
A Collaborative and Decentralised Approach for
Auditing of Distributed Workflows

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

By

ANTONIO NEHME

Faculty of Computing, Engineering and the Built Environment
January, 2020

DECLARATION

I hereby declare that the thesis entitled “A Collaborative and Decentralised

Approach for Auditing of Distributed Workflows” submitted by me, for the award of the

degree of Doctor of Philosophy to Birmingham City University is a record of bonafide

work carried out by me under the supervision of Prof. Ali E. Abdallah, Dr. Khaled

Mahbub, and Dr. Vitor Jesus.

I further declare that the work reported in this thesis has not been submitted

and will not be submitted, either in part or in full, for the award of any other degree or

diploma in this institute or any other institute or university.

Place: Birmingham, United Kingdom

Date: Signature of the Candidate

CERTIFICATE

This is to certify that the thesis entitled “A Collaborative and Decentralised Ap-

proach for Auditing of Distributed Workflows” submitted by Mr. ANTONIO NEHME,

Center for Cyber Security and Secure Networks, Birmingham City University, Birm-

ingham for the award of the degree of Doctor of Philosophy, is a record of bonafide

work carried out by him under my supervision, as per Birmingham City University’s

code of academic and research ethics.

The contents of this report have not been submitted and will not be submitted

either in part or in full, for the award of any other degree or diploma in this institute or

any other institute or university. The thesis fulfills the requirements and regulations of

the University and in my opinion meets the necessary standards for submission.

Place: Birmingham, United Kingdom

Date: Signature of the Guide

Abstract

The world is on a continuous move towards collaborations between organisations.

This practice is common in many domains including government, health, supply chain

and engineering. Collaborations are enabled by inter-operable applications through

which each organisation makes a contribution in a workflow. Depending on the ap-

plication domain, a number of assurances are needed for the security and robustness

of the workflow while non-repudiation is a common requirement. The contribution of

this work revolves around assuring non-repudiation in distributed collaborations with-

out relying on a single point of trust. In comparison with common practices, this thesis

proposes an approach for auditing that does not trust a single entity to protect the in-

tegrity or availability of audit trails, or to generate or verify the correctness of audit

records. To achieve this aim, security of applications within each organisation includ-

ing their resilience and defence against intrusion needs to be covered as a pre-requisite

of the security of the collaboration; availability and scalability of each application are

also essential to fulfil a collaboration. Microservices architectural paradigm enables

building scalable and maintainable applications and it is expected to become the default

paradigm in the next five years. Microservices applications, however, are challenging to

secure and the literature lacks a comprehensive reference that covers the specifications

of this paradigm.

This research starts by targeting security of microservices-based applications and

carries on to cover non-repudiation in distributed workflow collaborations. For the first

part, a security reference architecture covering microservices specifications through-

out the application development life cycle is presented, as well as an access control

framework to limit vulnerabilities caused by following common old practices. As for

the second part, a robust, confidentiality friendly and application-agnostic approach is

offered to create verifiable audit trails that cover any degree of details in workflow col-

laborations and give auditing capabilities to any threshold of participants. This thesis

presents an implementation of the proposed approach for auditing using an untrusted

centralised server, and another using blockchain.

Keywords: Microservices, Auditing, Workflows, Trust, Confidentiality, Blockchain.

i

Acknowledgement

First and foremost, I wish to express my deep sense of gratitude to my supervisors,

Prof. Ali E. Abdallah for his guidance, inspiring and insightful conversations and

for paving my way into the research world, Dr. Khaled Mahbub for his academic

and technical guidance, attention to details and continuous support over the course of

this journey and Dr. Vitor Jesus for his deep knowledge, academic support, insightful

arguments and immense help to focus the scope of my research. I wish to extend my

gratitude to Dr. Maya Chehab for her guidance at the initial stage of my research.

I am also grateful to the centre of Cyber Security at Birmingham City University,

namely to Prof. Mark Josephs and Prof. Paul Kearney who have always been helpful

and supportive. I also acknowledge the role of the Cyber Security Research Group that

enabled me to have an insight on cutting-edge research conducted by my colleagues,

and of my fellow PhD students Thomas Wagner, Diana Haidar, Fatima Abdallah, Car-

olina Boye, Moojan Pordelkhaki, AlaaAllah ElSabaa and Akinola Siyanbola who were

always ready for any technical, academic or moral support. I would also thank Xiaohu

Zhou whose technical assistance was very helpful in this research.

A special acknowledgement goes also to the Doctoral Research College, namely to

Ms. Sue Witton and Ms. Bernadette Allen for their administrative assistance and for

being always helpful.

I would also like to thank the PhD committee who will invest the time and effort

required to assess my research and evaluate my defence of this thesis.

My work in this thesis would not have been achieved without the help of Samia

Nehme, Peter, Elena and Christopher Coveney, my parents Akram Nehme and Liliane

Sammour and siblings Karen, Alex and Andrew who have given me the encouragement,

love and support I needed to make it through this challenging journey. A special thanks

goes to my friends, Camilio Harb, Mary Fadel and Iman Matar for every action they

took throughout the years that helped me get to where I am today.

Place: Birmingham, United Kingdom

Date: 02/01/2020 Antonio Nehme

ii

Table of contents

Abstract . i

Acknowledgement . ii

List of figures . vii

List of terms and abbreviations . ix

List of publications . x

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Motivation and Rationale . 2

1.3 A Layered Approach for Security . 4

1.4 Research Aims and Objectives . 6

1.5 Thesis Structure . 6

1.5.1 Chapter 2: A Security Reference Architecture for Microservices-

Based Applications . 7

1.5.2 Chapter 3: Fine-grained Access Control Approach for Microservices-

Based Applications . 7

1.5.3 Chapter 4: Auditing of Distributed Workflow Collaborations (Au-

DiC) . 7

1.5.4 Chapter 5: Adopting Blockchain With AuDiC 8

2 A Reference Architecture for Microservices-Based Applications 9

2.1 Introduction . 9

2.2 Overview of Microservices . 11

2.2.1 From Monoliths to Microservices-Based Applications 11

2.2.2 Microservices Principles and Enablers 13

2.2.3 Selective Scaling and Fast Delivery 13

2.2.4 Containerisation . 14

iii

2.2.5 End-to-End Coordination of Microservices 14

2.2.6 A Representative Model of Microservices-Based Applications . . 15

2.3 Microservices Security in the Literature 16

2.4 Considerations for Microservices Security 18

2.4.1 Security Standards . 19

2.4.2 Secure and Trusted Services Interactions 20

2.4.3 Secure Architecture . 20

2.4.4 Secure Infrastructure . 21

2.4.5 Securing the Development Lifecycle and Governance 22

2.4.6 A Secure Reference Model for Microservices-Based Applications 23

2.5 Conclusion . 24

3 Fine-grained Access Control for Microservices-Based Applications 25

3.1 Introduction . 25

3.2 Practices for Access Control . 27

3.3 Microservices Access Control: Problem Statement 28

3.3.1 Threat Model for Microservices Access Control 29

3.3.2 Security Requirements for Microservices Access Control 29

3.3.3 Decoupling Security from Functional Requirements 30

3.3.4 Inadequacy of Current Practices with Microservices 31

3.4 An Approach for Microservices Access Control 33

3.4.1 A Fine-Grained Access Control 34

3.4.2 Proposed Security Checks . 35

3.4.3 Operational Flow of the Proposed Approach 36

3.5 Analysis of the Proposed Approach . 37

3.5.1 Fine-Grained Access Control . 37

3.5.2 Token Theft Mitigation . 38

3.5.3 Confused Deputy Mitigation . 38

3.5.4 Manageability and Reusability 38

3.6 Implementation of Fine-grained Access For Microservices 39

3.6.1 Prototype of the Proposed Security Checks 40

3.6.2 Performance Evaluation of the Prototype 42

3.7 Conclusion . 43

iv

4 AuDiC: Auditing of Distributed Workflows Collaborations 44

4.1 Introduction . 44

4.2 Auditing Approaches: State of the Art 46

4.3 Auditing of Workflows: Problem Statement 48

4.3.1 Threat Model With a Centralised Audit Server 49

4.4 Trustless and Collaborative Auditing . 50

4.4.1 Notation for Auditing Operations of Workflows 51

4.4.2 Coverage of Arbitrary Topology 53

4.4.3 Key Management . 58

4.5 System Overview with a Centralised Audit Server 59

4.5.1 Audit Data Structure . 59

4.5.2 Audit Record Verification . 61

4.5.3 Audit Server Verification . 63

4.5.4 Protocol of AuDiC with a Centralised Audit Server 64

4.6 Analysis of AuDiC with a Centralised Audit Server 65

4.6.1 Malicious Participant . 65

4.6.2 Malicious Audit Server . 65

4.6.3 Collusion Between Nodes . 66

4.6.4 Collusion Between Participants and the Audit Server 67

4.6.5 Representative Scenarios . 68

4.7 Implementation and Evaluation with a Centralised Audit Server 71

4.7.1 Load Emulation of the Audit Server 71

4.7.2 Performance Evaluation with the Centralised Audit Server 72

4.8 Conclusion . 75

5 A Blockchain-Based Implementation of AuDiC 77

5.1 Introduction . 77

5.2 Blockchain for Auditing: State of the Art 78

5.3 Blockchain for Auditing of Workflows: Problem Statement 80

5.3.1 Threat model with a Blockchain-Based Audit Server 81

5.4 System Overview with Blockchain-Based Audit Server 81

5.4.1 Key Differences With the Centralised Audit Server 82

5.4.2 Audit Data Structure . 83

v

5.4.3 Audit Record Verification . 83

5.4.4 Protocol . 84

5.5 Analysis of AuDiC with Blockchain-Based Audit Server 86

5.5.1 Malicious Participant . 86

5.5.2 Non-consecutive Colluders . 86

5.5.3 Consecutive Colluders . 87

5.5.4 Scenarios . 87

5.6 Implementation and Evaluation with Blockchain-Based Audit Server . . . 89

5.6.1 Comparing Performance of Both Implementations 90

5.6.2 Effect of Sharing Records . 91

5.7 An Application Agnostic Evaluation of our Contributions 92

5.8 Conclusion . 92

6 Conclusion and Future Work 94

6.1 The Big Picture . 94

6.1.1 Secure Architecture Enabling Securing Access Control 95

6.1.2 Secure Applications Enabling Robust Collaborative Auditing . . . 96

6.2 Conclusion and Future Work . 96

6.2.1 Summary of the Research Contributions 97

6.2.2 Limitations . 100

6.2.3 Future Research Directions . 101

References . 102

vi

1.1 Distributed Microservices-Based Applications in Perspective 5

2.1 Monolithic vs. Microservices Paradigm. Modified from (Fowler and

Lewis 2014) . 10

2.2 Microservices and Overarching Challenges 12

2.3 Representative Model of a Microservices-Based Application 15

2.4 A Security Reference Architecture for Microservices-Based Applications 23

3.1 Applying for a Passport . 29

3.2 Gateway to Secure Primitive Services 30

3.3 A Representation of the Common Integration of OAuth with Microser-

vices . 32

3.4 Overview of the Security Architecture: Gateways for Security Enforce-

ment, and an OAuth Client per Consumer-Resource 34

3.5 Sequence Diagram Representing a Service-to-Service Interaction 36

3.6 A Representation of Security Enforcement for Different Security Re-

quirements with Gateways . 39

3.7 Token Theft Detection . 40

3.8 Unauthorized Client Detection . 40

3.9 Malicious Request Without our Security Checks 41

3.10 Line Chart Showing Our Experimental Results 42

4.1 A Simplistic and Technology Independent Representation of AuDiC . . 50

4.2 BPMN Representation of a Supply Chain Workflow. Credit Goes to

Weber et al (Weber et al. 2016) . 51

4.3 Our Representation for the Supply Chain Workflow 52

4.4 Communication Patterns in a Graph Based Representation of Workflows 54

4.5 Our Representation of Workflows . 55

4.6 Overview of the Implementation of AuDiC With a Centralised Server . 60

vii

List of figures

4.7 Sequence Diagram for AuDiC on a Workflow that Starts and Ends with

Participant A: Upwards Arrows Represent Reporting to the Audit Server 61

4.8 An Overview of the Audit Trails in AuDiC 65

4.9 Collusion Between Participants with a Coloured Background 66

4.10 Malicious Audit Server Colluding with Participants 68

4.11 Malicious Activities When AuDiC is Followed. Case 1 Shows a Single

Malicious Entity, Case 2 Shows a Collusion Between an Entity and the

Audit Server, and Case 3 Shows a Collusion Between two Participants . 69

4.12 A Graph Based Representation of the Scenario of Applying for a Password 70

4.13 Average Processing Time for Different Log-normally Distributed Delays 72

4.14 Processing Time of AuDiC with Respect to the Size of the Payload and

the Server Data Size on Topologies of 15 Nodes 73

4.15 Processing Time of AuDiC with Respect to the Size of the Payload and

the Server Data Size on Topologies of 20 Nodes 74

4.16 Processing Time with Respect to the Size of Messages and Server Data

Size . 74

5.1 Overview of Blockchain as an Audit Server in AuDiC 81

5.2 Sequence Diagram Representing AuDiC Protocol with a Blockchain-

Based Implementation of the Audit Server 84

5.3 Overview of AuDiC with a Blockchain-Based Implementation of the

Audit Server. Faded Messages on the Blockchain Represent Integrity

Proofs of the Actual Audit Records 85

5.4 Collusion Between Participants with a Coloured Background 87

5.5 Malicious Behaviour of Nodes when Auditing the Passport Scenario . . 88

5.6 Blockchain and Centralised Audit Server Performance Comparison . . . 90

5.7 Performance Comparison of the Blockchain-Based Implementation of

AuDiC From the Perspective of Audit Data Sharing 91

6.1 Research Contributions in Order . 94

6.2 Implementing Re-usable Plugins to Audit Workflows 102

viii

List of terms and abbreviations

ACS Access Control Server . 33–38, 42

API Application Programming Interface 1, 9, 10, 17, 20, 71, 89, 100

CGW Consumer Gateway . 33, 36, 42, 92

CMS Consumer Microservice . 30, 33, 36, 37

GW Micro-Gateway . 30, 33–35

IDS Intrusion Detection System . 20, 24

IETF Internet Engineering Task Force . 19

JOSE Javascript Object Signing and Encryption 19

JSON JavaScript Object Notation . 19

JWT JSON Web Token . 19, 20

MSA Microservices-Based Application 1, 2, 18, 19, 25, 95, 97, 100, 101

OAuth Open Authorization 2, 7, 19, 20, 25, 27–29, 31–39, 41, 42, 95, 98

PAP Policy Administration Point . 33

PDP Policy Decision Point . 33, 34, 36

PEP Policy Enforcement Point . 33, 34, 36, 37

PKI Public Key Infrastructure . 18, 20, 58

PVSS Publicly Verifiable Secret Sharing . 58, 59

REST Representational State Transfer . 19

RGW Resource Gateway . 33, 35–38, 40, 42, 92

RMS Resource Microservice . 30, 33–37, 40, 41

SOA Service-Oriented Architecture 1, 3–5, 7, 10, 11

SOAP Simple Object Access Protocol . 19

XACML eXtensible Access Control Markup Language 7, 19, 26, 27, 33, 34, 36, 37,

39, 43, 98

XML Extensible Markup Language . 19

ix

List of publications

1. Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A., 2019. Securing Microser-

vices. IT Professional, 21(1), pp. 42-49. https://doi.org/10.1109/

MITP.2018.2876987

2. Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A., 2018, November. Fine-

Grained Access Control for Microservices. In International Symposium on Foun-

dations and Practice of Security (pp. 285-300). Springer, Cham. https:

//doi.org/10.1007/978-3-030-18419-3_19

3. Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A., 2019, August. Decentralised

and Collaborative Auditing of Workflows. In International Conference on Trust

and Privacy in Digital Business (pp. 129-144). Springer, Cham. https://

doi.org/10.1007/978-3-030-27813-7_9

4. Zhou, X., Nehme, A., Jesus, V., Wang, Y., Josephs, M. and Mahbub, K., 2019,

October. Towards Blockchain-Based Auditing of Data Exchanges. In Interna-

tional Conference on Smart Blockchain (pp. 43-52). Springer, Cham. https:

//doi.org/10.1007/978-3-030-34083-4_5

x

https://doi.org/10.1109/MITP.2018.2876987
https://doi.org/10.1109/MITP.2018.2876987
https://doi.org/10.1007/978-3-030-18419-3_19
https://doi.org/10.1007/978-3-030-18419-3_19
https://doi.org/10.1007/978-3-030-27813-7_9
https://doi.org/10.1007/978-3-030-27813-7_9
https://doi.org/10.1007/978-3-030-34083-4_5
https://doi.org/10.1007/978-3-030-34083-4_5

CHAPTER 1

Introduction

1.1 Introduction

Electronic systems dominate every aspect of daily lives and are the backbone of govern-
ments, health, industrial, financial as well as educational systems (Weber et al. 2016,
Werner and Gehrke 2015, Odat 2012, Twining et al. 2013, Lightstep 2018). To keep
up with consumer expectations, continuous improvement and delivery of existent sys-
tems are main requirements especially in large organisations, thus the adoption of agile
as a rapid software development methodologies and continuous integration and deliv-
ery has evolved as default development practices (Solinski and Petersen 2016, NGINX
2015). Maintainability, defined as the ability to build on top of existent code, is an-
other essential requirement to build systems in a cost and time-effective way (Dragoni
et al. 2017). Other required characteristics for software to be considered as reliable are
security, availability, robustness and scalability of the software.

Microservices architectural paradigm is an enabler for manageability, technology
diversity and rapid development of applications; it also enables scalability in a cost-
effective way (Dragoni et al. 2017). A Microservices-Based Application (MSA) does
not reflect a new architectural style when thinking of the Service-Oriented Architec-
ture (SOA), a paradigm used to integrate interoperable electronic services belonging
to the same or to different organisations (Zimmermann 2016). It is rather SOA imple-
mented following current trends and technologies such as automation of infrastructure
operations and the adoption of containers, and used as a replacement of the older style,
the monoliths, to develop applications for a single organisation (Zimmermann 2016,
Fowler 2014, Thönes 2015). This paradigm, however, is not straightforward to adopt
and to secure (Dragoni et al. 2017); recent surveys reveal architectural flaws in existent
implementations of microservices as well as exploited vulnerabilities leading to failure
of systems in industries leading this paradigm (Neri et al. 2019, Sun et al. 2015). On the
other hand, organisations need to collaborate with each other in a wide range of domains
including health, supply chain and engineering, banking, e-government (de Vrieze and
Xu 2018). These collaborations, enabled through Application Programming Interfaces
(APIs) and the Service-Oriented Architecture, need to be auditable following a robust

1

approach to enable assigning accountability of wrong-doing with a high level of cer-
tainty in case of a dispute between organisations (Zawoad et al. 2013, 2016, Weber
et al. 2016).

Similarly, in any business context, the potential damage caused by a compromised
element is relative to the trust level that this element has. This work targets vulnera-
bilities caused by trust in microservices-based applications, and in the auditing of the
collaborations connecting multiple organisations through these applications.

1.2 Thesis Motivation and Rationale

Microservices is a promising paradigm that, in addition to the scalability and main-
tainability benefits, enables the integration of smart devices (Jarwar et al. 2017). A
survey conducted by NGINX in 2015 and combining 1800 IT professionals reveals
that 44% of participating companies are already using microservices for development
and in production, and 24% are investigating the adoption of microservices (NGINX
2015). Another survey in 2018 including 350 senior developers from a diversity of in-
dustries shows that 86% of the participants expect microservices to become the default
development paradigm within the next five years (Lightstep 2018). In a nutshell, mi-
croservices architectural paradigm is an approach to develop a single application with
a number of small and independently deployable services, developed with different
technologies, and communicating through lightweight mechanisms (Fowler and Lewis
2014). The term ‘microservices’ dates back to 2011, but the first detailed introduction
of the paradigm was presented in a blog by Lewis and Fowler in 2014 (Fowler and
Lewis 2014, Zimmermann 2016, Yarygina and Bagge 2018). MSA is still maturing,
and the literature is poor in architectural and security guidance (Zimmermann 2016,
Dragoni et al. 2017, Neri et al. 2019, Di Francesco et al. 2017). In terms of sectors,
Microservices are being introduced in all types of applications, including health, gov-
ernment, and critical applications (Fetzer 2016, Savchenko et al. 2015). The design
principles of this paradigm increase the attack surface of an application, and although
security challenges and practices are discussed in existent research, a holistic approach
to ensure the security of microservices-based applications was not available to guide
software practitioners at the initial stage of this research (Nehme et al. 2019b, Yarygina
and Bagge 2018). In addition to that, open security standards for authentication and
access control, designed originally for monolithic applications, do not take into account
the specifications of microservices. As a result, the common integration of Open Autho-
rization (OAuth), the currently most popular open standard for access delegation, with
microservices-based applications leaves these applications vulnerable to token manipu-
lation and privilege escalation attacks; these attacks can lead to data exfiltration and to
incorrect behaviour of microservices-based applications (Nehme et al. 2018). A large

2

scale study on applications in real-world settings using OAuth 2 revealed that vulnera-
bilities in these applications enabled access tokens to be stolen in 91% of the systems
that were evaluated (Sun and Beznosov 2012); although one can expect a decrease of
these worrying numbers when best security practices are followed, microservices-based
applications require special attention for the larger attack surface that they have in com-
parison to the monolithic applications considered in their study.

Moving to collaborations between organisations, enabled through SOA, transac-
tions travel through a number of administrative and security domains (de Vrieze and
Xu 2018). Common approaches for auditing of these collaborations rely on a trusted
party to generate or store audit trails; collusion with this trusted party makes tampering
with digital evidence and breaching the confidentiality of workflow transactions possi-
ble. Tackling collusion-related threats to tamper with evidence is work in progress, and
there is room for improvement in the common audit mechanisms to construct reliable
audit trails. Examples of application domains involving the collaboration of multiple
organisations include banking, logistics, supply chain, e-government (Yao et al. 2010,
Lim et al. 2012, Weber et al. 2016, Wouters et al. 2008, Kieseberg et al. 2016). A
number of studies shed light on the importance of audit trails in systems involving mul-
tiple organisations. Werner et al. (Werner and Gehrke 2015) highlight the importance
of reliable audit trails in the financial accounting sector. Kuntze et al. (Kuntze and
Rudolph 2011) stress on the importance of data authenticity, integrity and privacy for
evidence stored in forensic databases; they state that maintaining the confidentiality
of parties involved in a chain of evidence is challenging. In the government domain,
service processing and collaborative decision making is done through data exchanged
between departments when an e-government system is in place (Hartmann and Steup
2015, Freudenthal and Willemson 2017, Thompson et al. 2015). Auditability of trans-
actions to ensure accountability and non-repudiation is a core aspect of security (Hart-
mann and Steup 2015). A case study in Australia discusses the inadequacy of audit
systems in Western Australia’s Police and Health departments to assign accountability
for operations on government records (Thompson et al. 2015). Existent approaches for
audit either trust an entity to record evidence of cross-domain transactions, or rely on
each domain to record what it sees of a transaction (Rudolph et al. 2009, Lim et al.
2012, Vahi et al. 2013, Wouters et al. 2008). Blockchain has been promoted as a trust-
less architecture that can be used for auditing; this architecture, however, has limitations
including cost and scalability (Tian 2017). There is room for improvement in common
practices for auditing where collusion with an entity trusted to record or store evidence
can jeopardise the confidentiality, integrity and availability of records. The highlighted
research gaps, in addition to the engagement with the digital transformation project for
the Republic of Lebanon at its initial stages1, are the motivations of this research.

1https://digitaltransformation.gov.lb

3

https://digitaltransformation.gov.lb

1.3 A Layered Approach for Security

This research follows a layered approach, inspired from Yarygina and Bagge (Yarygina
and Bagge 2018), to target the security of distributed applications. This approach con-
siders the security of small components confined within a single administrative domain
to be the pre-requisite of secure interactions within and outside a domain. This thesis
focuses on microservices-based architectural paradigm as an approach to develop appli-
cations. Looking at Figure 1.1, which shows the components of a distributed application
in perspective, microservices interacting within a single domain form a microservices-
based application, and the latter (i.e. microservices-based application) connects with
other applications, potentially in different domains, to form a Service-Oriented Archi-
tecture (Yarygina and Bagge 2018). A number of studies including the first systematic
review comparing microservices-based applications to SOA concluded that the differ-
ence between the two is not in the architectural style, but in the development and deploy-
ment paradigms enabled by recent technologies (Zimmermann 2016, Newman 2015,
Neri et al. 2019). Hence, one can expect many of SOA’s security approaches to be ap-
plicable to microservices-based applications, and to have specific security concerns for
microservices-based applications caused by the new practices and technologies (Yary-
gina and Bagge 2018).

From an abstract point of view, the inner layer of distributed applications contains
the application components (microservices) in each domain. Each microservice encap-
sulates a small functionality and is developed, deployed and maintained independently
from other microservices. To perform a larger functionality, microservices communi-
cate and trust instructions and data sent from each other within a single domain; this
means that an erroneous input from a microservice, caused by a compromise of this
component, propagates across a domain jeopardising the bigger function (Dragoni et al.
2017). Each microservice is a potential point of exploit; therefore, security of microser-
vices needs to be carefully monitored throughout their life cycle starting from securely
bootstrapping components to their safe decommissioning.

