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Abstract: The rising demand for housing continues to outpace traditional construction
processes, highlighting the need for innovative, efficient, and sustainable delivery models.
Off-site construction (OSC) has emerged as a promising alternative, offering faster project
timelines and enhanced cost management. However, current research on cost models
for OSC, particularly in automating material take-offs and optimising cost performance,
remains limited. This study addresses this gap by proposing a new cost model integrating
Digital Twin (DT) technology and AI-driven decision models for modular housing in the
UK. The research explores the role of DTs in enhancing cost estimation and decision-making
processes. By leveraging DTs and AI, the proposed model evaluates the impact of emergent
technologies on cost performance, material efficiency, and sustainability across social, envi-
ronmental, and economic dimensions. As proposed, this integrated approach enables a cost
model tailored for OSC systems, providing a data-driven foundation for cost optimisation
and material take-offs. The study’s findings highlight the potential of combining DTs
and AI decision models to enhance cost modelling in modular construction, offering new
capabilities to support sustainable and performance-driven housing delivery. The paper in-
troduces a dynamic, data-driven cost model integrating real-time data acquisition through
DTs and AI-powered predictive analytics. This dynamic approach enhances cost accuracy,
reduces lifecycle cost variability, and supports adaptive decision-making throughout the
OSC project lifecycle.

Keywords: utility theory; artificial intelligence; cost modelling; digital twins offsite construction

1. Introduction
The demand for housing that delivers exceptional performance from design to lifecycle

continues to grow [1–3], with stakeholders emphasising the need for speed, cost-efficiency,
and adaptability [4]. Housing delivery must balance these demands while meeting lifecycle
cost expectations [5], making cost performance—during initial construction and throughout
a building’s lifecycle—a critical focus. Off-site construction (OSC), particularly modular-
isation, has emerged as a promising solution to these challenges, addressing cost, time
efficiency, and adaptability issues [6,7].

Modularisation leverages standardisation and repeatability to streamline construction
processes and support efficient, cost-effective delivery [6,8]. However, achieving this
efficiency often conflicts with the growing demand for individualised spaces, challenging
developers to balance customisation with the benefits of modular design [9]. Moreover,
the reliance on traditional costing processes, such as manual material take-offs, adds
inefficiencies that hinder the potential of OSC systems [10].
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To address these challenges, new methods are needed to enable cost-focused hous-
ing delivery while maintaining flexibility and adaptability [11,12]. Modularisation offers
significant potential in processes and product development [8,13]. Process modularisation
decouples activities in time, enabling more efficient scheduling and placing and distribut-
ing tasks across multiple locations for optimised workflows [14]. Product modularisation,
conversely, decouples components within a system, facilitating interchangeability, up-
grades, and adaptability in designs [15]. Product modularity enhances cost and process
optimisation opportunities by reducing interdependencies among on-site processes [14,15].

Therefore, the interplay between product and process modularity creates a foundation
for cost-efficient construction systems. Automated cost analysis and material take-offs are
particularly crucial in modular systems, providing the flexibility to accommodate project
performance variations while optimising lifecycle cost performance [16]. When integrated
with emerging technologies, modular or unit-based costing systems can meet the increasing
performance expectations of housing throughout its lifecycle [17].

This paper focuses on advancing cost modelling in OSC by integrating DTs and
AI decision models. These technologies present enabling opportunities for enhanced
cost analysis, providing real-time insights into material use, process optimisation, and
lifecycle performance.

Current Challenges

Current approaches to modularisation in off-site construction rely heavily on stan-
dardisation, which often conflicts with the growing demand for bespoke designs that
cater to individual user preferences [18]. This creates a trade-off where repetitive, stan-
dardised units optimise cost and efficiency but limit design flexibility and personalisation,
challenging the balance between affordability and individuality [19].

To address this tension, modularisation must evolve to support more adaptable and
flexible systems. A potential solution lies in decomposing designs into modular units of
interchangeable components. These modular components would maintain compatibility
through standardised interfaces, allowing for independent replacement, upgrades, and
customisation without disrupting the overall system [20]. This approach supports lifecycle
cost optimisation by enabling more efficient off-site preassembly and streamlining cost
analyses and material take-offs.

In traditional OSC systems, cost analyses and material take-offs often remain cum-
bersome and inefficient, particularly for complex projects with numerous interdependent
components and interfaces [16]. The reliance on bespoke designs results in thousands of
interconnected yet distinct components, complicating cost estimations and increasing the
risk of cost overruns [21]. Furthermore, it is arguable that manual decomposition of prod-
ucts and processes leads to suboptimal workflows that scale poorly with increasing project
complexity, creating challenges for adaptability, future upgrades, and lifecycle management.

The proposed integration of DTs and AI decision models addresses these challenges by
introducing automated and adaptive cost-modelling frameworks [22,23]. DTs provide real-
time data on component behaviour, process optimisation, and lifecycle performance [22],
while AI enhances the ability to analyse and predict cost impacts across multiple project
variables [23]. Together, these technologies can enable the development of modular, unit-
based costing models that streamline cost estimation and material take-offs.

This approach resolves inefficiencies in traditional systems by simplifying component
interfaces, enabling automated cost analyses, and facilitating adaptability for future modifi-
cations [24]. The research, therefore, aims to address the following research objectives:

1. To develop a modular cost analysis model that integrates DTs for real-time monitoring
and lifecycle cost optimisation.
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2. To leverage AI decision models for automating material take-offs and enhancing cost
prediction accuracy.

3. To evaluate the proposed framework through UK modular housing case studies and
demonstrate its potential to address inefficiencies while supporting adaptability and
sustainability in OSC systems.

Through integrating these advanced technologies, this research proposes a framework
that optimises cost performance and meets the increasing demands for customisation and
lifecycle efficiency in off-site construction, ultimately paving the way for sustainable and
adaptive housing delivery.

2. Literature Review
2.1. Modular Housing Systems

Research such as Xue, Zhang, Su, Wu, and Yang [10] continues to highlight the increas-
ing attraction of OSC methodologies as a modern approach that addresses time efficiency,
cost management, and sustainability challenges. By shifting a substantial portion of con-
struction activities to controlled factory environments, OSC minimises on-site complexities,
enhances quality control, and reduces construction timelines as Blackenfelt [15] and Hus-
sein et al. [25] separately highlighted. Among the various OSC methods, modular construc-
tion has emerged as a key strategy, emphasising the design and fabrication of standardised
units or modules assembled on-site to create complete structures [6,18,20]. This approach
offers several advantages, including scalability, adaptability, and cost savings [6,13].

