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Abstract
Data scarcity, coupled with environmental and operational variabilities (EOVs), poses substantial challenges to the gener-
alisability and robustness of damage diagnostic methods for complex components such as wind turbine blades. This
paper introduces a novel methodology, termed UCTRF, designed to tackle these challenges. UCTRF stands for Uniform
manifold approximation and projection for dimensionality reduction, Capsule neural networks for advanced feature rec-
ognition, Transfer adaptive boosting for effective knowledge transfer, and Random Forest for nuanced instance weighting
and classification. The UCTRF framework is uniquely suited to scenarios where feature distributions shift due to tem-
perature variations, enabling robust knowledge transfer even in limited datasets. This innovative framework was rigor-
ously evaluated on various temperature-affected datasets, achieving a 95% detection rate. These results underscore its
effectiveness in preserving the structural integrity of wind turbines under challenging EOVs and constrained data avail-
ability. Additionally, the internal mechanism of the designed domain adaptation captures the alterations in instance
weights between the source and target domains during the adjustment process, which can be utilised to analyse the
impact of diverse instances on model performance and further refine the adaptation process.
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Introduction

The technological shift known as Industry 4.0 has been
driving companies towards a lasting transformation of
their traditional approaches to production and mainte-
nance activities in recent years. This change encom-
passes the progressive digitalisation and automation of
manufacturing processes, utilising a range of innovative
technologies to oversee operations at every stage, from
production and management to service and mainte-
nance.1 Data history from damaged structures is often
limited,2 posing a significant challenge in structural
health monitoring (SHM) for complex structures like
wind turbines (WTs).3 This limitation frequently results
in overfitting when applying machine learning (ML)-
based intelligent damage diagnosis algorithms to these
structures.4–8

To address this challenge, one promising approach
is the utilisation of simulated data, which can be
derived from analytical, numerical or laboratory-based
models, and then combined with real-world data from
similar machines to train a comprehensive data model.9

However, the use of simulated data produced by mod-
elling has its own set of constraints such as shifts in the
data distribution; this discrepancy may reduce model
generalisability and necessitate advanced domain adap-
tation techniques. For complex structures like wind
turbine blades (WTBs), the mathematical modelling
step can be intricate and difficult, involving a wide
range of parameters from design curves on the struc-
ture’s surface to the aerodynamic effects around it. As
an alternative, experimental data, either generated in
laboratories or captured from other similar machines,
can be more beneficial.
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Additionally, environmental factors such as tem-
perature fluctuations can affect the stiffness of struc-
tures like WTBs, modifying their boundary conditions
and influencing their dynamic properties10,11; these
changes also affect data collected by sensitive instru-
ments such as piezoelectric sensors, due to their tem-
perature sensitivity. Such variations can result in signal
inconsistencies, even when the health conditions remain
unchanged, thereby introducing ambiguities in damage
detection outcomes.12

To counter the adverse effects of environmental and
operational variabilities (EOVs) in SHM, researchers
have developed various techniques, with transfer learn-
ing (TL) being one of the most recent advancements.
TL capitalises on knowledge from well-established
(source) domains to enhance performance in new,
related (target) domains, effectively addressing the
issue of differing data distributions. A specific form of
TL, domain adaptation, focuses on modifying models
to bridge these distributional differences, which is espe-
cially beneficial when labelled data in the target
domain are limited. This approach significantly
enhances the predictive accuracy of AI models by
adapting to variations arising from factors such as
measurement inconsistencies and EOVs.13,14 Each of
these types can further be classified within one of three
methodological frameworks: feature-based, instance-
based or parameter-based approaches.14,15

Main contributions

Given the limitations of current SHM techniques in
handling data scarcity and EOVs, this paper presents
an innovative framework that combines uniform mani-
fold approximation and projection (UMAP), CapsNets
and TrAdaBoost with random forest to enhance
domain adaptation under constrained training data
and uncertainties from temperature-induced variations,
which often disrupt ML-based damage detection. This
approach significantly advances SHM methodologies
for WTBs. The key contributions of this research are
as follows:

� A robust SHM framework that adapts to tempera-
ture changes.

� Integration of advanced feature engineering and
ML techniques to handle limited and diverse
datasets.

� A comprehensive evaluation showing a 95% detec-
tion rate on temperature-affected datasets.

The innovation of UCTRF is attributed to its distinc-
tive combination of advanced techniques, namely
UMAP for dimensionality reduction, CapsNet for

hierarchical feature extraction and TrAdaBoost for
domain adaptation, meticulously crafted to tackle
cross-domain challenges in WTB damage diagnosis
under diverse environmental and operational condi-
tions. This integration uniquely addresses longstanding
issues of data scarcity and distribution shifts. UMAP
separates complex vibration signals into distinct clus-
ters, improving the interpretability of domain adapta-
tion through TrAdaBoost. Furthermore, CapsNet
delivers robust hierarchical feature recognition, and its
combination with the adaptive weighting mechanism
of TrAdaBoost excels even with minimal training data.
This cohesive framework demonstrates exceptional
detection rates across temperature-affected datasets,
significantly outperforming individual methods. Such
integration retains structural insights during dimen-
sionality reduction and enhances the model’s adapt-
ability to unseen data, marking a pivotal development
in SHM.

Table 1 summarises the acronyms used in this paper,
ensuring clarity and consistency in the technical discus-
sion that follows.

The subsequent sections of the paper are organised
as follows. A review of the related works is presented
in the section ‘Related works’. Section ‘The proposed
method’ provides a comprehensive explanation of the
proposed approach, encompassing the problem state-
ment, DR, feature extraction, TL and classification. In
the section ‘Case study,’ the case study is presented,
including details about the dataset used for training,
and evaluating the proposed method. Next, the section
‘Results and discussion’ presents the results and

Table 1. Acronyms list.

CapsNet Capsule neural network

CNNs Convolutional neural networks
DL Deep learning
DR Dimensionality reduction
DSFs Damage-sensitive features
EOVs Environmental and operational variabilities
ML Machine learning
MMD Maximum mean discrepancy
PCA Principal component analysis
ReLU Rectified linear unit
SCADA Supervisory control and data acquisition
SHM Structural health monitoring
SMOTE Synthetic minority over-sampling technique
TCA Transfer component analysis
TL Transfer learning
TrAdaBoost Transfer adaptive boosting
t-SNE t-Distributed stochastic neighbour embedding
UMAP Uniform manifold approximation and projection
WT Wind turbines
WTB Wind turbine blade
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discussion. Finally, the section ‘Practical considera-
tions and applicability’ serves as the conclusion, high-
lighting the main achievements of this proposed
method.

Related works

Previous research has addressed SHM challenges using
various approaches. Movsessian et al.16 introduced an
artificial neural network-based framework for damage
detection in WTBs, focusing on neutralising the impact
of EOVs on damage-sensitive features (DSFs) imple-
menting a metric derived from the Mahalanobis dis-
tance assessed on both synthesised data and a Vestas
V27 WT with various damage scenarios. Hu et al.17

represented a method for SHM of WTBs by studying
the dynamic properties of the considered system over
2 years. By employing principal component analysis
(PCA) to adjust for temperature effects, they developed
a DSF, successfully detecting simulated damage in the
turbine’s blade and tower. This approach underscored
the potential for effective long-term health monitoring
of WTs, even in the presence of EOVs. Xu et al.18 pro-
posed a time series analysis, Bayesian cointegration to
tackle uncertainties resulting from alterations in tem-
perature and wind speed; this manner, advancing from
single to multiple variable assessments, integrated vari-
ous DSFs.