The middle layer of Figure 1.1 represents microservices coordination to form a
microservices-based application. Microservices trust each other, and often communi-
cate over an insecure network within their domain (Otterstad and Yarygina 2017, Drag-
oni et al. 2017); even when the security of the microservices is assumed, the trust model
in MSA and nature of interactions between microservices is an enabler for attacks on
their applications. Due to relatively recent adoption and endorsement of microservices
architectural paradigm, comprehensive security guidance was not available in the litera-
ture at the initial stage of this research (Yarygina and Bagge 2018, Nehme et al. 2019b).
Open Authorization 2, an open security standard designed for access delegation of tra-
ditional architectural styles, has not yet been modified to consider microservices speci-

4

fications. Common adoption of some of these standards causes vulnerabilities leading
to potential data exfiltration and faulty behaviour of applications (Nehme et al. 2019a).
Similarly to the effect of a compromised microservice on an application, a compro-
mise in a microservices-based application can spread to and affect applications in other
domains of a Service-Oriented Architecture (Nehme et al. 2018).

Moving to the external layer of the figure, a Service-Oriented Architecture, con-
sidered as an aggregation of applications from different domains in the context of this
thesis, relies on the two aforementioned layers. However, assuming the robustness of
applications in different security domains does not necessarily imply the benevolence
of the administrative domains maintaining these services. Auditing is a fundamental
element in the security of SOA (Meier et al. 2009); recording evidence used for audit-
ing must be done following a robust and trustworthy approach to make its data reliable.
While trusting an audit system within a single domain might be a justifiable and under-
standable practice, the question remains who to trust with the generation and storage of
evidence covering interactions spreading across multiple domains.

With this in mind, the security approach followed in this research starts by focus-
ing on the security of microservices and microservices-based applications in Chapter
2; vulnerabilities related to microservices access control that affect their internal, as
well as external domains that they interact with are then targeted in Chapter 3. As for
the security of SOA, the contribution of this research is developing a robust auditing
approach covering the interactions and data exchange between participants in different
domains.

Fig. 1.1 Distributed Microservices-Based Applications in Perspective

5

1.4 Research Aims and Objectives

This thesis aims are to contribute to the security of MSA applications with a focus on
access control, and to enable assigning accountability for actions and decisions made in
workflows-based collaborationsin order to solve disputes between participants without
relying on or trusting a single party.

Fulfilling the aim of this research requires meeting the objectives listed below:

– Objective 1: identifying existent security practices that are applicable to microservices-
based applications.

– Objective 2: identifying weaknesses in practices for access control in MSA and
designing an approach, with a proof of concept, to overcome these limitations.

– Objective 3: designing an approach to assign accountability for contributions in
workflow-based collaborations between organisations without relying on a single
point of trust to generate or store digital evidence.

– Objective 4: offering an implementation for the proposed approach for audit-
ing with an an untrusted centralised server and another implementation with a
blockchain.

– Objective 5: analysing and evaluating the two implementations with a focus on
security and performance.

1.5 Thesis Structure

This work contributes to the security of microservices and their compositions within
and across different administrative domains. In terms of structure, this thesis targets the
security of the inner layers of Figure 1.1 in Chapters 2 and 3, and moves progressively
to the outer layer in Chapters 4 and 5. Chapter 6 concludes this thesis by reflecting on
the big picture, highlighting the limitations of the proposed approaches and shedding
light on future research directions. A research paper covering each of the chapters in the
body of this thesis is published; the list of publications, following the same order of the
chapters is presented at the beginning of this thesis. This section presents an overview
on each of the main chapters.

6

1.5.1 Chapter 2: A Security Reference Architecture for Microservices-Based Appli-
cations

This chapter gives an overview of microservices, their interactions to build microservices-
based applications, as well as the technologies enabling the shift to this architectural
paradigm. Chapter 2 gives a comprehensive but not exhaustive view on the security
of microservices; it sheds light on security practices covering different dimensions
throughout the development life cycle and presents a security reference architecture
that covers fundamental security practices for microservices-based applications. While
this research does not claim the completeness of the security guidelines for microser-
vices, the presented framework helps to build security by design for microservices-
based applications. The aim is to raise awareness among software practitioners and
security architects, and point them towards simple practices, since the design phase and
throughout the application life cycle, that help mitigate most common attacks. At the
time of publishing this chapter, this was believed to be the first reference architecture
giving a comprehensive view of microservices challenges and approaches to mitigate
them.

1.5.2 Chapter 3: Fine-grained Access Control Approach for Microservices-Based Ap-
plications

Due to the flexibility, scalability, and agility of development of microservices, the adop-
tion of a security solution requires it to be easily adaptable to the application context
and requirements and reusable for different microservices. An approach that targets key
security challenges of microservices-based applications access control is proposed. The
access control model in Chapter 3 relies on a coordination of security components, and
offers a fine-grained access control in order to minimise the risks of token theft, ses-
sion manipulation, and a malicious insider; it also renders the system resilient against
a privilege escalation attack known as the confused deputy problem. This approach
is based on a combination of OAuth 2 and eXtensible Access Control Markup Lan-
guage (XACML) open standards, and achieved through reusable security components
integrated with microservices.

1.5.3 Chapter 4: Auditing of Distributed Workflow Collaborations (AuDiC)

Workflows, possible through SOA, involve actions and decision making at the level of
each participant. Trusted generation, collection and storage of evidence is fundamental
for these systems to assert accountability in case of disputes. Ensuring the security of
audit systems requires reliable protection of evidence in order to cope with its confiden-
tiality, its integrity at generation and storage phases, as well as its availability. Collusion
with an audit authority is a threat that can affect all these security aspects, and there

7

is room for improvement in existent approaches that target this problem. This thesis
presents AuDiC: a robust, collaborative, trustless and confidentiality friendly approach
for workflow auditing, which targets security challenges of collusion-related threats and
enables recording evidence to any degree of details. This approach is application ag-
nostic, relies on participants verifying reported audit data of each other, and introduces
a secure mechanism to share encrypted audit trails with participants while protecting
their confidentiality. The approach presented in Chapter 4 offers auditing capabilities
to any K out of N participants in a collaboration, and the adequacy of the approach
is discussed to produce reliable evidence despite possible collusion to destroy, tamper
with, or hide evidence.

1.5.4 Chapter 5: Adopting Blockchain With AuDiC

The initial implementation of AuDiC uses an untrusted centralised server only to dis-
play audit records to all participants. The availability of this server is crucial for the
functionality of the scheme; this dependency makes the implementation prone to a sin-
gle point of failure. Due to its distributed nature and its common use for audit, using
blockchain is a natural extension to AuDiC. Chapter 5 considers the same approach
with a blockchain-based implementation of the audit server. The same security goals
are achieved with the first implementation were reached by making use of the advan-
tages of blockchain and finding a way around its limitations.

8

CHAPTER 2

A Reference Architecture for Microservices-Based Applications

Microservices have drawn significant interest in recent years and are now successfully
finding their way into different areas, from enterprise IT and the Internet of Things
to critical applications. Although microservices enable building scalable, resource ef-
ficient and maintainable applications, the specifications of their architectural paradigm
require special considerations for the security of microservices-based applications com-
pared to older paradigms.

This chapter introduces microservices and discusses how microservices-based ap-
plications can be secured at different levels and stages considering a common software
development lifecycle. The findings are represented in a security reference architecture
for microservices-based applications.

2.1 Introduction

Structuring web applications has substantially changed throughout the period following
the invention of Web three decades ago (Lu et al. 2017). This is based on the demand
of the market during periods of time (Salah et al. 2016). Client-server is one of the
earliest architectures of web applications. It is based on two programs: a client program,
which runs the user interface, requesting resources from a server which usually hosts
a database (Salah et al. 2016). The server is normally placed behind a firewall in this
architecture which serves as a barrier against potential unsafe packets and unauthorized
access to the system.

After that, and due to the urge of information exchange and collaboration between
organisations, web applications started following a decentralised architecture in which
a client makes use of more than one resource. This is achieved with web services which
are applications that offer their services in a machine-readable way through Applica-
tion Programming Interfaces (APIs)(Maleshkova 2015). This evolution was facilitated
by the enhancement of remote procedure calls and inter-process communication (Slater
2015, Salah et al. 2016). APIs lead to a radical change in software development prac-
tices enabling reuse of web services; in 2012, Twitter traffic analysis revealed that 75%
of its traffic goes through its API (Maleshkova 2015). This evolution is known as the

9

Service-Oriented Architecture (SOA) which intends to develop applications through the
collaboration of multiple connected units, the web services (Yu et al. 2016). Each unit
is autonomous and loosely coupled from the other (Slater 2015, Salah et al. 2016, Yu
et al. 2016). Through APIs, SOA enabled the collaboration of applications developed
with different programming languages; these applications are orchestrated to achieve
a business function. Considering an online store connected to a payment system as an
example. The online store, combining a number of functionalities including authenti-
cation, searching for items, adding to basket and rating items, is connected to a point
of sale for payments to be made; the latter system also includes different functionali-
ties including credit check, card validation, credit update and email notifications. The
online store and point of sale are two connected systems exposing an API each.

However, individual applications in a SOA chain are developed with programming
languages that, although enabled breaking the application into modules, produce sin-
gle executable artefacts that rely on sharing resources on the same machine; these are
referred to as monoliths (Dragoni et al. 2017, Rahman and Gao 2015). In the exam-
ple (i.e. the online store connected to a payment system), the functionalities of each
application can be developed as modules, and each application is a single executable
artefact. Although split into modules, monolithic applications covering different func-

Fig. 2.1 Monolithic vs. Microservices Paradigm. Modified from (Fowler and Lewis
2014)

tionalities suffer from general issues, mostly related to maintainability and scalability.
Another paradigm had to be followed to overcome the limitations of monoliths; thus,
microservices have emerged.

Being a direct evolution of SOA, but also an application development practice, se-
curity for Microservices needs to be progressive where it shares commonalities with

10

general software development security. In contrast, new approaches are needed to cope
with the fundamentally different approach to application development. In this sense,
this chapter serves as guidance from architectural design (specific to Microservices)
to implementation and maintenance (general to software development). It includes dis-
cussing the fundamentals of this paradigm and how it evolved from SOA as well as secu-
rity practices considering microservices specifications and design principles throughout
the application life cycle. This is complemented with a set of references concerning in-
dustry initiatives, known security challenges and lessons learned so far, relevant projects
and standardization efforts.

2.2 Overview of Microservices

Consider the following scenario from a point of sale (PoS) system as an example: when
somebody pays a bill, a transaction is sent along with a balance check; assuming the
availability of funds, the person’s credit gets updated, and email notifications are sent as
a receipt of payment. The described scenario is triggered through an API call to the PoS
system, and this system can either be implemented as a monolith or a microservices-
based application.

2.2.1 From Monoliths to Microservices-Based Applications

A monolithic application is a reference to a source code that deployed as a single ex-
ecutable artefact (JAVA WAR files) (Dragoni et al. 2017, Sun et al. 2015), or as a
set of files mapped to the same directory (Ruby on Rails and Node.js applications)
(Slater 2015, Richardson and Smith 2016), and developed using one programming lan-
guage. These applications can be structured into different modules, being classes, pack-
ages, or any internal structure depending on the nature of the application, the program-
ming language or the programming paradigm being used (functional, Object Oriented,
etc.) (Zimmermann 2016) and the communication between these components is done
through internal calls.

While monolithic implementations of SOA enabled rich applications, their limita-
tions soon became apparent:

– Large monolithic applications are complex and hard to maintain as tracking bugs
turned into a difficult task requiring perusals through a long code (Dragoni et al.
2017).

– Maintaining the codebase of a large application introduces time-consuming tasks
such as long building and deploying phases since a small change affects the entire
application (Dragoni et al. 2017).

11

– Regular and fast delivery cycles are impractical, and all services in the monolithic
application to be disrupted during deployment (Villamizar et al. 2015).

– The entire life of the application is limited to the initial choices of technolo-
gies (Dragoni et al. 2017).

– Allocation of resources is inefficient given that scaling one popular service re-
quires resources to be allocated to the entire system (Dragoni et al. 2017, Vil-
lamizar et al. 2015).

– Monolithic applications are prone to single points of failure: a load on a sin-
gle functionality or a bug in one module of the application (a memory leak for
example), can bring the entire application down (Villamizar et al. 2015).

A clear solution is to decompose monolithic applications into small and independently
deployable services with each as simple as possible, performing one small business
function, and running independently from others (Thönes 2015). The resulting compo-
nents, in larger numbers but individually much simpler, communicate with each other,
in order to achieve the same level of functionality as in a large monolithic architecture.

Fig. 2.2 Microservices and Overarching Challenges

Due to their granular nature, microservices entail components reflecting different
challenges summarized in Figure 2.2. Microservices need to scale while remaining
discoverable and interoperable. Each microservice, reflecting a functionality is inde-
pendent, and therefore can be scaled individually. The discovery service keeps track of
the active instances of the microservice, and is used to direct the traffic within the appli-

12

cation; Eureka1 and Ribbon2 are examples of components used service discovery and
interoperability respectively. Similar to any service-oriented approach, microservices
support orchestration and choreography; communication in microservices-based appli-
cations is tied to interoperability, discovery and scalability of microservices. Microser-
vices are ‘volatile’, meaning that instances of a single microservice can be deployed or
retired on demand (Heinrich et al. 2017); therefore, the data storage is normally separate
from a microservice and each service has its database and adopts the database technol-
ogy which best fits its functionality (Neri et al. 2019). Finally, the entire application
needs to be secured, tested and monitored.

2.2.2 Microservices Principles and Enablers

Microservices architectural style is considered an evolution of the traditional monolithic
implementation of a single application. It emphasises on dividing systems into small
services (the microservices) that perform cohesive business functions (Alshuqayran
et al. 2016). Cohesive in this context means implementing functionalities only related
to the concern of the business function that a microservice implements. Microservices
have to be loosely coupled, meaning that each service should have the ability to be de-
ployed on its own (Dragoni et al. 2017). They should also have a bounded context so
that a service should function without knowing anything about other services (Drag-
oni et al. 2017, Fowler and Lewis 2014). Each should also be autonomous and inde-
pendently deployable (Heinrich et al. 2017, Fowler and Lewis 2014).

With this approach, complex systems are developed by joining independent mi-
croservices which communicate with each other via lightweight mechanisms over a
network (Alshuqayran et al. 2016); This implies, for example, favouring REST inter-
faces over the complexity and heavy processing weight of SOAP.

2.2.3 Selective Scaling and Fast Delivery

Each of these services typically has its own management, programming language and
database, which is often referred to as polyglot persistence. This ensures loose coupling
between microservices and allows each service to use the database technology that best
suits its needs (Namiot and Sneps-Sneppe 2014). Also, this allows each service to have
a fit for purpose hosting and programming environment: for example, an image process-
ing component written in C++ can be allocated a to high processing power while lower
specs are allocated to another service performing logical or mathematical operations
and written in Python. A further advantage is that this allows factorising the work-
load among different services which scale independently on demand (Sill 2016, Neri

1https://github.com/Netflix/eureka
2https://github.com/Netflix/ribbon

13

https://github.com/Netflix/eureka
https://github.com/Netflix/ribbon

et al. 2019); this enables efficient scaling, for example, in a cloud environment (Thönes
2015, Linthicum 2016). Microservices architectural style is also considered an enabler
for DevOps and Continuous Deployment which are software development practices
aiming for rapid and frequent deployments; this is achieved by having independent de-
velopment and deployment pipelines for each microservice (Heinrich et al. 2017). This
methodology is believed to enhance the system agility and was adopted during the last
few years by big software companies like Netflix, Amazon and Linkedin (Villamizar
et al. 2015). Applications for Internet-of-Things can exploit this feature to the fullest
when compared to monolithic applications (Namiot and Sneps-Sneppe 2014).

2.2.4 Containerisation

Each microservice should be kept as simple as possible which has the further advantage
of requiring fewer resources. Given the independent deployability requirement, this
currently poses a problem as the lowest-spec server (e.g., on a public cloud provider) is
usually too expensive for the resources a microservice needs. Also, setting up virtual
machines becomes a complex matter with the diversity of dependencies (Ebert et al.
2016).

Containers are used to mitigate this problem. The concept of a container is not new;
Linux containers, LXC, have been supported since 2008 (Souppaya et al. 2017). In
a typical setting, many containers, each running a service, run on the same kernel and
hardware while being (logically) isolated from each other (Karmel et al. 2016, Neri et al.
2019). While a virtual machine has its own OS stack and depends on hardware-level
isolation provided by a hypervisor, containers share the kernel of the host operating
systems that they run on; containers are therefore lighter but less isolated than virtual
machines (Ciuffoletti 2015). A popular implementation of containers is Docker, and
it is supported by many tools, referred to as orchestrators, like Kubernetes, Mesos,
and Docker Swarm (Heinrich et al. 2017, Souppaya et al. 2017). Orchestrators monitor
containers health and resource consumption, restart and scale containers following their
configuration (Souppaya et al. 2017). These Docker containers are relatively easy to
clone with the availability of its registry services, DockerHub (Neri et al. 2019).

2.2.5 End-to-End Coordination of Microservices

In order to perform a complete business function, applications require a consistent and
correct cooperation and communication between the microservices. Similar concepts
in SOA still apply. There are two main mechanisms: orchestration, requiring a central
service (the conductor) to send requests and organise the workflow, and choreography,
where each service reacts according to events or triggers (Newman 2015).

Orchestration is normally executed at the gateway level, which is a single entry

14

point to the system which makes it ideal for storing logs and auditing tasks. The or-
chestrator, referred to as the conductor, is a central service that includes the logic of
the application (Butzin et al. 2016, Dragoni et al. 2017); this, potentially, makes mi-
croservices tightly coupled to it (Villamizar et al. 2015, Namiot and Sneps-Sneppe
2014). As with choreography, the application logic is collectively known by microser-
vices which reacts to some events or triggers to establish collaboration (Dragoni et al.
2017, Butzin et al. 2016, Newman 2015). An event store can be used with the ability to
store and publish events, and events should be divided in categories to which microser-
vices can subscribe. For microservices-based applications, choreography is preferred
over orchestration, since orchestration implies a dependency on a central process which
contradicts the decoupling principle of microservices (Dragoni et al. 2017, Newman
2015).

Fig. 2.3 Representative Model of a Microservices-Based Application

2.2.6 A Representative Model of Microservices-Based Applications

In terms of infrastructure, a typical end-to-end model is depicted in Figure 2.3. As
shown in the figure, the gateway handles requests from a diversity of external clients.
Also, by having a central position, it can return tailored responses according to the
client type (Newman 2015). It also handles access management by communicating
with an authorization server. The gateway forwards requests to be processed by mi-
croservices. To achieve a particular business functionality, microservices communicate

15

with each other by producing and consuming events using an Event Broker, whose role
is to publish and store state-changing events. As shown in the figure, each microser-
vice can publish and subscribe to events of different categories. An event broker is an
autonomous application and, due to its role, is essential in auditing and monitoring.

To illustrate with the PoS use-case previously introduced at the beginning of the
section, Transactions, Balance, and Notifications could be examples of microservices.
Users, machines, and other services authenticate by giving their credentials. A request
to the authentication server verifies the authentication material. If valid, a transaction
gets sent with an amount to a Transactions microservice. This triggers an event for the
Balance microservice which, given available funding, publishes another event allowing
the transaction to complete. The Transaction service listens to this event, allows the
transaction to complete, and publishes an event of a successful transaction on a channel
to which Balance and Notifications services are subscribed. Balance gets updated and
a notification gets sent to the user.

2.3 Microservices Security in the Literature

This section presents an overview of the literature discussing microservices security, as
well as attempts to tackle a number of security challenges for microservices. It gives
a good idea on the contribution of the literature to the security of microservices-based
applications, and clarifies the novelty of the work in this chapter.

Multiple studies in the literature shed light on microservices security challenges (Drag-
oni et al. 2017, Esposito et al. 2016, Savchenko et al. 2015, Zimmermann 2016),
and highlight the need for architectural guidance for microservices-based applications.
Souppaya et. al. (Souppaya et al. 2017) discuss security concerns associated with the
use of containers, and present guidelines aimed to reduce the attack surface of this vir-
tualisation technology; security of microservices-based architecture and of the infras-
tructure on which the containers are hosted is out of the scope of their report. Combe
et al. (Combe et al. 2016) discuss the specifications of docker ecosystem including the
kernel and file system of docker containers, registry and images and suggest practices to
harden the security of containers; microservices are only mentioned as a development
paradigm suitable for the use of containers, but the security of microservices-based ap-
plications was not focused on in their work. Pantanjali et al. (Patanjali et al. 2015) only
focus on authentication and authorization in the security analysis of their application;
although security is not the main focus of their work, the authors detail the handling
of access tokens in their microservice based application providing a dashboard for cost
management and analysis with cloud service providers. Jander et al. (Jander et al. 2018)
discuss security at the level of the network of microservices-based applications; they fo-
cus on protecting the confidentiality of internal calls between microservices and suggest

16

encrypting services internal communications within the applications and authenticating
the requests at the level of the microservices. Sun et al. (Sun et al. 2015) highlight the
complexity of monitoring internal traffic for microservices applications hosted in the
cloud and propose a virtual network monitoring approach to help detect internal intru-
sion in a microservices-based application. Their approach, however, relies on Software
Defined Network capabilities in a cloud infrastructure.

Lu et al. (Lu et al. 2017) discuss the applicability of microservices architectural
patterns and common security practices to IoT systems, and the benefit of adopting this
on the security of IoT applications. While some security practices for microservices
are mentioned in their paper including access control and the use of secure contain-
ers, the robustness of these practices was assumed and microservices security was not
the context of their work. Fetzer (Fetzer 2016) investigates the adequacy of microser-
vices isolation through secure containers to build critical systems when the execution
is supported by CPU security extensions; they use Intel Software Guard Extensions
(SGX) enclave to protect the integrity and confidentiality of microservices executions
running inside secure containers. Fetzer focuses on ensuring the correct execution of the
code of individual microservices, but does not discuss secure development of microser-
vices or security in the context of microservices-based applications. Sill (Sill 2016)
highlights the importance of the design phase and the use of standards for building
microservices-based applications. The author discusses standards and considerations
for data formats and information exchange, API endpoints and documentation, secure
messaging and communication patterns. Although this work points to practices that can
contribute to the security of microservices-based applications, the focus of the author is
the maintainability and manageability of applications. Otterstad and Yarygina (Otter-
stad and Yarygina 2017) also discuss the security benefits of the isolation of microser-
vices deployment, and of the diversity of their software and execution environment; as
a security-enhancing property, they suggest maximising the diversity of technologies
used to for microservices including the programming languages, compilers, containers
operating systems and images. They also suggest minimising unnecessary interactions
between microservices to decrease their attack surface.

In a chapter of his book covering the concept of microservices, Newman (Newman
2015) gives a brief overview of some security aspects of microservices applications,
and presents options, including available standard, approaches and products for authen-
tication and authorization, data security and defence in depth; the author highlights the
risk of intrusion on the application network and of implicit trust between microser-
vices. While Newman’s book gives a comprehensive view on microservices principles
and software development practices, the security discussion in his work is not meant to
be comprehensive. This chapter reflects on the security practices in Newman’s book,
and extends the discussion to cover the security of containers, secure bootstrapping

17

and handling cryptography material. Yarygina and Bagge (Yarygina and Bagge 2018)
present an overview on microservices security threats with mitigation techniques for
common threats that these applications are prone to. They suggest the use of a self
hosted Public Key Infrastructure (PKI) scheme and the verification of access tokens
by microservices; their work appeared after the submission of the contribution of this
chapter for publication, and the authors’ suggestions have been later considered in this
chapter. While (Newman 2015, Yarygina and Bagge 2018) discuss security practices
for microservices-based applications, this chapter aims to give a more comprehensive
view on the security of these applications; it is an attempt to shed light on security prac-
tices covering different security layers throughout the development lifecycle of MSAs.
The aim is to raise awareness among software practitioners and security architects, and
to point them towards simple practices that help mitigate most common attacks.

2.4 Considerations for Microservices Security

As a new fast-growing application development paradigm, yet still maturing, new chal-
lenges are introduced, and security comes at the forefront. This chapter discusses Mi-
croservices from a security perspective. Rather than addressing this topic from a spe-
cific angle, this chapter tries to lay out a comprehensive approach by discussing all
phases of a typical project lifecycle and related Security context: design, development
and testing, “business-as-usual” (maintenance, verification, monitoring, etc.), infras-
tructure and interfaces with external parties.

Security is multidimensional in the sense that it needs to be present at multiple layers
of an application and at all stages of its development. For microservices, our security
model has four broad dimensions:

– the internal and external interfaces for service-to-service and inter-domain com-
munications respectively.

– the application architecture and the potential need of specific security compo-
nents or elements, such as instrumentation and detection.

– the underlying infrastructure, such as the containers, Operating Systems and the
network.

– the microservice components themselves, from design to implementation and
throughout the application lifecycle.

