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ABSTRACT

The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection
and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations
in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking.
Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking
various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning
and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOV5, and YOLOX to identify the
most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter
for the tracking stage, enhancing the system’s robustness and enabling real-time tracking capabilities. To train our detector, we
construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions
experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance
of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames
and enhances the accuracy of the target’s bounding boxes.

1 | Introduction

In recent years, the demand for unmanned aerial vehicles
(UAVs) has surged across diverse sectors in social, commercial,
military, and entertainment applications [1, 2]. This increases
the significance of the pressing need for robust detection and
tracking systems, driven by concerns over safety and security
[3]. The potential risks associated with UAV misuse, including
the possibility of collisions with aircraft, highlight the urgency of
developing reliable detection and tracking methods [4].

Despite their small size and moderate speed, UAVs can cause sig-
nificant damage in negligent or malicious scenarios. Therefore,
accurately identifying and tracking these fast-moving objects is
crucial [5, 6]. Traditional tracking methods like radar and acous-
tic sensors have limitations, particularly in noisy environments
[7, 8]. On the other hand, advancements in deep learning and
camera technology offer promising solutions [9]. Within deep
learning, Deep Convolutional Neural Networks (DCNNs) have
emerged as powerful tools for object detection. Two-stage detec-
tors, such as Faster R-CNN and region-based fully convolutional
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network R-FCN, have demonstrated promise in efficiently locat-
ing UAVs in real-time scenarios [10-12]. Moreover, one-stage
detectors like You Only Look Once (YOLO) and Single Shot
Detector (SSD) provide rapid UAV detection using global image
features [13, 14]. These methods offer essential capabilities for
safety and security applications. However, they come with limita-
tions of the inefficiency in addressing background confusion and
blur, which led to the motivation to employ a two-stage method.
This approach improves the accuracy and reliability of UAV iden-
tification and monitoring by including independent stages for
object detection and tracking [15, 16].

Tracking by detection approaches utilising deep learning for
detection and data association methods such as the Kalman fil-
ter (KF) offers real-time solutions crucial for maintaining visual
contact with UAVs [17, 18]. The KF plays a vital role in predict-
ing the trajectory of UAVs based on noisy measurements obtained
during detection, enhancing overall tracking accuracy. The KF
algorithm is considered a no-prior knowledge method that uses
a series of noisy measurements containing uncertainty to pre-
dict the upcoming state. KF is an algorithm that predicts the
future position of a UAV by using a series of noisy and uncer-
tain measurements to estimate the UAV’s current state. It oper-
ates by iteratively refining these predictions through a feedback
loop that minimizes the estimation error, thereby enhancing the
accuracy of tracking. On the other hand, the Extended Kalman
Filter (EKF) is an adaptation of the standard KF designed to
handle non-linear models by linearizing them around the cur-
rent estimate. Unlike the KF, which is limited to linear systems,
the EKF extends its applicability to more complex, real-world
scenarios where the UAV’s motion and sensor readings exhibit
non-linear behavior. Both the KF and extended Kalman filter
(EKF) [19] are presented to predict the trajectory of our tar-
get from the noisy sequence of detector measurements. In the
tracking process, the bounding boxes obtained from the detec-
tion network represent the tracked targets. Moreover, trackers
based on correlation filters, such as Kernel Correlation Filter
(KCF), Tracking-Learning-Detection (TLD), and Structured Out-
put Tracking with Kernels (Struck), provide robust performance
in tracking UAVs [20, 21].

However, these methods have a deficiency in learning com-
paratively simple models since they extract the examples from
the video itself, so the data is derived from the current video
exclusively [9, 22, 23]. Moreover, some trackers require prior
knowledge of the template matching method and the mean shift
method. Some of those require a particular template to match the
target image in steady and dynamic states [24, 25]. In this case,
prior knowledge is defined as a template that is needed by the
algorithm initially.

Detection and tracking of UAVs as well as distinguishing
them from other flying objects based on classification into
consumer-grade categories have been introduced in the literature
but have not been implemented [3, 26, 27]. UAV classification
is proposed depending on differentiating UAV from other flying
objects, introducing three consumer-grade UAVs [26]. Moreover,
the results of this survey [3] highlight that one of the problems
in drone detection is specifying the drone type. Another noticed
problem in this research domain is the lack of data for evaluation

of the work. Hence, we created our dataset to verify the presence
of a UAV distinguishing it from other flying objects.

This article is concerned with the visual detection of UAVs
in adverse weather or environments with frequently appearing
obstacles where detection models lose the target object. For this
purpose, a reliable platform is developed for detecting, classify-
ing, and tracking the UAV in real-time scenarios with a fast and
accurate algorithm using a two-stage approach. The proposed
platform integrates a detection system (YOLOVS) and a tracking
system (KF or EKF) to guarantee a precise continual-based esti-
mated output. The system performance is investigated visually
and analytically in terms of root mean square error (RMSE), in
three cases standalone YOLOv5, YOLOvV5 with KF, and YOLOvV5
with EKF.

