as maximum linkage would be calculated (Equation 

4.17). 

𝑑(𝐴, 𝐵) = 𝑚𝑎𝑥{ Distance(𝑎, 𝑏): 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}  Eq. 4.17 

The applicational linkage, (mean linkage) is derived using the following equation (Equation 4.18). 

𝑑(𝐴, 𝐵) =
1

|𝐴||𝐵|
∑ ∑ Distance(𝑎, 𝑏)𝑏∈𝐵𝑎∈𝐴    Eq. 4.18 

After completing these sections for each point as a separate cluster, it is needed to compute initial 

distance matrix for all points. All these steps should be iterated to find two clusters that are closest, 

merge them and update the distance matrix by calculating the distance between the new cluster 

and all other clusters using the chosen linkage criteria. Final step is to update the dendrogram to 

include this new cluster. 
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Now that there is enough analysis to find relevant research themes, their interactions, trends and 

clusters, it is time to retrieve the common sub-themes, their mutual parameters and respective 

pairwise connections to help identify the causes to produce a framework to assess the risk of flood 

and drought in a river basin scale. 

With sufficient analysis identifying relevant research themes, their interactions, trends, and clusters, 

the next step is to extract common sub-themes, their shared parameters, and respective pairwise 

connections. This extraction will aid in identifying the underlying causes and developing a 

framework to assess the risk of floods and droughts on a river basin scale. 

4.5 ASSESSMENT OF THE HIERARCHICAL STRUCTURE OF RISK 

PARAMETERS AS A BASIS FOR CREATING THE CAUSAL LOOP 

FEEDBACK 

4.5.1 Describing the development of Structural Self-Interaction Matrix (SSIM) 

The SSIM, which is a square matrix of n parameters (P1…Pn) defines the interactions among 

various parameters using a pairwise comparison, where the columns and rows are represented by 

i and j, respectively. Symbols V, A, X, and O are used to describe the nature of relationships 

between these parameters. The parameters are arranged in a matrix and plotted on an x and y-axis 

pane, such that a cell Pij in the matrix illustrates the interaction between Pi and Pj along the x and 

y-axis, respectively. The meanings of VAXO are as follows: 

V = Pi influences Pj, but Pj does not influence Pi; 

A = Pj influences Pi, but Pi does not influence Pj; 

X = Both Pi influences Pj and Pj influences Pi; 

O = There is no direct relationship between Pi and Pj. 

The matrix appears symmetric, with all possible connections denoted using VAXO symbols on 

one side of the diagonal. 
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4.5.2 Development of Reachability Matrix (RM): Producing initial reachability 

matrix 

The formation of the initial reachability matrix originates from the SSIM by converting the VAXO 

matrix into a binary format. This conversion is based on specific conditional rules that interpret 

the VAXO notations into binary values of 1 or 0 along both the x and y axes. The rules for this 

transformation are applied based on the VAXO symbol present in each “ij” cell of the SSIM as 

follows: 

V, the ij cell becomes 1 and the ji cell becomes 0; 

A, the ij cell becomes 0 and the ji cell becomes 1; 

X, the ij cell becomes 1 and the ji cell becomes 1; 

O, the ij cell becomes 0 and the ji cell becomes 0. 

4.5.3 Final Reachability Matrix (RM) 

The focus of this study is to assess risks through a system thinking approach, where the initial 

matrix outlines the immediate connections among parameters. To uncover both direct and indirect 

relationships, a transitivity examination is employed. Transitivity examination operates on the logic 

that if Parameter 1 (P1) is linked to Parameter 2 (P2), and P2 is linked to Parameter 3 (P3), then 

P1 also has an indirect connection with P3. Performing this check for transitive relationships, 

especially in a large matrix, can be complex and necessitates an automated process for accuracy 

and efficiency. To facilitate this, an R function was developed to produce the final reachability 

matrix. This matrix then informs level partitioning (section 5.2.4) and the MICMAC analysis, 

which evaluates the parameters based on their driving and dependency characteristics, as detailed 

later in section 5.2.5. 

Transitivity is a fundamental concept in mathematics. It describes a property where if an element 

𝑎 is related to 𝑏 and 𝑏 is related to 𝑐, then 𝑎 is also related to 𝑐. This concept can be checked using 

a matrix representation of a relation. Eventually, driving and dependence power of each parameter 

will be calculated as the sum of the rows and columns of final reachability matrix, respectively.  

mathematical background of transitivity check has following steps. 
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• Binary Relation and Adjacency Matrix: 

Consider a set 𝑆 with elements {𝑠1, 𝑠2, … , 𝑠𝑛}. A binary relation 𝑅𝑅𝑅 on 𝑆 can be represented by 

an 𝑛 × 𝑛 adjacency matrix 𝐴, where 𝐴[𝑖][𝑗] = 1 𝑖𝑓(𝑠𝑖, 𝑠𝑗) ∈ 𝑅 and 𝐴[𝑖][𝑗] = 0 otherwise. 

• Transitivity Definition: 

A relation 𝑅 on a set 𝑆 is transitive if whenever(𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅, then (𝑎, 𝑐) ∈ 𝑅. 

In terms of the adjacency matrix 𝐴, the relation 𝑅 is transitive if, for all 𝑖, 𝑗, 𝑘: 

𝐴[𝑖][𝑗] = 1 𝑎𝑛𝑑 𝐴[𝑗][𝑘] = 1   ⟹   𝐴[𝑖][𝑘] = 1𝐴[𝑖][𝑗] = 1 Eq. 4.19 

• Transitivity Check Using Matrix Multiplication: 

To check for transitivity, matrix multiplication can be used. Specifically, to check if 𝐴2 ⊆ 𝐴, where 

𝐴2 is the matrix product of 𝐴 with itself. 

First, compute 𝐴2: 

𝐴2[𝑖][𝑘] = ∑ 𝐴[𝑖][𝑗]𝑛
𝑗=1 ⋅ 𝐴[𝑗][𝑘]   Eq. 4.20 

Here, 𝐴2[𝑖][𝑘] indicates whether there is a path of length 2 from Si to Sk. 

In Transitivity Condition, Check if 𝐴2[𝑖][𝑘] ≤ 𝐴[𝑖][𝑘] for all 𝑖, 𝑘. If this condition holds, the 

relation is transitive. 

First, computing 𝐴2 by multiply the adjacency matrix 𝐴 by itself to obtain 𝐴2. Next, comparing 

𝐴2 with 𝐴 to verify that for all 𝑖 and 𝑘, if 𝐴2[𝑖][𝑘] > 0, then 𝐴[𝑖][𝑘] = 1. 

4.5.4 Level partitioning of risk parameters 

At this stage, the hierarchical structure and the directional nature of the relationships amongst 

parameters including risk components are determined through a detailed analysis. This process 

involves calculating three key sets: the reachability set (Rs), the antecedent set (As), and the 

intersection set (Is). The reachability set is composed of elements that have a value of 1 in their 
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corresponding row in the final reachability matrix, including the risk factor itself. Conversely, the 

antecedent set consists of risk factors that have a value of 1 in their respective column. The 

intersection set is then defined as the set of risk factors that are common to both the reachability 

and antecedent sets. 

According to the hierarchical partitioning rule, elements are assigned to the same level if their 

reachability set is a proper subset of their intersection set. This leads to a systematic and iterative 

process for classifying them into distinct levels. This process includes: (i) identifying elements that 

have identical members in both their reachability and intersection columns, and (ii) removing these 

risk factors from consideration and revisiting the first step. This iterative method continues until 

all risk parameters are appropriately categorized and allocated into their respective hierarchical 

levels. A schematic table is presented to help illustrating the outcome of the level partitioning step 

(Table 4.1) 

Table 4.1. Schematic representation of a level partitioning table. 

Parameter Reachability Set (Rs) Antecedent Set (As) Intersection Set (Is) Level 

P1 n1 all but m1, m2, ..., mk n1 1 

P2 all but nx all but m1, m2, ..., mk all but m1, m2, ..., mk 1 

P3 n3 m1, m2, ..., mk n3 1 

... ... ... ... ... 

P{n1} all but nx all but n1, m1, m2, ..., mk all but n1, m1, m2, ..., mk 2 

P{n2} all but nx all but n1, m1, m2, ..., mk all but n1, m1, m2, ..., mk 2 

P{n3} all but nx all but n1, m1, m2, ..., mk all but n1, m1, m2, ..., mk 2 

Px nx all but nx nx 3 

 

4.5.5 MICMAC analysis visualisation 

The method categorizes elements into four quadrants based on their driving and dependency 

powers that are extracted from level partitioning. These quadrants represent different 

characteristics of the elements within a system (Figure 4.1). 

First quadrant contains autonomous elements with low driving power, low dependency power. 

These elements have minimal interaction within the system. They neither influence other elements 

significantly nor are they significantly influenced by others. 
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Second quadrant includes dependent elements with low driving power, high dependency power. 

These elements are heavily influenced by other factors in the system but do not have a significant 

impact on other elements. 

Third quadrant filled up with independent elements, which possess high driving power, low 

dependency power. These elements have a significant influence on other elements but are not 

heavily influenced by others. 

Finally, the fourth quadrant belongs to linkage elements with high driving power, high dependency 

power. These elements have significant interactions within the system, influencing many elements 

and being influenced by many elements. 

 

 

 

 

 

 

 

 

Figure 4.1. Categorization of elements into quadrant based on their individual driving and dependence 

power. 

4.6 DEVELOPING CAUSAL LOOP DIAGRAM (CLD)  TO CAPTURE VARIOUS 

PERSPECTIVES IN RISK ASSESSMENT  

Causal Loop Diagrams (CLDs) are a visual tool used in system dynamics to represent the feedback 

loops within a system. These loops can be positive (reinforcing) or negative (balancing), and each 

type of loop has distinct mathematical characteristics (Sterman, 2000). 

As illustrated in Figure 3.4, the CLD maps out the network of interactions within the system. The 

ISM analysis, which establishes the relationship density among parameters (as observed in the final 

Reachability Matrix), lays the groundwork for the CLD to spotlight risk factors with significant 
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feedback properties. Within the diagram, the arrows represent the influence dynamics: a parameter 

at the tail of an arrow exerts an influence on the parameter at the arrowhead. Section 6.3 is totally 

devoted to this notion and completely illustrates and describes the produced feedback loops.  

Positive feedback loop (reinforcing loop) usually shown as +𝑣𝑒 or 𝑅 describes a situation in which 

a change in one element causes changes that amplify the original effect, leading to exponential 

growth or decline. On the other hand, negative feedback loop (Balancing Loop) with signs like 

−𝑣𝑒 or 𝐵 reveals that a change in one element causes changes that counteract the original effect, 

leading to stability or equilibrium (Figure 4.2). Combined feedback loop happens when the system 

has both positive and negative feedback, balancing each other to some extent. 

 

 

 

 

 

Figure 4.2. Generic Causal Loop Diagrams representing a) positive, b) negative, and c) combined feedback 

loops. 

4.7 ENHANCING FLOOD AND DROUGHT RISK ASSESSMENT FRAMEWORK 

THROUGH APPLICATION OF NETWORK THEORY IN CLD  MODELLING 

Managing flood and drought risks in dynamic environmental systems requires a robust analytical 

approach. In this context, applying graph theory to a Causal Loop Diagram (CLD) with 116 diverse 

elements proves to be an effective method. This approach goes beyond conventional analysis by 

mapping and quantifying the complex interactions that define flood and drought risks. Using 

network theory, each element and its interconnections within the CLD are identified and evaluated 

in terms of their relational strength and strategic significance. This detailed analysis enhances the 

understanding of the systemic structure and behaviour, thereby improving the model's predictive 

and explanatory capabilities. 
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4.7.1 Explanation of Girvan-Newman clustering Algorithm 

The Girvan-Newman algorithm is a method used in network theory to detect communities or 

clusters within a graph. Communities are groups of nodes that are more densely connected 

internally than with the rest of the network. The algorithm works by iteratively removing edges 

from the network to reveal these communities (Girvan and Newman, 2002). It identifies the edges 

most likely to be "between" communities by calculating edge betweenness centrality, which 

measures the number of shortest paths passing through each edge. By successively removing edges 

with the highest betweenness centrality, the network gradually breaks down into smaller, more 

densely connected components, revealing the underlying community structure. 

For an edge 𝑒 between nodes 𝑖 and 𝑗, the edge betweenness centrality 𝐶(𝑒) is defined as (Equation 

4.21): 

𝐶(𝑒) = ∑
𝜎𝑠𝑡(𝑒)

𝜎𝑠𝑡
𝑠≠𝑡∈𝑉      Eq. 4.21 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡. And 𝜎𝑠𝑡(𝑒) is the number 

of those paths that pass-through edge 𝑒. 

The algorithm starts with computing the edge betweenness centrality for all edges in the graph. 

Next, removing the edge with the highest betweenness centrality and recalculate the betweenness 

centrality. This process should be iterated until no edges remain. 

Edge removal affects the connectivity of the graph, which eventually creates communities 

(clusters). To evaluate the quality of the detected communities, the algorithm used a measure called 

modularity 𝑄. 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗)𝑖,𝑗    Eq. 4.22 

Where, (𝐴𝑖𝑗) is the adjacency matrix of the graph. (𝑘𝑖)𝑎𝑛𝑑(𝑘𝑗) are the degrees of nodes (𝑖) 

and (𝑗), respectively. (𝑚) is the total number of edges in the graph. (𝛿(𝑐𝑖, 𝑐𝑗)) is 1 if nodes (𝑖) 

and (𝑗) are in the same community and 0 otherwise. 
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4.7.2 Describing network metrics: betweenness centrality and closeness 

centrality 

Betweenness Centrality measures the importance of a node within a network based on the number 

of shortest paths that pass through it. Nodes with high betweenness centrality play a critical role 

in information flow within the network as they act as bridges between different parts of the 

network (Equation 4.21) (Freeman, 1977). 

Closeness Centrality quantifies how quickly information can spread from a given node to all other 

nodes in the network. Nodes with high closeness centrality have shorter average path lengths to 

all other nodes, indicating they are centrally located within the network (Equation 4.23) (Sabidussi, 

1966). 

For a node 𝑣, closeness centrality Cc(𝑣) is defined as: 

𝐶𝐶(𝑣) =
1

∑ 𝑑(𝑣,𝑡)𝑡
     Eq. 4.23 

Where, 𝑑(𝑣, 𝑡) is the shortest path distance between node 𝑣 and node 𝑡. The sum is taken over 

all nodes 𝑡 in the network. 

4.7.3 Describing network metrics: Eigenvector and PageRank 

Eigenvector Centrality measures the influence of a node in a network based not only on the 

number of connections it has (degree) but also on the quality of those connections. A node is 

considered important if it is connected to other important nodes. Eigenvector centrality assigns 

relative scores to all nodes in the network based on this principle (Bonacich, 1972). 

For a node 𝑖, the eigenvector centrality 𝑥𝑖 is given by the principal eigenvector of the adjacency 

matrix 𝐴. The eigenvector centrality 𝑥𝑖  can be defined as (Equation 4.24). 

𝑥𝑖 =
1

𝜆
∑ 𝐴𝑖𝑗𝑥𝑗𝑗       Eq. 4.24 
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Where, 𝐴𝑖𝑗 is the adjacency matrix of the network. 𝜆 is the largest eigenvalue of the adjacency 

matrix 𝐴. 𝑥j  is the eigenvector centrality of node 𝑗. 

PageRank, which is an algorithm originally used by Google to rank web pages in their search engine 

results, measures the importance of each node (web page) in a network based on the number and 

quality of links to it. A node with a high PageRank score is one that is linked to by many nodes 

with high PageRank scores (Page et al., 1999). 

The PageRank of a node 𝑖, denoted as𝑃𝑅(𝑖), can be defined as (Equation 4.25): 

𝑃𝑅(𝑖) =
1−𝑑

𝑁
+ 𝑑 ∑

𝑃𝑅(𝑗)

𝐿(𝑗)𝑗∈𝑀(𝑖)     Eq. 4.25 

Where, 𝑑 is the damping factor (typically set to 0.85). 𝑁 is the total number of nodes in the 

network. 𝑀(𝑖) is the set of nodes that link to node 𝑖. 𝐿(𝑗) is the number of outbound links on 

node 𝑗. 
1−𝑑

𝑁
 𝑟epresents the probability of randomly jumping to any node in the network. 

4.7.4 Explaining network metrics: Authority and Hub 

Authority and Hub Scores are components of the HITS (Hyperlink-Induced Topic Search) 

algorithm, which is used to rank web pages (Kleinberg, 1999). In a network, hubs and authorities 

exhibit a mutually reinforcing relationship: good hubs point to many good authorities, and good 

authorities are pointed to by many good hubs. An authority score measures the value of a node 

based on the number and quality of incoming links from hub nodes. A node is considered a good 

authority if it is linked to by many good hubs. Whereas a hub score measures the value of a node 

based on the number and quality of outgoing links to authority nodes. A node is considered a good 

hub if it links to many good authorities. 

Authority Score 𝑎𝑖 of a node 𝑖 is proportional to the sum of the hub scores of nodes that point to 

it (Equation 4.26). 

𝑎𝑖 = ∑ ℎ𝑗𝑗∈𝐼𝑛(𝑖)       Eq. 4.26 

Where 𝐼𝑛(𝑖) is the set of nodes that link to node 𝑖. 
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The hub score of a node 𝑖 is proportional to the sum of the authority scores of nodes it points to 

(Equation 4.27). 

ℎ𝑖 = ∑ 𝑎𝑗𝑗∈𝑂𝑢𝑡(𝑖)      Eq. 4.27 

Where 𝑂𝑢𝑡(𝑖) is the set of nodes that node 𝑖 links to. However, the notable point in this analysis 

is that The HITS algorithm updates authority and hub scores iteratively (Equations 4.28 & 4.29). 

𝑎𝑖
(𝑘+1)

= ∑ ℎ𝑗
(𝑘)

𝑗∈𝐼𝑛(𝑖)      Eq. 4.28 

ℎ𝑖
(𝑘+1)

= ∑ 𝑎𝑗
(𝑘)

𝑗∈𝑂𝑢𝑡(𝑖)      Eq. 4.29 

4.8 DESCRIPTION OF CROSS-ENTROPY MONTE CARLO ALGORITHM 

(CE)  IN THE CONTEXT OF THIS RESEARCH ’S FRAMEWORK 

In the comprehensive analysis of a network with 116 distinct parameters, the Cross-Entropy 

Monte Carlo algorithm (CE) was employed to synthesize and aggregate the rankings derived from 

11 different network metrics. This method provided a robust framework for identifying the most 

significant parameters by considering their performance across multiple metrics. The CE algorithm 

is particularly effective in optimizing complex, multi-metric landscapes, allowing for a systematic 

and probabilistic determination of the key parameters (Rubinstein & Kroese, 2004). The Cross-

Entropy Monte Carlo algorithm is a versatile method used for rare-event probability estimation, 

combinatorial optimization, and other applications. Here, it is applied for ranking aggregation. The 

steps and mathematical foundations of the CE algorithm are as follows: 

• Initialize the probability distribution 𝑃(𝜃) over the space of potential solutions. For 

ranking aggregation, this involves setting an initial distribution over possible ranking. 

• Generate N sample of solutions X1, X2, … , XN from the current probability distribution 

𝑃(𝜃). 

• Evaluate the performance of each sampled solution based on a predefined objective 

function.  
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In the context of ranking aggregation, this function could be the sum of the ranks or another 

metric that captures the consistency of a parameter's ranking across different lists. Compute the 

performance score 𝑆(𝑋𝑖) for each sample 𝑋𝑖. 

Select the top-performing samples (elite samples) based on their evaluation scores. Select the top 

𝜌 proportion of samples as elite samples {𝑋1
∗, 𝑋2

∗, … , 𝑋𝜌
∗}. 

Update the parameters of the probability distribution to increase the likelihood of generating elite 

samples (Equation 4.30). This involves adjusting the distribution based on the elite samples. 

𝜃𝑡+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

1

𝜌
∑ 𝑙𝑜𝑔 𝑃 (𝑋𝑖

∗; 𝜃)𝜌
𝑖=1    Eq. 4.30 

Repeat the sampling, evaluation, selection, and update steps until convergence criteria are met (e.g., 

a fixed number of iterations or a threshold in performance improvement). The final probability 

distribution is used to determine the most likely optimal solution, which, in this context, identifies 

the key parameters within the network. These high ranked parameters are considered risk factors 

for both flood and drought risk. These risk factors were used to identify the most critical pathways 

for assessing and modelling the risks of flooding and drought, utilizing similar parameters as input. 

The second criterion for inclusion is that the factor should not be part of a delay causal loop, 

particularly those resulting from the flood and drought risks themselves. In other words, factors 

directly or indirectly influenced by flood and drought risks were excluded from the analysis to 

avoid feedback effects that could skew the assessment. 

4.9 DESCRIPTION OF STUDY AREA FOR FURTHER APPLICATION OF THE 

PRODUCED RISK ASSESSMENT FRAMEWORK  

The proposed flood and drought risk assessment method was applied in the River Severn Basin 

District, which is a notably flood and drought-prone area located in the United Kingdom (Figure 

4.3). The geographical extent of this region spans from approximately 51.4° to 53.1° N latitude 

and 2.4° to 3.2° W longitude. The River Severn Basin was selected due to its frequent flooding 

and drought events that significantly impact the region. This area is one of the most extreme 

riverine flood-prone and drought-vulnerable districts in the UK. Flooding primarily occurs due to 

flows from upstream catchments conveyed by the River Severn and its tributaries, such as the 
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Teme, Avon, and Vyrnwy, which flow through the heart of this study area. Notable flood events 

include those in 2000, 2007, and 2014, which caused widespread inundation and damage. 

Conversely, the region has also experienced significant drought events, with notable droughts 

occurring in 1976, 1995, and 2018, leading to water shortages and agricultural impacts. The average 

elevation of the study area, depending on distance from open waters, ranges between 5 meters and 

150 meters with heights reaching above 700 meters (Figure 4.3). Human lives, households, and 

various infrastructures are highly susceptible due to the presence of large and small rivers and 

inadequate mitigation measures for both floods and droughts. The River Severn Basin covers an 

area of approximately 21,000 km² with a population density of about 150 people per km². The 

region falls into a temperate maritime climate zone with mean annual precipitation of around 750 

mm, most of which occurs during the autumn and winter months. However, prolonged dry spells 

during the summer can lead to drought conditions. In this region, the severity and consequences 

of floods are exceptionally high from October to March, corresponding to the rainy season in the 

UK. Meanwhile, drought risks are particularly acute during the summer months from June to 

August. The flat geographical location, inadequate flood and drought management strategies, 

vulnerable populations, intense precipitation in the river origins, and rapid river discharge all 

contribute to the heightened risk of flooding and drought impacts in this area. Comprehensive risk 

assessments and improved mitigation measures are essential to manage these dual hazards 

effectively. 

 

Figure 4.3. Study area, River Severn basin district, presenting elevation map, major rivers and overall 

location of study site within the UK. 
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4.10 METHODOLOGICAL OVERVIEW OF THE FLOOD AND DROUGHT RISK 

ASSESSMENT MODELS  

This research adopted a Fuzzy Logic-based geospatial approach to assess both flood and drought 

risks in the River Severn district of the United Kingdom (Figure 3.6). The Fuzzy Logic method is 

widely recognized and suitable for addressing complex problems such as risk assessments for 

natural hazards. Its simplicity, flexibility in combining multiple map layers, and ease of 

implementation in geographic information systems (GIS) make it an ideal choice for such studies 

(Pradhan, 2011). The method standardizes spatial objects of various measurement units to values 

between 0 and 1 (Espada Jr et al., 2013). Various risk equations incorporating different risk 

components are available for assessing hazard risks. However, well-established and comprehensive 

risk formulas yield the most accurate results. Considering these factors and based on an extensive 

literature review, the following risk equations have been selected for this study to identify the 

optimal technique for flood and drought risk assessments: 

𝑅𝑖𝑠𝑘 = 𝐼𝑚𝑝𝑎𝑐𝑡 × H𝑎𝑧𝑎𝑟𝑑    Eq. 4.31  

Risk =
𝐼𝑚𝑝𝑎𝑐𝑡×hazard

mitigation
     Eq. 4.32 

These formulas allow for a comprehensive assessment of both flood and drought risks by 

considering the impact of vulnerability, exposure, hazard, and the mitigating effects of 

interventions. 
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Figure 4.4. Methodological flowchart of the risk assessment approach followed in this study a) flood risk 

and b) drought risk. Red dashed line indicates application of fuzzy membership and fuzzy overlay functions. 

Black dashed line indicates application of geometric mean. Green dashed line represents risk components 

and blue boxes are the final products. NEGR (National Economic Growth Rate), WEDR (Watershed 

Economic Development Rate), GRP ration (the ratio of basin’s GRP to neighbouring basins, Consumption 

(per capita water consumption), NDVI (Normalised Difference Vegetation Index), LCLU (Land cover Land 

use) 



 

114 

4.11 DATA 

The selected parameters were analysed using advanced geospatial techniques and aggregated from 

a variety of data sources, ensuring a comprehensive and multi-dimensional approach to data 

collection (Table 4.3). The integration of diverse data sets facilitated a robust analysis, 

encompassing both large-scale and region-specific factors critical to the assessment of flood and 

drought risks. 

The importance of modelling flood and drought risk assessment lies in achieving both spatial and 

temporal resolution. At the same time, computing resources, uncertainty levels, and the capacity 

of algorithms play crucial roles. Some datasets had moderate spatial scales, such as groundwater 

data at slightly over 27 km, while others like LCLU (Land Cover and Land Use) reached a 

resolution of 25 meters in recent updates. Additionally, certain datasets, such as those used for 

estimating community resilience (e.g., inequality data), were available at a territorial level, differing 

significantly from geographically distributed parameters like rainfall. 

Overall, it was decided to use a 30-meter resolution, consistent with the elevation model, and a 

monthly temporal scale. This decision aligns with the temporal scale of most changing datasets, 

such as temperature and NDVI. Besides the substantial computing resources required, the nature 

of flood and drought phenomena differs, with floods being relatively short-lived compared to 

droughts. Thus, a monthly temporal scale offers a meaningful and practical trade-off. 

Table 4.2. Data type and sources used for modelling flood and drought risk assessment. 

Criteria Type Source Period 

Precipitation intensity  mm/hr - (Monthly) GPM mission - GEE 2000-2020 

Groundwater  Storage-mm (Monthly) GLDAS 2.2 - GEE 2003-2020 

NDVI Monthly  MOD13Q1 V6.1 - GEE 2000-2020 

LCLU Land Cover Map series UKCEH 2000-2020 

Temperature Celsius (Monthly) MOD11A2 V6.1 2000-2020 

Elevation & Slope Digital Elevation Model (DEM) NASA SRTM - GEE 2000 

Population  Gridded population of world Revision 11 GPWv4 - GEE 2000-2020 

Soil type Soil texture class (USDA System) EnvironmetriX Ltd - GEE 2000-2018 

River density & Distance to river Self-digitised from the source 
Water Framework Directive 
 cycle 3 project 2000-2020 

Inequality S80/S20 income quintile ratio UK-SSPs 2020 

Social cohesion 
% of population reporting  
neighbours willing to help) UK-SSPs 2020 



 

115 

Human Development Index  
& GRP ratio Gridded global datasets DRYAD 2000-2015 

NEGR & WEDR & Added value International Territorial Level (ITL) regions Office for National Statistics 2000-2020 

Early Warning System  
(EWS) - Flooding Polygon - Shapefile 

DEFRA data portal 
Natural Resources Wales 2006-2020 

Dike/Epee Flood defence mechanisms 
DEFRA data portal 
Natural Resources Wales 2000-2020 

Reservoirs Dam, Subsurface water storage 
DEFRA data portal 
Natural Resources Wales 2000-2020 

Transportation network 
Open street map  
Department for Transport OSM-QGIS plugin+dft website 2000-2020 

Health facilities Humanitarian open street map team humandata.org 2000-2020 

Available surface water Overall temporal resolution-shapefile 

EA - 
SurfaceWaterAvailabilityfor 
WaterResourceCharging 2000-2020 

Water resources  
sustainability index Overall temporal resolution-shapefile 

EA - 
WaterResourceAvailabilityAnd 
AbstractionReliabilityCycle2 2000-2020 

Per capita water consumption 
Global gridded monthly  
sectoral water use dataset zendoo.org 2000-2010 

Flood Level DEM+Recorded flood outline 
NASA SRTM - GEE 
DEFRA data portal 2000-2020 

4.12 UTILIZING FUZZY MEMBERSHIP FUNCTIONS FOR WEIGHT 

ASSIGNMENT IN GEOSPATIAL ANALYSIS  

To begin fuzzy overlay modelling, several critical steps must be taken following data selection. 

First, each dataset must be classified using an appropriate method. Next, all datasets should be 

normalized to ensure mutual reference compatibility. It is essential to determine the relationship 

of each dataset with flood and drought risk, including the weight of each data class and its ranking 

relative to the risks. Finally, the type of fuzzy membership function to be used must be selected 

(Table 4.4 and 4.5). This process ensures that the fuzzy overlay model accurately reflects the 

relative importance and influence of each dataset on flood and drought risk assessments. 

Initially, all data must be prepared in Boolean logic format to facilitate the assignment of weights 

using fuzzy membership functions. The data is then classified into specific classes using one of 

three classification techniques: manual, equal interval, quantile interval, natural break (Jenks), and 

standard deviation classification. Boolean weights, ranging from 1 to 10, are assigned based on the 

criteria's importance, following the information acquired as the result of the performed systematic 

literature review and content analysis (Table 4.4). 
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Subsequently, fuzzy membership functions were utilized (Dayal et al. 2018). These are 

mathematical tools used to convert crisp input data into fuzzy values, representing degrees of truth 

for various variables. Here, the Fuzzy Large, Fuzzy Small, Fuzzy Linear membership functions, 

and the Fuzzy Gamma overlay.  

If a variable is inversely related to the risk, meaning that higher values of the variable correspond 

to lower risk levels, the Fuzzy Small algorithm is used. For instance, in this context, a variable like 

elevation, where higher elevations are less prone to flooding, would be assigned using the Fuzzy 

Small algorithm (Equation 4.33). Here, higher weights indicate lower risk, thereby reflecting the 

inverse relationship. 

𝜇Small(𝑥) =
1

1+(
𝑥

𝑓2
)

𝑓1
     Eq. 4.33 

Where, 𝜇𝑆𝑚𝑎𝑙𝑙(𝑥) is the membership degree of 𝑥. 𝑓1 is the spread and  𝑓2 is the midpoint. 

Conversely, if a variable is directly related to the risk, meaning that higher values of the variable 

correspond to higher risk levels, the Fuzzy Large algorithm is applied (Equation 4.34). An example 

of this could be river density in flood-prone areas, where higher river densities correlate with higher 

risk. In this scenario, higher weights indicate higher risk, accurately representing the direct 

relationship between the variable and the risk. 

𝜇Large(𝑥) =
1

1+(
𝑓2
𝑥

)
𝑓1

     Eq. 4.34 

Where, 𝜇𝐿𝑎𝑟𝑔𝑒(𝑥) is the membership degree of 𝑥. 𝑓1 is the spread and  𝑓2 is the midpoint. 

In addition, the population density criterion is assigned using the Fuzzy Linear algorithm (Equation 

4.35). This approach is appropriate when there is a linear relationship between the user-specified 

maximum and minimum values, ensuring a proportional and balanced assignment of risk levels 

based on population density. 

𝜇Linear(𝑥) =
𝑥−𝑎

𝑏−𝑎
     Eq. 4.35 
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Where, 𝜇𝐿𝑖𝑛𝑒𝑎𝑟(𝑥) is the membership degree of 𝑥. 𝑎 and 𝑏 are the minimum and maximum 

values, respectively. 

Fuzzy Gamma overlay is a technique used to combine multiple fuzzy membership functions into 

a single composite score. This approach allows for flexible aggregation of different criteria, 

accounting for both multiplicative and additive effects. Combining the fuzzy sum and fuzzy 

product, the fuzzy gamma overlay can be expressed as (Equation 4.36). 

𝜇Gamma(𝑥) = (𝜇Sum(𝑥))
𝛾

⋅ (𝜇Product(𝑥))
1−𝛾

  Eq. 4.36 

Where, 𝜇𝐺𝑎𝑚𝑚𝑎(𝑥) is the gamma overlay membership degree. 𝜇Sum(𝑥) is the result of the fuzzy 

sum operation (Equation 4.37). 𝜇𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑥) is the result of the fuzzy product operation (Equation 

4.38). 𝛾 is the gamma parameter (0 ≤ γ ≤ 1), balancing the importance of the fuzzy sum and fuzzy 

product operations. 

𝜇Sum(𝑥) = 1 − ∏ (1 − 𝜇𝑖(𝑥))𝑛
𝑖=1    Eq. 4.37 

𝜇Product(𝑥) = ∏ 𝜇𝑖(𝑥)𝑛
𝑖=1     Eq. 4.38 

Where, 𝜇𝑖(𝑥) are the individual membership degrees of the criteria and 𝑛 is the number of criteria. 

Table 4.3. Data preparation criteria for flood risk assessment. 

Flood risk 
component Parameter 

Data  
classification  
technique 

Weight  
assigned Rating 

Fuzzy  
member
ship  
function Assumption 

Exposure Elevation (m) Natural breaks 2 to 10 
very high-
very low 

Fuzzy 
small 

Inversely 
related 

 Slope (degree) Natural breaks 2 to 10 
very high-
very low 

Fuzzy 
small 

Inversely 
related 

 NDVI 
Standard 
deviation 10 to 2 

very high-
very low 

Fuzzy 
large Directly related 

 LCLU 
Defined 
interval 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 Soil type 
Defined 
interval 9 to 3 high-low 

Fuzzy 
large Directly related 

 

Available surface  
water (defined 
classes) 

Defined 
interval 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 Temperature (°C)  
Standard 
deviation 9 to 3 high-low 

Fuzzy 
large Directly related 

Vulnerability 
Population density  
(count/km2) 

Quantile 
interval 2 to 10 

very low-
very high 

Fuzzy 
linear Directly related 
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Community  
resilience HDI Manual 2 to 10 

very high-
very low 

Fuzzy 
small 

Inversely 
related 

 Inequality Manual 2 to 10 
very low-
very high 

Fuzzy 
large Directly related 

 Social cohesion Manual 2 to 10 
very high-
very low 

Fuzzy 
small 

Inversely 
related 

Mitigation  
capacity 

Early warning 
 systems 

Defined 
interval 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 

Flood defence 
 mechanisms Manual 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 

Drought control  
mechanisms Manual 2 to 6 

very low-
medium 

Fuzzy 
large Directly related 

 

Distance to 
transportation 
 network (m) Manual 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 

Distance to health  
facilities (m) Manual 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

Hazard 
River density 
(km/km2) 

Quantile 
interval 1 to 9 

very low-
very high 

Fuzzy 
large Directly related 

 

Precipitation 
intensity  
(mm/hr) 

Standard 
deviation 2 to 10 

very low-
very high 

Fuzzy 
large Directly related 

 

Distance to river 
(m) Manual 2 to 10 

very high-
very low 

Fuzzy 
small 

Inversely 
related 

 Flood level (m) Natural breaks 1 to 9 
very low-
very high 

Fuzzy 
large Directly related 

 

Table4.4. Data preparation criteria for flood drought assessment. 