Before diving into the details of the security model, security standards for web services
interactions are introduced while highlighting the applicable and commonly used ones
with microservices-based applications. This is followed with an elaboration on each of
the security dimensions and an aggregation of the findings in a reference architecture.

18

2.4.1 Security Standards

Simple Object Access Protocol (SOAP) was the first protocol used by Web Services for
Interprocess Communication over HTTP enabling them to exchange Extensible Markup
Language (XML)-based messages. Representational State Transfer (REST) is a simpler
and lighter approach for point-to-point communications and is suitable for devices with
low processing power (Vandikas and Tsiatsis 2016). While SOAP uses XML exten-
sively, REST is independent of the data type including XML and JavaScript Object
Notation (JSON) (Gorski et al. 2014a).

Extensive research has been done resulting in a number of standards for the security
of SOAP Web Services including WS-Security covering encryption and integrity checks
of messages, WS-Policy for policy enforcement on end-points, and WS-Trust for trust
establishments in different security environments (Tang et al. 2015, Gorski et al. 2014a).
Security was considered at the early stage of SOAP standardization effort, which re-
sulted in the maturity of the security framework (Gorski et al. 2014b). In contrast with
SOAP-based web services, RESTful web services were not developed with security in
mind, and therefore they are not supported with a fully developed security framework
(Gorski et al. 2014a, Yarygina 2017); moreover, standards designed for SOAP are not
compatible with REST services (Masood and Java 2015). As a result, REST secu-
rity is heavily reliant on best practices or implementation-oriented recommendations by
framework or published by software engineering companies (Gorski et al. 2014a). An
initiative to create security standards suitable for REST services started with Javascript
Object Signing and Encryption (JOSE). This is a working group founded in 2011 within
the Internet Engineering Task Force (IETF) with the purpose of creating standards for
signing and encrypting JSON data structure (Gorski et al. 2014a, Siriwardena 2014).
JOSE includes four specifications as proposed standards: JSON web Encryption(JWE),
JSON Web Signature (JWS), JSON Web Key (JWK), and JSON Web Algorithm (JWA)
(Gorski et al. 2014a). JWE (Hildebrand and Jones 2015) describes how a message is
encrypted in a JSON, JWS (Bradley et al. 2015) defines how this message is signed,
JWK (Jones 2015b) refers to the public key used for the signature, and JWA (Jones
2015a) describes a set of cryptographic algorithms that can be used for JWE, JWS and
JWK (Gorski et al. 2014a). JSON Web Token (JWT) (Jones et al. 2015) is a standard
to transfer a set of claims between parties in a JSON format. JWT standard uses JOSE
specifications and is used to transfer access tokens to RESTful web services (Jones et al.
2015, Siriwardena 2014). These specifications are applicable to MSA given the reliance
on REST for microservices communications (Vandikas and Tsiatsis 2016).

Also, a number of standards can be used for REST web services including OAuth 2
for access delegation, and XACML for access control (Gorski et al. 2014a, Siriwardena
2014). Applying these standards to secure RESTful applications is sometimes done by

19

software developers, and some of these standards are complicated to adopt in a secure
manner and create vulnerabilities when they are not (Argyriou et al. 2017, Sun and
Beznosov 2012). Common vulnerabilities in microservices applications result from
misusing OAuth 2; the confused deputy problem is briefly introduced in the following
section and discussed with other vulnerabilities in details in Chapter 3.

2.4.2 Secure and Trusted Services Interactions

Authentication and authorization are essential steps towards securing services. Mi-
croservices should only be invoked after requesting authentication and, ideally, authori-
sation if levels of privileges are available. OAuth (currently in version 2.0) and OpenID
Connect are frameworks adopted in typical implementations of microservices that use
RESTful APIs (Patanjali et al. 2015). In essence, an access token is issued by an autho-
rization server to a trusted client application. Note that trust is directly relatable to the
coordination model. Verifying the access token at the gateway level makes it vulnera-
ble to the Confused Deputy Problem (Newman 2015). This vulnerability is caused by
microservices trusting the gateway based on its mere identity (sometimes even an IP ad-
dress), which makes it open to misuse if compromised. Having access control enabled
and fine-grained scopes for the access token checked by microservices prior to respond-
ing to a request is a possible mitigation. A self-hosted PKI enabling Mutual Transport
Layer Security is another good practice to protect the confidentiality of internal interac-
tions between services from a malicious intruder on the network (Yarygina and Bagge
2018). Note that having a dedicated service acting as an authorization server provides
three main benefits: decoupling and isolation in case the system is compromised, help-
ing in the separation of concerns, and acting as a possible auditing point (Patanjali
et al. 2015). OpenID Connect is built on top of OAuth 2, and uses JWT for identity
tokens (Saito et al. 2016, Patanjali et al. 2015).

2.4.3 Secure Architecture

A common model for microservices uses API Gateways. Being a dedicated element
that does not directly participate in the application itself, it can also act as an Intrusion
Detection System (IDS). However, IDS for microservices can be challenging as the sig-
natures for the services need to be, typically, customised to the application, depending
on the level of traffic inspection. Availability is also a key component of a Security
model; it can be achieved by having elements to detect (by querying, for example) ser-
vices that are down. If a microservice fails, the gateway and the coordination logic
should be updated in order to action failover mechanisms.

Moreover, architectural decisions should be carefully thought of to avoid incidents
similar to Netflix compromise in 2015, which was due to allowing access to all users

20

cookies from any subdomain. This allowed an adversary to use Netflix.com services
from one compromised subdomain (Sun et al. 2015).

A final mention should be made to key management. Given the large number of
services, managing cryptographic material is likely to require using Key Vaults and
hardware modules.

2.4.4 Secure Infrastructure

By infrastructure, one means network, servers, devices, specialised elements (such as
gateways) and the containers themselves along with Operating Systems.

More than any other paradigm, Microservices depend on fast network messaging
given the granularity of each component. Further, inter-service traffic should follow
policies derived from the application logic. Finally, note that several applications, each
with a large number of services, can coexist together in the same infrastructure and net-
work. Starting at the network level becomes essential, given that microservices brings
the potential of increasing the attack surface when compared to a monolithic architec-
ture (Dragoni et al. 2017). Moreover, due to the containerisation trend, special attention
is required for the risk of inadvertently facing 0-day vulnerabilities in the components
that come from public repositories like Dockerhub (Combe et al. 2016, Yarygina and
Bagge 2018). A survey by BayanOps in 2015 revealed that three out of four official
Docker images created during that year have relatively easy to exploit vulnerabilities,
which can potentially have high impact (Gummaraju et al. 2015). A good approach is to
use Docker Security Scanning add-on prior to using images, and verify the image ori-
gin. Another survey by Cloud Passage referred to in their webinar (CloudPassage 2017)
reveals that more than 90% of Docker images run a root user; this increases the change
of escalating privilege to the host domain, and of controlling other microservices con-
sequently. A good practice is to plan security roles within containers by applying the
principle of least privilege rather than running root users, and to provide a strong iso-
lation of containers by minimising shared databases and libraries (Yarygina and Bagge
2018).

A further challenge is filtering and monitoring traffic for microservices at a level
close to the application, as deep-inspection rules need to be made custom to the appli-
cation. Common web attacks such as SQL injection, are easily detected by commercial
Web-application firewalls; however, these are not particularly suitable for microser-
vices. Containers firewalls attempts do exist, however, with Project Calico3 being an
example. This project can be integrated with Kubernetes, and allows creating policies
and firewall rules at the pods level. Pods, holding containers, will scale with the firewall
rules.

3https://www.projectcalico.org/micro-service-firewall/

21

https://www.projectcalico.org/micro-service-firewall/

Overall, securing the network and server infrastructure can use a mix of current
technologies to protect up to the container level. Past the container or hypervisor, ap-
plication security becomes challenging as discussed in the next section.

2.4.5 Securing the Development Lifecycle and Governance

At this stage, a microservices architecture should draw on well-known secure software
development best practices as, at the end of the day, this is software development as
usual. Automated testing and verification becomes crucial as typically these applica-
tions are developed using Agile methodologies and rely on fast iteration cycles. In gen-
eral, a comprehensive Secure Software Development Lifecycle (S-SDLC) comprises
of

– Early risk assessment before design starts (e.g., handling trust, cryptographic ma-
terial, etc), relevant at the architecture layout phase but also when selecting and
assessing tools and frameworks for their own S-SDLC

– Adding accessory functions to the core functionality in order to support security
monitoring, auditing, testing and interfaces with external security elements (Fowler
2014)

– Development with security in mind, following each language and framework rec-
ommendations and, ideally, third-party code reviews

– Deployment of the application along with security tests and verification tools –
that should be continuous and periodic and include vulnerability management

– Secure and safe retirement of components and modules

NIST SP 800-190 (Souppaya et al. 2017) is in draft stage and offers guidance re-
garding containers. In a nutshell, the takeaway advice consists of

– Always use container-specific OSes, which are hardened to reduce attack surface.

– Adopt vulnerability management tools for containers, in addition to traditional
ones for the host environment.

– Execute highly critical microservices in especially hardened containers and mon-
itor them in depth.

– Handle trust by specialised hardware, a root point, which holds container images,
cryptographic material, registries, configurations and any critical information.

– Enforce separation of duties (which involves access control) and segregation of
traffic and roles between services and applications.

22

Fig. 2.4 A Security Reference Architecture for Microservices-Based Applications

2.4.6 A Secure Reference Model for Microservices-Based Applications

Given all considerations so far, Figure 2.4 is a modification of the reference model
represented in Figure 2.3 in order to embed security by design. The changes from the
purely functional architecture of Figure 2.3 reside on three aspects:

– Network elements are inserted in order to apply policies at the network level,
from simple traffic rules to deep-packet inspection looking for malicious traffic
or drawing intelligence. Policies should also be defined, enforced and verified to
segregate inter-service communication and access. The token verification checks
the validity of the access token rather than fully trusting the gateway, and policies
can define the access rights of the token. This is one mitigation measure against
potential vulnerabilities arising from the gateway being a confused deputy if com-
promised.

– A subsystem of monitoring, testing and verification is added. These components
should interface directly the instrumentation components at the microservice level
(represented by gears). These agents are, ideally, an integral part of the skeleton
of any service and should be enrichened with service-specific metrics. The con-
tainers themselves are to be monitored, and one also expects support from the
underlying OS and orchestration tools.

23

– A root of trust supports bootstrapping processes by holding containers images,
cryptographic material, and configurations. This is used to retrieve configura-
tions when containers are to be scaled, and to ensure authenticity of software
components.

Any request from the outside world must pass through a Firewall and IDS, and con-
tainer firewalls should inspect requests from the gateway or any potential internal traffic
to verify the authenticity of the source. Access tokens should also be verified for au-
thenticity at the microservices level and processed for access control by microservices
policy rules. Further, every critical part of the system should be systematically moni-
tored and verified, internal and external traffic should be audited, and container images
and configurations must be validated against the trusted hardware.

2.5 Conclusion

Microservices lead to a promising paradigm to develop scalable and maintainable ap-
plications that, nevertheless, presents security challenges on its own. Whereas some
of the current technologies and practices are directly applicable to microservices-based
applications, others need to be developed and adopted in order to reach the needed level
of security maturity. This chapter provided an overview on microservices architectural
paradigm as well as a discussion of Security for Microservices by looking at different
angles and, wherever possible, reusing current practices. The security recommendations
are presented in a security reference architecture with the aim of raising awareness of
common practices that can help to avoid design flaws and vulnerabilities weakening the
security of an application. While many sources in the literature as well as industrial
surveys suggest the shift towards microservices and predict it would become the next
default paradigm in the near future, more work needs to be done to build systems that
are secure by design and to develop specialised elements that support security for mi-
croservices (such as IDSes). The large attack surface caused by numerous components
and interfaces co-existent on the same machine, the implicit trust very often assumed
within the application network, the absence of standards tailored for microservices and
the poor academic and industry guidance lead to making this initiative. This study
lays the foundations of application security in this thesis; however, compromising a
microservice with a zero-day vulnerability and a privileged insider on the network are
still a threat, and common approaches for microservices access control exacerbate the
impact of a successful compromise. The next chapter proposes an approach for access
control that minimises trust between microservices to help contain a compromise.

24

CHAPTER 3

Fine-grained Access Control for Microservices-Based Applications

Chapter 2 discussed common security practices and standards that are applicable to
microservices and proposed a security reference architecture for microservices-based
applications. This chapter targets two vulnerabilities, powerful tokens theft and the
confused deputy attack, caused by the common use of OAuth 2: an open standard that
was not designed for MSAs.

A combination of existent open standards for access control is relied on and security
checks are proposed to detect activities of malicious insiders and help contain a com-
promise in a microservice from spreading across the application and to other domains.
The proposed design includes configurable gateways at the level of each microservice
and enables fine-grained access control in MSAs. Details of the approach for microser-
vices access control are discussed and other findings are presented in the rest of the
chapter.

3.1 Introduction

As discussed in the previous chapter, microservices-based applications require numer-
ous security considerations. In addition to having a wider attack surface compared to
old monolithic applications, microservices very often communicate over an insecure
network within their domain (Otterstad and Yarygina 2017). This makes traffic mon-
itoring, interception and replay attacks possible for any malicious node on the same
network (Sun et al. 2015). Microservices do introduce coordination complexity which,
in turn, creates new security risks. This brings forward trust challenges as, effectively,
every microservice is an independent party that, in the extreme case, cannot be trusted
(Nehme et al. 2019b). After discussing the specifications of the microservices architec-
tural paradigm and the security challenges of microservices-based applications in the
previous chapter, two vulnerabilities found in common practices of access control in the
literature were identified; in particular, microservices communication paradigm creates
new opportunities confused deputy attacks and the manipulation and theft of powerful

tokens. A confused deputy, referred to as the ‘vulnerability du jour’ (Härtig et al. 2017),
is a privilege escalation attack in which a service that is trusted by other services is

25

compromised; this results in the trustees responding to requests from a compromised
microservice, without knowing that it is acting on behalf of the attacker (Rajani et al.
2016). Powerful tokens, in turn, result from the fact that, typically one valid autho-
risation token is enough to have access to every microservice in the application since
requests pass through a gateway (the orchestrator) that can access all the system ser-
vices with that access token. These are normally Open Authorization tokens that are
created through one OAuth client, and their theft leads to an exposure at the level of ev-
ery microservice (Sun and Beznosov 2012, GDS 2016); following OAuth protocol, the
possession of this token grants access to its bearer for the access rights granted by this
token (Sun and Beznosov 2012). The context of this chapter is user-centred services
that are multiparty and inter-domain. In particular, scenarios are considered where mi-
croservices from multiple domains are acting on behalf of the user by requesting access
to personal data or assets; the data exchange process should be transparent to and con-
trolled by the data owners. One example of such systems is a digital government portal:
multiple administrations, that are nevertheless independent and segregated, have to co-
ordinate to provide services for citizens, and citizens need to ensure that their data is
safe, while being aware of how this data is being used, and what is being processed;
on the other hand, each administration is responsible for protecting the citizens’ data,
and of correctly performing its role. The requirement of fine-grained access control
for microservices and giving users control over their data was inspired by discussions
with the team leading the digital transformation project in Lebanon. Microservices-
based architecture has been agreed on as the development paradigm of the new govern-
ment services, and the proposal for a fine-grained access control was presented at the
Lebanese Digital Transformation Conference in 20181. Gonzalez et al. (González et al.
2016) proposed an approach based on eXtensible Access Control Markup Language
(XACML) enabling users to control access to their personal data in an e-government
context; their approach, however, is designed for monolothic applications. This chapter
presents an approach to target these requirements that applies to microservices-based
systems with access to sensitive data in different administrative domains.

The proposed approach for microservices-based applications enables fine-grained
access-control, thus mitigating several security challenges specific to microservices
while giving the user control over their requests. Beyond globally validating a token
at the entry-level (the Gateway interfacing the user or another external application),
each service is proposed to have its own local Gateway that validates highly-descriptive
and fine-grained tokens. These tokens are centrally generated, short-lived and have a
narrow access scope. Additionally, these gateways include security checks that reveal
and mitigate potential malicious activities, like data theft from government departments,

1https://digitaltransformation.gov.lb/wp-content/uploads/2018/08/
antonio-nehme-session3-video.mp4

26

https://digitaltransformation.gov.lb/wp-content/uploads/2018/08/antonio-nehme-session3-video.mp4
https://digitaltransformation.gov.lb/wp-content/uploads/2018/08/antonio-nehme-session3-video.mp4

unauthorised requests for actions on behalf of the user, or tampering with the logic of
execution of government digital services through a compromised microservice in one
department. Furthermore, to enable scalability and reusability, the gateways are con-
figurable and therefore reusable to enable their integration with microservices outside
their core functionalities; new gateways would be deployed with the microservices that
they protect when needed. In a nutshell, this architecture requires a user to explicitly al-
low actions from the multiple services engaged and belonging to different parties, while
confining permissions of the services with pre-defined policies that all parties agree on.
A prototype implementation was done as part of this contribution, and the proposed
approach and findings were published in (Nehme et al. 2018).

3.2 Practices for Access Control

Many approaches, found in the literature, rely on powerful tokens strategy, i.e. one ac-
cess token giving access to all the system’s components, for access control. This results
from using one OAuth client for a microservices-based application: Pantanjali et al.
(Patanjali et al. 2015) present an example of an implementation where powerful tokens
are being used, and (Yarygina and Bagge 2018, Gao and Uehara 2017, Geisriegler et al.
2017, Suryotrisongko et al. 2017, Sun and Beznosov 2012, Jander et al. 2018) also point
out to using similar approaches in their work. OAuth token theft has been approached
in literature. Sun et al. (Sun and Beznosov 2012) conducted a large scale empirical
security examination of real world implementations of OAuth 2 access delegation with
Single Sign-On (SSO) focusing on web applications vulnerabilities, as well as vulnera-
bilities in web browsers. On their sample of 96 cases, Sun et al. revealed vulnerabilities
enabling token theft and session swapping attacks and suggest guidelines and mitiga-
tion techniques for applications and identity providers to reduce these threats. While
this study helps to mitigate token theft and session manipulation attacks, their focus is
on vulnerabilities at the application layer of monoliths, which does not cover the spec-
ifications of microservices-based applications. Azeem et al. (Ahmad et al. 2014) used
Identity and OAuth tokens to minimise the possibility of token theft; however, the com-
bination only reduces the chances of a successful attack and does not protect against
powerful tokens theft in the service-to-service communication. Approaches based on
OAuth 2 and XACML open standards are commonly proposed in the literature to pro-
tect web services interfaces (Tang et al. 2015, Yarygina and Bagge 2018, Nehme et al.
2019b, González et al. 2016, Gorski et al. 2014a). XACML and OAuth 2 are discussed
separately in (Ilhan et al. 2015, Samlinson and Usha 2013), and Bojan (Suzic 2016b)
mentioned the possibility of combining the two standards; however, the combination
was not detailed or applied by any of them. Hui et al. (Zhang et al. 2012) based their
implementation on this combination; however, their solution targets a specific use case

27

that is not applicable to microservices. Finally, work on a new OAuth grant type, Token
Exchange (Jones et al. 2019), still in progress, tackles similar trust related problem in
access control as this paper. It is equally tailored for microservices in which the autho-
rization server is in charge of policy decisions based on the identity of users, calling and
called services, predefined action and access rules.

In short, the chapter presents the first attempt for designing a reusable and user-
centric Identity and Access Management (IAM) security component for primitive (only
implementing functional requirements) microservices that mitigates powerful token
theft and the confused deputy problem. The reusability and configurability of the
proposed security components renders this approach scalable with microservices and
adaptable to their requirements.

3.3 Microservices Access Control: Problem Statement

This section introduced a representative scenario, presents the threat model for the ac-
cess control of microservices-based applications, gives an overview of the design prin-
ciples and security requirements that this chapter abides to, and shows the inadequacy
of most used approaches for access control and the common vulnerabilities they lead to
in microservices-based applications.

The digital government scenario, presented next, is derived from a case study fo-
cused on by the digital transformation team in Lebanon in 2018; this sets a basis that
reflects common transparency and access control requirements in an e-government sce-
nario and makes a reference to other similar scenarios. The scenario is applying for
a passport issued by the Department of State. The applicant needs to be a citizen to
be eligible to apply for the passport service. The user logs in to a central portal, and
selects the passport service; by logging in, the portal fetches the required information
for access control: the citizenship status in this example. Information about this citizen,
available in other government departments, are required by the department of state to
process the request: the address and marital status of the user are required from the De-
partment of Interior Affairs, as well as an attestation of a clean criminal record from the
Department of Justice; these attributes are already agreed on between the departments.
The user needs to approve the personal data attributes that will be shared between de-
partments, and an access token will be produced reflecting each consent. Each token
only serves to access one specific service of one department. The process of applying
for a passport with the interactions described above was the only one identified during
the course of this research. The focus of this part of the research is limited to digi-
tal government related scenarios due to time restrictions and to the importance of the
security and reliability in e-government applications.

28

Fig. 3.1 Applying for a Passport

3.3.1 Threat Model for Microservices Access Control

This model assumes that traditional inter-domain security mechanisms, including intru-
sion detection and prevention systems, firewalls, input validation, mutual TLS authen-
tication and encryption are placed between different security domains. These security
mechanisms as well as the authentication and authorisation servers are trusted are not
compromised, but the application microservices are not.

These microservices, and the virtual machines (containers) which they run on, can
be under the control of an attacker, or even abused by a privileged insider. This gives
the adversary the ability to intercept requests and responses, steal and manipulate to-
kens by replacing a token belonging to a user with another, and send requests from the
compromised microservice. A compromised microservice cannot generate a new ac-
cess token without the user’s consent on the list of scopes: generating tokens is only
possible through a redirection to the OAuth server following the OAuth protocol. Ac-
cess Token theft can happen at the level of any compromised microservice, or by an
insider monitoring local traffic.

3.3.2 Security Requirements for Microservices Access Control

Considering the scenario detailed in Section 3.3, this chapter aims to fulfil the following
requirements deduced from discussions with the Lebanese digital transformation team:

– R1: Access policies are needed to control which services a user can access.

– R2: Every personal data attribute, at each department, needs user consent to be
shared with another department.

– R3: Departments only share data following predefined and verifiable agreements
with other services.

29

– R4: An access token should only serve to perform actions on behalf of a user and
access the assets of this user exposed by a single service in one department.

Where the corresponding security goals are:

– R1 requires fine-grained access policies, that must relate to the (micro)service
itself

– R2 separates control between user and service providers by allowing administra-
tive policies on a per-service basis

– R3 verifies the authenticity of consumers and limits the impact of insiders mali-
cious activities

– R4 protects against Powerful Token and Confused Deputy attacks.

3.3.3 Decoupling Security from Functional Requirements

A further requirement is to decouple the control of the microservice from the service
itself. This was done by designing our architecture using reusable and configurable
gateways at the level of each microservice. These components can be added to se-
cure primitive services, and modified to meet different policies. Figure 3.2 shows Re-
source Microservice (RMS), a primitive microservice exposing assets, protected by a
local Micro-Gateway (GW). In order for a request to reach the RMS, security policies
enforced by GW have to be met by the requesting service or party- the Consumer Mi-
croservice (CMS); note that the consumer microservice should have another gateway to
enforce access control policies. The Resource Microservice, which encapsulates only
the primitive functionality, is thus released from the verification logic and only manages
the assets themselves (such as personal data).

Fig. 3.2 Gateway to Secure Primitive Services

30

A reusable security component placed around services enables consistency, sim-
plicity, and portability (Linthicum 2016); adaptability and flexibility are essential re-
quirements to follow. For different scenarios, a variety of attributes have to be consid-
ered when designing security solutions, and a trade-off has to be made between multi-
ple variables including performance, security tightness, user-friendliness, and ease and
flexibility of management.

3.3.4 Inadequacy of Current Practices with Microservices

Open Authorization 2 (OAuth 2) is one of the most commonly used mechanisms with
microservices-based applications. The protocol aims to enable access delegation by
giving the end user the option of selecting a list of scopes prior to the generation of
an access token (Microsoft 2012). Following this protocol, when a relying party (a
client) requires access to the data of end-users or the permission to perform actions
on their behalf, a user gets redirected to the OAuth 2 authorisation server which, af-
ter authenticating the client application, presents a list of predefined scopes for this
user to choose from (Microsoft 2012, Sun and Beznosov 2012). After that, an access
token gets generated with the scopes and sent back to a predefined end-point of the
client application (Microsoft 2012). OAuth 2 access scopes are used to define the token
holder’s access rights. However, the standard only gives the ability to define static, nor-
mally coarse-grained scopes, and does not provide any support for auditing and flexible
policy enforcement (Suzic 2016b,a). OAuth 2 is also used as a layer underlying authen-
tication protocols and Single Sign-On systems (Yarygina and Bagge 2018). OpenID
Connect is an example of these protocols and it is commonly used for authentication
with MSA (Patanjali et al. 2015); it is an enabler for identity federation by producing
an ID token with end-user information, and a practice of the separation of concerns
principle. Nevertheless, these approaches are not particularly suitable for MSA due to
their large attack surface in such a fine-grained architecture (Dragoni et al. 2017); they
normally rely on a single token that is used to access all parts of the system resulting
in several problems, powerful token theft being the most obvious (Ahmad et al. 2014,
GDS 2016, Jander et al. 2018). Following an OAuth 2 based approach with powerful

tokens for access control, any service having access to a session with a valid token can
make requests to other components on behalf of the user (Patanjali et al. 2015). Sun
et al. revealed that common vulnerabilities in web applications, including Cross Site
Scripting, Cross Site Request Forgery, TLS misconfiguration, enable the theft of access
tokens in old style monolithic applications (Sun and Beznosov 2012). The diversity of
hosting components (the containers), the large number of exposed APIs, and the busy
communication often over an insecure network (Otterstad and Yarygina 2017, Dragoni
et al. 2017, Sun et al. 2015) give a larger window of opportunity for token theft. Even

31

with end-to-end encryption of the communication between microservices suggested by
Yarygina and Bagge (Yarygina and Bagge 2018), compromising or having privileged
access to any microservice can be enough to steal an access token.