2.1.1. Cost Modelling in OSC and Modular Construction

Cost modelling is a critical aspect of OSC, as it underpins decision-making processes
related to budgeting, resource allocation, and project planning [10]. Unlike traditional
construction, which often relies on bespoke designs and on-site labour-intensive pro-
cesses, modular construction seeks to streamline cost estimation through standardised
processes and repeatable components, according to authors such as Bayliss and Bergin [17],
Hsu et al. [26], and Hussein and Zayed [6]. However, this standardisation introduces
unique cost modelling challenges, as highlighted in studies such as Mao et al. [27], includ-
ing the following:

1. Complex Interfaces: Modular construction involves numerous interfaces between
components, increasing the complexity of cost estimation and lifecycle analysis that
ultimately hinders its broader appeal, as argued in Pan et al. [28].

2. Customisation vs. Standardisation: The balance between customisation for user
preferences and the cost-efficiency of standardised modules complicates the cost
modelling process [29].

3. Lifecycle Considerations: Cost models ought to consider not only initial construc-
tion costs but also lifecycle costs, including maintenance, upgrades, and eventual
decommissioning [30,31].

Traditional cost modelling approaches, which rely on manual calculations and static
assumptions, struggle to keep pace with OSC projects’ dynamic and interconnected nature,
as highlighted in the review by Serugga et al. [32]. The authors add that manual material
take-offs and cost analyses can be time-consuming and prone to error, particularly in
complex projects with numerous modules and interfaces.

2.1.2. Emerging Trends in Cost Modelling

Advancements in technology have begun to reshape cost modelling in modular con-
struction [32,33]. Building Information Modelling (BIM), according to authors such as
Huynh and Nguyen-Ky [34] and Akbarieh, Jayasinghe, Waldmannm and Teferle [5], among
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others, has introduced opportunities for better data management, visualisation, and stake-
holder collaboration. However, BIM alone is insufficient to address the growing need for
real-time data integration and decision support [35].

DTs offer a more comprehensive solution by providing real-time, dynamic repre-
sentations of physical assets, enabling continuous monitoring and optimisation of costs
throughout a project’s lifecycle [22]. Meanwhile, AI techniques, such as machine learning
(ML) and predictive analytics, enhance the ability to automate material take-offs, pre-
dict cost impacts, and identify inefficiencies [36]. The integration of these technologies
represents a paradigm shift in cost modelling, enabling more accurate, adaptive, and
efficient processes.

2.2. Digital Twins in Construction: Current Applications and Potential

DTs have emerged as transformative tools in the construction industry, offering a
dynamic and data-driven approach to project design, execution, and lifecycle manage-
ment [37,38]. According to Batty [37], a Digital Twin is a virtual representation of a physical
asset, system, or process continuously updating and evolving through real-time data inte-
gration from sensors, IoT devices, and other data sources. By bridging the physical and
digital worlds, DTs enable construction professionals to monitor, analyse, and optimise
construction processes and building performance across all project phases, as highlighted
in the Omrany et al. [39] review.

DTs are being increasingly adopted in the Architecture, Engineering, and Construc-
tion (AEC) sector, with applications spanning various stages of the construction lifecycle
such as in design [40], project implementation [41], and operations [42] among others. In
design and planning, DTs simulate and visualise complex designs, enabling stakeholders
to identify potential issues and optimise solutions before construction commences [38–40].
DTs are also integral and complementary in project processes, with BIM enhancing data
accuracy and collaboration among multidisciplinary teams, as a review by Deng et al. [43]
highlights. In the construction phase, on the other hand, DTs enable real-time monitoring
of construction activities, allowing for better coordination and scheduling [39,42]. DTs
can similarly assist in tracking the assembly of prefabricated modules in OSC, ensuring
alignment with design specifications, according to research by Jiang et al. [44]. A review by
van Dinter et al. [45] and a study by You et al. [46] also highlight DTs’ role in predictive
maintenance and quality control, supported by real-time data from sensors and IoT devices.
At the same time, Drobnyi et al. [47], in their review, draw out DTs’ capacity in the oper-
ations and maintenance stages to help facility managers monitor building performance,
predict maintenance needs, and optimise energy usage. This emergent research shows that
DTs are integral in lifecycle cost analysis that is enhanced by continuous data collection, al-
lowing for informed decision-making regarding upgrades and retrofits [40,43,46,47]. Lastly,
a study by Purcell et al. [48] focuses on DTs’ role in sustainability and resilience processes,
where they can support the assessment of the environmental impact of processes and their
design, such as in energy use and carbon emissions, while their critical role in planning
for resilience, enabling simulations of natural disasters or extreme weather scenarios, is
investigated by research such as Ye et al. [49].

Therefore, in the OSC context, DTs hold promise for addressing challenges related
to modularisation, cost modelling, and lifecycle management [39,41,42,46]. DTs can be
the basis for real-time insights into material usage, labour requirements, and overall cost
performance in enhanced cost modelling, as highlighted by Omrany, Al-Obaidi, Husain,
and Ghaffarianhoseini [39]. At the same time, they present the opportunity to support
dynamic updates, enable automated and ultimately accurate material take-offs, and re-
duce the potential for errors and cost overruns [50]. In process design and optimisation,
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integrating DTs with OSC systems promises to facilitate better planning and coordination
of modular assembly and on-site installation, help identify production bottlenecks, and
guide subsequent process improvements. In lifecycle design, DTs extend beyond initial
construction to monitor the performance of modular components and the full envelope
throughout their lifecycle, as demonstrated in the IT capabilities by Canedo [51]. This
enables more accurate lifecycle cost analysis and supports adaptive reuse or recycling of
modules. In mass customisation and adaptive design, DTs allow for greater flexibility in
modular design, balancing customisation with cost and efficiency by simulating various
configurations and scenarios, as evidenced in the study by Aheleroff et al. [52].

While the potential of DTs in construction is evident, several challenges warrant
further exploration. One is the need to understand the extent and limits of integrating
DTs with existing OSC workflows and technologies, such as BIM and AI, which often
require substantial investment and skill sets, which is currently an area of limited research.
Similarly, real-time data and processing can be resource-intensive, presenting potential
challenges, particularly for large-scale projects [53]. Lastly, the continuing lack of standard-
ised protocols for data exchange between physical and digital systems presents headwinds
in the interoperability of the various capabilities.

2.3. AI in Cost Modelling Decision-Making

AI has become a critical tool in enhancing decision-making and cost analysis in many
industries, including construction [36]. By leveraging techniques such as machine learning
(ML), neural networks, and optimisation algorithms, AI enables more accurate predictions,
real-time data processing, and adaptive systems that respond to project complexities [54,55].
In the context of OSC, AI provides significant potential for improving cost modelling,
materials planning, and lifecycle analysis [56].

