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Abstract: Skin diseases in melanin-rich skin often present diagnostic challenges due to
the unique characteristics of darker skin tones, which can lead to misdiagnosis or delayed
treatment. This disparity impacts millions within diverse communities, highlighting the
need for accurate, AI-based diagnostic tools. In this paper, we investigated the perfor-
mance of three machine learning methods -Support Vector Machines (SVMs), Random
Forest (RF), and Decision Trees (DTs)-combined with state-of-the-art (SOTA) deep learning
models, EfficientNet, MobileNetV2, and DenseNet121, for predicting skin conditions using
dermoscopic images from the HAM10000 dataset. The features were extracted using the
deep learning models, with the labels encoded numerically. To address the data imbalance,
SMOTE and resampling techniques were applied. Additionally, Principal Component
Analysis (PCA) was used for feature reduction, and fine-tuning was performed to optimize
the models. The results demonstrated that RF with DenseNet121 achieved a superior
accuracy of 98.32%, followed by SVM with MobileNetV2 at 98.08%, and Decision Tree
with MobileNetV2 at 85.39%. The proposed methods overcome the SVM with the SOTA
EfficientNet model, validating the robustness of the proposed approaches. Evaluation
metrics such as accuracy, precision, recall, and F1-score were used to benchmark perfor-
mance, showcasing the potential of these methods in advancing skin disease diagnostics
for diverse populations.

Keywords: machine learning; skin diseases; diverse skin tones; dermoscopic images;
random forest; SVM; decision tree

1. Introduction
Severe skin conditions, such as rashes or critical diseases that can lead to skin cancer,

often present differently on darker skin compared to lighter skin. Detecting these conditions
early on darker skin is particularly challenging due to a lack of familiarity with how they
manifest. This challenge is exacerbated by the underrepresentation of darker skin tones in
medical educational resources, which affect individuals with darker skin and cause lower
survival rates for conditions like skin cancer.

As Artificial Intelligence (AI) continues to advance, particularly through machine
learning and deep learning, it offers promising solutions to these disparities. AI models
trained on images of diverse skin tones can facilitate the development of early diagnosis
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systems, potentially improving outcomes [1]. Accurate diagnostic tools are crucial for
dermatologists to reduce the number of biopsies required and improve treatment efficacy.
The application of AI techniques in diagnosing skin conditions can significantly assist
physicians in making accurate diagnoses [2].

The increasing success in clinical treatment and diagnosis is largely the result of
innovative advancements in medicine and data-driven methodologies. For instance, AI
algorithms, particularly deep learning, simulate human reasoning in the domain of disease
diagnosis. Image processing and feature extraction frameworks rely on these algorithms to
predict and identify different types of diseases. Various classification algorithms, such as
Random Forest (RF), Support Vector Machine (SVM), and convolutional neural network
(CNN), have been used for disease classification.

Despite the potential of these techniques, many existing algorithms have not been
applied extensively to image data representing a wide variety of skin conditions on darker
skin tones. For instance, the authors in [3] proposed a system for recognizing malignant
melanoma through 2D wavelet transformation, followed by a neural network classifier,
which achieved 84% accuracy. While promising, the limitations of such methods highlight
the need for further research and optimization, particularly in diagnosing diseases in
individuals with darker skin tones.

2. Related Works
The intended audience for this research includes dermatologists, general practitioners

(GPs), and researchers in both industry and academia who seek a comprehensive under-
standing of machine learning models and techniques for detecting skin conditions on
darker skin tones. Additionally, this study will benefit technical researchers and developers
working in the field of AI and machine learning by providing insights into the develop-
ment of AI-based systems for dermatological diagnosis. The challenges and research gaps
identified in this dissertation will encourage these professionals to define their research
objectives and contribute to closing the existing gaps in the field.

The proposed system is innovative as skin diseases among individuals with darker
skin tones are on the rise, and traditional methods for detecting these conditions are often
time-consuming and costly. This AI-based system will allow for the detection of critical
skin diseases using provided images. Deep learning technologies have demonstrated
promising results in the detection of skin cancer. Artificial intelligence and deep learning
are increasingly being employed in image analysis and screening applications for skin
cancer detection. However, despite the growing use of AI-based solutions in healthcare,
further advancements are still necessary [4].