Fig. 3.3 A Representation of the Common Integration of OAuth with Microservices

On the other hand, there is the confused deputy problem. Härtig et al. (Härtig et al.
2017) emphasise on the popularity of this vulnerability in microservices-based appli-
cations and call for tools to detect it. As explained, a confused deputy is a component
that has access to sensitive resources, and which can be manipulated by an adversary
to have an indirect access to these resources (Rajani et al. 2016). In essence, the con-

fused deputy attack arises from trusting a component based on mere identity information
such as the component’s IP address or an ID token (Newman 2015, Yarygina and Bagge
2018). Figure 3.3 represents the common integration of OAuth 2 and OpenID Connect
with MSA: an access token, generated by the user with the authorizarion server, gets
sent with the user’s request to a gateway; this token, being a reference to information
that identifies the requester, gets exchanged at the gateway level with a data structure,
the JSON Web Token (JWT), which the gateway and microservice can use (Preuveneers
and Joosen 2017). The JWT reflects only identity information with OpenID Connect,
and access scopes reflecting the consent of the user for the application to act on his/her
behalf when standard OAuth 2 is used; in both cases, it is a single token (Patanjali et al.
2015). In Figure 3.3, the gateway used to call all the microservices becomes a confused
deputy if compromised and in the scenario presented in Section 3.3, the passport ser-
vice is a candidate for a confused deputy. The key point to prevent this is to have the
resource services, the Department of Justice and of Interior Affairs microservices in our
scenario, verify that the calling microservice is acting truthfully on behalf of the user.
This requires, for example, tokens to be individual to each component, and have finer
granularity reflecting user’s consents on access rules.

32

3.4 An Approach for Microservices Access Control

Figure 3.4 represents the proposed approach for access control between consumer and
resource microservices. This approach is built on a combination of XACML for ad-
ministrative and OAuth 2 for user-defined policies. XACML is an open standard en-
abling the definition of complex access control policies based on the identity and role
of an end-user, and it is seen as the de-facto standard for policy description (Suzic and
Reiter 2016, Fernández et al. 2017). This standard covers the enforcement of access
control policies and ensures the decoupling of the application from the definition and
enforcement of access control policies (Suzic and Reiter 2016). XACML specifications
includes a Policy Administration Point (PAP) to define, store and and administer se-
curity policies and a Policy Decision Point (PDP) to evaluate access requests based on
the defined policies and to provide a decision based on this policy (Suzic and Reiter
2016). In practice, PAP and PDP both implemented at the level of the authorisation
server (Pereira et al. 2017). A Policy Enforcement Point (PEP) is another component
that intercepts a request and acts based on the decision of the PDP to grant or deny
access to the protected resources (Suzic and Reiter 2016, Pereira et al. 2017). The ar-
chitecture involves an Access Control Server (ACS) acting as an OAuth 2 and XACML
server, consumer microservices (CMS) holding OAuth 2 client credentials and requir-
ing access to resources, Resource Microservices (RMS) hosting and exposing assets,
and a Gateway (GW) to secure each microservice.

A request to CMS requires an ID token, generated by ACS when the user logs
in, from the authentication session to verify the access rights of the user; to request
resources from RMS, it also needs to generate an OAuth 2 token by having the user
consent on the access scopes. As shown in Figure 3.4, the Resource Gateways (RGWs)
RGW1 and RGW2 are gateways to the resource microservices RMS1 and RMS2; con-
sumer micro-services also have a Consumer Gateway (CGW) each, CGW1 and CGW2,
to enforce administrative access control policies. Typically, a central gateway in MSA
sits in front of all services and can take different roles ranging from a simple address
forwarder to an orchestrator. In the proposed architecture, each microservice has its
own gateway that includes security and control functions and is fairly independent of
the microservice; this makes it reusable as a configurable component across different
microservices. Note that a central gateway is still present as a single entry point to the
administrative and security domain to provide conventional network security services
such as intrusion detection and prevention, firewalls, input validation, mutual TLS au-
thentication or encryption. The key functionality of a gateway per microservice is be-
coming a single entry point to each microservice that, while being fairly agnostic to the
service itself, is able to validate the authenticity of the incoming requests. Following
the specifications in this thesis, these gateways include other mechanisms for security

33

Fig. 3.4 Overview of the Security Architecture: Gateways for Security Enforcement,
and an OAuth Client per Consumer-Resource

assurance, policy enforcement, token theft detection, auditing and incident reporting;
these measures serve to minimise blind trust between services, and therefore limit the
effect of a successful confused deputy attack. The details for these checks and the re-
quests flow of requests are explained in the next parts of this section.

3.4.1 A Fine-Grained Access Control

XACML is used to create access control policies that define if a user can interface a par-
ticular microservice. Policies are directly enforced by the GWs, each acting as a PEP.
The PEP component of the GW checks the user’s identifier by inspecting the user’s ID
token in the authentication session. The ACS is the PDP and determines if this user is
authorised to access a microservice endpoint to make a particular request. In the case
of resource microservices, the request goes through other security checks discussed in
Section 3.4.2. OAuth 2 is used for users to delegate access to part of their protected
data, residing at a resource microservice, to a consumer microservice. OAuth 2 pro-
duces a token that maps to access scopes; these scopes reflect the actions that the holder
of the token is permitted to perform on behalf of the issuer, in this case accessing their
data. Being part of the token, scopes are used by RMS to share only the data that the
owner has given consent for. The proposed approach includes creating an OAuth client

34

for every pair of consumer-resource microservices allowing the generation of verifiable
tokens with access scopes tailored for the combination. Consider Figure 3.4: OAuth
clients C1 and C2 are used to send requests from the consumer microservice CMS1 to
two different resource services, RMS1 and RMS2 respectively, exposing user’s data.
Although this approach gives the flexibility of using one OAuth client for multiple mi-
croservices, one OAuth client is recommended per pair of consumer-resource microser-
vices to limit the power of access tokens. Also, a microservice can receive requests
from more than one consumer service as shown with RMS2 receiving requests from
both CMS1 and CMS2. OAuth client creation is always done at the ACS level fol-
lowing the OAuth 2 common practice. Scopes are defined during creation, and client
credentials (a unique identifier and a password) are generated to be used by consumer
micro-services for access tokens production.

3.4.2 Proposed Security Checks

For each request from microservices to access resources of another, an OAuth access
token needs to be provided, alongside the ID token in the authentication session, by
the sender of the request. The ID token is inspected by the GW of every microservice
(Consumer or Resource) to verify the eligibility of access of the user, and the OAuth
token is to be inspected by the RGW of the resource microservice before the request
gets through to the RMS. This gateway sends the access token to an endpoint of the
ACS to verify its authenticity and retrieve the information mapped to it. To illustrate
with Figure 3.4, if a service CMS1 needs some of the user’s personal information from
RMS1, CMS1 uses C1’s client credentials to produce an OAuth access token following
OAuth 2 common practice. The user is required to choose the access scopes and confirm
access for the OAuth token to be produced for CMS1. An access request is sent from
service CMS1 to RMS1. RMS1, through its gateway RGW1, uses the token inspection
endpoint of ACS to verify the authenticity of the access token and to decode it. The
token would have a reference to the OAuth client ID, token scopes, the subject (user)
identifier, and an expiry date. Given that the token is authentic and valid, RGW1 would
perform the following security checks:

1. ‘User Identity Check’ by verifying that the user in the ID Token (the user that
authenticated to the portal) is the same as the subject of the OAuth token

2. ‘Client ID Check’, by checking C1’s OAuth client ID against a set of authorized
client IDs to access the service

The first check reveals tokens’ theft and manipulation attempts, and the second dimin-
ishes a token’s power and limits blind trust between components. If these checks pass,
the gateway forwards the token information to the microservice; otherwise, the request

35

is denied and the incidence gets reported. If the gateway lets the request through to the
resource microservice, the latter returns the attributes of the user mapped to the scopes
of the access token.

3.4.3 Operational Flow of the Proposed Approach

The sequence diagram in Figure 3.5 shows a representative example of the proposal.
This shows the dataflow of an operation between a CMS and RMS of Figure 3.4; it also
reflects an access request between the passport microservice and one of the resource
microservices in the scenario presented in Section 3.3. One service, the CMS, is to
retrieve resources from another service, the RMS. A central ACS is used as an OAuth
2 authorization server, as well as an XACML server with policy administration and
decision points. The ACS can include or be linked to an authentication server that
produces and keeps track of authentication sessions with ID tokens. Each gateway
(CGW and RGW) functions as a PEP, which inspects the ID token, and uses the ACS
PDP to check the policy rules. Access rules can be defined as a set of URLs and actions
mapped to a group of users (i.e. Role-based); however, more complex policies can be
defined following any policy definition criteria.

Fig. 3.5 Sequence Diagram Representing a Service-to-Service Interaction

Before any attempt to access CMS, the user has to have an active session with an
ID token. When the user sends a request, the PEP at CGW inspects the user’s ID token
with the Policy Decision Point of ACS, and if the action with CMS is allowed, this user
is able to initiate a request with the service. When CMS requires data/service from an

36

external resource (RMS), it first needs to request an OAuth access token. CMS uses its
OAuth credentials, specific for RMS, to initiate the token production request with ACS.
In turn, ACS requires the user to be authenticated and to choose the access scopes. At
the level of ACS, an Intrusion Detection System can detect session manipulation at-
tempts between the last two interactions with it. The produced access token is sent to
CMS, and a request with the ID and OAuth tokens in the header is sent to RGW. RGW,
protecting the resource microservice, checks if the user is authorized to access the ser-
vice that it protects and, if so, the OAuth token is sent to the OAuth token inspection
endpoint of ACS. This token gets verified, decoded, and sent back to RGW to perform
the User Identity and Client ID Checks described in 3.4.2. If any of the previous checks
fails, an appropriate alert will be sent to the system administration and the user session
and access token get deactivated. If all conditions are met, RGW sends the request
with the user ID and the access scopes to RMS. This service has now the data attributes
and/or methods mapped to the token scopes and the data of the user will now be sent to
CMS.

3.5 Analysis of the Proposed Approach

This section revisits the early requirements listed in Section 3.3.2 and discusses how
the proposed access control approach addresses them.

3.5.1 Fine-Grained Access Control

With PEPs used at each microservice gateway level, access policies allow defining ac-
cess roles for users to particular services (R1). Gateways here keep any unnecessary
potential load off the microservices and act as a further defence layer. Since XACML
allows to define complex policies, one can further add contextual access rules such as
time and location. Having multiple OAuth 2 clients helps to enforce transparency in
the system by requiring users’ consent for each access operation to their personal data
and giving them the option to choose what they want to share. Scopes are defined dur-
ing OAuth 2 client creation following agreements between the resource and consumer
microservices departments (R3), and having an OAuth client per consumer-resource
microservice enables a fine-grained user-centred access control at the level of microser-
vices (R2). Scope to resource mapping is done at the RMS level, and having scopes
tailored to each service gives the transparency needed for systems in which privacy is
key to users’ trust.

37

3.5.2 Token Theft Mitigation

Having multiple OAuth 2 clients, for different consumer-resource combinations, limits
the power of access tokens. With one OAuth 2 token per access task, a stolen token
would only be a threat to the data of a particular person in one microservice only. These
tokens can have a short lifespan since they are meant to be used once and for one par-
ticular request. Also, due to the User Identity Check at the gateway level, access to
information from a stolen access token is not possible without access to the ID token
of the same user. Any attempt from a conflicting user session would result in deacti-
vating the tokens and reporting the incidence; even session hijacking can be rendered
ineffective with a stolen token’s short lifespan. Also, the Client ID Check diminishes
the token’s power by limiting the services that accept the token. This partially fulfils
the security goal of R4.

3.5.3 Confused Deputy Mitigation

Going back to Figure 3.4, a token produced with C1, belonging to CMS1 and valid for
RMS1, would not be valid for RMS2. This is also valid if service CMS1 is allowed
to access both services RMS1 and RMS2, and even if RMS1 and RMS2 belong to
the same department (R4). The combination of the User Identity Check, the Client ID
Check, and requiring user consent for every service to service data access is a mitigation
against the confused deputy attack. These security checks and practices minimise trust
between services and give an assurance that a service is acting faithfully on behalf of
the user. Therefore, this approach achieves the security goal of R4.

On a related note, the proposed approach mitigates some malicious insiders’ activ-
ities. According to an IBM report in 2015, 60% of attacks are due to an insider (IBM
2016). If an insider manages to create an OAuth client on ACS to be used by a ma-
licious node, the resource microservices would not accept any access token from this
new client since its ID is not in the list of trusted clients of any RGW. This approach
minimises the possibility of having a service confused with a rogue/fake client (R3).

3.5.4 Manageability and Reusability

To help with the manageability of the large number of microservices in MSA, categoris-
ing services into groups according to their security requirements is likely necessary.
These requirements are decided based on the functionality of the microservices, the
trust context, and the criticality of the assets that it handles (BS 2015). This is a com-
mon approach for large enterprise software to protect their resources (Yu et al. 2016).
In this thesis, consumer are separated from resource microservices and each requires
a different gateway; another categorisation may separate microservices protecting very
sensitive data and only responding to trusted addresses from microservices hosting less

38

sensitive data. Having reusable security components helps to define configurations with
security functions to meet different requirements; this facilitates securing new primitive
microservices by plugging in these predefined gateways. Security gateways are exten-
sible and can include other security functionalities including, but not limited to, logging
and auditing, cryptographic roles, and throttling. Figure 3.6 represents the extendibility
of the approach with gateways, tailored for different security requirements, used to pro-
tect different groups of services; The focus of the chapter, however, is limited to access
control.

Fig. 3.6 A Representation of Security Enforcement for Different Security Requirements
with Gateways

3.6 Implementation of Fine-grained Access For Microservices

A proof of concept was implemented using ForgeRock open source components. Forg-
eRock Access Management (AM2) is used as the central access control server (ACS)
for its ability to manage authentication, OAuth access delegation and XACML policies.
As for microservices local gateways, ForgeRock Identity-Gateway (IG3) is used due to
its Policy Enforcement and OAuth 2 token validation filters, and the flexibility that it
provides to extend its functionality. This approach is feasible to implement using any
technological stack supporting OAuth 2 and XACML; a gateway can be written with
any programming language that supports XACML, HTTPS calls, and the implemen-
tation of the proposed security checks. For the sake of clarity of this demonstration,
Postman4 is used to play the role of a consumer microservice with an ID token, ac-
cessed by the authentication cookie, and an OAuth 2 token, sending an access request

1https://www.forgerock.com/platform/
2https://www.forgerock.com/platform/access-management
3https://www.forgerock.com/platform/identity-gateway
4https://www.getpostman.com/

39

https://www.forgerock.com/platform/
https://www.forgerock.com/platform/access-management
https://www.forgerock.com/platform/identity-gateway
https://www.getpostman.com/

to an RMS protected behind an IG. This shows the same behaviour of a consumer-to-
resource microservice call, with the resource microservice protected by RGW.

Fig. 3.7 Token Theft Detection

3.6.1 Prototype of the Proposed Security Checks

This section presents the prototype of the presented approach for access control re-
flecting the applications of the security checks to detect token manipulation attempts.
Figure 3.7 shows the response of an RGW on a failed User Identification Check. This
is one approach to detect session hijacking and OAuth token theft. Both tokens would
be deactivated in this case.

Fig. 3.8 Unauthorized Client Detection

40

Figure 3.8 shows a request sent to RMS from an unauthorized OAuth client; this
reflects the response of using an access token for a different consumer-resource combi-
nation, even if this resource and RMS are part of the same department. Client ID Check
weakens the power of tokens, limits the trust between services to minimize the effect
of a successful confused deputy attack, and mitigates creating fake OAuth clients by an
insider.

Figure 3.9 shows a successful malicious request caused by the absence of the pro-
posed security checks. In this case, an unauthorized client, potentially created by an in-
sider, is used to send the request, and the resource microservice responded with the data.
Due to the absence of the Client ID Check, a malicious microservice with a fake OAuth
client can be a threat, leading to data exfiltration from RMS. Having an OAuth client per
consumer-resource combination alongside the Client ID Check mitigates this threat. It
also minimises trust between microservices by only allowing essential communications
between them and requiring the access control server involvement for token production
and verification rather than blindly trusting a microservice or its domain. This practice
minimises the impact of a confused deputy attack by limiting what can be done with a
potentially compromised microservice.

Fig. 3.9 Malicious Request Without our Security Checks

Moreover, the user of the session and the OAuth token subject are not the same,
which suggests using a stolen token for the request. Without the User Identity Check,
token theft and manipulation would not be detected. This gives this malicious user the
ability to apply to services using another user’s information. The User Identity Check
mitigates these attacks.

41

3.6.2 Performance Evaluation of the Prototype

This section shows the overhead resulting from the proposed approach. This exper-
iment was conducted on an Ubuntu 17.10 running on a machine with 2.6 GHz Core
i7 processor and 12 GB of RAM; the aim is to show the overhead caused by adding
gateways configured for consumer microservices (CGW) and resource microservices
(RGW). The line chart in Figure 3.10 visualises the response time of 250 service calls
for the same microservice without any gateways, with CGW, and with RGW. ACS is
placed in a separate Linux container, on the same machine, to isolate the effect of data
propagation over the internet. The lines show that the response time is the highest for
microservices protected by RGW; the numbers confirm that, on average, an overhead
of 23% results from adding a CGW, and of 32% occurs from adding RGW to a mi-
croservice. This means that a mixture of gateways protecting consumer and resource
microservices should lead to an overhead of less than 32% on average over the time to
access a certain endpoint. The overhead of User Identity Check and Client ID Check

Fig. 3.10 Line Chart Showing Our Experimental Results

is minimal, given that these are simple checks performed locally and not requiring any
additional interactions with the ACS. As for ACS, the load factor is mostly affected
by the number of exposed resource microservices due to the extra checks of OAuth 2
tokens; this is relatively easy to overcome with cheap cloud elastic scaling.

42

3.7 Conclusion

This chapter highlights some security challenges that microservices-based applications
are prone to in connection to access control and authorisation, both when the user is
the trust anchor and when microservices work in conjunction. A security design was
presented that allows fine-grained access control with access gateways at the microser-
vice level. The concept was demonstrated by implementing a proof of concept com-
bining XACML and OAuth 2, two leading open standards that are designed without
considering the specifications of microservices-based applications. The proposed secu-
rity checks help to minimise implicit trust in microservices-based applications enabling
to contain a security breach caused by a compromised microservices or by a mali-
cious privileged insider. Although digital government scenarios have been the focus
of this chapter, the discussed approach applies to any microservices-based applications
includes private data or enables acting on behalf of users.

The work in this chapter contributes to the big picture of the research that looks
into the chain of trust in distributed multi-party systems with connectivity, verifiability
of requests, user control over personal data and accountability as central requirements.
Several challenges are kept open: the dependence on trusting key elements, for example,
Access Control Servers pose a risk and are able to compromise the whole system if they
get compromised. On the other hand, from a user perspective, user repudiation is still
an open challenge. These challenges are left open to the literature and for future work
given the time restriction of this research. Finally, usability testing will help evaluate
the impact of the proposed approach on end-users. This requires the resources of a
large institution to design a pilot and test it on a large enough population to produce
trustworthy results.

The fine-grained access control model concludes the contribution of this research
for the security of microservices-based applications. As highlighted in this chapter,
applications from different administrative domains collaborate to fulfil a business func-
tion. Collaborations should be audited following a robust approach to hold participants
accountable for their actions. Next chapter explores auditing of distributed collabora-
tions and presents a novel and confidentiality friendly approach to record evidence of
transactions without trusting a single entity to generate, verify or store audit records.

43

CHAPTER 4

AuDiC: Auditing of Distributed Workflows Collaborations

Workflows involve actions and decision making at the level of each participant. Trusted
generation, collection and storage of evidence is fundamental for these systems to as-
sert accountability in case of disputes. Ensuring the security of audit systems requires
reliable protection of evidence in order to cope with its confidentiality, its integrity at
generation and storage phases, as well as its availability. Collusion with an audit author-
ity is a threat that can affect all these security aspects, and there is room for improvement
in existent approaches that target this problem.

After focusing on the security of applications in the previous chapters, this chapter
presents the contribution of this research for auditing to assign accountability in work-
flow collaborations combining different applications. Without relying on a single point
of trust to generate, verify or store audit records, the proposed auditing approach im-
proves the confidentiality, integrity and availability of audit trails while offering auditing
capability to any threshold of participants. The adequacy of the approach to produce
reliable evidence despite possible collusion to destroy, tamper with, or hide evidence is
discussed in this part of the thesis.

4.1 Introduction

A virtual organisation, defined as a collaboration of independent organisations to ful-
fil a business requirement (Nami and Malekpour 2008), requires tasks and decision
making to be spread among the different administrative and security domains of par-
ticipants. These collaborations necessitate a way to keep track of transactions between
the involved parties, and evidence of actions (i.e. audit trail) needs to be available to
assign accountability in case of a dispute. Evidence should be reliable and its process-
ing should not disclose confidential information to any party. Different administrations
do not trust each other to generate, store or protect the confidentiality of audit trails
reflecting actions, decisions and data exchanges between participants; relying on an
audit service, a trusted third party, to generate audit trails is also a risk on the confi-
dentiality of transactions and the authenticity of the generated evidence if this party is
compromised.

44

To illustrate the challenge, a hypothetical scenario is presented: car insurance com-
panies rely on data about the driver’s behaviour and habits to calculate their annual fees.
When an individual applies for renewal, the insurance company sends a request to as-
sess the applicant to the Ministry of Transport. This ministry requests the car mileage
from garages that perform vehicles annual checkups as well as any arrest warrant for
the applicant from the police department, and checks the databases of traffic cameras
for the neighbourhood in which the car is most frequently used. Insurance companies
do not get all the details about the driver due to the confidentiality of this data; they re-
ceive a report with an assessment from the Ministry of Transport and use it to determine
the insurance fees. Audit records for every request should be kept: each organisation
maintains a log, and an audit service is used to build audit trails. A privileged insider at
the Ministry of Transport, colluding with an insurance company, modifies the mileage
received from the garages to increase insurance fees. This insider also modifies the lo-
cal logs, and colludes with the audit service to modify the audit records. As seen in this
scenario, a collusion with an entity managing a centralised audit service renders its data
unreliable. Moreover, audit records in workflows include sensitive information for all
participants. In this scenario, audit records stored at the Ministry of Transport or with a
central audit system expose personal and confidential data.

For a workflow audit architecture to be reliable, one participant should not have the
option of colluding with the authority that manages the audit system to breach the confi-
dentiality of, tamper with, or destroy evidence (Zawoad et al. 2013). A central approach
in which a single system is trusted to collect, verify, and store logs is a single point of
trust in this case (Ahmad et al. 2018, Wombacher et al. 2005). In practice, workflow en-
gines, commonly used to coordinate interactions between workflow participants and to
provide auditing services, are a representation of a central approach for audit (Rudolph
et al. 2009, Lim et al. 2012, Vahi et al. 2013). Some approaches, (Wouters et al. 2008)
for example, propose holding each participating administration accountable to store its
own audit logs. Although this practice protects the confidentiality of participants, it
does not provide protection against tampering with and destroying evidence.

Therefore, a decentralised and trustless approach is followed to produce reliable
evidence. In this thesis, Decentralised is defined as not depending on a single system
to generate audit trails, and trustless audit as not giving an organisation the ability to
produce digital evidence without verification of its authenticity by another organisation.
Following the architecture presented in this chapter, audit records are retrieved and ver-
ified in a distributed way immediately after generation by participants, while protecting
the confidentiality, integrity, and availability of this data from malicious entities work-
ing individually or colluding with each other. Following the proposed approach for
auditing, malicious behaviour of tampering with, deleting, or false reporting of audit
records is detected by honest participants. The contribution in this chapter is an archi-

45

tecture that offers mitigation from collusion-related threats to tamper with or destroy
multi-party workflow audit data. This depends on the collaboration of participants to
verify and obtain a copy of encrypted audit records reported to an audit server, as well
as to ensure the authenticity of this server. Secret sharing mechanisms (Brickell 1989,
Shamir 1979) are relied on to minimise the risk of confidential data exposure.

In a multi-party workflow, this architecture:

– Offers a means to verify reported audit records.