Some recent applications of AI in decision-making for OSC have included areas in
predictive cost modelling where AI-powered models help predict project costs by analysing
historical data, material prices [36], labour [57], and project-specific variables [58]. ML
algorithms identify patterns and correlations that traditional methods may overlook [59],
enabling more precise cost estimates. Other applications have been seen in material
take-off and optimisation [36], demonstrating the potential for automating material take-
off processes by analysing 3D models (e.g., BIM) and generating accurate quantities for
procurement. Optimisation algorithms can suggest material substitutions or sourcing
strategies to reduce costs [60]. In Lifecycle Cost Analysis (LCCA), on the other hand, AI
has been shown to facilitate LCCA by simulating the performance of key components and
processes over time and incorporating factors such as maintenance, energy usage, and
depreciation [61]. This presents opportunities for more informed decisions about design
and material choices. In decision-making, AI-driven Decision Support Systems (DSS)
provide real-time recommendations based on project data [62]. For example, reinforcement
learning algorithms can continuously adapt to changing conditions, dynamically [63],
allowing opportunities to optimise schedules and cost performance. Lastly, in project risk
management, AI capabilities can assess risks related to cost overruns, delays, and resource
constraints [64]. Probabilistic models, such as Monte Carlo simulations, evaluate various
scenarios [65] and, ultimately, their cost implications.

Foundations in AI for Cost Analysis

AI-based cost analysis and modelling can use multilinear regression predictions such
as those adopted in Ghali et al.’s study [66]. In this study, the research was able to use
two AI-based models: adaptive neuro-fuzzy inference system (ANFIS) and artificial neural
network (ANN), together with a linear model (multilinear regression analysis (MLR) for
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the prediction of costs (C) based on a set of independent variables (X i), such as material
quantities or labour hours, which can be predicted using the equation below:

C = β0 +
n

∑
i=1

(βiXi) + ε (1)

where β0 is the intercept, βi are the coefficients for the variables, and ϵ the error term.
In terms of neural networks for complex cost estimation, Bode [67] demonstrates

their applicability through classifying data and approximating functions in a sample data
set (curve fitting). Using this method, approximate nonlinear cost functions by learning
weights (W) and biases (b) to minimise the error (E) between predicted (CPred) and actual
costs (CActual) can be found using the following computation:

E = (
1
n
)

n

∑
i=1

(
Cactual,i − Cpred,i

)2
(2)

Neural networks are particularly effective at capturing complex relationships in large
datasets, such as interdependencies between modular components [67,68].

Optimisation algorithms for cost minimisation, on the other hand, for example, in
linear programming or multi-objective genetic algorithms, usually work in complement [69],
to help AI to minimise costs while meeting project constraints G(x) ≤ 0 following that
Minimise : f (x) Subject to G(x) ≤ 0, where f (x) represents the total cost function and G(x)
includes constraints such as budget, time, and material availability. Bayesian networks,
on the other hand, can quantify the probability of risks such as cost overruns [70]; given
various risk factors Ri in the form P (Cost Overun|R1, R2, . . . . . . ., Rn). Through this
relationship, these networks support decision-making by identifying critical risk factors
and their impacts on project costs [70].

While DTs offer dynamic, real-time data capabilities, their application in cost modelling
remains yet to be fully leveraged [71]. At the same time, inadequacies in the automation of
costing processes mean that traditional methods for material take-offs and cost estimation,
which are labour-intensive and prone to errors, continue to encumber processes [72].

LCCA, on the other hand, is critical for OSC, given its reliance on modular components
with extended usability and adaptability, but it continues to be deficient, as highlighted
in the review by Zhou et al. [73]. LCCA models continue to fail to incorporate predictive
and real-time insights from DTs or the adaptive capabilities of AI for long-term decision-
making [74]. Finally, there is a continuing need to understand the complexity of managing
modular designs that balance standardisation with the need for tailored user needs that
require advanced decision-making frameworks [29]. The potential of AI and DTs to dy-
namically manage these trade-offs presents opportunities for new theories.

Emergent research into the complementary capabilities of DTs and AI for OSC cost
modelling, although disjointed, currently points to benefits such as dynamic cost modelling
with real-time updates, where DTs provide continuous data streams from sensors, IoT
devices, and project management systems, which AI algorithms can process, to adjust cost
models following the rule dynamically Creal−time = f (Cbase, Dt, Ut), where Creal−time is the
updated cost model, Cbase is the initial cost estimate, and Dt and Ut are the real-time design
and production changes and real-time utilisation and resource constraints, respectively.
Similarly, AI-driven predictive models can use historical and real-time data from DTs to
forecast future costs and maintenance needs for enhanced predictive analytics for lifecycle
costs Cli f ecycle via Equation (3) as below:
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Cli f ecycle_ =
n

∑
i=1

(Pi · Mi) (3)

where Pi and Mi are the probability of a specific maintenance event and the cost of the
maintenance event, respectively.

Combined DT-AI systems can also help optimise modular component interfaces,
balancing cost, performance, and adaptability [56]. AI optimisation techniques can eval-
uate multiple configurations to minimise total cost Ctotal via the rule Minimise : Ctotal =

Cmodules + Cassembly + Cli f ecycle taking into account the costs for modules, assembly, and
lifecycle costs. Finally, AI can integrate user preferences and project constraints into deci-
sion models, enabling customised modular designs without sacrificing efficiency [62,63,75].
A utility function (U) can quantify trade-offs between cost (C), customisation (S), and
lifecycle performance (L) via the rule U = α1C−1 + αsS + α3L, with α1, α2, and α3 being
the weight factors representing various project requirements priorities.

3. Methodology
This study employs an exploratory research framework to investigate the integration

of DTs and AI decision models for advancing cost modelling in OSC. The exploratory
approach is well-suited for identifying potential applications, challenges, and solutions
and provides a testing bed for the integrated capabilities. The methodology combines
qualitative and quantitative methods, case studies, and technology implementation to
develop and validate a proposed cost modelling framework.

The research follows a structured approach to exploring the potential of DT and AI
technologies in modular cost modelling, first through a comprehensive review of existing
studies on OSC, cost modelling, DTs, and AI to identify research gaps and theoretical
underpinnings. A model that integrates DTs and AI decision models is developed to
automate cost analysis and material take-offs. A brainstorming exercise was conducted
to contextualise OSC systems and explore opportunities for integrating advanced cost
modelling technologies. This exercise focused on an OSC systems manufacturer based in
the Midlands, U.K., specialising in modular housing systems. Two brainstorming sessions
were held with a panel of eight experts selected to provide diverse perspectives on modular
construction and its costing processes, ultimately informing initial contextual influences to
gross floor area (GFA)-based costing. The panel included two experts in housing design
and delivery, two experts in modular systems manufacturing, two experts in cost analysis
for OSC, and two representatives from contractors experienced in implementing modular
construction projects.

