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Simulating Innovation Systems and STI Policy: An Agent-Based 

Perspective 

 

Walter Ruiz*, Danilo Spinola†, Maria Luisa Villalba‡ 

 

Abstract 

This paper develops an Agent-Based Model (ABM) to study the impact of Science, Technology, and 

Innovation (STI) policies on innovation systems. The model, which we call the Adaptive Innovation 

System Model (AdaptISM), simulates the technological innovation capabilities required for 

knowledge and technology generation, diffusion, and utilisation, integrating decision rules that 

capture the emergent behaviours of agents interacting with innovation opportunities. The model is 

empirically validated using data from the coffee and avocado agricultural production chains (APCs) 

in Antioquia, Colombia, which are two sectors of regional economic and local importance. The 

validation process allows the evaluation of individual and combined STI policy modes, identifying 

which policy strategies most effectively enhance innovation performance and economic outcomes. 

By enabling the exploration of “what-if” scenarios, the ABM provides a tool to assess STI policy 

contributions systematically and offers practical insights into resource allocation in local innovation 

systems. This approach addresses a critical challenge in innovation policy design: understanding how 

STI policies influence system performance. The findings highlight the utility of combining policy 

approaches to improve innovation and economic growth, offering a replicable framework for 

policymakers and researchers seeking to optimise the performance of innovation systems. 
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1. Introduction 

Over the last decades, Science, Technology and Innovation (STI) policymakers have experimented 

with different policy combinations to improve the performance of innovation systems. As noted by 

Crespi and Dutrénit (2014), these combinations have been shaped by different policy paradigms, 

innovation models and modes, each reflecting specific historical contexts. Three main policies are 

identified: technology push approaches targeting mode I policies for STI with a science-based 

orientation; market pull models focusing on innovation mode II; and the systemic approach, which 

targets mode III, characterised by innovation through learning by Doing, Using and Interacting (DUI) 

(Jensen et al, 2007; Crespi & Dutrénit, 2014). 

Empirical research examining the impact of STI policies and innovation modes on the economic 

performance of innovation systems highlights the benefits of combining different innovation 

approaches. Studies conducted in various countries – Denmark (Jensen et al., 2007); Norway (Isaksen 

& Karlsen, 2010, 2013; Aslesen et al., 2011; Fitjar & Rodríguez-Pose, 2013); China (Chen et al., 2011); 

Portugal (Nunes et al., 2013); Belarus (Apanasovich et al., 2016); and Spain (Parrilli & Alcalde, 

2016)—generally find that combining approaches yields better results than relying on individual 

policies. However, these findings also show that outcomes vary by country, influenced by local 

politics, culture, and historical patterns of economic and technological development (Malaver & 

Vargas, 2013). 

In some cases, evidence contradicts the preference for combining policies. Parrilli and Elola (2012) 

found that in Spain, - showed that, the STI mode with a science-based approach led to better economic 

and innovation performance in small and medium-sized businesses (SMBs) than the DUI approach. 

Similarly, Malaver and Vargas (2013) in Colombia reported that the STI innovation mode with a 

science-based approach was more efficient than the DUI mode and that combining the two 

approaches did not provide additional benefits. These findings underscore the role of local contexts, 

including institutional structures that support the innovation system.  

These findings emphasise that better results are obtained, in terms of the system’s economic and 

innovation performance, when different types of STI policies, STI innovation mode with a science 

approach and DUI mode are combined. Nevertheless, as we have seen, there is evidence that, in some 

cases, this is not true. Even more problematic, in practice, sometimes available resources are 

insufficient to combine all STI policies if each policy instrument requires a budget allocation. This 

increases the complexity of formulating STI policies, as trade-offs exist between the different policy 

instruments in each innovation mode. 

Uncertainty regarding the effect each policy will have on the system’s economic and innovation 

performance is aggravated by the fact that combinations of STI policies are typically put into place, 

which makes evidence-based decision-making even more difficult. To complete this picture of 

uncertainty, we must consider that innovation systems never reach a state of equilibrium (Brunet & 

Mara, 2016). Thus, policies must be adapted to the system’s evolution to guarantee long-term 

performance, sometimes strengthening one innovation approach rather than another. This suggests 

the impossibility of a general formula and the need to attend to each case individually. What is 

addressed from qualitative or deterministic methodologies would represent extensive, unattainable 

efforts. 
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This research proposes a simulation model to represent real-world innovation systems to overcome 

the challenge of attributing innovation system performance to specific STI policy instruments. 

Simulations permit researchers to formulate what-if questions and test different scenarios to better 

understand the impact of policies on system performance. We developed an agent-based model 

(ABM) to simulate the capabilities required for the core functions of innovation systems: generating, 

diffusing, and utilising knowledge and technology. The model incorporates decision rules to analyse 

emergent behaviours and identify leverage points, particularly the impacts of STI policies on system 

performance. 

This approach fills a gap in the literature by providing a dynamic tool to evaluate the effects of STI 

policies across various scenarios, complementing existing empirical and theoretical studies. Our ABM 

builds on frameworks such as those by Jensen et al. (2007) and Crespi and Dutrénit (2014). The 

model supports policy experimentation by capturing how heterogeneous agents and innovation 

opportunities interact under different policy configurations to foster more equitable innovation 

outcomes. 

The model was validated in the coffee and avocado agricultural production chains (APCs) in the 

Antioquia region of Colombia, chosen for their economic importance and development level. It 

demonstrated its utility in assessing the impacts of STI policies on innovation and economic 

performance within real-world contexts. The formal complete specification of the model is 

provided in the annexe, offering transparency and a methodological foundation for exploring 

performance and resource-efficient innovation systems. 

After this introduction, Section 2 reviews the key theoretical frameworks and empirical evidence that 

inform the model, including the conceptual foundations of STI policies and innovation systems. 

Section 3 introduces the AdaptISM framework, detailing its structure, assumptions, and 

methodological approach, including the ODD (Overview, Design concepts, and Details) protocol. 

Section 4 describes the application and validation of the model in the coffee and avocado agricultural 

production chains (APCs) in Antioquia, Colombia, focusing on their innovation capabilities and the 

calibration of the simulation parameters. Section 5 analyses the results of the STI policy scenarios 

simulated using the model, offering insights into their economic and innovation impacts across 

different contexts. Finally, Section 6 discusses the broader implications of these findings for STI 

policymaking and concludes with recommendations for enhancing innovation system performance 

through tailored policy interventions. This structure aims to comprehensively understand the 

model’s capabilities and contributions to innovation policy research. 

2. Approaches to STI policy  

We present the key approaches to STI policymaking, drawing on the categorisation proposed by 

Crespi and Dutrénit (2014): 

a. Mode I: The market-pull or technology-push approach, or STI innovation mode with a 

scientific approach.  

According to Rothwell’s typology of innovation generation models (Rothwell 1994), the technology 

push was developed towards the end of the Second World War. At that time, science and technology 



3 

were recognised to provide a key market advantage, something that the war had previously 

evidenced. In that context, the innovation process was understood as a simple linear sequential 

process, going from knowledge production to market exploitation through a series of stages: basic 

research, design and engineering, production, marketing, and the final stage of sales. From this point 

of view, STI policies are geared towards the “production and use of codified scientific and technical 

knowledge” (Jensen et al., 2007), which is achieved through formal learning (higher education and 

research) and the commercial exchange of explicit knowledge. The aim of this policy approach as to 

“increase the R&D capacity of the actors in the system and increase cooperation between firms and 

R&D organisations” (Isaksen & Nilsson, 2013, p. 1923), promoting top-down, unidirectional learning 

processes and research elites (Brunet & Mara, 2016). Nowadays, its efficiency is considered a 

measure of R&D costs, employment of science and technology postgraduates, cooperation with 

industries (Jensen et al., 2007) and radical innovation (Asheim B., 2012). 

b. Mode II: Focusing on demand or the market-pull approach. 

The second-generation innovation models emerged in the mid-60s when countercultural movements 

led by a generation of baby boomers challenged the established values and structures (Menéndez, 

2017, p. 162). This caused significant changes in consumption, which affected product-oriented 

businesses that were applying the technology push innovation model in what has been called 

marketing myopia (Levitt, 1960). For this reason, the market gained great relevance, which became 

reflected in second-generation innovation models. Although still linear, such models were activated 

by specific market needs to continue onto the development, production and marketing stages.  

c. Mode III: The systemic approach, interactive learning mode (DUI). 

Rothwell considered Mode III a 5th-generation innovation model (Rothwell, 1994). It stresses the 

association between actors with complementary innovation abilities and those capable of learning in 

different ways within the innovation process. This approach appears in the context of the 

development of mass information and communication technologies, which hugely facilitate 

interaction. It also coincides with the emergence of innovation systems proposals, which argue, based 

on the analysis of specific countries, that innovation is a product not only of businesses’ capacities 

but that it also occurs in the framework of a system of knowledge and technology generation, 

diffusion and use, through the interaction of heterogeneous agents who learn through doing, using 

and interacting (Freeman (1982; 1987), Lundvall (1985; 1988; 1992), Nelson (1993) and Edquist 

(1997)).  