– Supports distributed storage of audit data at any degree of details.

– Introduces a data structure for audit trails covering arbitrary topology.

– Offers audit capability to any K out of N participants.

This chapter presents AuDiC, an approach for Auditing of Distributed workflow Collab-
orations, and discusses an implementation of this approach that includes an untrusted
centralised server; for clarity, the discussion in this chapter is limited to auditing ap-
proaches relying on a comparable technology stack to this implementation, and the
discussion of blockchain and the blockchain-based implementation of this approach are
left to the next chapter. This chapter is organised as follows. Section 4.2 presents a re-
view summarising common approaches for auditing discussed in the literature; Section
4.3 presents the problem statement and the threat model, and key concepts in AuDiC are
introduced in Section 4.4. The specifications of the first implementation are presented
in Section 4.5, followed by an analysis of its adequacy to fulfil our goals in Section 4.6.
Implementation and evaluation are covered in Sections 4.7, and Section 4.8 concludes
the chapter.

4.2 Auditing Approaches: State of the Art

Many audit frameworks proposed in the literature log events as evidence to verify abid-
ing to security policies and regulatory requirements. Rudolph et al. (Rudolph et al.
2009) designed an audit trail with a summary of participation exchanged between par-
ticipants to show fulfilment of tasks and enforce behavioural policies during workflow
execution; they extended their work in (Velikova et al. 2009) to cover the anonymity
of participating entities, but did not discuss the security of audit trails at storage and
their protection from destruction. Hale et al. (Hale et al. 2013) present a design and
verification framework for services interactions across different clouds to verify abid-
ing to information sharing policies. Other solutions (Lim et al. 2012, Bates et al. 2017,
Sundareswaran et al. 2012, Aravind and Sandeep 2015, Yao et al. 2010, Flores 2014,
Gajanayake et al. 2011, Pulls et al. 2013, Accorsi 2011, Vahi et al. 2013, Marty 2011,
Redfield and Date 2014, Kieseberg et al. 2016) cover a variety of audit data including

46

hashes and signatures, users’ consents for access control, data provenance, service level
agreements related logs, compliance and operations, and records of database access.
However, a trusted central system is used to process logs in (Sundareswaran et al. 2012,
Pulls et al. 2013, Vahi et al. 2013) and to store audit records in the other frameworks.
Austria and Uruguay follow a central approach for audit for their e-government systems
(Hartmann and Steup 2015, González et al. 2012). This raises trust and confidentiality
problems since collusion with the central point in any of these cases makes tampering
with or destroying evidence possible, as well as breaching the secrecy of audit data.

To protect the confidentiality of audit data, especially when relying on a third party
service as proposed in (Rajalakshmi et al. 2014) and (Ray et al. 2013), a common prac-
tice is to encrypt audit data prior to its submission to the outsourced storage. (Waters
et al. 2004, Accorsi 2010, 2013) are proposals that require a trusted party to protect
encryption keys for audit records, and Wouters et al. (Wouters et al. 2008) rely on the
user to protect the key in their approach. Entities with encryption keys can breach the
confidentiality and in some cases the integrity of audit data; also, refusing to share these
keys when an audit is required leads to withholding evidence. The framework proposed
by Ray et al. (Ray et al. 2013) uses a secret sharing scheme to split encryption keys to
multiple logging hosts; however, their approach covers logging for single applications
and does not consider multi-party interactions.

For forensic investigations, a high degree of assurance for the integrity of digital
evidence is required at the collection, generation, and storage phases (Zawoad et al.
2013, Alqahtani and Gamble 2014). A variety of hash-based approaches, relying on
hash chains and hash trees, are proposed in the literature (Tian et al. 2017, Zawoad et al.
2013, 2016, Ma and Tsudik 2009, Kieseberg et al. 2016) to assure the integrity of audit
records. Kieseberg et al. (Kieseberg et al. 2016) use a hash chain in a health-related
context including multiple stakeholders to produce logs aimed to verify the authenticity
of transactions reflecting decision making at each stage of a workflow; confidentiality
and availability of records are out of the scope of their work. Ma and Tsudik (Ma
and Tsudik 2009) assume the benevolence of the entity managing the logging system
and use hash chains to verify that it has not been compromised. They aim to detect
attempts to modify logs generated prior to a compromise of the logging entity, and rely
on trusted storage for their approach; their work does not consider collusion-related
attacks and does not discuss protecting the confidentiality of their data. Tian’s work
(Tian 2017) relies on a hash chain structure, inspected by a trusted third party, to assure
the tamper resistance and integrity of audit data covering users’ operational behaviour
with a cloud provider; a collusion with the cloud provider to falsify records prior to
the hashing process can, however, cover a malicious behaviour of falsifying audit data.
Zawoard et al. (Zawoad et al. 2016) mitigate possible tampering with evidence that
can result from collusion between users, investigators, and cloud service providers.

47

They encrypt the log files with a public key belonging to a law enforcement agency to
protect users’ privacy, and adopt a hash-chain scheme referred to as ‘Proof of Past Log
(PPL)’, covering the entire log history for every user on a daily basis. However, these
approaches trust the logging entity, being the cloud provider, to report correct audit
data and to assure its availability. A proposal by Ahsan et al. (Ahsan et al. 2018) is an
extension that covers some of the limitations of (Zawoad et al. 2016). In their work,
log records generated by cloud service providers are not trusted, and users are required,
within a specific timing, to verify their logged activity with their cloud provider and
to file a complaint in case of any activity that needs to be denied. Logs attributed to a
user are then stored on the cloud service provider servers and encrypted with this user’s
private key. To mitigate withholding evidence by users, a secret sharing mechanism is
proposed to distribute shares of every user’s keys to different cloud providers that are
assumed not to collude. This approach assumes continuous human cooperation for its
verification phase of the audit records. Moreover, approaches discussed in (Tian 2017,
Zawoad et al. 2016, Ahsan et al. 2018) cover auditing users’ activities in a single cloud
only, and do not consider destruction of evidence by a cloud provider or multi-party
workflows.

Blockchain is another approach that uses hash chains and the consensus of a large
network of nodes to protect its data from tampering (Weber et al. 2016). Uses of
blockchain include verifying the integrity of files, and running programs in a trans-
parent and trusted way while producing an audit trail of these runs; however, this tech-
nology does not scale to store large transactions, and therefore only hashes of these
transactions are normally stored on the blockchain (Tian 2017, Xiong and Du 2019).
Blockchain based approaches are discussed in details in the next chapter.

The auditing approach presented in this chapter improves the availability, confiden-
tiality, and integrity of audit records in distributed workflow collaborations. Practices
in the literature for collective building of audit trails are combined with forensic ap-
proaches to protect digital evidence, and verification mechanisms are introduced in this
architecture to assert accountability of participants in multi-party workflows.

4.3 Auditing of Workflows: Problem Statement

Collusion with third parties, tampering with, and hiding records are among the most
used techniques to hide a fraudulent activity (Abreu et al. 2018). This work argues the
need for improvement in audit approaches used for workflows covering multiple admin-
istrative domains. Every participant should be accountable for a contribution reflecting
an action or a decision in a workflow. Existent audit approaches, discussed in the pre-
vious section, depend on trusted parties to record or store audit records; this renders the
integrity and availability of these records questionable. Moreover, traditional practices

48

of recording digital evidence pose a privacy risk on the involved parties whose inter-
actions can be sensitive and confidential. Also, trusting a single entity with encryption
keys leaves room for withholding evidence. When following approaches discussed in
the literature, the problems below can be faced:

– Destroying or withholding evidence

– Breaching the confidentiality of transactions

– Tampering with audit data at storage

– Reporting incorrect audit data

The contribution of this research for auditing of inter-domain interactions and data ex-
change focuses on tackling these challenges. This work aims to offer a reliable audit
approach that protects the confidentiality, integrity at generation and storage phases,
as well as the availability of evidence. In order to achieve that, the proposed approach
avoids relying on or trusting a single entity to record, store, or protect the confidentiality
of audit records.

4.3.1 Threat Model With a Centralised Audit Server

This model excludes compromised elements being under the control of an attacker. Ac-
tions are considered to reflect the intentions of the administration managing an element,
rather than a fault or compromise in the system. Certificate authorities and key issuers
are honest; they distribute correct cryptographic keys and do not expose participants’
secrets. Participants are also trusted to protect their cryptography keys. Communication
between the audit server and workflow participants is over a secure channel.

The adversary vector includes participants that aim to rig an audit reporting process
in order to avoid non-repudiation. Adversary’s goal can be achieved by destroying or
tampering with audit records, or by using incorrect cryptographic keys for encryption or
signatures to jeopardise the records’ usability. The entity managing the audit server can
also be malicious, and may attempt to tamper with, destroy, or hide audit records from
some participants. A number of malicious entities (including workflow participants
and the audit server) can collude to falsify the audit process; this includes skipping
the verification of reported audit records, hiding audit data from honest participants,
cooperating to distribute different versions of records, and delaying the workflow with
false alerts. Breaching the confidentiality of workflow transactions using audit records
is another malicious goal for an adversary.

Under this model, this work aims to verify the authenticity of reported audit records
as they are generated as well as their integrity during storage or distribution, and to

49

Fig. 4.1 A Simplistic and Technology Independent Representation of AuDiC

protect their confidentiality at every stage of the audit process. The availability of evi-
dence is also achieved when a definable number of participants are honest. Audit data
reported by colluding entities is considered unreliable, but any malicious behaviour
resulting from collusion is proven by using reliable audit records reported by honest
participants.

4.4 Trustless and Collaborative Auditing

After studying the existent approaches for auditing discussed in Section 4.2, this work
adopted practices including hashes to protect the integrity and threshold cryptography
to safeguard the confidentiality of audit records at storage; to tackle the identified prob-
lems in existent auditing systems listed in Section 4.3, this thesis proposes AuDiC:
a confidentiality-friendly, application-agnostic, collaborative and trustless approach to
audit workflows. When designing AuDiC, the focus was on not trusting a single entity
to record, store, or protect the confidentiality of audit records. Encrypted audit trails,
covering arbitrary workflows, are checked for authenticity as they are built, and are
distributed to participants to protect from tampering with or destroying evidence. To
safeguard the confidentiality of this data, a threshold of key shares is required to re-
construct the decryption key. This also minimises the chance of withholding evidence
by an entity that is holding the key. Audit trails can be constructed with any degree of
details ranging from a summary of interactions to full transactions. A high level rep-
resentation of AuDiC is shown in Figure 4.1. As shown in the figure, AuDiC includes
an audit server for the purpose of displaying data to workflow participants. Workflow
participants participate in the generation and verification of audit records, and exchange
receipts with every transaction. When relying on a centralised server, the audit server is
not trusted and different measures are taken to verify that it cannot behave maliciously.

50

In this chapter, the focus of the discussion is on a centralised implementation of the
audit server, which is replaced with a blockchain-based implementation in Chapter 5.

Fig. 4.2 BPMN Representation of a Supply Chain Workflow. Credit Goes to Weber et
al (Weber et al. 2016)

4.4.1 Notation for Auditing Operations of Workflows

A graph is used to represent workflows, in which nodes (vertices) represent organisa-
tions in the workflow, and edges with weights represent the order of their interactions.
Figure 4.2 is a BPMN representation of a workflow, and Figure 4.3 is the equivalent
representation following the adopted notation in this thesis. In Figure 4.2, Bulk Buyer
BB places an order with the Manufacturer M, and the latter calculates the demand and
orders materials via a Middleman MM. This Middleman sends the order to a Supplier
S, and delegates the delivery to a Special Carrier C. When the materials are produced,
the supplier arranges for the delivery with the Carrier after identifying the latter, and
the Carrier delivers the materials to the Manufacturer. The Manufacturer reports the
start of production to the Bulk Buyer, and delivers the goods to the latter when they are
produced.

In Figure 4.3, edge(BB,M) is the first interaction in the workflow manifested by
the request from the Bulk Buyer to the Manufacturer. Workflows covered in this thesis
are pre-established, meaning that the participating entities and their order of interaction
are known by participants at the beginning of the workflow execution and do not change
until it finishes.

51

Fig. 4.3 Our Representation for the Supply Chain Workflow

For ease of representation, the notation below is used to describe message process-
ing and cryptography operations:

– Edge ei represents a transaction where i reflects the order of execution in the
workflow.

– Concatenation of string X with string Y is represented by: X|Y .

– Shares of a workflow private key wk, split with a secret sharing mechanism to N
shares, are denoted as K1...KN . The equivalent public key is wpk.

– An encrypted message referred to as message, sent from A to B, containing PAB
and the signature of the sender over the payload, is represented by

PAB(SA, EB) = EB[(PAB) + SA(PAB)].

– Data sent from A to B as part of PAB is represented as DAB.

– Topology data sent from A to B as part of PAB is represented by TAB.

– An additional signature over the message, S ′
sender, can be sent alongside the

cipher text. The message, in this case, is represented as:

PAB(SA, EB, S
′
A) =

52

PAB(SA, EB) + SA[PAB(SA, EB)]

– An audit record of a message sent from A to B is represented as:

AAB = PAB(SA, Ewpk, S
′
A).

– A unique reference to an audit record sent from A to B is represented as:

aAB = Hash(AAB)

where Hash is a one-way hash function with a strong collision resistance.

– Di, Pi, Ai, ai represent the data, payload, audit record, and the reference to an
audit record of ei respectively.

– Node and participant are used interchangeably to indicate an organisation in a
workflow.

4.4.2 Coverage of Arbitrary Topology

The representation of workflows in this thesis is application-agnostic and covers arbi-
trary topologies. Following this representation, three communication patterns are dis-
tinguished:

– Sequential with no backpropagation (Figure 4.4.1): transactions travel forward
through workflow participants.

– Sequential with backpropagation (Figure 4.4.2): Nodes expect a response for
their requests to complete their role in a workflow.

– Parallel Paradigm (Figure 4.4.3): this includes a node sending requests to mul-
tiple other nodes (e1 and e2), and multiple nodes sending requests to the same
participant (e3 and e4); these are comparable to fork and join actions respectively
(Albert et al. 2005).

AuDiC covers any arbitrary topology resulting from a combination of these commu-
nication patterns. Similar representations of workflows and comparable communication
patterns are adopted and discussed in the literature (Bilal et al. 2005, Wang et al. 2017,
Albert et al. 2005, Azarmi et al. 2012).

To enable audit trails to cover any topology, topology data is added to the payload
to identify the position of participants in the workflow and help deduce their order of
interactions and communication pattern. Topology data includes the issuer and recipient

53

Fig. 4.4 Communication Patterns in a Graph Based Representation of Workflows

of a transaction, and a Label set to ini if the issuer is the initializer of the workflow and
parallel when requests are sent in parallel. A reference to previous audit records is also
added and categorised into groups:

1. Prev: refers to the audit records covering the previous linear transactions that
the requester received

2. ParaPrev: refers to the audit records resulting from responses to requests a
participant sent in parallel

3. Notifications: refers to audit records reflecting a participant’s notifications of
actions to other participants.

Workflows are initiated and terminated by a single participant (Albert et al. 2005);
workflow initiators and terminators can, but do not need to, be the same entity. To
understand how the constructed audit trails cover complex and arbitrary topologies,
this section shows payloads exchanged between participants in Figure 4.5 topology,
which combines these three communication patterns. To avoid the complexity of details
irrelevant to the purpose of this section, the signature and encryption associated with
each payload and audit record are not shown in the list below.

54

Fig. 4.5 Our Representation of Workflows

P1 : [D1, Label = ini]

P2 : [D2, Label = parallel, Prev = a1]

P3 : [D3, Label = parallel, Prev = a1]

P4 : [D4, P rev = a2]

P5 : [D5, P rev = a3]

P6 : [D6, P rev = a3, Notifications = a5)]

P7 : [D7, P rev = [a4, a5]]

P8 : [D8, P rev = a7]

P9 : [D9, ParaPrev = [a6, a8]]

P10 : [D10, P rev = a9]

P11 : [D11, P rev = a9, Notifications = a10]

Pfinal : [final, Prev = a11]

55

Following AuDiC for constructing audit records, an audit record always includes
exchanged data (or a summary of it), unless it is published by the final participant as
a sign of completion of the workflow; hence, the flag “final” can replace the reported
data in a record as is the case for Pfinal. An audit record always points to previous
ones, unless it reflects the initiation of a workflow with a single or parallel request,
referred to with Label = “ini” and Label = “ini, parallel” respectively; in the exam-
ple discussed in this section, the workflow is initiated with a single request sent from
node A to B, hence the use of Label = “ini” in P1. Prev contains the audit records
from requests that a participant received from one or multiple participants, ParaPrev
includes the audit records equivalent to responses resulting from requests a participant
sent in parallel, and Notifications, when applicable, includes records of a participant
notifying another of an action. A participant sending parallel requests (node B), hav-
ing the Label = “parallel”, adds a reference of the equivalent audit records of the
requests it received in the Prev parameter of the request sent to its callees (see P2

and P3); it then passes reference to records of the received responses from the parallel
callees within the ParaPrev parameter of the transaction sent to the next participant
in the workflow (P9). Following the protocol of AuDiC, audit records belonging to the
Notifications category are always reported by the notifier: node E notifies node D
of the state of the workflow, therefore it is expected to report an audit record (P5) that
is verified by the recipient of the notification and to have a reference to the notification
audit record in the transaction sent to the next participant (node B receiving P6). The
same case applies to node F sending a notification to node G. The final record is pub-
lished by the node which receives the last message; this record announces the end of
the workflow and points to the previous audit records following the same criteria for
any other transaction.

Algorithm 1 shows how audit trails covering a workflow execution are decoded.
The workflow topology reflecting the order of participants interactions is deduced, and
the exchanged data in each of these interactions is revealed following the degree of
details in the reporting strategy that participants agree on; this can be as comprehensive
as recording the full data exchange. In addition to the reported data reflecting what
was sent in a transaction between participants, each audit record includes a pointer
to the previous audit records. The final record is the root that has connections to all
previous records, and therefore it is used as the initial point to decode the audit trails.
This algorithm is recursive, with the final audit record being the initiating point and
the initial record being the base case; the list of audit records, being the audit trail, and
an index of a record are the input of this algorithm. The data part of the audit record
at the index position of the audit trail gets revealed, and previous records pointed to in
this record are next to be processed by the algorithm; an iteration of the algorithm ends
when it hits the base case, and the next record in the stack gets processed.

56

Algorithm 1 Audit Trail Decoding Algorithm
Requirement: Represents Workflow Interactions from an Audit Trail
Input: Audit Recs[], index . Array with the decrypted audit records, and an index of
a record in the array
Output: Workflow Interactions

1: if Audit Recs[index].getdata()!=Ø then
2: display(Audit Recs[index])

3: if Audit Recs[index].getLabel().contains(ini) then
4: break()

5: if Audit Recs[index].P rev!=Ø then
6: for each P ∈ Audit Recs[index].P rev() do
7: Index = find index(Audit Recs[], P)
8: Run(Audit Recs[], index)

9: if Audit Recs[index].ParaPrev!=Ø then
10: for each PP ∈ Audit Recs[index].ParaPrev() do
11: Index = find index(Audit Recs[], PP)
12: Run(Audit Recs[], index)

13: if Audit Recs[index].Notifications!=Ø then
14: for each N ∈ Audit Recs[index].Noticications do
15: Index = find index(Audit Recs[], N)
16: Run(Audit Recs[], index)

Next, Algorithm 1 is traced with the audit trail of the workflow of Figure 4.5. A
payload reflects an audit record given that, as discussed in the previous section, an
audit record is an encryption with the workflow public key wpk of the payload with
signatures of participants. When transactions are recorded in full, the part that is shown
of the exchanged payloads in the list presented earlier in this section is the same for Pi
and Ai of each transaction of edge ei in Figure 4.5; the list of payloads, reflecting the
list of decrypted audit records, is the first input for Algorithm 1 and the index of the
final record is the second input. The first iteration of the recursion finds the index of
A11 in Audit Recs[] and an iteration of Algorithm 1 with Audit Recs[] and the index
ofA11 is added to the stack. A11 gets displayed and the algorithm finds the index ofA9,
pointed to in Prev of A11, and adds an iteration with Audit Recs[] and the index of A9

to the stack. Then, A9 gets displayed and the algorithm finds the index of A6, pointed
to in ParaPrev of A9 and adds an iteration with Audit Recs[] and the index of A6

to the stack. Next, A6 gets displayed, the algorithm finds the index of A3 and another
iteration of the algorithm with Audit Recs[] and the index of A3 gets added to the
stack. A3 gets displayed, and the index of A1 is fetched this time. Running Algorithm
1 with Audit Recs[] and the index of A1 hits the base case with Label = ini for A1

after the latter gets displayed, then the last iteration in the stack terminates; the iteration
preceding the last, covering A3, also terminates at this stage given that A3 only points
to A1 as a previous audit record. Next, the algorithm moves to cover A5, pointed to in

57

Notifications of audit record A6 still being processed with an iteration in the stack.
The same process carries on, and all the records get displayed for auditing at the end of
the algorithm.

A6 gets displayed, and an iteration of the algorithm with Audit Recs[] and the
index of A3 gets added to the stack; the latter terminates when hitting the base case.
The algorithm now goes back to the iteration covering A9, already in the stack, and the
next audit record to be processed is the second in ParaPrev, A8. An iteration of the
algorithm with Audit Recs[] and the index of A8 as arguments gets added to the stack,
A8 gets displayed, and an iteration of the algorithm for A7 gets added to the stack. A7

now gets displayed and an iteration with A4, pointed to in Prev of A7 gets added to
the stack. Similar to other iterations, A4 gets displayed and an iteration for A2 followed
by and iteration for A1 (hitting the base case) get added to the stack. The next record
in Prev of the iteration in the stack covering A7 is A5; an iteration gets added to the
stack with Audit Recs[] and the index of A5 and it terminates when the base case it
hit. This brings the run back to the iteration covering A11, already in the stack, and the
algorithm continues to cover A10 pointed to in Notifications of A11. Finally, A10 gets
displayed, and an iteration covering A9 gets added to the stack. The stack gets emptied
following the termination of each iteration hitting the base case, and the run terminated
after covering all the records in the trail.

4.4.3 Key Management

Certificates for every participant are assumed to be managed with public key infras-
tructure (PKI). While certificates can be used in multiple workflows, workflow keys are
only used in a single workflow topology.

Workflow key management is handled by an entity that generates a key pair (wpk,
wk), splits (wk) following a verifiable secret sharing mechanism (Stadler 1996, Brickell
1989, Shamir 1979), and securely distributes (wpk,Ki) to participants; a threshold K of
shares (Ki) can reconstruct wk. Workflow key distribution can either be done through
direct messages to each participant over a secure channel or by encrypting each share
of the key with the corresponding participant’s private key and posting them to the audit
server.

This critical role should be given to the participant that has the least incentive to ex-
pose wk. This is generally the first or last participant depending on the workflow: a first
participant in one workflow can be a travel agency required to keep track of bookings
for its customers, and the last participant in another workflow can be a car manufac-
turing industry that needs to keep track of where parts of customised vehicles, ordered
by customers, are from. The adoption of a Publicly Verifiable Secret Sharing (PVSS)
scheme (Chor et al. 1985, Stadler 1996, Schoenmakers 1999) enables any participant to

58

verify that other participants have received authentic shares of the same secret without
revealing this secret. PVSS was first proposed by Stadler (Stadler 1996) and used by
Schoenmakers (Schoenmakers 1999) for an electronic voting application. For their ap-
proach to support key recovery, D’Souza et al (D’Souza et al. 2011) adopted PVSS and
explicitly required the secret shared among participants to be the legitimate private key
equivalent for a public key. In the context of this thesis, this enables any entity knowing
the equivalent public key wpk of the shared secret wk to verify that the key genera-
tor was honest with the key distribution, and that the secret key can be reconstructed
with a threshold of the shares. Cryptography proofs and details are outside the scope of
this thesis. This work only argues the feasibility of this approach in the context of this
research.

4.5 System Overview with a Centralised Audit Server

This section discussed the details of AuDiC when using a traditional centralised server.
The ‘Audit Server’ can be hosted by any node or managed by a separate entity, but is not
trusted by participants. It is only used to display audit records to participants during
the workflow, and not to permanently store any data. For every action, an encrypted
audit record is published on the audit server by a participant, and verified by another.
Participants check the authenticity of what is displayed on the server, and update their
local storage of audit data on a regular basis throughout the workflow.

As shown in Figure 4.6, the proposed approach includes two types of security veri-
fications.

– The Audit Record Verification requires every node that receives a message to
check it against its equivalent audit record published on the audit server.

– The Audit Server Verification requires every node to check for any inconsistency
suggesting malicious behaviour from the audit server.

Before going through the details of these verification mechanisms, the data structure
used to build the audit trails is presented in the following section.

4.5.1 Audit Data Structure

AuDiC covers logging for every interaction between participants in a workflow. A
message, sent from a participant to another, contains a payload that includes the data
for the intended recipient. Cryptographic operations are performed to assure the au-
thenticity and confidentiality of the transaction. For the simplicity of the discussion, the
linear topology shown in Figure 4.6 is assumed. A message sent from C to D in the

59

Fig. 4.6 Overview of the Implementation of AuDiC With a Centralised Server

workflow would be of the form

MCD = PCD(SC , ED)

In turn, audit record published by C on the audit server is the same payload of the
message, encrypted with the workflow public key and signed after encryption:

ACD = PCD(SC , Ewpk, S
′
C).