Several convolutional neural networks (CNNs) have emerged, each with varying
levels of speed, accuracy, and architectural complexity. The evolution of CNN models has
been rapid, progressing from early architectures like AlexNet to more advanced networks
like ResNet, with increasingly complex structures over time [5]. For identifying skin lesion
boundaries, a technique known as the closed elastic curve combined with the intensity
threshold method was proposed [6]. Additionally, a high-level spontaneous framework
was applied to image datasets for illumination correction and feature extraction [7].

Although deep convolutional neural networks use a mixed approach that combines
color pigment analysis with AI methodology, challenges remain. These include data
quality issues and evolving environmental conditions, which can introduce errors into
deep learning models. Furthermore, there are limitations in the complexity of the overall
systems within which machine learning operates [8]. The works [9–11] and [12] describe
eczema as a condition characterized by skin swelling over a broader area. It is a spreadable
disease, also referred to as dermatitis. Eczema is long-lasting but often improves over time.
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The skin becomes dry and irritated, and patients may experience additional symptoms
such as fever and asthma. Among the various types of eczema, atopic dermatitis is
the most widespread form. It can affect people of any age, from babies to adults. In
younger children, the condition often disappears as they grow older. Eczema commonly
appears on body parts like the knees and ankles, and on both dark and light skin, it can
resemble goosebumps. Ref. [13] describes this type of skin cancer as a common form
known as epithelial skin cancer. While it does not metastasize, if left untreated, it can grow
aggressively. It presents in various morphological forms, including nodular, pigmented,
flat, and cystic. It is a common type of squamous cell carcinoma that is non-invasive and
can be treated without surgery. It is less pigmented and frequently appears on the face.
The affected skin often shows signs of severe sun damage caused by UV light [14]. The
authors in [15] discussed the ‘Benign Keratosis’ category as broad, including seborrheic
keratosis, commonly referred to as ‘senile warts’, as well as its flat form, known as solar
lentigo, and lichen planus-like keratosis (LPLK), which is characterized by inflammation
and the worsening of seborrheic keratosis and solar lentigo. Moscarella et al. [16] further
elaborated that these three conditions can appear in different dermoscopic forms, and due
to their biological similarities, they are often grouped together and classified under the same
general category in histopathological reports. The dermoscopic features of lichen planus-
like keratosis are challenging to distinguish, as they exhibit characteristics that can lead to
frequent biopsies or excisions. This type of skin lesion is non-cancerous and is considered
an inflammatory response to minor trauma or benign growth. Under dermoscopy, the
appearance of this lesion features a central white area surrounded by reticular lines at its
edges, indicating fibrosis [17]. This type of skin lesion is non-cancerous and falls under
different forms of melanocytic tumors. These lesions appear distinctly under dermoscopy,
exhibiting a symmetrical distribution of colors and structures, unlike melanoma [18]. This
type of skin lesion dataset includes pyogenic granulomas, angiokeratomas, and cherry
angiomas [19]. Hemorrhages are also classified within this category. Under dermoscopy,
angiomas are identified by their solid clots, which appear purple or red and are also referred
to as lacunes [20].

The analysis of skin lesion images has been conducted using a principal axes-based
asymmetry assessment for two types of image data: dermoscopic images and those acquired
via mobile devices. The PH2 database and the CD-ROM interactive atlas of dermoscopy
databases were utilized for dermoscopic images [21]. Mahmoud and Soliman [22] also
used the publicly available PH2 dataset for the detection of skin cancer, which contains
200 images representing three types of cancer. These images were obtained from a hospital
in Portugal. Ashwath, Sikha and Benitez [23] proposed an architecture in their journal that
outperformed a backbone model in the classification of skin lesions across two datasets;
they utilized the PAD-UFES-20 dataset for image classification and conducted experiments
with a skin lesions database. Singh, Sandhu and Kumar [24] conducted research using the
publicly available HAM10000 dataset on Kaggle, which includes dermoscopic images of
pigmented skin lesions. This dataset comprises 10,015 images, of which 7840 are distinct
lesions collected from various sources between 1990 and 2017. Each image in the dataset
has metadata containing details about the patients, lesion locations, and clinical diagnoses.
This dataset has been vital for diagnosis and classification, proving to be a crucial resource
for clinicians and researchers. The authors in [2] performed the automated classification of
skin cancer, specifically melanoma, using a deep convolutional neural network (DCNN)
with the International Skin Imaging Collaboration (ISIC) dataset. This dataset contains
25,333 images, of which 4522 are related to melanoma, while 7146 pertain to recent studies.
The ISIC dataset was utilized in [25] for skin condition classification, applying deep learning
methods. Different image datasets were employed in [26] for the detection of three types
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of skin diseases. In addition, the authors in [27] used the ISBI 2016 dataset and DermNet
NZ for the detection of five different types of skin diseases, applying various techniques,
including machine learning and deep learning.