For Jensen, “the Doing, Using and Interacting (DUI) mode relies on informal processes of learning and 

experience-based know-how” (Jensen et al., 2007, p. 680). DUI is thus related to know-how and who-

know, informal learning (interactive, practical and involving the participation of many agents), open 

access and knowledge spillovers. The main aim of the DUI mode is “to foster organizational and inter-

organizational learning and increase cooperation between the particular producers and users” 

(Isaksen & Nilsson, 2013, p. 1923). Its function promotes bottom-up, informal, multidirectional 

learning processes that generate knowledge diffusion and dissemination (Brunet & Mara, 2016). The 

assessment of its contribution normally involves measures such as the number of interdisciplinary 

workgroups, the formation of quality circles, systems for collecting proposals, autonomous groups, 
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integration of functions, softened demarcations, and cooperation with customers and providers (cf. 

Jensen et al 2007) and incremental innovation (Asheim B., 2012). 

 

3. Theoretical and empirical foundation of AdaptISM 

Initially, our proposed model understands the relationship between resources, capabilities, core 

competencies and learning from a resource-based view of the firm (Penrose, 1959). According to 

Grant (1991), resources encompass any asset, tangible or intangible, physical, intellectual or cultural, 

that a firm can access or acquire to achieve its corporate goals. Capabilities are “the ability to use 

resources to perform some task or activity” (Hafeez et al., 2002, p. 40). Another critical element is 

core competencies, which Hafeez et al. (2002, p. 41) describe as “organizational routines manifested 

in business activities and processes that bring assets together and enable them to be deployed 

advantageously.” For capabilities to be regarded as core competencies, they must be valuable, rare, 

and difficult to imitate or substitute (Barney, 1991). 

Technological learning refers to the dynamic process of accumulating capabilities and core 

competencies within a firm (Robledo, 2016). Representing learning as the accumulation of 

capabilities highlights its critical role in developing and evolving innovation systems, where it 

enhances interactivity and connectivity (Archibugi et al., 1999). Interactive learning is particularly 

vital for the economic performance of firms, regions and nations, as their success depends on their 

learning capacity (Lundvall, 2007). In this context, the ability and speed of accumulating (learning) 

and losing (unlearning) capabilities are key to understanding the performance of innovation systems 

(Quintero, 2016). Relevant theoretical contributions also include Ernst et al. (1998), Teece et al. 

(1997), and Helfat (1997). 

Our approach to innovation systems draws on Freeman (1987, p.1), who defines such systems as “the 

network of institutions in the public and private sectors whose activities and interactions initiate, 

import, modify and diffuse new technologies”. It also builds on Edquist’s (1997) system of innovation 

framework, which integrates analytic approaches (national, regional, sector-based, and 

technological). Expands Edquist’s framework by incorporating considerations of location and 

geographical proximity, as emphasized by Lundvall and Johnson (1994) and Asheim and Gertler 

(2004). Additional theoretical references include Carlsson et al. (2002), and Lundvall et al. (2002). 

Given the complexity of studying social processes such as innovation, we draw on the Adaptive 

Complex Systems (ACS) literature. ACSs evolve through initial conditions, multiple interactions, long-

term tendencies, and random variations among agents and their interactions (Ekboir et al., 2006). 

AdaptISM is an ACS - a system of agents that interact according to rules that change over time through 

the accumulation of experience (Holland, 2004). These adaptive processes result in evolving systems 

and flows, introducing complexity that motivates the use of computational models. As Holland (2004) 

noted, such models enable the exploration of governing patterns in ways that real systems cannot. 

Additional support for this approach comes from the work of Gilbert et al. (2001). 

Trust is a key factor in the relationships between competing agents who associate to exploit 

innovation opportunities, impacting both costs and profits. On the one hand, cooperation between 
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successful competing agents lowers transaction costs associated with partner search and activity 

coordination (Ruiz et al., 2016). On the other hand, a satisfactory working partner makes it easier to 

find new knowledge components and increases economic performance (Beckenbanch et al., 2009). 

Agents with strong diffusion and association capacities play a critical role in trust-building by 

fostering shared norms of transparency and reciprocity. This enhances organisational learning and 

reduces transaction costs for knowledge and technology diffusion (Dyer & Singh, 1998). Trust, 

therefore, is both a cause and an outcome within innovation systems (Beckenbach et al., 2009). 

Furthermore, interactive learning is deeply embedded in social contexts. The success of learning 

processes depends on social factors like trust, authority, and recognition, emphasising the need to 

consider social and economic contexts when analysing relationships within innovation systems 

(Lundvall & Christensen, 2007). 

The design of the model’s interactions between heterogeneous agents for knowledge and technology 

diffusion is based on four key proposals. First, the Simulating Knowledge Dynamics in Innovation 

Networks (SKIN) model by Gilbert et al. (2001), which was refined and expanded in subsequent 

works (e.g., Ahrweiler et al., 2004, 2011; Pyka & Scholz, 2008; Pyka et al., 2009; and Triulzi et al., 

2011). Second, the hyper-cycle and catalytic models, introduced by Eigen and Schuster (1979) and 

Kauffman (1996, 2000), respectively, and later adapted by Padgett (1997) and further developed by 

Padgett et al. (2003), Padgett et al. (2009), and Watts & Binder (2012). Third, the SSRIS model 

proposed by Ponsiglione, Quinto, and Zollo (2014) integrates elements of the SKIN and hyper-cycle 

models. Finally, the innovation system, capabilities, and learning/unlearning model developed by 

Ruiz et al. (2016) and extended by Quintero et al. (2017). These references collectively informed the 

design assumptions of the model, particularly in defining agents, values and scales, the motivation 

for agent associations, and the functions of innovation systems. 

 

4. Explanation of the Adaptive Innovation Systems Model (AdaptISM) 

The Adaptive Innovation Systems Model (AdaptISM) we propose provides a dynamic framework for 

analysing how Science, Technology, and Innovation (STI) policies influence the performance of 

innovation systems. Central to the model are agents—entities such as firms, organisations, or 

individuals—whose capabilities must align with the attributes of emerging innovation opportunities 

within a competitive environment. The model explores the interplay between agents, their 

capabilities, and innovation opportunities, offering a comprehensive tool for assessing STI policies. 

Annex 1 details the mathematical specification of the model, including its formal rules, processes, and 

parameters. 

Innovation opportunities are classified into two distinct types: market opportunities (MO) and 

technological opportunities (TO). MOs represent market-pull dynamics, emerging unpredictably 

from market demands, while TOs reflect technology-push mechanisms, often originating from agents 

with advanced research capabilities. This dual classification enables a nuanced exploration of how 

different innovation drivers affect system performance. 
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The model represents an innovation system comprising two types of entities: competing agents and 

innovation opportunities. Competing agents are defined by their innovation capabilities, which 

enable them to fulfil the core functions of innovation systems: knowledge and technology generation, 

diffusion, and utilization. Table 1 outlines the relationship between these functions and their 

corresponding innovation capabilities. 

Table 1. Correlation between the functions and innovation capabilities of innovation systems 

Function Capability Application 

Knowledge and 

technology 

generation 

Research Produce and adapt knowledge and technology 

Development 
Experiment with and develop new products and 

processes. 

Knowledge and 

technology 

diffusion 

Diffusion Collect and spread R&D results and technologies. 

Association 

Build trust-based relationships to exploit 

complementary capabilities through joint R&D and 

innovation projects. 

Knowledge and 

technology usage 

 

Appropriation 

for production 

Efficiently operate and maintain productive 

infrastructure while adapting and improving 

production technologies. 

Innovation 

marketing 

Identify market needs, dissemination of new 

products and processes, establish distribution 

channels, and promote innovations. 

Source: Ruiz, Quintero & Robledo (2016) 

Competing agents are classified into three broad categories based on their capabilities:  

• Exploiter agents (e.g. firms), with capabilities in appropriation for production and/or 

innovation marketing. 

• Intermediary agents (e.g., technology parks, incubators) with association and/or 

diffusion capabilities. 

• Explorator agents (e.g., universities, research centres) with research and/or 

development capabilities. 

 

Recognising the complexity of real-world systems, AdaptISM allows agents to possess multiple 

capabilities, enabling them to play diverse roles within the innovation system. This flexibility leads 

to nuanced classifications of agents, including:  

• Gatekeepers: Firms that engage in technology watch, foresight, road mapping, 

benchmarking, and experimental development. These agents possess both 

exploitation and intermediation capabilities. 
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• Introducer agents: Universities with science and technology transfer departments, 

business incubators, or entities that combine exploration and intermediation 

capacities. 

• Integrated agents: Companies with R&D departments and open innovation 

strategies that simultaneously explore, intermediate, and exploit innovation results. 

• Ambidextrous agents: Companies with R&D capabilities that can explore and exploit 

results but engage in limited interaction with other actors in the system. 

• Incipient agents: Latecomers or enterprises with underdeveloped innovation 

capabilities. These agents cannot perform any of the innovation system's functions 

(See Figure 1.) 

  

Figure 1. AdaptISM Agent Typology 

 

     Source: Adapted from Ruiz et al. 2016. 

Figure 1. Positioning and relationship between competing agents in an innovation system. 

 

Innovation opportunities are represented as six-dimensional Attribute Vectors (AV), defining the 

capabilities required for exploitation. Each dimension corresponds to one of the six innovation 

capabilities (research, development, diffusion, association, appropriation for production, and 

marketing). The values range from 0 (no capability required) to 9 (state-of-the-art capability 

required), reflecting the complexity and demands of the opportunity. 
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Competing agents possess corresponding Capability Vectors (CV), representing their ability to meet 

and supply the demands of an opportunity. CV values evolve through learning (accumulation) or 

unlearning (decay), shaped by interactions with opportunities and other agents. Matching between 

AVs and CVs occurs through a sequential process: 

1. For Market Opportunities (MOs): Matching starts with marketing capabilities and 

progresses toward research, reflecting a demand-driven process. Agents unable to meet all 

requirements individually may form associations with others possessing complementary 

capabilities. 