The second signature helps to verify that the audit server has not tampered with the
audit record. Each payload includes data to the receiver, audit records of the previous
transactions of the workflow when applicable, as well as topology data. In this case

PCD = DCD + aBC + TCD.

As explained in Section 4.4.2, decryption of an audit record with wk, recovered from a
threshold K out of N parts (Ki) of wk, leads to another encrypted one, which in turn
gets decrypted with the same key.

60

4.5.2 Audit Record Verification

Throughout the workflow, participants are required to verify the correctness of the audit
records equivalent to the message that they receive.

Fig. 4.7 Sequence Diagram for AuDiC on a Workflow that Starts and Ends with Partic-
ipant A: Upwards Arrows Represent Reporting to the Audit Server

As shown in Figure 4.7, an audit record is published by every participant after
sending amessage as well as the last participant after receiving the finalmessage. The
content of the payload is only shown in the exchanged message for the clarity of the
figure.

A recipient decrypts the message with its private key, and verifies the sender’s sig-
nature. It then performs Audit Record Verification shown in Algorithm 2: the recipient
updates its storage of audit records from the audit server, and checks if a record of the
message that it received is displayed; this is done by re-encrypting the message with
wpk, and checking if the cipher version of it is among the pulled records. It checks
if the audit records of previous transactions referred to in the message are displayed
on the audit server. The recipient also verifies that the sender of the message did not
omit any reference of audit records that should be included, and that these audit records
are for the correct previous transactions and signed by the right previous participants
in the workflow; this is feasible since every participant knows the topology of the pre-
established workflow.

61

Algorithm 2 Audit Record Verification Algorithm
Requirement: Verify that a received message is correctly reported to the Audit Server
Input: Msg . Message received by participant
Output: Boolean indicating that the audit protocol is being followed

1: Server Recs[]← Pull Recs() . Pull audit records from the server
2: Msg Enc← Encwpk(Msg) . Enc is an encryption function
3: if Msg Enc exists in Server Recs[] then
4: Continue
5: else
6: Return False
7: if Msg.Label = ini & Server Recs.size() == 1 then
8: Return True . Initialiser of the workflow publishing the first audit record

9: if Msg.Label = [ini, parallel] & V erifyParallelism(Server Recs) then
10: Return True

. V erifyParallelism() checks if records are published in parallel by
checking time between the first and last published audit record

11: if Msg.Para==Ø & Msg.ParaPrev==Ø then
12: Return False
13: else
14: if Msg.Para!=Ø then
15: for each R ∈ Msg.Para do
16: if R /∈ Server Recs[] then
17: return False
18: if Msg.ParaPrev !=Ø then
19: for each R ∈ Msg.ParaPrev do
20: if R /∈ Server Recs[] then
21: return False
22: if Msg.Notifications!=Ø then
23: for each R ∈ Msg.Notifications do
24: if R /∈ Server Recs[] then
25: return False
26: Return True

Back to Figure 4.7, after a successful Audit Record Verification the recipient of a
message keeps the payload and the sender’s signature as a receipt. The recipient then
signs over the first receipt and sends this back as a receipt to the sender; this is a proof
of delivery. In case any of these steps goes wrong, protocol is to raise concern for
malicious behaviour. Another test to verify the authenticity of the audit server is Audit

Server Verification. Details about this mechanism are covered in the next section.

62

4.5.3 Audit Server Verification

Audit Server Verification algorithm (Algorithm 3 shown below) is executed by every
participant right after sending or receiving a message, and on a recurrent basis dur-
ing the workflow. The frequency of execution is configured depending on the average
execution time of a workflow. The aim is to ensure that the audit server is displaying
the same authentic workflow audit records to every participant and to distribute these
records to participants.

Algorithm 3 Audit Server Verification Algorithm
Requirement: Verify the authenticity of the Audit Server
Update local storage of audit records for participants
Input: Reported Recs[] . Audit records reported by a participant
Stored Recs[] . Audit records stored Locally with a participant
Output: Boolean indicating if Audit Server is honest

1: Server Recs[]← Pull Recs() . Pull audit records from the server
2: if Reported Recs !=Ø then
3: for each R∈ Reported Recs[] do
4: if R /∈ Server Recs[] then
5: return False
6: if Stored Recs !=Ø then
7: for each R∈ Reported Recs[] do
8: if R /∈ Server Recs[] then
9: Return False

10: Local Recs[]←Server Recs[] . Updating Stored Records
11: H← Hash(Local Recs[]) . Comparing Digests
12: if H==Last Published Digest then
13: Return True
14: else
15: Return False

Tailoring responses to participants is possible if the Audit Server is malicious. The
following mechanisms are designed to target this challenge:

Digest on the fly: when publishing audit records, each participant is required to
add a digest of its local audit records storage, including the one that is being published,
signed with its private key. Back to Figure 4.7, ABC , in this case, would be published
alongside the following

Hash(AAB|ABC) + SC [Hash(AAB|ABC)].

Referring to Algorithm 3, participants verify that the audit records that they published
on and pulled from the audit server are still displayed; they then update their storage of
audit records. After that, they compare the Hash value of their stored audit records
with the signed digest reported by the last publisher. Different digest values suggest

63

that the audit server is showing different records to participants. Detecting a malicious
activity from the audit server requires an honest participant to publish an audit record
after this activity was committed.

Verify at the End: alternatively, the same steps of the Algorithm are followed,
except that the hash comparison is only done at the end of the workflow. The final node
publishes a signed digest of the records it has, and other participants follow and do the
same. Not having identical digest values suggests a malicious behaviour from the audit
server.

Combo: This combines both of the previous two approaches.

4.5.4 Protocol of AuDiC with a Centralised Audit Server

This section lists the actions required to reach the security goals of AuDiC:

– Participants keep their receipts, and are required to alert others if a signed receipt
of delivery is not received after sending a message.

– Audit Record Verification is always performed by recipients onmessage delivery.
Failure of verification alerts all participants.

– Audit Server Verification is performed by a sender after publishing a record, a
receiver when getting a message, and by every participant on a recurrent basis
during the workflow. Failure of verification alerts all participants.

– Participant keep the audit records that they receive for every transaction in the
workflow.

Figure 4.8 is a representation of the state of worflow participants and the audit server in
terms of audit records storage at the end of the workflow execution. Each participant
receives a copy of the encrypted audit trail displayed on the audit server after verifying
the authenticity of each record after generation through Audit Record Verification, and
challenging the audit server throughout the worflow with Audit Server Verification. The
encrypted audit trail displayed at the server, possible to decrypt with a threshold of
key shares held by participants, is deleted at this stage to reduce unnecessary resource
allocation on the audit server.

To follow this protocol is essential in order to maximise the security protection of-
fered through our audit approach, and to reveal malicious activities by entities working
on their own or colluding. Potential attack scenarios are discussed in the next section.

64

Fig. 4.8 An Overview of the Audit Trails in AuDiC

4.6 Analysis of AuDiC with a Centralised Audit Server

This section presents the attack scenarios caused by a malicious node or a malicious
audit server working individually, collusion among participants, and collusion between
the malicious participants and the audit server. The way each scenario is handled fol-
lowing AuDiC is analysed and discussed next.

4.6.1 Malicious Participant

Working individually, a malicious participant can attempt to truncate audit trails: such
participant attempts to publish incorrect audit data for the message it sent, or to send
incorrect audit records of previous transactions in a message. This is caught by the
Audit Record Verification performed by the honest recipient of themessage. Moreover,
a malicious sender of amessage can publish a false audit record of amessage in an at-
tempt to avoid repudiation. This action is detectable by any participant of the workflow
given that the topology, and therefore the expected number of exchanged messages are
known; receipts with the honest recipient in this case are used to determine the correct
audit record.

4.6.2 Malicious Audit Server

A malicious audit server may attempt to hide audit records from all or some partici-
pants, or to tamper with these records.

65

Fig. 4.9 Collusion Between Participants with a Coloured Background

Hiding Audit Records: a malicious audit server can attempt to hide audit records from
some participants to limit the distribution of audit data and facilitate the destruction of
evidence. This is detected by digest verification of any adopted mechanism.
Tampering with Audit Records: this is detected as soon as an honest node reports
and audit record with Digest on the Fly or Combo mechanisms, or at the end of the
workflow when Digest at the End is followed.

4.6.3 Collusion Between Nodes

What colluding participants can achieve and the impact of their collusion vary according
to their positioning in a workflow. Possible malicious behaviour of consecutive and non-
consecutive colluders are discussed.
Non-Consecutive Colluders: One malicious node (B for example) in Figure 4.9.1 can
report an audit record to the audit server for the other (malicious participant D) to
use as part of the message sent to the next participant. This attempt to truncate the
audit trail is detected on the fly by the honest participant performing Audit Record

Verification. Moreover, the absence of receipts of delivery (from C in this case) is
another proof of the inauthenticity of the rogue audit record.

Consecutive Colluders: one node can cover for the other by skipping the Audit

Record Verification phase. This leads to one of the cases below:

– Truncating the audit trail if C in Figure 4.9.2 publishes a corrupted audit record
or a record not including reference to previous audit data

– Having audit trail with a false record, if C reports different data for audit than
what it sent to D.

Audit records posted or verified by nodes not following AuDiC protocol are unreli-
able; in this case, nodes C and D can be exchanging data over unmonitored channels,
which eliminates the assumption of A3 reflecting the entire communication between
these two participants. Audit data published by B is reliable since B has a receipt of
delivery signed by C to prove its honesty. Honest node E also has a receipt, and it
makes sure D publishes the equivalent audit record of the message it sent on the audit

66

server. Moreover, following AuDiC protocol, truncation of the audit trail does not lead
to loss of audit data covering previous transactions. If there are more than two consec-
utive colluding nodes, the nodes that have followed the protocol and that surround the
colluding participants will have credible audit data. Consecutive colluders may appear
to be following protocol, but, in some cases, transaction between participants reflect on
the ones that follow; a workflow ensuring a unanimous vote on a decision is an example:
considering the same linear topology of Figure 4.9, a supporting vote from all members
enables E to execute a certain decision. Malicious colluders C and D submit a record
for a vote against the decision, while D misleads E with a claim that all members voted
with the decision; this is revealed when decrypting and analysing the audit trail and
both C and D would be held accountable for cheating. In other cases where transac-
tions do not directly and clearly reflect on the next ones, colluding participants will be
held accountable for the data they report. A scenario illustrating this case is discussed
in Section 4.6.5.1.

4.6.4 Collusion Between Participants and the Audit Server

This section illustrates cases of collusion between participants and the audit server and
discusses the adequacy of each verification mechanism. In Figure 4.10.1, malicious
node C can sign two different versions of an audit record; it relies on the audit server to
display the correct record for only D and E, since they require it for the Audit Record

Verification, and to display the faulty one to A and B. This is detected with any Audit

Server Verification mechanism that is used:

1. If signed digests are published with audit records (Digest on the Fly), this ma-
licious activity is caught when node D, the first honest node following the mali-
cious activity, publishes its audit data.

2. With Verify at the End, the malicious behaviour gets detected when comparing
hash values at the end. When comparing audit records, two versions of a record
incriminate both the audit server and the publishing node.

3. The combination of methods (Combo) also detects this malicious behaviour.

In Figure 4.10.2, Digest on the Fly does not detect the collusion with the Audit
Server since there is not an honest node that follows the malicious one. However, it
does not lead to any data loss since all transactions have been covered in previous audit
records.

The combination of methods (Combo) combines the advantages of the two verifi-
cation mechanisms; Figure 4.10.3 is a scenario where Combo method is a good option:

– Attempts from C and the audit server to show A and B different versions of ACD
than the one sent to D is detected on the fly.

67

Fig. 4.10 Malicious Audit Server Colluding with Participants

– E and F cannot collude with the audit server to show honest participants different
audit data.

4.6.5 Representative Scenarios

AuDiC is application-agnostic, and can be applied on any workflow. In this section,
scenarios that reflect on the previous analysis are presented.

4.6.5.1 Supply Chain Scenario

The scenario is inspired from Weber et al. (Weber et al. 2016) and Figure 4.2 shows
their representation of the workflow; this was presented earlier in Section 4.4.1 of this
chapter. The following conflict example is also presented in their work: the Carrier
delivers eight pallets instead of ten to the Manufacturer three days after the expected
delivery date. The Manufacturer complains to the Supplier who argues that this is what
was ordered by the Middleman, and the Middleman claims that the fault to be on the
side of the Supplier. The Manufacturer refuses to accept the delivery and asks the carrier
for another trip to the supplier. The Carrier is now eligible for a compensation for
the additional journey; the Manufacturer also requires a compensation, part of which
goes to the Buyer for the delay in the order. Either the Middleman or the Supplier
should issue these compensations, and neither of them admits responsibility for the
fault. AuDiC is suitable to resolve this conflict and to prevent the responsible entity
from tampering with their logs, or from colluding with a centralised audit service to
frame the other innocent party.

Figure 4.11 represents scenarios in which AuDiC is adopted with malicious partici-
pants trying to avoid repudiation. Figure 4.11.1 consider the middleman MM to be the
malicious participant responsible for the conflict described above. During the workflow,

68

Fig. 4.11 Malicious Activities When AuDiC is Followed. Case 1 Shows a Single Ma-
licious Entity, Case 2 Shows a Collusion Between an Entity and the Audit Server, and
Case 3 Shows a Collusion Between two Participants

MM can try to report an inauthentic audit record in an attempt to frame the supplier S.
S will detect this attempt on the fly as discussed in Section 4.6.1. MM can also try to
blame the manufacturer M by deleting the records it has after the workflow execution;
M, as well as other nodes, would have a copy of the audit records in this case. Figure
4.11.2 considers a case in which MM colludes with the audit server in an attempt to
display the correct audit record to S, but not to other participants; this attempt is de-
tected by any honest node regardless of the adopted server verification mechanism as
discussed in Section 4.6.4. Figure 4.11.3 represents the only scenario in which report-
ing an incorrect audit record goes undetected following AuDiC approach. In this case,
accountability is assigned following the data in the audit record A3; this is a limita-
tion in roach, as well as other approaches for audit that cannot guarantee capturing all
communication between colluding nodes able to communicate through unmonitored
channels. Colluding participants may attempt not to publish an audit record for trans-
action 3; a missing record is detected by honest participants on the fly given that our
workflows are pre-established. An extreme case is when MM, S and the Audit Server
collude with each other. Colluding participants can agree to produce two versions of the
A3 in an attempt to distribute different audit trails to different participants. Following
any verification mechanism for the audit server, any two honest participants can reveal
if they have different versions of an audit record. A collusion between MM and any
other participant is also detectable on the fly.

69

Fig. 4.12 A Graph Based Representation of the Scenario of Applying for a Password

4.6.5.2 Applying for a Passport

Revisiting the scenario of applying for a passport, presented in Chapter 3. A citizen
authenticates through a central government portal C and applies for a passport through
a service P in the Department of State. P requires identity information from the Depart-
ment of Interior I, and an attestation of a clean criminal record from the Department of
Justice J. In Figure 4.12, A and M are (micro)services within the Department of Interior
administrative and security domain. A conflict scenario occurs if a citizen with a crimi-
nal record manages to get a passport; in this case, P can claim to have received an inau-
thentic electronic record from J, and the Department of Justice denies any wrongdoing.
It is the word of one department against the other here. Note that while the contribu-
tion of this research in Chapter 3 mitigates the successful manipulation of requests by
a malicious insider, this contribution does not give any assurance that organisations are
honest and acting in good faith. Also, while the approach for fine-grained access control
verifies the authenticity of requests at the level of each service, the authenticity of the
response of these services cannot be verified. Let’s suppose that a malicious employee
in the passport department is behind manipulating the request of service P to share the
wrong record. Following traditional methods for auditing, the latter can collude with
the entity managing the logging system to tamper with the logs and cover the tracks of
that employee, or with an insider in the Department of Justice that can tamper with their
logs. In contrast to traditional means to record digital evidence, AuDiC offers protec-

70

tion against collusion to tamper with evidence after the fact, and produces reliable audit
records to assign accountability.

The same adversarial scenarios, discussed in Section 4.6.5.1 and represented in Fig-
ure 4.11 apply in this case. This scenario is revisited and the details of the adversarial
model are discussed in the next chapter. Note that a collusion between the citizen using
C to initiate the passport application request and the malicious employee in P does not
imply that C is part of the collusion. The reason being that the rogue citizen only inter-
acts with the client through an interface, and cannot therefore affect the functionality of
C.

4.7 Implementation and Evaluation with a Centralised Audit Server

A proof-of-concept that includes all the functionalities and verification mechanisms
proposed in this chapter was implemented. Referring to Figure 4.1, the code for the
participants as well as the audit server tier were developed as part of the contribution of
this research.

The audit server, as well as the workflow participants were developed with Java.
For the audit server tier, the server exposes an API enabling participants to upload audit
records alongside theHash of their local records. Following the implementation in this
research, the Hash value of the local records is always published alongside the audit
record, allowing to fulfil the Combo verification mechanism discussed in Section 4.5.3.
The server exposes another endpoint enabling participants to pull the records displayed
on the server.

As for the workflow participants tier, the implementation included the construction
of the data structure described in Section 4.4.2 to build payload Pi, message Mi and
audit records Ai following the specifications in Section 4.5.1 for every edge ei of an
arbitrary graph representing a workflow topology. Audit Record Verification and Audit

Server Verification are also implemented at the level of workflow participants. Work-
flow participants encapsulate the same logic but run on separate Java virtual machines,
and they expose APIs enabling their interactions with each other.

4.7.1 Load Emulation of the Audit Server

In this section, a number of workflows relying on the same audit server were simulated.
For this evaluation, a linear topology was used for nodes exchanging messages while
following the protocol of AuDiC. The traffic of requests to the Audit Server is consid-
ered to be log-normally distributed (Paxson 1993, Goseva-Popstojanova et al. 2006). To
simulate server load, a log-normally distributed delay of the form eµ+σZ was introduced
to the Audit Server’s response time. The figure below shows the average processing
time for each case. While the audit server processing power is inversely proportional to

71

Fig. 4.13 Average Processing Time for Different Log-normally Distributed Delays

µ, σ reflects the multitude of workflows running simultaneously. Following this eval-
uation method, changing the number of nodes and the size of the exchanged payload
resulted in graphs with different scales for the Average Iteration Time, but with similar
slopes for the lines. Comparing the slope of curves in Figure 4.13, servers with high
computational power show stability and reliability at scale. Less powerful servers can
still be used for systems that can afford latency at busy times.

4.7.2 Performance Evaluation with the Centralised Audit Server

AuDiC offers the flexibility of logging evidence to any degree of details. When data
exchanged in transactions is too large to be recorded in full in an audit record, partic-
ipants have the option of agreeing on an audit recording approach that covers enough
information to ensure non-repudiation; this flexibility of recording evidence helps to
optimise the disc space required for storage of audit trail with every participant.

This section discusses the evaluation of the implementation with different sizes of
Data in participants’ transactions; for this evaluation, Data is recorded in full in each
equivalent audit record of a transaction. The processing time of a transaction, which
includes cryptography operations on the payload at the sender and recipient side, data
propagation time, reporting and verifying the equivalent audit record of the message
following AuDiC protocol is affected by a number of attributes. The size of the payload
to be sent, the size data pulled from the audit server and the load on the audit server are
factors affecting the processing time. After emulating a busy server in the previous
section, this evaluation shows the processing time of transactions following AuDiC

72

Fig. 4.14 Processing Time of AuDiC with Respect to the Size of the Payload and the
Server Data Size on Topologies of 15 Nodes

protocol on different workflows topologies and payload sizes.
To give a realistic evaluation of the application-agnostic approach proposed in this

chapter, the implementation was tested on topologies generated with a topology gener-
ation tool. Brite1, a topology generation tool developed at Boston University, was used
to generate workflow topologies of 15 and 20 participants. To keep some randomness
in the topologies by avoiding a fully connected graph, a limit for the number of edges
was set to 95 with 15 participants and 145 for 20.

For a fair and consistent evaluation, the results are separated according to the num-
ber of participants; this gives comparable computational resource allocation for each
iteration of the experiment after dedicating the resources required to bootstrap partic-
ipants and the audit server. On average, the time required to process a message with
15 nodes is 346, 954, and 1784 milliseconds for transactions containing 3, 6 and 10
Kilobytes of data respectively; equivalent values for 20 nodes are 650, 2693 and 4635
milliseconds. Figure 4.14 and 4.15 illustrate the results with 15 and 20 participants. The
size of a data evidently reflects on the message processing time as well as the memory
required by the audit server to display audit records.

In each of these figures, the high density of the colour representing a data size
suggests frequent occurrences of records within a range of processing time values; the
three evaluated data sizes with both topologies show a cluster on the first 500 ms when
the pulled data from the server is of a small size (less than 400 KB). Processing times
of 3 KB transactions with 15 and 20 nodes spread between 100 and 2000 ms; with 6
KB, most frequent response time values are within the range of 1 and 4 seconds with
15 participants, and 1 and 8 seconds with 20. More distributed results show with 10 KB

1https://www.cs.bu.edu/brite

73

https://www.cs.bu.edu/brite

Fig. 4.15 Processing Time of AuDiC with Respect to the Size of the Payload and the
Server Data Size on Topologies of 20 Nodes

with the majority of values ranging between 1 and 6 seconds with 15 nodes, and take
up to 13 seconds with 20 nodes. The figures shows a linear relationship between the
processing time and the server data size. The trend is more visible in Figure 4.15, which
reflects more records than Figure 4.14 due to the feasibility of having more connections
between nodes compared to smaller topologies.

Fig. 4.16 Processing Time with Respect to the Size of Messages and Server Data Size

74

Workflow transactions and audit trails are normally in terms of bytes and kilobytes
respectively (Rimba et al. 2017, Pulls et al. 2013); even though files (PDFs for example)
are useful to be exchanged in some workflow cases, the data included in audit records
can be limited to logs similar to those recorded by workflow engines. Nevertheless, if
needs be, files can be serialised and included in the audit as part of the audit trail. The
implementation of this approach was also tested on larger payloads, as visualised in
Figure 4.16; this figure shows part of an evaluation of a topology of 15 participants,
and is obtained through an incremental increase of the size of transactions throughout
the workflow execution. These results are specific to the implementation that was done
during this research and they can be enhanced by optimisation of the code.

4.8 Conclusion

This chapter of the thesis covered AuDiC, a collaborative and trustless approach for
auditing of workflows. Compared to common auditing practices, this approach helps to
enhance the availability, as well as the integrity and confidentiality of digital evidence
during generation and at storage phases. Collusion to hide or tamper with audit data is
detectable, and the chance of withholding evidence is reduced due to the audit capability
of any K out of N participants.

AuDiC is application-agnostic and enables capturing digital evidence to any degree
of details. While the first aspect increases the practicality and applicability of this ap-
proach to different domains that require a collaboration of multiple parties, the second
one gives assurance for non-repudiation. Captured data covering interactions between
participants can include, but are not limited to, suggestions and decisions, requests for
actions and data access requests, allocation of tasks and approvals over budgets, pre-
scriptions, documents and studies, etc. In addition to that, AuDiC enables recording
any other information deemed useful for a specific application domain, including access
tokens, IP addresses, timestamps, etc. A number of scenarios were used to represent
examples of application domains that require the collaboration of different organisa-
tions. While some applications have more relaxed security requirements than others,
the tight measures that are offered help with the applicability of the approach in do-
mains in which the confidentiality of digital evidence is critical to preserve the privacy
of participants, and the availability and integrity of audit records is required to assign
accountability for wrongdoing.

75

The centralised audit server is a single point of failure in the implementation cov-
ered in this chapter. While this server is only used to display audit records during
a workflow execution and recommend wiping its content after the end of a workflow,
this server remains a bottleneck; this can lead the workflow to hang when it is over-
loaded. To overcome this limitation, blockchain is explored as an alternative for the
implementation of the audit server in AuDiC. Although its highly distributed nature
makes it robust and highly available, blockchain requires special considerations due to
its method of operation. The adoption of blockchain for an alternative implementation
of the audit server is discussed in the next chapter.

76

CHAPTER 5

A Blockchain-Based Implementation of AuDiC

The previous chapter presented AuDiC and discussed an implementation that includes
a centralised audit server. This chapter elabirated on the discussion of auditing ap-
proaches offered in the literature to cover blockchain related approaches and present an
alternative implementation of AuDiC using blockchain to develop a decentralised audit
server. A protocol that makes use of the security features of blockchain while consid-
ering its limitations is discussed, and the findings are presented in the remainder of this
chapter.