The main contribution of this article can be summarised as
follows:

1. Enhanced Tracking Approach: A development of a
two-stage platform to enhance the tracking approach
of UAVs. The proposed system utilises a combination
of various deep learning algorithms (YOLOv3, YOLOV4,
YOLOv5, and YOLOx) for the detection stage and two
Kalman filter techniques (KF and EKF) for the tracking
stage. This platform is designed to detect, classify, and track
various consumer-grade UAVs with an emphasis on (a)
real-time tracking capabilities, (b) minimising errors intro-
duced by the detection system through rectifying its output;
(c) compensating for dropouts resulting from occlusion,
blur or other obstructions; and (d) verifying the presence of
a UAV while distinguishing it from other flying objects.

2. Construction of Comprehensive Dataset: To train the detec-
tor, a dataset comprising approximately 10,000 records is
constructed. This dataset captures the diverse environmen-
tal and behavioural conditions experienced by UAVs during
their flight, ensuring the effectiveness of the detection sys-
tem across various scenarios. Three videos have also been
generated for evaluating the KF and EKF algorithms with
the detection. This dataset aims to verify the presence of
UAVs, distinguishing them from other flying objects, and
classifying UAVs based on their type. This dataset is made
available as open-source data, ensuring accessibility and
reproducibility for further research and development!.

3. Performance Evaluation: The system’s performance is rigor-
ously evaluated using root mean square error (RMSE) across
various test scenarios to assess tracking accuracy and relia-
bility. Comparisons are drawn between different configura-
tions (YOLOVS5 alone, YOLOVS5 with KF, and YOLOVS5 with
EKF), demonstrating significant improvements in tracking
precision when integrating deep learning with advanced fil-
tering techniques.

The remainder of this article is organised as follows. Section 2
addresses the evolution to computer vision for UAV tracking
as well as discusses the existing studies. Section 3 proposes the
framework and its functions, including detection approaches,
and tracking approaches. Section 4 discusses the generated
dataset, and discusses the detection and tracking results based on
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visual and analytical. Section 5 concludes the work and highlights
the future work.

2 | Background and Related Works

2.1 | Evolution to Computer Vision for UAV
Detection

In the early stages of UAV detection, the field relied heavily
on heuristic algorithms and traditional image-processing tech-
niques. These methods were effective in controlled environments
but struggled with the complexities of dynamic and varied scenar-
ios. They relied on handcrafted features and rule-based systems,
which limited their ability to adapt to changing environmental
conditions and complex background clutter. As a result, early
UAV detection systems faced challenges in accurately identifying
UAVs in real-world applications. The landscape of UAV detection
underwent a transformative shift with the introduction of deep
learning, particularly Convolutional Neural Networks (CNNs).
CNNs enabled systems to automatically learn and extract mean-
ingful features from raw visual data. This breakthrough allowed
for the development of more robust and accurate UAV detec-
tion systems. By leveraging large-scale datasets, CNN-based
approaches could learn to differentiate between UAVs and
other objects in various environmental conditions with higher
accuracy and reliability.

Further advancements in real-time object detection techniques,
such as You Only Look Once (YOLO) pushed the boundaries of
UAV detection capabilities. These methods enabled faster and
more efficient identification of UAVs in diverse scenarios. YOLO,
in particular, introduced a paradigm shift by providing real-time
object detection capabilities with a balance between speed and
accuracy. This was crucial for applications requiring immediate
responses to detected UAVs, such as surveillance and security.
As deep learning models continued to evolve and datasets diver-
sified and expanded, computer vision systems for UAV detec-
tion became more resilient and adaptable. Modern systems can
now handle complex scenarios, including infrastructure man-
agement, military operations, security surveillance, and civil-
ian applications. These advancements have paved the way for
enhanced situational awareness and decision-making capabili-
ties in UAV operations.

Looking forward, ongoing research is focused on further
improving the efficiency and accuracy of UAV detection sys-
tems. This includes advancements in deep learning techniques,
such as attention mechanisms and transformer-based models,
to enhance object detection and tracking capabilities. Addi-
tionally, integrating multi-sensor data fusion and Al-based
decision-making processes will play a critical role in enhancing
the overall performance and reliability of UAV detection systems.

2.2 | Related Works

Tracking objects can be challenging due to obstacles, crowded
surroundings, and changes in appearance caused by variations
in illumination and perspective. This study aims to develop a
model capable of monitoring objects with minimal labeled data,

dynamically learning their appearance, and re-acquiring them
if they disappear [28]. The authors train two classifiers on con-
ditionally independent perspectives of the same data using a
co-training strategy with a limited number of exemplars. They
use an SVM classifier for the discriminative model, trained online
using gradient histograms, and a Multiple Linear Subspace Gen-
erative Model. The subspaces are progressively updated with new
samples, and LASVM, an incremental SVM method, is employed
for the discriminative model [29]. Previous models do not han-
dle partial obstruction well, despite strong results compared to
existing literature. Combining offline and online training may
improve tracking performance for some objects.