Techniques for Classification and Training Models

The analysis of skin lesion images has yielded various accuracies across different
models. Support Vector Machines (SVMs) achieved an accuracy of 83.1% for dermoscopic
images and 73.1% for mobile-acquired images [21]. The Adaptive Snake (AS) algorithm
attained 96% accuracy, while Region Growing (RG) achieved 90%, and both were utilized
for automated segmentation. For classification, Artificial Neural Networks (ANNs) and
SVM reached an accuracy of 94% [22]. Hyperparameter optimization improved perfor-
mance, with a Decision Tree model achieving 87.30% accuracy through random search
cross-validation, and a Deep Neural Network reaching 90.56% accuracy via Bayesian
optimization—the highest reported accuracy. In contrast, ResNet50 yielded only 74.88%
accuracy without hyperparameter tuning [24]. The authors in [2] implemented a deep
learning-based convolutional neural network (CNN) using GoogleNet, achieving 74.91%
accuracy with GPU support. CNN and SVM were combined in [28], using a pre-trained
model called AlexNet, to achieve an overall accuracy of 86.21% on 9144 images, while
addressing the challenge of data imbalance.

ALEnezi [29] reported 100% accuracy for classifying four types of skin diseases using
SVM for feature extraction with the AlexNet model, although they noted variable image
sizes and limited computational resources as challenges. Ashwath, Sikha and Benitez [23]
proposed the TS-CNN architecture, achieving accuracies of 97% to 97.33% for local models
and 97% to 98.33% for fusion models. Cheong et al. [30] presented an automated system
for detecting melanoma based on entropy features, achieving 97.50% accuracy using Radial
Basis Function (RBF) and SVM.

Using a backpropagation algorithm, an ANN was trained, achieving 84% accuracy by
adjusting weights to minimize error [3]. Lopez et al. [25] reported an accuracy of 81.33%
with the VFFNet deep learning method built on convolutional neural networks and transfer
learning. A decision system utilizing SVM and genetic algorithms for skin cancer detection
reached 88% accuracy [31]. Cheong et al. [30] also achieved 97.5% accuracy using SVM and
RBF on a dataset of 1200 dermoscopic images, employing various preprocessing techniques,
including image enhancement and feature extraction.

Maia et al. [32] evaluated melanoma using deep feature techniques, achieving 92.5%
accuracy with Logistic Regression combined with the VGG19 network, and 90.5% accuracy
when applying SVM to the VGG19 network. The authors in [26] used a dataset comprising
three skin conditions, lichen planus, and Stevens-Johnson syndrome (SJS) and achieved
the highest accuracy of 99.05% with CNN, followed by 73.76% with logistic regression,
73.36% with Random Forest, 50.7% with SVM, and 49% with Naïve Bayes. Allugunti [27]
detected five types of skin diseases, including melanoma, Keratinocyte Carcinomas, Benign
Seborrheic Keratoses, and benign nevi, with Decision Trees achieving an accuracy of 59% to
70%, Random Forest achieving an accuracy around 65% to 71.35%, Gradient Boosting Trees
ranging from 68% to 73.44% in accuracy, and CNN demonstrating high accuracy at 88.83%.

Table 1 shows comparison of accuracy for different models and datasets in
previous research.
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Table 1. Model comparison table.