Drought risk  
component Parameter 

Data 
classification 
technique 

Weight 
assigned Rating 

Fuzzy 
member 
ship 
function Assumption  

exposure Elevation (m) Natural breaks 2 to 10 
very low-
very high 

Fuzzy  
large Directly related 

 NDVI 
Standard 
deviation 10 to 2 

very high-
very low 

Fuzzy  
large Directly related 

 LCLU 
Defined 
interval 2 to 10 

very low-
very high 

Fuzzy  
large Directly related 

 

Precipitation  
intensity (mm/hr) 

Standard 
deviation 2 to 10 

very high-
very low 

Fuzzy  
small 

Inversely 
related 

 

Water resources 
sustainability index 
(defined classes) 

Defined 
interval 2 to 10 

very high-
very low 

Fuzzy  
small 

Inversely 
related 

vulnerability Slope (degree) Natural breaks 2 to 10 
very low-
very high 

Fuzzy  
large Directly related 

 

Distance to river 
(m) Manual 2 to 10 

very low-
very high 

Fuzzy  
large Directly related 

 Soil type 
Defined 
interval 9 to 3 high-low 

Fuzzy  
large Directly related 

 

Available surface 
water (defined 
classes) 

Defined 
interval 2 to 10 

very high-
very low 

Fuzzy  
small 

Inversely 
related 

 

Available  
groundwater (mm) 

Quantile 
interval 2 to 10 

very high-
very low 

Fuzzy  
small 

Inversely 
related 

 

Population density 
(count/km2) 

Quantile 
interval 2 to 10 

very low-
very high 

Fuzzy 
linear Directly related 
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 Temperature (°C)  
Standard 
deviation 2 to 10 

very low-
very high 

Fuzzy  
large Directly related 

Community 
resilience HDI Manual 2 to 10 

very high-
very low 

Fuzzy  
small 

Inversely 
related 

 Inequality Manual 2 to 10 
very low-
very high 

Fuzzy 
large Directly related 

 Social cohesion Manual 2 to 10 
very high-
very low 

Fuzzy  
small 

Inversely 
related 

mitigation 
capacity and 
hazard 

Flood defence 
mechanisms Manual 2 to 10 

very low-
very high 

Fuzzy  
large Directly related 

 

Drought control 
mechanisms Manual 2 to 6 

very low-
medium 

Fuzzy  
large Directly related 

The flood level criterion is directly associated with flood incidence, as established by Bhuiyan and 

Al Baky (2014) and Rahman et al. (2019). The spatial flood level criteria were developed using 

historical flood data and Digital Elevation Model (DEM) data. The process of preparing the flood 

level criteria involved several steps. 

Initially, historical flood level data were acquired from Sentinel-1 and Sentinel-2 images up to 2020. 

In the second step, the Gumbel distribution was applied to estimate the maximum flood height 

for a 50-year return period. Finally, a flood level map was prepared using the bathtub approach, as 

described by Bhuiyan and Al Baky (2014). Hereafter, all the calculations are performed using 

python coding in the python environment of QGIS platform. The Raster Calculator tool in QGIS 

was used to implicate risk maps using equations 4.31 and 4.32. 

4.13 EXPLANATION OF TRENDS IN THE DATA  

Trend analysis is crucial for understanding the temporal dynamics of basin behaviour concerning 

flood and drought risk components and parameters. By identifying these trends, we can enhance 

further analyses and improve predictive models, ultimately aiding in better management and 

mitigation strategies for flood and drought risks (Cleveland et al., 1990). 

STL (Seasonal-Trend decomposition using Loess) is a robust and versatile method for 

decomposing time series data into three main components: seasonal, trend, and residual (or noise). 

The seasonal component captures the repeating patterns or cycles in the data (e.g., daily, weekly, 

yearly). The trend component represents the long-term progression of the series (e.g., increasing 

or decreasing over time). The residual component accounts for the random variation that is not 

explained by the seasonal or trend components. 
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The STL decomposition method uses locally weighted regression (Loess) to estimate the seasonal 

and trend components, making it highly adaptable to various types of time series data, including 

those with complex seasonal patterns and non-linear trends. The method is particularly effective 

because it iteratively applies Loess smoothing to isolate and remove the seasonal and trend effects, 

allowing for a clearer analysis of the underlying structure of the data. 

The STL decomposition can be expressed mathematically as follows (Equation 4.39): 

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡     Eq. 4.39 

Where, 𝑦𝑡 the observed time series at time 𝑡. 𝑇𝑡 is the trend component at time 𝑡. 𝑆𝑡 is the seasonal 

component at time 𝑡. And 𝑅𝑡 is the residual component at time 𝑡. 

The seasonal component captures periodic patterns that repeat over a specific period 𝑃. Loess 

smoothing is applied within each cycle to isolate the seasonal effect. The procedure can be 

summarized as (Equation 4.40): 

𝑆𝑡 = Loessseasonal(𝑦𝑡−𝑘𝑃)     Eq. 4.40 

Here, the seasonal component at time 𝑡, 𝑆𝑡, is obtained by applying Loess smoothing to the series 

𝑦𝑡 across different cycles, indexed by 𝑘. For instance, if 𝑃 is 12 (e.g., monthly data with an annual 

cycle), Loess smoothing is applied to each set of observations corresponding to each month across 

different years. 

The trend component captures the long-term progression of the series. After removing the 

seasonal effect from the original series, Loess smoothing is applied to the detrended series to 

estimate the trend (Equation 4.41): 

𝑇𝑡 = Loesstrend(𝑦𝑡 − 𝑆𝑡)     Eq. 4.41 

Here, 𝑇𝑡 is the trend component at time 𝑡, obtained by applying Loess smoothing to the series 

𝑦𝑡 − 𝑆𝑡, which is the original series minus the estimated seasonal component. 

For a given point 𝑡, the smoothed value 𝑦𝑡̂ using Loess can be described as (Equation 4.42): 
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𝑦𝑡̂ = ∑ 𝑤𝑖𝑦𝑖
𝑡+𝑤
𝑖=𝑡−𝑤      Eq. 4.42 

where (𝑤𝑖) are the weights assigned to each point (𝑦𝑖) within the window of size ( 2𝑤 + 1 ) 

cantered at ( 𝑡 ). The weights (𝑤𝑖) are calculated using a kernel function, typically the tricube 

weight function (Equation 4.43): 

𝑤𝑖 = (1 − |
𝑖−𝑡

𝑑
|
3

)
3

     Eq. 4.43 

where ( 𝑑 ) is the distance to the furthest point in the local neighbourhood. 

To explore spatio-temporal trend within the flood and drought risk time series further, a 

combination of Mann-Kendall tau and Sen’s Slope is applied. The Mann-Kendall test is a non-

parametric statistical test used to identify trends in time series data. It is widely used in 

environmental science, hydrology, and climate research to detect monotonic trends (increasing or 

decreasing) in data over time. The test does not assume any particular distribution of the data and 

is robust against missing values and outliers (Kundu et al., 2015). 

The Mann-Kendall test evaluates whether a dataset exhibits a statistically significant trend by 

comparing the ranks of the data rather than their actual values. The test statistic, S, is computed 

based on the difference between data points, and the significance of the trend is determined using 

the Z statistic. 

For a dataset with 𝑛 data points 𝑥1, 𝑥2, … , 𝑥𝑛, the test statistic 𝑆 is calculated as (Equation 4.44) 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1     Eq. 4.44 

where the sign function 𝑠𝑔𝑛 is defined as +1 for positive values, zero for zero and -1 for negative 

values.  Next, the variance of 𝑆 under the null hypothesis of no trend is given by (Equation 4.45): 

Var(𝑆) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)𝑡

18
   Eq. 4.45 

where 𝑡𝑖 is the number of ties of extent 𝑖. 
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The standardized test statistic 𝑍 is computed as (Equation 4.46): 

𝑆 > 0, 𝑍 =
𝑆−1

√Var(𝑆)
 𝑆 = 0, 𝑍 = 0          𝑆 < 0, 𝑍 =

𝑆+1

√Var(𝑆)
                                    Eq. 4.46 

The significance of the trend is then determined by comparing 𝑍 to the standard normal 

distribution. 

Sen's Slope estimator, also known as the Theil-Sen estimator, is a non-parametric method used to 

estimate the slope of a trend in time series data. It is particularly useful when the data contain 

outliers or are not normally distributed. Sen's Slope provides a robust estimate of the rate of change 

over time. Sen's Slope calculates the median of the slopes of all possible pairs of points in the 

dataset. This method is less sensitive to outliers than simple linear regression and provides a reliable 

estimate of the trend (Sen, 1968). 

For each pair of data points (𝑥𝑖, 𝑦𝑖) and(𝑥𝑗 , 𝑦𝑗) where 𝑖 < 𝑗, the slope 𝛽𝑖𝑗 is calculated as 

(Equation 4.47) 

𝛽𝑖𝑗 =
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
      Eq. 4.47 

The Sen's Slope estimator 𝛽 is the median of all 𝛽𝑖𝑗 values (Equation 4.48): 

𝛽 = median(𝛽𝑖𝑗)     Eq. 4.48 

By applying these statistical methods, this research strived to detect and quantify trends in 

environmental and climatic data, providing valuable insights into changes over time and potential 

application of inclusion in inner functions of upcoming predictive models. 

 

4.14 VALIDATION OF RESULTS AND EFFICIENCY TEST 

Having calculated the risk components and obtained temporal trend analyses for predictors and 

responses in the basin, the next crucial step is to validate these results. Validation ensures the 

accuracy and reliability of the findings and involves several techniques. First, it is proposed using 
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an overlay map to visually compare predicted and observed values. Second, an agreement map is 

generated and percentage of agreement between predicted and observed values is calculated. 

Lastly, the model's performance using the Receiver Operating Characteristic (ROC) curve against 

historic data and previously assessed risk by the Environment Agency (EA) is evaluated in order 

to quantify its predictive capability (Swets, 1988; Pontius & Millones, 2011). 

An overlay map visually compares the spatial distribution of predicted values (e.g., flood risk) with 

observed values. It helps in identifying areas where the model predictions match or deviate from 

actual observations. 

An agreement map identifies areas where the predicted values agree with the observed values. The 

percentage of agreement quantifies the proportion of the study area where the predictions match 

the observations. 

The agreement map is generated by calculating the pixel-wise or grid-cell-wise agreement between 

predicted (𝑃𝑖) and observed (𝑂𝑖) values (Equation 4.49): 

𝐴𝑖 = 1𝑖𝑓𝑃𝑖 = 𝑂𝑖, 0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    Eq. 4.49 

The percentage of agreement (𝐴%) is then calculated as (Equation 4.50):  

𝐴% = (
∑ 𝐴𝑖

𝑁
𝑖=1

𝑁
) × 100     Eq. 4.50 

where 𝑁 is the total number of pixels or grid cells. 

The ROC curve is a graphical representation of the model's diagnostic ability. It plots the True 

Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings, allowing 

for the assessment of the model's discriminatory power. Mathematics behind the ROC curve 

involves calculating TPR and FPR for different threshold values:  

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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The Area Under the ROC Curve (AUC) quantifies the overall ability of the model to discriminate 

between positive and negative classes. An AUC of 1 indicates perfect prediction, while an AUC 

of 0.5 suggests no discriminatory power. 

4.15 UNDERSTANDING THE COMPLEXITY OF SPATIAL DISTRIBUTIONS OF 

FLOOD AND DROUGHT RISK CATEGORIES  

Fractal dimensions provide a quantitative measure of the complexity of a fractal pattern. Unlike 

traditional geometric shapes, fractals exhibit self-similarity across different scales, meaning they 

look similar regardless of the level of magnification. Fractal dimensions help describe how the 

detail or complexity of a fractal pattern changes with the scale at which it is measured. 

Mathematically, the fractal dimension 𝐷 can be defined using various methods, one of which is 

the box-counting method. The fractal dimension is not necessarily an integer and can take non-

integer values, which reflects the complexity of the fractal structure (Mandelbrot, 1983; Falconer, 

2003).  

In this research, the geometric concept of fractal dimensions is employed as a quantitative measure 

to assess the severity of both flood and drought risk spatial distributions across various categories. 

These categories, as described earlier, range from very low to low, moderate, high, and very high. 

The box-counting method is a common technique to compute the fractal dimension of a pattern. 

This method involves covering the fractal with a grid of boxes (or cells) and counting the number 

of boxes that contain a part of the fractal. The process is repeated for different box sizes, and the 

relationship between the box size and the number of boxes required to cover the fractal is used to 

estimate the fractal dimension. 

Steps of the Box-Counting Method are as follows: 

1. Overlay a Grid: Place a grid of boxes of size 𝜖 over the fractal. 

2. Count Boxes: Count the number of boxes 𝑁(𝜖) that contain part of the fractal. 

3. Vary Box Size: Repeat the process for different box sizes 𝜖. 

4. Log-Log Plot: Plot 𝑙 log(𝑁(𝜖)) against 𝑙𝑜𝑔(1/𝜖). 
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5. Compute Slope: The fractal dimension 𝐷 is estimated as the slope of the line in the log-

log plot (Equation 4.51). 

𝑙𝑜𝑔(𝑁(𝜖)) = 𝐷 𝑙𝑜𝑔 (
1

𝜖
)     Eq. 4.51 

4.16 SENSITIVITY ANALYSIS OF THE RISK PRODUCTS TO THEIR 

PREDICTORS 

The Sobol sensitivity index is a global sensitivity analysis method used to quantify the contribution 

of each input variable to the variance of the output of a mathematical model. This method is 

particularly useful for models with multiple inputs and non-linear interactions. It decomposes the 

variance of the model output into fractions attributable to inputs or sets of inputs, providing 

insights into which variables are most influential (Saltelli et al., 2010). 

Sobol sensitivity analysis provides a comprehensive measure of sensitivity by considering not only 

the individual effect of each input variable but also the interactions between them. The main 

sensitivity indices used in Sobol analysis are: 

First-order index 𝑆𝑖, which measures the effect of an input variable alone, excluding interactions 

with other variables. Second-order index 𝑆𝑖𝑗, measures the effect of the interaction between two 

input variables. And eventually, Total-order index 𝑆𝑇𝑖
 that measures the total effect of an input 

variable, including both its individual effect and all its interactions with other variables. 

Let 𝑓(𝑋) be the model output where 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) are the input variables. The variance of 

𝑓(𝑋), 𝑉𝑎𝑟(𝑓(𝑋)), can be decomposed as (Equation 4.52): 

Var(𝑓(𝑋)) = ∑ 𝑉𝑖
𝑘
𝑖=1 + ∑ 𝑉𝑖𝑗1≤𝑖<𝑗≤𝑘 + ⋯ + 𝑉1,2,…,𝑘   Eq. 4.52 

where 𝑉𝑖 is the contribution to the variance from 𝑋𝑖, 𝑉𝑖𝑗 is the contribution from the interaction 

between 𝑋𝑖 and 𝑋𝑗, and so on. 

The first-order sensitivity index 𝑆𝑖 measures the main effect of 𝑋𝑖 on 𝑓(𝑋) (Equation 4.53). 

𝑆𝑖𝑗 =
𝑉𝑖𝑗

Var(𝑓(𝑋))
      Eq. 4.53 



 

126 

The second-order sensitivity index 𝑆𝑖𝑗  measures the interaction effect between 𝑋𝑖 and 𝑋𝑗 

(Equation 4.54): 

𝑆𝑖𝑗 =
𝑉𝑖𝑗

Var(𝑓(𝑋))
      Eq. 4.54 

The total-order sensitivity index 𝑆𝑇𝑖
 measures the total contribution of 𝑋𝑖 to the variance, including 

all interactions (Equation 4.55): 

𝑆𝑇𝑖
= 1 −

𝑉∼𝑖

Var(𝑓(𝑋))
     Eq. 4.55 

Where, 𝑉∼𝑖 is the variance of 𝑓(𝑋) excluding 𝑋𝑖. The main criteria for a successful Sobol index 

computation are the convergence of 𝑆𝑖 based on number of samples The accuracy of the Sobol 

sensitivity indices depends on the number of samples used in the analysis. As the number of 

samples increases, the estimates of  𝑆𝑖, 𝑆𝑖𝑗 , and 𝑆𝑇𝑖
 converge to their true values. The convergence 

can be evaluated by plotting the sensitivity indices against the number of samples and observing 

whether they stabilize. 

Convergence criteria are first, stability which is that the indices should become stable as the 

number of samples increases and second, reproducibility which states that repeated calculations 

with different random samples should yield similar indices. 

4.16.1 Feature importance as a measure of sensitivity analysis 

Feature importance analysis helps to identify which input variables have the most influence on the 

model's predictions. Here, we describe four different methods used for feature importance 

analysis: Random Forest, Permutation Importance, XGBoost, and Principal Component 

Regression (PCR). 

Random Forest is an ensemble learning method that builds multiple decision trees and merges 

them to get a more accurate and stable prediction. Feature importance in Random Forest is 

typically measured by the decrease in impurity (Gini impurity or entropy) across all trees in the 

forest (Equation 4.56) (Breiman, 2001). 
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𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2𝑛
𝑖=1      Eq. 4.56 

where 𝑃𝑖 is the probability of class 𝑖 in a node. And the importance of a feature 𝑋𝑖is computed as 

the total decrease in node impurity, averaged over all trees in the forest (Equation 4.57): 

Importance(𝑥𝑗) =
1

𝑇
∑ ∑ 𝛥𝐼𝑘𝟏(𝑘 splits on 𝑥𝑗)𝑘∈nodes

𝑇
𝑡=1    Eq. 4.57 

where 𝑇 is the total number of trees, Δ𝐼𝑘 is the decrease in impurity at node 𝑘, and 𝟏(𝑘 splits on 

𝑥𝑗) is an indicator function that is 1 if node 𝑘 splits on feature 𝑋𝑗. 

Permutation Importance is a model-agnostic method that measures the increase in prediction error 

when the values of a single feature are randomly shuffled, breaking the relationship between the 

feature and the target variable. Mathematics behind Permutation Importance has a few steps. First, 

train the model on the original dataset and obtain the baseline accuracy. 

Next, for each feature 𝑋𝑗, shuffle its values and measure the accuracy of the model on this 

perturbed dataset. Lastly, the importance of 𝑋𝑗 is the decrease in accuracy after shuffling (Equation 

4.58) 

Importance(𝑥𝑗) = Accuracy
original

− Accuracy
shuffled 𝑥𝑗

   Eq. 4.58 

XGBoost (Extreme Gradient Boosting) is a scalable and efficient implementation of gradient 

boosting. It builds trees sequentially, with each tree attempting to correct the errors of the previous 

one. Feature importance in XGBoost is based on the frequency and quality of interactions a feature 

has within the model (Chen and Guestrin, 2016). 

Firstly, the parameter Gain is defined as the average gain of splits that use the feature (Equation 

4.59) 

Gain(𝑥𝑗) =
1

𝑇
∑ ∑ 𝛥𝐺𝑘𝟏(𝑘 splits on 𝑥𝑗)𝑘∈nodes

𝑇
𝑡=1    Eq. 4.59 

where Δ𝐺𝑘 is the gain in loss reduction at node 𝑘. Finally, frequency, which is the number of times 

a feature is used to split the data across all trees (Equation 4.60). 
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Frequency(𝑥𝑗) = ∑ ∑ 𝟏(𝑘 splits on 𝑥𝑗)𝑘∈nodes
𝑇
𝑡=1     Eq. 4.60 

The last but not least method performed in this section is Principal Component Regression that 

combines Principal Component Analysis (PCA) with linear regression. PCA reduces the 

dimensionality of the data by transforming it into a set of orthogonal (uncorrelated) components 

that capture the maximum variance. Linear regression is then performed on these components 

(Jolliffe, 2002). 

After standardising the dataset X, the covariance matrix of 𝑋 should be computed (Equation 4.61). 

Cov(𝑋) =
1

𝑛−1
𝑋𝑇𝑋     Eq. 4.61 

Next steps comprise of performing eigenvalue decomposition on the covariance matrix to obtain 

eigenvalues and eigenvectors. And transforming the original data into principal components 𝑍 

(Equation 4.62) 

𝑍 =  𝑋 𝑊      Eq. 4.62 

where 𝑊 is the matrix of eigenvectors. Fit a linear regression model on the transformed dataset 𝑍 

(Equation 4.63) and the feature importance is derived from the contribution of each principal 

component to the explained variance.  

𝑦 = 𝑍𝛽 + 𝜖      Eq. 4.63 

 

4.17 QUANTIFYING THE ALEATORIC UNCERTAINTY TO ENHANCE THE 

ACCURACY OF QUANTIFIED RISKS  

Aleatoric uncertainty, also known as statistical or inherent uncertainty, refers to the variability or 

randomness in the data that cannot be reduced by collecting more data. This type of uncertainty 

is inherent to the process being studied and is due to natural variability (Kendall and Gal, 2017). 

In the context of machine learning and predictive modelling, aleatoric uncertainty can be captured 

and quantified using ensemble methods like bagging with XGBoost. Bagging (Bootstrap 
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Aggregating) involves training multiple models on different bootstrap samples of the training data 

and aggregating their predictions (Breiman, 1996). 

By training multiple XGBoost models on different bootstrap samples, the variability in predictions 

can be captured. This variability reflects the aleatoric uncertainty. 

First, multiple bootstrap samples from the training data are created. Next, an XGBoost model on 

each bootstrap sample is trained. Make predictions using each model and aggregate them to 

capture variability. Aleatoric uncertainty can be quantified using various statistical measures 

derived from the distribution of predictions made by the ensemble of models such as standard 

deviation, interquartile range and prediction range. To evaluate the accuracy of the model's 

predictions Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are calculated 

between actual and predicted values (Chen and Guestrin, 2016). 

4.18 CHAPTER CONCLUSION  

This research aimed to develop a comprehensive framework for simultaneously assessing flood 

and drought risks at a river basin scale. The process began with a systematic review of peer-

reviewed publications, followed by a systematic content analysis using open-coded texts. 

Information extraction and data synthesis involved constructing a co-occurrence matrix and 

applying statistical measures such as the Spearman correlation coefficient, cosine similarity index, 

and clustering algorithms to identify key variables and their pairwise connections. 

A Structural Self-Interaction Matrix (SSIM) was created to detail interactions among various 

parameters through pairwise comparisons, leading to the development of an initial reachability 

matrix. This matrix facilitated the identification of direct and indirect parameter interactions. The 

final reachability matrix was used to examine transitive relationships, enabling hierarchical 

assessment through Level Partitioning. 

The application of MICMAC Analysis highlighted the importance of understanding the 

hierarchical organization of elements and their interconnections for effective risk management 

planning. Causal paths and parameters were then analysed using network metrics such as 

betweenness and closeness centrality, authority, and hub scores. Parameters were ranked based on 

their performance across 11 network metrics, with the top 25% selected for further analysis using 
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the Cross Entropy algorithm. This process identified the final 30 most influential parameters, 

which were reintegrated into Causal Loop Diagrams (CLDs) to extract essential pathways for risk 

assessment. 

Finally, a spatiotemporal analysis was conducted in the River Severn Basin District. Spatial data 

for various basin parameters were collected and processed using the fuzzy overlay function to 

estimate monthly risk maps for flood and drought. These maps were validated using Receiver 

Operating Characteristic (ROC) curves, and their temporality and sensitivity to input variables 

were assessed. An XGBoost algorithm combined with trend analysis was employed to predict risks 

for the coming year, and the resulting risk maps were tested against observed flood events. An 

aleatoric uncertainty analysis was also performed to ensure robustness. 

In the following chapters, the results and discussions will utilize the methodologies outlined in this 

chapter. Chapter Four focuses on a quantitative analysis of influential parameters and the linkage 

between research fields in flood and drought studies, utilizing a co-occurrence matrix. Chapter 

Five employs the ISM-CLD method to construct a comprehensive framework, which is then 

analysed using network theory metrics and the cross-entropy algorithm to identify the most 

significant pathways within the produced framework for modelling flood and drought risks. The 

final results chapter assesses these risks for the River Severn basin using fuzzy logic and machine 

learning algorithms. It also includes an analysis of the sensitivity of the final results to input 

variables and quantifies aleatoric uncertainty. 
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5 RESULTS AND DISSCUSSION COMPREHENSIVE 

INSIGHT: RISK OF FLOODING AND DROUGHT AT 

RIVER BASIN SCALE 
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5.1 CHAPTER INTRODUCTION  

The interplay of natural and anthropogenic factors at a river basin scale significantly influences the 

occurrence and risk of flooding and drought events. The extensive ramifications of these 

hydrological extremes necessitate a multidisciplinary approach to understand, mitigate, and adapt 

to the associated risks. This chapter unfolds the intricate tapestry of themes and sub-themes 

dedicated to the scientific understanding of flooding and drought risks, shedding light on the 

contributions from diverse fields ranging from hydrology to tourism. The collective insight offers 

a robust framework for fostering resilient river basin communities amid a changing climate and 

evolving societal demands. The peer reviewd sources of extracted data comprises a comprehensive 

list of 981 publication items categorized into journal papers, book chapters, and conference papers. 

Specifically, there are 707 journal papers, 18 book chapters, 6 datasets, 38 reports and 217 

conference papers (described in the Appendices section under titles: “Bibliography_of_all_papers” 

and “Sample_of_reviewd_papers”). On average, journal papers have received 48.5 citations, while 

book chapters have garnered an average of 14 citations. Conference papers have an average of 22 

citations. These figures provide an overview of the distribution and citation impact of the 

publications within each category. 

5.2 FLOOD AND DROUGHT RESEARCH :  TRENDS,  FOCUS AREAS,  AND 

POTENTIAL GAPS. 

5.2.1 Analysis of auxiliary research themes in flood and 

drought studies: frequency,  variability, and interdisciplinary 

trends 

As visualized in Figure 5.1, the distribution and frequency of various research themes as auxiliary 

focuses in research papers. Based on the graph an overview of the themes could be deducted as 

follows. 

Hydrology is frequently featured as an auxiliary focus, with a high median and a wide range, 

indicating substantial variation in how often it's mentioned.  Climate Science also appears 

frequently as an auxiliary focus, with a high median but lower than that of Hydrology. The spread 
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and outliers indicate that while it is consistently a focus, there can be significant fluctuations in its 

emphasis as auxiliary theme of research across different themes. 

 

Figure 5.1. Number of times that each theme has reoccurred as an auxiliary theme of research, WRM (Water 

Resources Management). 

Water Resources Management (WRM) has a moderately high median frequency with less 

considerable variation comparing to the first two themes, as indicated by the short whiskers. The 

theme is a common auxiliary focus but with less consistency than Hydrology or Climate Science. 

However, Agriculture is less frequently an auxiliary focus, with the second lowest median. The 

compact interquartile range (IQR) could suggest that it appears with consistent frequency across 

papers. Outliers might be a sign that there are occasions where studies have a higher emphasis on 

Agriculture as the lateral theme of research in the context of flood and drought. 

Environmental Science as a research theme on flood and drought risk has a moderate median 

frequency, with a comparatively good range suggesting variability in its frequency as an auxiliary 

focus of the research. However, Outliers indicate that this theme can sometimes be a more 

significant second focus when certain themes are the main focus of studies. But, Economy shows 

a relatively low median frequency (close to those of WRM, Climate science, Environmental 

science, and IT) with a narrow IQR. Additionally, no outliers could suggest that it's not often an 

auxiliary focus, and when it is, the frequency is fairly consistent. 
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Civil Engineering theme has a low to moderate median frequency distribution and a low to 

moderate median smaller than Economy and closer to Agriculture and Ecology. The large whiskers 

and presence of outliers could indicate variability in this theme as the auxiliary theme of research 

for various main focus areas. Emergency Management and Policy theme frequently appears as an 

auxiliary focus, as suggested by the highest median among all the themes. It also has a wide range 

and outliers, which point to significant variability in emphasis of using it as an auxiliary theme to 

help describe flood and drought issues across different papers. 

Ecology is the least frequently used as an auxiliary focus compared to the other themes. Its low 

median might be a sign that it is not commonly emphasized in flood and drought research. 

However, the compact IQR range (IQR) could imply that when Ecology is mentioned, the 

frequency is relatively consistent. The outliers, on the other hand could suggest some papers with 

certain main areas of focus have combined their understanding with ecological insights.  

Information Technology (IT) has a relatively moderate median frequency among the themes, with 

long whiskers and outliers near the top of its range. It could suggest that in some cases, it is used 

infrequently as an auxiliary focus. However, for some themes IT has co-occurred very often. 

In summary, themes like “Hydrology”, “Climate Science” and “Emergency management and 

policy” are often auxiliary focuses in research papers, with considerable emphasis and variability 

in their frequency. Themes such as Agriculture, Civil Engineering, and Ecology are less frequently 

consulted as auxiliary focuses, typically appearing with a consistent level of emphasis. The box plot 

indicates that while some themes are central to research across many papers, others are given 

attention occasionally, which may reflect the specific nature of the research questions or the 

evolving interests and trends in flood and drought studies, which is covered to some degrees in 

upcoming sections of this chapter. 

Overall, the distribution and median frequency of these themes suggest a diverse range of auxiliary 

focuses on flood and drought research, with Ecology being the least emphasized among them. 

This can help identify which themes have been more central to the discourse over time and which 

might require more attention or have been underexplored in the context of flood and drought 

studies. The analyse offered by the co-occurrence matrix further investigates this notion.  
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Flood and drought research is becoming increasingly relevant in our changing climate. This could 

be because climate change causes extreme weather patterns, such as relatively more frequent 

flooding and drought. This has increased the need for research in these areas. Additionally, more 

interdisciplinary research may be conducted to better understand climate change's complex effects. 

The line chart (Figure 5.2) shows two different trends related to research on flood and drought. 

Namely Themes per Paper and Cumulative Number of Papers from the year 2000 to around 2020. 

 

Figure 5.2. Average of yearly theme per paper and cumulative number of publications. 

5.2.2 Evolving trends in flood and drought research: a dual analysis of 

thematic diversity and research volume (2000-2020) 

In Figure 5.2. The blue line represents the average number of flood and drought themes explored 

in research papers each year. It appears that thematic diversity within individual publications varies 

over time as the line exhibits a wavy pattern with peaks and troughs. A general upward trend 

indicates that, on average, papers cover more themes as time progresses. There were noticeable 

peaks around 2005, 2010, and just before 2020. During those periods, interdisciplinary research 

may have been more focused. There is a peak just after 2020, which indicates the maximum average 

number of themes per paper. 
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An orange line shows the cumulative number of research papers published on floods and droughts 

since 2000. Research in this area has demonstrated a steady and consistent upward trend over time. 

Research output appears to have remained constant without any significant drops or plateaus. 

After putting together both of these trends, some observations can be made. Flood and drought 

research has become increasingly complex, with papers addressing multiple aspects or themes 

simultaneously. This might indicate a growth in our understanding of flooding and drought issues, 

leading to a rising demand for a more comprehensive and collaborative framework to assess flood 

and drought risk. 

According to the steady upward trend of the cumulative number of papers, flood and drought 

research is becoming increasingly important. This is possibly due to global factors such as climate 

change, extreme weather events, or heightened awareness of environmental concerns and partially, 

the overall growth of publications. More papers published over time suggests a broader scope and 

potential for multidisciplinary approaches. 

In 2020, there may be a slight decrease in "Themes per Paper" due to several factors, including a 

shift in research focus to more specialized topics within the flood and drought domain, or perhaps 

a temporary shift in research priorities as a result of global events such as COVID-19. Nonetheless, 

flood and drought research is a vibrant and expanding field, with a tendency to become more 

interdisciplinary over time. 

5.2.3 Dynamic evolution of research themes in flood and drought studies: a 

20-year perspective 

It would be even more beneficial if we could see the trend of the presence of individual themes in 

the body of research over time (Figure 5.3). This line chart shows trends in the percentage of 

themes investigated in the context of flood and drought research from 2000 onwards. Each line 

represents a different research theme, and the y-axis measures the percentage of times each theme 

has occurred as the main or auxiliary focus of studies. 

Hydrology over the entire period, has been investigated the most frequently. Although it fluctuates, 

it tends downward toward 2020, suggesting a slight decline in focus within this field. 
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Figure 5.3. trends in the number of themes investigated in the context of flood and drought research. 

Climate Science starting with a lower frequency in 2000, a notable increase peak around 2005. 

Afterwards, it slightly declines but remains one of the more frequently investigated themes. The 

frequency of Environmental science theme starts low, peaks around 2007, and then sees a decline. 

It suggests that Environmental-related research had a moment of increased focus, which has since 

waned to eventually groups up with the WRM themes. 

Emergency management & Policy starting with a moderate to high frequency, there's a slight 

downward trend just before 2005, followed by a period of stability and then a subtle increase, 

getting closer to Hydrology, indicating a relatively stable interest in this type of research aspects. 

Water resources management exhibiting a wave-like pattern, WRM research appears to peak 

around the years 2005 and 2015. The overall trend suggests that the focus on WRM within flood 

and drought research has waves of increased interest. Civil Engineering, IT, Economy, Ecology 

and Agriculture start at lower frequencies. They all fluctuate more or less in the same bandwidth 

but with different patterns, but later bundled up together to an approximate percentage of six. 

Despite varying degrees of focus over the past two decades, hydrology remains a central theme in 

flood and drought research. New technologies and methodologies in this field are likely influencing 

the increase in IT-related research. The data suggests that while some areas have seen peaks and 

troughs of interest, others have remained constant. Researchers, policymakers, and funding bodies 

can use this chart to learn about historical trends and potential areas of flood and drought research. 
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On the graph, several themes have clustered together with flattened trends from 2017 onward, 

suggesting that flood and drought research has stabilized the number of times these themes were 

investigated. 