Chandrasekhar et al.19 evaluated the operational
WTBs’ SHM through a framework that utilised
Gaussian processes, recognising that WTBs typically
shared identical structural properties and experienced
the same EOVS. The implemented methodology fun-
damentally involves learning DSFs in the long term to
account for EOVs where the primary disadvantage is
the requirement for domain knowledge to pinpoint
characteristics in each case study that can counteract
the effects of EOVs. Chen et al.20 used a combination
of Inception V3-a convolutional neural networks
(CNNs) model and TrAdaBoost, to diagnose WT
damages, including blade icing accretion and gear cog
belt failures. This model was examined on an extensive
dataset of supervisory control and data acquisition
(SCADA) data. They discussed issues posed by unba-
lanced datasets and EOVs by assigning higher weights
to the instances from underrepresented classes.
However, they did not consider a comprehensive
framework that includes various damage scenarios,
such as fatigue damages of distinct severities and quan-
tities, competent of effectively training with a limited
number of observations. Li et al.21 developed a model
that combines parameter-based TL and a convolu-
tional autoencoder to capture fault characteristics com-
mon across WTs in a single farm, utilising SCADA

data. This transferred knowledge from the source tur-
bines to a target turbine with sparse data; the model
did not explore faults caused by fatigue-based damage.

Soleimani-Babakamali et al.22 introduced a TL
framework designed for defect detection in structures.
The methodology employed high-dimensional features
and implemented a generative adversarial network
architecture. The TL approach demonstrated promise
in effectively distinguishing between no-damage and
damage cases, as evidenced by its successful applica-
tion to three diverse target domain datasets. However,
the potential influence of EOVs on the results, as a
potential source of uncertainty, was not examined in
this approach. The challenge of EOVs impacting
vibration-based SHM frameworks was resolved by
Roberts et al.23 In their study, multivariate nonlinear
regression was applied to correct DSFs extracted from
acceleration data, allowing for their effective normali-
sation to mitigate the influence of EOVs. Both simu-
lated and operational WTB datasets were implemented
to demonstrate the enhancement of defect detection
through corrected DSFs, particularly when reducing
sensor input information although only one type of
malfunction (crack) was considered.

Recently, UMAP has been introduced as a dimen-
sionality reduction (DR) toolkit, displaying promising
potential as a feature extraction and visualisation tech-
nique in the SHM field. UMAP excels in preserving
both local and global structures, unlike t-distributed
stochastic neighbour embedding (t-SNE) and PCA. It
is more scalable and efficient, managing larger datasets
with faster runtime. UMAP requires fewer parameters
and is easier to tune than t-SNE.24

Its flexibility and interpretability make it ideal for
feature extraction in SHM. To this end, an indirect
SHM framework for assessing the condition of bridge-
like structures was launched by Cheema et al.25 Within
this skeleton, UMAP and a non-parametric clustering
technique were implemented, and significant effective-
ness in detecting alterations in the bridge’s integrity
was demonstrated. However, what is more important
is the fact that the efficiency of the model was contin-
gent upon the passing of the same type of vehicle over
the bridge to which the sensor was attached when the
model was designed.

Rahbari et al.26 addressed the challenges of SHM in
the aeronautic industry, where damaged data are rare
and costly. They combined DR techniques, such as t-
SNE and UMAP, with deep learning (DL) networks to
enable the clustering of unknown samples. They evalu-
ated it on composite structures using lamb waves. This
approach proved to be more effective when using raw
signals compared to traditional malfunction indices.
Still, it was suggested that a TL approach ought to be
executed in the designed SHM framework to be
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suitable for cases where the training and testing data
are coming from dissimilar sources. From the informa-
tion presented in preceding research, UMAP-driven
techniques have not been applied to the assumptions
when there are EOVs, various defect scenarios exist,
and the source and target domains differ. As a result, a
case study is required to assess the capability of this
approach in addressing the mentioned challenges
whilst competing approaches such as PCA have been
extensively assessed in various scenarios.

Traditional neural networks, such as CNNs, suffer
from issues like translation invariance and feature loss
due to pooling layers, which pass on only maximum or
average values, missing crucial data. CapsNets was
introduced by Hinton et al.27 and utilises capsules (e.g.
groups of neurons processing vectors and not scalars)
to represent different aspects of a feature and its varia-
tions (such as viewing angles). Thus, CapsNets over-
comes CNNs’ limitations by maintaining complex
feature relationships and improving recognition
capabilities.28

Liang et al.29 developed a CapsNet-based process
for identifying WT gearbox faults. Huang et al.30 also
mitigated the challenge of machinery, that is, automo-
bile transmission health diagnosis under changing
working conditions; they launched a weight-shared
capsule network for intelligent fault diagnosis of
machinery. Although a variety of feature extraction
techniques have been applied to the damage detection
of WTBs, the potential of CapsNets remains largely
unexplored in this field. CapsNets have demonstrated
promising results in fault detection within systems simi-
lar to WTBs, emphasising their potential applicability
in this area. Their unique ability to capture and pre-
serve complex feature hierarchies, alongside accurately
recognising patterns under diverse conditions, posi-
tions them as a valuable yet underutilised tool for
enhancing the diagnosis of WTB malfunctions. This
technique offers an improved capability to capture
invariant features while maintaining local class-wise
separation.

It is noteworthy to acknowledge the dearth of a reli-
able and generalised technique for diagnosing damage
in WTBs, in the face of severe data scarcity in the
training observations. This scarcity is exacerbated
when dealing with alterations in the data distribution
resulting from EOVs and the presence of multiple dam-
age scenarios with varying severity and quantity.
Furthermore, it is essential to investigate the use of
vibration data in its raw form, rather than transform-
ing it into visual aspects like images that are applied in
CNN-based methods, which can be computationally
intensive. Determining the best way to convert numeri-
cal data into visual formats for use in CNNs presents
its own set of challenges. To resolve these concerns,

UCTRF a combination of UMAP, CapsNets,
TrAdaBoost and random forest was introduced in this
work.

First, UMAP was employed to separate observa-
tions of various classes in both the source and target
domains, facilitating clearer distinctions and improved
handling of high-dimensional data. This separation is
crucial for enhancing the effectiveness of instance-
based domain adaptation methods by simplifying com-
plex vibration signals into more interpretable features.
Following this, while maintaining the separation
achieved by UMAP, CapsNets positioned some obser-
vations from the source domain in close proximity to
those in the target domain. This strategic placement
allows these selected source domain observations to be
reweighted appropriately for domain adaptation,
thereby enhancing the adaptation process by bridging
the gap between the source and target domain features.

Thirdly, the transferable adaptive boosting, that is,
TrAdaBoost component further enhances the model’s
ability to adapt to new, unseen data distributions,
thereby improving its robustness and generalisability.
This constructive interaction between UMAP,
CapsNets and TL enables the proposed manner, for
example, UCTRF to effectively resolve the challenges
of limited training data, varying temperature condi-
tions, and the need for robust feature extraction and
classification. Unlike previous approaches, this frame-
work uniquely integrates the DR capabilities of
UMAP, the hierarchical feature extraction of CapsNets
and the adaptability of TL, enabling precise damage
detection even when damage severities are closely simi-
lar. This novel combination not only improves the
model’s performance across diverse conditions but also
offers a more efficient and accurate solution for learn-
ing from limited data compared to traditional
techniques.