2. For Technological Opportunities (TOs): Matching begins with research and proceeds 

toward marketing, reflecting a technology-push approach. Associations are similarly formed 

to address gaps in capabilities. 

The maximum coalition size is six agents, each contributing one capability dimension. Once all 

attributes of an opportunity are satisfied, benefits are distributed among the participating agents. 

Competing agents participate in innovation dynamics when their capabilities align with the 

requirements of innovation opportunities within a competitive environment. Innovation 

opportunities are classified as market opportunities (MO) or technological opportunities (TO). MOs 

emerge from the demands of a competitive environment, representing market-pull mechanisms. TOs, 

on the other hand, emerge from agents with strong research capabilities and embody a technology-

push dynamic. Competing agents exploit these opportunities by matching their innovation 

capabilities to the attributes of the opportunities. 

Attributes are represented by six-dimensional vectors, each corresponding to a specific innovation 

capability. An individual agent can satisfy these attributes or associate with other agents that possess 

complementary capabilities. 

Attribute Vector (AV) 

Each innovation opportunity is characterized by an Attribute Vector (𝐴𝑉 =  [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6]), 

which consists of six dimensions: research capability (𝑎₁), development capability (𝑎₂), diffusion 

capability (𝑎₃), association capability (𝑎₄), appropriation for production capability (𝑎₅), and 

marketing capability (𝑎₆). These dimensions collectively define the attributes required to exploit the 

opportunity effectively within the competitive environment. 

The values for these dimensions range from 0 (no capability required) to 9 (state-of-the-art capability 

required). The volatility of innovation opportunities determines how long they remain in the system 

before disappearing if unexploited. Opportunities also follow a lifecycle, modelled as a Gaussian 

distribution, dictating the benefits they generate over time, as inspired by Rogers' (2003) diffusion 

curves. 

In short, competing agents aim to exploit innovation opportunities in a competitive environment, 

either through their own innovation capabilities or through association with other competing agents 

with complementary innovation capabilities. 

Capability Vectors (CV) 
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Agent’s capabilities are represented through Capability Vectors (CV), which comprise six dimensions 

(𝐶𝑉 =  [𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6]). The value and scale associated with the competing agents’ innovation 

capabilities are null (value 0), basic (1-3), average (4-6) and advanced (7-9). The current level of one 

capability is the result of the different learning and accumulation stages (Dodgson, 1993; Kim, 1997; 

Hobday, 1997; Ernst, Mytelka, & Ganiatsos, 1998; Lundvall, 2007; Lundvall & Vinding, 2007; Lund, 

2007; Helfat et al., 2007). Innovation capability is “the ability to use resources to perform some task 

or activity” (Hafeez et al., 2002, p. 40). From this perspective, we understand that maintaining 

innovation capabilities has a cost, which depends on the agent’s current innovation capabilities. The 

agent’s surplus meets this cost. 

Summary of the process, rules and sequential logic of the model: 

The processes in the innovation system take place in the following order: First, as mentioned earlier, 

the appearance of an innovation opportunity within the competitive environment triggers a 

sequence of events. Such an innovation opportunity may be either a market opportunity or a 

technological opportunity. The following steps depend on the nature of the innovation opportunity 

(see Figure 2). 

Figure 2. Model Flow Chart 

 

Exploitation of Market and Technological Opportunities 

Market opportunities emerge randomly within the competitive environment, reflecting the inherent 

unpredictability of market demands. This triggers a search for a competing agent capable of meeting 

the opportunity's attributes. The opportunity's attributes and the agent’s location are assigned 

randomly to account for the uncertainty typical of innovation markets. 
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This process exemplifies a market pull dynamic, where a competing agent must meet demand from 

an actor in the innovation system (e.g., consumer, company, or public entity). The agent’s ability to 

address the opportunity depends on its capacity to fulfil the attributes specified in the Attribute 

Vector (AV). For instance, a consumer seeking clothing may prioritize a well-known brand, 

demonstrating the brand’s capability to market innovations effectively. 

The search for a suitable competing agent begins locally, focusing on agents' marketing capacities. If 

no local agent can satisfy the opportunity, the search expands geographically. Once a qualified agent 

is identified, a link is established between the agent and the market opportunity. 

Technological opportunities, by contrast, originate from agents with advanced research capabilities, 

aligning with a technology-push dynamic. These opportunities are initially linked to the originating 

agent. Validation ensures that all other required attributes are satisfied as defined in the AV. 

Validation of Attributes 

For market opportunities, attributes are validated in the following sequence: Appropriation for 

production capability, Association capability, Diffusion capability, Development capability, Research 

capability. If the selected agent cannot fulfil all required attributes, it searches for other agents with 

complementary capabilities to form associations. This iterative process continues until the 

opportunity’s requirements are fully met. A maximum of six agents can collaborate, each contributing 

a specific capability. 

For technological opportunities, the sequence of validation is reversed, starting with development 

and progressing through diffusion, association, appropriation for production, and marketing. The 

formation of associations follows the same collaborative logic. 

Once all attributes of an innovation opportunity are satisfied—either by a single agent or through 

associations—the opportunity begins generating benefits. These benefits depend on the 

opportunity’s lifecycle, modelled as a Gaussian distribution, and the value associated with each 

fulfilled attribute. 

Projects involving agent collaboration to exploit opportunities also produce learning (or 

unlearning) outcomes. This dynamic reflects learning by doing or unlearning by non-doing, 

where specific capabilities' use (or neglect) influences their accumulation (or decay). The rate of 

learning or unlearning is governed by a factor that considers the system’s competitive environment 

and the agent's existing capability levels. 

Renewal and Evolution 

Market opportunities themselves evolve through a learning process driven by the competitive 

environment. When an opportunity’s lifecycle concludes, it is replaced by a new one with attributes 

shaped by the learning dynamics of the previous cycle. 

At the end of each simulation period: 
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I. Competing agents update their surplus stocks by adding profits from exploited opportunities 

and deducting costs associated with maintaining capabilities and transaction costs from 

collaborative associations. 

II. Agents with a negative surplus are removed from the system. 

As the new period begins, the system is updated: 

• New competing agents enter the environment, with capabilities assigned stochastically based 

on prior system dynamics. 

• Expired market and technology opportunities are replaced. 

• New innovation opportunities (MO and TO) born in the competitive environment 

• Agents with advanced research capabilities may generate new technological opportunities. 

 

5. Application, data collection, and validation of the model 

 

The proposed model was empirically applied and validated in Colombia's coffee and avocado 

agricultural production chains (APCs), specifically in the Antioquia department. These APCs were 

selected due to their economic significance for the country and region, as well as their differing levels 

of maturity, enabling a comparative analysis to deepen the understanding of the phenomenon under 

study. Validation followed the operational technique outlined by Sargent (2013), which compares 

the occurrence of events in the simulation model with those observed in the real system to assess 

their similarity. We conducted a field study of the coffee and avocado APCs in Antioquia, Colombia, 

which involved collecting data through interviews with various stakeholders. 

The tool we developed is based on Nadler and Tushman’s organisational congruence model (1997), 

which identifies four key dimensions of organisational management:  

● Formal organisation: The structured hierarchy and processes that define roles and guide 

individuals in executing their tasks. 

● Informal organisation: The unwritten cultural framework encompassing past and present 

practices, management style, organisational culture, interpersonal and interdepartmental 

relationships, informal work arrangements, and social norms. 

● The technological dimension refers to the organization's core work, including process 

technology, machinery, tools, and methods for transforming input into output. Building on 

Nadler and Tushman’s focus on tasks, we adopt the University of Michigan's perspective, 

emphasising the technological nature of tasks and redefining them as technology. 

● Human resources: The organisation's members, encompassing their knowledge, skills, 

experience, needs, preferences, and expectations for recognition and incentives. 

 

Innovation capabilities (research, development, diffusion, association, appropriation for production, 

and innovation marketing) comprise the formal, informal, technological, and human elements. The 

interview questions targeted these elements for each capability to estimate each actor's approximate 
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capability level. Given the linear nature of the simulation model, it was essential to assess the current 

state of these elements and their progression over time. To achieve this, each question addressed 

three points in time: 10 years ago, 5 years ago, and the present. Interviews were conducted in 2018. 

The data collected enabled us to estimate how innovation capabilities accumulated or decumulated 

within each APC. This allowed us to evaluate whether the simulation model mirrored this behaviour, 

providing a basis for operational validation. 

We began by systematising data for each APC, measuring the innovation capabilities of the actors 

interviewed at the three defined time points. Using these measures, we calculated the average 

capacity for each innovation capability over time, yielding the results summarised in Table 2. 