The choice of experts ensured a broad yet experienced panel, with participants se-
lected for their expertise and decision-making roles in OSC-related processes. During the
sessions, a conceptual cost modelling framework was presented to elicit feedback on its
appropriateness, completeness, and practical applicability. Experts provided insights on
improving the model, particularly regarding its integration with modular manufacturing
and construction workflows.

After brainstorming sessions, the conceptual model was evaluated against two mod-
ular home case studies. These case studies provided a practical context to test the frame-
work’s effectiveness and validity. Based on the findings from the brainstorming sessions
and case study evaluations, a revised cost modelling framework was developed, presented,
and discussed in this research. The model is evaluated in a case study, evaluating its
effectiveness and efficiency compared to traditional methods.
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3.1. The Case Studies

Two modular housing designs, a two-bedroom and a three-bedroom configuration,
were selected as case studies to evaluate and validate the key concepts of the proposed
cost modelling framework. These homes were developed for a major housing group in the
Midlands, U.K., with the requirements management process collaboratively overseen by the
manufacturers and architects. Constraints related to modular manufacturing, transporta-
tion, and construction were iteratively identified and addressed during the design process.

The modular setup for the three-bedroom homes is illustrated in Figures 1 and 2.
At the same time, the dimensions for various spaces in both designs are summarised in
Table X. The structural framework of the homes is primarily steel, with hot and cold-rolled
sections used depending on material availability. The manufacturing company operates at
a capacity of producing one module per day, employing an integrated process that includes
technical design, planning approval, mechanical and electrical (M&E) installations, roofing,
and final assembly. These project contexts provided a practical and representative scope to
evaluate the applicability of the proposed cost model in addressing real-world challenges
faced by developers and cost planners. The chosen case studies highlighted the model’s
flexibility and ability to adapt to varying project scales and complexities by incorporating
diverse configurations and requirements. The modular housing context in the UK was
particularly suitable due to its increasing demand for scalable and cost-effective housing
solutions. By focusing on modular systems, the research underlined the importance of
standardisation and repeatability in achieving cost efficiency while also addressing lifecycle
performance metrics such as energy consumption and maintenance.

3.2. Case Analysis

The modular setup for the home designs is illustrated in Figures 1 and 2. The homes’
structural framework is primarily steel, with hot- and cold-rolled sections used, depending
on material availability. The manufacturing company produces one module daily, em-
ploying an integrated process that includes architectural and structural design, planning
approval, M&E installations, roofing, and final assembly.

The cases’ modular design emphasises efficiency and repeatability, with structural
modules predefined to meet GFA requirements. The setup is illustrated in Figures 1 and 2,
which showcase the modular layouts for each home type.

The proposed cost modelling framework accounts for performance-related costs, such
as energy efficiency and maintenance, to estimate the lifecycle cost of the homes. However,
these estimates remain theoretical due to the lack of real-world data during the study.
Additionally, the framework does not include land acquisition or site preparation costs.
While these elements could be integrated into the model, their exclusion reflects the study’s
focus on modular construction-specific costs.

This integrated approach highlights the potential of modular design to streamline con-
struction processes, optimise material use, and improve cost modelling. It is a foundation
for further research and application of the proposed cost modelling framework.

3.2.1. The Proposed Model

The proposed cost modelling framework (Figure 3) integrates DTs and AI to address
the complex requirements of cost estimation, lifecycle analysis, and decision-making in
OSC. The model’s central tenet is to support modular construction systems by providing
real-time insights, predictive cost analysis, and resource optimisation throughout the
project lifecycle.



Eng 2025, 6, 22 9 of 24
Eng 2025, 6, x FOR PEER REVIEW 9 of 24 
 

 

  

  
Figure 1. Base modules for three-bed homes. Figure 1. Base modules for three-bed homes.



Eng 2025, 6, 22 10 of 24
Eng 2025, 6, x FOR PEER REVIEW 10 of 24 
 

 

 

 

Figure 2. Three-dimensional ground floor base module using revit. 

3.2.1. The Proposed Model 

The proposed cost modelling framework (Figure 3) integrates DTs and AI to address 
the complex requirements of cost estimation, lifecycle analysis, and decision-making in 
OSC. The model’s central tenet is to support modular construction systems by providing 

Figure 2. Three-dimensional ground floor base module using revit.



Eng 2025, 6, 22 11 of 24

Eng 2025, 6, x FOR PEER REVIEW 11 of 24 
 

 

real-time insights, predictive cost analysis, and resource optimisation throughout the pro-
ject lifecycle. 

 

Figure 3. The proposed cost model. 

3.2.2. Digital Twin (DT) Component 

The Digital Twin is a core element of the model, serving as a dynamic, virtual repre-
sentation of the modular construction project. It bridges the physical and digital worlds 
by continuously collecting, updating, and analysing data throughout the construction and 
operational phases. 

The key features of this component include the first real-time data integration—
where DT captures data from various sources, including IoT sensors, BIM models, and 
project management tools. This data contains material usage, construction progress, en-
ergy performance, and operational conditions. For instance, sensors track modular com-
ponents’ weight, dimensions, and installation status during transportation and assembly. 
This data can be integrated through batches or in real time into the AI model as input 
features or for real-time model updates. Second is lifecycle performance monitoring, 
where DT tracks the condition of modular components over their lifecycle, identifying 
maintenance needs and evaluating performance metrics such as energy efficiency and 
structural integrity. Lastly, the dynamic updates and feedback loops ensure that changes 
in key functions, such as design, material availability, or construction schedules, are in-
stantly reflected in the DT, enabling real-time cost updates and decision-making. The state 
of the DT at any time 𝑡 is represented as: 𝐷𝑇(𝑡) = ሼ𝑀௧, 𝑃௧, 𝑂௧, 𝑅௧ሽ, where 𝑀௧, 𝑃௧, 𝑂௧,  and 𝑅௧ 
represent key process objectives, i.e., material usage data, production and assembly pro-
gress, operational performance metrics, and risk and constraint indicators (e.g., delays 
and cost overruns) that feed into MLR and ANN algorithms. 

  

Figure 3. The proposed cost model.

3.2.2. Digital Twin (DT) Component

The Digital Twin is a core element of the model, serving as a dynamic, virtual repre-
sentation of the modular construction project. It bridges the physical and digital worlds
by continuously collecting, updating, and analysing data throughout the construction and
operational phases.

The key features of this component include the first real-time data integration—where
DT captures data from various sources, including IoT sensors, BIM models, and project
management tools. This data contains material usage, construction progress, energy per-
formance, and operational conditions. For instance, sensors track modular components’
weight, dimensions, and installation status during transportation and assembly. This data
can be integrated through batches or in real time into the AI model as input features or for
real-time model updates. Second is lifecycle performance monitoring, where DT tracks
the condition of modular components over their lifecycle, identifying maintenance needs
and evaluating performance metrics such as energy efficiency and structural integrity.
Lastly, the dynamic updates and feedback loops ensure that changes in key functions,
such as design, material availability, or construction schedules, are instantly reflected in
the DT, enabling real-time cost updates and decision-making. The state of the DT at any
time t is represented as: DT(t) = {Mt, Pt, Ot, Rt}, where Mt, Pt, Ot, and Rt represent key
process objectives, i.e., material usage data, production and assembly progress, operational
performance metrics, and risk and constraint indicators (e.g., delays and cost overruns)
that feed into MLR and ANN algorithms.