Authors (Year) Dataset Used Models Applied Accuracy Achieved

Vasconcelos et al.
[21]

PH2 database, CD-ROM
interactive atlas
of dermoscopy

Support Vector
Machines (SVMs)

83.1% (Dermoscopic),
73.1% (Mobile)

Mahmoud and
Soliman [22] PH2

Adaptive Snake (AS),
Region Growing (RG),

ANN, SVM

96% (AS), 90% (RG), 94%
(ANN, SVM)

Singh et al. [24] HAM10000 Decision Tree, Deep Neural
Network, ResNet50

75.81% (DT), 91.42%
(DNN), 74.88% (ResNet50)

Aljohani and Turki
[2] ISIC GoogleNet (CNN) 74.91%

Hameed et al.
[28]

DermIS, DermQuest,
DermNZ,PH2 dataset,
ISIC Image challenge

CNN (AlexNET), SVM 86.21%

ALEnezi [29] Different websites CNN (AlexNET), SVM 100%

Ashwath et al. [23] PAD-UFES-20 TS-CNN 97–98.33%

Cheong et al. [30] DermIS, DermQuest, ISIC2016 SVM, Radial Basis
Function (RBF) 97.50%

Aswin et al. [3] Different resources ANN (Back propagation) 84%

Lopez et al. [25] ISIC VFFNet (CNN), Transfer
Learning 81.33%

Tan et al. [31] Edinburgh Research and
Innovation (Dermofit) dataset SVM, Genetic Algorithm 88%

Maia et al. [32] ImageNet challenge dataset VGG19, Logistic
Regression, SVM 92.5% (LR), 90.5% (SVM)

Bhadula et al.
[26] Different resources

CNN, SVM, Random
Forest, Logistic Regression,

Naïve Bayes

CNN (99.05%), SVM
(50.7%), Random Forest

(76.36%), Logistic
Regression (73.76%),
Naïve Bayes (49%)

Allugunti [27] ISBI 2016 Dataset
DermNet NZ

Gradient Boosting Trees
(GBTs), Random Forest,

CNN, Decision Tree

Gradient Boosting Trees
(68–73.44%), Random

Forest (65–71.35%),
CNN (88.83), Decision

Tree (59–70%)

3. Materials and Methods
The CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology is

employed in this research to evaluate the accuracy of skin condition classification using
deep learning and machine learning techniques. Figure 1 illustrates the methodology of
different phases.
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3.1. Data Collection

A publicly available dataset for the detection of skin diseases, particularly for black
skin and multiple diseases within one dataset, is typically not available. The authors in [33]
describe the HAM10000 dataset for diverse skin tones, which is used in this study for the de-
tection of seven types of skin diseases. The HAM10000 dataset includes 10,015 dermoscopic
images of critical skin conditions. Each image is a high-quality, color photograph with
a height of 450 pixels and a width of 600 pixels, resulting in a consistent size across the
dataset. It contains many dermoscopic images, each labeled with one of seven different
skin disease categories. From the HAM10000 dataset, we selected images of melanocytic
nevi (NV), melanoma (MEL), benign keratosis-like lesions (BKLs), basal cell carcinoma
(BCC), actinic keratoses (AKIEC), vascular lesions (VASC) and dermatofibroma (DF) for
this study.

3.2. Exploratory Data Analysis

An Exploratory Data Analysis (EDA) was conducted on the attributes and images of
skin diseases from the metadata in the CSV file to uncover valuable insights. This step is
critical in the data analysis process, as it allows for feature analysis and a comprehensive
understanding of the dataset. Visualization was performed using libraries like Matplotlib
and Seaborn, generating six types of graphs.

Figure 2 visualizes the frequency of skin lesion types, revealing that melanocytic nevi
(NV) is the most common, while dermatofibroma (DF) has the lowest frequency. This
provides a clear understanding of lesion type distribution in the dataset. Figure 3 illustrates
the age distribution of individuals with skin conditions, showing that those aged 45 have
over 1200 instances, followed by those aged 50 with nearly 1200. That for the age groups of
5, 10, 15, 20, and 51 years fall below 200, while that for ages 25, 80, and 85 range between
200 and 400. That for ages 30, 35, 65, 70, and 75 fall between 400 and 800, with that for
ages 40, 50, 55, and 60 ranging from 800 to 1200. Figure 4 reflects the sex distribution,
indicating that 4500–5000 females and over 5000 males are represented. Figure 5 shows
the distribution of lesion localization which means which body parts most affected by skin
conditions, with the back having over 200 cases, and an average number of cases on the
chest and face, while fewer cases occur on the hands, genitals, ears, and other body parts.
Figure 6 shows the age distribution for each skin lesion type: BKL occurs between 57 and
75 years, NV occurs between 35 and 55 years, DF occurs between 45 and 50 years, MEL
occurs between 55 and 75 years, VASC occurs between 40 and 50 years, and both BCC