Table 2. Average innovation capability for APCs over time 

 APC Coffee APC Avocado 

Average Innovation Capacity 2008 2013 2018 2008 2013 2018 

Research 0.15 0.16 0.19 1.45 1.14 0.83 

Development 0.16 0.15 0.16 1.29 1 0.77 

Diffusion 1.00 1.06 1.19 2.97 3.11 2.8 

Association 1.31 1.41 1.58 3.74 4.47 4.25 

Appropriation 0.99 1.19 1.52 2.72 3.07 2.75 

Marketing 0.18 0.26 0.42 1.98 2.05 1.59 

Source: Data obtained by the authors through field study 

For the study to be significant, we interviewed 256 agents in the coffee APC and 74 in the avocado 

APC. To introduce such agents in the model, we normalised data for 100 agents and calibrated the 

parameters, adjusting them to the real system. The goal was that after simulating for 10 periods, the 

simulated APCs showed similar behaviour to that of real APCs regarding the accumulation of 

innovation capabilities. The model’s parametrisation is found in Annex 2. 

a. Selection, results and analysis of STI policy scenarios 

Plausible scenarios are projections of future behaviour designed to address policymakers’ 

challenges. STI policy scenarios help anticipate the potential impact of one or more events by 

projecting future outcomes (Quintero & Giraldo, 2018). Systematic variations in uncertain or 

unknown parameters within the model generate multiple trajectories, some of which are selected to 

represent distinct scenarios that characterise different behaviours. These parameters, which 

describe an APC's economic and innovation performance, are critical for scenario analysis. The 

scenarios considered in this study are as follows: 
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1. Mode I Policy Scenario: Represents APCs that benefit from doing-using learning and 

accumulating research and development capabilities. This behaviour is shaped by routines 

acquired through agents' past experiences (Nelson & Winter, 1982). 

2. Mode II Policy Scenario: This scenario focuses on innovative marketing programs and tools 

that enhance the detection, interpretation, and prediction of market trends. This includes 

funding, methodologies, and techniques for market exploration, benefiting agents in the 

productive chains. 

3. Mode III Policy Scenario: Aims to foster interaction and overcome collective learning barriers 

(Fritsch & Slavtchev, 2007; Ponsiglione, Quinto, & Zollo, 2014; Albino, Carbonara, & 

Giannoccaro, 2006). This scenario reflects APCs that rely on doing-using-interacting (DUI) 

learning approaches. 

4. Mode IV (Combined Mode): This mode integrates features of multiple modes, combining 

Mode I, II, and systemic STI policies. It reduces the costs of imported capital assets, promotes 

technological modernisation, and improves production infrastructure. Additionally, it 

supports research and development projects, human resource training, and the 

appropriation and transformation of technologies through enhanced interactions among 

actors in the chain. 

Analysis of STI policy scenarios based on simulations: 

Avocado APC 

Significant differences are observed in the avocado APC in the following variables: surviving agents, 

market capacity, and exploited market opportunities. Figure 3 reflects the number of surviving 

agents in the APC. Mode IV and III policy scenarios reveal a better performance regarding agents' 

survival. Although the economic performance of all policy scenarios is similar, and surplus stock 

shows no statistically significant difference, scenarios IV and II ensure more agents remain active in 

the APC’s innovation dynamics. Thus, many agents benefit from innovation dynamics, the opposite 

of scenarios I and II, where few agents benefit from and remain active in the innovation system. This 

implies that both the combination of policies and the systemic policy ensures better performance in 

the participation of more agents in the innovation dynamics. 

Given that a scarcity of resources forbids the possibility of investing in all policy types and that the 

aim is to have a greater participation of actors in innovation dynamics without any negative impact 

on economic performance, the best recommendation based on the simulations would be to adopt 

mode III policy. This policy mode supports actors that perform knowledge and technology diffusion 

functions and build trust for associations to be made. Such actors promote the use of knowledge and 

technology among other actors in the APC, who, in turn, become involved in innovation dynamics. 

This would also allow for a more significant number of actors to benefit from their participation in 

such dynamics. 
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Figure 3. Alive agents in the System               

 
Figure 4. Agents benefiting from Market  

Opportunities 

              

Figures 3 and 4 show that the mode I policy scenario results in 49.07% fewer active agents and 

14.90% fewer exploited market opportunities than other scenarios. This suggests that policies 

focused on fostering R&D have a limited impact on the innovation performance of the APCs, whereas 

mode II and III policies yield more balanced outcomes. During resource-constrained periods, 

implementing mode II or III policies appears more effective for enhancing diffusion, association, 

appropriation for production, and marketing capabilities within the Avocado APC. 

The mode I policy scenario fails to adequately integrate exploratory agents such as research centres, 

universities, and technological hubs into the APC. This shortcoming reflects the APC's structural 

reliance on numerous small growers, limiting the appropriation and adaptation of new knowledge 

and technologies. As a result, the APC struggles to meet the demands of an increasingly competitive 

and dynamic market. 

 

Figure 5. Market capacity 

Figure 5 shows a greater accumulation of marketing capacity in the APC under the mode II policy 

scenario compared to the mode III scenario. Furthermore, the mode II scenario presents a lower 
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number of actors involved in innovation dynamics than modes III and IV. This feature shows a more 

significant appropriation and exploitation of market opportunities by fewer competing agents. Their 

knowledge base has allowed them to accumulate and thereby learn these capacities, developing 

processes that allow for the perception and satisfaction of market opportunities. This translates into 

greater profits that sustain the capacity costs and produce surpluses. Considering the foregoing, we 

can infer that it is important to opt for policies that are not only market-based but also policies that 

strengthen the connections between every link in the chain to improve innovative processes and thus 

allow for more efficient exploitation of the market opportunities and better economic performance. 

To conclude, the mode III STI policy scenario shows a lower proportional difference (9.61%) in the 

number of living agents compared to the combined mode policy scenario. This indicates that systemic 

policies help APCs stabilise, improving connections between actors, which allows them to satisfy 

demands in the competitive environment and its market opportunities, which has a greater impact 

on the different performance levels of the chain compared to STI policies modes I and II.  

Coffee APC 

Figure 6 indicates that the different policy scenarios have very similar behaviour in the APC´s surplus 

stock until year 15; however, modes I and II show superior performance from then on. Figure 5 

indicates a similar economic performance to that of year 15 for policy scenarios with significant 

differences; their performance can be observed in the APC’s surplus stock. It shows a growth curve 

where modes I and II show superior performance. Growth in economic performance contrasts with 

the number of living agents in the system (see Figure 7), indicating that such policies provide stability 

for some agents in the system but not for most of them. The agents benefited from the policy, 

considering their previous accumulation capability, and were able, thanks to greater connectivity, to 

respond better to market opportunities and exploit them.  

 
Figure 6. Surplus Stock Accumulation 

 
Figure 7. Survival Agents in the System 

 

 

              

Source: Prepared by authors Prepared by authors 
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Regarding market opportunities exploited, we observe a statistically significant difference between 

modes I and III (see Figure 8). Compared to earlier behaviour, this evidences the importance of STI 

policies involving a greater number of actors. Although mode I STI innovation mode (technology 

push) increased economic performance, which was reflected in a greater surplus stock (shown in 

Figure 5), this policy mode dismisses small producers and lower innovation capability actors, forcing 

them out of interactions and impeding access to the market opportunities that the APC’s competitive 

environment demands. 

 

Figure 8. Agents Benefiting from Market Opportunities 

The foregoing contrasts with the reality of the coffee APC in the region, as it involves insufficient 

agents with advanced capabilities. Most agents in the APC are engaged in grain production. They are 

not aiming towards giving their product added value or advancing and appropriating new 

technologies for their transformation and marketing. It is worth stressing that the exploitation of 

market opportunities does not imply that all agents in the system reach a specific market. This may 

be directly linked to the connection between agents in the APC. Small producers forge a marketing 

process when they sell their coffee grain, and then a dealer or buyer continues the transactional 

process until an existing market opportunity is met. 

 
Figure 9. Research capability           

 
Figure 10. Development capability 
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Figure 11. Diffusion capability 

 
Figure 12. Association capability 

 
Figure 13. Appropriation capability 

 
Figure 14. Market capacity 

 

As regards the differences between innovation capabilities, we observe that research (see Figure 9), 

development (Figure 10), diffusion (Figure 11), association (Figure 12), appropriation (Figure 13) 

and market innovation (Figure 14) capabilities showed similar behaviours, where mode I policy 

scenario presented statistically significant differences with the other scenarios. This STI innovation 

mode with a science approach reduced research and development capacity costs, fostering and 

strengthening only some agents with advanced capabilities. These pulled the average value for the 

whole system, which became reflected in a proportional increase of all capabilities in the scenario 

under evaluation.  

We must clarify something that could lead to erroneous interpretations. According to the average 

results of the system’s capabilities, we could assume that the mode I STI policy is the most successful 

in improving the system’s performance. Nevertheless, the number of competing agents that enter the 

innovation dynamics in this scenario amounts to less than a fifth compared to scenario III and six 

times less in scenario IV, both of which involve STI policies that facilitate knowledge and technology 

diffusion, as well as trust among agents to form the associations needed in the process of forming the 
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Figure 12) increased from its basic value to its average value, which shows evidence of a direct 

relationship between the value of such capability in the system and the economic and innovation 

performance of the chain. This is reflected in the increase in competitiveness that helps satisfy a 

greater number of market opportunities. Nevertheless, in mode I, only a few agents play a role in and 

benefit from the innovation dynamics. This, in turn, generates greater gaps in the APC, which already 

presents this imbalance. 

Mode II STI policy scenario (market pull) behaved similarly to mode I, showing fewer agents entering 

the innovation dynamics at the end of the simulation. Nevertheless, this scenario lacked a significant 

increase in the value of the capabilities compared with the mode I policy scenario. Research and 

development basic capacity is probably a factor that hinders the accumulation of capabilities in the 

coffee APC.  