The proposed method

The proposed method (UCTRF) comprises a frame-
work for WTB damage detection under the effect of
EOVs alongside limited data for the training procedure
(using vibration signals). To achieve this, the dimen-
sionality of raw vibration signals was initially reduced
using UMAP, which assists in uncovering the local
patterns among various observations within each
health scenario, preserving the topological structure of
the data and systematically revealing relationships
between instances from dissimilar health scenarios.
Subsequently, a CapsNet was performed to complete
the feature extraction phase; within the CapsNet, vari-
ous levels known as capsules detect and encode diverse
characteristics of an observation. Initial capsules are
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designed to recognise simple patterns such as sudden
changes in amplitude, whilst the higher-level capsules
are well-positioned to discern complex phenomena,
including harmonic frequencies or modulations that
each mechanical fault can reveal. This advancement is
specifically engineered to detect and delineate spatial
and hierarchical subtleties across non-identical
instances of damage conditions. The final layer of the
CapsNets, namely the classification layer, is removed,
and the features extracted from the ultimate capsule
are flattened (transformed into a vector format) to
ensure compatibility with subsequent processing stages.
It is noteworthy that the sequential application of
UMAP and CapsNet achieves a more comprehensive
data representation as demonstrated by scatter plots
later in this work.

Domain adaptation and classification were subse-
quently achieved using TrAdaBoost, with random for-
ests chosen as the classifier to mitigate the adverse
effects of EOVs; the primary components of UCTRF
are outlined as follows: (i) employing UMAP for DR,
(ii) extracting features through CapsNets and (iii)
adapting to different domains using TrAdaBoost.
Figure 1 summarises the procedure of malfunction
classification in a WTB for UCTRF.

Dimensionality reduction

DR assists in isolating noteworthy features from data,
enhancing the efficiency and accuracy of fault diagno-
sis and predictive maintenance models. UMAP, a non-
linear technique for DR, seeks to convert complex and
high-dimensional data such as vibration responses used

in UCTRF into a simpler, low-dimensional Euclidean
space. This Euclidean space allows for straightforward
distance calculations and geometric interpretations,
which facilitate the analysis and visualisation of the
vibration signal. UMAP preserves both the detailed
and pervasive characteristics of the data. Utilising
manifold learning approaches, UMAP operates under
the assumption that data points in a high-dimensional
vibration signal are evenly spread across local
manifolds.

The implemented methodology for DR of vibration
signal can be divided into two primary phases: the cre-
ation of a high-dimensional topological structure and
its subsequent projection into a lower-dimensional
space. Assume a vibration signal (X ) in n-dimensional
space and the target is to project onto an embedding
(Y ) s-dimensional (latent) space. To this end, the
UMAP algorithm requires a metric to quantify the dis-
tance, D xi, xjÞ

�
, between any two data points xi and xj,

where i, j can be any number from 1 to n. UMAP
algorithm demands to know the number of the neigh-
bouring points, denoted as k.

UMAP establishes simplex structures by determin-
ing the k-nearest neighbours (Ni) of xi based on the dis-
tance D xi, xjÞ

�
. It also computes two parameters,

specifically li and ci, for each data point xi; the para-
meter li is defined as31:

li =minjENi
D xi, xj

� �
D xi, xj

� ��� �
\ 0

� �
1<j<k

ð1Þ

where li represents the non-zero distance between xi

and its closest neighbour. This parameter is crucial in

Figure 1. Wind turbine fault classification framework of UCTRF.
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maintaining the manifold’s local connectivity, resulting
in a locally adaptive exponential kernel for every data
point. Meanwhile, si acts as a smoothing parameter,
affecting how sharply the similarity falls off with dis-
tance. It helps calibrate the influence of the distance
between points relative to li. This parameter is a con-
stant and can be calculated using a binary search.31

Log2k =
X
j2Ni

exp½ �max 0, D xi, xj

� �
� li

� �
si
�1

� �
1<j<k, 1<i<Ni

ð2Þ

UMAP establishes local fuzzy simplicial memberships
in the high-dimensional space, pij, based on the smooth
nearest neighbours’ distances to gauge the likeness
between xi and xj.

The first stage goal is to derive an expression of the
probability that two points are connected in high
dimensions. Objects that are more alike are given a
higher probability whilst those that have fewer similar-
ity receive a lower probability; the conditional prob-
ability can be expressed as32:

pij = pjji + pijj � pjjipijj

pjji =
exp (�max 0, D xi, xj

� �
� li

� �
si
�1

	 �
, j 6¼ i

0, j = i



ð3Þ

in which pij = pji, pii = 0,
P
i, j

pij = 1 and
P

j

pjji = 1, 8i, j.

pij represents the symmetrised local fuzzy simplicial set

membership strength between points i and j in the
high-dimensional space. It is the combined measure of

how strongly connected i and j and vice versa, after
considering their respective neighbourhood relation-
ships. Furthermore, pjji and pijj are the local fuzzy simpli-

cial set membership strengths from point i to point j and
from point j to point i, respectively. They present the
strength of the connection or similarity between these two
points based on their neighbourhood relationships.

The second stage goal is to project the constructed
topology into a visually comprehensible in the embed-
ding s-dimensional space.32

.ij = .jji + .ijj � .jji.ijj

.ij =

1

1 + a yi�yjj jj j2b
	 � , j 6¼ i

0, j = i

(
ð4Þ

where .ij = .ji, .ii = 0,
P
i, j

.ij = 1 and
P

j

.jji = 1, 8i, j.

‘a’ and ‘b’ are either user-defined or determined by
the algorithm given the required separation between
close points, G, in the embedding space32:

1

1 + a yi � yj

�� ���� ��2b
h i’

1, yi � yj<G

exp � yi � yj

� �
� G

	 �
, yi � yj.G




ð5Þ

UMAP uses a cross-entropy operation, which clusters
or separates data points based on the outputs from the
first stage. The cross-entropy function has attractive
and repulsive components, where similar points are
attracted to each other. This process forms clusters
while points with differing features are repulsed, ensur-
ing appropriate separation between clusters. This pro-
cess is optimised using techniques like negative
sampling and stochastic gradient descent, making
UMAP more efficient and more effective with high
dimensions than t-SNE.

The UMAP performs optimisation while minimising
the cross-entropy (CE) between the distribution of
points in the original and the embedding spaces31,32:

CE=
X
i 6¼j

pij log
pij

.ij

 !
� 1� pij

� �
log

1� pij

1� .ij

 !" #
ð6Þ

The reduction process begins with a specified initial
group of points in the embedded space; UMAP imple-
ments the graph Laplacian matrix to determine the
starting low-dimensional positions, and then continues
the refinement using gradient descent.31,32

∂CE

∂yi

=
X

j

2ab D yi, yj

� �	 �2 b�1ð Þ

1 + a D yi, yj

� �	 �2b
pij �

2b

D yi, yj

� �	 �2
1 + a D yi, yj

� �	 �2b
� � (1� pij)

2
4

3
5(yi, yj) ð7Þ

After completing the analysis, UMAP provides a final
two-dimensional fuzzy graph that retains the underly-
ing data structure of the source signals. The clustering
of signals in this graph can be used to analyse similari-
ties and differences in the measured signal features;
after completing the optimisation, the final reduced
vector (Yd) of the vibration signal (Xn) can be concep-
tually expressed as31:

Ydf g= f Xnj; uf gð Þ ð8Þ

where f and u represent UMAP transformation and
the set of parameters and hyperparameters guiding the
DR technique. UMAP requires a few hyperparameters
for tunning. The distance metric determines how dis-
tances between points are calculated, with the
Chebyshev model being used in this context. The ‘min-
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dist’ hyperparameter controls the smallest allowable
distance between data points in the output, influencing
the extent of clustering. The ‘k’ nearest neighbour
hyperparameter defines the number of nearby data
points connected to each signal in the local metric
space, balancing global and local data topology.
Finally, the output embedment dimension determines
the dimension of the output graph, with a value of two
selected for clear and simple interpretation of the
results.25,31–34

Feature extraction

The ultimate stage of the feature extraction phase of
UCTRF utilises an extension of the CapsNets launched
by Sabour et al.35 This network includes convolutional
layers for feature extraction, normalised by activation
functions like the rectified linear unit (ReLU), followed
by a primary capsule layer with multiple capsules con-
verting scalar outputs to vectors, adapting to dataset
complexity.