3.2.3. AI Decision Models

AI works with DT by processing data, predicting costs, and optimising decision-
making processes. This technical integration enhances the model’s ability to adapt to
dynamic project variables, ensuring efficient resource allocation and improved cost per-
formance. AI uses pre-trained mapping rules and supervised learning models trained on
historical data to assign cost codes, building on the initial RICS NRM 1 cost codes such as
GFA. Algorithms and MLR serve as a baseline model for interpreting linear relationships
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between variables, underpinning the AI functionalities (see Section Foundations in AI
for Cost Analysis). Through automated cost code mapping, AI models use pre-trained
mapping rules or supervised learning models trained on historical data (e.g., NRM 1) to
assign cost codes. Real-time data from DTs dynamically updates cost codes, reflecting
changes in attributes such as material usage, performance, or schedules. AI employs trained
MLR to forecast project cost performance by analysing historical datasets and real-time
inputs provided by the DT, such as material cost (Cm)—cost per unit of materials (e.g.,
steel, insulation); labour hours (Hl)—total hours required for labour, GFA—total gross
area in square meters, energy performance (E)—projected annual energy cost, replace-
ment interval (R)—predicted intervals for component replacement). Linear regression
predicts the total cost (Ctotal) as a weighted sum of the input variables using the relation-
ship Ctotal = β0 + β1Cm + β2Hl + β3 + β4E + β5R, where β0 represents the intercept and
β1, β2 . . . ..β5 the coefficients representing the contribution of each feature to the total cost.
The model is trained using the dataset to learn the optimal values for β0 and βi coefficients.
This is done by minimising the Mean Squared Error (MSE) following Equation (2).

On the other hand, ANN captures non-linear relationships and interactions among
variables while, at the same time, learning hidden patterns not captured by MLR. ANFIS
finally brings interpretability and adaptability to the process, helping with handling un-
certainty and imprecision in the variables (e.g., material or labour costs). Mean absolute
error (MAE) is then used to measure the average absolute difference between actual and
predicted values using the following relationship:

MAE = (
1
n
)

n

∑
i=1

∣∣yi − ŷi
∣∣ (4)

where n is the number of training samples, yi the actual value of the i − th sample, and ŷi

is the predicted value for the i − th sample at iteration. The model then uses the R2 score
(Coefficient of Determination) to measure accuracy through variance in the target variable.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

where y is the mean of actual values, the numerator and denominator the sum of squared
residuals (unexplained variance) and total variance, respectively. Residual analysis seeks
to identify patterns of bias among attributes. Errors are compensated for by real-time data
from the DT, compensating for deviations between predicted and observed values and
maintaining continuous data flow for training and retraining the model alongside any
emergent attribute data. Alongside period project-based updates, any substantial new data,
design changes within BIM or significant deviations in key predicted and actual project
costs or performance attributes should also trigger retraining of the model. This ensures
improved accuracy, dynamic adaptability, and future-proofing of the model.

3.2.4. Optimisation Objective

The Optimisation Objective is a mathematical concept that takes into account the total
project cost (Ctotal) that needs to be minimised as follows:

Minimize : Ctotal =
n

∑
i=1

(Cm,i + Cl,i + Cu,i) (6)

This is subject to ∑m
j=1 Rj ≤ Rmax(resource constraints) and Qk ≥

Qmin(Quality Constraints); where Cm,i, Cl,i, Cu,iRj and Qk represent material cost for mod-
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ule i, staff cost for module i, lifecycle cost for module i, available resources (e.g., time, budget)
and quality metrics (e.g., thermal performance, durability, constructability), respectively.

The model is tailored to the modular construction paradigm, supporting the decom-
position of designs into manageable, standardised components while supporting customi-
sation and adaptability. The key element in this is, first, the standardisation of modules
when structural and functional modules are predefined with consistent dimensions and
interfaces. This standardisation simplifies cost estimation and material planning. Second is
the customisation flexibility, which allows modular components to be configured to meet
user-specific requirements without altering the core structural framework. Lastly is the
lifecycle cost integration, where the model accounts for costs across the entire modules’
lifecycle, including maintenance, retrofitting, and eventual decommissioning. Each module
(M i) is characterised as (M i = Cm,i, Cl,i, Ds,i Ro,i and Lp,i, where Cm,i, Ds,i, Cu,i Rj and Qk

are the cost of manufacturing the module, design specifications, operational requirements,
and lifecycle performance metrics.

3.2.5. Workflow of the Model

The model follows a structured workflow that integrates DTs, AI, and modular design
principles to provide comprehensive cost insights. Step one is for data input, where design
specifications, materials data, and project constraints are imported from BIM via Industry
Foundation Classes (IFC). This data relates to design and cost parameters, materials, labour,
scheduling and process data, energy, lifecycle and environmental performance attributes,
real-time data, and derived/engineered parameters. The data is first cleaned for duplicates,
missing values, and inconsistencies. It is then normalised and encoded, including feature
engineering for derived features such as unit energy costs. Z-score analysis is used to
identify outliers that are removed from the data sets that then split between training,
validation, and testing sets (70–80%, 10–15%, and 10–15%, respectively). K-fold cross-
validation on k = 5 sets ensures average performance across the 5 folds, training the model
on k − 1 and testing it on the rest while keeping the same distribution of critical attributes
(e.g., material type, labour hours). This step also includes integrating real-time data streams
from sensors (such as for vibration, loading, environment, GPS, or LiDAR) and IoT devices
into the DT. Step two is the DT setup, where a DT for the project is constructed, ensuring
synchronisation with physical and digital data sources. This stage also helps with dynamic
monitoring of material usage, component status, and performance metrics. The next step,
step three, is about AI-driven cost analysis. In this stage, the process aims to predict costs
using ML algorithms, adjust for real-time data updates, and optimise modular designs
and workflows to improve cost performance while maintaining quality and performance.
Step four is lifecycle costing, where the modelling uses DT data to calculate lifecycle
costs, incorporating factors such as energy performance, maintenance schedules, and
upgrade potential. Lastly, step five deals with reporting and recommendations. In this
stage, the modelling generates detailed costing reports, including initial construction costs,
lifecycle cost breakdowns, and recommendations for cost-saving measures supported by
visualisations to support decision-making, such as cost trends and risk analyses.