5.1 Introduction

Blockchain, as the name suggests, is a timestamped list of data blocks containing a de-
fined number of transactions each and chained together with cryptographic ties (Weber
et al. 2016); this list is hosted and maintained in a distributed way with a large network
of machines, referred to as nodes, which record, share and aggregate data about trans-
actions (Weber et al. 2016, Calvaresi et al. 2018). Blockchains are designed to offer
an immutable append-only register possible through the verification of the blockchain
nodes of every transaction or block added to the chain (Calvaresi et al. 2018); in other
words, a new transaction can only be added to a block and a new block can only be
added to the chain through the consensus of all or a majority of the nodes being part of
the blockchain network (Tian 2017, Nofer et al. 2017); also, a node cannot try to change
existent data of the blockchain without being flagged as a potential threat (Tian 2017).
Some blockchains support smart contracts, which are user-defined programs written in
a programming language specific to the blockchain technology (Calvaresi et al. 2018,
Weber et al. 2016). Similar to blocks and transactions, these contracts cannot be mod-
ified once added to the blockchain. Smart contracts are executed on the blockchain,
making its outcome the subject of consensus between the blockchain nodes (Tian 2017,
Weber et al. 2016). Blockchains improve the transparency and security in decentralised
systems, but are not designed to store large amounts of data (Tian 2017); this is due to
having identical copies of the full ledger stored, maintained and validated by different
members of the blockchain network (Ahmad et al. 2018, Sullivan and Burger 2017).

77

The implementation of AuDiC, described in the previous chapter, relies on a cen-
tralised server acting as the audit server. This makes the scheme prone to halt or fail
with the failure of this single point. Failure of nodes is addressed in blockchain given
that the network is resilient and remains functional even when a number of nodes fail
(Nofer et al. 2017). In contrast with approaches built around blockchain technology,
the optional use of blockchain with AuDiC offers an elegant solution to replace the
centralised implementation of the audit server. To overcome the limitations of relying
on a centralised server, this chapter investigates blockchain as a distributed infrastruc-
ture to base the implementation of the audit server on. Blockchain, having its own
limitations, requires some changes in the protocol proposed in the previous chapter.
Section 4.4 is referred to for the common aspects of our auditing approach between the
two implementations, as well as the notation that is used in this chapter; new practices
and notations are also introduced and discussed. This chapter follows a similar scheme
of the previous one to facilitate spotting the differences between the two implemen-
tations. The goal of the auditing scheme remains to minimise the effect of collusion
related threats to tamper with, breach the confidentiality of, withhold or destroy audit
records.

5.2 Blockchain for Auditing: State of the Art

The discussion of related work in this chapter is limited to approaches that require the
use of blockchain for auditing. Other auditing related approaches that use conventional
centralised servers are discussed in Section 4.2 of the previous chapter. A number
of blockchain-based approaches assume trust for the entity generating audit records.
Cucurull and Puiggalı́ (Cucurull and Puiggalı́ 2016) challenge the storage entity with
checkpoints published on a Bitcoin blockchain reflecting the integrity of the logs prior
to the time each checkpoint is recorded; however, tampering with logs is possible be-
tween the checkpoint intervals. Putz et al. (Putz et al. 2019) target this limitation by
enabling the verification of the integrity of each log entry through hashes published on
a permissioned blockchain. They verify that individual log records, collected from dif-
ferent organisations, have not been modified since generation. They also replicate their
audit data to ensure its availability, but trust the entity storing their logs with the con-
fidentiality and privacy of their audit records. Tian (Tian 2017) uses blockchain with
distributed databases to track a food supply chain process. Each participant in the sup-
ply chain generates and maintains audit records of its part of the process, and submits a
proof of authenticity of the records they have to the blockchain. Lu and Xu (Lu and Xu
2017) present another application of blockchain enabling the verification of the origi-
nality of products in a supply chain. Ahmad et. Al (Ahmad et al. 2018) use blockchain
to verify audit logs generated by an Online Transaction Processing Systems in a cen-

78

tralised database. Tang et. al. (Tang et al. 2018) propose uploading a digest of their logs,
stored on the cloud, to a blockchain to enable the verification of the integrity of their
audit records after generation. The approaches presented above reflect the common se-
curity assumption of trusting the entity producing digital evidence and using blockchain
to verify that records have not been modified after generation. The verification of the
correctness of the produced evidence is not covered in these approaches.

Other approaches do not assume the same trust level for the logging entity; they
either rely on blockchain’s smart contracts to produce their audit trails, or verify the
authenticity of audit records during generation through the blockchain. Tapas et al.
(Tapas et al. 2019) do not assume trust during their generation of logs, and rely on mu-
tual challenges between two parties to verify the authenticity of evidence reported to
cover interactions between them. They follow a blockchain-based approach that sup-
ports the verification of basic operations between a client and a cloud service provider
storing data, and do not consider workflows including multiple administrative domains.
Weber et al. (Weber et al. 2016) proposed using blockchain to solve the lack of trust in
the execution of business processes. Smart contracts are used to check if interactions
are conforming to the choreography model and to control the logic of their business
processes, and audit trails are generated from contracts execution; however, their model
requires the data to be in plaintext at the level of their smart contracts. In their ap-
proach, Suzuki et al. (Suzuki and Murai 2017) suggested that interactions between two
entities happen through a blockchain, and that the data area of blockchain transactions is
used for data exchange between participants; although this approach enables encrypted
communication, cost and scalability are obvious limitations. A lightweight and confi-
dentiality friendly approach has not been covered in the literature to verify the integrity
of audit trails in a workflow combining different domains.

The most prominent e-government framework using blockchain to support audit-
ing is X-Road. This framework was developed by Cybernetica for the Estonian e-
government, and is fully or partially used in other countries including Sweden and
Azrebijan (Hartmann and Steup 2015), Finland (Priisalu and Ottis 2017), Haiti, Nambia
and the United Kingdom (Freudenthal and Willemson 2017). X-Road architecture re-
lies on distributed security servers installed at the level of each party that is approved to
participate in data exchange; these security servers connect to a central component that
authenticates participants and plays the role of an exchange layer (Pappel et al. 2017).
X-Road aims to keep centralisation at a minimum, yet exchanged data goes through a
central middleware referred to as the Document Exchange Centre (Pappel et al. 2017).
Logging for data exchange is performed centrally (Hartmann and Steup 2015, Kütt and
Priisalu 2014), in addition to logging messages at the level of participants with security
servers (Freudenthal and Willemson 2017). Therefore, X-Road presents a combination
of a central and distributed approach to record audit data. To protect the integrity of

79

audit records in Estonia, X-Road reports hashes of activity logs to a private blockchain,
developed by Guardtime (Priisalu and Ottis 2017, Robinson and Martin 2017, Calvaresi
et al. 2018, Martinovic et al. 2017). This blockchain is hosted in Estonian govern-
ment network and adding blocks is done without a mining process; trust is assumed for
blockchain nodes in the Estonian government context (Calvaresi et al. 2018). However,
this audit approach leaves room for participants in the data exchange to collude with the
entity that manages X-Road to tamper with logs of transactions prior to reporting the
hash to the blockchain (Martinovic et al. 2017).

The proposed auditing approach in this thesis is an improvement over existent au-
diting systems that workflows spreading across multiple parties rely on. Compared to
blockchain-based approaches that depend on a trusted entity to generate audit records
for workflows, AuDiC enhances the privacy protection of workflow participants by not
exposing their transactions at the level of this entity, and eliminates the need to trust a
single entity with the audit records generation. Compared to frameworks that rely on
each participant to generate audit records for their contribution in the workflow, AuDiC
offers a means to verify these records. Moreover, compared to existent audit systems,
AuDiC minimises the chance of successful collusion with the entity generating the audit
trails to avoid repudiation and is an improvement for the protection of the availability
as well as the confidentiality of audit records at storage.

5.3 Blockchain for Auditing of Workflows: Problem Statement

Compared to common practices that use blockchain for auditing of workflow collabo-
rations spreading across multiple organisations, the blockchain-based implementation
of AuDiC offers mitigation for one or multiple problems of the following:

– Destroying or Withholding Evidence

– Breaching the Confidentiality of Transactions

– Reporting Inauthentic Audit Records

In addition to that, this chapter aims to adjust a known limitation of the previous imple-
mentation: the centralised server is a single point of failure. Replacing this centralised
with a blockchain-based implementation solves this limitation, but introduces new ones
related to the use of blockchain:

– Blockchain transactions are public and permanently stored.

– Blockchain is not designed to host large amounts of data.

Therefore, in addition to the list of problems covered in the previous chapter, privacy
challenges imposed by blockchains’ methods of operation are considered while taking

80

Fig. 5.1 Overview of Blockchain as an Audit Server in AuDiC

into account their data storage limitations. This contribution also offers a reliable audit
approach that protects the confidentiality and integrity at generation and storage phases,
as well as the availability of evidence.

5.3.1 Threat model with a Blockchain-Based Audit Server

Similarly to the threat model of the previous chapter, actions of participants are assumed
to reflect the intentions of each organisation, and not to be the result of a compromise
making it under the control of an attacker. Certificate authorities are honest, and partici-
pants are entrusted with their keys. The adversary model includes workflow participants
colluding with each other in an attempt to avoid repudiation. Blockchain nodes are as-
sumed to be distributed, operated by different organisations and spread across multiple
locations, which eliminates the option of controlling a majority of blockchain nodes.
The smart contracts are also assumed to be free of vulnerabilities that can alter their cor-
rect behaviour. Communication between participants and the blockchain is conducted
over a secure channel. Cryptography keys, including participants’ and workflow keys,
are assumed to be generated following best security practices to minimise the chance of
reversing the encryption.

5.4 System Overview with Blockchain-Based Audit Server

This chapter presents a blockchain-based implementation for the audit server of Au-
DiC. Same as the previous approach, an audit record covering any degree of details of
a transaction in a workflow is generated by the sender, and the recipient verifies that
this record corresponds to the message that it received. However, blockchain’s method
of operation requires different considerations than a traditional server. Considering
blockchain limitations, some modifications are introduced to the protocol of the previ-
ous chapter. A comparison between the two implementations is presented in the next
section.

81

5.4.1 Key Differences With the Centralised Audit Server

Figure 5.1 represents an overview of AuDiC with a blockchain-based implementation
of the audit server. In contrast with the implementation relying on a centralised server,
the functions of the two types of audit servers are different from the perspectives below:

– Blockchain is trusted following the threat model, which eliminates the need for
Audit Server Verification: while the entity managing a centralised audit server
can tamper with the records or display different content to different participants,
the distribution of blockchain nodes across multiple physical locations and ad-
ministrative domains gives a high level of assurance of the authenticity of what
is displayed on a blockchain; in other words, the content that one participant gets
from the blockchain can be trusted to be the same as the others get.

– Blockchain is immutable, and a copy of its data is replicated across its network of
nodes: a Hash of audit records, referred to as integrity proof, is only displayed
rather than the encrypted records on the Blockchain. This affects the role of the
audit server as a means to distribute audit records to all workflow participants,
which requires assigning this task to the recipients after verifying the equivalent
audit record of the messages they received. Even though a Hash value does
not reveal any information about its equivalent audit record, the address of the
participant publishing this record shows on the Blockchain.

– Blockchain is trusted to execute Audit Record Verification: given that a centralised
server is managed by a single entity, the execution of the proposed security checks
on the server cannot be trusted. Through its smart contracts, represented in Figure
5.1, Blockchain gives a higher level of assurance for the authenticity of code
execution than traditional servers due to the transparency of blockchain and the
distributed execution of these contracts by its nodes.

– Blockchain is used to display participants and workflow public keys: given that
any data displayed on a centralised audit server, including cryptography keys,
can be challenged following the same approach used for audit records with Au-

dit Server Verification, a centralised server can be relied on to display workflow
and participants public keys during workflow execution. However, this server is
only used to display data during a workflow execution, and storing cryptography
keys on the server to be displayed for different workflow executions is not rec-
ommended. In contrast to a centralised server for which wiping the content of a
specific workflow execution is recommended after it terminates, content cannot
be deleted from a blockchain. A positive aspect of the immutability of blockchain
is the option of displaying public keys of participants making the blockchain act

82

as a certificate authority. Similar to the implementation with a centralised server,
workflow key generation is assigned to the entity that has the least incentive to
expose the workflow private key; the same options for key distribution apply here,
with direct messaging being a preferred option to minimise unnecessary transac-
tions and data storage on the blockchain.

5.4.2 Audit Data Structure

Considering the linear topology of Figure 5.1, exchanged messages between partici-
pants follow the same structure used in the centralised implementation approach where:

MCD = PCD(SC , ED)

and
PCD = DCD + aBC + TCD.

Same as the previous implementation approach, Payload includes the data to be sent
in addition to a reference of previous audit records and topology data.

Compared to the centralised audit server implementation, and following best prac-
tices that suggest not to store large data on blockchain, integrity proofs of every audit
record are used as payload to be uploaded to the blockchain with every transaction in-
stead of the full audit record. In this sense, and considering the linear topology of
Figure 5.1, an audit record ACD is generated and stored by the sender of the message
of the form

ACD = PCD(SC , Ewpk).

This sender also produces an integrity proof of the message of the form

ICD = Hash(ACD)

and submits this record to the blockchain through a smart contract. Blockchain keeps
a record of entities triggering smart contracts; in this sense, the participant that uploads
integrity proofs to the blockchain is identifiable, which eliminates the need for the exter-
nal signature suggested for the previous implementation of the approach to keep track
of the state of the workflow.

5.4.3 Audit Record Verification

Figure 5.2 shows the steps followed to verify an audit record with a blockchain-based
implementation of the audit server. The sender of the message generates the equivalent
audit record of this message and uploads its integrity proof to the blockchain. When
receiving the message, participant B stores the signature as a receipt, decrypts the

83

Fig. 5.2 Sequence Diagram Representing AuDiC Protocol with a Blockchain-Based
Implementation of the Audit Server

message to obtain the payload, and regenerates the audit record of the message by
re-encrypting the payload that it received with wpk. B stores AAB, and looks for the
integrity proof of the audit record on the blockchain. Finding IAB on the blockchain is
an assurance for B that participant A can be held accountable for the message it sent.
Moreover, the recipient verifies that the reference of the previous audit records, sent as
part of the payload, against the records on the blockchain and checks if it was published
by the correct participant in the workflow. If any of these checks fail, participants in the
workflow get alerted; this is the Audit Record Verification. Integrity Proofs are pushed
on the blockchain and verified through a smart contract. A receipt of delivery is then
sent to the sender with the signature of the receiver. Receipts are useful for revealing
transactions between two participants without requiring the reconstruction of wk. After
that, the receiver of the message sends AAB to the other participants in the workflow
who in turn verify the equivalent integrity proof on the blockchain.

5.4.4 Protocol

Compared to the centralised implementation of the audit server discussed in the previ-
ous chapter, a blockchain-based implementation eliminates the need to challenge this
server to prove its authenticity. It also enables the execution of Audit Record Verification

on the server, rather than the participants end. However, the limitation of blockchain
requires shifting the task of sharing audit records with workflow participants to the
recipient of a message.

– Participants keep their receipts and alert all participants if a receipt of delivery is
not received.

– Audit Record Verification is always performed by recipients onmessage delivery,

84

Fig. 5.3 Overview of AuDiC with a Blockchain-Based Implementation of the Audit
Server. Faded Messages on the Blockchain Represent Integrity Proofs of the Actual
Audit Records

and by each participant when receiving an audit record. Failure of this verifica-
tion alerts all participants.

– Recipient broadcasts the equivalent audit record of a message they received to
all the other participants, subject to a successful Audit Record Verification.

– Participants keep the audit records of the messages they receive, as well as the
audit records they receive for other transactions in the workflow.

Following this protocol, Figure 5.3 represents the state of each workflow participant
as well as the blockchain-based audit server in terms of storage of audit data at the
end of a workflow execution. The audit server in this case permanently stores integrity

proofs of the audit records, while participants keep an encrypted copy of the audit trail.
Following each step of this protocol is required to maximise the level of protection
of the approach. While the third step of the protocol can be omitted, skipping this
step limits the audit records availability to the sender and receiver of a message; this
makes the destruction of evidence less challenging for participants attempting to escape
repudiation. Additionally, skipping this step leads to withdrawing the ability for any
K out of N participants to audit the full trail of transactions. Potential attacks on this
implementation of the approach are presented in the next section.

85

5.5 Analysis of AuDiC with Blockchain-Based Audit Server

This section discusses activities resulting from a malicious participant in the workflow,
or from collusion between two or more participants. Collusion with the audit server
is not an option following the threat model in this chapter. The effect of a successful
collusion depends on the positions of colluding nodes in the topology.

5.5.1 Malicious Participant

Working individually, a participant can attempt to avoid repudiation by not submitting
the integrity proof of a message it sent to the blockchain. This is detected on the
fly by the next honest participant running Audit Record Verification. This malicious
participant can also attempt to truncate the audit trail by using an incorrect reference
to a previous audit record, possibly by using a reference to a self published record,
in the message it sends. This is detectable with blockchain given that the publishing
entity of a record is identifiable through its address on the blockchain. Truncation in
the context of AuDiC only leads to the loss of a pointer to a previous record but does
not affect the availability of the latter. Moreover, a malicious sender of a message
can produce a false audit record and submit its integrity proof to the blockchain in an
attempt to avoid repudiation. This attempt is detected through the absence of receipt
of delivery containing the signature of the receiver at the level of the malicious sender.
Due to the role of broadcasting audit records assigned to the receiver of a message,
a malicious participant can send different audit records to different participants; as an
attempt to avoid detection, malicious participant sends audit records that have integrity

proofs published on the blockchain. This is detected on the fly by any honest participant
due to the transparency of blockchain revealing the publisher of the integrity proof as
well as the time the transaction was performed on the blockchain.

5.5.2 Non-consecutive Colluders

The blockchain-based implementation of AuDiC offers the same resistance for non-
consecutive colluders as the implementation with the centralised server. With the col-
luding participant in Figure 5.4.1, an attempt by participant D to truncate the audit trail
by using an audit record published by B as part of themessage it sends to E is detected
on the fly by the honest participant through Audit Record Verification; also, honest par-
ticipant C can prove the message it sent through the blockchain records and the receipt
of delivery.

86

Fig. 5.4 Collusion Between Participants with a Coloured Background

5.5.3 Consecutive Colluders

The same malicious attempts exercised by consecutive colluding participants with the
centralised server implementation apply in the case of the blockchain. Referring to
Figure 5.4.2, participant D can skip the Audit Record Verification phase leading to one
of the following cases:

– truncating the audit trail through publishing a corrupted A3 or a false reference of
a previous audit record (a2) in A3.

– having an audit trail with a false audit record A3

The same analysis of Section 4.6.3 of the previous chapter applies in this case; for
the first case, truncating the audit trail does not lead to any data loss, and colluding
participants will be held accountable for what is reflected in A3 for the second case.

In addition to that, and due to the role of broadcasting A3 that participant D has,
the latter can send different versions of this record to different participants; partici-
pant C in this can publish an integrity proof for each version of the record. Due to
the transparency of blockchain, honest participants can suspect this malicious activity
when spotting multiple records on the blockchain. Moreover, decrypting and analysing
audit records held by different participants reveal this collusion, and accountability is
assigned to C and D for this malicious activity.

If step 3 of the protocol is omitted, consecutive participants would only have the
audit records of transactions exchanged between them. In the collusion represented in
Figure 5.4.2, C and D can decide not to cooperate in an audit, and to destroy A3 to re-
pudiate a malicious action. Other participants would not have the option of performing
a full audit in this case, but the collusion between C and D would be revealed.

5.5.4 Scenarios

One of the scenarios presented in Section 4.6.5.2 of the last chapter is revisited in this
section. The applicability of the blockchain-based implementation of AuDiC is anal-
ysed on this scenario and the tolerance of the approach for collusion between partici-

87

Fig. 5.5 Malicious Behaviour of Nodes when Auditing the Passport Scenario

pants is discussed. Malicious attempts to produce a passport from the passport depart-
ment for a citizen with a criminal record are considered. Figure 5.5 shows a malicious
participant working individually and attempting to avoid repudiation, and another sce-
nario with a collusion between two consecutive nodes. Considering Figure 5.5.1, and
assuming that a malicious employee in the passport department ignores the criminal
record sent from the honest service J. J publishes I8 on the blockchain, keeps a copy of
A8, and expects a receipt of delivery from P. Failure of P to send the receipt of deliv-
ery alerts J, which reports suspicion of malicious behaviour. Malicious employee can
delete A8 stored at the level of P; however, the proof of delivery receipt held by J and
its copy of A8 reveals that the wrongdoing is at the level of P. Also, P is expected to
broadcast A8 to the other participants in the workflow; failure to do so or an attempts
to share inauthentic audit records is detected by other honest participants following
AuDiC protocol. Considering a collusion, represented in Figure 5.5.2, between P and
J through malicious employees in both departments, and assuming that these malicious
employees managed to skip publishing I8 on the audit server; this gets detected on the
fly by any honest participant performing Audit Record Verification upon receiving A8.
If the malicious employee in P managed to skip the broadcasting phase of A8, honest
participants, aware of the workflow topology, suspect a malicious behaviour and alert
each other. Moreover, in an attempt to mislead participants, colluding nodes may pro-
duce different versions of A8, with or without an equivalent I8 for each version, for P to
distribute each version to a different participant; this is detected by honest participants
on the fly due to the transparency of blockchain, and an investigation reveals this collu-
sion. P and J can produce evidence that does not reflect the payload in M8. The blame
is assigned to one of the participants in accordance with the audit record in this case:
the blame is assigned to P if A8 reflects a criminal record, and J takes the blame if A8

shows an inauthentic record produced on its end. Producing a corrupted record is also
possible through this collusion, but it reflects the collusion between the two participants.

Omitting step 3 of the protocol, requiring P to shareA8 with other participants, gives
malicious colluders the option to destroy A8. Given that AuDiC gives the option of

88

recording audit data to any degree of details, A8 can include information leading back
to the colluding employees in these departments. Destroying A8 reveals a collusion
between the two departments, but leads to uncertainty in terms of locating the insiders
in this case.

Collusion between participants is analysed in a similar way for the supply chain
scenario presented in Section 4.6.5.1 of the last chapter. AuDiC offers tolerance against
collusion when the audited transactions are not between colluding nodes, and gives
evidence that reveals collusion when these transactions are.

5.6 Implementation and Evaluation with Blockchain-Based Audit Server

This section compares the blockchain-based implementation of the audit server and the
implementation with a centralised server while following the corresponding protocol
for each case. Then, the effect of sharing audit records with workflow participants on
the performance of the blockchain-based implementation is analysed. This is followed
with a highlight on the effect of integrating the approach proposed in chapter 3 with
AuDiC.

Compared to the implementation of the centralised audit server discussed in Section
4.7 of the last chapter, changes were required in the audit server as well as the work-
flow participants tier in Figure 4.1. For the audit server tier of the blockchain-based
implementation, Ethereum blockchain is used with Solidity to develop smart contracts.
A blockchain node is deployed on a local machine with Geth client and Web3j library
is used to enable the interaction with the blockchain through Java. Methods were de-
veloped to upload integrity proofs, verify audit records, upload and retrieve keys from
the blockchain. To enable interactions between the workflow participants and the audit
server, an API with multiple endpoints is developed to enable calling the different func-
tionalities of the server. As for the workflow participants tier, while part of the code
including constructing messages and audit records remained the same as the previous
implementation, Audit Record Verification was changed to be triggered with an API call
to the audit server. The functionality of sharing audit records was also implemented
following the protocol in Section 5.4.4.

89

5.6.1 Comparing Performance of Both Implementations

Fig. 5.6 Blockchain and Centralised Audit Server Performance Comparison

This section compares the performance of each implementation of the audit server fol-
lowing the protocols described in chapter 4 for the centralised implementation and in
this chapter for the blockchain implementation of the audit server. In each case, the
audit server and participants are hosted on the same machine with an Intel (R) Core
i7-6700HQ CPU 32 GB of RAM running Windows 10 operating system. Both imple-
mentations were evaluated on 25 different topologies of 20 participants with up to 145
edges generated with Brite. Record Number in the figure reflects the number of records
already reported to the audit server in each case before the audit record of a particular
transaction gets reported. While integrity proofs of audit records are submitted to the
audit server in the first case, full audit records are sent to be displayed on the audit
server in the second case. For both cases, the processing time is shown for a message
of a fixed size, containing 10 KB of data, exchanged between participants following
AuDiC protocol to record and verify audit records for each implementation. At the
end of each workflow execution, every participant ends up with the audit trail for all
the interactions in the workflow. As reflected in the figure, while the blockchain’s per-
formance is stable, a delay proportional to the number of records already on the server
is experienced with the centralised implementation. While a centralised server, being a
single point of failure, is the weak link in the implementation of chapter four, a decen-
tralised network of blockchain nodes offers stability and reliability at scale. Blockchain,
however, introduces a delay as seen in the figure caused by its mining and consensus
process.

90

5.6.2 Effect of Sharing Records

After reflecting on the importance of the sharing step of audit records with workflow
participants from the security perspective in Section 5.5, this section evaluates the effect
of this step on the performance of the blockchain-based implementation of AuDiC.
Using the same setup described in 5.6.1, the same performance evaluation is repeated
while disabling sharing of audit records by the recipient in the workflow (step 3 in the
protocol). Note that this reflects on step 2 and step 4 of the protocol, given that recipients
of audit records are required to store and verify these records against the blockchain.
Figure 5.7 reflects the average processing time of transactions by their order in the
workflow topology when sharing audit records is enabled and when it is disabled. A
clear analysis can not be derived from the graph, but a difference in performance is
noticed through the higher green bars than the reds. As for the averages processing
time of transactions of all the topologies, the sharing step results in 3.2 seconds as a
difference between 25.4 and 22.2 seconds.