Another approach to track the kinematic state and purpose of
highly maneuverable devices like drones uses a heavy-tailed
a-stable Levy process within a state-space model, which is
effective in capturing abrupt direction changes [30]. The model
integrates the kinematic state and purpose into a vector solu-
tion of a stochastic differential equation (SDE), where the
stochastic term consists of Levy processes computed using a
truncated Poisson series. A normal distribution calculates the
transition density for a single a-stable noise source, except for
the part of the stochastic integral directly linked to Gaussian
noise, which is manually computed. This study explores the
combination of detection and tracking algorithms. Algorithms
that simultaneously detect and track typically include point,
primitive geometric shapes, skeletal models, and silhouettes in
shape representation. Techniques in appearance representation
involve probability density, templates, multi-view appearances,
and active appearance models. Object detection methods are
categorized into single-frame object methods and methods using
temporal information. In tracking tasks, object detection and
correspondence across sequences of frames can be performed
either jointly or separately. Three families of tracking methods,
including point tracking, kernel tracking, and silhouette track-
ing, are also discussed. Additionally, various tracking challenges
such as cross-camera tracking, handling occlusions, and man-
aging non-target objects are addressed. This study proposes a
classification model using a two-stage decision tree approach for
detection, classification, and tracking [31]. The model enhances
performance in real-time scenarios by leveraging kinematics
and micro-Doppler components. Field trials using the Aveil-
lant/Thales GameKeeper 16U radar system showed a significant
reduction in false positives compared to a single-stage approach.

In a related work, this study introduces Single Integrated Air Pic-
ture (SIAP) metrics to evaluate staring radar systems in drone
surveillance [32]. These metrics include completeness, clarity
(both ambiguity and spuriousness), continuity, and kinematic
accuracy, essential for assessing system effectiveness. Results
from the SESAR SAFIR program demonstrated improved perfor-
mance metrics when using the two-stage decision tree model dis-
cussed earlier, emphasizing its positive impact on system clarity.

Another paper evaluates six state-of-the-art CNN object detec-
tors for drone detection and tracking using a Pan-Tilt-Zoom
(PTZ) camera system [32]. The study provides a comparative
analysis, identifying YOLOv2 as suitable due to its balance of
speed and accuracy, contributing to low-cost surveillance solu-
tions. Additionally, this paper focuses on the ground-truthing
process for supervised machine learning in drone classification
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TABLE1 | The existing studies of UAV tracking.
Ref Algorithm Purpose Pros Cons
[35] Track While Scan Simultaneously track existing Optimizes active track tasks Complex implementation
(TWS) targets and scan for new ones  and detect abrupt changes and high computational cost
[36] Interactive-EKF Enhance velocity predictions Improves accuracy in critical ~ Limited by assumptions of
for small aircraft during turns air traffic scenarios linear models
[37] Interactive KF using Trajectory planning in Increases accuracy in Requires large training data
Neural Networks autonomous vehicles based trajectory predictions and computationally
on social interactions intensive
[31] Two-stage decision-tree  Distinguishing drones from Improved classification High training time and
classifier other targets accuracy limited to radar data
[38] SDD Real-time object detection; High detection accuracy; Low accuracy and slow
balancing speed and accuracy real-time performance detection
[32] CNN Identifying YOLOV2 as Accurate real-time drone May struggle with occlusion
optimal for speed and tracking and complex environments
accuracy
[39] Neural Improving accuracy in 3D Superior performance Requires large training
network-enhanced target tracking compared to traditional filters datasets and complex model
Kalman filter integration
This KF/EKF+ YOLOV3, v4, Detecting, classifying, and Comprehensive dataset with Real-time tracking
paper v5 and YOLOx tracking consumer-grade diverse environmental capabilities and minimizes

UAVs

conditions; open-source data errors

using multi-beam staring radars [33]. It highlights the need for
accurately labeled data to differentiate drones from other targets.
The study employs “Theodolite” on an iPad to gather compre-
hensive ground truth data, facilitating the training of a decision
tree classifier with high-accuracy in distinguishing drones from
non-drones.

Furthermore, this paper proposes a multi-agent system (MAS)
architecture for real-time coordination of sensors onboard
Remotely Piloted Aircraft Systems (RPAS) [34]. The MAS dynam-
ically manages resources allocated to sensors, enhancing flex-
ibility and efficiency in mission management. Permanent sen-
sors function as agents, while tactical agents are created dynam-
ically to handle detected targets. The MAS architecture opti-
mizes resource allocation through real-time scheduling, ensuring
effective data collection and mission performance for airborne
platforms.

In terms of combining the detection with the UAV tracking.
Several algorithms have been employed for UAV tracking in
various studies as shown in Table 1. Track While Scan (TWS)
is used to simultaneously track existing targets and scan for
new ones, optimizing active tracking tasks and detecting abrupt
changes, albeit being complex to implement and computa-
tionally intensive. Interactive Extended Kalman Filter (IEKF)
enhances velocity predictions for small aircraft during turns,
improving accuracy in critical air traffic scenarios, though it is
limited by assumptions of linear models. Interactive Kalman
Filter using Neural Networks is applied for trajectory planning
in autonomous vehicles, incorporating social interactions to
improve trajectory prediction accuracy, though it requires large
training datasets and is computationally intensive.