The validation and feedback process, through case studies, allows for comparing
predicted costs with actual project data on the one hand and evaluating time and resource
savings in cost estimation and materials planning on the other. A structured long-term
performance evaluation process, combined with proactive strategies for maintaining system
accuracy, ensures that the model remains reliable, robust, and aligned with the evolving
needs of OSC projects. Regular validation, dynamic updates such as from DTs, and
stakeholder feedback loops are central to achieving sustained success through integration
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with emergent capabilities, scheduled system audits, enhancing model resilience through
ensemble models, and scheduled and event-driven updates.

3.3. Costing Categories and Methodology

In the initial costing stage, the process utilises GFA measurements as a preliminary
basis for cost estimation. Data from the DT provides real-time insights into GFA adjustments
and material usage during design iterations. In the approximate costing stage, costs are
calculated on a modular basis, considering transportation and manufacturing constraints.
In this stage, AI algorithms analyse data from the DT to optimise module-level costs by
factoring in efficiencies in production and logistics. Lastly, in the evaluative costing stage, a
detailed cost breakdown is performed using elemental costing methods in line with the
Royal Institute of Chartered Surveyors (RICS) New Rules of Measurement 1 (NRM 1).
In this case, the DT monitors each element’s integration into the design, ensuring that
costs relating to materials, labour, and assembly are accurately captured. In this stage,
AI supports decision-making by simulating multiple scenarios and optimising elemental
cost allocations.

3.4. Costing Approach for the Case Studies

An example of the initial elemental costs for two models is summarised in Table 1.
They represent costs in year 1 at the prevailing rates, excluding VAT and inflation. The
decommissioning costs include those related to demolition and site clearance, demolition
management (phase-specific), and demolition overheads (phase-specific), all in present-day
value in year 50. These are detailed as per the NRM 1 format (Table 1). The initial costs
are based on context-based GFA estimates of 165 sqm and 95 sqm for both models of three-
and two-bedroom homes. Table 2 summarises the four models’ lifecycle cost breakdown,
while Table 3 summarises housing cost estimates with integration of AI and DTs for the
two- and three-bedroom home models. Figure 4 is an example of NRM 1 for steel beam,
column, and bracing material take-off.

Table 1. Example initial elemental costs for the four models are summarised.

Discount
Rate (%) 0.060

Model
1—Traditional 2 Bed

Model
2—Contemporary 2 Bed

Cost Item Cost Year Discount
Factor Present Value Cost Item Cost Year Discount

Factor
Present
Value

Initial cost Initial cost
49,400 0 1.0000 £49,400 58,000 0 1.0000 £58,000

Replacement cost Replacement cost Replacement
cost

2755 20 0.3118 £859 3500 35 0.1301 £455
2755 40 0.0972 £268

Maintenance Cleaning Cleaning
600 annual 16.7619 £10,057 600 annual 16.7619 £10,057

Redecorations and
repairing

Redecorations and
repairing (£3/m2)

Redecorations and
repairing (£3/m2)

285 10 0.5584 £159 300 10 0.5584 £168
285 20 0.3118 £89 300 20 0.3118 £94
285 30 0.1741 £50 300 30 0.1741 £52
285 40 0.0972 £28 300 40 0.0972 £29
285 50 0.0543 £15 300 50 0.0543 £16

Repairs Repairs Repairs
400 16.7619 £6705 180 16.7619 £3017

Energy Energy Energy
1200 16.7619 £20,114 400 16.7619 £6705

Demolition/
Decommissioning

Demolition/
Decommissioning

Demolition/
Decommissioning

0 0.0000 £0 0 0.0000 £0
Lifecycle
cost £87,744 Lifecycle

cost £78,593
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Table 2. A Summary of lifecycle costings for four housing models.

Discount Rate 6%

Initial Cost Area (sqm) Initial Cost/m2 Replacement Cost/m2 Repairs Energy Redecoration/m2

Three Bed Models
Lifecycle Cost £133,659 Model A £120,000 165 500 29 £500 £1600 £3
Lifecycle Cost £119,528 Model B £150,000 170 550 35 £200 £500 £3

Two Bed Models
Lifecycle Cost £87,744 Model A £100,000 95 520 29 £400 £1200 £3
Lifecycle Cost £78,593 Model B £125,000 100 580 35 £180 £400 £3

Table 3. Summary of housing cost estimates with integration of AI and DTs.

Type Model
Approximate
Cost (Modular)
(£)

Initial
Cost (GFA
m2) (£)

Lifecycle
Cost (50
Years) (£)

AI-
Adjusted
Cost (£)

Reliability
(%)

Accuracy
(%) DTs Insights AI Adjustments

Three-Bed
Models Model A £163,716 £134,216 £210,000 £198,000 97.50% 98%

DT monitors module
durability, tracks
energy performance,
and refines lifecycle
costs over time.

AI identifies cost-saving
material substitutions
and predicts reduced
maintenance schedules.

Model B £138,563 £117,313 £190,000 £178,500 96% 97%

DT detects
wear-and-tear patterns
and optimises
replacement intervals
for structural and
functional elements.

AI forecasts operational
cost reductions through
improved energy
efficiency strategies.

Two-Bed
Models Model A £178,680 £88,080 £190,000 £180,500 98% 96%

DT tracks real-time
energy consumption
and identifies
inefficiencies for
proactive adjustments.

AI adjusts repair and
energy costs by
simulating upgrades to
insulation and
energy systems.

Model B £160,888 £75,988 £180,000 £172,000 97% 95%

DT provides real-time
feedback on
maintenance needs,
reducing unplanned
lifecycle costs.

AI optimises lifecycle
costs by forecasting
component lifespan and
recommending
pre-emptive
replacements.

Lifecycle Cost Assessment (LCCA)

LCCA includes initial costs, plus the operational, maintenance, and replacement
costs calculated over a 50-year timeframe (Cli f ecycle = Cinitial + Coperational + Cmaintenance +

Creplacement). Cost data are derived from expert input, historical datasets, and real-time
performance data collected via DTs. AI predicts future costs based on trends and probability
models, integrating them into the total lifecycle cost. The operational costs for energy
use, regular maintenance, and repair schedules are analysed. The DT tracks operational
efficiency metrics in real time, allowing for adjustments to predicted costs. On the other
hand, replacement costs include major replacements planned for key milestones, such
as years 20 and 30, based on DT-monitored component wear and tear. MLR, ANN, and
ANFIS are integrated to optimise predictive maintenance, materials substitution, supply
chain optimisation, operational efficiency, and emergent constraints. Using the relationship
Cadjusted = Cli f ecycle −△CAI , where Cli f ecycle is the baseline lifecycle cost and △CAI the total
savings or cost adjustments derived by AI, with the overall high-level costs summarised in
Table 4.