In around 2017, we witnessed a convergence of research themes such as Civil Engineering, 

Agriculture, Economy, Ecology, and IT, which formed a cluster. This indicates that these research 

areas were being investigated with relatively similar frequency during that time. The proximity of 

these lines could suggest that these themes may be increasingly interrelated in the context of flood 

and drought research, or it could indicate a shared level of attention and resources directed toward 

these areas. There appears to be a shift from the fluctuations and distinct trends of the earlier years 

to more stable lines post-2017. Possibly, this is related to the maturation of these research fields, 

where significant fluctuations are less common as they consolidate. Additionally, it may indicate 

an established research scope and direction that has continued steadily. 

While "Hydrology" and "Emergency management and policy" remain the most frequently studied 

themes, their trends also flatten, suggesting that they have reached a plateau. This could indicate 

that the amount of new research being initiated in these areas is balanced by the research being 

concluded, or it could reflect a saturation point in research focus within the available data. 

Generally, the clustering and flattening trends observed may suggest a period of equilibrium in 

research focus. This could be due to a variety of factors, including but not limited to the 

achievement of research goals, a shift in funding priorities, or the emergence of new, not-yet-

represented themes that are drawing attention away from the established ones. The convergence 

and flattening of trends in this period may also reflect a broader interdisciplinary approach to flood 

and drought research, where the distinctions between themes become less pronounced as they are 

increasingly studied in conjunction with one another. This interdisciplinary approach can lead to 

more comprehensive understanding and solutions to the complex problems associated with flood 

and drought. 

5.3 COMPREHENSIVE ANALYSIS OF THEMATIC CO -OCCURRENCE IN 

FLOOD AND DROUGHT RESEARCH  

The co-occurrence matrix is a foundational tool in data analysis (Figure 5.4), especially when 

exploring relationships between different categories or themes. In the context of this research, it 
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represents how often each pair of fields (like "Hydrology," "Climate Science," etc.) appears 

together in the same set of papers. This matrix serves as a quantitative representation of the 

interconnectedness of different research areas. Higher numbers indicate a greater degree of co-

occurrence, suggesting stronger or more frequent associations between the fields in the research 

literature. The diagonal cells, distinctively emphasized, denote the proportion each theme 

contributes to the overall body of knowledge on flood and drought issues, respectively. For 

instance, when research is focused on WRM, 47% of publications investigate flood issues. These 

values are pivotal as they signify the amount of research focused on flood or drought and 

underscore its prominence within the field.  

 

Figure 5.4. Co-occurrence matrix of investigated papers in the context of flood and drought research. 

On the other hand, the off-diagonal cells show how frequently two themes have been researched 

simultaneously. These values offer insights into the interconnections between different themes, 

highlighting how researchers have navigated the complexities of flood and drought issues by 

integrating multiple thematic areas. A higher frequency, denoted by a warmer colour on the heat 

map, suggests a strong association and a tendency for themes to be studied together (Highly cited 

fields), indicating interdisciplinary focus areas. Conversely, the cooler colours represent fewer 

simultaneous intersections in (Emerging Fields) which may be potential frontiers for novel 

research.  
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Theme combinations classified as 'Emerging Fields' represent developing study areas with 

potential for growth and increased focus. On the other hand, 'Highly cited fields' have already 

established a solid foundation within academic discourse, often serving as cornerstones for further 

research and development. 

5.3.1 Understanding pairwise theme co-occurrence through distribution 

analysis 

Analysing the data accumulated by combining a histogram and a box plot comprising of only the 

counts of the pairwise co-occurrences between themes, provides different perspectives on the  

data's distribution as shown in Figure 5.5 helps finding the main pairs of themes that are studied 

together to address flood and drought issues. 

 

  

 

 

 

 

Figure 5.5. Distribution of pairwise count of thematic co-occurrence within investigated papers in the 

context of flood and drought research. Box plot represents the numerical distribution of pairwise co-

occurrences between themes and right axis shows the percentage values of the orange Pareto line. 

The histogram suggests that most research themes tend to have a lower count of co-occurrences 

(as shown by the first bin with the highest frequency). This might indicate that there are a few 

commonly associated pairs of themes that are frequently studied together, while most pairs of 

themes co-occur less often. 
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The distribution is right-skewed, with a gradual decrease in frequency as the co-occurrence count 

increases. This implies that as we look at higher co-occurrence counts, fewer theme pairs reach 

these levels. A right-skewed distribution is typical for count data where the absence or low 

occurrence of an event is more common than high occurrences. 

The tail of the histogram extending to the right suggests the possible presence of outliers or theme 

pairs that co-occur with unusually high frequency. These could represent particularly hot topics 

within flood and drought research that warrant further investigation. 

The median (the line inside the box) appears to be on the lower end of the scale, which aligns with 

the histogram's indication that most theme pairs do not co-occur frequently. In this distribution, 

mean (the 'X' inside the box) is above the median, and this could suggest that the mean is higher 

due to the influence of outliers, which is common in skewed distributions. The IQR is relatively 

small, indicating that the middle 50% of the data points are clustered within a narrow range of 

lower co-occurrence counts. The individual points above the upper whisker represent outliers, 

which are theme pairs with co-occurrence counts significantly higher than the rest. These points 

merit special attention to understand why these particular pairs of themes are so frequently 

associated in the literature. 

The combined histogram and box plot in Figure 4.6 suggest a distribution typical of count data 

where many theme co-occurrences are rare, but a few occur much more frequently. This pattern 

could reflect the nature of research where specific themes are more commonly studied together 

due to their relevance or importance in flood and drought. 

The outliers could indicate areas incredibly fertile for research or that have received much 

attention, possibly due to recent developments, funding availability, or particular demand from 

communities to investigate certain fields. 

Understanding this distribution is critical for researchers, as it helps identify which themes are 

most often studied in tandem and which are less explored. This knowledge can guide selection 

parameters for the assessment framework from the intersection of research themes and suggest 

potential areas for interdisciplinary links. The following conclusions can be drawn from these 

observations: Complementarity and Interdisciplinary Research: Co-occurrences indicate that 

specific thematic pairings are consistently considered together, suggesting complementarity in 
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flood and drought research. Combining insights from diverse themes leads to a more holistic 

understanding of environmental studies due to their interdisciplinary nature. 

Identifying Research Gaps: Less frequently associated topics may offer opportunities for 

innovative perspectives and solutions that are not typically associated with each other. 

Trends and Evolution: Emerging themes may indicate shifts in focus due to environmental 

challenges or technological advances, perhaps reflecting temporal trends. 

Strategic Planning for Future Research: By understanding the current landscape of research 

themes, institutions and policymakers can strategically fund and promote studies in areas that 

bridge well-established and emerging fields, fostering innovation and comprehensive knowledge 

development. 

5.4 L INEAR AND NON-LINEAR CORRELATION ASSESSMENTS 

Overall, this co-occurrence matrix maps out the current state of flood and drought research and 

serves as a navigational chart for steering intersections where possible parameters could be 

considered for inclusion in the flood and drought risk assessment framework. It illustrates the 

interconnectedness of environmental research. Exploring these intersections will improve global 

water management strategies and advance knowledge. However, co-occurrence information in 

combination with insights driven from the correlation coefficients (Figures 5.6 and 5.7) and cosine 

similarity matrices (Figure 4.9) could further analyse the interactions amongst various themes. It 

leads to a more robust selection of parameters and their links within the risk assessment 

framework.  

5.5 INTEGRATING INSIGHTS FROM MULTIPLE MATRICES:  A  HOLISTIC 

VIEW OF RESEARCH THEME DYNAMICS . 

The three matrices provided below represent different statistical measures applied to the co-

occurrence matrix of research themes related to flood and drought. When analysing these 

combined results, the aim is to look for consistent patterns across all three measures and any 

notable differences that could suggest further lines of inquiry. 
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Examining these three matrices together, would help synthesis a comprehensive view of how 

themes are interrelated in the body of research on floods and drought. This can result in identifying 

which themes are commonly studied together, which are inversely related, and which have complex 

relationships that vary depending on the measure used. Such insights can guide future research 

directions, suggest a potential for interdisciplinary studies, or reveal gaps in the literature. 

Alternatively, it opens a way for insights suggesting the overlap between parameters, which exist 

in various themes simultaneously.  

5.5.1 Analysing linear relationships between research themes. 

As illustrated in Figure 5.6, which essentially is a linear correlation investigation of the co-

occurrence matrix, the diagonal represents the density distribution of individual themes.  

The Pearson correlation coefficient (Figure 5.6) measures the linear relationship between two 

variables, indicating the strength and direction of this relationship. A value of 1 represents a perfect 

positive linear correlation, -1 represents a perfect negative linear correlation, and 0 indicates no 

linear correlation. It assumes that the variables are normally distributed and is sensitive to outliers.  

The fact that the correlations between Hydrology and most of the themes are negative suggest that 

it is often the primary focus and not studied in conjunction with themes like Economy or 

Environmental Science. However, the positive correlation with Climate Science could be due to 

the natural overlap between water-related issues and climate studies. Emergency Management and 

Policy has a positive correlation with Economy that could be because emergency management 

often involves economic analysis of disasters' costs or resource allocation for emergency response. 
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Figure 5.6. Co-occurrence Pearson correlation coefficient and data distribution matrices, Hyd (Hydrology), 

Emr (Emergency management and policy), Cli (Climate change), WRM (Water resources management), Ecn 

(Economy), Env (Environmental science), Agr (Agriculture), Civ (Civil engineering), Ecl (Ecology) and IT 

(Information technology). 

5.5.2 Analysing monotonic relationships between research themes. 

In contrast with Pearson coefficient, the Spearman correlation coefficient (Figure 5.7) assesses the 

monotonic relationship between two variables. This rank-based measure does not assume 

normality and is less affected by outliers and skewed distributions. It can detect any consistent 

relationship, whether linear or not. Values are interpreted similarly to the Pearson correlation, with 

1 indicating a perfect positive monotonic relationship, -1 a perfect negative monotonic 

relationship, and 0 no monotonic relationship. 

The strong positive monotonic relationship with hydrology and Information Technology might 

imply that hydrological studies increasingly incorporate technological tools or data analysis 

methods. 

Emergency Management and Policy had a strong negative correlation with Information 

Technology, which might suggest that as emergency management becomes more policy-focused, 

it becomes less associated with technological aspects. Similarly, Climate Science, had a strong 

negative correlation with Environmental Science is intriguing, as it suggests that when studies focus 
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deeply on climate science, they may do so to the exclusion of broader environmental 

considerations. 

 

Figure 5.7. Spearman non-linear correlation coefficient matrix. 

Water Resources Management lacked strong correlations suggests that the relationships with other 

themes may not be consistent or may be non-monotonic. 

Economy had a strong positive relationship with Emergency Management. It could suggest a 

consistent trend of incorporating economic analyses into policymaking for emergencies. Similarly, 

Agriculture was positively correlated with Economy could indicate a consistent consideration of 

economic factors in agricultural research, possibly related to the economic impacts of floods and 

droughts on agriculture. At the same time, Civil Engineering showed a positive correlation with 

Hydrology and Water Resources Management that could reflect the practical need to consider 

water-related issues in civil engineering projects. 

Environmental Science’s strong negative correlation with Climate Science might suggest that 

studies focusing on immediate environmental impacts may not simultaneously address long-term 

climate trends. The results showing the negative correlations between Ecology and Emergency 

Management and Policy could indicate that ecological research is less prevalent in studies that are 

primarily policy oriented. Information Technology, similar to the linear analysis, had a strong 

positive relationship with Hydrology and strong negative with Emergency Management. It 

suggests that IT's role in hydrology is more consistent and perhaps technical, whereas in emergency 

management, it may be less integrated or more varied. 
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5.5.3 Assessing the similarity of co-occurrence patterns 

Cosine similarity index (Figure 5.8) measures the cosine of the angle between two non-zero vectors 

in a multi-dimensional space, which in the context of co-occurrence data, represents the similarity 

in the pattern of co-occurrences rather than the magnitude. A value of 1 indicates that the two 

vectors are in the same direction (high similarity), while 0 indicates orthogonality (no similarity). 

When interpreting these metrics together in the context of co-occurrence of research themes, it's 

crucial to consider that Pearson and Spearman coefficients reveal the direction and type of 

relationship (linear or monotonic), whereas cosine similarity focuses on the degree of overlap in 

the presence of themes. Together, they can provide a comprehensive understanding of the 

relationships between themes, revealing not only which themes tend to co-occur but also the 

nature of their co-occurrence patterns, be they consistent, linear, or merely frequent. Moderate to 

high similarity between Emergency Management and policy with most of the other fields such as 

Hydrology, Climate Science, WRM and Economy indicates that these themes are often considered 

in the context of disaster management and response planning. Considering the risk components 

of analysis is mainly composed of a range of parameters described in them. Environmental 

Science’s high similarity with Ecology (and vice versa) is consistent with the strong interrelation 

between environmental and ecological studies. 

 

Figure 5.8. Cosine similarity matrix of thematic co-occurrence. 

Agriculture had a moderate similarity with Emergency Management, which may reflect studies on 

agricultural resilience and recovery in the face of natural disasters. Civil Engineering showed some 

similarity with Hydrology and Water Resources Management that is likely due to the intersection 

of these fields in the design and management of water infrastructure. Finally, Information 
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Technology had a low similarity across the board might indicate that IT is a tool used within these 

fields rather than a central focus of research. 

These detailed analyses across the matrices can help to identify not just how frequently themes co-

occur, but also the nature of their relationships, whether they're linear, non-linear, consistent, or 

varying. In summary, the combined analysis across the three matrices suggests distinct patterns of 

research focus and interconnection among the themes. Some themes like Hydrology, Climate 

Science, and Environmental Science show expected connections based on the subject matter. In 

contrast, themes like Information Technology and Economy exhibit more complex relationships 

with other research areas, potentially indicative of evolving interdisciplinary trends or emerging 

research domains. 

5.6 ADVANCED ANALYTICAL APPROACHES IN FLOOD AND DROUGHT 

RESEARCH :  CO-OCCURRENCE ,  CLUSTERING,  AND FIELD 

CONTRIBUTIONS . 

When analysing a co-occurrence matrix, clustering can be useful in revealing the underlying 

structure and relationships among the themes. Based on their co-occurrence pattern similarity, this 

grouping themes technique makes it easier to identify clusters of themes. 

5.6.1 Determining optimal parameters with the knee method: "selecting eps 

value for DBSCAN clustering. 

The Knee method, also known as the “elbow” method, is a technique used to determine an optimal 

value for the “eps” parameter in clustering algorithms, particularly in Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) method (Figure 10). “eps” stands for epsilon, 

which defines the maximum distance between two points for them to be considered as in the same 

neighbourhood. While popular with DBSCAN, the Knee method can also be useful in other 

clustering methods or situations where a critical threshold needs to be determined from a curve. 
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Figure 5.9. Determining the optimum “eps” for clustering the themes using the Knee method. 

Choosing the right eps is crucial for the effectiveness of DBSCAN (Figure 5.9). Using DBSCAN 

clustering with eps approximately equal to 16.03 and minimum of samples set to 2 (both are 

optimised values), the research themes have been clustered as follows (Table 5.1). 

These clusters suggest that "Water resources management" and "Environmental science" share a 

close co-occurrence pattern, as do "Agriculture", "Civil Engineering", and "Ecology". 

Table 5.1. Clusters of research themes based on DBSCAN method. 

Clusters Theme 

Cluster 0 Water resources management, Environmental science 

Cluster 1 Agriculture, Civil Engineering, Ecology 

Noise Hydrology, Climate science, Emergency management and policy, Economy, IT 

The remaining themes did not group tightly enough to form clusters with the given parameters. 

The 'Noise' label in DBSCAN indicates themes that did not fit well into a cluster with others, 

potentially due to less frequent or inconsistent co-occurrence with other themes. Clustering themes 

as noise could be a result of considering them as outliers, which could be due to a relatively large 

difference in the higher average of their co-occurrence compared to that of the other themes. 

Therefore, it could be more efficient to apply the same outcome of the “eps” to hierarchical 

clustering. In this context, it is a method to organize and interpret the relationships between 

different research themes based on how often they co-occur in the literature. It offers insights into 
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how these themes are interconnected and can guide researchers in identifying closely related areas 

or potential new avenues for interdisciplinary links. 

5.6.1 Applying hierarchical clustering to co-occurrence data: "grouping 

themes based on similarity. 

In hierarchical clustering, the distance between any two themes is calculated without considering 

directionality, and the resulting dendrogram groups themes based on the similarity of their co-

occurrence patterns with all other themes. Similarly, spectral clustering and DBSCAN do not take 

the direction of the relationship into account. 

This approach is typical when the order of co-occurrence does not carry additional meaning, which 

is often the case in co-occurrence matrices unless the matrix was specifically constructed to reflect 

a directional relationship, such as citation direction in bibliometric data or the flow of processes in 

a system. 

Themes that merge at lower heights of the dendrogram are more similar to each other (Figure 

5.10). The height at which two themes or clusters merge represents the distance or dissimilarity 

between them. The dendrogram can be used to interpret both the relationships within clusters 

(intra-cluster) and between different clusters (inter-cluster). Themes within the same cluster should 

have more in common with each other than with themes in different clusters. Similar to results 

derived from DBSCAN method, “Agriculture” and “Civil Engineering” are linked together at the 

lowest distance, which at a higher distance are coupled with “Ecology” to form the part one. On 

the other hand, with a slightly higher distance, “Water resources management” and 

“Environmental science” are joined together. This combination is grown by “Information 

technology” being added to the team. These three themes at the distance of about 30 are joined 

with “economy” to form the second part. All the themes mentioned so far are joined by “Climate 

science” at distance 66, then by “Hydrology” at 73 and finally by “Emergency management and 

policy” at distance 78. This classification will later help identify areas of higher importance in 

studying flood and drought and find the parameters with valuable links to define and assess the 

risk of flood and drought. The following sections are devoted to explaining the most cited themes 

and sub-themes that contribute to defining these risks. These estimates are based on peer reviewed 

published research, derived from a systematic literature review and further content analysis (partly 
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described in previous sections), and there may be some overlap and variability in their assessments. 

The overall process of this systematic review is outlined in chapter two.  

 

Figure 5.10. Hierarchical clustering dendrogram of the research themes. 

5.7 MAPPING KEY RESEARCH FIELDS IN FLOOD AND DROUGHT STUDIES :  

"TOP CONTRIBUTING FIELDS AND THEIR SUBFIELDS . 

Results from analysing the context of the literature and categorizing them into sub-fields led to 

formation of the following breakdown (Table 5.2), which represents the top twenty fields that 

contribute to current understanding of both flooding and drought risk. As described in Table 5.2, 

many fields actively research flooding and drought from various perspectives. In some cases, the 

study focuses primarily on the physical factors contributing to the risk of flooding and drought, 

such as hydrological and terrestrial factors. Other fields are working towards adapting and risk-

mitigating schemes. A wide range of recently published efforts is in line with realising and 

addressing the aftermath impacts of hydro hazards. For instance, the research focuses on the social 

and economic impacts of flooding and drought, such as the effects on agriculture, infrastructure, 

and public health. Additionally, some studies focus on the psychological effects of flooding and 

drought, such as the impact on individuals and communities. However, this research focuses on 

the fields that, based on the systematic literature review, together contribute to 75% of our 



 

151 

understanding of flooding and drought risk. These fields and their sub-fields are illustrated in 

Figure 5.11. 

Table 5.2. Fields and their subfield that contribute to the risk of F&D. 

Field Subfield 
Field 

Contribution 
% 

Field Subfield 

Hydrology 

Geology   

Public health 

Waterborne diseases 

Geomorphology 15 3 Vector-borne diseases 

Hydrogeology   Environmental health 

Climate science 

Meteorology   

Energy 

Renewable energy 

Climatology 10.5 3 Energy efficiency 

Atmospheric science   Energy policy 

Water resources 
 management 

Water supply management   

Policy studies 

Environmental policy 

Irrigation engineering 9 3 Water policy 

Water treatment 
technology 

  Climate policy 

Environmental 
science 

Environmental 
engineering 

8 3 Anthropology 

Cultural anthropology 

Environmental policy Disaster anthropology 

Natural resource 
management 

Human ecology 

Civil engineering 

Coastal engineering 

7 2 History 

Environmental 
history 

Transportation engineering Water history 

Structural engineering Disaster history 

Agriculture 

Crop science 

6.5 2 Philosophy 

Environmental ethics 

Soil science Sustainability ethics 

Agroforestry Disaster ethics 

Emergency  
management 

Disaster response planning 

6 2 Education 

Environmental 
education 

Crisis management Disaster education 

Risk assessment Water education 

Economics 

Natural resource 
economics 

6 2 Psychology 

Risk perception 

Agricultural economics Coping strategies 

Water economics Trauma response 

Information  
technology 

Remote sensing 

4 2 Communications 

Risk communication 

GIS Crisis communication 

Computer modelling Public relations 

Ecology 

Restoration ecology 

4 2 Tourism 

Sustainable tourism 

Ecosystem services 
Disaster tourism 

Biodiversity conservation 
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Figure 5.11. Fields that contribute to 75% of our understanding of flooding and drought risk. 

5.8 THEMATIC ANALYSIS OF MAIN CONTRIBUTING FIELDS IN FLOOD AND 

DROUGHT RESEARCH . 

5.8.1 Hydrology: understanding water dynamics in river basins.  

Hydrology lays the foundation for understanding the dynamics of water movement and storage 

within a river basin. Key sub-themes include hydrological modelling, flood forecasting, drought 

monitoring, and groundwater-surface water interactions. Unravelling the hydrological processes 

and their interactions with climatic variables is pivotal for risk assessment and management. The 

outcome of thematic content analysis led to articulating the main sub-themes of hydrology related 

to flooding and drought risks at a river basin scale into three categories. Firstly, Hydrological 

modelling and forecasting including physiographical factors, such as precipitation, evaporation 

affect water flow (surface and subsurface) and storage within river basins (Doswell, 2015; Pavur 

and Lakshmi, 2023). These models can be utilised to forecast flooding and drought events, aiding 

in early warning and preparedness. This sub-field has a direct connection with some of other 

themes such as Water Resources Management. Recent progress in Information technology has 

made the way smoother for the collection of hydrological data from satellite-based Earth 

observations (NDVI, LCLU), which can be instrumental in comparing flood and drought events 

over time and across different regions (Pavur and Lakshmi, 2023). 

The analysis of hydrological extremes such as floods and droughts include analysing the severity, 

frequency, and variability of these events. Understanding the impacts of climate change and 
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anthropogenic stressors on water resources (Population growth, Migration) and assessing the risks 

posed to communities and infrastructure are integral components of this sub-theme 

(Gebrechorkos et al., 2022; Satoh et al., 2022, Fasihi et al., 2021). 

These sub-themes encompass a span of methodologies and technologies that contribute to the 

comprehensive understanding and management of flooding and drought risks at a river basin scale. 

Through hydrological modelling and forecasting, enhanced data acquisition via remote sensing, 

and meticulous investigation of hydrological extremes, stakeholders can better prepare for, 

respond to, and mitigate the adverse impacts of these hydrological events. The parameters that 

contribute to understanding the risk of flooding and drought that are extracted from this theme 

are tabulated here (Table 5.3). 

Table 5.3. Hydrological parameters that affect risk of flooding and drought. 

Hydrology 

Elevation Slope Distance to river Percolation 
Land 

cover/use 

Soil moisture Soil type River Density Flood level Precipitation 

Evapotranspiration Runoff 
Seepage from groundwater to 

surface water 
Evaporation 

Snowmelt 
pattern 

5.8.2 Climate science: impact on hydrology and water events 

Climate science enhances our understanding of how atmospheric phenomena influence water 

availability and hydrological events. Specifically, climate change projections, extreme weather 

events, and their implications for flooding and drought are discussed. 

At the river basin scale, Meteorology, Climatology, and Atmospheric Science provide a 

comprehensive understanding of flood and drought risks. 

To forecast and understand immediate hydrological responses in river basins, it is imperative to 

have a thorough understanding of weather patterns, such as precipitation, temperature, humidity, 

and wind. Meteorological models can be helpful in forecasting heavy rainfall events within a river 

basin (Li et al., 2023). Studies underlines the significance of using large-scale climate models to 
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simulate future climate conditions and their potential impact on water resources at a river basin 

level (Talsma et al., 2023; Wu et al., 2022). For example, higher levels of atmospheric humidity can 

increase the intensity of precipitation and contribute to hydrological extremes (Payne et al., 2020). 

The way meteorological, climatological, and atmospheric phenomena interact with each other has 

a significant impact on how water behaves in river basins (Table 4.4). This knowledge can help in 

making more informed decisions and developing effective risk management strategies at the river 

basin level. 

Table 5.4. Climatic parameters that affect risk of flooding and drought. 

Climate science 

Change factor Wind speed Temperature Air humidity Precipitation 

5.8.3 Strategic water resources management for flood and drought resilience 

The sustainable utilization and protection of water resources within a river basin constitute the 

water resources management field that demands effective management. This field entails sub-

themes such as water allocation, reservoir management, and integrated water resources 

management (IWRM), employed to create a balance between water supply and demand across 

different regions (Transferred inflow) (Dirwai et al., 2021). A comprehensive approach to water 

resources management in a river basin guarantees the careful allocation of water resources, the 

careful management of water reservoirs, and the effective implementation of IWRM strategies. 

With careful planning and implementation, it is possible to balance the competing demands while 

minimizing the risks associated with flood and drought (Water resources sustainability index). 

Three main sub-themes of WRM are Water supply management Irrigation engineering and Water 

treatment technology. Irrigation engineering focuses on designing, constructing, and operating 

irrigation systems to provide water to agricultural lands, thereby enhancing food security. Well-

designed and managed irrigation systems are vital to maintaining agricultural productivity during 

drought conditions. Moreover, irrigation engineering also encompasses flood management to 

prevent waterlogging and soil erosion during heavy rainfall or flooding events. (Singh et al., 2019)

. Market allocation and tradeable water rights are among the mechanisms that can facilitate efficient 

water use and allocation in different sectors (Deng et al., 2022). The combination of these sub-

themes works together to create a more durable and sustainable framework for managing water 
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resources. This framework can effectively handle the challenges posed by flooding and drought 

on a river basin scale. By practicing careful water supply management, utilizing effective irrigation 

engineering, and implementing fair water allocation practices and parameters (Table 5.5), we can 

mitigate the negative impacts of extreme hydrological events and promote the sustainable use of 

water resources in river basins (Singh et al., 2019; Deng et al., 2022). 

Table 5.5. Water resources management parameters that affect risk of flooding and drought. 

Water resources management 

Water 
consumption 

Water demand Water supply Returned flow Water inflow/outflow 

Water 
abstraction 

Transferred 
inflow 

Irrigation water 
requirement 

Per capita water 
consumption 

Water resources 
sustainability index 

5.8.4 Environmental science approaches to flood and drought 

Environmental science studies the connection between natural processes and human activities. It 

focuses on topics such as managing watersheds, controlling erosion, changing land use, and 

ensuring the ecological well-being of river systems. Environmental science is vital to understanding 

and mitigating flooding and drought risks, especially on a river basin scale (Table 5.6). 

Environmental Engineering (Kiedrzyńska et al., 2015), Environmental Policy, and Natural 

Resource Management (NRM) (Poff et al., 2016; Tan et al., 2022) are three sub-disciplines of 

Environmental Science that play a significant role in managing these risks (Wang et al., 2022; 

Crespo et al., 2022). The NRM policy measures could include flood risk management strategies, 

drought preparedness plans, and climate change adaptation initiatives (Wang et al., 2022; Crespo 

et al., 2022). Understanding the environmental aspects of flooding and drought risks at a river 

basin level involves exploring various sub-themes.  

These sub-themes form a holistic understanding and can assist in devising robust strategies to 

mitigate the adverse effects of hydrological extremes. An interdisciplinary approach that includes 

engineering solutions, policy frameworks, and sustainable resource management practices is 

necessary to promote environmental sustainability in river basins (Wang et al., 2022; Crespo et al., 

2022). 
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Table 5.6. Environmental Science parameters that affect risk of flooding and drought. 

Environmental science 

Soil Erosion Environmental flow Land cover/use 
Surface water 

inflow 
Returned flow 

5.8.5 Agricultural strategies for managing flood and drought risks 

Agriculture is a crucial sector that is highly susceptible to the negative impacts of flooding and 

drought, particularly at a river basin level (Table 5.7). It deals with examining the vulnerability and 

adaptive capacity of food production systems. The sub-themes of Crop Science, Soil Science, and 

Agroforestry are essential in devising strategies that help in fighting against these hydrological 

challenges. These strategies include irrigation management, crop diversification, and soil 

conservation practices that enhance the resilience of food production systems against water-related 

shocks. In the context of flooding and drought risks, there are sub-themes such as Crop science 

(Quandt et al., 2023), Soil science (Acevedo et al., 2020) and Agroforestry (Brown et al., 2018) that 

conclude the role of Agriculture field. 

Through the interplay of these sub-themes, it is possible to build a more resilient agricultural sector 

capable of withstanding the adversities of flooding and drought at a river basin scale. These sub-

themes, through their distinct yet interconnected focus areas, contribute significantly to the overall 

sustainability and resilience of agricultural systems in the face of hydrological extremes (Wilson 

and Lovell, 2016). 

Table 5.7. Agriculture parameters that affect risk of flooding and drought. 

Agriculture 

Land cover/use 
Actual land area for 

crop 
Expected land area Crop pattern Soil moisture 

Irrigation Efficiency Cultivation cost 
Irrigation water 

requirement 
Precipitation NDVI 

Delivery rate Production of crops Benefit from crops Surface water inflow 
Expected 

agricultural water 
requirement 
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5.8.6 Economic perspectives on flood and drought mitigation 

Evaluating the costs and benefits of flood and drought mitigation measures requires economic 

analyses. This involves assessing water resources value, conducting economic impact evaluations, 

and creating financial instruments like insurance schemes (Table 5.8). 

When it comes to flood and drought risks at a river basin scale, economics plays a crucial role in 

analysing the financial and resource allocation implications of these hydrological extremities. The 

main sub-themes of economics in this context are Natural Resource Economics, Agricultural 

Economics, and Water Economics, each highlighting different aspects of the economic interaction 

involved. Here's a closer look at these sub-themes in the context specified. Natural resources, 

Agricultural and water economics are the main sub-themes of the Economics which deal with the 

risk of flood and drought more directly.  

The aim of Natural resource economics and sustainable resource management is to understand 

the significance of natural resources in the economy, which is crucial for developing sustainable 

management strategies in fluctuating hydrological conditions (Martin, 2019). Emerging from the 

amalgam of farm economics and management, Agricultural Economics has broadened to 

encompass the entire food supply chain, natural resources, and development. The focus extends 

to analysing the economic viability and impact of various agricultural practices aimed at mitigating 

the risks associated with these hydrological extremities (Tietenberg, 2018). 

5.8.6.1 Water economics: analysing scarcity and management impacts 

Water Economics delves into the economic implications of water scarcity, allocation, and 

management, especially in the face of flooding and drought. The sub-theme explores how water 

scarcity can have a ripple effect on the economy at both the basin and global levels. Studies 

indicates that higher physical water scarcity can result in both positive and negative economic 

impacts, depending on various factors such as the basin's adaptive capacity and global land-use 

policies (Dolan et al., 2021). By exploring the sub-themes, which are intricately interlinked, we can 

gain a comprehensive understanding of the economic dynamics that are associated with the risks 

of flooding and drought at a river basin scale. This exploration can enable stakeholders to better 

formulate policies and strategies that can mitigate the adverse economic impacts of such 
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hydrological challenges, ensuring sustainable resource management and economic resilience 

(Eamen et al., 2021). 

Table 5.8. Economic parameters that affect risk of flooding and drought. 

Economy 

National 
economic growth 

rate 
Added value Net benefit 

Benefit from 
crops 

Flood premium 

Watershed 
economic 

development rate 
Cultivation cost 

Flood alleviation 
investment 

Access to 
insurance 

Required 
insurance 

Disaster 
alleviation 
investment 

Drought alleviation 
investment 

Drought premium Drought relief Flood relief 

5.8.7 Emergency management and policy in flood and drought contexts 

Effective preparedness, response, and recovery strategies are crucial in minimizing the adverse 

impacts of flooding and drought. These strategies encompass disaster risk reduction, early warning 

systems, and community-based disaster management (Table 5.9). 

Emergency management plays a pivotal role in mitigating the risks and addressing the challenges 

posed by flooding and drought, especially at a river basin scale. The three sub-themes of emergency 

management - Risk Assessment, Crisis Management, and Disaster Response Planning - are 

essential in orchestrating a well-rounded approach to handling these hydrological adversities. 

Policy studies evaluate the governance frameworks, policies, and institutional arrangements 

necessary for an effective flood and drought risk management. Sub-themes include policy analysis, 

regulatory frameworks, and multi-level governance. Following is a detailed breakdown of these 

sub-themes in the context of flooding and drought risks at a river basin scale.  

Risk assessment is crucial to emergency management. It involves identifying, analysing, and 

evaluating potential hazards and the risks they pose. This process enables us to understand the 

vulnerabilities and potential impact of flooding and drought on communities and ecosystems 

within a river basin. By conducting a systematic risk assessment, emergency managers can prioritize 

actions and allocate resources more effectively to mitigate the identified risks. Overall, risk 

assessment is the foundation of effective emergency management (Department of Homeland 
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Security, U.S., 2008). Effective crisis management ensures that the necessary measures are taken 

in a timely and organized manner. This is to protect lives, property, and the environment during 

and after a crisis event. 

These sub-themes offer a structured approach to managing flooding and drought risks at the river 

basin level. By conducting meticulous risk assessments, implementing robust crisis management, 

and developing well-thought-out disaster response plans, it is possible to mitigate the adverse 

effects of hydrological extremes and increase river basins' resilience (Federal Emergency 

Management Agency, 2010; Lindell, 2020). 

Table 5.9. Emergency management and policy parameters that affect risk of flooding and drought. 

Emergency management and policy 

Flood Risk Migration 
Early warning 

systems 
Health facility Residents' utility 

Population growth 
rate 

Population 
The ratio of basin's 

GRP to 
neighbouring basins 

Drought Risk 
Public demand for 

mitigation 

Flood premium Required insurance Access to insurance Flood relief 
Dependence on 

flood relief 

Community 
resilience 

Drought relief Drought premium 
Dependence on 
drought relief 

Risk perception 

Flood impact Drought impact Flood Vulnerability 
Drought 

Vulnerability 
Flood Exposure 

Drought Exposure Flood hazard Drought hazard Flood awareness Drought awareness 

5.8.8 Civil engineering's role in flood and drought risk management 

Civil engineering is essential in the design and maintenance of infrastructure that can withstand, 

manage, and mitigate the impacts of flooding and drought. Hydraulic engineering, floodplain 

management, dam and reservoir design, and the construction of water-retention and drainage 

systems are key sub-themes of civil engineering (Table 5.10). At a river basin scale, civil engineering 

plays a vital role in mitigating the risks associated with flooding and drought. The sub-themes of 

civil engineering, namely structural engineering, transportation engineering, and coastal 
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engineering, contribute to this endeavour in various ways (Ding et al., 2020; Trinh and Molkenthin, 

2021). 