A Two-stage Decision-Tree Classifier is introduced for dis-
tinguishing drones from other targets, offering improved

classification accuracy, albeit with high training times and
limited to radar data. For real-time object detection, Single Shot
Detector (SSD) identifies YOLOV2 as the optimal choice, balanc-
ing speed and accuracy, providing high detection accuracy and
real-time performance, though it may suffer from low accuracy
and slow detection in certain conditions. Convolutional Neural
Networks (CNNs) are employed to identify the best detector for
real-time drone tracking, ensuring accurate real-time tracking,
but facing challenges with occlusion and complex environments.
Neural Network-Enhanced Kalman Filter improves accuracy in
3D target tracking, offering superior performance compared to
traditional filters, though demanding large training datasets and
complex model integration.

However, this field has been widely discussed as previously men-
tioned, none has managed to utilise KF with state-of-the-art
detection such as YOLO algorithms. Hence, this article proposes
a combination of various YOLO versions (v3, v4, v5, and YOLOX)
with Kalman Filter (KF) and Extended Kalman Filter (EKF)
for detecting, classifying, and tracking consumer-grade UAVs.
This approach leverages a comprehensive dataset with diverse
environmental conditions and open-source data, designed for
real-time tracking capabilities and minimizing errors.

3 | The Proposed Framework

The proposed system consists of two stages, the detection stage,
and the tracking stage. The detection is sensitive to a range of
errors due to blurring, occlusion, noisy environmental factors,
and the fast movement of the UAV changing its pose and ori-
entation. The tracker based on KF or EKF is proposed to model
the motion of the UAV among consecutive frames, where each
frame is successfully detected with minimum localization errors.
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A prediction stage in the tracker is employed to predict the trajec-
tory of the UAV, which results in a previous estimation to give a
posterior estimated value from the KF. The measurement process
of the KF is responsible for calculating the posterior estimate of
the current state, which is then sent to the prediction step again
for trajectory prediction in a recursive loop that covers all video
frames. The first stage of detection is achieved by the YOLO detec-
tor. It has the ability to classify the target UAV into a certain class
to be followed by a tracking stage using KF and EKF.

3.1 | Detection Approaches

The proposed detection model was trained with positive and
negative samples to differentiate between UAVs and other fly-
ing objects, or empty backgrounds (without objects), in order to
reduce the false positives. It is also trained with different reso-
lutions to increase the accuracy of the model, and the geometric
distortion method for data augmentation is applied to increase
the variability of the input images so that our proposed model has
higher robustness to the dataset samples obtained from different
environments. The observation models represented in this study
for the detection stage are from the YOLO family of detectors.
Given that quickly detecting the UAVs is more important than
precise detection, YOLO is applied since it is the fastest archi-
tecture with lightweight and convenient for systems with limited
computational power and memory.

YOLOV3 [40] is utilized as an observation model, where the
framework used for training is Darknet open source [41]. It
predicts bounding boxes depending on the highest Intersection
over Union (IOU) between detected and ground truth boxes and
applies non-maximum suppression in cases of multiple boxes
appearance. Logistic regression is utilized to predict each bound-
ing box occurrence confidence. In (1), the ground truth input
data to the model is demonstrated, m is the annotated samples,
where to improve speed in real-time scenarios, various resolu-
tions with a maximum of 416 x 416 are used to train the model.
n and ¢ represent the bounding box, and the three-class labels,
respectively, where M* are the seen images and N* are the seen
labels by the detector. At the last layer, a 3D tensor is predicted to
encode the bounding box, object probability, and the class scores
as N X N X[3x(@4+1+3)].

The original YOLO tensor is trained within 80 classes, here,
instead, three classes are required. Also, YOLOv4 [13] from the
YOLO family of detectors is trained using a CSPDarknet53 [42]
backbone that improved DarkNet53 used in YOLOv3 [40]. It
shares the same head as YOLOv3. The algorithm utilized the
bag of freebies and the bag of specials to enhance the perfor-
mance, adding slight inference costs. YOLOv4 utilizes SPP [43]
to increase the receptive field over the backbone network and
exploits PANet [44] to combine different network levels instead
of employing FPN [45]. Since YOLOv3 and YOLOv4 were imple-
mented in c++, YOLOVS5 is being investigated for development
in the PyTorch framework, written in Python. Various models of
YOLOVS5 architecture are provided in [46] including YOLOVS5s,
YOLOv5m, YOLOVS5], and YOLOvV5x. The complexity of the archi-
tectures increases in ascending order, starting with the simplest
at s and ending with the most complicated at x. However, dur-
ing the training stage, we initialized the weights using YOLOV5s

pre-trained weights to save training time and reduce computa-
tional costs. In order to accommodate the flexibility of the model,
the input image is prepared with a size of 640 x 640. It similarly
utilizes the CSPDarknet53 architecture with an SPP layer as the
backbone, PANet as the Neck, and YOLO detection head.