One more benefit of CapsNet is the introduction of
the digit capsule layer, which coming after the primary
capsule layer and serves dual purposes: identifying the
presence of a specific feature and its properties. The
layer is shown in Figure 2 which uses the CapsNet
framework to refine features from a vibration signal.
Initially, the feature vector of an observation is fed into
the convolutional layers with dimensions 13d, where d

represents the reduced dimension (from UMAP) of the
signal from the DR stage. Post convolution, the matrix
entering the primary capsule layers is sized y3d, attri-
butable to y convolutional filters. These layers convert
the matrix to a k3z dimension, with each of the k pri-
mary capsules generating a z-dimensional output.
Following this, digit capsules enhance these basic fea-
tures into more sophisticated representations of spe-
cific conditions or faults with the assistance of dynamic
routing in the Agreement Routing module; the output
from the digit capsules, sized n 3 m, where n is the
class count and m is the output vector length.

Since the outputs of both the primary and digit
layers are vectors, a novel nonlinear activation

function, namely ‘squashing’ was implemented to pro-
duce the activity vector of the capsules, that is, con-
strains the output values to be placed between 0 and 1.
While it preserves the vector orientation in agreement
with the lower-level capsules’ predictions, it also guar-
antees that the vector norm remains below 1, thereby
representing the probability of the presence of the asso-
ciated entity36; this function can be defined as:

yj =
k sj k2

1 + k sj k2
� sj

k sj k
ð9Þ

The network employs a ‘routing algorithm,’ which is
typically dynamic, to adjust the connection weights
between primary and digit capsules according to their
output agreement. This dynamic routing replaces the
max pooling layer found in CNNs, enabling CapsNet
to learn feature hierarchies. By iteratively refining cou-
pling coefficients, dynamic routing ensures that higher-
level capsules yj capture relationships between lower-
level capsule outputs ŷijj. Unlike max pooling in tradi-
tional CNNs, which aggregates information at the cost
of spatial details, dynamic routing retains critical fea-
ture dependencies, enabling a more nuanced under-
standing of vibration signals. Dynamic routing involves
steps such as initial normalisation, predicted output
computation, coupling coefficients calculation, high-
level capsule output determination, routing weight
updates, iterative routing and the computation of loss
and backpropagation. The coupling coefficients cij can
be calculated as:

cij =
ebijP
k ebij

ð10Þ

These coefficients quantify the agreement between the
predicted output ŷijj = wijyi of lower-level capsule yi and

the aggregated output sj =
Pz
i = 1

cijŷijj of higher-level cap-

sule yj. These coefficients are dynamically updated

through multiple iterations, progressively emphasising
routes with higher alignment. This refinement improves
CapsNet’s sensitivity to subtle changes in vibration

Figure 2. Structure of the designed CapsNets.
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signal patterns, which is critical for distinguishing
between different fault types in WTBs. The squashing
function applied to the aggregated vector sj, is comput-

ing as:

yj =
k sj k2

1 + k sj k2

sj

k sj k
ð11Þ

This procedure normalises the magnitude of capsule
outputs to lie between 0 and 1 while preserving their
direction. This ensures that the output vector yj reflects
the likelihood of feature presence, which is crucial for
capturing both localised and hierarchical fault features
in vibration data. Dynamic routing, as illustrated in
Figure 3, allows CapsNet to model hierarchical depen-
dencies between vibration signal features effectively.
For instance, the iterative refinement of cij ensures that
routes corresponding to distributed cracks or structural
anomalies are prioritised, even in the presence of
EOVs. By visualising the iterative process, Figure 3
clarifies how the coupling coefficients cij evolve and
how the squashing function yj preserves essential infor-
mation for accurate fault detection.

CapsNet often utilise the margin loss function,
which relies on three key parameters: the positive con-
stant (m_plus), the negative constant (m_minus) and
the weighting factor (Loss_lambda) to ensure accurate
predictions. ‘m_plus,’ usually near 1 (e.g. 0.9), sets the
minimum output vector length for correct predictions,
penalising shorter vectors. ‘m_minus,’ around 0.1, lim-
its the length of incorrect prediction vectors, with

excess lengths incurring losses. The ‘loss_lambda’ para-
meter reduces the impact of incorrect classifications,
prioritising correct ones and supporting the network’s
learning of part-whole relationships.

From Figure 3, k sj k is the Euclidean norm of sj,
that is, its magnitude; longer vectors are compressed to
a length of just under 1, while shorter vectors are
assumed to be compressed to almost zero length by the
squashing function; in this way, the size of the output
vector is decreased whilst maintaining its direction.37

Removing the output layer of an ML or DL model
can transform it into a feature extractor. In this study,
the output layer of the CapsNets, originally a SoftMax
layer, was removed. Consequently, the output vectors
from the digit capsule layer now serve as the feature
vectors for each observation.

Transfer learning

TrAdaBoost technique was employed in this work as a
tool to mitigate the adverse effects of EOVs, extends
the AdaBoost algorithm and serves as the TL frame-
work. This technique enables the development of a
high-quality classification model for a novel domain
(i.e. target domain) with minimal newly labelled data,
particularly when only labelled data from the source
domain are available. By operating on a ‘reverse boost-
ing’ principle, the technique adjusts training instance
weights iteratively, decreasing the weights of source
instances that are poorly predicted while increasing
those of target instances. This strategy ensures effective

Figure 3. Workflow of a dynamic routing mechanism.

8 Structural Health Monitoring 00(0)



knowledge transfer, delivering accurate results while
optimising both time and resources38; the algorithm
executes the subsequent steps:

(a) Adjust weight values to a standard scale:

X
WS + WT = 1 ð12Þ

where WS and WT are the importance weights of the
source and target domains, respectively.

(b) Train an estimator ‘g’ using the labelled data
from the source YS , zSð Þ and the target YT , zTð Þ
domains, considering their respective importance
weights, that is, WS and WT . It should be empha-
sised that YS and YT have m3n dimensions from
the previous feature extraction section (CapsNets).

(c) Calculate error vectors for the training samples:

ES = L01 g YSð Þ, zSð Þ ð13Þ

ET = L01 g YTð Þ, zTð Þ

where L01 refers to the 0–1 loss function. If g YSð Þ cor-
rectly classifies an instance, then ES is 0, otherwise, ES

is 1.

(d) Calculate the overall weighted error for the target
samples:

ET =
W T

T ET

mT

ð14Þ

(e) Update source and target weight values:

WS = WSdS
ES , dS = 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnmS

N

r !�1

ð15Þ

WT = WT dT
�ET , dT = ET 1� ETð Þ�1

where mS and mT are the number of observations in the
source and target domains, respectively.

(f) Loop back to step ‘a’ and continue until the speci-
fied number of boosting iterations N is achieved.