Discounted Present Value (DPV) accounts for future costs discounted to present-day
values using a 6% annual rate (see Table 5). The DPV factor is calculated as follows, and a
summary over the 50 years is shown in Table 5. The DPV figures form part of the inputs for
AI adjustments during the cost modelling process.

DPV =
1

(1 + r)t (7)
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Table 4. Example AI-adjusted cost derivation for the three bed model: A design case study.

Cost Category Baseline Cost
(£)

AI Adjustment
(£)

Adjusted
Cost (£)

Accuracy
(%)

Reliability
(%) Remarks

Initial Cost(
Cadjusted ) £134,216 −£1200 £133,016 95% 98% Cost-saving material substitution for

insulation.

Operational Cost(
Cadjusted

) £60,000 −£10,000 £50,000 92% 95% Energy efficiency improvements
reduce annual energy costs.

Maintenance Cost(
Cadjusted

) £10,000 −£2000 £8000 93% 97% Optimised maintenance schedules
reduce costs.

Replacement Cost(
Cadjusted

) £5784 −£1800 £3984 90% 99% Proactive lifespan extensions for
components (e.g., HVAC systems).

Total Lifecycle
Cost

(
Cadjusted

) £210,000 −£15,000 £195,000 93% 97.5%
(Overall)

AI-adjusted cost incorporating all
optimizations and savings.

Table 5. Summary of the annual Discount Present Value over a 50-year lifecycle.

Discount Rate 6% Total at Year 50 16.7077

Year Discount Rate Year Discount Rate Year Discount Rate Year Discount Rate Year Discount Rate

0 1.0000
1 0.9434 11 0.5268 21 0.2942 31 0.1643 41 0.0917
2 0.8900 12 0.4970 22 0.2775 32 0.1550 42 0.0865
3 0.8396 13 0.4688 23 0.2618 33 0.1462 43 0.0816
4 0.7921 14 0.4423 24 0.2470 34 0.1379 44 0.0770
5 0.7473 15 0.4173 25 0.2330 35 0.1301 45 0.0727
6 0.7050 16 0.3936 26 0.2198 36 0.1227 46 0.0685
7 0.6651 17 0.3714 27 0.2074 37 0.1158 47 0.0647
8 0.6274 18 0.3503 28 0.1956 38 0.1092 48 0.0610
9 0.5919 19 0.3305 29 0.1846 39 0.1031 49 0.0575
10 0.5584 20 0.3118 30 0.1741 40 0.0972

4. Results and Discussion
The LCCA informs the key milestones and applications in the model, which corre-

spond to critical events in the building’s lifecycle in years 10, 20, 30, 40, and 50 (for major
redecorations). In years 20 and 30, considerations for replacing critical components (e.g.,
roofing, mechanical systems) guide these assessments. AI models assist in prioritising these
milestones by evaluating their impact on overall lifecycle performance and cost efficiency.

The detailed costing process integrates DTs and AI to automate and optimise cost
estimation, ensuring the economic viability of modular housing projects and alignment with
long-term performance goals. The dynamic nature of this approach allows stakeholders
to make informed decisions based on accurate, real-time, and predictive cost data. This
approach, for example, supported a cost reduction for Model A (three-bedroom) from
210,000 GBP to 198,000 GBP with AI optimisations of lifecycle costs (see Table 4). Similarly,
in Model B (two-bedroom), lifecycle costs were reduced from 180,000 GBP to 172,000 GBP
using similar optimisations. These were both against initial costs of 134,216 GBP for the
former and 75,988 GBP for the latter. Modular approximations show higher initial efficiency
for smaller homes. AI-driven cost adjustments resulted, therefore, in reductions of up to
6–10% in lifecycle costs compared to initial estimates supported by traditional models.

In terms of process substitution, the limited data and modelling localised “hubs and
spokes” for processing near project sites pointed to potential reductions in transportation
costs of up to 12%. However, this was on a limited component basis.

The proposed costing model can evaluate cost performance while offering opportuni-
ties for comparisons between contemporary and traditional modular designs, providing
detailed insights into initial and lifecycle costs, optimisation opportunities, and supply
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chain considerations. The cost performance analysis process involves lifecycle costs, cost
breakdown, and optimisation. For lifecycle costing, cost performance is assessed over
50 years, incorporating initial construction and operational costs derived from energy
performance, maintenance, and replacement schedules supported by DTs’ real-time mon-
itoring of these costs. AI, on the other hand, optimises predictions based on historical
and real-time data. The cost breakdown of the initial costs follows the NRM 1 format,
including facilitating and building works, contractor preliminaries, overheads and profit,
project/design team costs, other development costs, and risk allowances. GFA-based
estimation and elemental costing are integrated for comparative analysis, allowing stake-
holders to evaluate trade-offs between design options and material choices. Optimisation
opportunities allow for elemental parameters, such as window and insulation choices,
which are key to cost performance optimisation, to be looked at further. For instance, in
the two-bedroom Model A, an energy performance cost of 1200 GBP could be reduced
through alternative window or insulation options. DTs provide data-driven insights into
the performance implications of such changes, while AI supports comparative cost assess-
ments and decision-making. Overall, the model maintains reliability above 96%, reflecting
robust system performance. Two-bedroom Model A achieves a reliability of 98% due to
optimised energy and maintenance systems. System accuracy is important in underscoring
the confidence levels in the modelling, and it is based on historical data validation, real-time
feedback accuracy, and model performance metrics. An overall system accuracy of accuracy
levels between 95–98% is registered while 98% registered for Model A (three-bedroom)
reflecting a high confidence in lifecycle and AI-adjusted cost predictions of the order ±5000
GBP or 95% using the expression ŷ ± z.σ, where ŷ is the predicted value, z is the critical
value from the standard normal distribution, and σ is the standard error of the prediction.

4.1. Component Catalogue and Modularity in OSC

A component catalogue is central to ensuring the benefits of modularity and repeata-
bility in OSC. This catalogue is ideally collaboratively developed with suppliers and project
teams, integrating specialised knowledge to standardise components and processes. How-
ever, a lack of widely shared and compatible component catalogues can present challenges,
including supply chain risks stemming from dependence on limited vendors and reduced
competition among suppliers, leading to increased costs and difficulty efficiently scaling
modular processes. These all impact the costing model and process. In mitigation, the
model assumes and operates based on advanced sourcing strategies that leverage contracts
and bulk purchasing for key components to stabilise costs and reduce risks; clear and
transparent processes for supplier collaboration and cost-sharing opportunities; use of DTs
to monitor component availability and performance, enabling proactive sourcing decisions;
and finally, integration of AI algorithms to analyse supply chain data to identify cost drivers
and suggest procurement strategies.