Similar to YOLOvS5, YOLOX [47] utilized the Pytorch frame-
work for implementation to ease the practical use of researchers.
YOLOX detects objects in an anchor-free manner similar to
YOLOV1 to lower the number of design parameters. Inconsis-
tent with YOLOVS5, YOLOx has models of YOLOX-s, YOLOX-m,
YOLOX-1, and YOLOX-x. It utilizes a decoupled head instead of
the coupled head used from YOLOv3 to YOLOVS5 to prevent the
classification and localization tasks from competing during train-
ing. We initialized the weights using pre-trained YOLOXs with
640 x 640 input image. According to the task criteria, the opti-
mum detector is chosen, where the optimum efficiency of the
detectors is determined in terms of mean average precision and
inference time. The previously discussed detectors are investi-
gated on our particular task and dataset to determine the suitable
detector to be integrated with the tracking network.

D, : (m,n,c)lme M*,|ne N°, n= ,c € R? (1)

> S < x

The detection approach for processing a single input frame is
illustrated in Figure 1. When verifying the presence of a partic-
ular UAV, the model specifies the location of the target object

Input frame

Occlusion,
blur,
Obstruction
(Low IOU)

Detection Failure <«—Yes

No

¥

Verify the existence of
the target object

Positive sample

Provide location/
Determine Bounding

box
\ 4 A 4
end Classify the target object

FIGURE1 | Flow chart of a single frame processing through YOLO
detection network.
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step respectively.

through a four-dimensional vector representing the center, aspect
ratio, and proportion of the target object. It is categorized into a
certain class to establish the tracking stage. Unfortunately, any
sort of obstruction will direct the detection approach into losing
sight of the UAV in this frame, leading to the failure of the detec-
tion. So, in this work, the detection network, the YOLO model,
is integrated with the tracking network in order to maintain the
UAV trajectory. This is achieved by considering the correlation
between neighboring frames during the tracking stage, as dis-
cussed in detail in the following subsection.

3.2 | Tracking Approaches

The framework of the proposed system is presented in Figure 2,
where the detection stage is enhanced by a tracking stage in a
recursive loop. The Kalman filter algorithm is proposed here as
the tracker, where it predicts the position and velocity of the UAV.
The sequence of measurements taken by the detector is used to
adjust the bounding box precision. The position of the object is
estimated using prediction and measurement models, which are
then used to evaluate the trajectory of the UAV. However, because
the motion is not completely linear, we developed the Extended
Kalman filter to model the non-linearity of motion by substituting
the Jacobian matrix for the Kalman filter constants.

3.21 | Linear Kalman Filter Estimation Model

To employ location estimation using the Kalman filter algorithm,
a motion state variable is defined as v =[x, x, y, y, w, i, h, h],
where [x, y] are the coordinates of the center of the target position
Dy p,), and their following values are the derivatives represent-
ing the velocity of the target along the x-axis and y-axis (v, v,)
respectively. Also, [w, h] describes the proportion and aspect ratio
of the target object, which is also representing the width and
height with their derivatives, where the vector s is utilized for
describing the motion route for the moving target using state
equation and observation equation in (2a) and (2b), respectively.

sg=Fsy_; + Buy_; +w,_, (2a)

Vi =Hs, + vy, (2b)

where s, and y, denote the state vector and the measurement
vector at the k" instant, respectively. F is known as the state

The proposed system diagram. A priori estimation and a posteriori estimations are the outputs of the prediction step and measurement

transition matrix that is utilized to propagate the state at instant
k — 1 to instant k to describe how each state moves over one time
instant, by capturing all related internal dynamics of the system.
The matrices B and u are neglected in such a non-controllable
system. The transformational matrix H maps state to measure-
ment value, and w) represents prediction noise with covariance
0, and v, represents measurement noise with covariance R. In
the prediction step, the Kalman filter predicts the current motion
state estimate s}~ in (3a), and P in (3b) which is the prediction
error covariance matrix between the predictive value and true
value, for the first frame the Kalman filter is initialized through
ground truth or the detector’s output of high confidence value.

$” = F§,, (3a)

P =FP_ F"'+0Q (3b)
The following step, which is the measurement step, aims to esti-
mate the state through prediction and measurement of its current
state, where Kalman gain is computed as in (4a) to reflect the
uncertainty in prediction in regards to the measurement of the
detector, giving s} in (4b) and P, in (4c) as state estimation and
error covariance matrix, respectively, which are prepared for the
recursion process.

K,=P H'"(HP H" + R (4a)
S =5+ K, (y,— Hs,") (4b)
P.=(I-K.H)P, (40)

3.2.2 | Extended Kalman Filter Estimation Model

As shown in Figure 3, in the EKF algorithm, instead of model-
ing the motion of the UAV by a random acceleration in x and
y—axis, it is modeled by its speed along with the diagonal v(¢) and
heading direction 6(). It first linearizes the model by applying
first-order Taylor series approximation around s,_; (5a). By sub-
stituting matrices, we obtain the Jacobian matrix J; as in (5b) of
f(s(1)), then it applies the prediction and measurement steps as
discussed earlier. While F and H are not fixed as in the Kalman
filter, they are adjusted by computing the Jacobian as in (5¢) and
(5d) giving F, and H, that are updated at each time step k.The
procedure is summarized in Algorithm 1.
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V(t) Cos(8 (1))

Y hm — — — —

(3 g)urs (3);

HY_

FIGURE3 | Motion model of UAV in linear and non-linear states.