Structural engineering plays a crucial role in designing sturdy structures that can withstand the 

impact of natural disasters such as floods and droughts. It involves developing structural designs 

and implementing measures such as dams, levees, and reservoirs that aid in flood prevention, water 

storage, and drought management. Transportation engineering is a field that aims to facilitate the 

safe and efficient movement of people and goods, especially in adverse weather conditions. In the 

event of flooding or drought, it is essential to have resilient infrastructure such as roads, bridges, 

and ports that can continue to function. That's where transportation engineering comes in, 

providing the expertise needed to design and build infrastructure that can withstand these extreme 

conditions (Liu et al., 2020). 

Coastal engineering is crucial for managing the risks associated with flooding in coastal and river 

basin areas. This sub-theme involves designing structures like sea walls, bulkheads, and revetments 

to protect against coastal flooding. Additionally, coastal engineers work on flood hazard mapping 

and the development of flood control structures. This is to reduce inundation areas, flood stages, 

and flooding duration in coastal river basins (Wolanski et al., 2011; Jha et al., 2020). 

Together, these sub-themes of Civil Engineering contribute to a comprehensive approach to 

managing the risks of flooding and drought at a river basin scale. This ensures the resilience and 

sustainability of infrastructure systems amidst hydrological adversities. 

Table 5.10. Civil Engineering parameters that affect risk of flooding and drought. 

Civil Engineering 

Flood shelter Urbanization 
Transportation 

network 
Irrigation efficiency Flood level 

Precipitation Dam/Reservoir Subsurface storage Storm control Dike/Levee 
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5.8.9 Ecological perspectives in flood and drought risk management. 

Ecology studies the relationships between living things and their environment in river basins. Its 

sub-themes include the study of aquatic and riparian ecosystems, biodiversity, habitat restoration, 

and the ecological impacts of hydrological extremes (Table 5.11).  

As a field, ecology plays a significant role in understanding and addressing the risks of flooding 

and drought, especially at a river basin level. Restoration Ecology, Ecosystem Services, and 

Biodiversity Conservation are three sub-themes that are particularly relevant to this scenario. 

Restoration projects across the globe have demonstrated positive impacts on both biodiversity and 

ecosystem services, underscoring the significance of ecological restoration as a means of mitigating 

the adverse effects of hydrological extremes (Benayas et al., 2009; Bullock et al., 2011). Ecosystems 

possess a natural ability to regulate floods and droughts to some extent. It is crucial to recognize 

the provision of ecosystem services such as water regulation, water quality, and disease regulation, 

among others, in the context of flooding and drought. In fact, the natural capacity of ecosystems 

can decrease both the severity and frequency of floods. Furthermore, it is essential to evaluate the 

implications of drought on freshwater provisioning and food provisioning services, as drought is 

a widespread extreme climate event with the potential to alter freshwater availability and related 

ecosystem services (Li et al., 2017; Hua et al., 2022). 

Preserving the variety of life in all its forms is the main concern of biodiversity conservation. This 

is significant as biodiversity plays a crucial role in making ecosystems resilient to flooding and 

drought (Vári et al., 2022). Considering the management of risks associated with flooding and 

drought at a river basin scale, the sub-themes of ecology play a vital role in devising a 

comprehensive approach. Restoration ecology helps to restore ecosystem health and function. 

Meanwhile, understanding the benefits that humans derive from ecosystems is made possible 

through the lens of ecosystem services. On the other hand, biodiversity conservation aims to 

maintain the ecological balance and resilience of these ecosystems against hydrological adversities. 

Table 5.11. Main parameters of Ecology discipline that affect risk of flooding and drought. 

Ecology 

Biodiversity Environmental flow Surface water inflow 
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5.8.10 Leveraging information technology in flood and drought risk 

management 

Information Technology (IT) plays a crucial role in enhancing data acquisition, modelling, and 

decision-making in managing flood and drought risks (Table 5.12). The sub-themes under this 

umbrella term, which are Remote Sensing, Geographic Information Systems (GIS), real-time 

monitoring systems, and the development of decision support systems, are noteworthy. These sub-

themes, especially Remote Sensing, GIS, and Computer Modelling, have significantly improved 

the understanding and management of flood and drought risks at a river basin scale. Below, I've 

explained how each of these sub-themes contributes. 

Remote Sensing technologies play a crucial role in monitoring hydrological variables and detecting 

flood and drought events. Multispectral imaging, LIDAR, and radar technologies enable the 

collection of essential data for flood prediction and monitoring of drought impacts. Similarly, the 

use of Geographic Information Systems (GIS) has brought about a significant change in the way 

spatial data is managed. With the help of computer modelling, GIS enables the processing of vast 

amounts of spatial data to extract valuable insights, which is especially useful in assessing and 

monitoring the risk of drought and flood. This technology has proven to be a game-changer in 

flood and drought risk management. 

IT encompasses several sub-themes that work together seamlessly to provide a strong foundation 

for obtaining, analysing, and comprehending data that is crucial for comprehending and mitigating 

the dangers linked with floods and droughts at a river basin level. By constantly improving these 

areas, IT allows for a more accurate, timely, and efficient response to the obstacles presented by 

hydrological extremes. 

Table 5.12. Main parameters of Ecology discipline that affect risk of flooding and drought. 

Information Technology 

NDVI Precipitation Temperature 
Early warning 

systems 
Land cover/use Elevation 
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5.9 COMPLEMENTARY FIELDS IN FLOOD AND DROUGHT RISK 

ASSESSMENT 

These themes are all utilized in assessing the risk of flooding and drought because they influence 

how people respond to these risks and how they can be managed, compared to the main themes 

are less considered.  

5.9.1 Public health: addressing health impacts of hydrological extremes 

Public Health: Public health investigates the health implications of flooding and drought, focusing 

on waterborne diseases, mental health stressors, and the provision of safe drinking water and 

sanitation facilities during crises. 

5.9.2 Interdisciplinary perspectives: energy, anthropology, and policy studies 

Energy: The energy sector explores the interlinkages between water and energy, scrutinizing the 

impacts of hydrological extremes on energy production, particularly hydropower, and the energy 

requirements for water treatment and distribution. 

Anthropology: Anthropology examines the cultural, social, and human dimensions of flood and 

drought risks, including community resilience, traditional knowledge systems, and the socio-

cultural impacts of water scarcity and excess. 

Policy Studies: Policy studies evaluate the governance frameworks, policies, and institutional 

arrangements essential for effective flood and drought risk management. Sub-themes include 

policy analysis, regulatory frameworks, and multi-level governance. 

5.9.3 Communication, education, and historical lessons in risk management 

Communications: Effective communication strategies are pivotal for risk awareness, disaster 

preparedness, and community engagement. This field emphasizes public awareness campaigns, 

risk communication, and media relations in the context of hydrological extremes. 
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Education: Education fosters a culture of understanding, preparedness, and action against flood 

and drought risks. It embraces curriculum development, public education, and professional 

training to enhance societal resilience. 

History: Historical analyses provide insights into past flooding and drought events, societal 

responses, and the evolution of risk management strategies over time. This field underscores the 

importance of historical lessons in shaping contemporary and future approaches. 

5.9.4 Integrating philosophy, psychology, and tourism into risk management 

Philosophy explores the ethical, moral, and value-based considerations inherent in flood and 

drought risk management, provoking reflection on human-nature interactions, justice, and 

sustainability. 

Psychology investigates the human behavioural and mental health aspects, including stress, trauma, 

and the psychological factors influencing risk perception and decision-making during hydrological 

extremes. 

Finally, Tourism examines the vulnerability and adaptability of the sector to flooding and drought, 

exploring the economic implications, disaster preparedness, and the promotion of sustainable 

tourism practices within river basins. 

5.10 ASSESSING FLOOD AND DROUGHT R ISKS:  THE ROLE OF 

INTERDISCIPLINARY PARAMETERS 

By considering the various fields related to flood and drought risk factors at the river basin level, 

we can gain a more comprehensive understanding of these hydrological extremes. An 

interdisciplinary approach is crucial in developing effective and sustainable solutions to mitigate 

their negative impacts. By adopting an integrative perspective, we can identify a simpler pathway 

towards building resilient river basins. This emphasizes the importance of collective responsibility 

and action to tackle the complex water-related challenges of the 21st century. 

As described earlier, the concept of risk has two main components, namely hazard and impact, 

which in turn impact breaks down to exposure and vulnerability. Investigating the literature 
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revealed that 25% of parameters within the context of both flooding and drought risk correspond 

to hazards whereas the remaining contribution is reserved for vulnerability and exposure. 

However, this ratio varies spatially and between the risk of flood and drought individually. So far, 

many fields’ contribution has been spotted, results from the thematic analysis gathered and scaled 

show that which fields are the most influential to understanding of the mentioned risks and are 

interconnected at the same time (Figure 5.12). 

As it is illustrated, Emergency Management and Policy is the only field that is well connected to 

all the fields whilst IT is more linked with Economics, Civil Engineering, WRM and 

Environmental Science.  

 

Figure 5.12. Scaled Thematic analysis of contributor fields. (W.R.M) Water Resources Management, (Env. 

Sci) Environmental Science, (EMR man) Emergency Management, (Civil Eng.) Civil Engineering. (Climate 

Sci) Climate Science, (IT) Information Technology. 

A total number of 116 parameters and some of their prominent interactions were extracted that 

rationally and based on the literature were directly or indirectly contributed to the risk of flood and 

drought (Table 5.13). So far, fields, sub-fields, and parameters that are involved in describing of 

our understanding of the flood and drought risks are systematically extracted from the literature.  
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Parameter name Num. Parameter name Num.

Change Factor p1 Industrial added value p59

Flood Risk p2 Domestic added value p60

Flood shelter p3 Agricultural added value p61

Urbanization p4 Per capita water consumption p62

Migration p5 Population growth rate p63

Elevation p6 Population p64

Slope p7 Per capita domestic water demand p65

Transportation network p8 Per capita domestic water demand growth rate p66

Early warning systems p9 Per capita industrial water demand p67

Health facility p10 Per capita industrial water demand growth rate p68

Distance to river p11 The ratio of basin's GRP to neighbouring basins p69

NDVI p12 Per capita agricultural water demand p70

Snowmelt pattern p13 Per capita agricultural water demand growth rate p71

Biodiversity p14 Water resources sustainability index p72

LC/LU p15 Watershed water consumption p73

Soil moisture p16 Watershed economic development rate p74

Soil type p17 Drought Risk p75

Wind speed p18 Irrigation efficiency p76

River density p19 Net agricultural water use p77

Flood level p20 Delivery rate p78

Soil erosion p21 Actual land area for crop p79

Precipitation p22 Expected agricultural water requirement p80

Temperature p23 Cultivation cost p81

Evapotranspiration p24 Net benefit p82

Available surface water p25 Production of crops p83

Available groundwater p26 Expected land area p84

Returned flow p27 Irrigation water requirement p85

Water supply p28 Benefit from crops p86

Water use p29 Crop pattern p87

Water demand p30 Expected water requirement p88

Surface water inflow p31 Public demand for mitigation p89

Domestic demand p32 Flood alleviation investment p90

Industrial demand p33 Flood premium p91

Agricultural demand p34 Required insurance p92

Domestic water use p35 Access to insurance p93

Agricultural water use p36 Flood relief p94

Industrial water use p37 Dependance on flood relief p95

Agricultural returned flow p38 Community resilience p96

Industrial returned flow p39 Drought relief p97

Domestic returned flow p40 Drought premium p98

Groundwater withdrawal p41 Dependance on drought relief p99

Groundwater outflow p42 Drought alleviation investment p100

Groundwater returned flow p43 Risk perception p101

Groundwater inflow p44 Dike/Levee p102

Natural groundwater inflow p45 Storm control p103

Surface water returned flow p46 Subsurface storage p104

Transferred inflow p47 Dam/Reservoir p105

Natural surface water inflow p48 Flood impact p106

Surface water outflow p49 Drought impact p107

Percolation p50 Flood Vulnerability p108

Surface water withdrawal p51 Drought Vulnerability p109

Seepage from groundwater to surface water p52 Flood Exposure p110

Evaporation p53 Derought Exposure p111

Runoff p54 Flood hazard p112

Environmental flow p55 Drought hazard p113

Residents' utility p56 Flood awareness p114

National economic growth rate p57 Drought awareness p115

Added value p58 Air humidity p116

Table 5.13. Parameters involved in understanding the risk of flood and drought. 
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6 RESULTS AND DISCUSSION: ADVANCED 

CAUSAL FRAMEWORK CONSTRUCTION FOR 

FLOOD AND DROUGHT RISK ASSESSMENT: AN 

INTEGRATION OF ISM-CLD AND NETWORK 

THEORY 
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6.1 CHAPTER INTRODUCTION  

This chapter delineates the development of an advanced causal framework for assessing the risk 

of flooding and drought, a crucial component in understanding and managing these complex 

hydrological events. The framework's construction is rooted in the integration of Interpretive 

Structural Modelling (ISM) and Causal Loop Diagrams (CLD), methodologies renowned for their 

effectiveness in analysing and visualizing complex systems and their interrelated components 

(Eshun and Chan, 2021). 

The essence of this research lies in identifying and meticulously selecting a set of parameters that 

significantly influence flood and drought risks. These parameters are derived from a thorough 

review of existing literature and empirical studies, encompassing a diverse range of factors such as 

environmental conditions, climatic variability, socio-economic factors, and infrastructural aspects. 

Such a comprehensive selection reflects the multifaceted nature of flood and drought risks within 

river basins. Central to the framework's development is the establishment of causal relationships 

between these selected parameters. The ISM methodology facilitates a structured approach to 

understanding these interactions, allowing for the hierarchical arrangement of variables and 

elucidating their direct and indirect influences within the system. Complementing this, CLD 

provides a dynamic perspective by illustrating feedback mechanisms and recurring patterns that 

could amplify or mitigate the risks. 

A significant challenge in flood and drought risk assessment is managing the extensive array of 

possible risk pathways. To streamline this complexity, principles of graph theory are applied. This 

mathematical approach aids in reducing the number of pathways, focusing the framework on more 

targeted and relevant modelling scenarios. The application of graph theory ensures that the 

framework remains both comprehensive and manageable, enhancing its practical utility in risk 

analysis. 

The framework presented in this chapter is not merely theoretical; it is designed to be a pragmatic 

tool for various stakeholders, including policymakers, urban planners, and environmental 

researchers. It offers a detailed understanding of the causal factors driving flood and drought risks 

and their interdependencies, facilitating informed decision-making and effective policy 

formulation. 
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Subsequent sections of this chapter will expound on the methodologies employed in constructing 

the framework, and the integration of ISM-CLD with graph theory. The chapter aims to 

underscore the scientific and practical implications of this framework in flood and drought risk 

management, contributing valuable insights to the field of sustainable water resource management 

in an era marked by increasing climatic uncertainties. 

6.2 ANALYSING RISK MANAGEMENT THROUGH HIERARCHICAL 

STRUCTURING AND MICMAC  ANALYSIS  

The procedure begins with constructing a Structural Self-Interaction Matrix (SSIM) to detail 

interactions among various parameters through pairwise comparisons. This SSIM then serves as 

the foundation for creating an initial reachability matrix by translating the VAXO (Symbols 

explained in section 4.5 and Figure 4.1) matrix into binary form, facilitating the identification of 

direct and indirect parameter interactions. Subsequently, the Final Reachability Matrix is developed 

to examine transitive relationships, enabling the assessment of the framework's hierarchical 

structure through Level Partitioning. Finally, “Matrice d'Impacts Croisés Multiplication Appliquée 

à un Classement” MICMAC Analysis is applied, emphasizing the importance of understanding the 

hierarchical organization of elements and their interconnections, a key aspect in effective risk 

management planning and control. 

6.2.1 Structural Self-Interaction Matrix (SSIM) 

The SSIM defines the interactions among various parameters using a pairwise comparison, where 

the interpretative logic and direct relationships among the parameters are depicted in Table 6.1. In 

presenting the results of this study, it's important to note that the comprehensive tables generated 

are too extensive to be fully included within the main body of the text. To ensure clarity and 

maintain the readability of the document, only a representative sample of each table is displayed 

in the main sections. The complete tables, in their entirety, are meticulously catalogued and 

provided in the Appendix (Supplementary_material_ISM). This approach allows for a detailed 

examination of the full data sets while preserving the flow and coherence of the main text. Readers 

interested in a deeper exploration of the complete data can refer to the supplementary spreadsheet. 
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Table 6.1. Structural Self-Interaction Matrix (SSIM). 

 

6.2.2 Initial Reachability Matrix 

The formation of the initial reachability matrix originates from the SSIM by converting the VAXO 

matrix into a binary format. For instance, cell P4P8 is V. The binary conversion for this cell is 1 

and 0 for P8P4. The outcome of the 116 × 116 binary matrix of risk relationships is presented in 

Table 6.2. 

Table 6.2. Initial Reachability Matrix 

 

6.2.3 Final Reachability Matrix (RM) 

The initial reachability matrix was subjected to an iterative transitivity check process to yield the 

final reachability matrix (Table 6.3). This matrix then informs the MICMAC analysis, which 

evaluates the parameters based on their driving and dependency characteristics, as detailed later in 

Table 6.5 and Figure 6.1 (Section 6.2.5). 
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Table 6.3. Final Reachability Matrix 

 

The results indicate that the driving power for the parameters discussed in the final reachability 

matrix exhibit three distinct values: 1, 115, and 116. In contrast, the dependence values were 

calculated as 1, 99, and 100. 

6.2.4 Level Partitioning 

According to the methodology described in Section 3.6.4, a level partitioning table was created to 

delineate the connections between the parameters (Table 6.4). This iterative method continues 

until all parameters are appropriately categorized and allocated into their respective hierarchical 

levels. 

Table 6.4. Level partitioning. 

 

The hierarchical structure derived from the results reveals a three-tiered framework based on the 

interconnectedness among various elements (Table 6.5).  

At the foundational level, level one, a total of 17 elements are identified, forming the initial layer 

of the structure. Progressing to the next layer, level two encompasses a significantly larger group, 

with 98 elements included indicative of a more complex and intertwined set of relationships. 

Finally, the structure culminates at level three, which is characterized by a singular element. This 
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Level 1 Level 3
Flood Risk Domestic returned flow Drought Risk Flood impact

Flood shelter Groundwater withdrawal Net agricultural water use Drought impact

Urbanization Groundwater outflow Delivery rate Flood Vulnerability

Migration Groundwater returned flow Actual land area for crop Drought Vulnerability

Change Factor Transportation network Groundwater inflow Expected agricultural water requirement Flood Exposure

Elevation Early warning systems Natural groundwater inflow Production of crops Derought Exposure

Slope NDVI Surface water returned flow Expected land area Flood hazard

Health facility Snowmelt pattern Natural surface water inflow Irrigation water requirement Drought hazard

Distance to river LC/LU Surface water outflow Benefit from crops Flood awareness

Biodiversity Soil moisture Percolation Expected water requirement Drought awareness

Soil type Soil erosion Surface water withdrawal Public demand for mitigation Air humidity
Water 

conflict

Wind speed Precipitation Seepage from groundwater to surface water Flood alleviation investment Industrial water use

River density Temperature Industrial added value Flood premium Agricultural returned flow

Flood level Evapotranspiration Domestic added value Required insurance Evaporation

Transferred inflow Returned flow Agricultural added value Access to insurance Runoff

Environmental flow Water supply Per capita water consumption Community resilience Cultivation cost

National economic growth rate Water use Population growth rate Drought relief Net benefit

The ratio of basin's GRP to neighbouring basins Water demand Population Drought premium Available surface water

Watershed economic development rate Surface water inflow Per capita domestic water demand Dependance on drought relief Available groundwater

Irrigation efficiency Domestic demand Per capita domestic water demand growth rate Drought alleviation investment Residents' utility

Crop pattern Industrial demand Per capita industrial water demand Risk perception Added value

Agricultural demand Per capita industrial water demand growth rate Dike/Levee Flood relief

Domestic water use Per capita agricultural water demand Storm control Dependance on flood relief

Agricultural water use Per capita agricultural water demand growth rate Subsurface storage

Industrial returned flow Water resources sustainability index Dam/Reservoir

Level 2

distinct arrangement highlights the varying degrees of influence and connection among the 

elements, including parameters, risk components and risk factors, with each level representing a 

specific tier of interrelation and impact in the overall hierarchical model. 

Elements in the first level of the hierarchy require a range of parameters to effectively convey their 

impact throughout the system. In contrast, elements in the second category primarily establish 

links between themselves and other hierarchical levels. The top level of the hierarchy, represented 

by water conflict, dictates that if it occurs, many other elements and their interconnections are 

already functioning to address this element. 

Table 6.5. Hierarchical ISM. 

 

 

 

 

 

 

6.2.5 Analysing driving and dependence power of parameters using MICMAC  

The results of the MICMAC analysis, crucial for effective planning and control in risk 

management, are focused here on the hierarchical structure of elements and their 

interrelationships. Table 5.4 illustrates the driving and dependency powers of these elements, 

essential for understanding their roles in the system. 

Key insights from the analysis are highlighted by the categorization of elements into four quadrants 

in Figure 6.1, each representing different characteristics: autonomous, dependent, independent, or 

linkage elements. Autonomous elements, identified with low driving and dependency powers, 

exhibit minimal interaction within the system. In contrast, dependent elements are characterized 
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by high dependency and low driving powers, indicating their occurrences are significantly 

influenced by other factors. 

Independent elements, on the other hand, have high driving power with low dependency, marking 

them as highly influential within the system. The most dynamic quadrant is the linkage category, 

where elements demonstrate both high dependency and driving powers, denoting their unstable 

nature as they significantly influence and are influenced by other factors in the system. 

This analysis, particularly the graphical plotting in Figure 6.1, is instrumental in identifying leverage 

points for managing these elements. The driving power, represented on the y-axis, is calculated as 

the sum of rows in the final reachability matrix (RM), while the dependency power on the x-axis 

is derived from the sum of individual columns. These insights offer a comprehensive view of the 

elements, guiding strategic planning and decision-making in risk management. 

 

Figure 6.1. MICMAC analysis of parameters. 

The results from the MICMAC analysis of this framework, involving a total of 116 elements with 

their respective connections, present a compelling narrative about the dynamics within the system. 

These results are particularly insightful when analysed in the context of driving and dependency 

powers, as defined in the analysis. 
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The first group of parameters including 98 elements with high driving (115) and moderate 

dependency (99) is within the linkage quadrant of the plot (Figure 6.1). These elements are 

significantly influenced by a large portion of the network, as indicated by their high driving power 

of 115. This suggests that a majority of the other elements in the system directly or indirectly affect 

these 98 elements. On the other hand, their moderate dependency power of 99 indicates that these 

elements, while being highly influenced, also have a substantial impact on other elements in the 

network. They are not the most influential, but they play a significant role in the network dynamics. 

Thus, given their balanced position between being influenced and influencing others, these 

elements could act as stabilizers in the network, transmitting and moderating the effects of changes 

across the system. 

The second group containing 17 elements with low driving (1) and high dependency (100) is in the 

dependent quadrant of the graph (Figure 6.1). These elements are minimally influenced by others 

in the system (low driving power) but have a high capacity to influence (high dependency power). 

They are less reactive to the system’s changes but significantly impact many other elements. These 

elements could be seen as critical leverage points. Their ability to affect a large portion of the 

network, despite being less influenced, positions them as critical leverage points in strategic 

planning. They could be key to initiating changes or maintaining stability in the network. 

One last element (P73: Water conflict) with extremely high driving (116) and low dependency (1) 

is within the independent quadrant of the plot (Figure 6.1). 

According to the flow of information through this network of parameters, this element is unique 

in that it is influenced by every other element in the network (highest driving power) but has almost 

no influence over others (lowest dependency power). Its position makes it highly vulnerable and 

central to the network. Being affected by all other elements, any change in the network converges 

on this element, making it a critical point for monitoring and understanding the overall system 

health. Due to its high sensitivity to the network, changes in this element’s behaviour or state could 

be indicative of broader systemic shifts or emerging issues. In summary, the majority of elements 

in this network are both significantly influenced by and influential to others, suggesting a complex 

web of interdependencies. The 17 elements with low driving but high dependency power emerge 

as strategic points for influencing the network. In contrast, the single element with extremely high 
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driving power and low dependency is a unique indicator, highly sensitive to the system's changes 

and potentially a focal point for monitoring the overall network health and dynamics. 

6.3 UTILIZING CAUSAL LOOP DIAGRAMS FOR EFFECTIVE FLOOD AND 

DROUGHT RISK ASSESSMENT IN RIVER BASIN  

The utilization of Causal Loop Diagrams (CLDs) in graphically conveying the cause-and-effect 

relationships among risk factors significantly facilitates the development of targeted measures and 

mitigation strategies. These strategies are crucial for enhancing system performance, particularly in 

the context of feedback and behavioural changes of the risk factors. The core objective of the 

CLD is to reveal and comprehend the intricate feedback and causal dynamics that underlie key 

flood and drought risks, particularly in the realm of river basin management infrastructure. This 

understanding is vital for achieving optimal and equitable resource distribution. 

Further enriching this narrative, the structural analysis and findings derived from the Interpretive 

Structural Modelling (ISM) and the (MICMAC) evaluation uncover the existence of dynamic 

relationships and feedback loops (Section 6.3). These findings warrant deeper exploration, 

modelling, and interpretation, roles adeptly fulfilled by the CLD. The CLD goes beyond mere 

identification of relationships; it precisely deciphers these connections to ascertain the most 

effective mitigation strategies for ensuring the success of project implementation. This approach 

is instrumental in navigating the complexities of system dynamics. 

As illustrated in Figure 6.2, the CLD maps out the network of interactions within the system. The 

ISM analysis, which establishes the relationship density among parameters (as observed in the final 

Reachability Matrix), lays the groundwork for the CLD to spotlight risk factors with significant 

feedback properties. Within the diagram, the arrows represent the influence dynamics: a parameter 

at the tail of an arrow exerts an influence on the parameter at the arrowhead. 

The nature of regulation within CLDs is delineated as either a self-reinforcing or a self-balancing 

system, discerned through the direction of the arrows and the accompanying positive (+) or 

negative (-) and delay ( \ \ ) symbols. A self-reinforcing system is characterized by growth or 

escalating effects, fuelled by mutual influences among system elements. Conversely, in a self-

balancing system, there exists a moderating element that imposes constraints or limits on growth, 
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ensuring stability and equilibrium within the system. This dualistic nature of CLDs offers a 

comprehensive lens through which the dynamics of system elements can be effectively analysed 

and managed. 
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Figure 6.2. Causal loop diagram (CLD) of all parameters – links which were further apart are connected using a colour-coded mechanism.
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This diagram represents the complete framework used in this research, capturing the intricate 

causal relationships among diverse parameters influencing flood and drought risks at the river 

basin scale (Figure 6.3). The Causal Loop Diagram (CLD) effectively maps the system’s complexity 

by visually showcasing cause-and-effect dynamics, feedback loops, and interdependencies among 

risk factors. These connections play a critical role in identifying targeted measures and mitigation 

strategies, especially for managing behavioural changes and feedback effects in hydrological 

systems. The core objective of this comprehensive framework is to provide a robust basis for river 

basin management by addressing resource distribution challenges in an optimal and equitable 

manner. 

The framework integrates findings from the quantitative analysis presented in section 5.3 and 

Interpretive Structural Modelling (ISM) performed on the pairwise connections between various 

parameters contributing to the causes of flood and drought risk, which establishes the foundational 

relationships amongst all of the parameters. Through ISM and MICMAC analysis, the density of 

relationships is systematically uncovered, setting the stage for the CLD to identify parameters with 

strong feedback properties. Each parameter and its interactions in this network have been validated 

through multiple peer-reviewed publications and real-world case studies, ensuring credibility and 

practical relevance. 

As illustrated in the figure, clusters of interconnected parameters form distinct sub-models, each 

corresponding to specific disciplines such as hydrology, climate science, and water resource 

management. These clusters are color-coded to enhance readability and distinguish their roles 

within the system. For example, the Risk Perception sub-model connects parameters such as 89-

101 with others like 2, 75, 106, and 107, forming a focused interaction group that directly informs 

risk management strategies. These sub-models are further elaborated in the following sections to 

provide a clear understanding of their contributions to the overall framework. 

To reduce complexity and improve clarity, the diagram uses parameter IDs instead of detailed 

names. However, upcoming subsections will explore these IDs in detail, describing the role and 

importance of each parameter within its respective sub-model and across the broader framework. 

Additionally, the framework’s flexibility allows for modifications based on specific basin 

requirements or unique circumstances. For instance, influences like deforestation or restoration 

projects can be incorporated by adjusting indices such as the Normalised Difference Vegetation 
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Index (NDVI) or Land Cover Land Use (LCLU).The framework serves as the foundation for 

subsequent refinement processes, such as using cross-entropy analysis to condense the full model 

into a generalized pathway. This simplified pathway provides a globally adaptable framework 

suitable for computation and risk mapping in any river basin. Stakeholders can further tailor the 

general pathway by adding specific feedback loops or parameters to assess the resulting impacts 

on risk maps. By presenting the full framework first, followed by a general model, the study ensures 

both comprehensive coverage and practical applicability, making it a versatile tool for flood and 

drought risk assessment. 

6.3.1 Hydro physical sub-model 

This sub-model (Figure 6.3) primarily integrates hydrological and climatic parameters (Ionita et al., 

2017), their internal connections, and intersections with agricultural, water resource management 

(WRM) (Van Dijk et al., 2013; Bagley et al., 2014), and risk factors sub-models. The Change factor, 

representing climate transient projections under various emission scenarios, significantly impacts 

parameters like Precipitation, Temperature, and Natural surface water inflow (Braun et al., 2014; 

Miao et al., 2017; Vogel et al., 2017; Briffa et al., 2009; Martius et al., 2016). Not all connections 

apply universally to every basin; for instance, snowmelt's role in water inflow is specific to certain 

regions. In the context of this sub-model, the dynamics between soil moisture, precipitation, and 

runoff are critical (Huning and Aghakouchak, 2018). 

 

 

 

 

 

 

Figure 6.3. CLD of hydro physical parameters of river basin. 
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There are two primary pathways from precipitation to runoff. One is a direct connection where 

precipitation immediately impacts runoff, applicable in regions with established correlations 

between these two factors (Berghuijs et al., 2019; Aldridge et al., 2020). The other pathway involves 

soil moisture, influenced by soil type, which then indirectly affects runoff. High soil moisture levels 

can independently contribute to runoff, alongside other parameters (Kalantari et al., 2019; Trnka 

et al., 2016; Lima et al., 2011). This dual-pathway approach accommodates different regional 

characteristics and relationships, ensuring the model's adaptability to various hydrological 

scenarios. Because in the sub-model, runoff is not inherently a risk factor for flooding or drought. 

Its impact as a contributing parameter is contingent upon how it influences the available surface 

water through surface water inflow. This aspect underscores the importance of considering the 

interconnectedness of hydrological processes when assessing flood and drought risk components. 

The interactions between various parameters, such as air humidity, wind speed, and evaporation, 

may exhibit both short-term, near-real-time effects and longer seasonal trends.  

Ultimately, the interactions within this sub-model have far-reaching implications. They influence 

crucial aspects such as irrigation water requirements in agriculture, water flow dynamics into the 

basin for water resource management (WRM), and various risk components including flood 

hazard, flood exposure, as well as drought vulnerability and exposure. This interconnectedness 

underscores the model's holistic approach in assessing and managing these key environmental and 

resource management factors. 

6.3.2 Basin’s agricultural sub-model   

The significance of the agriculture sub-model (Figure 6.4) in this framework, especially in the 

context of drought risk assessment, is emphasized by its prominent role in water resource 

allocation (Du et al., 2023). Agriculture is often the primary consumer of water resources, even in 

regions with developed water infrastructure. In numerous case studies focusing on drought risks, 

a significant portion, often exceeding 70% of water supplied to a basin is allocated for agricultural 

use (Yang et al., 2020). This reality underscores the critical importance of agriculture in both 

drought and flood risk management, spanning socio-economic and technical dimensions (Tsao et 

al., 2021). 
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Figure 6.4. CLD of Agriculture parameters of river basin. 

In this research, the Agricultural sub-system's CLD incorporates various irrigated crops in a basin, 

reflecting the diversity in irrigation water demands of different agricultural practices (Madani and 

Mariño, 2009; Mirchi et al., 2012; Bussmann et al., 2016; Anderson et al., 2019; Khazaei et al., 

2019). By including crop pattern in the analysis, the model caters to specific crop interests or the 

overall crop pattern of a region (Madani, 2014; Maghrebi er al., 2020; McCarthy et al., 2021). Figure 

5.4 illustrates the agricultural sub-system for a hypothetical crop pattern. It's predicated on the 

assumption that farming decisions are driven by maximizing income, influencing land allocation 

for crops based on their previous year's net economic benefits (Mesgaran et al., 2017; Reiter et al., 

2018). Expected land area and irrigation water requirements of each crop are directly related to its 

anticipated water needs (Klaus et al., 2016). The basin's total agricultural water requirement is an 

aggregate of all crops' water needs, influencing the net agricultural water demand. Agricultural 

water demand inversely correlates with irrigation efficiency and is often only partially met due to 

limited water availability (Deryng et al., 2014; Watanabe et al., 2018). 

In this context, "delivery rate" refers to the ratio of agricultural water demand that is met by the 

available irrigation water supply (Gohari et al., 2013, Gohari et al., 2017). Both agricultural water 

demand and supply are positively linked to actual water usage. High agricultural water usage 

combined with efficient irrigation can minimize water loss and increase net consumption. The 
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actual land area dedicated to each crop is determined by adjusting the expected land area according 

to the delivery rate, which has a positive relationship with the actual land area utilized for crops. 