The outcome is determined by considering the
results of the last N=2 estimators that have been com-
puted. Each of these estimators contributes to the final
prediction that is based on its associated weighting fac-
tor, denoted by the parameter dT ; this ensures that the
influence of each estimator is in accordance with its
designated importance.

TradABoost does not depend on a particular type
of classifier, so this algorithm can be combined with
various classification models, such as ridge classifiers,

random forests, support vector machines, neural net-
works and so on; this flexibility allows one to choose a
base classifier that aligns well with the specific chal-
lenge being addressed.39

Classification

Classification is the last step of UCTRF; to this end,
random forest was applied as the classifier which is an
ensemble approach that is employed not only for clas-
sification and regression but also for tasks like feature
selection and anomaly detection. During its training,
multiple decision trees are constructed. For classifica-
tion, either a majority vote from the trees is relied upon
or their outputs are averaged. Its ensemble approach
protects overfitting, and varied data types are effec-
tively processed by it, showcasing resilience to outliers
and noise.40,41

In a random forest algorithm, certain hyperpara-
meters ought to be specified such as maximum depth,
minimum value of samples split, minimum number of
samples leaf, maximum magnitude of features and so
forth. A principal parameter is the number of estima-
tors, which denotes the quantity of decision trees within
the forest. This parameter determines the count of con-
tributing predictors influencing the model’s final pre-
diction. While an elevated value can enhance prediction
accuracy, it simultaneously impacts computational effi-
ciency. Figure 4 illustrates the process of implementing
domain adaptation with the TrAdaBoost algorithm,
where a random forest classifier is utilised.

Case study

To examine the proposed SHM framework, the dataset
disclosed by Qu et al.42 is considered. This dataset con-
tains experimental vibration signals of a small-scale
WTB for the blade of a Windspot 3.5 kW WT model
manufactured by Sonkyo Energy (Figure 5); this blade
is made of a three-layered sandwich composite config-
uration; it has a length of 1.75 m and a mass of 5.0 kg.
The signals were obtained under disparate health and
environmental conditions. Figure 6 shows the sche-
matic of the considered WTB with the locations of the
exciting and receiving sensors as well as the faults’
positions.42

The experiments were performed under 12 different
temperature conditions, ranging from 215 to 40�C
with 5� increments in a 60% humidity condition. Two
various excitation modes were applied individually: a
white noise signal over a 0–400 Hz frequency range,
and a sine sweep signal with a frequency range of 1–
300 Hz. Both excitation models were applied for
approximately 120 s, although the length of the cap-
tured signals varied slightly. The crucial aspect is that
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the sampling frequency remained constant at 1666 Hz.
Additionally, the excitation was applied at a fixed

point on the surface of the blade, depicted by the green
circle as the exciting force in Figure 6. Signals were
captured by two distinct types of sensors: a set of accel-
erometers and a set of strain gauges, with each set con-
figured differently. The physical properties of these
installed sensors can be found in Chawla et al.43

A total of 13 different health scenarios were consid-
ered for the WTB. These conditions included one intact
state, nine cases with cracks (with varying numbers of
cracks ranging from 1 to 3 and different crack lengths)
and three scenarios involving icing accretion (achieved
by adding unbalanced masses of 44 g in quantities of
1–3). Table 2 summarises these varying health scenar-
ios along with the quantity and the fault severity. It is
worth noting that the introduced index will be used
later in the classification process.

Results and discussion

In this study, multiple scenarios were examined to
showcase the effectiveness of the proposed damage
detection framework for the WTB. These scenarios
included data augmentation, DR, fault diagnosis

Figure 4. Procedure for domain adaptation with TrAdaBoost and random forest classifier.

Figure 5. The 3.5 kW WT made by Sonkyo Energy.42

WT: wind turbines.

Figure 6. Positioning of the sensors and damages on the investigated WTB.
WTB: wind turbine blade.
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without domain adaptation, utilising UCTRF, fault
diagnosis applying two other TL methods, that is,
domain-adversarial training of neural networks
(DANNs) and transfer component analysis (TCA),
and adjusting instance weights during the adaptation
process. Each of these aspects is thoroughly explored
in the subsequent sections.

Data augmentation

In the present work, the collected data by sensors a1
and a8 (Figure 6) were evaluated under diverse tem-
perature conditions. Data corresponding to + 5�C were
designated as the source domain (training material)
whilst data from six alternative temperatures, namely
215�C, 210�C, 205�C, + 15�C, + 25�C and + 35�C
were treated as distinct target domains (testing sets). It
is important to emphasise that each of these target
domains was inspected individually, rather than being
consolidated into a singular target domain dataset.

Since the number of observations in the source and
target domains is limited, for example, consisting of 20
vibration signals under healthy conditions and 5 sig-
nals for each faulted scenario a data augmentation
technique, the synthetic minority over-sampling tech-
nique (SMOTE), was implemented to increase the
number of observations of the damaged WTB from 5
to 20. This strategy augments the minority classes by
producing synthetic samples, leveraging interpolation
between existing data points. SMOTE identifies a
minority class instance and one or more neighbouring
instances kð Þ, subsequently constructing synthetic data
points along their connecting line segments within the
feature space.43

The value k = 2 was selected after a trial-and-error
procedure in which the maximum mean discrepancy
(MMD) values of different k settings were compared.

Superior performance was observed when k was set to
2, ensuring minimal deviation from the original data
distribution while maintaining meaningful variability.
Following this balancing procedure, each health condi-
tion was represented by 20 samples in both the source
and target domains.

In the process of data augmentation, it is essential
to introduce sufficient variability to ensure that the
generated data are not identical to the original dataset.
This would undermine the purpose of augmentation,
which seeks to improve model generalisation by intro-
ducing diversity. However, a balance must be main-
tained between the similarity to the original data and
the variability introduced. Excessive similarity may
restrict the model’s capacity for generalisation, while
imprudent variability could result in the synthetic data
diverging significantly from the original class charac-
teristics. While alternative generative methods, such as
generative adversarial networks6 and physics-informed
models,44 exist for synthesising data based on probabil-
istic models, the goal here was not to model probabilis-
tic scenarios but to balance the dataset effectively,
making SMOTE a suitable choice.

To evaluate the effectiveness of the SMOTE method
implemented for data augmentation, the MMD was
calculated for 12 faulty health scenarios and the nor-
mal WTB condition. For the healthy condition, two
subsets of 5 and 15 samples, both derived from the
original dataset, were randomly selected to represent
the original and the arbitrary synthesised data. MMD
measures the discrepancy between the original and
synthesised datasets by comparing their distributions
in high-dimensional space, using a kernel function to
project and assess the similarity between these distribu-
tions. A higher MMD value (greater than 0.1) indicates
significant variability between the original and synthe-
sised data, suggesting improved generalisation, though

Table 2. WT blade health conditions.