The model similarly assumes long-term collaboration among stakeholders that har-
nesses shared opportunities, leading to a more profound and continuing understanding
of bottlenecks, cost drivers, and skills gaps across the supply chain. It also integrates
value-sharing by encouraging transparent communication about base costs, profits, and
sourcing challenges as part of the process. Partners prioritise efficiency, innovation, and
mutual benefit through these resilient relationships

4.2. Relevance of the Cost Model

The model facilitates a top-down costing approach, enabling market-driven cost
estimation based on market analysis and advanced supply chain strategies. Real-time data
from DTs highlights critical cost influences throughout the product development cycle,
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from design to commissioning. At the same time, DTs enable collaborative cost tracking
and adjustments during iterative processes. The power of AI in this process is to support
market analysis by identifying cost trends and forecasting procurement needs. Similarly,
predictive analytics help secure essential materials and components at optimised prices,
embedding competitiveness early in the process.

The power of AI and transparency of DTs can support elemental and component
substitution that fosters cost performance. Alternative materials and components can be
chosen to reduce costs and increase flexibility in OSC systems, enabled by AI’s power to
identify and evaluate cost drivers in elemental and component choices, leveraging historical
and real-time data for accurate cost estimation. A Work Breakdown Structure (WBS)
approach can, for example, highlight critical project processes, such as cost optimisation,
with algorithmic scaling for adjustments. This can be a key driver for overall project
performance as part of a centralised component catalogue, maintained with inputs from
DTs, ensuring ready access to alternative options for materials and parts. AI optimisations
can support the substitution process by recommending cost-effective alternatives while
maintaining performance standards.

The model highlights key processes during cost modelling, ultimately allowing process
substitution to maximise efficiency and optimise costs. The elemental NRM 1 approach
can, for example, allow for substituting hot-rolled with heat-rolled steel components
or the dynamic balance between spoke-and-hub production processes for key modular
components, enabled by DTs monitoring for process efficiency and dynamic analysis of
production alternatives. At the same time, AI algorithms evaluate the cost and feasibility
of process substitutions, recommending strategies that align with project goals.

The model provides advanced capabilities for cost optimisation, enabling iterative
refinement of unit, component, and process costs. DTs are essential in this process, helping
generate real-time performance data and allowing continuous cost recalibrations based
on changing project conditions. At the same time, AI simulations facilitate comparative
assessments of key inputs such as components, materials, and other processes, identify-
ing cost-saving opportunities. AI-driven optimisation aligns cost strategies with project
processes, objectives, and constraints.

As previously pointed out, the model’s approach is based on an optimised component
catalogue to support strategic sourcing and supply chain management decisions. This
premise presents opportunities for DTs to track component availability and performance,
informing timely procurement decisions. On the other hand, it analyses supply chain data
to identify cost-effective suppliers and sourcing opportunities. At the same time, advanced
algorithms help determine whether to use build-to-specification or design-for-manufacture
approaches, reducing lead times and costs.

As cost performance can influence value performance, the model highlights opportu-
nities for value generation during front-end design stages, ensuring cost decision-making
aligns with value-added processes and features. Using DTs, simulations in this project
phase can optimise design performance, identifying synergies between cost reduction and
value creation. Similarly, AI in this stage facilitates evaluating multiple design iterations to
balance cost efficiency with value addition. If costs fall below baseline estimates, AI sug-
gests reinvestments in value-enhancing features. Conversely, AI highlights opportunities
to streamline design features if costs exceed thresholds.

5. Conclusions
Cost performance is one of the key benefits that OSC systems bring to AEC.
Real-time data collected through DTs enhances lifecycle costing by continuously

monitoring operational and performance costs. For example, DTs can track energy efficiency
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improvements resulting from material substitutions, feeding this data into the model
for iterative cost optimisation. On the other hand, AI algorithms can support multiple
simulations of multiple cost scenarios, enabling stakeholders to evaluate the implications
of various design and material choices. This approach ensures cost performance is aligned
with immediate project goals and long-term lifecycle requirements.

Integrating DTs and AI offers a powerful solution to overcome inefficiencies in tra-
ditional OSC cost modelling systems. Dynamic, adaptive, and efficient cost modelling
frameworks can be created by combining DTs’ real-time data capabilities with AI’s predic-
tive and optimisation strengths. This research addresses the identified gaps by proposing
a model that advances cost modelling through improved efficiencies and adaptability of
OSC design and costing processes.

This research highlights the industry’s constant challenge to balance project perfor-
mance, lead times, and cost efficiency. The proposed model supports this balance by
offering precise cost estimation and identifying shared opportunities for stakeholders to
improve project outcomes. Accurate, real-time information forms the cornerstone of this
approach, fostering transparency and collaboration across the supply chain.

Long-term relationships and stakeholder collaboration emerge as critical components
of the proposed model, just as hubs and spokes’ integral role is decentralised processing,
reducing logistical challenges and associated costs. By aligning interests and emphasising
cooperation during the project front end, the model promotes shared benefits, enhances
trust, and drives continuous improvement in OSC processes. This research concludes that in-
tegrating DTs and AI into cost modelling represents a transformative step toward improving
cost accuracy, lifecycle performance, and industry collaboration in modular construction.

AI has demonstrated significant potential in many processes, and integrating comple-
mentary technologies could address critical gaps in cost estimation, lifecycle analysis, and
decision-making, paving the way for more efficient and adaptive modular construction
systems. The model, however, still faced limitations relating to, among other things, inte-
grating DTs and modular workflows to enhance decision-making across project phases,
which still need to be understood further. Similarly, the accuracy of AI models is highly
dependent on the quality and quantity of input data. In many cases, incomplete or incon-
sistent data from construction projects limited the model’s performance. Addressing these
gaps requires the development of more robust data collection and management practices.
While the model incorporated lifecycle cost components such as energy efficiency and
maintenance, it did not fully explore other critical factors like adaptability and sustainability
in modular construction. Extending the model to include these dimensions will provide
a more comprehensive cost analysis. The model’s application was tested on two housing
cases, which means that its scalability to more complex, multi-phase projects with larger
datasets has not yet been fully validated. Lastly, the adoption and usability across different
contexts are limited by the requirement for specialised skills and knowledge to operate,
implement, and maintain the system effectively.

Future Research Opportunities

Further research is needed to refine the integration of DTs with the AI-driven cost
model, particularly to improve decision-making across all project phases, from design
to decommissioning. This includes exploring advanced techniques for real-time data
synchronisation and analytics across the project’s full life. Secondly, standardised protocols
in data sets and improving data quality will significantly enhance the accuracy of the AI
model. Future studies could leverage federated learning or decentralised data-sharing
frameworks to mitigate data privacy and availability concerns. Lastly, to enhance the
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model’s generalisation, a broader range of modular construction project contexts across the
high-density and commercial buildings sector will validate its scalability and adaptability.
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