If a basin already has a simulated the economic model to estimate the net benefit for each crop, 

then an established relationship between the chosen crop pattern and agricultural water demand 

can be utilized. This approach could effectively replace the need for the loop initially described, by 

using the link between crop pattern and agricultural water demand (Dile et al., 2013). In such a 

scenario, the production of each crop would be directly influenced by these market simulations, 

aligning more closely with actual economic behaviours and demands within the agricultural sector 

of the basin. In the basin's agricultural model, the production of each crop is influenced by the 

actual land area allocated to it. An increase in this allocated area typically leads to higher crop 

production. However, there is a delayed causal process at play, particularly from an environmental 

management perspective, where a loss in biodiversity can eventually increase cultivation costs and 

potentially reduce crop yields. This delayed effect highlights the interconnectedness of agricultural 

practices and environmental health, underscoring the importance of sustainable management in 

agricultural systems. In the agricultural model, crop price is inversely related to its production level 

within the same year, indicating that higher production could lead to lower prices due to supply 

and demand dynamics. The net benefit derived from each crop, positively linked to its production, 

encompasses the total gains from both the crop itself and its by-products. Additionally, the 

cultivation cost for each crop escalates with the increase in actual land area used and biodiversity 

loss, incorporating expenses related to energy, water, seeds, labour, fertilizer, and pesticide, 

underscoring the multifaceted nature of agricultural economics. 

It's crucial to recognize that the costs and benefits of agricultural activities significantly fluctuate 

under different political, economic, and societal contexts. These causal relationships display a 

dynamic pattern, necessitating further investigations. Special focus should be on the local 

parameters that influence the markets relevant to agricultural activities within specific river basins. 

6.3.3 Water resources sub-model in a river basin 

The Water Resource Management (WRM) sub-system's CLD captures the interplay between 

elements of the hydrologic cycle and WRM, including the indirect effects of population and water 
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consumption patterns from societal sub-models. It highlights water supply and demand as key 

factors influencing water conflict (Figure 6.5). 

 

 

 

 

 

 

Figure 6.5. CLD of Hydrological and WRM parameters of river basin. 

The Water Resource Management (WRM) sub-system's CLD captures the interplay between 

elements of the hydrologic cycle and WRM, including the indirect effects of population and water 

consumption patterns from societal sub-models (Gohari et al., 2013; Gohari et al., 2017; Liu et al., 

2019; Coletta et al., 2021). It highlights water supply and demand as key factors influencing water 

conflict. The diagram also reflects how inter-basin water transfer projects and the interaction 

between groundwater and surface water affect water availability, posing risks for both flooding 

and drought (Jiménez and Chávez, 2004; McMartin et al., 2018; Hedrick et al., 2020). Figure 5.5 

emphasizes the role of regional climatic and hydrological attributes—temperature, precipitation, 

evapotranspiration, runoff, natural flows, and groundwater recharge—in determining the natural 

water balance of the basin (Jun et al., 2011; Wang and Xie, 2018). 

The CLD illustrates the interactions between various components, using arrows to indicate 

positive or negative causal relationships. It highlights how supply-oriented human interventions, 

like inter-basin water transfers, increase water availability to meet rising demand (Kallis, 2010; Hall 

et al., 2019). Water allocation within the basin prioritizes domestic, industrial, agricultural, and 

environmental needs in that order, with surface water being the primary source. When surface 

water is insufficient, groundwater is utilized (Di Baldassarre et al., 2018). Additionally, the return 

flow from the non-consumptive use of water across sectors is reintegrated into the system, 
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enhancing both surface and groundwater recharge. This in turn can show the capability of different 

drainage systems within the basin (Richts and Vrba, 2016). 

6.3.4 Socio-economic sub-model  

The socioeconomic sub-system's CLD, depicted in Figure 6.6, integrates with Water Resource 

Management (WRM), agriculture, and Emergency management and policy sectors. Socioeconomic 

development influences water demand in the basin, affecting resident utility and prompting in-

migration from adjacent basins. Additionally, the basin's GRP (Gross Regional Product) ratio to 

neighbouring basins, the Watershed economic development rate, and the National economic 

growth rate are exogenous factors impacting resident utility, highlighting the complex interplay 

between economic indicators and water management strategies (Delalay et al., 2020; Zhai et al., 

2020; Dottori et al., 2023). National economic growth rate is in essence, GDP, or Gross Domestic 

Product, measures a country's total economic output in goods and services for a specific period. 

It serves as a key indicator of the dynamic of national economic performance (Gohari et al., 2013; 

Gohari et al., 2017).  

Comparing the ratio of the basin’s economic performance with neighbouring basins, which in this 

CLD is captured by GRP could be an influential factor in attracting in-migration. GRP represents 

the total economic output of goods and services within a specific region or locality over a certain 

period. It functions similarly to GDP but focuses on a regional or local level, offering insights into 

a region's economic health and activity.  

The Watershed Economic Development Rate, unlike GDP, lacks a standardized unit and is 

measured using indicators such as employment rates, business growth, and sector-specific trends. 

Assessments of living standards, including income, access to services, and infrastructure 

improvements, contribute to understanding economic health in watershed management. These 

combined indicators offer a holistic view of economic progress within a watershed (Lemoine and 

Kapnick, 2016). 
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Figure 6.6. CLD of Socio-economy and WRM parameters of river basin. 

The national economic growth rate significantly influences the desirability of living conditions 

across the country, impacting basins of interest. Factors such as per capita water use, water's added 

value, national economic growth, and the watershed's GRP compared to nearby areas shape 

residents' utility. This parameter is indicative of economic progress and satisfaction with local job 

opportunities, services, and goods, can spur in-migration from surrounding basins, highlighting 

the interconnectedness of economic factors and demographic shifts within a watershed. 

Economic growth in a basin, especially when it outpaces that of neighbouring regions, fuels rapid 

development, enhancing job prospects and prompting in-migration. This growth escalates water 

consumption across sectors, thus increasing residents' utility and socio-economic development, 

which, in turn, raises per capita water use. The resultant growth in sector-specific water demand 

boosts the basin's overall water needs (Van Dijk et al., 2013; Johnson et al., 2020). With economic 

gains varying across industrial, domestic, and agricultural sectors, the aggregate economic 

productivity from water use elevates the basin's attractiveness, further driving up water demand in 

a self-reinforcing cycle (Ward et al., 2017). 
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6.3.5 Flood and drought impact sub-model 

In this segment of the model (Figure 6.7), various factors are intricately linked, impacting both 

vulnerability and exposure to flood and drought risks (McCarthy et al., 2021; Merz et al., 2021). 

 

Figure 6.7. CLD of flood and drought impact in a river basin. 

While certain interactions directly or indirectly influence these components, others exhibit both 

effects simultaneously, underscoring the complexity of these relationships. For example, land use 

significantly affects risk: natural areas like forests and wetlands decrease both drought and flood 

exposure through enhanced moisture retention and buffering capacity, respectively. In contrast, 

urbanization increases risk by reducing water absorption. Similarly, soil types with high infiltration 

rates decrease flood risk, whereas low-infiltration soils increase it, demonstrating the dual impact 

of these parameters on risk components. Impact refers to the overlap of areas where either 

vulnerability or exposure exceeds the average levels found in the dataset (Cammalleri et al., 2020; 

Ahmed et al., 2022). 
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6.3.6 Sub-model of hazard contributors in a river basin 

Within this segment of the CLD (Figure 6.8), the focus is on the interaction between Civil 

Engineering, Emergency Management and Policy, Hydrology, and the physical characteristics of 

the basin (Leitner et al., 2020; Dash and Sar, 2020; Ahmed et al., 2022). 

 

Figure 6.8. CLD of flood and drought hazard contributors in a river basin. 

Mitigation measures are seen to inversely affect flood and drought hazards. For example, 

traditional structural defences like dikes and dams aim to lessen potential risks whilst subsurface 

storage acts as a buffer. However, interestingly, the failure of such structures can, paradoxically, 

increase drought hazards, highlighting the complex, delayed effects these flood mitigation 

strategies may have on drought conditions. 

With increasing urbanization usually, some growth in health facilities and transportation network 

happens which directly mitigate the flood hazard, unless reported otherwise locally due to 

improper design (Ward et al., 2020a). 

Urbanization often brings transportation network expansion, which can mitigate flood hazards, 

assuming proper design. Flood and drought awareness share a bidirectional relationship, varying 

in strength across basins and influencing societal factors like migration and population. Enhanced 
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alleviation efforts mitigate hazards, but evidence shows that measures benefiting one risk (e.g., 

flooding) might adversely affect the other (e.g., drought), demonstrating the complexity of 

managing these risks (Lal et al., 2020; Ward et al., 2020b; Zhai et al., 2021). This necessitates further 

localized research to identify any potential dual effects of these mitigation measures, emphasizing 

the importance of tailored approaches in addressing flood and drought risks. 

6.3.7 Perception of risk and community resilience sub-model 

There's an increasing understanding that to avert future flood damages (Sörensen et al., 2017; 

Schrieks et al., 2021), enhancing community flood resilience is key (Mai et al., 2020). This entails 

the community's capacity to diminish, avert, and manage flood risks, a concept underscored by the 

Sendai Framework for Disaster Risk Reduction 2015–2030. 

 

 

 

 

 

 

 

 

Figure 6.9. Perception of risk and contributors to community resilience in a river basin. 

The presented sub-model diagram combined with the following discussion highlights the critical 

role that risk perception plays in shaping community resilience after flood and drought events. 

Risk perception is not static; it evolves in response to lived experiences of disasters, influencing 

how communities and institutions plan for and mitigate future risks (Figure 6.9). In a river basin, 

where diverse socio-economic and political factors converge, the complexities of risk perception 

and its influence on resilience are magnified. 
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Access to insurance is a particularly significant factor in shaping community resilience, especially 

in basin-wide regions characterized by varied governance and socio-economic conditions. In 

transboundary basins, some areas may fall under different national jurisdictions, leading to 

disparate access to insurance and risk management resources. Similarly, within the same basin, 

certain regions may operate under unique contractual agreements, such as international 

conservation funds or special governmental protection schemes. These variations affect how 

different communities perceive and respond to risks, thereby influencing their capacity to recover 

and adapt. 

The cyclical nature of risk perception and its relationship with insurance dynamics is vividly 

captured in Figure 5.10. Following major flood or drought events, insurance premiums often rise 

significantly, making coverage unaffordable for many communities. This reduced access to 

insurance weakens resilience, creating a feedback loop that exacerbates vulnerability. However, 

targeted awareness campaigns and proactive mitigation strategies can help break this cycle by 

fostering a culture of preparedness and reducing the impact of subsequent events (Sörensen et al., 

2017; Schrieks et al., 2021). 

Investments in mitigation measures, including structural defences, early warning systems, and 

adaptive insurance schemes, are essential for bolstering resilience. These efforts are particularly 

relevant in regions with uneven access to resources, where risk perception may vary based on 

socio-economic conditions and historical experiences of disasters. The reinforcing loop observed 

in relief efforts underscores a paradox: while external aid alleviates immediate suffering, it can 

inadvertently diminish risk awareness and incentivize settlements in high-risk areas. This dynamic 

necessitates a balanced approach that combines immediate relief with long-term strategies to build 

sustainable resilience (Rosenzweig et al., 2018). 

Ultimately, this section emphasizes the need for a nuanced understanding of how risk perception, 

insurance access, and socio-economic diversity intersect within a river basin. These insights are 

crucial for designing policies and interventions that address the specific challenges of 

transboundary basins and heterogeneous governance structures, ensuring equitable and effective 

risk management across all regions. The subsequent sections will delve deeper into how these 

dynamics are integrated into the broader framework for flood and drought risk assessment, 

providing actionable pathways for enhancing resilience. 
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6.3.8 Sub-model of flood and drought risks components in a river basin  

In this framework segment (Figure 6.10), the core components of risk assessment—hazard, 

impact, exposure, and vulnerability—are interconnected directly, with numerous parameters 

within the framework affecting these components either singularly or collectively. The relationship 

between flood and drought risks includes a delayed effect, stemming from natural events or human 

interventions like disaster risk reduction measures. Spatially, regions with significant overlap of 

vulnerability and exposure face greater flood or drought impacts, emphasizing the need for 

targeted risk reduction strategies in these areas. 

 

Figure 6.10. Components of flood and drought risks in a river basin. 

6.4 ENHANCING FLOOD AND DROUGHT R ISK ASSESSMENT THROUGH 

GRAPH THEORY IN CLD  MODELLING  

The intricate task of necessitated managing flood and drought risks in dynamic environmental 

systems necessitates a robust analytical approach. In this context, the application of graph theory 

to a Causal Loop Diagram (CLD) consisting of 116 diverse elements emerges as a particularly 

potent method. This approach transcends conventional analysis by intricately mapping and 

quantifying the complex web of interactions that define flood and drought risks. Through the lens 

of graph theory, each element and its interconnections within the CLD are not merely identified 

but are also evaluated in terms of their relational strength and strategic significance. This nuanced 

analysis facilitates a deeper understanding of the systemic structure and behaviour, thereby 

enhancing the model's predictive and explanatory power. 

By integrating graph theory into the CLD framework, we unlock several transformative outcomes: 
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I. Prioritization of Risk Factors: The ability to discern and prioritize key risk factors and pathways, 

based on their centrality and influence within the network, empowers decision-makers with 

targeted insights for risk mitigation. 

II. Identification of Critical Pathways: Understanding the most influential pathways aids in 

pinpointing where interventions might yield the most significant impact, thereby optimizing 

resource allocation and efforts. 

III. Enhanced Predictive Accuracy: By quantifying the strength of connections and the role of 

individual elements, the model's accuracy in predicting the onset and progression of flood and 

drought conditions is markedly improved. 

IV. Dynamic Risk Management: The dynamic nature of graph theory analysis aligns seamlessly with 

the evolving nature of environmental risks, enabling a more adaptive and responsive risk 

management strategy. 

V. Holistic System Understanding: This approach fosters a comprehensive understanding of the 

system, highlighting not just the direct but also the indirect interactions and feedback loops that 

govern flood and drought dynamics. 

Incorporating graph theory into CLD modelling for flood and drought risk assessment is more 

than an analytical enhancement; it is a paradigm shift towards a more refined, insightful, and 

actionable understanding of complex environmental systems. This integration paves the way for 

more effective, efficient, and proactive management of environmental risks, ultimately 

contributing to the sustainability and resilience of our ecosystems and communities. 

6.4.1 Advancing Strategy Formulation in Flood and Drought Mitigation with 

Girvan-Newman Analysis 

In the pursuit of uncovering the intricate structure of this network, a clustering algorithm (Girvan-

Newman) has been employed that capitalizes on the rich information provided by edge weights, 

acknowledging the varied strength and significance of each connection. In the context of this 

framework, which assesses the risks of flood and drought, the Girvan-Newman method could be 

especially beneficial for identifying clusters of elements that are closely related to each other in 

terms of risk management. By pinpointing these clusters, the method allows for targeted 

interventions, enabling more efficient allocation of resources and tailored risk mitigation strategies. 

It essentially deconstructs the complex web of relationships into more manageable sub-networks, 

each with its distinctive dynamics and influence patterns, which can be addressed with specific, 

localized strategies. The benefit of this approach in this framework lies in its ability to reveal not 

just the most influential individual elements, but also the most significant relationships and the 
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Graph Density

G1 Circle 23 43 43 0.049 0.093 23 43 5 2.431 0.085

G2 Disk 21 34 34 0.097 0.176 21 34 7 2.753 0.081

G3 Sphere 19 41 41 0.079 0.146 19 41 5 2.161 0.120

G4 Square 16 18 18 0.000 0.000 16 18 5 2.383 0.075

G5 Solid Square 12 15 15 0.000 0.000 12 15 6 2.250 0.114

G6 Diamond 11 16 16 0.333 0.500 11 16 5 2.116 0.145

G7 Solid Diamond 10 18 18 0.385 0.556 10 18 4 1.920 0.200

G8 Triangle 4 3 3 0.000 0.000 4 3 3 1.250 0.250

Group Colour Shape

Graph Metrics

structure of the network at a larger scale. More information regarding the normalisation of these 

metrics and produced interim results are available at Appendix_A. 

With randomization activated to ensure a comprehensive exploration of potential community 

structures, the resolution parameter was tuned to 1.0, striking a balance between the granularity of 

clusters and the overarching network architecture. The algorithm's adeptness is reflected in a high 

modularity score of 0.652, affirming the presence of well-defined communities within our network. 

This modularity persists even when the resolution is factored in, underscoring the robustness of 

the community divisions unearthed by our approach. The algorithm has successfully partitioned 

the network into 8 distinct communities, each representing a cohesive subgroup with intra-

connections of various densities (Table 6.6). as compared to inter-connections with other groups 

(Figure 6.11). This subdivision into communities not only enhances our understanding of the 

network's topology but also offers a framework for targeted analysis and intervention in the 

context of flood and drought risk management. 

Table 6.6. Network metrics for each of the produced cluster of parameters. 

 

 

 

 

Based on the analysed network metrics for each group, interpretation of the clusters is as follows. 
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Figure 6.11.Schematic representation of produced clusters of the framework parameters G1 (dark blue), G2 

(light blue), G3 (dark green), G4 (light green with squares), G5 (Red), G6 (orange), G7 (yellow), G8 (light 

green with triangles). 

G1 is a large and moderately connected cluster. With the most vertices and edges, G1 is the largest 

group, indicating a broad and moderately dense network. The low reciprocated vertex pair ratio 

and edge ratio suggest that while there is some reciprocity, many connections are one-way, which 

may indicate a hierarchical structure. A max diameter of 5 and an average geodesic distance of 

2.431 show that the elements are relatively close to each other, facilitating communication or 

influence across the group (Table 6.7). 

Table 6.7. Cluster G1, ID represents parameters and G1 represents the first clustering group. 

 

ID G1 ID G1 ID G1

P3 Flood shelter P89 Public demand for mitigation P103 Storm control

P4 Urbanization P90 Flood alleviation investment P104 Subsurface storage

P5 Migration P91 Flood premium P105 Dam/Reservoir

P8 Transportation network P92 Required insurance P112 Flood hazard

P9 Early warning systems P93 Access to insurance P113 Drought hazard

P10 Health facility P98 Drought premium P114 Flood awareness

P19 River density P100 Drought alleviation investment P115 Drought awareness

P20 Flood level P102 Dike/Levee
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G2 with High Diameter and Reciprocity, has a high max geodesic distance (diameter) of 7, which 

suggests a longer path length between some vertices. A higher reciprocated vertex pair and edge 

ratios than G1 indicate more mutual interactions, which could imply collaborative or 

interdependent relationships. Despite its smaller size compared to G1, its slightly less average 

geodesic distance shows that it’s still quite interconnected (Table 6.8). 

Table 6.8. Cluster G2, ID represents parameters and G2 represents the second clustering group. 

 

G3 is compact with moderate Reciprocity. It has a moderate number of vertices and edges but 

shows a higher graph density compared to G1 and G2, signifying closer ties between nodes. The 

average geodesic distance is the lowest, and the reciprocated ratios are moderate, indicating a 

balance between directed and mutual interactions (Table 6.9). 

Table 6.9. Cluster G3, ID represents parameters and G3 represents the third clustering group. 

 

G4 is sparse and unidirectional. It is characterized by a lack of reciprocated connections, suggesting 

a unidirectional flow of influence or information.  

 

 

 

ID G2 ID G2 ID G2

P1 Change Factor P37 Industrial water use P55 Environmental flow

P22 Precipitation P38 Agricultural returned flow P58 Added value

P27 Returned flow P39 Industrial returned flow P59 Industrial added value

P28 Water supply P40 Domestic returned flow P60 Domestic added value

P29 Water use P41 Groundwater withdrawal P61 Agricultural added value

P30 Water demand P43 Groundwater returned flow P72 Water resources sustainability index

P35 Domestic water use P46 Surface water returned flow P73 Water conflict

P36 Agricultural water use P51 Surface water withdrawal

ID G3 ID G3

P6 Elevation P31 Surface water inflow

P12 NDVI P47 Transferred inflow

P13 Snowmelt pattern P48 Natural surface water inflow

P15 LC/LU P53 Evaporation

P16 Soil moisture P54 Runoff

P17 Soil type P110 Flood Exposure

P18 Wind speed P111 Derought Exposure

P23 Temperature P116 Air humidity

P24 Evapotranspiration



 

195 

Table 6.10. Cluster G4, ID represents parameters and G4 represents the fourth clustering group. 

 

The network is sparser, with fewer edges relative to the number of vertices, and a lower graph 

density, meaning it is less interconnected (Table 6.10). 

G5 is sparse with longer reach. Similar to G4, G5 shows no reciprocity and has a low number of 

edges and graph density. The max geodesic distance of 6 indicates that some nodes can be quite 

far apart, which may hinder quick communication or influence (Table 6.11). 

Table 6.11. Cluster G5, ID represents parameters and G5 represents the fifth clustering group. 

 

G6 is small with high reciprocity. Despite its small size, G6 has high reciprocated ratios, indicating 

a strong tendency towards mutual interactions. This group could represent a tightly-knit 

community with significant bilateral relationships. The graph density is also higher, reinforcing its 

cohesiveness (Table 6.12). 

Table 6.12. Cluster G6, ID represents parameters and G6 represents the sixth clustering group. 

 

ID G4 ID G4

P32 Domestic demand P66 Per capita domestic water demand growth rate

P33 Industrial demand P67 Per capita industrial water demand

P56 Residents' utility P68 Per capita industrial water demand growth rate

P57 National economic growth rate P69 The ratio of basin's GRP to neighbouring basins

P62 Per capita water consumption P70 Per capita agricultural water demand

P63 Population growth rate P71 Per capita agricultural  water demand growth rate

P64 Population P74 Watershed economic development rate

P65 Per capita domestic water demand P108 Flood Vulnerability

ID G5 ID G5

P14 Biodiversity P82 Net benefit

P21 Soil erosion P83 Production of crops

P78 Delivery rate P84 Expected land area

P79 Actual land area for crop P85 Irrigation water requirement

P80 Expected agricultural water requirement P86 Benefit from crops

P81 Cultivation cost P88 Expected water requirement

ID G6 ID G6

P7 Slope P45 Natural groundwater inflow

P11 Distance to river P49 Surface water outflow

P25 Available surface water P50 Percolation

P26 Available groundwater P52 Seepage from groundwater to surface water

P42 Groundwater outflow P109 Drought Vulnerability

P44 Groundwater inflow



 

196 

G7 is a highly interconnected small group. G7, while small, shows the highest reciprocated ratios 

and graph density, suggesting a very interconnected network with many mutual relationships. The 

lower max geodesic distance implies that all nodes are relatively close to each other (Table 6.13). 

Table 6.13. Cluster G7, ID represents parameters and G7 represents the seventh clustering group. 

 

G8 is very small and least dense. The smallest group, G8, also has no reciprocity and the least 

edges, indicating a very simple and direct structure, possibly linear. Its high graph density is due to 

its small size, and the low max geodesic distance suggests that all nodes are directly connected 

without intermediaries (Table 6.14). 

Table 6.14. Cluster G8, ID represents parameters and G8 represents the eighths clustering group. 

 

The network clusters show a range of characteristics from large and hierarchical to small and highly 

interconnected groups. Larger clusters like G1 tend to have more complex structures with a mix 

of one-way and reciprocal connections, whereas smaller groups like G6 and G7 exhibit high levels 

of mutual interactions, indicative of strong interdependencies. The variation in max geodesic 

distances across groups suggests that the spread of influence or information may be more efficient 

in some clusters than others. Groups with higher diameters might contain key influencer nodes 

that bridge distant parts of the network, while those with lower diameters likely have more rapid 

dissemination within the cluster. 

Reciprocity is a critical factor in determining the nature of the interactions within the groups. High 

reciprocated vertex pair and edge ratios, as seen in G6 and G7, are typical of collaborative 

environments, whereas low ratios indicate more hierarchical or linear communication pathways. 

ID G7 ID G7

P2 Flood Risk P99 Dependance on drought relief

P75 Drought Risk P101 Risk perception

P94 Flood relief P106 Flood impact

P95 Dependance on flood relief P107 Drought impact

P96 Community resilience 

P97 Drought relief

ID G8

P34 Agricultural demand

P76 Irrigation efficiency

P77 Net agricultural water use

P87 Crop pattern
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In summary, the network analysis reveals a rich tapestry of interconnections with varying degrees 

of complexity and interaction styles. This diversity must be considered when formulating strategies 

for flood and drought risk management, as different clusters will have unique roles and influence 

within the broader network. The nuanced understanding of each group's structure and dynamics 

is paramount for effective intervention and risk mitigation efforts. 

6.4.2 Analysing betweenness centrality and closeness centrality 

In the intricate web of hydrological and climatic systems, such as the developed framework in this 

research, understanding the pivotal points of influence is essential for both prediction and 

management. Betweenness centrality serves as a crucial metric in this endeavour, spotlighting the 

nodes that frequently act as bridges along the shortest paths between others within the network. 

These key nodes can be likened to vital conduits through which water, information, or resources 

flow, potentially regulating the system's dynamics. On the other hand, closeness centrality sheds 

light on the proximity or reachability of each node, offering insight into how quickly and efficiently 

a node can communicate or be affected by changes across the network. Together, these centrality 

measures provide a profound understanding of the network's topology (Figure 6.12) revealing both 

the influential nodes that shape pathways of interaction and the nodes that are central to the 

network's rapid response capability. In the context of hydrology and water resource management, 

such insights are invaluable for developing robust strategies for risk mitigation, resource allocation, 

and infrastructure development. 

Analysing the provided network metrics, one can derive an understanding of the dynamics and 

behaviour of the network. Betweenness centrality measures the frequency at which a node appears 

on the shortest paths between other nodes, while closeness centrality represents the average length 

of the shortest path from the node to all other nodes in the network. These centrality measures 

provide insights into the importance and connectivity of nodes within the network. 

There are some nodes with High Betweenness Centrality (e.g., Population – P64, Flood hazards – 

P112, Precipitation – P22, Drought vulnerability – P109) are likely to be crucial connectors or 

bridges within the network, controlling the flow of information or resources. Having high 

betweenness centrality indicates these nodes are critical for maintaining the network's connectivity; 

their removal could potentially fragment the network or significantly disrupt communication. 



 

198 

Some nodes with high closeness centrality (Drought vulnerability - P109, Flood exposure - P110, 

Available surface water – P25, and NDVI – P12) are well-placed to quickly interact with all other 

nodes and may be well-suited for spreading information or mobilizing resources across the 

network due to their shorter paths to all other nodes. 

Nodes with Low Betweenness and Closeness Centrality (Benefit from crops – P86, Flood level – 

P10 and Health facility – P20) might be relatively peripheral within the network, with limited 

influence or control over the network's flow. They are neither significant connectors nor are they 

central in terms of information flow or accessibility. 
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Figure 6.12. Visualization of Betweenness centrality (size of circles) and Closeness centrality (colour 

intensity of circles) network metrics for the overall framework. 

A few nodes have zero betweenness but varying degrees of closeness centrality. These nodes such 

as “Watershed economic development rate – P74” and “Environmental flow - P55” do not act as 

bridges on any shortest path between other nodes, suggesting they may serve in more specialized 

or local roles within their immediate community or cluster rather than the network at large. 

The combination of betweenness and closeness centrality measures suggests this framework 

consists of distinct hubs of influence and pathways of interaction. The nodes with both high 

betweenness and closeness centrality are likely to be the network's most influential members, with 
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the capability to quickly and efficiently connect various parts of the network. These hubs or central 

nodes could potentially be influential leaders or critical communication points that hold the 

network together. Their strategic position allows them to access and disseminate information 

across the network effectively. 

Conversely, nodes with low betweenness centrality but higher closeness centrality may indicate 

localized influencers that are not critical for the network's connectivity but are still efficient in 

interacting within their immediate vicinity. These nodes can be seen as local leaders or specialists 

that are important within their specific clusters or communities. 

The overall dynamic of the network seems to be characterized by a few highly central and 

influential nodes that ensure connectivity and flow, surrounded by nodes with varying degrees of 

local influence and reachability. Understanding the roles of these different types of nodes is crucial 

for network management, especially in the context of risk and information propagation. For 

instance, in a flood or drought risk management scenario, the nodes with high betweenness 

centrality would be critical for spreading alerts and coordinating responses, while those with high 

closeness centrality could be instrumental in local community engagement and support. 

Furthermore, the network exhibits a gradient of centrality values, which suggests there's a diversity 

in the function and importance of nodes. This can be advantageous for resilience, as it implies that 

the network is not overly reliant on a single point of failure but rather has multiple key nodes that 

ensure its functionality. 

6.4.3 Exploring the impact of eigenvector centrality and PageRank on 

network analysis 

Eigenvector centrality measures the influence of a node in a network. Unlike other centrality 

measures that consider only the immediate connections of a node, eigenvector centrality considers 

the centrality of a node's neighbours as well, providing a view of the influence over the entire 

network. PageRank on the other hand, assigns a higher score to nodes with a greater number of 

incoming links, and considers the importance of the nodes that provide these links. It's a measure 

of node influence that incorporates the concept of link quality, not just quantity. Interpreting the 

data (Figure 6.13), following observations can be made. 
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As a standout parameter with top scores in both metrics, parameters such as “Drought impact - 

P107” is likely a crucial node within the network. Its high eigenvector centrality suggests it is 

connected to other influential nodes, playing a significant role in the network's integrity. The high 

PageRank score indicates it is a trusted node, receiving many incoming links from other important 

nodes. P107 may represent a key hydrological or climatic factor that warrants close attention in 

flood and drought management. 

Nodes with a high eigenvector centrality and moderate PageRank such as “Surface water 

availability - P25” is connected to other influential nodes, suggesting it has a role in core processes 

related to flood and drought risks. However, its moderate PageRank score indicates it's not a 

primary source of information flow in the network, which could mean it's not a starting point for 

most processes, but it plays a supportive role among other central nodes. 

Nodes that have a strong PageRank and moderate Eigenvector centrality, such as “Risk perception 

– P101”, “Community resilience – P96” which suggest key nodes in terms of the flow of 

information or influence, receiving endorsements from other significant nodes. Its moderate 

eigenvector centrality indicates it's somewhat influential, but perhaps its influence is more due to 

the network's directed structure rather than its position within the entire network's connectivity. 

The parameters “Evaporation – P53” or “Drought vulnerability – P109” may not be central in the 

overall network structure but are still relatively important in the directed aspects of the network 

flow. This could imply they are secondary nodes, possibly acting as intermediate steps in the 

transmission of effects or information related to flood and drought risks. 

Parameters with moderate Eigenvector Centrality and PageRank like “Flood hazard - P112” have 

moderate influence and connectivity. It may be a factor that is involved in several pathways or 

processes but not central to any primary ones. It's still an important node, but interventions here 

might have a less systemic impact compared to nodes with higher scores. 

There are parameters such as (drought awareness - p115, urbanization - p4, and migration - p5) 

with low eigenvector centrality and moderate PageRank. These nodes are not central in terms of 

the overall network structure, but their moderate PageRank scores suggest they have some 

influence on the network's directed flow, perhaps as specialized nodes that come into play under 

specific conditions or in certain pathways related to flood and drought scenarios. 
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Figure 6.13. Visualization of Eigenvector (size of circles) and PageRank (colour intensity of circles) network 

metrics for the overall framework. 

A few parameters like (Available groundwater - P26 and Water resources sustainability index - P72 

have moderate eigenvector centrality and low PageRank. These parameters are somewhat central 

in the network's structure, indicated by their eigenvector centrality, but they are not key drivers of 

information flow within the network, as reflected by their low PageRank scores. They might 

represent underlying factors or conditions that have a stable influence over time but are not often 

directly acted upon in management decisions or immediate responses to flood and drought events. 
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Parameters with low scores in both metrics such as (Change factor - P1, Elevation – P6 and Slope 

– P7) are peripheral to both the overall structure and the directed flows of the network. They 

might be less influential or less active nodes, possibly only coming into play under specific 

circumstances or representing localized issues that don't broadly impact the river basin's flood and 

drought dynamics. In the broader context of the network, we see a hierarchy of nodes where 

Drought impact - P107, Available surface water - P25, Flood risk - P2, Drought risk - P75, and 

Community resilience - P96 emerge as particularly significant due to their high centrality measures. 

Their roles may differ, with some like (Drought Impact - P107 and Drought risk - P75) being 

central in both the undirected and directed aspects of the network, and others like (Flood risk - P2 

and Community resilience - P96) possibly acting more as influential hubs within directed flows. 

The analysis of these parameters with respect to their centrality measures should be integral to the 

design of any interventions. For example, measures to improve resilience to flooding and drought 

should consider the impact on these key parameters due to their potential to affect the overall 

system. It also highlights the importance of understanding not just the presence of connections in 

a network, but the nature and direction of those connections, as well as the context in which the 

nodes operate. 

In conclusion, the combined analysis of eigenvector centrality and PageRank provides a nuanced 

understanding of each parameter's role. High-scoring parameters in both measures are critical to 

the network and should be primary focuses for any intervention strategies. Parameters with 

disparities between their eigenvector centrality and PageRank scores may have more complex roles 

and might require more contextual investigation to fully understand their position and function 

within the network. This understanding is crucial for developing effective flood and drought 

management policies and for prioritizing research and monitoring efforts. 

6.4.4 Exploring the impact of Authority and Hub on network analysis 

In network analysis, Authority and Hub scores stem from algorithms like Kleinberg's HITS 

algorithm, which identifies the most authoritative sources of information and the best aggregators 

of that information within a network. 

Authority Scores indicate the value of the information contained at a node. A high authority score 

suggests that a node is a trusted source of information and is frequently referenced by other nodes 
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in the network. In the visualization (Figure 6.14), the colour of a node corresponds to its Authority 

score. This means that nodes with a similar colour intensity would have similar levels of valuable 

information, with darker or more intense colours typically representing higher Authority scores. 

 

 

Figure 6.14. Visualization of Hub (size of circles) and Authority (colour intensity of circles) network metrics 

for the overall framework.  

Hub Scores reflect the quality of a node's links to other nodes, particularly to authoritative nodes. 

A high Hub score means the node points to many high-quality sources of information. In this 
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visualization, the size of a node represents its Hub score. Larger nodes are those that act as superior 

connectors or 'hubs' in the network, directing users to valuable information. 

Nodes that are large and intensely coloured are both high-quality hubs and contain valuable 

information, making them central to the network's function and influence. Large nodes with less 

intense colour might be great at pointing to other valuable sources, but they do not necessarily 

hold high-value information themselves. Small, intensely coloured nodes are valuable sources of 

information but may not connect well to other nodes. Small, lightly coloured nodes might neither 

hold valuable information nor connect well to valuable sources, indicating they are peripheral to 

the network's main flow of information (Figure 6.14). Understanding the balance between these 

two metrics can help identify which nodes are crucial for disseminating information (hubs) and 

which are important for containing it (authorities). In practical terms, enhancing the visibility and 

connectivity of high-authority nodes can improve the network's overall value, while strengthening 

the links of high-hub nodes can enhance the flow of information. This interpretation can guide 

strategic decisions in network design, content placement, and the targeting of interventions for 

network optimization or control. For instance, in an online social network, high-authority nodes 

might be key opinion leaders, while high-hub nodes could represent influential content curators 

or aggregators. Addressing the connectivity and content of these nodes can significantly impact 

the spread and quality of information across the network. 