Regarding policy scenarios III and IV, there was no evidence of a significant increase in innovation 

capabilities nor an increase of surplus stocks in the system. These scenarios, nevertheless, present a 

larger number of alive agents at the end of the simulation period, with a 496% increase in the number 

of agents (between modes III-IV policy scenarios), in comparison to mode I and II STI policy 

scenarios. The coffee APC in Antioquia comprises 79,000 actors, of which approximately 97% are 

small producers with basic innovation capabilities. Diffusion processes are required to bridge the gap 

between the actor’s innovation capabilities and market opportunities, allowing for their inclusion 

and permanence in a competitive environment. 

To conclude, given the different challenges the coffee sector faces, there is a need to formulate 

policies that aim to lessen the innovation capabilities gap between APC actors. Such policies should 

also consider the importance of this productive activity for Colombian rural development, which is 

realised through the economic and social impact on many agents, including small producers. For this 

reason, policies that do not consider different actors in the land could hurt their position in the 

competitive environment, creating a system that relegates some of the actors in the APC. For these 

reasons, mode III and IV policies, despite failing to show a better economic and innovation 

performance or a larger capacity for accumulation, allow for a larger number of participating actors 

in the innovation process, resulting in a system with a greater distribution of market opportunities. 

Furthermore, the (moderately fast) accumulation of innovation capabilities by a more significant 

number of agents in the APC helps close the gap and help a greater inclusion of actors in the 

innovation dynamics. This is fundamental for an APC of such high prominence in the region and the 

country. 

 

6. Implications for STI policy and conclusion 

The model underscores how each APC's unique circumstances, such as its agents' baseline 

innovation capacities, shape the effectiveness of STI policies, leading to outcomes that vary 

significantly across contexts. This variability reflects real-world scenarios where regions and 

countries often achieve divergent results despite implementing similar policies. 
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Crucially, the model demonstrates the importance of tailoring STI policies to the specific dynamics 

of the system under study. The results reveal that outcomes are not always intuitive, as illustrated 

by the divergent impacts observed across the different policy modes and APCs. The validation of 

the model using data from the coffee and avocado APCs in Antioquia, Colombia, confirms its 

ability to approximate real-world conditions, providing robust insights into the interaction between 

policy interventions and system dynamics. 

Notably, the systemic mode (Mode III) emerged as a key policy approach, fostering knowledge 

and technology diffusion, enhancing connectivity among agents, and narrowing capability gaps 

within the system. In contrast, its direct economic and innovation outcomes may not surpass other 

policy modes; its capacity to integrate more agents into the innovation dynamics positions it as an 

essential strategy for inclusive and sustainable development. By bridging disparities among agents 

and promoting widespread participation, Mode III exemplifies the potential of systemic policies 

to generate long-term benefits for innovation ecosystems. 

Building on the findings of this study, the following steps involve refining and extending the model 

to enhance its applicability and analytical depth. One immediate avenue for development is to 

incorporate additional sectors and regional contexts, allowing for a comparative analysis of STI 

policy impacts across diverse economic and institutional settings. This expansion will enable the 

model to capture the dynamics of innovation systems in varying levels of maturity and development, 

broadening its relevance for global policymaking. Furthermore, incorporating cross-sectoral linkages 

and international trade dynamics could offer deeper insights into how global value chains and 

transnational interactions influence local innovation systems. Another priority is improving the 

representation of learning and unlearning processes by adopting more sophisticated functions, such 

as S-curves, to better reflect real-world capability accumulation patterns. Future iterations of the 

model could also integrate dynamic policy adjustments, enabling the simulation of adaptive STI 

strategies that respond to evolving system conditions. Finally, collaboration with policymakers and 

stakeholders in live case studies could further validate the model and provide actionable 

recommendations, ensuring that its insights directly apply to real-world decision-making processes. 
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Annex 1. Mathematical Appendix: Formalization of the Adaptive Innovation Systems Model 

(AdaptISM) 

A1.1. Formal model 

This section provides a detailed explanation of the mathematics behind the Adaptive Innovation 

Systems Model (AdaptISM), the Agent-Based Model (ABM) we developed to delineate and analyse 

the dynamics of innovation systems under various Science, Technology, and Innovation (STI) policy 

scenarios. The model simulates interactions between agents (firms, universities, and intermediary 

organisations) and innovation opportunities (market and technological opportunities). Its purpose 

is to evaluate the effects of different policies on innovation performance, economic outcomes, and 

collaboration patterns within the system. 

Definitions and Variables 

a. Innovation System 𝒮:  A system defined 𝒮 = (𝒜, 𝒪, ℛ, 𝒫) where: 

o 𝒜: Set of agents. 

o 𝒪: Set of innovation opportunities. 

o ℛ: Set of rules governing agent behaviour. 

o 𝒫: Policy environment. 

b. Agents 𝒜: agents 𝑎𝑖 ∈ 𝒜 are heterogeneous and defined by the following attributes: 

• Location (𝑥𝑖): Agents are situated in a spatial or abstract 𝑑-dimensional space (ℝ𝑑). This 

location can represent geographic proximity or network relationships, influencing how 

agents interact with opportunities and other agents. 

• Capability Vector (𝑪𝑽𝒊): 

𝐶𝑉𝑖 = [𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,6], 𝑐𝑖,𝑗 ∈ [0,9] (1)  

 

 where each element corresponds to a specific innovation capability: Research (𝑐𝑖,1), 

Development (𝑐𝑖,2), Diffusion (𝑐𝑖,3), Association (𝑐𝑖,4), Appropriation for Production (𝑐𝑖,5), and 

Marketing Capacilities (𝑐𝑖,6). 

• Surplus stock: Each agent maintains a surplus (𝑆𝑖 ∈ ℛ), representing its available 

resources. Surplus evolves dynamically based on the agent's actions and interactions: 

𝑆𝑖(𝑡 + 1) = 𝑆𝑖(𝑡) + 𝛥𝑆𝑖(𝑡)    (2)  
 

Agents with insufficient surplus (𝑆𝑖(𝑡) < 0) exit the system. 

c. Innovation Opportunities 𝒪: Each opportunity 𝑜𝑘 ∈ 𝒪 is characterized by: 

• An attribute vector 𝐴𝑉𝑘 = [𝑎𝑘,1, 𝑎𝑘,2, … , 𝑎𝑘,6], 𝑎𝑘,𝑗 ∈ [0,9], where 𝑗 denotes an attribute 

(e.g., brand).  

𝐴𝑉𝑘 = [𝑎𝑘,1, 𝑎𝑘,2, … , 𝑎𝑘,6], 𝑎𝑘 , 𝑗 ∈ [0,9] (3)  
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• A volatility 𝜈𝑘, representing its lifespan in the system. Opportunities have a finite lifespan, 

modeled as volatility 

𝜈𝑘 ∼ 𝑈(𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) 
 

(4)   

• A lifecycle (𝐿𝑘(𝑡)) that governs the temporal distribution of benefits delivered to agents. 

These benefits follow a Gaussian diffusion curve, characteristic of innovation diffusion 

patterns, ensuring that the opportunity delivers most of its benefits during the peak 

period while tapering off before and after this peak. 

 

𝐿𝑘(𝑡) =
1

𝜍𝑘√2𝜋
𝑒

−
(𝑡−𝜔𝑘)2

2𝜍𝑘
2

 

 

(5)  

 

where: 𝜔𝑘 is the time at which the opportunity's benefit peaks. And 𝜍𝑘 is the standard 

deviation representing the spread of the lifecycle curve. 

 

When an opportunity is exploited, it distributes benefits to the agents (or coalitions) that 

fulfilled its attributes. The allocation is based on the Attribute Contribution (Benefits 

are proportional to the specific attribute fulfilled by the agent, weighted by the magnitude 

of the attribute and the associated capability involved) and the Lifecycle Influence 

(Benefits are distributed over the opportunity's lifecycle, following the Gaussian curve). 

 

• A benefit function 𝐵𝑘(𝑡), Distributed across attributes and calculated using a Gaussian 

function:  

𝐵𝑘(𝑡) = ∑ (𝑎𝑘,𝑗 ⋅  𝑖𝑛𝑐𝑜𝑚𝑒𝑗 ⋅  
1

𝜎𝑘√2𝜋
𝑒−

(𝑡−𝜇𝑘)2

2𝜎 )

6

𝑗=1

 

 

(6)  

where 𝑖𝑛𝑐𝑜𝑚𝑒𝑗 is the calibrated income per attribute. 

 

a. Policy Environment (𝒫): Policy modes 𝑃𝑚 ∈ 𝒫  modifies agent behaviour and opportunity 

dynamics through: 

• Capability Adjustment Rates (𝜶𝒋, 𝜷𝒋): Policies influence how quickly agents learn (𝛼𝑗) 

or unlearn (𝛽𝑗) capabilities. 

• Opportunity Generation Rates (𝑝𝑀𝑂, 𝑝𝑇𝑂): Policies affect the probabilities of 

generating market (𝑀𝑂) and technological opportunities (𝑇𝑂):  𝑝𝑀𝑂 ∼ 𝜆𝑘
𝑀𝑂, 𝑝𝑇𝑂 ∼ 𝜆𝑘

𝑇𝑂 

• Capability Maintenance Costs (𝑪𝒋): Policies affect costs based on the emphasized 

capabilities: 

o Mode I: Prioritizes research and development capabilities. 𝛼𝑅,𝐷 =

ℎ𝑖𝑔ℎ, 𝛼𝑀,𝐴,𝐷,𝐴 = 𝑙𝑜𝑤 
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o Mode II: Enhances marketing and production capabilities. 𝛼𝑀,𝑃 = ℎ𝑖𝑔ℎ, 𝛼𝑅,𝐷,𝐴 =

𝑙𝑜𝑤 

o Mode III: Encourages diffusion and collaboration. 𝛼𝐷,𝐴 = ℎ𝑖𝑔ℎ, 𝛼𝑅,𝑀,𝑃 =

𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 

o Mode IV (Combined): A weighted combination of all policies. 