Information 2025, 16, 152 7 of 15

and AKIEC occur between 60 and 75 years. Figure 7 represents the distribution of skin
conditions by sex. NV has the highest frequency (3000–3500) for both males and females,
while BKL and MEL have similar distributions (0–600). DF and VASC also show similar
distributions for both sexes, with BCC occurring in 350 males and 250 females, and AKIEC
appearing in 250 males and 100 females.
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3.3. Data Preparation

The first step in data preprocessing involves loading the metadata CSV file, which
contains information about the images, into Google Colab Pro, followed by extracting the
zip file containing all 10,015 skin disease images. Next, data filtration is performed for
cleaning, including handling missing or invalid data, ensuring that all files are available,
and verifying that the file paths are correctly mapped. Upon checking the metadata CSV
file, 57 missing values were found in the age column, which were then filled with the
median age. Afterward, the dataset was checked to confirm that there are no remaining
missing data, and no missing image paths were found.

3.4. Feature Selection

For this skin disease dataset, feature selection is crucial to focus on the most relevant
attributes for analysis and modeling. The following features are selected:

image_id: important for tracking and referencing individual images.
dx: represents the diagnosis of skin conditions and is essential for analysis and prediction.
sex: selected because some skin diseases vary in frequency or manifestation by gender.
localization: refers to the body part where the skin condition appears, providing

critical information for diagnosis and disease occurrence.
image_path: necessary for loading and preprocessing image data during analysis and

modeling. The image_path column or variable (in a metadata file) provides the file path
or filename corresponding to each image in the dataset. It maps each image’s metadata
(e.g., diagnosis, age, sex, lesion location) to its associated image file.

Other features were excluded due to irrelevance, redundancy (high correlation without
adding new information), or noise (variability without contributing to prediction).

3.5. Modeling

For predicting skin conditions in the HAM10000 dataset, three models were applied
using transfer learning: Support Vector Machine (SVM-MobileNetV2), Random Forest
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(RF-DenseNet121), and Decision Tree (DT-MobileNetV2). Additionally, the same mod-
els were applied with EfficientNetB0 for feature extraction. The performance of these
combinations was then compared to evaluate the effectiveness of different deep learning
feature extractors in conjunction with the machine learning models. The system was im-
plemented on Google Colab Pro, a cloud-based Jupyter notebook environment offering
access to computational resources, including GPUs (Graphics Processing Unit) and TPUs
(Tensor Processing Unit). Colab also facilitates easy collaboration, making it useful for
research projects.

According to [34], SVM is a pattern classification technique introduced by Vapnik.
Unlike traditional methods that focus on minimizing empirical errors, SVM separates data
using a hyperplane while maximizing the margin between classes. This reduces general-
ization error and makes SVM a distribution-free algorithm that addresses issues related to
poor statistical estimation. SVM has demonstrated better generalization and performance
compared to standard classifiers, especially when dealing with high-dimensional data and
small training samples.

3.6. Evaluation

Evaluating the model is a critical phase in AI-based learning, focusing on assess-
ing how well the trained models perform. This step ensures that the model generalizes
effectively to new data and guides decisions on deployment and further improvements.

The following metrics and techniques contribute to a comprehensive evaluation:
Accuracy measures the overall performance of the model by showing how often it

correctly classifies or predicts outcomes.

Accuracy = (True Positive + True Negative)/(True Positive + True Negative) + (False Positive + False Negative), (1)

Precision measures the accuracy of positive predictions, with a higher precision indi-
cating more correct positive classifications.

Precision = (True Positive)/(True Positive + False Positive), (2)

Recall assesses the model’s ability to detect true positive cases. A higher recall means
that the model effectively identifies actual positive instances.

Recall = (True Positive)/(True Positive + False Negative), (3)

The F1-score combines precision and recall into a single metric by calculating their
harmonic mean, offering a balanced evaluation of both.

F1-Score = (2 × Precision × Recall)/(Precision + Recall), (4)

4. Results and Discussion
The SVM classifier was applied to classify skin lesions after preprocessing images by

resizing and normalizing pixel values. The features were extracted using both Efficient-
NetB0 and MobileNetV2 architectures, with labels encoded into numerical values. A PCA
was performed to reduce dimensionality while retaining significant variance, and SMOTE
was utilized to address class imbalance. The dataset was split into training and testing
sets, and grid search was employed to optimize hyperparameters. Using EfficientNetB0,
the SVM model achieved an accuracy of 97.51%. When MobileNetV2 was used, the SVM
model showed improved performance, achieving an accuracy of 98.20%, demonstrating its
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effectiveness in distinguishing between different skin conditions and surpassing the results
obtained with EfficientNetB0.