FG@) R f(s,20) + I (s(t) = 5,1) (52)

0 0 cos(f,_;) —vy_sin(f,_;)

0 0 sin(0,_;) v,_;cos(0,_;)

Jy = (5b)
00 0 0
00 0 0
d

F, = (6_];) (5¢)
oh

H, = ($)§k (5d)

As previously stated, the while loop iterates through N frames
to cover all of the video frames extracted. The threshold is
adjusted to accept the output of the detector depending on the
confidence value, and in the instance of low confidence, the
tracker does not lose the target since it corrects the measured
value from the detector using a previously successful frame. The
measurement step in the KF and EKF combines the detection
network output with the prior estimation of the prediction step,
to get a posteriori accurate estimated output. Assuming EKF is
adopted, the previous approach updates the state vector s values
in each iteration, and the parameters F and H are updated in
each iteration. The detection task pursues the tradeoff between
accuracy and optimal speed. The detection of a UAV in every
frame is subjected to various obstacles that ravel the detection,
where the tracking task supports a continuous framing to the
target object. The tracking task should be robustly integrated
with the best performance detector.

3.3 | Evaluation Metrics

3.3.1 | Detection

The performance evaluation metrics to detect UAVs include
numerous crucial factors. First, the Mean Average Precision
(mAP) at an Intersection over Union (IoU) criterion of 0.25
measures the detection model’s average precision across various
confidence levels. It estimates the average precision for each class
and then averages them to get an overall measure of detection
accuracy as follows:

ALGORITHM1 | Detector-Tracker algorithm for UAV detection and
tracking system.

k=1
: Set Threshold « 0.5 IOU for detection
. P~ « Initialize State Error Covariance Matrix
: p(w) ~ N(0, Q) «<Initiate Process Covariance Matrix
. p(v) ~ N(0, R) «Initiate Measurement Covariance Matrix
while k<N do
if k == 1 then
initialize state vector x in first frame.
else
8, = Apply (2a)
end if
P = Apply (2b) : Update state covariance matrix.
Yi»confidence, < throughDetector : Get measurements
from proposed detector.
14: if confidence < Threshold then

= e
wy 2o

15: Correct prediction through previous frame.

16: end if

17: K, = Apply (3a) : Update Kalman Gain to calculate §,
and P,.

18: §; = Apply (3b) : Update State vector.
19: P, = Apply (3¢) : Update state covariance.
20: end while

MmAP@0.25 = lZAP,. (6)
n i=1

Similarly, at an IoU threshold of 0.5, the mAP refines the eval-
uation by selecting only the predictions that overlap more with
the ground truth bounding boxes. This stronger criterion provides
insight into the model’s precision under more demanding set-
tings. The formula for mAP @0.5 is similar to that of mAP @0.25,
but with a different IoU threshold.

In addition to precision measures, inference time is critical for
determining the efficiency of the detection model. It refers to the
time it takes for the model to process an input image and make
predictions, which is commonly measured in seconds or millisec-
onds. Furthermore, Frames Per Second (FPS) complements infer-
ence time by measuring the model’s speed in processing frames
or images per second. It is computed as the inverse of the infer-

ence time.
1

FPS= —MMM —
Inference Time

(7

3.3.2 | Tracking

Root Mean Square Error (RMSE) measures the average magni-
tude of the errors between predicted values and actual values.
RMSE is used to evaluate and compare the performance of both
tracking algorithms. It is calculated by taking the square root
of the average of the squared differences between predicted and
actual values as follows:

®)
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where z, and Z, are the ground truth and the system out-
put for the bounding box center, aspect ratio and proportion,
respectively.

4 | Simulation Results and Analysis

A dataset of about 10,000 samples is annotated for the training
and testing stages to address the detection problem, given that
the detector cannot see the entire dataset during the training or
testing stages. Alternatively, unseen data is retained to test and
evaluate the system performance, which is sampled at a higher
sampling rate to account for consecutive frames adoption. The
proposed two-stage system is analyzed using visual results, the
introduced error by each stage is reduced for precise tracking and
trajectory prediction.

4.1 | Measurable Dataset

Detecting UAVs is a challenging task due to several envi-
ronmental and behavioral conditions surrounding their move-
ment, which are considered during the dataset creation. UAVs
have a high motion and rotation, causing their aspect ratio to
change rapidly. The dataset statistics will show various sizes
of UAVs in multiple locations to address the issue of UAVs
appearing as small objects. It consists of training data that
the detector sees and testing data that the detector can not
see (unseen).

The dataset consists of 7,620 images of which 79.8% of 6,080
images are for training, 0.2% of 20 images for testing and
20% of 1,520 images for validation. All images are captured
in high resolution. Some of the images are very challenging

where only the shadow of the UAV is visible. The created
dataset can be accessed through this link: https://github.com/
HaithamHmahmoud/UAV-CDT.