Dynamics of the System 

a. Innovation Opportunity Generation: Opportunities appear probabilistically at each 

timestep. The policy environment influences market and technological opportunities. 

Opportunities 𝑜𝑘 appear at time 𝑡 with probabilities: 

o Market Opportunities (MO): Triggered by market demand, activating agents from 

exploitation to exploration (right to left in 𝐶𝑉𝑖).  

𝑝𝑀𝑂 = 𝑓(𝑃𝑚, 𝑡) = 𝑓(𝑀𝑝𝑜𝑙𝑖𝑐𝑦 , 𝐷𝑒𝑚𝑎𝑛𝑑) 

 

(7)  

 

o Technological Opportunities (TO): Generated by agents with advanced research 

capabilities, activating agents from exploration to exploitation (left to right in 𝐶𝑉𝑖). 

Geographically, TOs emerge at the location of the generating agent—typically one 

with high research capabilities. This spatial linkage underscores the localized nature 

of technological innovation. 

𝑝𝑇𝑂 = 𝑔(𝑃𝑚, 𝑡) = 𝑔(𝑇𝑝𝑜𝑙𝑖𝑐𝑦 , 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅,𝐷) (8)  

 

Functions 𝑓 and 𝑔 depend on the policy environment. 

b. Capability Matching:  Agents match their capabilities (𝐶𝑉𝑖) with opportunity attributes 

(𝐴𝑉𝑘): 

𝑀(𝑎𝑖 , 𝑜𝑘) = ∏ 𝕀(𝑐𝑖,𝑗 ≥ 𝑎𝑘,𝑗)

6

𝑗=1

 

 

(9)  

where 𝕀 is an indicator function. If no single agent can match, a coalition (𝐶) is formed 

based on proximity and complementary capabilities to pool capabilities: If 𝑀(𝑎𝑖 , 𝑜𝑘) =

0, agents form a coalition 𝐶 such that: 

𝐶𝑉𝐶 = ∑ 𝐶𝑉𝑛

𝑎𝑛∈𝐶

, 𝑤𝑖𝑡ℎ ∣ 𝐶 ∣≤ 6 

 

(10)  

 

and: 

∑ 𝑐𝑛,𝑗

𝑎𝑛∈𝐶

≥ 𝑎𝑘,𝑗, ∀𝑗 (11)  
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c. Capability Evolution: Capabilities 𝑐𝑖,𝑗 evolve based on linkage, exploitation, learning and 

unlearning. Agents’ capabilities evolve based on learning by doing: 

𝑐𝑖,𝑗(𝑡 + 1) = {
𝑐𝑖,𝑗(𝑡) + 𝛼𝑗 ⋅ 𝑓𝑙𝑒𝑎𝑟𝑛(𝑡) − 𝛽𝑗 ⋅ 𝕀𝑢𝑛𝑢𝑠𝑒𝑑(𝑗), 𝑖𝑓 𝑆𝑖(𝑡) > 0

0,                                                                      𝑖𝑓 𝑆𝑖(𝑡) ≤ 0
 

 
 

(12)  

where: 

𝑓𝑙𝑒𝑎𝑟𝑛(𝑡) =
1

1 + 𝑒−𝑘(𝑡−𝜏)
 

 
 

(13)  

And 

𝕀𝑢𝑛𝑢𝑠𝑒𝑑(𝑗) = {
1, 𝑖𝑓 𝑐𝑖,𝑗  𝑤𝑎𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑

0,                 𝑖𝑓 𝑐𝑖,𝑗 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑.
 

 
 

(14)  

where 𝑓𝑙𝑒𝑎𝑟𝑛(𝑡) and 𝕀𝑢𝑛𝑢𝑠𝑒𝑑(𝑗), are indicator functions, and 𝛼, 𝛽 are learning/unlearning rates. 

 

d. Surplus Dynamics: Surplus stock 𝑆𝑖 is updated based on benefits from exploited 

opportunities, minus maintenance and transaction costs:  

𝑆𝑖(𝑡 + 1) = 𝑆𝑖(𝑡)

+ ∑[𝐵𝑘(𝑡) ⋅ 𝕀𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑(𝑜𝑘) − 𝐶𝑜𝑠𝑡𝑐𝑎𝑝(𝑎𝑖)

𝑜𝑘

− 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠(𝐶)] 

 
 

(15)  

• Capability Maintenance Costs:  

𝐶𝑜𝑠𝑡𝑐𝑎𝑝(𝑎𝑖) = ∑ 𝛾𝑗 ⋅ 𝑐𝑖,𝑗(𝑡) 

6

𝑗=1

 

 

(16)  

• Transaction Costs (Based on coalition structure):  

𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠(𝐶) =
𝜅

|𝐶|
 

 

(17)  

e. Agent Survival: Agents with negative surplus (𝑆𝑖(𝑡) < 0) exit the system: 

𝒜(𝑡 + 1) = 𝒜(𝑡) \ {𝑎𝑖  ∣ 𝑆𝑖(𝑡) < 0} 
 

(18)  

f. New Agent Entry: New agents 𝑎𝑛 enter the system with stochastically assigned 𝐶𝑉𝑛: 

𝐶𝑉𝑛 ∼ 𝒩(𝜏𝐶𝑉 , 𝜉𝐶𝑉) 
 

(19)  
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where 𝜏𝐶𝑉 and 𝜉𝐶𝑉 are derived from empirical calibration according to the entrepreneurial dynamics 

of the context under study. The entry process can be fully random, with location and capability 

magnitudes determined arbitrarily, or stochastic, shaped by the composition of the simulated 

environment. A hybrid approach is also viable, where attributes are randomly generated within 

predefined ranges. 

 

1) Performance Metrics 

a. Innovation Performance (𝐼): 

𝐼 =
1

|𝒜|
 ∑ ∑ 𝑐𝑖,𝑗

6

𝑗=1𝑎𝑖∈𝒜

 

 

(20)  

Innovation performance is measured as the number of innovation opportunities exploited, which 

requires the capabilities of the participating agents or coalitions to fulfill all attributes of the 

opportunity. 

b. Economic Performance (𝐸): 

𝐸 = ∑ 𝑆𝑖(𝑡)

𝑎𝑖∈𝒜

 

 

(21)  

c. Survival Rate (𝜂): 

𝜂 =
|𝒜𝑎𝑙𝑖𝑣𝑒(𝑡)|

|𝒜(𝑡)|
 

 

(22)  

 

d. Collaboration Intensity (𝝓): 

𝜙 =
∑ ∣ 𝐶 ∣𝐶∈𝒞

𝒜
 

 

(23)  

 

2) Policy Dynamics 

Policies influence: 

i. Learning and unlearning rates (𝛼𝑗, 𝛽𝑗). 

ii. Opportunity generation rates (𝑝𝑀𝑂 , 𝑝𝑇𝑂). 

iii. Collaboration incentives (𝜅). 

iv. Capability Maintenance Costs (𝐶𝑜𝑠𝑡𝑐𝑎𝑝(𝑎𝑖)) 

Simulation and Analysis 

• Simulate 𝒮 over 𝑇 periods for each policy scenario. 
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• Compare metrics 𝐼, 𝐸, 𝜂 across scenarios to determine optimal policy interventions. 
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A1.2. Agent Typologies and Capability Classification in AISM 

Capability Vector (CV) Classification 

Criteria 

Agent Type Description Transaction Cost 

High 𝑐𝑖,1 (Research) and 𝑐𝑖,2 

(Development) 

𝑐𝑖,1, 𝑐𝑖,2 ≥ 4.5, 

𝑅𝑒𝑠𝑡 < 4.5 

Explorer Focused on exploration 

activities, such as 

research and 

development. 

Low when paired with 
another Explorer or 

Diffuser or Gatekeeper; 
High when paired with a 
Latecomer or Exploiter; 

Medium with 
Introductor and 

Integrated 
High 𝑐𝑖,3 (Diffusion) and 𝑐𝑖,4 

(Association) 

𝑐𝑖,3, 𝑐𝑖,4 ≥ 4.5, 

𝑅𝑒𝑠𝑡 < 4.5 

Diffuser Specializes in connecting 

and disseminating 

knowledge and 

technologies. 

Low when paired with 
another Diffuser, 

Explorer, Exploiter, 
Gatekeeper, Integrated, 

Ambidextrous, or 
Introductor; Medium 

with Latecomer. 
High 𝑐𝑖,5 (Appropriation) and 𝑐𝑖,6 

(Marketing) 

𝑐𝑖,5, 𝑐𝑖,6 ≥ 4.5, 

𝑅𝑒𝑠𝑡 < 4.5 

Exploiter Focused on exploiting 

existing knowledge, 

production, and market 

outreach. 

Low with Intermediary 
or Introductor; High 

with Latecomer. 