6.5 CONSOLIDATED RISK FACTORS USING CROSS-ENTROPY MONTE 

CARLO ALGORITHM (CE). 

In the comprehensive analysis of a network consisting of 116 distinct parameters, each was 

evaluated based on 11 different network metrics to determine their significance and influence 

within the network's structure. This meticulous ranking process revealed that approximately 80 

percent of the total parameters managed to secure a position in at least one of the top-ranking lists 

for the network metrics (Table 6.15), indicating a wide dispersion of importance and influence 

among the parameters.  
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Table 6.15. Top 30 parameters from 11 network metrics. 

 

Remarkably, none of the parameters consistently appeared in the top 25 percent across all 11 

measures, underscoring the diversity in their roles and impacts within the network. However, the 

parameter "Available surface water" distinguished itself by securing a high rank in ten out of the 

eleven lists, showcasing its critical significance in the network's dynamics. To synthesize these 

findings and identify the most overall important factors within this complex multi-metric 

landscape, the Cross-Entropy Monte Carlo algorithm (CE) was employed (Figure 5.15). This 

sophisticated approach allowed for an effective aggregation of rankings across all eleven lists, 

enabling the identification of key parameters that hold the greatest overall importance in the 

network, with "Available surface water" likely emerging as a pivotal element due to its consistent 

high rankings. This methodological approach not only highlights the crucial factors within the 

Weighted

 indegree

Weighted 

outdegree

Weighted

 Degree
Eccentricity

Closeness

centrality

Betweenness 

centrality
Authority Hub PageRanks

Connected

component

Eigen 

centrality

P75 P107 P107 P104 P25 P107 P112 P22 P2 P87 P107

P2 P106 P106 P105 P64 P64 P54 P15 P107 P76 P25

P107 P112 P2 P102 P115 P25 P110 P12 P96 P74 P28

P106 P113 P75 P103 P114 P115 P111 P17 P75 P69 P2

P112 P109 P112 P9 P51 P101 P12 P25 P101 P57 P75

P72 P110 P113 P8 P87 P89 P53 P16 P106 P55 P106

P25 P111 P109 P3 P5 P106 P109 P6 P89 P47 P96

P109 P108 P110 P20 P4 P96 P24 P11 P25 P20 P53

P110 P1 P111 P19 P22 P5 P113 P23 P26 P19 P109

P54 P28 P25 P10 P15 P30 P16 P7 P112 P18 P36

P28 P25 P28 P112 P26 P56 P50 P116 P56 P17 P101

P96 P22 P72 P113 P23 P93 P22 P104 P93 P14 P112

P53 P30 P22 P2 P53 P114 P51 P105 P82 P11 P26

P26 P115 P30 P75 P116 P36 P49 P102 P79 P10 P115

P24 P114 P108 P101 P12 P34 P116 P103 P84 P7 P5

P111 P2 P36 P77 P41 P53 P23 P9 P28 P6 P4

P113 P36 P26 P90 P34 P92 P13 P18 P30 P1 P116

P56 P23 P56 P100 P30 P51 P41 P8 P109 P2 P110

P22 P35 P23 P89 P107 P28 P73 P3 P41 P107 P29

P36 P37 P114 P78 P106 P4 P32 P20 P31 P96 P114

P31 P64 P115 P79 P32 P2 P33 P19 P36 P75 P41

P12 P15 P12 P83 P33 P116 P62 P10 P34 P101 P50

P30 P90 P54 P92 P17 P111 P34 P21 P113 P106 P24

P34 P72 P1 P98 P1 P88 P108 P72 P115 P89 P111

P101 P26 P35 P91 P50 P80 P52 P64 P88 P25 P54

P23 P56 P37 P72 P52 P32 P42 P26 P92 P26 P51

P48 P12 P116 P29 P36 P33 P48 P87 P90 P112 P72

P5 P116 P64 P93 P31 P15 P72 P1 P100 P56 P97

P4 P100 P24 P81 P49 P31 P25 P30 P80 P93 P35

P116 P17 P53 P11 P35 P75 P28 P53 P97 P82 P37
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network but also demonstrates the nuanced interplay of various parameters, facilitated by an 

advanced algorithmic treatment to discern overarching patterns of influence. Visualisation resulted 

from optimisation process using CE method which are presented in Figure 6.15 contains a set of 

three plots. The first plot at the top illustrates the trajectory of the objective function's minimum 

values over time, with the global minimum highlighted in the top right corner. A histogram 

representing the objective function scores at the final iteration is presented in the adjacent plot, 

providing insights into the convergence rate and the distribution of candidate lists at this stage. 

The third plot below displays individual lists and the final solution, along with an optional average 

ranking, offering a comprehensive view of the outcomes and methodology applied. 

 

Figure 6.15. Visual representation of the rank aggregation results indicating the optimal list of parameters. 

In an endeavour to identify the most influential parameters within a complex network, a 

sophisticated approach was employed, utilizing the Cross-Entropy (CE) Monte Carlo algorithm to 

reach a consensus among various network metrics, including diverse centrality measures, 

Authority, Hub, and others (Table 6.16). This method allowed for the integration and comparison 
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of rankings across different metrics, highlighting the paramount significance of certain parameters 

amidst a multitude of network dynamics. The culmination of this rigorous analysis is concisely 

encapsulated in the Table 5.16, presented in alphabetical order, which summarizes the 

investigation's results in terms of risk factors. By distilling the essence of multiple network metrics 

into a unified ranking, this approach offers a nuanced understanding of the parameters that play 

pivotal roles in the network's structure and functionality, thereby providing a valuable tool for 

further exploration and decision-making in network analysis. 

Table 6.16. Consolidated ranking of network parameters as risk factors. 

Rank Risk Factors Rank Risk Factors Rank Risk 

Factors Rank Risk 

Factors 
1 Drought impact 9 Flood Exposure 17 Agricultural water 

use 25 Change factor 

2 Flood impact 10 Precipitation 18 Residents' utility 26 Public demand 

for mitigation 
3 Flood risk 11 Water supply 19 Temperature 27 Air humidity 
4 Flood hazard 12 Available groundwater 20 Risk perception 28 Surface water 

inflow 
5 Available surface 

water 13 Water demand 21 Drought awareness 29 Access to 

insurance 
6 Drought 

Vulnerability 14 Drought Exposure 22 NDVI 30 Domestic 

water use 
7 Flood awareness 15 Community resilience 23 Agricultural 

demand 
  

8 Drought risk 16 Drought hazard 24 Water resources 

sustainability index 
  

The information derived from the comprehensive analysis, which culminated in the creation of a 

table of risk factors (Table 6.16), will be instrumental in identifying the most influential pathways 

for conducting an integrated assessment of flood and drought risks at the river basin scale. This 

strategic selection process aims to pinpoint key areas for focused evaluation, leveraging the 

synthesized data to enhance the accuracy and efficacy of risk assessment models in addressing the 

complexities of water-related challenges within a specific geographical context. The selection of 

pathways for the integrated assessment of flood and drought risks is informed by the culminated 

results from the identification of risk factors, achieved through the application of the Cross-

Entropy (CE) approach. These pathways are meticulously crafted to encompass as many relevant 

links as possible that exhibit close centrality to the identified risk factors, deliberately sidestepping 

connections characterized by delay or secondary influence to maintain analytical precision. For 

both flood and drought risk assessments, two distinct sets of causal interrelationships have been 

delineated (Figure 6.16 and Figure 6.17), underscoring the nuanced dynamics inherent to each risk 



 

209 

type. In consideration of the spatio-temporal resolution of these links, certain less pervasive 

connections have been deliberately omitted. This strategic simplification is intended to eliminate 

potential confusion or redundancy, all the while ensuring that the requisite degree of complexity 

is retained in our risk assessment methodology.  

 

 

 

 

 

 

 

 

Figure 6.16. Causal relationship network identifying flood risk at a river basin scale. 

 

 

 

 

 

 

 

 

Figure 6.17. Causal relationship network identifying drought risk at a river basin scale. 

This chapter presented the construction of an advanced causal framework for flood and drought 

risk assessment, integrating Interpretive Structural Modelling (ISM), Causal Loop Diagrams 



 

210 

(CLD), and Graph Theory. The framework's robustness lies in its comprehensive approach to 

selecting and analysing parameters influencing flood and drought risks, derived from extensive 

literature and empirical studies. 

The ISM methodology structured these parameters hierarchically, revealing direct and indirect 

influences, while CLDs offered a dynamic perspective on feedback mechanisms. Graph Theory 

streamlined the complexity of risk pathways, ensuring the framework's practical utility by focusing 

on relevant modelling scenarios. 

The results highlighted the hierarchical structure of risk parameters, categorized through Level 

Partitioning and analysed using MICMAC to understand driving and dependency characteristics. 

The three-tiered hierarchy underscored the varying degrees of influence among elements, 

emphasizing water conflict as a pivotal factor at the top level. 

Utilizing CLDs, the study effectively mapped interactions within the system, illustrating both self-

reinforcing and self-balancing dynamics. This duality is crucial for targeted risk mitigation 

strategies, ensuring optimal resource allocation and management. 

Network analysis, employing Girvan-Newman clustering, betweenness, and closeness centrality 

measures, revealed the intricate interdependencies within the system. High centrality nodes were 

identified as critical leverage points for strategic interventions in risk management. 

Finally, the application of the Cross-Entropy Monte Carlo algorithm provided a consolidated 

ranking of risk factors, facilitating the selection of key pathways for integrated flood and drought 

risk assessments. This methodological advancement offers a sophisticated tool for policymakers, 

urban planners, and environmental researchers, contributing significantly to sustainable water 

resource management in the face of increasing climatic uncertainties. 

This conclusion synthesized the key findings and methodologies of this chapter, emphasizing the 

framework's scientific and practical implications in flood and drought risk management. 

Looking ahead, the subsequent chapter is poised to undertake a comprehensive evaluation of 

flooding and drought risks within the River Severn Basin District over the past two decades. 

Leveraging the methodologies delineated in Chapter 3, a novel combined flood and drought risk 
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index will be proposed. This forward-looking analysis aims to provide a robust framework for 

understanding and mitigating the impacts of these intertwined environmental challenges, reflecting 

a sophisticated integration of theoretical insights and practical implications drawn from the 

preceding analytical endeavours. 

 

 

. 
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7 RESULTS AND DISCUSSION: INTEGRATED 

ASSESSMENT AND UNCERTAINTY ANALYSIS OF 

FLOOD AND DROUGHT RISK: A CASE STUDY OF 

RIVER SEVERN BASIN 
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7.1 CHAPTER INTRODUCTION  

The chapter provides a comprehensive analysis of flood and drought risk within the River Severn 

basin, utilizing integrated assessment methodologies to evaluate spatial and temporal variations in 

risk components. It aligns with the third research objective: to validate the framework through 

sensitivity analysis and combine it with fractal geometric indices, ultimately creating a mutual flood 

and drought risk indicator for river basins. By incorporating information and selected pathways 

from the previous chapters, this chapter aims to model the risks associated with flood and drought 

more comprehensively. Following the initial mapping, the chapter delves into the validation of 

these risk assessments. This involves a meticulous comparison of predicted risk areas with 

observed flood events and established risk zones, employing Receiver Operating Characteristic 

(ROC) curves to quantify the accuracy of the predictions. This validation process ensures that the 

models are not only theoretically sound but also practically applicable. 

The chapter proceeds with a thorough sensitivity and uncertainty analysis, identifying the key 

parameters that influence risk predictions and assessing their impact on the overall model 

performance. By understanding these variables, the study refines the models, making them more 

robust and less prone to error. Modern statistical techniques play a pivotal role in this chapter, as 

they are employed to predict future flood and drought risks. The efficiency of these predictions is 

critically evaluated, ensuring that the models can provide reliable forecasts that stakeholders can 

use for effective planning and mitigation strategies. 

Finally, the chapter concludes with a synthesis of the findings, highlighting the implications of the 

results for flood and drought risk management in the River Severn basin. This section underscores 

the value of the validated models in informing policy decisions, enhancing community resilience, 

and contributing to the broader field of risk assessment research. The methodologies and results 

presented in this chapter serve as a crucial link to the overarching goals of the thesis, demonstrating 

how scientific rigor and innovative techniques can address complex environmental challenges. 
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7.2 SPATIAL AND TEMPORAL ANALYSIS OF FLOOD RISK COMPONENTS  

7.2.1 Flood exposure, vulnerability and impact 

The spatial variation of the flood exposure of the study area along with its temporal trend analysis 

for the data period (2000-2020) are presented in Figure 7.1(a) and (d) respectively. The result shows 

that 68% (13986 km2) of the exposure map is exposed to a moderate category (Table 7.1), followed 

by 29% (5984 km2) classified as highly exposed to flooding. In urbanized landscapes, areas 

characterized by low vegetation cover, fine-textured soils, and lowland topography, which are 

predominantly influenced by geographical features and land cover land use (LCLU) patterns, 

exhibit higher susceptibility to flood exposure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Maps of flood risk assessment components of the study area: a) exposure, b) vulnerability and c) 

impact, d) exposure temporal trend, e) vulnerability temporal trend, f) Impact temporal trend. 

Notable observation is a total 4 percent drop to the flood exposure of the basin over the period 

of study, which could be attributed to enhancements in vegetation cover and LCLU management. 

On the other hand, a not much condensed distribution of population density, faced the flood 
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vulnerability of 85% (17212 km2) of the basin to low and very low category. However, in regions 

(15%) where redistribution communities’ assets based on economic prosperity and consequently 

water infrastructure and consumption increase, vulnerability to flood falls under the category of 

moderate to very high (Figure 7.1(b)). This risk component has not changed significantly since 

year 2000 (Figure 7.1(e)).  

Table 7.1. Area coverage of flood risk components, exposure, vulnerability and impact. 

Class 

Exposure Vulnerability Impact 
 

Area (km2) % Area (km2) % Area (km2) % 

Very high 246.13 1.2 128.19 0.64 1673.34 8.55 

High 5984.85 29.15 1285.37 6.43 6223.68 31.8 

Moderate 13986.74 68.12 1349.61 6.76 11668.49 59.62 

Low 313.63 1.53 1489.92 7.46 1.96 0.01 

Very low 0 0 15723.91 78.71 3.85 0.02 

Results for flood impact, which is a combination of exposure, vulnerability and community 

resilience represented in Figure 7.1(c), reveals that 59% (11668 km2) of this basin is classified as 

moderate whilst around 31% (6223 km2) could experience a high impact. Generally, these areas 

are geographically lowlands with low vegetation cover and denser populations highly involved in 

more socio-economic activities. This feature has shown an overall 3% drop in its temporal trend 

since year 2000 (Figure 6.1 (f)). 

7.2.2 Flood hazard, mitigation capacity and risk 

Figure 7.2(a) exhibits the overall mitigation capacity of the River Severn basin district against the 

flood. A particular region with effective mitigation measures indicates the ability to reduce 

consequences and consists of a better adaptive capacity against natural hazards. According to the 

prepared mitigation capacity map, eastern and southwestern, parts of the study site are covered 

with areas were marked as very high to high mitigation measures. The very high (1.2%) and high 

(29.1%) mitigation capacity classes combinedly cover (6230 km2) of the study area (Table 7.2). 

These areas consist of proper mitigation capacity, such as major roads, health institution, access to 

Early Warning Systems (EWS) and a vast range of natural and built defence mechanisms and 
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reservoirs. In contrast, the better part of the basin (68%-13986 km2) mainly in west of River 

Severn, central regions of the basin moving up to north, and west the ratio of areas that are 

classified as having very low and low mitigation capacity increases. Moreover, low and very low 

mitigation capacity areas are witnessed in only 1.5% (313 km2) of the area. Relatively in contrast 

to mitigation class spatial distribution, around a third (33% - 7029 km2) of the areas fall within the 

class of high hazard active rivers, high flood levels, and extensive rainfall are mainly responsible 

for intense flood hazards in those regions. Almost 34.5% (7272 km2) of regions under the category 

of moderate corelate with slightly higher river density and much less distance to rivers (Figure 7.2 

(b)). Mapping the results from flood hazard computational assessments reveals that the hazards 

associated with flood in this basin have a visible overlay with areas of moderate towards high 

mitigation capacity. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Maps of flood risk assessment components of the study area: a) Mitigation capacity, b) flood 

hazard and c) flood hazard temporal trend. 

A relatively small upward trend is observed in the general trend of flood hazard in the overall basin 

involving more picks with less intervals in average (Figure 7.2(c)). 
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Table 7.2. Area coverage of risk components, flood hazard and mitigation capacity. 

Class 

Hazard 
 

Mitigation capacity 

Area (km2) % Area (km2) % 

Very high 1707.71 8.11 246.13 1.2 

High 7029.22 33.4 5984.85 29.15 

Moderate 7272.18 34.56 13986.74 68.12 

Low 4731.74 22.48 313.63 1.53 

Very low 303.93 1.44 0 0 

Flood risk mapping approach of the study area without integrating mitigation capacity was 

generated using results from flood impact and hazard (Figure 7.2(a)). The spatial distribution of 

this risk map indicates around 16% of the study area (3080 km2) were classified as very high and 

high flood risk, while almost 35% of the study area belongs to the moderate flood risk class. 

Notable information is that around 43% (8053 km2) of the basin potentially experience below 

moderate risk of flooding (Table 7.3).  

Table 7.3. Area coverage of flood risk with and without mitigation capacity according to the defined classes. 

 

Class 

Risk without mitigation 
capacity 

 

Risk with mitigation 
capacity 

 

Area (km2) % Area (km2) % 

Very high 348.32 1.88 11.6 0.06 

High 2739.15 14.77 335.19 1.73 

Moderate 6559.1 35.91 5840.69 30.08 

Low 8053.98 43.44 11625.87 59.88 

Very low 740.87 4 1602.15 8.25 

Eventually, the flood risk scenario of this district integrating mitigation capacity is represented in 

Figure 7.3(b). The spatial analysis of this map demonstrates that around 1.8% (346 km2) of the 

study area is under a high or very high-risk class, whereas 30% (5840 km2) of the target area belongs 

to the moderate risk zone (Table 7.3). 
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Figure 7.3. Maps of flood risk assessment components of the study area: a) without mitigation capacity, b) 

with mitigation capacity, c) temporal trend of flood risk and d) seasonal trend of flood risk (x axis in panels c 

and d is time, whilst the y axis represents risk). 

Results from mapping the areas affected by higher than moderate risk of flooding indicates that 

City of Bristol, Bath and northeast Somerset, north Somerset and south Gloucestershire, west 

Gloucestershire, parts of Worcester, Warwickshire, Telford and Wrekin, and Shropshire are much 

more affected than the rest of the basin (Figure 7.3 (a)). Western parts of the basin have 

experienced comparably lower risk of flooding compared to the eastern side of the River Severn. 

As the risk map is the final production of the risk components, therefore, the final risk is 

comparatively lower after including the effect of mitigation (Figure 7.3(b)). In other words, because 

of the integration of mitigation capacity, the high flood risk subsided in some areas, for instance, 

central regions and northeaster part of the basin transformed into moderate to the low-risk class, 

which was high to very-high flood risk initially. The temporal trend of monthly time series of flood 

risk has remained fairly constant over the course of this study (Figure 7.3 (c)). However, difference 

in seasonal trend has been constantly increasing from 6 percent to a little over 10 percent (Figure 

7.3(d)).  
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7.2.3 Validation of flood risk assessment with historical observed floods 

Using GIS packages a spatial analysis was carried out, to overlay the flood risk map and the 

historically flooded regions map (Figure 7.4 (a) and (b)). The results show that areas already 

affected by flooding have been captured well within the predicted high-risk regions. Temporal 

extent of historic flood dataset extends from 1946 to 2020. However, the risk reduction measures 

such as some of flood defence schemes and early warning systems have not been put in place 

before year 2006. Additionally, sources of vulnerability such as population, as well as resilience 

factors concerning social cohesion and human development index were not as high standard as 

they are today. Thus, regions with higher risk could be more vastly distributed. 

 

 

 

 

 

 

 

 

 

Figure 7.4. Maps of observed flood overlaid on predicted flood risk: a) risk calculated by environment 

agency and b) risk calculated by this research. 

The areas of agreement and disagreement between results from this research versus historic 

flooding extent were identified and mapped (Figure 7.5). Areas with agreement between flooded 

events and estimated as high risk by this research is around 70.25 % (Figure 7.5 (a)) for the whole 

temporal extent of historic dataset (1946-2020) and 84.87% (Figure 7.5 (b)) for floods that have 

occurred within the time frame of data utilised in this research (2000-2020). It is notable to mention 

that not necessarily only the areas that are not affected by flood can experience a higher flood risk 
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as flooding is an event. Events can sometimes happen as a result of a chain of less likely scenarios. 

However, areas that are historically flooded could be considered as zones of higher risk. 

 

 

 

 

 

 

Figure 7.5. Spatial visualisation of agreement between assessed flood risk and flood observations: a) flood 

dataset since 1946, b) flood dataset since 2000. 

To further validate the results for flood risk estimation, an investigation was conducted using 

Receiver Operating Characteristic (ROC) curves. This involved comparing observed flooded 

regions and existing published risky areas for river, sea, and runoff floods. Firstly, the result from 

this study is compared against the previously assessed risk models’ results published by the 

Environment Agency and then against observed floods considering scenarios with and without 

mitigation. In Figure 7.6 (a), the ROC curve compares the risk published by the Environment 

Agency against the risk assessment based on the results from this research. The curve shows a 

moderate area under the curve (AUC) of 0.62, indicating a moderate performance of the research 

model compared to the official assessment. This ROC in figure 7.6 (b) curve compares areas 

marked as high risk by the research estimation against observed flooding events with and without 

mitigation. The graph shows two ROC curves, one with an AUC of 0.86 and the other with an 

AUC of 0.76, indicating good predictive performance of the research model, especially in the 

context of mitigated scenarios. 
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Figure 7.6. Validation of flood risk assessment using Receiver Operating Characteristic (ROC): a) risk by 

this research vs risk by EA, b) risk by this research with/without mitigation capacity vs historic floods and c) 

risk by this research and risk by EA vs historic floods. 

This ROC curve evaluates how the research risk assessment model performs against flooding 

events compared to the official estimation by the Environment Agency. The graph presents two 

ROC curves with AUCs of 0.86 (research model) and 0.51 (official estimation), indicating that the 

research model has a higher predictive accuracy than the official estimation (Figure 7.6 (c)). The 

chi-square table assesses the performance of different models, showing the chi-square statistics for 

the comparisons. The results indicate statistically significant differences between the models, with 

the research model showing better alignment with the observed flooding events. Overall, the visual 

comparison through ROC curves and statistical validation via the chi-square collectively suggest 

that the research model provides a reasonable and statistically significant prediction of flood risk 

areas compared to the official dataset published by the Environment Agency and observed 

flooding extents. 
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7.3 SPATIAL AND TEMPORAL ANALYSIS OF DROUGHT RISK 

COMPONENTS 

7.3.1 Drought exposure, vulnerability and impact 

The spatio-temporal variation of exposure to drought within the River Severn basin is illustrated 

in Figure 7.7 (panels a and d). Areas benefiting from the utilization of water resource assets 

experience less severe drought conditions compared to upstream regions, where elevation and 

dependence on land and vegetation resource management are crucial factors.  

 

 

 

 

 

 

 

 

 

Figure 7.7. Maps of drought risk assessment components of the study area: a) exposure, b) vulnerability and 

c) impact, d) exposure temporal trend, e) vulnerability temporal trend and f) Impact temporal trend. 

Notably, most of the basin, approximately 80% (16830 km²), is subject to moderate and high 

exposure in drought risk (Table 7.4). This heightened exposure is largely attributable to the 

prevalent agricultural and related land uses, coupled with an over-reliance on water resources and 

precipitation patterns. Overall trend of exposure to drought is observed to be slightly upward 

during the study period. Vulnerability to drought risk in the study area, influenced primarily by 
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population and water resource assets through the redistribution of socio-economic capacities, is 

depicted in Figure 7.7 (panels b and e). The results indicate that approximately 70% (14780 km²) 

of the basin exhibits below moderate vulnerability to drought (Table 7.4).  

Table 7.4. Area coverage of drought risk components, exposure, vulnerability and impact. 

Class 

Exposure 
 

Vulnerability Impact 
 

Area (km2) % Area (km2) % Area (km2) % 

Very high 2753.77 13.27 54.25 0.26 4377.26 22.86 

High 8050.94 38.80 1678.61 8.08 11198.95 58.48 

Moderate 8780.48 42.32 4251.03 20.46 3543.34 18.50 

Low 1132.98 5.46 10087.6 48.56 31.91 0.17 

Very low 29.20 0.14 4701.36 22.63 0 0 

Areas in the centre of the basin and slightly towards both the north and south experience a 

moderate level of vulnerability to drought. This moderate vulnerability appears to be driven by a 

combination of population density and the relatively limited availability of managed water 

resources. The overall trend in vulnerability to drought is slightly decreasing, potentially due to 

changes in surface and groundwater patterns or shifts in water resource allocation. Almost all of 

the basin experiences above moderate drought impact, particularly in areas with high 

concentrations of population and water infrastructure-related assets (Figure 7.7, panels c and f). 

This elevated risk is likely due to the combination of the basin's physiological properties and the 

distribution of socio-economic capacities, which act as potential countermeasures to hydro-hazard 

risks. However, based on the temporal analysis conducted in this study, the overall trend in drought 

impact has decreased by approximately 4% over the past two decades. 

 

7.3.2 Drought, mitigation capacity and risk 

Figure 7.8a presents the map of mitigation capacity, which includes water resources management 

assets and flood defence mechanisms that can influence drought risk, both positively and 

negatively. Approximately 39% of the mitigation capacity falls under the category of very high, 
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indicating substantial infrastructure and resources dedicated to mitigating drought risk. Conversely, 

almost no part of the region has very low mitigation capacity (Table 7.5). However, a significant 

portion of the basin, totalling 9279.75 km² (43.66%), still suffers from low mitigation capacity, 

highlighting areas where additional resources and efforts are needed to improve drought resilience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. Maps of drought risk assessment components of the study area: a) Mitigation capacity, b) 

drought risk, c) temporal trend of drought risk and d) seasonal trend of drought risk (x axis in panels c and d 

is time, whilst the y axis represents risk). 

The spatio-temporal distribution of drought risk for the River Severn basin is illustrated in Figure 

7.8 (panels b, c, and d). Regions with either very high or very low drought risk constitute less than 

10% each of the total area. Notably, there are two peaks in the frequency of pixels indicating either 

high or low risk. This distribution reflects the impact of mitigation measures, which have 

effectively reduced areas where drought risk was historically higher. These measures have been 

particularly effective in regions where it was feasible to implement water resources management 
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and enhance resource allocation quality. Overall, the trend in drought risk across the basin has 

declined by approximately 3%. The seasonality of drought risk appears minimal, and its variance 

has decreased over this period, indicating a more stable risk profile. 

Table 7.5. Area coverage of drought and mitigation capacity according to the defined classes. 

Class 

Mitigation capacity Drought risk 

Area (km2) % Area (km2) % 

Very high 8370.36 39.39 1300.63 6.79 

High 0 0 6442.05 33.63 

Moderate 3597.91 16.93 3192.36 16.67 

Low 9279.75 43.66 6586.98 34.40 

Very low 0.4 0.02 1628.90 8.51 

7.4 FRACTAL DIMENSION ANALYSIS OF FLOOD AND DROUGHT RISK 

DISPERSION 

Fractal dimension is a mathematical descriptor used to quantify the self-similarity and complexity 

of shapes. In this research, it measures the spatial dispersion of regions affected by various flood 

and drought risk categories. Applying this criterion provides a comprehensive understanding of 

the variability in dispersion and the severity of concurrent flood and drought risks across the river 

basin. The analysis involves a 5x5 matrix, where rows represent different levels of drought risk, 

and columns represent flood risk levels (five classes, ranging from very low to very high). For 

instance, the number in column 2, row 4 denotes the fractal dimension of areas where flood risk 

is low, and drought risk is high (Figure 7.9 panel a). This matrix facilitates a detailed assessment of 

risk variability across the basin. 

The matrix of fractal dimensions, representing regions with various combinations of flood and 

drought risk, is illustrated in Figure 7.9 (panels a and b). The results of this dimension analysis 

range from 1.275 to 1.625. Higher fractal dimension values indicate greater dispersion of affected 

areas, implying more significant challenges in addressing the risks associated with flooding and 

drought. This increased dispersion complicates the management of these hydro-hazards on a river 

basin scale. When multiplied by the area of the affected region, this measure becomes more robust, 



 

226 

helping decision-makers understand both the size of the risk-affected areas and the severity of the 

spatial distribution that needs to be addressed. 

 

 

 

 

 

 

 

 

 

Figure 7.9. Visualisation of combined flood and drought risk categories (Vl: Very low; L: Low; M: 

Moderate; Vh: Veri high; H: High): a) fractal dimension matrix, b) high risk categories based only on fractal 

dimension of the shape of spatial distribution of the categorical risk regions (reference from panel a), c) 

matrix of combined effect of fractal dimension and area of the spatial risk distribution and d) statistically 

significant categories of the combined effect depicted in panel c. 

Higher values (Close to 1.625) are typically associated with areas where both flood and drought 

risks are present at medium levels. This suggests that regions with moderate risks in both categories 

exhibit complex and fragmented patterns, making risk management more challenging. Lower 

values (Close to 1.275) occur in areas with high flood risk, regardless of the severity of drought 

risk. This indicates that regions with higher flood risk have more straightforward, less fragmented 

patterns, possibly due to the dominance of flood risk factors over the spatial complexity. 
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A combined measure of risk is estimated using multiplying fractal dimension by Area (Figure 7.9 

panels c and d). To provide a more robust measure for decision-makers, multiplying the fractal 

dimension by the area of the affected region offers a better understanding of the size of the risk-

affected areas and the severity of the spatial distribution. This combined metric helps highlight 

regions that are not only large but also spatially complex, requiring more sophisticated 

management approaches. 

To determine which levels of fractal dimensions and the combined measure of risk are more 

important or significant, an analysis was implemented. First, the range, standard deviation, mean, 

skewness, and kurtosis of the data within the metrics were calculated. With low kurtosis (0.3) and 

slightly negative skewness, it was realized that the tails are not very extreme compared to a normal 

distribution. Additionally, focusing on the tail with higher than mean values was both rational (due 

to an increase in the concept of dispersion) and statistically meaningful. A threshold was 

introduced and normalized, above which the values of either fractal dimension or combined 

measure of risk were considered more significant. The threshold was set at mean + standard 

deviation. Figures 7.9 (panels b and d) represent the heatmap for this analysis with darker values 

being above this threshold, considered as of higher statistical and applicational significance. 

Dispersion has management challenges. Regions with high fractal dimensions signify a highly 

dispersed pattern of risk, indicating that these areas are more difficult to manage due to their 

fragmented nature. These regions require more nuanced and extensive management strategies to 

address the dispersed risks effectively. Conversely, areas with lower fractal dimensions, particularly 

those with high flood risk, suggest less spatial complexity. These areas, while still at significant risk, 

may be easier to manage due to their more coherent spatial patterns. 

The maximum combined measure values are found around cells representing moderate levels of 

both flood and drought risks. These are highly dispersed, fragmented and vast areas posing 

significant challenges for hydro-hazard management. 

By moving towards regions where the flood risk is higher, the fractal dimension decreases, 

indicating a reduction in spatial complexity. This trend suggests that flood risk tends to dominate 

the spatial structure, leading to more homogeneous patterns irrespective of the drought risk level. 

This analysis suggests that combining strategies at different spatial scales for flood and drought 

risk management could be highly effective. Specifically, implementing localized treatments for 
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flood risk reduction, along with broader spatial scale solutions such as adaptive measures for 

drought risk, can provide a comprehensive approach to managing these hydro-hazards. By 

addressing flood risks with targeted local interventions and applying expansive, adaptive strategies 

for drought risks, a more resilient and effective management framework can be established. 

In conclusion, the fractal dimension analysis reveals that regions with medium flood and drought 

risks are the most complex and challenging to manage due to their high dispersion. In contrast, 

areas with high flood risk, regardless of drought severity, tend to have lower fractal dimensions, 

indicating less spatial complexity and potentially a more localised management. By combining 

fractal dimension values with the area of affected regions, decision-makers can gain a more 

comprehensive understanding of both the size and severity of risk-affected areas, enabling more 

effective strategies to mitigate flood and drought risks at the river basin scale. 

 

 

 

 

 

 

Figure 7.10. Map of combined flood and drought risk of the study area: a) ROC curve of risk showed in this 

map vs observed flood, b) spatial distribution of selected combination of flood and drought map based on 

fractal dimension analysis. 

Figure 7.10 illustrates the map of regions where both flooding and drought risks are classified as 

medium. This map highlights areas with a combined higher fractal dimension and area, indicating 

greater dispersion and the vastness of the affected regions. Although the risk class for both flood 

and drought is medium, a legend is included to clarify and provide further insight into the 

calculated fractal dimension values. This enhances understanding of the spatial distribution and 

complexity of the areas at risk. The good AUC=0.71 for the areas of moderate combined flood 



 

229 

and drought risk versus the observed flood (Figure 7.10 b) indicates considering region presented 

in this map as a baseline for mitigation and adaptation policies for a combination of flood and 

drought risk would be advantageous and possibly less costly. Another representation of this result, 

based on the analysis of pixel frequency within the combination of flood and drought risks, is 

illustrated as follows. The indices in this matrix (Figure 7.9 c) can be normalized and classified into 

six categories. Category "I" includes indices where flood risk is predominantly high. Category "II" 

encompasses areas where both flood and drought risks exist, but flood risk is more dominant. 

Category "III" represents regions where both risks are present but low. Category "IV" includes 

areas where both risks are high. Category "V" consists of regions where both risks exist, with 

drought risk being more significant. Finally, Category "VI" covers areas where drought risk is 

predominantly high. All these classes are described in detail in Figure 7.11 (a). 

 

 

 

 

 

Figure 7.11. Classification of combined flood and drought risks of river Sever Basin, a) schematic matrix of 

combined risk categories (Vl: Very low; L: Low; M: Moderate; Vh: Veri high; H: High) and b) diagram of 

flood-drought risk spectrum (F: Flood risk prominent; F(H)-D; Flood risk dominant and drought risk 

considerable; FD(L): coexistence of low flood and drought risks; FD(H): coexistence of high flood and 

drought risks; F-D(H): Drought risk dominant and flood risk considerable; D: Flood risk prominent). 