The Random Forest (RF) classifier was employed to classify skin lesions after training
on the processed dataset. The model was configured with 100 Decision Trees and trained
using the training set. Using EfficientNetB0 for feature extraction, RF achieved an accuracy
of 96.68%. However, when DenseNet121 was used as the feature extractor, RF achieved
superior performance with an accuracy of 98.32%. A classification report highlighted the
precision, recall, and F1-scores for each class, with excellent results observed, particularly
for classes such as AKIEC, BCC, and DF.

For the Decision Tree (DT) model, images were loaded in batches to manage memory
efficiently, where each image was resized and preprocessed for use with the Efficient-
NetB0 and MobileNetV2 architectures. The features were extracted using the pre-trained
models, normalized, and reduced in dimensionality using PCA to enhance computational
efficiency. SMOTE was applied to address the class imbalance, resulting in a balanced
dataset. The dataset was then split into training and testing subsets, followed by the ap-
plication of a Decision Tree Classifier with hyperparameter tuning via Grid Search. Using
EfficientNetB0 for feature extraction, the Decision Tree achieved an accuracy of 84.96%.
When MobileNetV2 was used, the Decision Tree showed a slightly improved performance,
achieving an accuracy of 85.39%.

The results of these experiments indicate that the combination of SVM with Mo-
bileNetV2 and RF with DenseNet121 outperformed other configurations, consistently
surpassing the state-of-the-art (SOTA) EfficientNetB0 across multiple metrics. Detailed
evaluation metrics, including precision, recall, and F1-scores, further underscored the
models’ robustness in identifying skin lesion types.

The accuracy achieved from the SVM classifier using features extracted from Mo-
bileNetV2 is 98.08%. The grid search process identified the best parameters for the model,
optimizing its performance. The evaluation of the trained model revealed not only a high
accuracy but also a solid classification performance across various skin lesion types, as
demonstrated by the classification report. Figure 8 illustrates the training and validation
accuracy of the SVM classifier over the training epochs, showcasing a gradual increase in
accuracy for both sets. This convergence of training and validation accuracy indicates effec-
tive learning with minimal overfitting, underscoring the model’s robustness in accurately
classifying skin lesions.
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The proposed methodology achieved a high accuracy of 98.32% for skin lesion clas-
sification using the Random Forest classifier with DenseNet121 as the feature extractor.
Figure 9 illustrates the progression of training and validation accuracy during the feature
extraction and classification process. The training accuracy demonstrates a steady increase,
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reaching a peak value of approximately 98.5%, indicative of the model’s ability to effec-
tively capture patterns from the training dataset. Similarly, the validation accuracy shows
consistent growth, attaining a final value of approximately 98.1%, reflecting the model’s
robust generalization to unseen data. The close alignment between training and validation
accuracy curves indicates minimal overfitting, affirming the model’s capability to accurately
distinguish between various skin lesion classes. This exceptional performance highlights
the effectiveness of the proposed preprocessing pipeline, including the fine-tuning of
DenseNet121 for feature extraction, PCA for dimensionality reduction, and SMOTE for
addressing class imbalance. The combination of these techniques enhances the Random
Forest classifier’s predictive power, making it a highly reliable tool for dermoscopic skin
lesion classification.
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The accuracy achieved by the Decision Tree model is 85.39%. Figure 10 illustrates
the training and validation accuracy of the model over five epochs. The training accuracy
demonstrates a steady increase. Conversely, the validation accuracy initially rises but peaks
at around 90% by the fourth epoch, subsequently declining to 85.39% in the fifth epoch.
This divergence suggests potential overfitting, as the model excels on the training data
while struggling to generalize to unseen validation data. The growing gap between the
training and validation accuracies in later epochs underscores the importance of employing
strategies like pruning or early stopping to mitigate overfitting and enhance the model’s
ability to generalize to new data.
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Table 2 shows the comparative analysis of HAM10000 dataset where different machine
learning with transfer learning models performance are compared.