High 𝑐𝑖,3 (Diffusion) and 𝑐𝑖,5 
(Exploitation) 

𝑐𝑖,3, 𝑐𝑖,4

≥ 4.5, 𝑐𝑖,5, 𝑐𝑖,6

≥ 4.5, 𝑅𝑒𝑠𝑡 < 4.5 

Introductor Combines strong 
intermediation and 

exploitation capabilities 
to integrate Research 
results into practical 

applications. 

Low when paired with 
Diffuser or another 

Introductor or Exploiter; 
medium with Explorer 

or Gatekeeper or 
Integrated or 

Ambidextrous; high with 
Latecomer. 

High 𝑐𝑖,1 (Research) and/or 𝑐𝑖,2 ≥ 
(Development), and high  𝑐𝑖,3 

(Diffusion) and/or 𝑐𝑖,4  
(Association) 

𝑐𝑖,1, 𝑐𝑖,2

≥ 4.5, 𝑐𝑖,3, 𝑐𝑖,4

≥ 4.5, 𝑅𝑒𝑠𝑡 < 4.5 

Gatekeeper Facilitates collaboration 
and technology foresight 
between agents but lacks 

strong exploitation 
capabilities. 

Low with Explorer or 
Diffuser or another 

Gatekeeper; Medium 
with Ambidextrous or 

introductor or 
Integrated or Exploited 

agents; High with 
Latecomer. 

High 𝑐𝑖,1 (Research) and/or 𝑐𝑖,2 ≥ 

(Development), and high 𝑐𝑖,5 

(Appropriation) and/or 𝑐𝑖,6 

(Marketing) 

𝑐𝑖,1, 𝑐𝑖,2

≥ 4.5, 𝑐𝑖,5, 𝑐𝑖,6

≥ 4.5, 𝑟𝑒𝑠𝑡 < 4.5 

Ambidextrous 

Agent 

Balances exploration and 

exploitation but lacks 

strong intermediation. 

Low with another 
Ambidextrous or 

Diffuser or Integrated; 
Medium with Explorer 

or Exploiter or 
Introductor or 

Gatekeeper agents; High 
with Latecomer. 

High 𝑐𝑖,1 (Research) and/or 𝑐𝑖,2 
(Development), 𝑐𝑖,3 (Diffusion) 

and/or 𝑐𝑖,4 (Association), 𝑐𝑖,5 
(Appropriation) and/or 𝑐𝑖,6 

(Marketing) 

𝑐𝑖,1, 𝑐𝑖,2

≥ 4.5, 𝑐𝑖,3, 𝑐𝑖,4

≥ 4.5, 𝑐𝑖,5, 𝑐𝑖,6

≥ 4.5 

Integrated 
Agent 

Combines exploration, 
diffusion, and 

exploitation functions 
effectively. 

Low when paired with 
another Integrated 
agent; High with a 

Latecomer. 

Low 𝑐𝑖,𝑗 across all dimensions 𝑐𝑖,𝑗 < 4.5 for all  𝑗 Latecomer Lacks specialized 
capabilities, representing 

latecomers or nascent 
entities. 

High with most agent 
types except Medium 

with Diffuser, as limited 
capacities increase 
transaction costs. 
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A1.3. Timeline of Events 

(1) Start Simulation: Initialize the model with parameters and prepare for the first timestep. 

(2) Initialize Simulation Parameters: Randomly assign Agents (Capability vectors, surplus, and 

locations) and Opportunities (Attribute vectors, locations, volatility, product lifecycle and 

benefits) 

• Set the total number of timesteps 𝑇. 

• Define policy parameters: Learning rates 𝛼𝑗 ; Unlearning rates 𝛽𝑗. Maintenance cost 

coefficients 𝛾𝑗  . 

• Transaction cost coefficient 𝜅, which depend on agent typologies in coalitions. 

• Initialize performance metrics. 

(3)  Initialize Agents: 

• Create a set of agents 𝒜. 

• For each agent 𝑎𝑖:  

o Assign location 𝑥𝑖. 

o Initialize capability vector 𝐶𝑉𝑖 = [𝑐𝑖, 1, 𝑐𝑖, 2, . . . , 𝑐𝑖, 6] 

o Set initial surplus 𝑆𝑖. 

(4)  Initialize Innovation Opportunities 

• Create an initial set of opportunities 𝒪. 

• For each opportunity 𝑜𝑘: 

o Assign attribute vector 𝐴𝑉𝑘 = [𝑎𝑘,1, 𝑎𝑘,2, . . . , 𝑎𝑘,6]. 

o Set volatility 𝜈𝑘. 

o Set Lifecycle 𝐿𝑘(𝑡). 

o Define the benefit function 𝐵𝑘(𝑡) for each attribute. 

(5) Loop Over Timesteps (𝑡 = 1 to 𝑇): Iterate through a defined number of timesteps. 

a. Generate New Opportunities –  

Differentiate between Market Opportunities (MO) and Technological Opportunities 

(TO): 

• Market Opportunities (MO): 

o Driven by market needs (demand-pull). 

o Activation follows a market pull mechanism, completing attributes right-

to-left (exploitation to exploration). 

• Technological Opportunities (TO): 
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o Generated by agents with high research capabilities (supply-driven). 

o The Research attribute equals the generating agent's capability, while 

other attributes are randomly assigned. 

o Activation follows a technology push mechanism, completing attributes 

left-to-right (exploration to exploitation). 

• Localization in Opportunity Generation: 

o Local proximity plays a significant role in link generation and coalition 

formation, acknowledging regional innovation systems literature. 

b. Evaluate Existing Opportunities - For each opportunity 𝑜𝑘 in 𝒪: - Check 

Opportunity Lifespan - If 𝜈𝑘 ≤ 0, remove 𝑜𝑘 from 𝒪. - Else, decrement 𝜈𝑘 by 1. - 

Calculate Current Benefit - Compute 𝐵𝑘(𝑡)  for each fulfilled attribute 𝑗, reflecting 

its magnitude and the agent's contribution. 

c. Agent-Opportunity Matching - For each agent 𝑎𝑖  in 𝒜: - Capability Matching: 

• Agents assess their proximity to opportunities and compare capabilities 

to attributes. 

• Matching proceeds sequentially based on MO or TO dynamics (right-to-

left for MO, left-to-right for TO). 

• If the agent's capabilities meet or exceed the attribute requirements, the 

agent engages directly. 

• Otherwise, proceed to coalition formation. 

d. Coalition Formation - Form Potential Coalitions - Identify groups of agents whose 

combined capabilities meet 𝐴𝑉𝑘. Consider proximity and complementary capabilities. 

Limit coalition size to a maximum of 6 agents. - Evaluate Coalitions - For each potential 

coalition 𝐶: - Check if ∑𝑎𝑛 ∈ 𝐶 𝑐𝑛,𝑗 ≥ 𝑎𝑘,𝑗 for all 𝑗. - If true, coalition can exploit 𝑜𝑘. 

e. Exploit Opportunities - Distribute Benefits: 

• Benefits are allocated based on attribute contributions: 

o Agents contributing more to fulfilling a specific attribute 𝑗 receive a 

larger share of 𝐵𝑘,𝑗(𝑡). 

• Benefit distribution reflects attribute magnitudes and the agent's role. 

- Deduct Costs - Capability Maintenance Costs - For each agent 𝑎𝑖: 𝐶𝑜𝑠𝑡𝑐𝑎𝑝(𝑎𝑖) =

∑ 𝛾𝑗 ⋅ 𝑐𝑖,𝑗(𝑡)6
𝑗=1  

- Transaction Costs - For each coalition 𝐶: 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠 (𝐶)  =
|𝐶|

𝜅
.- Shared among coalition 

members based on their link-specific costs. - Update Surplus - For each agent 𝑎𝑖: 𝑆𝑖(𝑡 +

1)  =  𝑆𝑖(𝑡)  +  𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖  −  𝐶𝑜𝑠𝑡𝑐𝑎𝑝(𝑎𝑖) − 𝐶𝑜𝑠𝑡𝑡𝑟𝑎𝑛𝑠(𝑎𝑖). - Update Capabilities - 

Learning (Used Capabilities) - Increase capabilities used in exploiting opportunities: 

𝑐𝑖,𝑗(𝑡 + 1) = 𝑐𝑖,𝑗(𝑡) + 𝛼𝑗 ⋅ 𝑓𝑙𝑒𝑎𝑟𝑛(𝑡), where 𝑓𝑙𝑒𝑎𝑟𝑛(𝑡) is the learning function. - Unlearning 
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(Unused Capabilities) - Decrease capabilities not used: 𝑐𝑖,𝑗(𝑡 + 1) = 𝑐𝑖,𝑗(𝑡) − 𝛽𝑗 ⋅

𝕀𝑢𝑛𝑢𝑠𝑒𝑑(𝑗). 

f. Agent Exit and Entry - Agent Survival Check - If 𝑆𝑖(𝑡 + 1)  <  0, agent 𝑎𝑖  exits the 

system. - Introduce New Agents - With a certain probability, new agents enter the 

system with initial capabilities and surplus. 

g. Update Performance Metrics - Innovation Performance, Economic Performance, 

Survival Rate and Collaboration Intensity. 