4.1.1 | Training Dataset

Three drone types are detected and classified in order to evaluate
the proposed platform (F450, Husban, and Phantom). The intro-
duced dataset has balanced data that can be used to verify the
class label successfully. The drones were detected in [27] without
considering the UAVs classification into different classes and
introduced these types as consumer-grade types. This dataset
consists of videos taken from YouTube [48, 49], where it contains
multiple setups of the three UAVs with a diverse background to
overcome the challenge of the landscape variety that faces the
detection of the UAV. Also, the UAV appears at varying distances
to address the detection challenges due to the motion behavior
of the UAV. It comprises multiple videos (10,000 images), where
80% were used for training, and 20% were used for validation.
Figure 4 shows the dataset statistics as it reveals that UAVs in
this dataset appear with immense variation across the image
plane, which is clear in the UAV location figure. The UAV size
illustration demonstrates that the UAV is captured at long dis-
tances, appearing in the UAV to the entire image ratio. Thus,
the balance of the raw data can be deduced from this figure.
The dataset was manually generated and labelled. The accurate
label information of the image is recorded in a text file format
using Labelimg [50]. The text file mainly contains the position of
the UAV coordinate data and its label. Three categories of UAVs
exist: F450, Husban, and Phantom drones. Figure 5 illustrates
positive data samples on the right that contain F450, Husban,
and Phantom, respectively. The left side represents the negative
background, with a positive to negative ratio of 7:3. Also, noisy

16 { mmm 450 mmm husban
5
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28 e
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FIGURE4 | Dataset Statistics. The upper three figures for the UAV to image ratio for F450, Husban, and Phantom from left to right, respectively.

The bottom three for the UAV’s location in the image.
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FIGURES5 | Positive samples with drones and negative samples with empty backgrounds.

backgrounds are considered to confirm the presence of the UAV
for further detection and classification.

4.1.2 | Testing Dataset

The dataset used for testing is distinct from the dataset used for
training, in which the frames are collected with a higher sampling
rate in order to provide more consecutive frames for the tracking
stage. Several videos with a total of 500 frames are utilized to test
the mechanism, which is not seen by the detector. The frames are
continuous for each clip in order to validate the concept of adja-
cent frames. Ground truth labeled annotations were constructed
for these frames that were not included in the training but were
utilized to evaluate both the detection and tracking networks.

4.2 |
Results

Detection Network Visual and Analytical

A proper detection model is established for the tracking system,
where the detectors are evaluated through accuracy and speed to
utilize the one with the best performance. The evaluation indices
for detectors are the mean average precision (mAP), inference
time, and frames per second (FPS) conducted on the validation

TABLE 2 | Performance evaluation of detectors.
Detection mAP mAP Inference
model @0.25 @0.5 time FPS
YOLOv3 98.91% 94.99% 32 ms 31
YOLOv4 99.19% 98.42% 30 ms 33
YOLOvVS5 99.3% 99% 13 ms 75
YOLOX 96.86% 93.88% 14 ms 71

data. As shown in Table 2, for a single detector, various IOU
affects the detection mAP, whereby increasing the required IOU
threshold, the corresponding mAP decreases. The mAP at the
IOU threshold of 0.5 is the commonly used matrix for detec-
tion evaluation. IOU thresholds are demonstrated to compare
the detectors. YOLOv4 has a slightly higher mAP score than
YOLOv3 at 0.25 IOU, which results in a small improvement
in inference time and detection speed. YOLOVS5 achieves better
results than YOLOv4 and YOLOX at 0.25 and 0.5 IOUs. Infer-
ence time shows the notability of YOLOv5 where it decreased
by 59% compared to YOLOv3 and by 57% compared to YOLOv4
and by 7.1% compared to YOLOX. Moreover, it achieves higher
FPS than YOLOv3, YOLOv4 and YOLOX by 141%, 127%, and
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FIGURE 6 | Snapshot of predicted results from the YOLO detector. The prediction class is stated within the bounding box. UAV types of F450,

Husban, and Phantom are horizontally shown, respectively.

EEm Detector
I Tacker

FIGURE 7 | Snapshot of prediction using YOLO in green boxes vs. the estimated output using Kalman filter algorithm in red boxes.

5.63% respectively. Since YOLOVS5 is significantly faster than prior
detectors, it is integrated with the tracking system to provide
higher robustness. The experiment is run on a single NVIDIA
TESLA K80 GPU.

Several snapshots from various videos were taken as shown in
Figure 6, where the performance of the YOLOvVS5 detector was
evaluated using a threshold of 0.5. This stage involves detecting
and categorizing any passing UAV into its corresponding class,
where it is differentiated from the background, benefiting the
negative sampled data.