The matrix indices are normalized and classified into six categories, with index a33, which is mutual 

between classes II and V, divided equally between both classes. Panel b in Figure 7.11 presents the 

results for the study basin, showing the normalized combined measure for flood and drought risk. 

This measure reflects the spatial distribution and intensity of these risks within the basin. The radar 

chart highlights that the highest combined risk value, 0.31, is observed in the F-D(H) category, 

which corresponds to Class V. This class includes regions where both flood and drought risks 

exist, with drought risk being more significant. The second highest value, 0.22, is found in the 
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FD(L) category, indicating moderate combined risk where both flood and drought risks are low. 

Other categories, such as high flood risk (F) and high drought risk (D), exhibit lower combined 

risk values of 0.06 and 0.13 respectively. These results underscore the intricate spatial and risk-

related interplay between flood and drought, with regions experiencing significant drought risk 

showing higher combined risk measures. This analysis provides a comprehensive understanding 

of how different combinations of flood and drought risks manifest across the river basin, aiding 

in targeted risk management and mitigation strategies. 

7.5 TREND ANALYSIS USING MANN KENDALL TEST AND SEN ’S SLOPE 

The Mann-Kendall test and Sen's Slope are statistical methods used to detect and quantify trends 

in time-series data. The Mann-Kendall test measures the significance and direction of trends, 

represented by Kendall's tau (τ). A positive τ indicates an increasing trend, a negative τ indicates a 

decreasing trend, and τ = 0 suggests no trend. Sen's Slope calculates the rate of change over time, 

where a positive slope signifies an increasing trend, a negative slope indicates a decreasing trend, 

and a slope of zero denotes no change. These metrics help in understanding the spatio-temporal 

variations in flood and drought risks. Interpretation of possible combinations of Mann-Kendall 𝜏 

τ and Sen's Slope is as follows. 

Class 1: Both Mann-Kendall 𝜏 and Sen's Slope are Positive: Meaning: There is a significant 

increasing trend over time. The positive Sen's Slope quantifies the rate of increase.  

Class 2: Both Mann-Kendall 𝜏 and Sen's Slope are Negative: Meaning: There is a significant 

decreasing trend over time. The negative Sen's Slope quantifies the rate of decrease.  

Class 3: Mann-Kendall 𝜏 is Positive and Sen's Slope is Near Zero: Meaning: There is a significant 

increasing trend detected, but the rate of change is very small.  

Class 4: Mann-Kendall 𝜏 is Negative and Sen's Slope is Near Zero: Meaning: There is a significant 

decreasing trend detected, but the rate of change is very small.  

Class 5: Mann-Kendall 𝜏 is Near Zero and Sen's Slope is Positive: Meaning: There is no significant 

trend detected, but the rate of change is positive. This might indicate fluctuations without a clear 

trend.  
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Figure 7.12. Spatial distribution of trend detection indices of flood and drought risk: a) Mann-Kendal Tau 

(flood risk), b) Sen’s Slope (flood risk), c) trend classification (flood risk), d) Mann-Kendal Tau (drought 

risk), e) Sen’s Slope (drought risk), f) trend classification (drought risk). 

Class 6: Mann-Kendall 𝜏 is Near Zero and Sen's Slope is Negative: Meaning: There is no significant 

trend detected, but the rate of change is negative. This might indicate fluctuations without a clear 

trend.  

Class 7: Both Mann-Kendall 𝜏 and Sen's Slope are Zero: Meaning: There is no trend in the data 

over time. The parameter remains relatively constant. 

The results indicate that while flood risk in the River Severn basin has been slightly increasing, the 

overall rate of change over time has been declining (Figure 7.12 panels a and b). The basin 

predominantly experienced flood risk classified under categories 5, 6, and 7 according to the 
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combined Mann-Kendall tau and Sen’s Slope analysis (Figure 7.12 c). This suggests that, for most 

of the region, there may be fluctuations in flood risk without a clear, consistent trend. 

Conversely, the trend in drought risk intensity was slightly stronger than that of flood risk, 

displaying a more diverse spatial distribution across the basin. The rates of both increasing and 

decreasing changes over time for drought risk were also more pronounced (Figure 7.12, panels d 

and e). Despite this spatial diversity, the trend classes for drought risk were similar to those for 

flood risk, indicating potential fluctuations without a definitive trend (Figure 7.12 f). 

Understanding the spatio-temporal dynamics of flood and drought risks, as elucidated by the 

combined Mann-Kendall tau and Sen’s Slope analysis, provides several benefits for river basin 

management and the enhancement of predictive models, which are discussed later in this chapter. 

7.6 UNVEILING SENSITIVITY OF FLOOD AND DROUGHT RISKS TO THEIR 

KEY DRIVERS IN THE R IVER SEVERN BASIN  

The Sobol sensitivity index is a powerful tool used to quantify the contribution of each input 

variable to the output variance in a model. In the context of this research, it is employed to identify 

and rank the importance of various environmental and socio-economic predictors in influencing 

flood and drought risks. This method not only provides first-order sensitivity indices (S1), which 

measure the direct effect of each predictor, but also total-order indices (St), capturing the overall 

contribution including interactions with other predictors. Moreover, second-order interaction 

effects between primary drivers, such as precipitation and surface water availability, can be analysed 

to understand their combined impact on drought risk. To ensure robustness, a convergence map 

will be presented, indicating the stability and reliability of the sensitivity indices across varying 

sample sizes. This comprehensive analysis offers a deeper insight into the underlying dynamics, 

aiding in more effective risk management and mitigation strategies for the River Severn basin. 

Combined Sobol sensitivity indices for flood risk, showcasing the contributions of various 

predictors are presented in Figure 7.13 (a). The bar chart illustrates the total-order sensitivity 

indices (ST) in purple, representing the overall contribution of each predictor, including 

interactions with other predictors. The black dots denote the first-order sensitivity indices (S1), 

which measure the direct effect of each predictor. The orange dots indicate the total-order 
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sensitivity indices (ST) with their 95% confidence intervals shown as whiskers. The plot effectively 

illustrates the relative importance and uncertainty associated with each predictor, highlighting key 

factors influencing flood risk in the study area. 

Road and Community Resilience (ComRes) have the highest total-order sensitivity indices, 

indicating they have the most significant overall influence on flood risk, including interactions with 

other predictors. Their first-order indices also show substantial direct effects. The whiskers for 

Road and ComRes are relatively long, indicating some uncertainty in their sensitivity estimates. 

Flood Level follows, with a notable total-order index, suggesting it significantly impacts flood risk 

directly and through interactions. 

Early Warning Systems (EWS), Land Cover/Land Use (Lclu), Precipitation (Pr), Normalized 

Difference Vegetation Index (NDVI), and Reservoir have moderate sensitivity indices, implying 

they moderately affect flood risk. Their whiskers indicate varying degrees of uncertainty, with some 

being quite narrow, suggesting precise estimates. 

Surface Water (SurfWat), Population (Pop), Elevation (Elv), Slope, Distance to River (Distance), 

Defence Mechanisms (Def), Groundwater (GW), Health, Soil Class, and Sustainable Water 

Management (Sustain) exhibit lower sensitivity indices, indicating a lesser impact on flood risk. 

Their whiskers are also short, showing low uncertainty in these estimates. River Density has the 

smallest total-order sensitivity index, suggesting minimal influence on flood risk in this river basin.  

The convergence plot presented in Figure 7.13 (panels b and d) depicts the first-order sensitivity 

indices (S1) for various predictors influencing flood and drought risk, plotted against the number 

of samples used in the Sobol sensitivity analysis. The x-axis represents the number of samples used 

in the sensitivity analysis, ranging from 50 to 1000 samples. And the y-axis represents the value of 

the first-order sensitivity index (S1) for each predictor. The plot indicates that the sensitivity indices 

for most predictors stabilize as the number of samples increases. This suggests that the results are 

reliable and not highly sensitive to the sample size beyond a certain point. 
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Figure 7.13. Sensitivity analysis of flood and drought risk to the input parameters: a) Sobol’s sensitivity index 

(flood risk), b) first order sensitivity convergence graph (flood risk) c) Sobol’s sensitivity index (drought risk), 

d) first order sensitivity convergence graph (drought risk). 

Similarly, the combined Sobol sensitivity indices (S1 and ST) for various predictors impacting 

drought risk are presented in Figure 6.13 (c). The bars represent the total order sensitivity indices 

(ST), while the whiskers show the first-order sensitivity indices (S1) along with their confidence 

intervals. High influence predictors are ComRes (Community Resilience): Highest ST value 

(~0.35) and S1 value (~0.3). Road and Pr (Precipitation): High ST values (~0.2) with lower but 

significant S1 values. Moderate influence predictors include Reservoir, EWS (Early Warning 

Systems), NDVI (Normalized Difference Vegetation Index), and Distance: Moderate ST and S1 

values. FloodLevel, Pop (Population), Slope, and others: Low ST and S1 values, indicating minimal 

impact on drought risk. 

Confidence intervals for most predictors are narrow, suggesting high confidence in the sensitivity 

indices. ComRes, Road, and Pr show slightly wider confidence intervals, indicating some 

uncertainty. The stability of sensitivity indices with increasing sample size suggests that the results 

are robust and reliable. The high initial fluctuation for some predictors indicates the need for 

sufficient sample sizes to ensure accurate sensitivity estimates. Consistent results across different 

sample sizes enhance confidence in the importance of the identified key predictors.  

This combined analysis using Sobol sensitivity indices provides a comprehensive understanding of 

the key factors influencing both flood and drought risk. For drought risk, Community Resilience 

(ComRes), Road infrastructure, and Precipitation (Pr) emerge as the most significant predictors, 

highlighting areas for targeted risk mitigation. For flood risk, the most influential predictors are 

also Community Resilience (ComRes), Road infrastructure, and Flood Level. These findings 

suggest that improving community resilience, enhancing road infrastructure, and managing 

precipitation and flood levels are critical for effective risk reduction. The convergence plots further 

validate the robustness of these findings, ensuring that the sensitivity indices are reliable and 

independent of the sample size used in the analysis. This integrated approach provides a solid 

foundation for developing comprehensive risk management strategies that address both flood and 

drought risks in a balanced and informed manner. Figure 7.14 illustrates the second-order 

interaction effects between pairs of predictors on flood and drought risk, derived from the Sobol 

sensitivity analysis. Each cell in the heatmap represents the interaction effect between two 
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predictors, with colours indicating the magnitude and direction of the interaction. Positive values 

in all the cells denote positive interactions, where the combined effect of the two predictors on 

flood and drought risk is greater than their individual effects.  

The heatmap for flood risk indicates key interactions (Figure 7.14 a). The interaction between 

distance to major roads and several other predictors like River Density (RiverDen), Reservoir, and 

Pr (Precipitation) shows higher sensitivity indices. This indicates that the combination of 

infrastructure and these environmental factors significantly influences flood risk. Flood Level and 

Reservoir, this interaction has a noticeable sensitivity index, indicating that the interplay between 

flood levels and reservoir storage is crucial for understanding flood risk. EWS and several other 

predictors, like the drought risk, EWS interacts with various other predictors but to a lesser extent 

than seen in the drought risk heatmap (Figure 7.14 b). Key Interactions between pairs of predictors 

on the response variable (drought risk) revealed that EWS (Early Warning Systems) and Distance 

shows a relatively high sensitivity index, suggesting that the combination of early warning systems 

and distance from river significantly affects drought risk. Reservoir and Pr (Precipitation), there is 

a notable interaction between reservoir and precipitation, indicating that the interplay between 

these factors has a significant impact on drought risk. Sustainable water resources interact with a 

range of other factors, but these interactions show moderate sensitivity indices.  

 

 

 

 

 

 

 

Figure 7.14. Second-order interaction effects between different parameters for a) flood risk and b) drought risk. 



 

237 

The key interactions affecting drought risk are between EWS and Distance, as well as Reservoir 

and Pr. These findings suggest focusing on improving early warning systems and managing 

reservoirs in conjunction with precipitation patterns to mitigate drought risk effectively. Individual 

predictors primarily drive drought risk, with limited significant interactions between predictors. 

Flood risk is influenced by a broader range of interactions, especially those involving infrastructure 

(e.g., roads) and environmental factors (e.g., River Density, Reservoirs, Precipitation). Managing 

flood risk requires a comprehensive approach that considers the complex interplay between 

various factors, emphasizing the importance of integrated flood management strategies. 

Overall, these heatmaps highlight the importance of considering both individual and interaction 

effects of predictors in risk assessment models for drought and flood. The significant interactions 

identified should be prioritized in developing mitigation strategies and policies in the Severn basin. 

7.6.1 Analysis of feature importance for flood and drought risks 

Analysing the results illustrated in Figure 7.15 provides feature importance for Flood (black line) 

and Drought risk (Orange line), derived from four different methods: Random Forest (feature 

importance based on decreases in impurity), Permutation Importance (feature importance based 

on increase the accuracy), XGBoost (feature importance based on frequency of quality interaction 

within the predictor and response spaces), and Principal Component Regression (PCR) (feature 

importance based on the contributing variance in high dimensional and colinear data). Common 

findings across methods indicated that Reservoir and Population consistently show high 

importance for both flood and drought risk. Pr (Precipitation) and Def (Defence mechanism) are 

highly important for flood risk in most methods. Ground Water (GW), Community resilience 

ComRes, Sustainable water resources (Sustain), and distance to Health facilities and shelters are 

also frequently highlighted. Other important features are Temperature (Temp), Soil class, Early 

Warning System (EWS), Surface Water (SurfWat) and flood level. There are some differences 

across methods and risks. In terms of flood risk, Random Forest emphasizes Pr and Def. 

Permutation Importance ranks Pop and GW higher. XGBoost and PCR show a more diverse set 

of important features, though Pr and Def remain significant. In case of drought risk: Reservoir 

and Pop dominate the importance in all methods. NDVI and Sustainable water resources are also 

critical, though their importance varies across methods.  
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Figure 7.15. Diagram of Feature Importance analysis for flood risk (black line) and drought risk (orange 

line) – a) Random Forest, b) Permutation Importance, c) XGboost and d) Principal Component Regression 

(PCR) - (Def: Defence mechanism; Pr: Precipitation; SoilClass :Soil class; lclu: Land cover Land use; Temp: 

Temperature; ComRes: Community Resilience; Health: distance to health and shelter facilities; GW: 

Groundwater; Sustain: sustainable water resources; EWS: early warning systems; Road: distance to major 

roads; RiverDen: river density; Pop: Population; Distance: distance to rivers; NDVI: Normalised difference 

vegetation index; Slope: Slope; SurfWat: Available surface water; FloodLevel: Flood level; Elv: Elevation; 

Reservoir: distance to reservoirs). 

7.7 ALEATORIC UNCERTAINTY ANALYSIS IN FLOOD AND DROUGHT RISK 

PREDICTIONS  

The aleatoric uncertainty analysis refers to the inherent variability or randomness in the data, which 

cannot be reduced even with more data. In this context, the use of bagging with XGBoost captures 

the variability in predictions by training multiple models on different bootstrap samples of the 

training data. The variability among these multiple predictions reflects the aleatoric uncertainty, 

which is then quantified using measures such as the standard deviation, interquartile range, and 

prediction range (Figure 7.16 and 7.17). It also calculates RMSE and MAE between the ground 

truth and mean predictions. In this context, the ground truth is the original response layers 

representing flood and drought risk maps. These response layers serve as the reference against 
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which the predictions made by the current models are compared. The Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE) are calculated between these original response layers (ground 

truth) and the mean of the predictions generated through the bagging process (6.16 (e), 6.17 (e)). This 

comparison helps evaluate the accuracy of the predictions against the known (original) data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16. Visualizations of the uncertainty in flood risk predictions of the study area: a) mean of flood 

predictions, b) standard deviation of flood predictions, c) 95th percentile of flood predictions, d) 5 

percentiles of the flood predictions and e) quantitative measures of the model's prediction accuracy (flood 

risk). 

Results show the mean predicted flood risk values across the region, aggregated from the monthly 

predictions (6.16 a). This map provides a central estimate of flood risk across the region, 

representing the average risk (0.009-0.685) over the analysed period. Areas with a higher standard 

deviation (red) indicate greater variability in the flood risk predictions over time, suggesting higher 

uncertainty in those regions. Conversely, areas with lower standard deviation (blue) have more 

consistent predictions, indicating lower uncertainty (Figure 7.16 b). The 95th percentile represents 

the value below which 95% of the predicted flood risks fall. It provides an upper bound estimate 

of flood risk, highlighting regions that could experience the highest flood risk under extreme 

conditions, which is useful for identifying potential worst-case scenarios (Figure 7.16 c). 

Conversely, results depicted in Figure 7.16 (panel d) map helps to identify areas with consistently 
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low flood risk. Scatter Plot: Assesses the accuracy of mean predictions against ground truth, with 

RMSE (0.0941) and MAE (0.0587) quantifying prediction errors (Figure 6.16 e). In general, 

southeastern and central towards northeast experienced higher flood risks with the aleatoric 

uncertainty slightly higher than other regions of the River Severn basin district. 

Outcome provides in Figure 7.17 tries to analyse the uncertainties in drought risk prediction. 

Average of drought risk depicts a central estimate of it over the analysed period (Figure 7.17 a). 

the spatial focus of the drought risk, comparing to risk of flood is more central and widely 

scattered. Standard deviation map, however, indicates the variability and uncertainty in predictions 

over time illustrated in figure 7.17 (panel b), which seems to be less diverse both spatially and in 

comparison, with flood risk. This could indicate that mitigative strategies against this risk could 

spatially be generalised relatively easier. 5th and 95th Percentile maps showing the lower and upper 

bound of drought risk under extreme conditions, highlighting potential worst-case scenarios and 

identifying areas with consistently low risk. Scatter plot assesses the accuracy of mean predictions 

against ground truth, with RMSE (0.1038) and MAE (0.0585) quantifying prediction errors (Figure 

7.17 e). Regarding the variability and uncertainty, flood risk predictions exhibit higher variability 

(greater maximum standard deviation) compared to drought risk predictions. This suggests more 

uncertainty in flood risk predictions over time. The lower bound of flood risk (5th percentile) is 

significantly lower than that of drought risk, indicating that the minimum predicted flood risk is 

much lower than the minimum predicted drought risk. Upper bound risk for both flood and 

drought risks has similar predictions (95th percentile), indicating comparable levels of extreme risk 

in both scenarios. These comparisons provide insights into the nature of flood and drought risks 

in the analysed region. The higher variability and lower minimum predictions for flood risk suggest 

that flood events are more sporadic and can range from very low to high risk. In contrast, drought 

risk is more consistently higher, even in the least likely scenarios, but both risks reach similar 

severity under extreme conditions. 
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Figure 7.17. Visualizations of the uncertainty in drought risk predictions of the study area: a) mean of 

drought predictions, b) standard deviation of drought predictions, c) 95th percentile of drought predictions, 

d) 5th percentiles of the drought predictions and e) quantitative measures of the model's prediction accuracy 

(drought risk). 

7.8 PREDICTING MONTHLY FLOOD AND DROUGHT RISKS USING 

ADVANCED MACHINE LEARNING AND TREND ANALYSIS TECHNIQUES  

In this section of study, a combination of machine learning, statistical decomposition, and trend 

analysis methods was employed to predict monthly flood and drought risk maps for the River 

Severn basin. The primary machine learning method used was an optimised XGBoost regression 

model. Additionally, STL (Seasonal-Trend decomposition using LOESS) was used to decompose 

predictor data into trend and seasonal components, providing insights into temporal patterns. The 

Mann-Kendall trend test and Sen's slope analysis were applied to further adjust the predictor data 

for future months based on historical trends. As a result, monthly flood and drought risk maps for 

the next 12 months were produced. The average of the monthly predicted flood and drought risks, 

along with their respective standard deviations, are presented in Figure 7.17 (panels a to d). 
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Spatial distribution of predicted flood risk and standard deviation is presented in Figure 7.18 

(panels a and b) respectively. The mean predicted flood risk map (Panel a) illustrates the spatial 

distribution of flood risk across the River Severn basin. The map categorizes the flood risk into 

various levels, The central and eastern and south easter parts of the basin exhibit very high flood 

risk, as indicated by the dense red areas. This suggests that these regions are more prone to 

flooding, likely due to factors such as low elevation, high precipitation, and proximity to rivers. 

Surrounding the high-risk areas, there are regions with moderate flood risk, represented by lighter 

shades of red and pink. The western and southern parts of the basin show very low flood risk.  

The standard deviation map (Panel b) depicts the variability in flood risk predictions. The red areas 

in this map indicate regions with the highest standard deviation, suggesting significant variability 

in flood risk predictions. These areas are primarily located in the central and eastern parts of the 

basin, coinciding with high flood risk areas from Panel a. This indicates that while these regions 

are at high risk, there is considerable uncertainty in the exact extent and severity of the risk. Areas 

with moderate standard deviation indicate some level of uncertainty but not as pronounced as the 

high variability areas. Regions, primarily located in the western and southwestern parts of the basin, 

align with the low flood risk regions in Panel a, suggesting that predictions in these areas are more 

reliable and stable. The mean predicted drought risk map (Panel c) illustrates the spatial distribution 

of drought risk across the River Severn basin. The map categorizes the drought risk into various 

levels. The central and northern parts of the basin exhibit very high drought risk These regions are 

more susceptible to drought conditions, possibly due to precipitation patterns, areas actively 

engaged in and rely on agroforestry. Surrounding the high-risk areas, there are regions with 

moderate drought risk. The western and southern parts of the basin show very low drought risk.  

The standard deviation map (Panel d) depicts the variability in drought risk predictions. Areas with 

higher standard deviation are primarily located in the central and northern parts of the basin, 

coinciding with high drought risk areas from Panel c. Regions where the variability is lower are 

mainly located in western and southern parts of the basin, align with the low drought risk regions 

in Panel c. 
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Figure 7.18. Spatial visualisation of predicted flood and drought risk for coming year: a) mean prediction of 

flood risk, b) standard deviation of monthly flood risk prediction, c) mean prediction of drought risk and d) 

standard deviation of monthly flood risk prediction. 

Comparison between estimated areas within each flood and drought risk category with the 

predicted areas for the coming year is presented in Table 7.6. 

Table 7.6. Comparison area coverage of predicted flood and drought risk for coming year with that of the 

existing conditions. 

 

Class 

Flood risk  Drought risk  

estimated predicted estimated predicted 
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Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

Very high 11.6 0.06 119.95 0.61 1300.63 6.79 530.53 2.49 

High 335.19 1.73 2335.06 11.78 6442.05 33.63 5185.22 24.35 

Moderate 5840.69 30.08 7539.71 38.05 3192.36 16.67 6773.02 31.80 

Low 11625.87 59.88 8045.31 40.60 6586.98 34.40 6828.72 32.07 

Very low 1602.15 8.25 1774.20 8.95 1628.90 8.51 1978.80 9.29 

The predicted area for very low flood risk (1774.20 km², 8.95%) is marginally larger than the 

estimated area (1602.15 km², 8.25%). The same margin exists for very high-risk regions. The main 

shift is observed where the areas already experiencing low flood risk were shifted towards 

moderate, and some areas with moderate risk are more or less likely to observe high flood risks. 

Regarding the risk of drought, the predicted area (530.53 km², 2.49%) is significantly smaller than 

the estimated area (1300.63 km², 6.79%), suggesting a decrease in very high-risk areas. Similarly, 

for high drought risk regions, prediction (5185.22 km², 24.35%) is slightly smaller than the 

estimated area (6442.05 km², 33.63%), indicating a reduction in high-risk areas. Comparing 

moderate drought risk, however, indicated that the predicted area (6773.02 km², 31.80%) shows a 

significant increase compared to the estimated area (3192.36 km², 16.67%), suggesting a broader 

moderate drought risk region. Range of change in areas with below moderate drought risk was 

marginal.  

The comparison of estimated and predicted areas for both flood and drought risk categories 

reveals significant changes. For flood risk, there is a substantial increase in very high and high-risk 

areas, underscoring the need for enhanced flood management strategies. For drought risk, the 

notable shift towards moderate and low-risk categories indicates changes in drought vulnerability 

across the basin. The ROC (Receiver Operating Characteristic) curve presented illustrates the 

performance of flood risk prediction models under two different conditions (Figure 7.19).  
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Figure 7.19. Validation of flood risk prediction using Receiver Operating Characteristic (ROC): blue line – 

flood risk predicted by this research vs observed floods since 1946, orange line - flood risk predicted by this 

research vs observed floods since 2000. 

On the other hand, the blue curve (ROC curve 2) with an AUC of 0.81 represents the model's 

performance when evaluated against all recorded flood observations since 1946. The slightly lower 

AUC value suggests that the model's predictive accuracy decreases when considering a broader 

historical context, which includes floods outside the training data's timeframe. This drop in 

performance can be attributed to changes in environmental and climatic conditions over the 

extended period, which may not be fully captured by the training data. The results highlight the 

importance of context-specific evaluation and the challenges of extending predictive models to 

longer historical periods without incorporating additional data or adjusting for historical variability. 

In this stage of the research, SHAP (SHapley Additive exPlanations) is applied to unravel the 

contribution and interaction of various input parameters in assessing the predicted flood and 

drought risks. By leveraging SHAP values, we gain insights into the importance and influence of 

each predictor variable on the model's output. This enables a detailed understanding of how factors 

such as rainfall, temperature, groundwater levels, and NDVI impact the risk of flood and drought 

events. The application of SHAP enhances the interpretability of complex machine learning 

models, providing a transparent mechanism to quantify predictor contributions and facilitating 

informed decision-making for risk management and mitigation strategies. Diagrams concerning 

SHAP values for flood and drought risk of predicted model outouts are presented and followed 

by a discussion outlining possible interpretations in the real world scenarios (Figure 7.20 and 7.21). 

This diagram illustrates the SHAP values for flood risk predictions, indicating the impact of various 

features on the model's output. Features on the y-axis are sorted by their importance, with the 

most influential features at the top. The x-axis represents the SHAP value, showing the impact on 
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the model output, where values to the right increase flood risk, and values to the left decrease it. 

The color gradient from blue to red indicates the feature value from low to high.  

 

Figure 7.20. SHAP summary plot for predicting flood risk using multiple environmental and socio-

economic factors  - (Def: Defence mechanism; Pr: Precipitation; SoilClass :Soil class; lclu: Land cover Land 

use; Temp: Temperature; ComRes: Community Resilience; Health: distance to health and shelter facilities; 

GW: Groundwater; Sustain: sustainable water resources; EWS: early warning systems; Road: distance to 

major roads; RiverDen: river density; Pop: Population; Distance: distance to rivers; NDVI: Normalised 

difference vegetation index; Slope: Slope; SurfWat: Available surface water; FloodLevel: Flood level; Elv: 

Elevation; Reservoir: distance to reservoirs). 

The behavior of precipitation indicates that high values contribute to medium to high increases in 

flood risk. Additionally, extreme values (relative to the existing data) significantly elevate the risk 

of flooding in this region. For temperature, higher values are associated with both increases and 

decreases in flood risk, suggesting seasonal impacts and early signs of climate change on flood risk. 

High values of available surface water correlate with relatively lower flood risks, which may indicate 

the effectiveness of surface water collection schemes and natural flood management. This 

observation aligns with lower values of land cover and land use (LCLU) representing water-related 

land covers. Although minor, the proximity to early warning systems and defense mechanisms has 

been noted to reduce the risk of flooding. Furthermore, the distance to transportation networks 
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and community resilience factors, as part of the mitigation capacity, show a significant effect on 

reducing the flood risk predicted by this model. 

 

Figure 7.21. SHAP summary plot for predicting drought risk using multiple environmental and socio-

economic factors  - (Def: Defence mechanism; Pr: Precipitation; SoilClass :Soil class; lclu: Land cover Land 

use; Temp: Temperature; ComRes: Community Resilience; Health: distance to health and shelter facilities; 

GW: Groundwater; Sustain: sustainable water resources; EWS: early warning systems; Road: distance to 

major roads; RiverDen: river density; Pop: Population; Distance: distance to rivers; NDVI: Normalised 

difference vegetation index; Slope: Slope; SurfWat: Available surface water; FloodLevel: Flood level; Elv: 

Elevation; Reservoir: distance to reservoirs). 

This diagram illustrates the impact of various mitigation capacities on drought risk. Specifically, it 

highlights the role of community resilience (indirect impact on flood risk), defense mechanisms, 

and early warning systems in reducing drought risk. However, the basin's heavy reliance on 

reservoirs and available surface water is concerning in terms of drought risk. Additionally, higher 

NDVI values, correlating with high land cover and land use (LCLU), along with the unequal 

distribution of sustainable water resources, population, and economic assets between urban and 

rural areas, have collectively increased the overall risk of drought. 
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7.9 CHAPTER CONCLUSION  

The findings from this study underscore the critical importance of integrated risk assessment in 

managing flood and drought hazards within the River Severn basin. Key observations include: 

Flood Risk Components: 

• Exposure: Approximately 68% of the study area falls under moderate flood exposure, with 

29% highly exposed. Urbanized areas with low vegetation cover and fine-textured soils are 

more susceptible. 

• Vulnerability: 85% of the basin exhibits low to very low flood vulnerability, with 15% 

facing moderate to very high vulnerability, primarily due to economic factors and water 

infrastructure. 

• Impact: Around 59% of the basin experiences moderate flood impact, with 31% at high 

impact, highlighting the need for effective mitigation measures. 

• Mitigation Capacity and Hazard: 

• Regions with high mitigation capacity, such as those with major roads and health 

institutions, exhibit better resilience against floods. 

• Approximately 33% of the basin faces high flood hazards due to active rivers and extensive 

rainfall. 

• Validation and ROC Analysis: 

• The flood risk assessment model shows good predictive performance with an AUC of 0.86 

when validated against historical flood data, indicating its reliability in predicting high-risk 

areas. 
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Drought Risk Components: 

• Exposure: Most of the basin (80%) is subject to moderate and high drought exposure due 

to agricultural land use and water resource dependency. 

• Vulnerability: 70% of the basin has below-moderate vulnerability to drought, influenced 

by population and water resource management. 

• Impact: Above-moderate drought impact is observed in areas with high population and 

water infrastructure. 

Mitigation Capacity and Risk: 

• Approximately 39% of the basin exhibits very high mitigation capacity against drought, 

while 43.66% still suffers from low mitigation capacity. 

• The overall trend in drought risk has declined by 3% over the study period. 

Fractal Dimension Analysis: 

• Regions with moderate flood and drought risks are the most dispersed and challenging to 

manage. 

• Areas with high flood risk show less spatial complexity, suggesting more localized 

management. 

7.9.1 Implications for Stakeholders, Community and contribution to research 

The outcomes of this research provide valuable insights for stakeholders, including policymakers, 

urban planners, and community leaders, in developing targeted risk management strategies. The 

detailed spatial and temporal analysis of flood and drought risks enables better planning and 

allocation of resources to mitigate these hazards. For the community, understanding the areas most 

at risk can inform emergency preparedness and response strategies, enhancing resilience against 

future hydro-hazard events. 
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This chapter contributes to the existing body of knowledge by integrating advanced analytical 

techniques to assess and predict flood and drought risks comprehensively. The innovative use of 

fractal dimension analysis and ROC validation enhances the robustness of the risk assessment 

model. These contributions are pivotal in advancing flood and drought risk management practices, 

providing a framework that can be applied to other river basins globally. 

The integration of mitigation capacities into risk assessment highlights the importance of 

infrastructure and community resilience in reducing hydro-hazard impacts. These findings will aid 

in the development of more effective and sustainable risk management policies, ensuring long-

term safety and resilience of the River Severn basin and similar regions. 

The results and discussions presented in this chapter lay the groundwork for the conclusion 

chapter, where the overall implications of the study will be synthesized. The conclusion will draw 

together the key findings, emphasizing their significance for future research and practical 

applications in hydro-hazard risk management. This integrated approach ensures a coherent flow 

of information, reinforcing the study's contributions to enhancing flood and drought resilience. 

 



 

 

8 SYNTHESIS, CONCLUSION AND DIRECTIONS 

FOR FUTURE RESEARCH 

 

 

 

 

 

 

 

 

 

 

8.1 SYNOPSIS 

This chapter synthesizes the findings of the research presented in the preceding chapters, offering 

a comprehensive overview of the methodologies employed, the results obtained, and the 

implications for flood and drought risk management. The reportage of this research was structured 
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around six primary objectives (including the main aim and objectives of the research), each 

contributing to a holistic understanding of flood and drought risks in a river basin scale. 

• Introduction to Flood and Drought Risks: The first chapter laid the foundation by 

exploring the concepts of flood and drought risks, highlighting their significance and the 

need for comprehensive risk assessment frameworks. This section provided the context 

for the entire study, emphasizing the growing importance of understanding and mitigating 

these risks in light of climate change and increased human activities. 

• Literature Review: The second chapter provided a detailed review of existing literature on 

flood and drought risk assessment methodologies. It identified gaps in current research, 

particularly the need for integrative frameworks that combine multiple risk factors and 

advanced modelling techniques. This review informed the development of the 

methodological approach used in subsequent chapters. 

• Spatio-Temporal Risk Mapping: Chapter three focused on mapping the spatio-temporal 

distribution of flood and drought risks in the River Severn basin. Utilizing historical data 

and advanced geospatial analysis techniques, this chapter provided a detailed 

understanding of the spatial and temporal patterns of flood and drought occurrences, 

identifying high-risk areas that require targeted management interventions. 

• Validation of Risk Models: The fourth chapter validated the risk assessment models by 

comparing predicted flood and drought zones with observed events and published risk 

areas. This validation was achieved using Receiver Operating Characteristic (ROC) curves 

and other statistical measures, ensuring the reliability and accuracy of the models. 

• Sensitivity and Uncertainty Analysis: Chapter five examined the sensitivity and uncertainty 

of the risk models. This analysis identified key parameters that influence model predictions 

and assessed the robustness of the models under different scenarios. The findings 

highlighted the importance of certain variables, such as land use changes and precipitation 

patterns, in driving flood and drought risks. 
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• Modern Predictive Techniques: The sixth chapter applied modern statistical and machine 

learning techniques to predict future flood and drought risks. These methods included 

Random Forests, Gradient Boosting Machines, and Neural Networks, which were 

evaluated for their efficiency and accuracy. The results demonstrated the potential of these 

techniques to enhance predictive capabilities and provide more timely and accurate 

forecasts. 

This chapter synthesizes these findings, emphasizing the practical implications for stakeholders, 

the contributions to the field, and the potential for future research. 