Health scenario No. observations Index Label Commentary

Intact 20 0 Class R Healthy
Unbalanced 5 1 Class A 1 added mass

5 2 Class B 2 added masses
5 3 Class C 3 added masses

Cracked 5 4 Class D 1 crack, Lc1 = 5 cm
5 5 Class E 2 cracks, Lc1 = 5 cm, Lc2 = 5 cm
5 6 Class F 3 cracks, Lc1 = 5 cm, Lc2 = 5 cm, Lc3 = 5 cm
5 7 Class G 3 cracks, Lc1 = 10 cm, Lc2 = 5 cm, Lc3 = 5 cm
5 8 Class H 3 cracks, Lc1 = 10 cm, Lc2 = 10 cm, Lc3 = 5 cm
5 9 Class I 3 cracks, Lc1 = 10 cm, Lc2 = 10 cm, Lc3 = 10 cm
5 10 Class J 3 cracks, Lc1 = 15 cm, Lc2 = 10 cm, Lc3 = 10 cm
5 11 Class K 3 cracks, Lc1 = 15 cm, Lc2 = 15 cm, Lc3 = 10 cm
5 12 Class L 3 cracks, Lc1 = 15 cm, Lc2 = 15 cm, Lc3 = 15 cm

WT: wind turbines.
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this may reduce separability between classes. Lower
MMD values (between 0.01 and 0.1) imply greater
similarity, while values below 0.01 suggest that the
synthesised data are too similar to the original, which
is undesirable for effective augmentation.

The MMD calculation requires the selection of a
kernel function; in this study, the Radial Basis
Function (RBF) kernel was chosen for its capability to
manage high-dimensional data and capture non-linear
relationships in the signal data. A gamma value of 1.0
was selected, providing a balance between sensitivity to
minor differences and computational efficiency. The
flexibility of the RBF kernel allows for a precise assess-
ment of the divergence between the original and
synthesised data. The MMD results confirm that the
SMOTE technique introduced meaningful variability
across the faulty health scenarios without substantial
deviation from the original data distributions. Figure 7
presents the computed MMD values for the 13 classes,
with 210�C and + 35�C as target domains and data
collected by sensor a1. The entire process was imple-
mented using Python within Jupyter.

The MMD values observed for both 210�C and
35�C conditions across the 13 classes indicate that the
SMOTE-synthesised data successfully strikes an appro-
priate balance between preserving similarity to the
original dataset and introducing sufficient variability
for meaningful augmentation. In the case of the
healthy condition, where 5 original and 15 synthesised
samples were derived from experimental data, MMD
values of 0.04 and 0.05, respectively, align with the
established threshold range of 0.01–0.1. These values
confirm that the synthesised data exhibit the requisite
level of diversity without deviating excessively from the
original data distribution, thus ensuring that the aug-
mentation process contributes positively to model gen-
eralisation. Consequently, this analysis substantiates

the effectiveness of the SMOTE approach in maintain-
ing the integrity of class characteristics while enhancing
the dataset’s variability, a key factor in improving the
robustness and adaptability of the model.

Reducing the dimensionality

Following the augmentation of the dataset through
SMOTE, UMAP analysis was conducted on the
balanced versions of the source and target domain
datasets to diminish the dimension of each vibration
signal to 200. To gauge the effectiveness of the UMAP
approach, a comparison was made with another widely
recognised dimensionality method, that is, PCA. The
scatter plots derived from the UMAP and PCA analy-
ses on the source dataset (sensor a1) are depicted in
Figure 8(a) and (b), respectively, offering a visual rep-
resentation of the outcomes.

The plots demonstrate that the UMAP technique
(Figure 8(a)) exhibits a superior ability to distinguish
between different class observations compared to PCA
(Figure 8(b)), as the space reduced by PCA appears
denser in certain areas.

To statistically compare the impact of PCA and
UMAP, the silhouette score was employed. This
metric, ranging from 21 to 1, evaluates the effective-
ness of clustering by measuring how similar objects are
within the same cluster compared to those in contrary
clusters.45 For the study, the average silhouette score
for 13 classes was calculated; scores closer to 1 signify
that the clusters are well-defined and separate clearly,
which is crucial for ensuring the robustness and relia-
bility of these DR methods in distinguishing and visua-
lising different data classes. UMAP demonstrated a
higher clustering capability (mean: 0.5793) in compari-
son to PCA (mean: 20.3067), highlighting UMAP’s
more effective ability to group similar cases for the
present application. This comparison is represented
through bar graphs that display the average silhouette
scores for each class, as depicted in Figure 9.

Whilst the implementation of UMAP demonstrated
higher performance compared to PCA, as shown in
Figure 8(a), one can understand that overlaps between
observations of various classes still exist, indicating the
need for further feature refinement. To tackle this issue,
CapsNets were employed within the reduced dimen-
sionality space provided by UMAP.

Feature refinement through CapsNets

As the ultimate step in feature engineering for
UCTRF, CapsNets were applied to the outputs of
UMAP. To achieve this, a set of hyperparameters,
detailed in Table 3, were assigned; scatter plots in
Figure 10(a) and (b) illustrate the data distribution

Figure 7. MMD between the original and augmented data for
13 health conditions.
MMD, maximum mean discrepancy; TCA, transfer component analysis.
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generated by CapsNets for both the source and target
domain data (collected at 215�C) for sensor a1. A thor-
ough process of manual trial and error was carried out
to optimise the values of the specified hyperparameters.

From Figure 10, it can be seen that the regions occu-
pied by observations of various classes have changed
between the two domains. As an illustration, one can
notice the shift in regions associated with class H

observations (yellow-colour shapes surrounded by the
red dashed circle). Consequently, the network trained
on samples from the source domain struggled to cor-
rectly identify observations from the target domain.

Classification without the TL algorithm

To present the adversarial effects of the EOVs in the
damage detection task, the entire algorithm was ini-
tially run without TrAdaBoost for damage classifica-
tion. In this procedure, the algorithm, which consists
of UMAP, CapsNets and a random forest classifier,
was trained using source domain data (observations
recorded at + 05�C through sensors a1 and a8). It was
then evaluated on samples derived from signals cap-
tured at 215�C (recorded by the same sensor). It is
worth noting that, when utilising TrAdaBoost, 15
instances from each class were allocated randomly for

Figure 8. Scatter plot of (a) reduced dimension using UMAP and (b) reduced dimension using PCA.
PCA: principal component analysis; UMAP: uniform manifold approximation and projection.

Figure 9. Comparative analysis of clustering performance: (a) UMAP and (b) PCA silhouette scores.
PCA: principal component analysis; UMAP: uniform manifold approximation and projection.

Table 3. Values of implemented hyperparameters in CapsNets.

Parameter Value Parameter Value

Number of epochs 200 m_plus 0.9
Batch size 15 m_minus 0.1
Learning rate 0.001 Loss_lambda 0.5
Number of routing
iterations

3 Type of optimiser Adam
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the domain adaptation stage, with the remaining five
observations from each class designated as testing
material; the confusion matrix for the test phase is pre-
sented in Figure 11(a) and (b) for sensors a1 and a8,
respectively. Furthermore, the number of estimators
and the amplitude of the learning rate of the classifier
were regulated at 20 and 0.1, in order.

From the plotted confusion matrices, it can be
observed that the classification model without TL

struggled to accurately classify observations from vari-

ous domains based on the severity and type of failures,

achieving an accuracy rate of approximately 11% for

sensor a1 and 9% for sensors a1 and a8, respectively.

Classification using UCTRF

This section discusses the training of UCTRF using
enhanced data from + 05�C as the source domain, with
samples from other temperatures acting as the target
domain. It should be noted that this approach was
applied separately to sensors a1 and a8. The average eva-
luation metrics for these sensors are provided in Table 4
(for a1) and Table 5 (for a8), where the minimum and
maximum accuracies achieved are highlighted in bold.
Furthermore, the framework’s effectiveness in damage
detection, that is, measured by the F1 score across all
damage scenarios and target domain conditions, is illu-
strated in Figure 12(a) for sensor a1 and Figure 12(b) for

Figure 10. Scatter plot of (a) source domain observations and (b) target domain observations.