4.3 |
Results

Tracking Network Analysis and Simulated

As stated earlier, the prediction on the current frame without con-
sidering the previous drone trajectory might result in losing sight
of the UAV. The proposed tracker takes the initiative in situations
of occlusion or blur, allowing the UAV to be spotted within the
frame. In Figure 7 the green box represents the detector output,
and the red box represents the tracker output, where the KF is
used to estimate the output. The last frame in the second row
shows that the detector captured the position of the UAV with low
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confidence, and rather than losing track of the UAV, the tracker
succeeded in maintaining its trajectory. In this frame, the only
thing that can be seen is a red bounding box, which indicates the
output of the tracker. To evaluate the performance of the detector
and tracker simultaneously, the RMSE between the system out-
put and the ground truth is calculated.

In Table 3, we measured the detector and tracker where the sys-
tem output is the YOLO prediction, estimation from the Kalman
filter, and an extended Kalman filter, respectively. The ground
truth used here is generated specifically for the evaluation task
and was not included in the training stage. The frames in the
three videos were generated with a 30 FPS sampling rate, with
50,100, and 295 Frames, respectively. These frames are used to
evaluate the tracker, where they were kept aside during the train-
ing process.

The RMSE in the table represents the errors along with the
bounding box four boundaries. It is visible that the detector suf-
fers from a high error rate due to the missing frames, and the bold
values are for the Kalman filter, which has the lowest error, which
enhances the system performance. On the other hand, lost detec-
tor frames contributed a significant amount of inaccuracy to the
system. In Figure 8, we compared the performance of the track-
ers across three different video streams. The Kalman filter shows
smaller error values, but the EKF still gives acceptable results,
implying that the linear motion model has a more appropriate
motion representation and that the EKF introduces complexity
to the system. Finally, the trajectory of two different UAVs is cap-
tured through different colors in Figure 9. It shows the prediction
step output value detected in consecutive frames. The camera uti-
lized in this video is a fixed camera, which allows a successful

TABLE 3 | RMSE (Pixels) comparison between detector and tracker.

Video YOLOvV5- YOLOV5+ YOLOV5+
stream Detector KF tracker EKF tracker
Video 1 57.491 6.231 7.495
Video 2 38.484 9.833 11.934

o
o
o
o
o
°
o
°
o
o
o
o
o
o
o
o

000004

)

appearance of the changeable UAV path in relation to each video
frame.

5 | Conclusion and Future Work

This paper presented a two-stage detection, classification, and
tracking system for UAVs. The proposed system integrates the
YOLO detector with the Kalman filter as a tracker. The tracker
exploits the consecutive frames to locate the UAV in available
frames and to overcome background confusion, occlusion, blur,
or any obstacles causing low detection confidence when using
only the YOLO detector. To include all of the challenges associ-
ated with UAV detection, a specially selected dataset is annotated
and classified into various balanced UAV categories. Using the
proposed data, a comparison of the trained detectors (YOLOV3,
YOLOvV4, YOLOVS5, and YOLOX) showed that the YOLOVS5 detec-
tor had a higher mAP of 99% at an 10U of 0.5, compared to
the other detectors. Furthermore, the inference time of YOLOV5
is around 57% less than that of YOLOv4, making it suitable
for real-time scenarios. Hence, our system performance is com-
pared visually and analytically, in terms of RMSE, in three cases
YOLOVS5 only, YOLOv5 with KF, and YOLOv5 with EKF. The

30 | mmm Kalman Filter Tracker
EEm Extended Kalman Filter Tracker

RMSE (Pixels)
&

video_1 video_2 video_3

FIGURES8 | RMSE Comparison between KF Tracker and EKF
Tracker.

FIGUREY9 | Tracker prediction & trajectory estimation results using Kalman filter.
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results show that the bounding box representing the UAV loca-
tion in a particular frame is refined using the KF and EKF algo-
rithms, and the dropouts due to detection failure are compen-
sated. In addition, it is found that the KF algorithm introduces
better performance with linear systems, in this work, contrary to
the EKF algorithm that is recommended in non-linear systems.
We believe that the proposed platform helps improve the UAVS’
visual detection. In addition, the efficiency of the system can be
improved by investigating the possibility of integrating additional
trackers with KF and EKF.

Future studies on UAV tracking and detection may focus on a
number of important issues to improve the functionality and
flexibility of the system. First, to increase tracking accuracy in
challenging environments like urban settings with high occlu-
sion rates, more sophisticated deep learning models need to be
integrated with conventional filtering approaches. To reduce the
effect of errors caused by occlusion, blur, or other obstacles,
research efforts will be focused on enhancing the combination
of Kalman filtering and its variations with real-time object iden-
tification algorithms like YOLO.

Making computer vision algorithms more resilient and flexible
is a significant area of future studies. This involves looking at
methods that can better manage dynamic environmental fac-
tors, enabling improved UAV tracking and detection in a range
of lighting and weather conditions. It will be essential to move
toward more robust algorithms that can adjust on their own as
the look and surroundings of the UAV change. Furthermore, the
scalability of UAV tracking systems will be further investigated
in future studies. This entails creating techniques that can effec-
tively manage large-scale situations, including tracking several
UAVs concurrently over vast geographic regions. Methods for
handling non-target objects, controlling tracking between cam-
eras, and strengthening tracking resilience in challenging situa-
tions are within the future work.
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