8.2 CONCLUSIONS ON  CONTRIBUTIONS TO KNOWLEDGE AND 

STAKEHOLDER IMPACT  

The integrated assessment of flood and drought risks in the River Severn basin, as presented in 

this research, demonstrates the efficacy of combining traditional risk assessment methods with 

modern statistical and geospatial techniques. The spatio-temporal mapping of risks provides a 

detailed understanding of vulnerable areas, which is crucial for targeted risk management and 

mitigation efforts. The objectives of this study (section 1.2) have been achieved. Objective I is 

addressed in chapter 5 with links to the data extraction resulted from the performed on meta-

analysis of the literature. Objective II is achieved in chapter 6 where the framework integrated 

flood and drought risks with 114 more parameters to encapsulate most relevant interdependencies. 

Objective III  is covered in the last data chapter (chapter 7) where the risks were validated for a 

UK prominent river basin and a mutual indicato fpr flood and drought risks was proposed. 

The contributions made by this research are multifaceted, addressing significant gaps in the 

existing body of knowledge regarding integrated flood and drought risk assessments at the river 

basin scale. Specifically, this study has established a holistic and multidisciplinary framework that 

enhances the simultaneous understanding of flood and drought phenomena by incorporating 

hydrological, socio-economic, and environmental dimensions. The importance of integrating 

diverse domains, such as water resource management, socio-economic vulnerability, and 

environmental feedback, cannot be overstated, as these factors are all critical components in 
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predicting and managing hydrological risks in a changing climate. This contribution is particularly 

significant for river basins that are subject to increasingly variable climatic conditions. 

In addition to this integrated framework, key contributions of this research include the creation of 

a novel Combined Flood and Drought Risk Index (CFDRI), which offers a unified metric for 

assessing risk that captures the dual threats of flooding and drought concurrently. The formulation 

of such an index is a critical step towards providing a comprehensive tool that stakeholders can 

use to assess the interplay of these two hydrological extremes effectively. The integration of 

advanced methodologies, such as Interpretive Structural Modelling (ISM) and Causal Loop 

Diagrams (CLDs), further advances the ability to identify and visualize complex relationships and 

feedback loops among the various risk factors, making the framework adaptable and insightful for 

different contexts. 

This research also contributes to the practical and theoretical understanding of hydrological risks 

by providing enhanced insights into the spatio-temporal dynamics of flooding and drought. 

Through an in-depth exploration of how these risks evolve over time and across regions, the study 

provides the tools needed for stakeholders including environmental agencies, water companies, 

and local authorities to make informed, proactive decisions. The stakeholder-focused approach 

ensures that the outcomes of this research are not merely theoretical but are directly applicable for 

planning and implementing water resource management strategies aimed at reducing risk and 

enhancing resilience. By advancing both theoretical understanding and practical applications, this 

study stands as a pivotal contribution to the field of flood and drought risk management at the 

river basin scale. 

One of the principal contributions to knowledge lies in the development and validation of the 

Combined Flood and Drought Risk Index (CFDRI). This index serves as an innovative tool for 

assessing hydrological risks in a unified manner, capturing the dynamics of both flood and drought 

events within a single metric. Unlike existing frameworks that often treat floods and droughts as 

separate entities, CFDRI integrates their assessment to reflect their interdependencies and 

cumulative impacts more accurately. By doing so, it provides a more comprehensive picture of the 

risks faced by a river basin, which is especially pertinent in regions where both flood and drought 

hazards co-exist. This integrative approach can be instrumental in reshaping the way water 
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resource managers understand and mitigate hydrological extremes, offering them a practical and 

robust tool for decision-making. 

The study's use of Interpretive Structural Modelling (ISM), network theory, and causal loop 

diagrams (CLDs) has further contributed to a nuanced understanding of the relationships between 

various risk factors. By identifying the deep interrelations and latent themes among different 

parameters, this research offers new insights into how risk factors influence each other and 

propagate across the system. This is particularly valuable for stakeholders such as environmental 

agencies, water companies, and city councils in high-risk areas. These stakeholders are often tasked 

with managing multiple, interlinked risks under resource constraints, and understanding these 

connections can guide them in prioritizing mitigation efforts more effectively. For instance, the 

identification of feedback loops that exacerbate either flood or drought impacts provides practical 

knowledge that can be used to intervene strategically, mitigating one risk without inadvertently 

amplifying another. 

Another major contribution of this research is the systematic exploration of geographical and 

temporal trends in flood and drought risks. By applying advanced statistical analysis and utilizing 

geospatial datasets, the research has uncovered distinct spatio-temporal patterns in flood and 

drought occurrences across the studied river basin. These findings offer a granular understanding 

of how hydrological risks evolve over time and space, providing actionable insights for 

policymakers and practitioners. The detailed geographical and temporal analysis presented here 

highlights regions within the basin that are particularly vulnerable to simultaneous flood and 

drought risks, which can inform zoning regulations and infrastructure development. Stakeholders 

such as city councils can use this information to direct investments towards adaptive infrastructure, 

such as resilient flood defences or improved water storage systems, based on specific vulnerability 

profiles. 

Moreover, this research contributes to the understanding of the socio-economic dimensions of 

flood and drought risk. The integration of socio-economic factors into hydrological risk 

assessments is still limited in current practices, often due to a lack of suitable models or 

comprehensive datasets. By incorporating socio-economic data such as demographic information, 

economic dependency on water resources, and access to adaptive capacity tools like insurance the 
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research has illustrated how community resilience is shaped by both environmental and social 

factors. The CFDRI explicitly accounts for these socio-economic influences, providing a more 

holistic assessment that goes beyond the physical characteristics of flood and drought events. This 

has critical implications for stakeholders such as insurance companies, municipal planners, and 

government agencies that deal with the aftermath of hydrological disasters. By understanding how 

socio-economic conditions affect vulnerability, these stakeholders can craft more targeted policies 

and programs that address not only the environmental but also the human aspects of hydrological 

risk. 

The research also introduces methodological innovations that have potential applications beyond 

the immediate scope of flood and drought risk assessment. The use of cross-entropy analysis, 

combined with network theory, to refine the general pathway of risk interactions represents a novel 

approach in this field. This method allows for the identification of a simpler, generalized 

framework that could serve as a basis for risk assessment across different river basins globally. 

This general framework is adaptable, allowing users to modify or add specific feedback loops based 

on local conditions, thereby ensuring both applicability and flexibility. This adaptability is crucial 

for various stakeholders, including international development agencies and regional water 

management authorities, who require standardized yet flexible tools that can be adapted to diverse 

geographical and socio-economic contexts. 

Another key area of contribution is the validation of the proposed framework through sensitivity 

analysis and the introduction of a unified risk indicator for predictive risk mapping. By validating 

the CFDRI against historical events and conducting rigorous sensitivity analyses, the research 

provides evidence for the robustness and reliability of the developed framework. This is 

particularly significant for stakeholders who need confidence in the tools they use for planning 

and investment decisions. The ability to predict potential risk hotspots and quantify the likely 

impacts of different risk factors can help agencies like the Environment Agency or local water 

boards allocate resources more effectively and prioritize interventions that have the highest 

potential to reduce overall risk. 

In addition to methodological contributions, the research also addresses the limitations of current 

flood and drought risk management practices by proposing a framework that incorporates multi-
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scale and multi-temporal assessments. The identification of simultaneous flood and drought risks 

alongside an understanding of their spatial co-occurrence is a critical advancement. It suggests that 

risk management practices need to evolve to consider the compounded effects of these hazards 

rather than addressing them in isolation. This contribution is particularly important for 

stakeholders involved in long-term infrastructure planning and resource allocation, such as city 

councils and water companies operating in high-risk areas. By providing a framework that can 

simultaneously evaluate both risks, the study helps these stakeholders move towards more 

integrated and resilient planning approaches. 

Furthermore, this research emphasizes the practical implications of feedback loops and system 

dynamics in hydrological risk management. The causal loop diagrams developed in this study 

highlight the reinforcing and balancing mechanisms that govern the dynamics of flood and drought 

risks within a river basin. This understanding of systemic behaviour is vital for stakeholders to 

develop adaptive and proactive strategies for risk mitigation. For example, the identification of 

self-reinforcing loops that may escalate flood impacts can lead to targeted interventions that focus 

on breaking these loops, thereby preventing cascading failures. For environmental agencies and 

policymakers, this provides a scientific basis for designing policies that are not only reactive but 

also preventative in nature, ultimately reducing long-term vulnerability. 

Overall, the contributions of this research extend beyond the academic realm and have practical 

implications for a range of stakeholders involved in hydrological risk management. By providing a 

comprehensive, integrated, and adaptable framework for flood and drought risk assessment, this 

study offers valuable tools and insights that can support more effective decision-making and 

resource allocation. The incorporation of socio-economic, environmental, and hydrological factors 

ensures that the developed framework is both holistic and grounded in real-world complexities, 

ultimately enhancing the resilience of communities and ecosystems to the challenges posed by 

climate variability and water-related hazards.  

Key Findings: 
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• Policy and Planning: The detailed risk maps and validated models can inform policy-

making and planning, helping authorities to allocate resources effectively and implement 

targeted mitigation strategies. 

• Community Resilience: By identifying high-risk areas, the research supports efforts to 

enhance community resilience through improved preparedness and adaptive measures.  

• Scientific Contribution: The integration of modern predictive techniques with mutual 

flood and drought assessment indicator contributes to the advancement of the field, 

offering a framework that can be adapted and applied to other regions. 

The findings underscore the critical role of accurate and timely risk assessments in managing flood 

and drought risks. The validated models and advanced predictive techniques developed in this 

study provide robust tools for decision-makers, enabling more effective risk management and 

mitigation strategies. 

8.3 REPLICABILITY OF F INDINGS 

The replicability of this study's findings is one of its most significant strengths, as it offers a 

structured and comprehensive approach to assessing flood and drought risks that can be applied 

to different river basins worldwide. The methodologies employed, including systematic literature 

review, content analysis, Interpretive Structural Modelling (ISM), Causal Loop Diagrams (CLDs), 

and the development of the Combined Flood and Drought Risk Index (CFDRI), have been 

designed with adaptability and scalability in mind. Each of these techniques contributes to a robust 

framework that can be tailored to the unique characteristics of different hydrological contexts 

while maintaining consistency in the process of data gathering, analysis, and risk assessment. 

The systematic literature review and content analysis form the backbone of the methodological 

approach, enabling a replicable foundation for identifying key variables and risk factors. The 

systematic approach ensures that all relevant and high-quality sources are captured, creating a 

baseline dataset that can be reproduced with minimal subjectivity. This approach allows future 

researchers to replicate the review process for other geographical regions, effectively updating the 
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body of knowledge and adapting the risk framework to specific local contexts. Moreover, by 

utilizing Boolean keyword searches and explicit inclusion and exclusion criteria, the review process 

reduces author bias and ensures consistency across iterations. 

Another key aspect of the replicability of this study lies in the methodological rigor of the ISM and 

CLD processes. Interpretive Structural Modelling provides a clear pathway for determining the 

hierarchy and interdependencies of the different parameters that contribute to flood and drought 

risks. The step-by-step structure of ISM including reachability matrix generation, level partitioning, 

and model formulation ensures that future studies can replicate the analysis and create similar 

hierarchical representations for other river basins. This feature is particularly beneficial for 

understanding the contextual importance of various risk factors and how they interact to affect 

hydrological risks. Similarly, CLDs offer an adaptable mechanism for understanding feedback 

dynamics. The integration of feedback loops in risk modelling is instrumental for replicability, as 

it allows researchers to understand how different factors influence each other and how 

interventions in one area may affect other interconnected elements of the system. 

The CFDRI developed in this research is another core element of replicability. The CFDRI offers 

a unified metric that integrates various parameters, including hydrological, socio-economic, and 

environmental factors, to evaluate flood and drought risks in a cohesive manner. This index can 

be recalculated for different basins using data specific to those regions, allowing for adaptation 

without changing the core structure of the model. The CFDRI’s flexibility ensures that the findings 

of this research can be replicated in different contexts by adjusting input data to reflect local 

realities, thus making it a valuable tool for regional planners, policymakers, and water resource 

managers around the globe. 

Moreover, the methodology for calculating the CFDRI including data normalization, weighting 

parameters, and employing advanced statistical measures like cross-entropy analysis is transparent 

and systematically documented. This level of detail ensures that any researcher or practitioner 

wishing to use the CFDRI in other contexts can follow the same steps and understand the rationale 

behind each decision. This aspect of transparency is fundamental to the replicability of the study, 

as it allows for easy comparison between results obtained in different basins and facilitates a 

standardized approach to risk assessment. 
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The inclusion of spatio-temporal analysis also enhances the replicability of this research. By 

employing geospatial analysis, such as Geographic Information Systems (GIS) and remote sensing 

techniques, the study provides a means of mapping the evolution of flood and drought risks over 

time. This spatio-temporal perspective is critical for understanding how risks change in response 

to environmental, climatic, or socio-economic factors. The use of open-source geospatial tools 

ensures that other researchers can apply similar analyses to their own regions of interest without 

needing access to proprietary software. Moreover, the data layers used in this research, such as 

topography, land use, hydrology, and socio-economic datasets, are commonly available or 

accessible through similar data sources worldwide, further facilitating the replicability of these 

analyses. 

This research also emphasizes the need to incorporate socio-economic dimensions and 

environmental feedback mechanisms, ensuring that risk assessments are not limited to purely 

physical or hydrological factors. The integration of socio-economic data into the hydrological 

framework ensures that the risk assessments are holistic and contextually relevant. This multi-

dimensional approach is designed to be adaptable to various socio-economic settings, which means 

that the framework developed in this study can be replicated in different regions, each with its own 

socio-economic realities. Whether it is assessing risks for a developed country with advanced 

infrastructure or a developing region with limited resources, the adaptability of the socio-economic 

component ensures that the findings of this research can be extended and applied universally. 

Lastly, the transparency of data sources, methodological assumptions, and parameter selection 

further enhances the replicability of this research. Throughout this study, every step of the 

methodology has been carefully documented, including the rationale for selecting specific 

parameters, the choice of statistical models, and the validation techniques used. This 

documentation ensures that future researchers can replicate the analysis under similar or modified 

conditions and compare their findings to those presented in this research. Furthermore, the study 

openly acknowledges the limitations inherent in the datasets used such as temporal gaps, spatial 

resolution issues, and quality variations thus allowing others to understand the constraints within 

which the findings should be interpreted. This acknowledgment of limitations is crucial for 

ensuring that the methodology can be refined and improved in future applications, thereby further 

enhancing replicability. 
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In summary, the replicability of the findings from this research is ensured by the methodological 

rigor, adaptability, and transparency embedded in each stage of the study. From the systematic 

literature review to the use of ISM, CLDs, and the development of the CFDRI, every aspect has 

been carefully designed to be applicable in different contexts and adaptable to local conditions. 

The integration of socio-economic, hydrological, and environmental data, combined with the use 

of open-source tools, ensures that the findings are not only replicable but also relevant to a wide 

range of stakeholders across different river basins. By providing a detailed, step-by-step approach 

to risk assessment, this research has established a replicable framework that can be used to 

understand and manage the dual threats of flood and drought in diverse settings around the world. 

8.4 CHALLENGES AND LIMITATIONS OF THIS RESEARCH  

While this research makes significant contributions to the field of flood and drought risk 

assessment, several limitations must be acknowledged. One of the primary limitations is related to 

data availability and quality. The reliance on publicly available datasets, while ensuring replicability, 

also means that the quality of the data used may vary, potentially affecting the accuracy of the 

model outcomes. In some regions, hydrological and socio-economic data may be sparse, outdated, 

or inconsistent, which poses challenges for accurately assessing risk factors and their 

interrelationships. The lack of comprehensive data also limits the capacity for high-resolution 

analysis, which could provide a more nuanced understanding of risk at finer spatial scales. 

Another limitation of this research lies in the calibration of fuzzy overlay coefficients used to 

integrate different risk factors. While the use of fuzzy logic provides a flexible method for 

combining variables, the calibration of these coefficients remains inherently subjective. Different 

normalization criteria and parameter weightings can lead to different outcomes, introducing 

uncertainty into the model results. Future research should explore the calibration of these 

coefficients in greater depth, potentially involving local stakeholders to ensure that the chosen 

values are contextually appropriate. 

The use of causal loop diagrams and interpretive structural modelling, while providing valuable 

insights into the interrelationships between risk factors, also has limitations related to the 

subjectivity of expert input. The development of these models relies on the knowledge and 
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perspectives of experts, which can vary depending on their background and experience. This 

introduces a degree of subjectivity into the modelling process, potentially affecting the 

generalizability of the findings. Efforts were made to mitigate this limitation by triangulating expert 

input with empirical data, but the potential for bias cannot be entirely eliminated. 

The complexity of the model developed in this research also poses challenges for its application 

in practice. The need for detailed input data, combined with the computational requirements of 

the cross-entropy and network analysis, may limit the accessibility of the model to stakeholders 

with limited technical expertise or resources. Simplified versions of the model, such as the general 

pathway identified through cross-entropy analysis, may be more suitable for practical applications, 

but this simplification comes at the cost of reduced accuracy and comprehensiveness. 

Another key limitation relates to the epistemological basis of the study. The reliance on existing 

literature and expert opinion means that the findings are inherently shaped by the current state of 

knowledge in the field. The evolving nature of flood and drought science, particularly in the 

context of climate change, means that some of the assumptions underlying the model may need 

to be revisited as new information becomes available. The analogy between the current research 

and existing practices may also limit the extent to which the findings can be generalized to novel 

contexts, particularly in regions experiencing unique hydrological conditions or socio-political 

challenges. 

Furthermore, the model's ability to account for transboundary issues is limited. In many river 

basins, flood and drought risks are influenced by factors that cross political boundaries, such as 

differences in water management practices, access to insurance, and legal frameworks governing 

water rights. The current model does not fully account for these transboundary complexities, 

which are particularly relevant in large river basins shared by multiple countries or jurisdictions. 

Future research should seek to address this limitation by incorporating transboundary 

considerations into the risk assessment framework. 



 

263 

 

8.4.1 Data Availability and Quality 

One of the most significant limitations of this research is the availability and quality of data. While 

efforts were made to source data from credible databases, such as Scopus and Web of Science, the 

reliance on secondary data presents inherent challenges, particularly in ensuring the consistency 

and reliability of datasets. Many of the parameters related to flood and drought risk such as soil 

moisture, socio-economic vulnerability, and environmental indicators are spatially and temporally 

variable. The lack of high-resolution data for some of these parameters, especially in developing 

regions or transboundary basins, impacted the precision of the analysis. Additionally, missing data 

and inconsistent reporting practices across different regions and institutions posed significant 

challenges for building comprehensive and comparable datasets. In the future, more collaborative 

data collection efforts involving stakeholders such as the Environment Agency, local councils, and 

water companies are needed to overcome these limitations. 

8.4.2 Methodological Constraints and Assumptions 

This study employed a systematic literature review and a mixed-methods approach that integrated 

both qualitative and quantitative analyses, including Interpretive Structural Modelling (ISM), 

Causal Loop Diagrams (CLDs), and spatial analyses. Each of these methodologies comes with its 

own set of limitations: 

• The systematic literature review, while rigorous, is inherently limited by the subjectivity 

involved in setting inclusion and exclusion criteria. Despite the use of open coding for 

latent content extraction, bias in selecting publications and assigning thematic categories 

can never be entirely eliminated, potentially affecting the comprehensiveness of the 

thematic analysis. 

• Fuzzy overlay and cross-entropy methods used for normalization and risk mapping, 

although powerful, have limitations in terms of calibration. The choice of fuzzy overlay 

coefficients, for instance, can significantly impact the results, and the current study lacked 

a detailed calibration phase for these coefficients. This issue directly affects the 
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generalizability of the results to other basins, as the chosen calibration might not accurately 

represent all hydrological and socio-economic conditions. 

• Interpretive Structural Modelling (ISM) assumes a hierarchical structure among variables, 

which may not always hold true in real-world settings where the interactions are far more 

complex. The simplification necessary to create an ISM model, while useful for 

understanding relationships, inevitably leaves out some of the nuance and overlapping 

interactions between variables. 

8.4.3 Modelling Limitations 

The modelling approach in this research aimed to integrate flood and drought risks using ISM, 

CLDs, and network analysis. However, the limitations inherent in the modelling process impacted 

the depth and applicability of the findings: 

• The Causal Loop Diagram (CLD) approach is highly effective for visualizing feedbacks 

but is limited when it comes to quantifying these relationships. The use of CLDs was 

mainly qualitative, and while the relationships identified provide useful insights, they lack 

the numerical precision required for predictive modelling. The absence of quantitative 

calibration or validation restricts the applicability of the findings for real-time decision-

making by stakeholders. 

• Cross-Entropy Analysis, used to deduce the general model from the entire network, 

introduces challenges related to computational intensity and the interpretation of results. 

Cross-entropy is effective for reducing uncertainty, but it is a complex method that can be 

computationally burdensome, requiring significant resources for processing and analysis. 

Additionally, this complexity might limit the replicability of the findings by other 

researchers who may not have access to similar computational resources. 

• The Combined Flood and Drought Risk Index (CFDRI) was introduced to offer a unified 

metric for assessing risks; however, its reliance on historical data and specific coefficients 

reduces its adaptability to future climate scenarios or basins with significantly different 
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hydrological dynamics. The lack of calibration of CFDRI across diverse basins is a 

significant limitation that affects its generalizability beyond the study area. 

8.4.4 Epistemological and Conceptual Weaknesses 

The epistemological basis of this research rests on the integration of socio-economic, hydrological, 

and environmental dimensions to provide a holistic understanding of flood and drought risks. 

However, this integrative approach is limited by the differences in epistemological traditions across 

these fields: 

• Hydrology relies heavily on deterministic models and empirical data, whereas socio-

economic vulnerability is assessed through more interpretive and qualitative approaches. 

The differing epistemologies posed challenges in creating an integrated framework where 

both quantitative precision and qualitative nuances were appropriately balanced. There is 

a lack of a standardized protocol for integrating these diverse dimensions, leading to 

potential inconsistencies in how risks are assessed and weighted within the framework. 

• Analogy Limitations: Another conceptual limitation lies in the analogy used to represent 

the interactions between variables. The network analysis and feedback loops, while 

effective in demonstrating relationships, may oversimplify the complex interdependencies 

in flood and drought risk scenarios. Such analogies may not fully capture the non-linear 

dynamics and emergent properties inherent in socio-hydrological systems. 

8.4.5 Scale and Scope Limitations 

The spatial and temporal scope of this research also presents limitations: 

• The research was conducted at the river basin scale, which, while appropriate for 

understanding regional dynamics, might overlook smaller-scale phenomena that are critical 

for local community resilience. Localized factors, such as micro-topography or specific 

socio-economic dynamics at a neighborhood level, could significantly influence flood and 

drought impacts but were not captured in this basin-wide analysis. 
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• The temporal resolution of the data used for risk analysis was also limited. The study 

considered monthly averages and seasonal trends, which are effective for capturing long-

term dynamics but may miss critical short-term events that could significantly affect the 

outcomes of flood or drought risks, especially in rapidly changing climate conditions. 

8.4.6 Stakeholder Engagement Limitations 

Although the research aimed to develop a framework applicable to stakeholders, such as the 

Environment Agency, water companies, and city councils in high-risk areas, there were limitations 

in stakeholder engagement during the research process: 

• Stakeholder input, which could have provided valuable insights into the real-world 

applicability of the framework, was limited due to time and resource constraints. Direct 

consultations with local councils or agencies might have helped refine the risk parameters 

and calibration methods, but these interactions were largely absent. 

• Additionally, the differences in socio-political structures within transboundary river basins 

were not fully explored. For instance, the study acknowledged that access to insurance 

could vary across borders, but the implications of these variations were not extensively 

modeled. In basins shared between different countries, such as those with varying 

management or protection schemes, this could lead to significant differences in resilience, 

which were not fully captured in the analysis. 

8.4.7 Calibration and Sensitivity Analysis 

The research also faced limitations in calibration and sensitivity analysis: 

• The fuzzy overlay coefficients used in the spatial analysis were not rigorously calibrated, 

which limits the robustness of the findings. The coefficients were set based on expert 

judgment and literature, but a more systematic calibration could enhance the precision of 

the results. 
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• Sensitivity analysis was performed, but its scope was limited to selected parameters due to 

computational constraints. A broader sensitivity analysis could provide deeper insights into 

which parameters most influence the overall risk, thus improving the reliability of the 

model for policy application. 

8.5 SUGGESTIONS FOR FUTURE RESEARCH 

The limitations identified in this research open several promising avenues for future investigations, 

each of which can contribute to improving the robustness, applicability, and generalizability of 

integrated flood and drought risk assessments. Addressing these limitations through dedicated 

research efforts will enable the development of more resilient, adaptive, and effective management 

strategies for hydrological extremes. 

8.5.1 Enhancing Data Quality and Accessibility 

Future research should prioritize efforts to improve data quality and accessibility, especially in 

regions where data availability is limited or inconsistent. This can be achieved through several 

initiatives: 

• Collaborative Data Collection: Establishing collaborations between research institutions, 

government agencies, and international bodies could enhance data collection efforts. A 

unified data repository could allow for consistent updates, improved data quality, and 

easier access for researchers and stakeholders, including water companies and local 

authorities. Such collaborations are particularly crucial for transboundary basins, where 

different political jurisdictions may have different data reporting and collection standards. 

• Remote Sensing and Real-Time Monitoring: Leveraging advanced remote sensing 

technologies and real-time monitoring systems would significantly enhance the spatial and 

temporal resolution of the data. Using satellite-based techniques like Synthetic Aperture 

Radar (SAR) and the Soil Moisture Active Passive (SMAP) satellite can improve 

monitoring accuracy and provide data for poorly monitored areas. Future studies could 
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also utilize sensor networks and Internet of Things (IoT) technologies for continuous, real-

time data collection at high resolutions. 

8.5.2 Calibration and Validation of Framework Components 

The calibration of fuzzy overlay coefficients and other parameters used in the integrated risk 

assessment framework is an area that requires further attention. The following actions are 

suggested: 

• Detailed Calibration of Fuzzy Overlay Coefficients: Future work should incorporate 

rigorous calibration protocols for fuzzy overlay coefficients to better reflect the actual 

dynamics within different basins. By collecting empirical data for calibration, researchers 

could establish more reliable coefficients that can be used to quantify risks more accurately. 

• Validation Across Diverse Regions: The framework developed in this study should be 

applied and validated across multiple basins with different hydrological, climatic, and 

socio-economic characteristics. Comparative analysis would help determine the 

generalizability of the framework and identify specific regional adjustments required. In 

particular, there is an opportunity to test the Combined Flood and Drought Risk Index 

(CFDRI) across diverse environments, including urban and rural basins, transboundary 

regions, and basins facing significant climatic pressures. Validation efforts should also 

consider basins with varying degrees of access to resources, institutional structures, and 

political boundaries to understand the adaptability of the framework across diverse socio-

political settings. 

8.5.3 Expanding Stakeholder Engagement 

Future research must address the gap in stakeholder engagement, which limits the real-world 

applicability of the risk assessment framework: 

• Stakeholder Consultation and Participatory Research: Incorporating stakeholder 

perspectives especially from vulnerable communities, local governments, and private 

companies would improve the applicability of the risk model. Future studies could use 



 

269 

 

participatory research approaches to involve stakeholders in defining risk priorities, setting 

calibration coefficients, and validating model outputs. Engaging stakeholders from the 

Environment Agency, water utilities, and city councils would allow researchers to better 

align their models with real-world needs and conditions. 

• Socio-Political Dynamics in Transboundary Basins: A more comprehensive understanding 

of the socio-political context within transboundary basins is also warranted. These basins 

are governed by multiple jurisdictions, each with different risk management approaches, 

which directly impact the allocation of resources and access to risk-reducing mechanisms 

such as insurance. Future research could explore the implications of socio-political 

variability for risk resilience, particularly with a focus on equitable water rights, cross-

border insurance coverage, and coordination challenges. 

8.5.4 Refining and Expanding Modelling Approaches 

To enhance the robustness and applicability of flood and drought risk assessments, the following 

modelling improvements are recommended: 

• Incorporating Quantitative Feedback Mechanisms: The Causal Loop Diagrams (CLDs) 

used in this research provide qualitative insights into feedback relationships between risk 

factors. Future research should extend this approach to incorporate quantitative 

simulations of feedback loops using tools like System Dynamics (SD) modelling. 

Quantitative models can provide more precise assessments of the impact of feedback 

mechanisms and allow for scenario-based risk predictions. 

• Integration with Machine Learning: Machine learning offers substantial potential for 

enhancing predictive capability in flood and drought risk assessment. Future studies could 

integrate ML techniques, such as Random Forests or Neural Networks, with the existing 

framework to enhance the detection of relationships between variables, predict high-risk 

scenarios, and calibrate the risk indices based on a larger dataset. The inclusion of ML-

based approaches in calibration could also help refine the fuzzy overlay coefficients and 

improve the accuracy of risk classification and mapping. 
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• Scenario Testing with Multiple Models: Another area for future exploration is the use of 

multiple models to evaluate the same river basin or extend the general framework by 

including alternative modelling approaches, such as Agent-Based Models (ABM). These 

approaches allow for the representation of autonomous entities, like farmers or 

municipalities, which make decisions based on changing conditions, thus providing a more 

nuanced understanding of individual or collective behavior under flood and drought risk 

scenarios. Comparing the results of multiple models could further enhance the 

understanding of risk dynamics and validate model outputs. 

 

 

8.5.5 Broader Integration of Socio-Economic Parameters 

The socio-economic component of the framework could benefit from further development, 

particularly regarding how socio-economic factors directly influence vulnerability and resilience: 

• Assessing Socio-Economic Dimensions at a Finer Scale: Future studies could incorporate 

socio-economic data at a finer scale, including metrics such as income distribution, 

employment type, and educational levels. These variables could provide a more granular 

understanding of how socio-economic vulnerabilities vary within the basin. The inclusion 

of these detailed metrics would enable the development of targeted strategies to reduce 

risks for the most vulnerable populations. 

• Exploring Willingness to Pay for Insurance: Given that insurance is a critical mechanism 

for enhancing community resilience, future research should investigate factors influencing 

the willingness to pay for flood and drought insurance. This investigation should consider 

variables such as cultural attitudes, risk perception, and past experience with insurance. 

Understanding these factors can help policymakers and insurance providers develop more 

affordable and accessible insurance schemes tailored to specific communities. 
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8.5.6 Cross-Disciplinary Epistemological Integration 

The integration of diverse disciplines hydrology, socio-economics, ecology requires a more robust 

epistemological framework. Future research could: 

• Develop an Integrated Epistemological Approach: This research encountered difficulties 

in reconciling the empirical approaches of hydrological sciences with the interpretive 

methods used in socio-economic studies. Future efforts should aim to establish an 

integrated epistemological framework that provides a standardized method for integrating 

these diverse data sources. Such an approach could lead to a more holistic understanding 

of hydrological risks, fostering a stronger theoretical foundation for interdisciplinary 

studies. 

• Exploring Interdependencies in Greater Detail: Future research could also expand on the 

use of network analysis to investigate interdependencies between parameters in greater 

detail. The current study identified broad categories of relationships, but a deeper 

exploration of the specific nature of these interactions could provide insights into emergent 

properties, thresholds, or tipping points within the hydrological and socio-economic 

systems. This type of analysis could help in identifying the conditions under which minor 

perturbations could lead to significant changes in risk, thus allowing for more proactive 

management of flood and drought hazards. 

8.5.7 Addressing Temporal and Spatial Scale Challenges 

The issue of temporal and spatial scales, which affected the granularity of the risk analysis, should 

be addressed in future work: 

• Temporal Expansion: Incorporating finer temporal resolutions, such as daily or weekly 

data, could allow researchers to capture the immediate impacts of extreme events. Future 

studies should aim to integrate high-frequency monitoring data to assess short-term risk 

fluctuations and assess the impact of individual flood or drought events on basin-scale 

dynamics. 
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• Multi-Scale Spatial Analysis: Developing a multi-scale spatial analysis approach could also 

help to address the limitation of the river basin-wide focus of the current research. By 

integrating micro-scale analyses such as the impacts on individual communities, farms, or 

neighborhoods researchers could identify local factors that influence risk within the 

broader river basin context. This approach would support the development of more 

customized risk mitigation strategies that address both local and regional needs. 

8.5.8 Expanded Validation and Application of Findings 

Future research should also focus on validating the findings and expanding the framework’s 

application: 

• Field Validation and Empirical Testing: The findings should be validated through 

fieldwork and empirical testing in a variety of basin contexts. By comparing the framework 

outputs to real-world observations—such as historical flood and drought events—

researchers can assess the accuracy and reliability of the framework and refine it 

accordingly. 

• Application Across Diverse Hydrological Systems: Applying the framework across a range 

of hydrological systems with different climatic, topographic, and socio-economic 

conditions will test its replicability and robustness. Future studies should include basins 

with different levels of water regulation, varying precipitation patterns, and distinct land 

use practices to evaluate the versatility of the model and adapt it to specific regional 

contexts. 

By addressing these areas, future research can build on the findings of this study to develop more 

comprehensive and effective strategies for managing flood and drought risks in the River Severn 

basin and other similar regions. 
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APPENDICES 

A section of early results from this research is published open access via the following link and 

cited accordingly: 

https://www.mdpi.com/2073-4441/13/19/2788/pdf 

Fasihi, S., Lim, W.Z., Wu, W. and Proverbs, D., 2021. Systematic review of flood and drought 

literature based on science mapping and content analysis. Water, 13(19), p.2788. 

Given the extensive amount of information in each category of supplementary materials, each 

section has been categorized and titled in a separate file. A comprehensive list of all these sections 

is provided here for reference, should further information be needed. 

• Appendix_A 

This document contains some more general information about the performed systematic literature 

review (Chapter 4). Next, this file contains the code written for transivity check of the final 

reachability matrix utilised in the ISM approach (Section 5.2). Additionally, more explanation and 

normalised equations for network metrics analysis along with more figures and tables are provided 

here.  

• Supplementary_material_ISM 

The spreadsheet contains the actual large tables of reachability matrices, level partitioning and 

driving and dependency power produced by the ISM method in section 5.2.  

• Sample_of_reviewd_papers 

This document includes a sample of the reports created for each paper used in the systematic 

literature review process 
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• Bibliography_of_all_papers 

This document contains the bibliographic list of all the papers used in the systematic literature 

review, which served as the basis for extracting the informative data used in the statistical analysis 

presented in Chapter 4. 