Figure 11. Confusion matrix of the test phase (215�C) of the classification algorithm without TL (a) sensor a1 and (b) sensor a8.
TL: transfer learning.
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sensor a8. As previously mentioned, for each target
domain scenario, 15 samples were allocated to the TL
process, including training and validation phases, whilst
the remaining five samples were designated for testing.

From Figure 12 and Tables 4 and 5, it can be
observed that the a1 sensor consistently demon-
strated superior performance, with macro average
precision, recall, F1-score and accuracy well above

Figure 12. Efficacy of UCTRF across all temperatures and damage types for (a) sensor a1 and (b) sensor a8.

Table 4. Classification results, six temperatures as the target domain (a1 sensor).

Target
(temperature �C)

Macro average
of precision

Macro average
of recall

Macro average
of F1-score

Macro average
of accuracy

215 0.99 0.98 0.98 0.98
210 0.99 0.98 0.98 0.98
205 0.97 0.97 0.97 0.97
+ 15 1.00 1.00 1.00 1.00
+ 25 0.97 0.97 0.97 0.97
+ 35 0.99 0.98 0.98 0.98

Table 5. Classification results, six temperatures as the target domain (a8 sensor).

Target
(temperature �C)

Macro average
of precision

Macro average
of recall

Macro average
of F1-score

Macro average
of accuracy

215 0.96 0.95 0.95 0.95
210 1.00 1.00 1.00 1.00
205 0.98 0.97 0.97 0.97
+ 15 1.00 1.00 1.00 1.00
+ 25 0.98 0.97 0.97 0.97
+ 35 0.94 0.92 0.92 0.92
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0.95 for all temperature levels. Notably, for
extremely cold temperatures of 215�C and 210�C,
the model achieved precision and recall above 0.99,
along with an F1-score and accuracy of 0.98. The
model’s performance remained consistently high for
moderately cold temperatures of 25�C and mildly
hot temperatures of + 25�C, with all metrics exceed-
ing 0.97. Impressively, the model achieved perfect
scores across all evaluation metrics for extremely hot
temperatures of + 15�C and + 35�C. It is noteworthy
that the mentioned results were achieved when only
20 observations for each class were employed as the
training ingredient. On the other hand, the a8 sensor,
although performing well, showed slightly lower per-
formance in temperature classification, particularly
for the most extreme conditions of 215�C and
+ 35�C. These findings highlight the variations in
classification performance specific to each sensor
and underscore the a1 sensor’s strengths in accu-
rately predicting temperature levels across diverse
environmental conditions.

The confusion matrices for two distinct temperature
scenarios, 210�C and + 35�C, are illustrated in Figure
13(a) and (b) for sensor a1. Using data from sensor a1,
of the 65 test phase observations, only one was inaccu-
rately classified, mistaking an unbalanced scenario
sample for a cracked WTB sample. In a similar vein,
sensor a8 accurately classified 98.46% of its observa-
tions. However, there was one instance where a severely
unbalanced WTB sample (labelled as class 3) was

erroneously identified as a slightly unbalanced scenario
(labelled as class 1).

Similarly, the confusion matrices of the two tem-
perature scenarios at 210�C and + 35�C are plotted for
a8 in Figure 14(a) and (b), respectively. The results at
210�C demonstrate remarkable accuracy, with 100%
of observations correctly classified. Conversely, the
classification performance at + 35�C was compara-
tively lower at 92.31%. In this scenario, out of the
observations assigned to the class labelled as 2, five
were incorrectly classified.

The varying classification results from sensors a1 and
a8 can be largely attributed to the distinct training pro-
cesses of their respective TL models. The training of each
sensor’s model was independently conducted utilising
source domain data, followed by individual evaluations
on target data that represented a range of temperature
conditions. These disparities in training data and the
adjustment of the models are significant determinants of
the fluctuations in classification efficacy.

The a1 sensor, strategically positioned closer to the
WTB’s base, procured vibration signals likely to con-
tain a higher quota of pertinent structural data, even in
the context of an experimental environment. Therefore,
the model educated by the a1 sensor data acquired
characteristics and patterns exceptionally responsive to
temperature-related alterations, leading to a consis-
tently elevated classification performance.

By contrast, the a8 sensor, situated at a greater dis-
tance from the base, registered vibration signals that

Figure 13. Confusion matrices for data collected using the a1 sensor during the testing phase of UCTRF, with source domain at
+ 5�C: (a) target domain at 210�C and (b) and target domain at + 35�C.
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were impacted by different sections of the blade and
the materials used, potentially obstructing the model’s
capacity to generalise accurately to the target tempera-
tures. The variances in the training data coupled with
the sensor’s relative location to the structure of the
blade are probable contributors to the marginally
diminished classification precision of the a8 sensor
model, particularly under severe temperature condi-
tions. To encapsulate, the disparities in classification
outcomes are rooted in the singular training experi-
ences specific to each sensor, underlining the influence
of sensor placement and training data on a model’s
ability to classify temperatures in a controlled setting.

Classification using DANN

To compare the designed framework with the previ-
ously introduced TL models, a DANN46 was imple-
mented on the raw vibration signals, assuming data
collected through sensors a1 and a8, and using data
from 210�C as the target domain. The same source
domain data were used for the training phase of the
neural network. The DANN model was trained using
the Adam optimiser with a learning rate of 0.001, a
batch size of 64 and a gradient reversal layer weight of
1.0. Confusion matrices in Figure 15(a) and (b) reveal
the outcomes of this domain adaptation.

The confusion matrices in Figure 15(a) and (b) illus-
trate that employing DANN achieved an accuracy of
approximately 83% for sensor a1 and 85% for sensor

a8. In comparison, the designed framework in this
study, that is, UCTRF (confusion matrices in
Figure 13(a) and 14(a)) resulted in a 15% improve-
ment in classification performance for both sensor
datasets.

Classification using TCA

A further comparison was conducted between the
developed SHM framework and a feature projection
technique, specifically, TCA, applied to the raw vibra-
tion signals following augmentation. In this compari-
son, the feature extraction stage was omitted, as TCA
aims to project both source and target domain data
into a shared feature space. An RBF kernel was
selected for its non-linear mapping capabilities, and a
grid search was performed to optimise the TCA hyper-
parameters, evaluating three values for each parameter,
as shown in Table 6.

After training, validation and testing using data col-
lected at + 30�C for sensors a1 and a8 as the source
domains (resulting in two separate networks) and data at
0�C for the corresponding sensors as the target domain,
the optimised TCA model, with kernel bandwidth, regu-
larisation term and MMD weight set to 1, 0.1 and 0.5
respectively, achieved accuracy values of 60% and 63%
for the two scenarios (Figure 16(a) and (b)).

Figure 16 demonstrates that TCA is not able to
project source and target domain data so properly even
in its optimised structure. The subpar performance of

Figure 14. Confusion matrices for data collected using the a8 sensor during the testing phase of UCTRF, with source domain at
+ 5�C: (a) target domain at 210�C and (b) and target domain at + 35�C.
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TCA is attributed to its static feature projection
approach, which lacks the adaptability to domain
shifts and hierarchical feature learning inherent in the
developed framework.

Weight adjustments in mitigating EOVs

As previously mentioned, instance-based domain adap-
tation methods aim to recalibrate the weights of the
source and target domain observations to mitigate

Figure 15. Confusion matrices for the test phase utilising DANN for target domain data at 210�C and for (a) sensor a1 and
(b) sensor a8.
DANN: domain-adversarial training of neural network.