(6) End of Simulation 

(7) Analyse Results: Compare performance metrics across different policy scenarios and 

interpret how policies impacted innovation capabilities, economic outcomes, and 

collaboration. 
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A1.4. Variables of the AdaptISM model and Descriptions 

Symbol Name Meaning 
𝒮 Innovation System The set of agents, opportunities, rules, and policies 

defining the system. 
𝒜 Set of Agents The collection of all agents (firms, universities, 

intermediaries, etc.). 
𝒪 Set of Opportunities The collection of market and technological opportunities. 
ℛ Rules Behavioral rules governing how agents interact and 

evolve. 
𝒫 Policy Environment External factors (policies) influencing the system's 

dynamics. 
𝑎𝑖  Individual Agent A single agent within the system, characterized by its 

capabilities. 
𝑜𝑘 Individual Opportunity A single innovation opportunity within the system. 
𝑥𝑖 Location of Agent The spatial or abstract location of agent 𝑎𝑖 . 
𝑥𝑘 Location of Opportunity The spatial or abstract location of opportunity 𝑜𝑘. 
𝐶𝑉𝑖 Capability Vector A 6-dimensional vector representing the capabilities of 

agent aia_iai. 
𝑐𝑖,𝑗 Individual Capability The jjj-th capability of agent aia_iai, where 𝑗 ∈ {1, . . . ,6} 

𝐴𝑉𝑘 Attribute Vector A 6-dimensional vector defining the requirements of 
opportunity 𝑜𝑘. 

𝑎𝑘,𝑗 Individual Attribute The 𝑗-th attribute of opportunity 𝑜𝑘, where 𝑗 ∈ {1, . . . ,6} 

𝑆𝑖 Surplus Stock The economic resources available to agent 𝑎𝑖 . 
𝜈𝑘 Volatility The lifespan of opportunity 𝑜𝑘. 
𝜆𝑘 Opportunity Generation 

Rates 
Probability of generating market (MO) or technological 
(TO) opportunities. 

𝐿𝑘(𝑡) Lifecycle Temporal distribution of benefits for opportunity 𝑜𝑘, 
typically Gaussian in form 

𝜔𝑘 Peak Benefit Lifecycle 
Time 

Time at which the lifecycle benefit peaks. 

𝜍𝑘 Standard Deviation of 
Lifecycle Benefit 

Standard deviation representing the spread of the 
lifecycle curve 

𝐵𝑘(𝑡) Benefit Function The time-dependent benefit of exploiting opportunity 𝑜𝑘. 
𝜇𝑘 Peak Benefit Time The timestep when the benefit of 𝑜𝑘 is maximized. 
𝜎𝑘 Standard Deviation of 

Benefit 
Controls the spread of the benefit function for 𝑜𝑘. 

𝛼𝑗 Learning Rate Rate at which agents improve capability 𝑗. 

𝛽𝑗 Unlearning Rate Rate at which unused capabilities decay. 

𝛾𝑗  Maintenance Cost 
Coefficient 

Cost to maintain one unit of capability 𝑗. 

𝜅 Transaction Cost 
Coefficient 

Cost associated with forming and maintaining coalitions. 

𝑝𝑀𝑂 Market Opportunity 
Probability 

Probability of generating a new market opportunity. 

𝑝𝑇𝑂 Technological 
Opportunity Probability 

Probability of generating a new technological 
opportunity. 
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𝕀 Indicator Function Evaluates whether a condition is met (1 if true, 0 
otherwise). 

𝑀(𝑎𝑖 , 𝑜𝑘) Matching Function Determines if agent 𝑎𝑖  can exploit opportunity 𝑜𝑘. 
𝐶 Coalition of Agents A group of agents pooling their capabilities to exploit an 

opportunity. 
𝒞 Set of Coalitions The collection of all coalitions formed in the system. 

𝑓𝑙𝑒𝑎𝑟𝑛(𝑡) Learning Function A sigmoid function defining how quickly agents learn 
from experience. 

𝐼(𝑡) Innovation Performance Percentage of innovation opportunities exploited. 
𝐸(𝑡) Economic Performance Total surplus of all agents at time 𝑡. 
𝜂(𝑡) Survival Rate Proportion of agents that remain in the system at time 𝑡. 
𝜙(𝑡) Collaboration Intensity Average size of coalitions relative to the number of 

agents. 
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Annex 2. Calibrating the AdaptISM Model: Insights from Antioquia's Agricultural Production 

Chains 

The calibration of the model was grounded in empirical data and qualitative insights gathered 

through interviews with stakeholders in the Antioquia agricultural production chains (APCs), 

including farmers, cooperative managers, R&D professionals, and policymakers. These data informed 

the characterisation of agents, represented by six-dimensional capability vectors normalised to 

reflect observed capacities, as well as the distribution and complexity of technological opportunities. 

The spatial configuration of agents and opportunities was aligned with the geographically dispersed 

and heterogeneous innovation landscape described by stakeholders. Interview data were also 

instrumental in defining the dynamics of the system, such as opportunity emergence rates, learning 

and unlearning processes, and transaction costs, ensuring consistency with the reported behaviours 

and interactions within the APCs. For example, the coffee APC’s high barriers to entry and limited 

R&D capacity led to slower entry rates and fewer opportunities, while the avocado APC, characterised 

by stronger exploratory agents and emerging market demand, displayed more frequent entry and 

higher innovation capacity. These calibrations allowed the model to reflect the structural and 

behavioural diversity inherent in the Antioquia APCs. 

Systems initial conditions:  

Table A2.1 shows the initial parameters used to calibrate and validate the model for each APC. 

Table A2.1. Coffee and Avocado APC parametrisation 

Parameter 
APC 

Coffee 

APC 

Avocado 
Technical Note 

Initial n.  of market 

opportunities 
100 100 

Interview results for both APCs were 

normalised for scenario comparability. 

Initial no. of firms 100 100 
Both markets show a high global demand for 

innovations. 

Market 

opportunity 

appearance rate 

15% 20% 
Both markets exhibit dynamic opportunities, 

especially in the avocado market. 

Entrepreneurial 

rate 
2% 8% 

The avocado APC shows greater entrepreneurial 

activity due to market growth and pricing. 

Learning factor 0.4 0.3 
Coffee APC agents require higher learning rates 

due to intense competition. 

Unlearning factor 0.1 0.4 
Tradition in Antioquia APCs slows unlearning by 

adhering to established routines. 

Market 

opportunities 

learning factor 

0.4 0.5 
Avocado properties drive market learning and 

increase demand. 

Random volatility Yes Yes 
Both markets are highly volatile due to high 

innovation intensity. 

Initial surplus 

stock 
800 3000 

The avocado APC requires more significant 

initial investment for market entry. 

Life-cycle time 10 10 
Both APCs are dynamic in terms of new product 

offerings and demand. 
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Maximum 

volatility 
5 5 

Given the existence of an extensive range 

worldwide, volatility is accelerated. 

Low transaction 

cost 
0.1 1 

Given its traditional component, trust in the 

coffee APC is higher. 

Medium 

transaction cost 
0.5 1.25 

Given its traditional component, trust in the 

coffee APC is higher. 

High transaction 
cost 

1 1.5 
Given its traditional component, trust in the 
coffee APC is higher. 

Income per 

attribute 

10 (per 

unit) 

10 (per 

unit) 

Innovation is profitable in both APCs but less so 

for coffee commodities. 

Capability 

Maintenance cost 

1 (per 

unit) 

1 (per 

unit) 

Public STI policies are similar in both APCs but 

mostly generic. 

Technological 

opportunity 

generation 

threshold 

4.5 7 
Speciality coffee behaviours highlight the 

stronger impact of STI policies in the coffee APC. 

 

Table A2.2 shows the average results after a series of simulations with the model parameters set as 

described. 

Table A2.2. Average innovation capability for each APC over time obtained through the simulation 

model 

 APC Coffee APC Avocado 

Average Innovation Capacity 2008 2013 2018 2008 2013 2018 

Research 0.15 0.20 0.22 1.47 1.35 1.20 

Development 0.16 0.21 0.22 1.31 1.32 1.17 

Diffusion 0.99 1.07 1.12 2.91 2.97 2.80 

Association 1.31 1.41 1.50 3.69 3.89 3.64 

Appropriation 0.99 1.14 1.40 2.62 2.73 2.54 

Marketing 0.19 0.32 0.48 1.87 2.05 1.90 

The comparison between the simulation model and the real system is shown in Table 5. 

Table A2.3. Difference between capabilities in the real system and the model in absolute terms 

 APC Coffee APC Avocado 

Average Innovation Capacity 2008 2013 2018 2008 2013 2018 

Research 0.00 0.04 0.03 0.00 0.21 0.34 

Development 0.00 0.06 0.06 0.00 0.32 0.38 
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Diffusion 0.01 0.01 0.07 0.00 0.11 0.00 

Association 0.00 0.00 0.08 0.00 0.58 0.60 

Appropriation 0.00 0.05 0.12 0.00 0.36 0.14 

Marketing 0.00 0.06 0.06 0.00 0.00 0.31 

 

The analysis demonstrates that the model accurately replicates the real behaviour of the APCs, 

particularly the coffee APC, where the largest deviation from the real value occurs in the 

appropriation capability, with an error of only 1.33%. As a newer and more emergent system, the 

avocado APC presents greater challenges for precise representation. Even so, the results are highly 

satisfactory, with the association capability showing the largest deviation at 6.67%, while deviations 

for other capabilities are approximately half this value. 

Based on these findings, we conclude that the model has been successfully validated. This validation 

allows us to proceed to the next phase, conducting experiments to gain deeper insights into the 

effects of STI policies on innovation systems, specifically in the coffee and avocado APCs considered 

innovation systems. 

 