Information 2025, 16, 152 12 of 15

Table 2. Comparative analysis on HAM10000 dataset.

Models Accuracy Precision Recall F1-Score

RF-MobileNetV2 97.86% 98.0 98.0 98.0

RF-DenseNet121 98.32% 98.0 98.0 98.0

RF-EfficientNetB0 96.68% 97.0 97.0 97.0

SVM-MobileNetV2 98.08% 98.0 98.0 98.0

SVM-DenseNet121 89.75% 90.0 90.0 90.0

SVM-EfficientNetB0 97.51% 98.0 98.0 97.0

DT-MobileNetV2 85.39% 85.0 85.0 85.0

DT-DenseNet121 84.93% 85.0 85.0 85.0

DT-EfficientNetB0 84.96% 85.0 85% 85.0

Velaga et al. [35] (RF) 95.6% 97% 97% 97%

Velaga et al. [35] (SVM) 91.2% 91.3% 91.3% -

Velaga et al. [35] (DT) 84.3% 84.3% 84% -

Singh et al. [24] (DT) 78.95% 56.71% 70.4% 56.28%

The results presented in the table compare the performance of various machine learn-
ing models (Random Forest, Support Vector Machine, and Decision Tree) integrated with
three different deep learning feature extraction architectures (MobileNetV2, DenseNet121,
and EfficientNetB0) and the previous studies [24,35] on the HAM10000 dataset. Overall,
Random Forest combined with DenseNet121 achieves the highest accuracy (98.32%) com-
pared to all the other methods along with excellent precision, recall, and F1-score (98%),
demonstrating its robust ability to classify dermatological images. SVM with MobileNetV2
closely follows, achieving 98.20% accuracy and maintaining high precision, recall, and
F1-score values (98%), showcasing the effectiveness of MobileNetV2 for feature extraction.
Interestingly, Random Forest with MobileNetV2 also performs competitively (97.86% accu-
racy). However, Decision Tree models exhibit a noticeably lower performance across all
feature extractors, with the highest accuracy being 85.39% when paired with MobileNetV2.
This highlights the limitations of simpler models like Decision Trees for complex datasets,
even with advanced feature extraction. EfficientNetB0, although effective, slightly under-
performs compared to MobileNetV2 and DenseNet121 in most scenarios, with its best
accuracy being 97.51% when paired with SVM. These results underscore the importance of
choosing the right combination of feature extractor and classifier, with DenseNet121 and
MobileNetV2 proving to be particularly effective for dermatological image analysis.

5. Conclusions and Future Scope
This research reviewed existing models to understand their strengths and limitations,

applying advanced preprocessing techniques to enhance image quality and developing
models to detect skin diseases across diverse skin tones. Due to the unavailability of a black
skin dataset, the HAM10000 dataset was utilized in this study. Effective preprocessing
methods, including resizing, normalization, and dimensionality reduction using PCA,
along with model fine-tuning, such as dropout layers and hyperparameter optimization,
helped mitigate overfitting. The SMOTE technique was applied to address the data im-
balance, improving the model’s generalization capabilities. The results demonstrated that
Random Forest, when paired with DenseNet121, achieved the highest accuracy of 98.32%,
followed closely by SVM with MobileNetV2 at 98.20%. The Decision Tree model with Mo-
bileNetV2 achieved an accuracy of 85.39%. In comparison, models utilizing EfficientNetB0
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for feature extraction performed slightly lower, with SVM, Random Forest, and Decision
Tree achieving accuracies of 97.51%, 96.68%, and 84.96%, respectively. These findings
highlight the superior performance of the proposed models over existing predictions on
the HAM10000 dataset, emphasizing their potential for dermoscopic applications. Future
research will explore advanced architectures, such as transformers, to further enhance
model performance. Techniques like Grad-CAM will be investigated for improving the in-
terpretability and explainability of model predictions. Additionally, integrating multimodal
data—such as patient demographics, medical history, and genetic information—has the
potential to enhance model accuracy and enable personalized treatment recommendations.
Further preprocessing methods, including Histogram Equalization, Gray-scale Conversion,
Color Space Transformation, and Edge Detection, could also improve the detection of skin
diseases, particularly in melanin-rich skin, where conditions are often harder to detect due
to a lower contrast. Expanding datasets to include images of black and diverse skin tones
will remain a key focus for improving generalization across populations.
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