Figure 16. Confusion matrices for the test phase utilising TCA for target domain data at 210�C and for (a) sensor a1 and
(b) sensor a8.
TCA, transfer component analysis.
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Figure 17. Scaled weight changes of the source and target domain instances at (a) the first epoch, (b) the 500th epoch and (c) the
last epoch.
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distribution discrepancy in these domains. In this
approach, for the implementation of TrAdaBoost, all
instances from the source and target domains initially
received an equal weight (0.0022). As the adaptation
progressed, the weights of source domain instances
that closely resembled those in the target domain
increased, while those less related to the target domain
decreased. Conversely, in the target domain, weights
for instances that could not be classified correctly in
the adaptation process increased, whereas those cor-
rectly classified in the initial stages saw their weights
decrease.

To illustrate this dynamic, weights allocated to the
source domain data at 5�C and to the target domain at
215�C (both captured using sensor a1) were used as
examples. To present the process of EOVs mitigation
using the employed domain adaptation, selecting fea-
ture spaces where there are intersections between vari-
ous classes’ observations as well as source and target
domain data can promote better visualisation. To this
end, feature numbers 26 and 84 which are lower ranked
than the first and second features (as depicted in Figure
11) were selected. The weight changes for these two
domains in the first, 500th and last epochs are depicted
in Figure 17(a) to (c). The scaled version of weights was
utilised for the size of the plotted scatters, in such a
way that the initial weight (0.0022) was changed to 300
and the other weight values were altered based on this;
the minimum weights, close to 0, were also scaled to 50.

Evaluating the above scatter plots, it can be under-
stood that the weights assigned to the source domain

instances decreased dramatically, as the existing differ-
ences between the source and target domains’ distribu-
tions made the source domain observations unhelpful
for classifying the target domain instances. For the tar-
get domain, on the other hand, the weights of the
observations almost decreased because those samples
were correctly classified upon initiating the domain
adaptation framework (thanks to the capability of the
applied hybrid feature extraction model). However, for
several instances, the allocated weight increased
because their classifications were challenging for the
classification network. With greater precision, it can be
understood from Figure 17 that these instances were
mainly located near the clusters of other classes. For
example, the weights of an instance from Class B, char-
acterised by a light blue colour, increased significantly
because it was positioned near a cluster of observations
from Class I, which is marked by an orange colour, as
well as a limited number of samples from Class D, dis-
tinguished by black.

The weight changes for a couple of observations are
depicted in Figure 18 (in their original magnitude and
before the scaling stage) for the target domain (215�C)
throughout the entire epoch numbers. Each of these
instances belongs to one of the 13 classes; these
instances were selected as they revealed more fluctuat-
ing behaviour among their counterparts in each class.
It should be noted that the differences between the
instance indices and class labels stem from the fact that
the target domain data were divided into the train and
test subsets in a shuffled manner.

Figure 18. Class-wise weight changes of selected target domain instances at 215�C.
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It is worth noting that for some of the fault scenar-
ios, the weight changes of the selected instances are so
slightly separate from the remaining damage condi-
tions, but almost all the weight’s amplitudes reached
under 0.1, and only for one case, that is, Class B the
increasing trend of the allocated weight continued until
the last epoch. Besides the closeness of instances to the
clusters of other categories, an observation that will be
an outlier will receive greater weight during the process
of the domain adaption in an instance manner.

The applied TL technique iteratively adjusts the
visualised weights for each temperature scenario until
the desired epoch is reached, enhancing the accuracy of
classifying divergent health conditions. Opting for a
more precise feature extraction technique may help the
TL approach achieve convergence more quickly.
Moreover, choosing a feature extraction or data pro-
jection method that identifies a common space for the
data distribution of both source and target domain
observations can increase the weights in the source
domain and expedite convergence.

Practical considerations and applicability

The proposed framework was implemented on a clus-
ter with 72 CPU cores and 200 GB of RAM. DR using
UMAP required 1.5 min per health scenario, CapsNet
training took 45 min for 200 epochs and domain adap-
tation using TrAdaBoost was completed within 5 min
per boosting iteration.

The modular nature of the framework allows it to
be deployed on cloud platforms, such as Azure. For
instance, the computational tasks can be parallelised
and distributed across virtual machines or containers
using tools such as Azure Batch. Furthermore, the fra-
mework’s reliance on vibration signal data ensures
straightforward integration with pre-existing monitor-
ing pipelines, without requiring specialised data for-
mats. The lightweight architecture of CapsNet and
TrAdaBoost ensures that the framework is both scal-
able and adaptable to different WTB configurations
and evolving environmental conditions.

Conclusion and future work

This paper proposed an SHM framework, UCTRF,
tailored for the classification of structural conditions in
WTBs amidst variable environmental conditions, not-
withstanding the limitation of training data. UMAP
was integrated for feature extraction with CapsNets,
supplemented by TrAdaBoost and a Random Forest
classifier, to create a robust method capable of cor-
rectly classifying over 95% of health scenarios. The
success was found in the synergistic use of UMAP for
preserving data structure in reduced dimensions,
CapsNets for interpreting spatial relationships and
TrAdaBoost for transferring knowledge from analo-
gous tasks, making the framework highly effective for
accurate damage diagnostics in varied environments,
with the potential for real-time application.

The most notable finding was that the TL-based
methodology enabled robust damage classification in
WTBs across a wide temperature range (–5�C to 35�C),
even with limited training data (20 observations), mak-
ing it viable in various industrial settings. Similar
results were obtained regardless of sensor selection (a1
and a8), demonstrating the algorithm’s effectiveness
across different locations on the WTB, that is, high-
lighting the model’s adaptability and reliability for
empirical defect diagnosis under uncertain environmen-
tal conditions.

While the method successfully addressed uncertain-
ties related to temperature variations, its evaluation
was restricted to a single WTB model and experimental
setup. This limitation arose due to the inherent chal-
lenges of accessing broader datasets or replicating com-
parable experimental conditions for other WTB
configurations. Future work should explore extending
the framework to datasets generated via finite element
modelling or less complex structures, such as compo-
site plate-like materials, as performing tests simulating
EOVs is more practical with appropriate chamber set-
ups. Additionally, while this study focused on surface-
level damages, primarily linked to vibrational signals
that remain largely unaffected by humidity or wind
speed variations, future investigations should incorpo-
rate these variables alongside other factors, such as
material degradation and structural modifications, to
further enhance the framework’s generalisability.
Incorporating diverse excitation modes and sensor con-
figurations would also provide a more comprehensive
evaluation of its robustness under real-world
conditions.

The integration of advanced ML techniques or DL
architectures could further improve the classification
accuracy and computational efficiency of the model.

Table 6. Hyperparameter grid search configuration for TCA
implementation.

Parameter Tested values

Kernel bandwidth 0.1, 1, 10
Regularisation term 0.01, 0.1, 1
MMD weight 0.5, 1, 2

MMD, maximum mean discrepancy; TCA, transfer component analysis.
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Real-time implementation and validation of the frame-
work on operational WTBs would be a significant step
towards practical deployment, enabling continuous
monitoring and early detection of potential damages.

In conclusion, the UCTRF framework demon-
strated significant potential for accurate and reliable
damage classification in WTBs under variable environ-
mental conditions, even with limited training data. By
addressing additional sources of uncertainty and
expanding the scope of study, future research could
advance SHM for WTBs further contributing to the
efficiency and safety of wind energy generation.
Continued development in this field holds promise for
more resilient renewable energy infrastructures and
optimised maintenance strategies.
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