Fig. 5.7 Performance Comparison of the Blockchain-Based Implementation of AuDiC
From the Perspective of Audit Data Sharing

Attributes to consider when making a decision of which implementation works bet-
ter for a specific business context includes the number of transactions in the workflow
and the expected load on the audit server.

91

5.7 An Application Agnostic Evaluation of our Contributions

Throughout this thesis, a number of representative scenarios were used for the mere
purpose of illustrating the applicability of an approach. However, given that the ap-
proaches can work on any application domain, the evaluations of the implementations
are application agnostic, and a topology generation tool was used for a fair and objective
representation of distributed workflow collaborations.

AuDiC enables capturing any degree of details on the transactions between partici-
pants, including the tokens used for user identification and access control. To represent
the overhead resulting from the security checks for auditing, the same 25 topologies
involving 20 participants used in Section 5.6 were reused to record the data propagation
time of a payload with 10 KB of data without any interaction with an audit server or
audit-related security checks. Without the overhead caused by the interaction with an
audit server and the equivalent protocol for each implementation, the processing time of
a message was fairly steady with an average of 210 ms. This average can be compared
with the average processing time of 4.6 seconds when AuDiC protocol is followed with
a centralised audit server implementation and of 25 seconds with the blockchain-based
implementation of the audit server. Going back to the evaluation of chapter 3 showing a
23% and 32% overhead resulting from the integration of CGW and RGW respectively
with their security checks, the negligibly of this overhead (applicable to the overage
of 210 ms) on the overall performance is deduced when the proposed approach for
fine-grained access control of microservices is integrated with either implementation of
AuDiC.

5.8 Conclusion

This chapter presented a blockchain-based implementation for AuDiC. While blockchain
offers security and reliability that centralised servers do not, blockchain has scalability
and privacy limitations imposed by its method of operation. Following the criteria with
which blockchain is used, the security features it offers are made use of while overcom-
ing its limitations to fulfil the same goals that were achieved with a centralised server
implementation. Revisiting these goals, AuDiC offers a means to produce, verify, and
store audit records in a trustless, collaborative and confidentiality friendly way; it also
offers auditing capability to any K out of N participants in a workflow. The aim is
to protect audit records from collusion related threats enabling destroying or withhold-
ing evidence, as well as tampering with or breaching the confidentiality of different
participants during the generation of audit records or at storage phases.

While the content and code execution on the audit server can be trusted with a
blockchain-based implementation due to its distributed nature, an implementation that

92

includes a centralised server requires workflow participants to challenge the audit server;
this helps participants verify that the entity managing the server is not acting maliciously
by eliminating, tampering with, or showing different versions of audit records to differ-
ent participants. On the other hand, while a centralised audit server can serve as a means
to display encrypted audit records to different workflow participants, a blockchain-
based implementation requires shifting the duty of sharing audit records to participants
to ensure high availability of evidence. Each implementation of AuDiC has its advan-
tages and downsides, and the aim of the security analysis and the evaluations performed
in chapters 4 and 5 is to give an overview that helps adopters make an informed decision
on which implementation is a better fit for their business context.

The security aspects offered by either implementation of AuDiC is an improvement
over existent approaches that rely on traditional centralised servers or blockchain tech-
nology to offer auditing capabilities for distributed workflows. Although workflows that
use smart contracts obtain reliable audit trails, the transparency of blockchain makes
the approach of AuDiC to challenge the generation of audit records in a confidential-
ity friendly way novel for auditing distributed collaborations. Also, the distribution of
audit records during the workflow execution while verifying that all participants obtain
the same audit trail gives additional assurances for the authenticity and availability of
digital evidence compared to other approaches that rely on backing up databases, or
that use blockchain to verify the integrity of their content. In addition to that, the au-
dit data structure that enables recording digital evidence to any degree of details, and
the strategy of linking records to create an audit trail that can cover arbitrary workflow
topology are features that help this approach to reach a wide audience. Although AuDiC
is designed with high confidentiality, integrity and availability requirements in mind, its
tight security measures can be relaxed for applications that do not require, for exam-
ple, strict confidentiality requirements between participants; moreover, offering both
implementations enable the adoption of the approach for organisations that have legal,
political, or corporate culture restrictions on the technology that should be used. AuDiC
is a step forward towards achieving highly dependable auditing and it demonstrates the
importance of verification as opposed to trust in any security context.

93

CHAPTER 6

Conclusion and Future Work

6.1 The Big Picture

This research made a contribution to the security of microservices-based application
with a focus on access control and to the auditing of workflow based collaborations
between different organisations. Each of these contributions is applicable to any appli-
cation domain, and can be adopted separately; however, adopting the combination helps
to enhance the robustness of security for distributed applications. This section discusses
how the contributions in this thesis connect and present the rationale for the order that
was followed throughout this research. This analysis shows how the security reference
architecture for microservices helps to provide the security environment upon which
the fine-grained access control approach can fulfil its security goals, and how the latter
contribution enable the environment required for the collaborative auditing approach.

This research started with a review of existent security practices that are applica-
ble to microservices-based applications and resulted in a holistic security reference
architecture; this covers microservices as components and their interactions to form
a microservices-based application starting from the design phases and throughout the
application lifecycle. This review layed the foundations for the main contribution at
the application level focused on the access control of microservices-based applications
where security measures were proposed to integrate standards for access control and
delegation with microservices in a more secure way than common practices.

Fig. 6.1 Research Contributions in Order

As shown in Figure 6.1, the first contribution represents the focus of this thesis on
the security of microservices-based applications. This research then moved to cover-
ing interactions between these applications with a robust and confidentiality friendly

94

auditing approach for inter-domain interactions to mitigate collusion-related threats to
tamper with, destroy or breach the confidentiality of evidence. While each of these
contributions stands on its own, the combination gives a better security outcome for
distributed applications that are built through the integration of microservices-based
applications. Figure 6.1 shows the contributions of this research in perspective and
further details are discussed in the following sections.

6.1.1 Secure Architecture Enabling Securing Access Control

Access Control is a fundamental practice for the security of any application requiring
the protection of certain assets. However, a secure access control placed to protect
these assets is not effective when these are exposed through other vectors like injection
attacks and poor handling of security configurations and credentials. While the contri-
bution of this research for microservices access control introduces mitigation measures
against specific vulnerabilities to the architecture of microservices-based applications,
the proposed protocol and the trusted execution of its security checks are only enabled
with secure components that were introduced in the security reference architecture for
MSA.

To begin with, the proposed approach for access control relies on having OAuth
2 clients tailored for up to each microservice protecting certain assets (the Resource
Microservices). Following OAuth 2 protocol and as discussed in Chapter 3, each OAuth
client requires credentials to issue access tokens. Without a secure provisioning of these
credentials for microservices at the bootstrap phase, and without the secure storage of
these credentials enabled with the key vault (root of trust) of the security reference
architecture, the approach for access control is weakened with the possibility of tricking
users to issue access tokens for microservices they did not request to access. Moreover,
the scalability of the proposed gateways, embedding the logic of the security checks for
access control, with the microservices cannot be trusted without the verification against
the root of trust.

Also, the security considerations in the application design reflect on the effective-
ness of access control for data protection. Using a single database for all the system
microservices enables an attacker to access all the application data through a single vul-
nerable microservice. Having weak security configurations, including easy passwords
for databases and running containers with root users, is another enabler to penetrate
a system and access its data. Moreover, traditional interface attacks, including SQL
and JavaScript injections and their derivatives are other enablers for inauthentic data
manipulations and exfiltration.

In addition to that, availability of applications precedes the usefulness of their access
control system. Microservices require special attention due to their limited resources; a

95

denial of service on a single microservice can jeopardise the availability of the applica-
tion, which justifies the recommendation for gateway at the level of the microservices-
based application (Neri et al. 2019). Other protection measures for availability in the
reference architecture in this thesis include the internal monitoring and scaling system,
the firewall and intrusion detection system at the network entry point of the application.

6.1.2 Secure Applications Enabling Robust Collaborative Auditing

AuDiC, the proposed approach in this thesis for auditing of distributed collaborations
assumes each transaction to reflect the intention of the administration that manages an
application participating in the workflow. This assumption is not reasonable without ro-
bust security measures within the application security domains, and for its interactions
with the other domains; the security guidelines and reference architecture in Chapter 2
aim to offer this level of security. In addition to that, AuDiC imposes security verifica-
tion mechanisms on participants as part of the audit protocol, as well as requirements
to store audit records and receipts. While unintentional failure to follow these measures
due to a vulnerability weakens the assurances that AuDiC provides, intentional skip-
ping of steps in the protocol can help participants to escape repudiation if they claim
benevolence. Moreover, the security of AuDiC depends on the protection of cryptogra-
phy keys: leaking a participant share of wk is a step closer for an adversary to breach
the confidentiality of workflow participants, and leaking the participant private key en-
ables framing the vulnerable participant through a fabrication of evidence. The key
vault component of the secure reference architecture helps participants to protect their
cryptography keys. Moreover, the availability of applications being part of a workflow
is a prerequisite for auditing.

On the other hand, a robust access control system within an application domain is
of critical importance to ensure the correct behaviour within an application. With a
vulnerable access control in a microservices-based application, a successful confused
deputy or token manipulation attack enables, for example, making wrongful actions
on behalf of an honest employee. While accountability assurance is a major goal of
AuDiC, similar vulnerabilities enabling evidence manipulation within a domain defeat
the purpose of this auditing scheme.

6.2 Conclusion and Future Work

Going back to the structure of distributed collaborations of microservices-based appli-
cations across domains introduced in Chapter 1 (Figure 1.1), this research made con-
tributions that cover different layers. Having this perspective as a basis, this research
followed an inner-to-outer security strategy following which a contribution covering an
outer layer is enabled with another covering the inner ones. While there is still room for

96

improvement in each of these layers, this work helps to lay the foundations of security
for microservices-based applications, and offers an approach for auditing for reliable
auditing of distributed workflows. For each contributions, verification, as opposed to
trust, is followed as a strategy to enhance the security of applications within a single
domain as well as their interactions between domains. This section summarises the
contributions of this researchand shed light on future work and research directions.

6.2.1 Summary of the Research Contributions

This section gives a recap on each of the contributions of this research including a high-
light what was achieved in each, and the added value compared to common practices.

This research started with a study of microservices architectural paradigm covering
motivations for the shift away from the old monolithic paradigm, the resemblance of
practices yet the difference of scopes and goals between microservices-based applica-
tions and the Service-Oriented Architecture, as well as the principles and enablers of
microservices. A representation of microservices-based applications was modelled, the
security challenges focusing on microservices specifications were analysed, and secu-
rity hardening measures following common security practices throughout the software
development lifecycle were presented in Chapter 2. While this approach is not meant to
present an exhaustive list covering the details of security measures applicable to MSAs,
the aim is to give a comprehensive view covering fundamental security practices for mi-
croservices as independently deployable components, their interactions within and out-
side their domain, the underlying infrastrusture and the architecture of the application.
Practices for secure scaling of microservices and for handling of cryptography materials
are also highlighted as part of this study. These practices were represented with a se-
curity reference architecture for microservices-based applications to help practitioners
build security by design.

Research on microservices architectural paradigm has a short history, and the liter-
ature is poor on security and architectural guidance for it. Compared to existent work
in the literature, this study introduces a more comprehensive view of the security of
microservices-based applications. The shift towards microservices and the growing
adoption of this paradigm by industries raises concerns of vulnerabilities resulting from
security design flaws. Embedding security practices since the design stages of appli-
cations helps avoid expensive software refactoring, as well as liabilities and reputation
damage caused by a successful compromise. The common integration of standards for
access control with microservices makes them vulnerable to powerful token theft and
manipulation, in addition to a vulnerability caused by microservices trust model: the
confused deputy problem. After laying the foundations with the security architecture,
this thesis moved to main focus of the contribution of this research for microservices-

97

based applications revolving around access control.
This research presents an approach for access control that, although based on com-

monly used open standards, takes into account the design specifications of microser-
vices that make common practices for access control of microservices-based applica-
tions vulnerable. This approach is based on the integration of OAuth 2 and XACML
open standards with a couple of security checks that were designed to detect requests
manipulations. Following this approach, successful token thefts, once enabling the to-
ken holder to act on behalf of the user and have access to their resources, are rendered
ineffective with the narrow scopes and short lifetimes of tokens; also, requests manip-
ulations are detected on the fly, and the confused deputy attack is mitigated with the
necessity of users’ engagement to produce access tokens specific to requests enabling
actions on the assets. To enable the easy adoption and integration of this approach with
existent systems, this research categorised microservices according to their roles into
consumers and resources, and designed configurable and reusable micro-gateways in-
cluding the security checks through which requests need to go before reaching primitive
microservices. In the context of this thesis, micro-gateways perform service-to-service
authentication, check access policies to verify if a user is authorised to access a service
and if a service is acting faithfully on behalf of a user, and enable the generation of
short-lived access tokens with fine-grained access scopes reflecting the delegation of
a user for a service to act on its behalf. Although the proposed approach for access
control is designed to mitigate vulnerabilities caused by microservices specifications
and exploited within a single application domain, organisations very often collaborate
through their applications. The impact of an exploit of any of these vulnerabilities in
a single application spreads to other domains interacting with the compromised appli-
cation. This applies to cases in which users’ assets are spread across different admin-
istrations like digital government or e-health applications, or to cases in which users
decisions take effect in multiple organisations like supply chain and engineering.

When thinking of collaborations of organisations, financial gains and avoiding repu-
tation damage are among numerous reasons that may motivate an organisation to avoid
repudiation of some actions or decisions. Being part of different administrative do-
mains, organisations need audit trails of their collaborations to be able to assign ac-
countability to an organisation responsible for wrong-doing. In extreme cases, partici-
pants should not trust each other or any single entity to produce or store audit records
of transactions. Assurances should be given showing that a malicious entity, working
individually or colluding with an audit system, does not have the option of tampering
with, destroying or withhold digital evidence. Moreover, a single entity should not be
trusted with confidential data belonging to different organisations. The inadequacy of
approaches in the literature to fulfil these requirements was a motivation to design and
implement AuDiC, an application-agnostic approach to audit distributed collaborations

98

to any degree of details while targeting the challenges above. This is another contribu-
tion of this research.

Part of this contribution is designing audit records that allow recording any degree
of details of transactions and that, when linked together to form an audit trail, can cover
any workflow topology. This is detailed in Section 4.4.1, which introduces a represen-
tation of this research for workflows as well as the data structure of audit records, and
discusses how these records connect to cover arbitrary workflow topologies. The other
part is enabling the verifiability of each of these records without trusting a single entity,
and ensuring the high availability of the audit trail without breaching the confidentiality
of any of the workflow participants or giving the option to any of them to avoid repudi-
ation by withholding evidence and refusing to decrypt a record. The task of verifying
each audit record is assigned to the recipient of its equivalent message, and an untrusted
centralised audit server is used for the mere purpose of facilitating the distribution of
encrypted audit trails to participants during execution. This server is challenged by ev-
ery participant to verify that it is not tampering with or eliminating encrypted records,
and that it is not showing different versions of the audit trail to different participants.
The proposed approach relies on verifiable secret sharing, which enables participants to
verify that the entity generating and splitting a key is honest with the key distribution,
and that a threshold of participants is needed to decyrpt the audit trail. The function-
alities above were implemented and a fully functional prototype implementation was
produced combining components that enable the simulation of the proposal for auditing
of distributed systems. As a preliminary evaluation for the scalability of the centralised
server, a busy server was emulated by adding a log-normally distributed delay to the
response time of the audit server reflecting the expected behaviour of the server under
load and when multiple workflows are simultaneously using the same server. Then, to
offer a fair and objective evaluation of the implementation, a topology generation tool
was used to produce arbitrary topologies, and the performance of the implementation
was evaluated on different topologies and different sizes of data in audit records. Being
aware of the limitation of this implementation due to reliance on a server that may fail,
the applicability of the approach was investigated with a blockchain-based implemen-
tation for the audit server. Although the method of operation and the highly distributed
nature of blockchain offers reliability and stability as well as trust assurances, the lim-
itations and specifications of blockchains lead to making amends to AuDiC. This is
another part of the contribution of this research to the auditing of distributed workflow
based collaborations.

Although blockchain related approaches to produce audit trails or verify the in-
tegrity of audit records have been extensively discussed in the literature, the assurances
offered by AuDiC and its applicability to arbitrary workflows have not been covered
in any previous work. While blockchain types, fees, consensus mechanisms and tech-

99

nologies are out of scope of this work, this research considers blockchain scalability
limitations while making use of its transparency and security features when using this
technology to implement the audit server of AuDiC. Smart contracts with APIs were
developed and the required modifications in the previous code were implemented to
achieve the same security goals reached with the centralised audit server. The same
evaluation approach on arbitrary topologies was followed to compare the steady per-
formance of the blockchain-based implementation and the initial one including a cen-
tralised server. Given that blockchain method of operation and scalability limitation
lead to assigning the distribution of audit records to recipients of every transaction, an-
other evaluation of the blockchain-based implementation that omits the audit records
distribution step was performed; this leaves the sender and recipient of a transaction,
rather than all participants, with the equivalent audit records of transactions exchanged
between them. While this thesis recommends a full distribution of records to all partic-
ipants, limiting the availability of equivalent audit records of transactions to the sender
and receiver may make sense in contexts in which locating collusion leading to destruc-
tion of evidence is enough to assign accountability.

As discussed in the previous section, following the order with which the contribu-
tions were presented, each one serves as an enabler for the other. Measures taken in
one contribution are relied upon in other later ones to ensure that the security assump-
tions can be met. Cyber attacks are getting more sophisticated by the day, and security
measures can never guarantee enough protection against attack vectors that are not dis-
covered at the time they were put in place. With this in mind, the security strategy
followed in this work suggests the inner layers of Figure 1.1 not to be trusted by the
outer ones as a measure to contain a security breach when it happens in a domain rather
than enabling it to spread to other domains. Due to the time restrictions and other re-
source limitations of this study, a number of possible improvement have been left for
future work. The next section highlights the limitations of our work and sheds light on
future directions of research.

6.2.2 Limitations

Each of the proposed approaches in this thesis has limitations; some of the limitations
result from the protocol that is proposed, and others are due to the available cryptogra-
phy approaches.

The proposed approach for MSA access control results in an additional load on
the authorisation server, which requires allocating more computational resources at the
level of the latter to ensure its high availability. The authorisation server is also a single
point of trust that can be dishonest with the legitimate production of access tokens;
this can either be through the production of tokens without the consent of an end user

100

or by not abiding to the access scopes that the user selects. Also, the maintenance and
management of access control lists and of the access scopes at the level of microservices
results in an additional complexity at the level of the applications.

AuDiC also has a limitation related to the the production of the workflow key. Fol-
lowing this approach, the entity that has the least incentive to expose the workflow key
can breach the privacy of all participants in the workflow. This limitation is inherited
from the currently available approaches for the generation of keys, and a distributed
generation of cryptographic keys is still an open problem.

6.2.3 Future Research Directions

Chapter 2 of this thesis offered a high level reference architecture highlighting existent
approaches and measures to help avoid vulnerabilities caused by microservices specifi-
cations. The large number of containers and exposed interfaces on the same machine,
the implicit trust between microservices, and the common reliance on an insecure net-
work to communicate are the top reasons for the special attention required for the secu-
rity of MSAs. While this thesis suggested protection measures to consolidate security
by reducing the exposure to certain vulnerabilities, detecting intrusion when possible,
and handling of security configurations and cryptography materials throughout the life
cycle, many aspects in the reference architecture can be elaborated on. These include:

– Security configurations and attestations of microservices throughout the life cycle
with the secure hardware suggested in the architecture.

– Internal security monitoring and packet inspection on the network to detect intru-
sion

– Cloud container orchestration services and their support for microservices

Collaborations between academics and the industry are required to cover the breadth of
these aspects and reach the needed security maturity, and to develop specialised security
elements tailored for microservices specifications.

With regards to the contribution for microservices access control, free and available
at the time components were used to produce a simple proof of concept. The func-
tionalities and the support for the free versions of the components that were used were
restrictive and very limited. In August 2019, Forgerock released their first version of
microgateways as well as a token validation component1. This proves the validity of this
research, and suggests that more work needs to be done by academics and the industry
to secure microservices access control.

As for the contribution of this thesis for auditing of distributed collaborations, al-
though the recommended security measures have been implemented with a centralised

1https://backstage.forgerock.com/docs/mg/1

101

https://backstage.forgerock.com/docs/mg/1

Fig. 6.2 Implementing Re-usable Plugins to Audit Workflows

and blockchain-based audit server, sharpening and optimising the code will improve
the performance of the implementation. Moreover, to enhance the portability and ease
of re-usability of AuDiC with existent systems, the proposed security measures can be
segregated from the functionality of existent services and implemented with reusable
and configurable gateways; Figure 6.2 represents the role that a reusable gateway, the
audit plugin, can play to minimise the need to modify web services in existent systems.

Moreover, a future plan is to install and evaluate AuDiC in a real life setup given that
this has not been achieved during this research time frame. Another possible research
direction is a more comprehensive investigation of the use different types of blockchain
with AuDiC, including cost, performance, attacks by malicious nodes of the blockchain
network and vulnerabilities in smart contracts.

102

REFERENCES

Abreu, P. W., Aparicio, M. and Costa, C. J. (2018), Blockchain technology in the audit-
ing environment, in ‘2018 13th Iberian Conference on Information Systems and Tech-
nologies (CISTI)’, IEEE, pp. 1–6.

Accorsi, R. (2010), Bbox: A distributed secure log architecture, in ‘European Public
Key Infrastructure Workshop’, Springer, pp. 109–124.

Accorsi, R. (2011), Business process as a service: Chances for remote auditing, in

‘2011 IEEE 35th Annual Computer Software and Applications Conference Work-
shops’, IEEE, pp. 398–403.

Accorsi, R. (2013), ‘A secure log architecture to support remote auditing’, Mathemati-

cal and Computer Modelling 57(7), 1578 – 1591.

Ahmad, A., Hassan, M. M. and Aziz, A. (2014), A multi-token authorization strategy
for secure mobile cloud computing, in ‘2014 2nd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering’, IEEE, pp. 136–141.

Ahmad, A., Saad, M., Bassiouni, M. and Mohaisen, A. (2018), Towards blockchain-
driven, secure and transparent audit logs, in ‘Proceedings of the 15th EAI Interna-
tional Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services’, ACM, pp. 443–448.

Ahsan, M. M., Wahab, A. W. A., Idris, M. Y. I., Khan, S., Bachura, E. and Choo,
K.-K. R. (2018), ‘Class: Cloud log assuring soundness and secrecy scheme for cloud
forensics’, IEEE Transactions on Sustainable Computing .

Albert, P., Henocque, L. and Kleiner, M. (2005), Configuration based workflow compo-
sition, in ‘IEEE International Conference on Web Services (ICWS’05)’, IEEE, pp. 285–
292.

Alqahtani, S. and Gamble, R. (2014), Embedding a distributed auditing mechanism in
the service cloud, in ‘2014 IEEE World Congress on Services’, pp. 69–76.

Alshuqayran, N., Ali, N. and Evans, R. (2016), A systematic mapping study in mi-
croservice architecture, in ‘Service-Oriented Computing and Applications (SOCA),
2016 IEEE 9th International Conference on’, IEEE, pp. 44–51.

103

Aravind, A. and Sandeep, A. (2015), Workflow signature for business process domain:
A new solution using ibmkd, in ‘Communication Technologies (GCCT), 2015 Global
Conference on’, IEEE, pp. 619–622.

Argyriou, M., Dragoni, N. and Spognardi, A. (2017), Security flows in oauth 2.0 frame-
work: a case study, in ‘International Conference on Computer Safety, Reliability, and
Security’, Springer, pp. 396–406.

Azarmi, M., Bhargava, B., Angin, P., Ranchal, R., Ahmed, N., Sinclair, A., Linderman,
M. and Othmane, L. B. (2012), An end-to-end security auditing approach for service
oriented architectures, in ‘Reliable Distributed Systems (SRDS), 2012 IEEE 31st Sym-
posium on’, IEEE, pp. 279–284.

Bates, A., Hassan, W. U., Butler, K., Dobra, A., Reaves, B., Cable, P., Moyer, T. and Sc-
hear, N. (2017), Transparent web service auditing via network provenance functions, in

‘Proceedings of the 26th International Conference on World Wide Web’, International
World Wide Web Conferences Steering Committee, pp. 887–895.

Bilal, M., Thomas, J. P., Thomas, M. and Abraham, S. (2005), Fair bpel processes
transaction using non-repudiation protocols, in ‘Services Computing, 2005 IEEE Inter-
national Conference on’, Vol. 1, IEEE, pp. 337–340.

Bradley, J., Sakimura, N. and Jones, M. (2015), ‘Json web signature (jws)’, https:
//tools.ietf.org/html/rfc7515.

Brickell, E. F. (1989), Some ideal secret sharing schemes, in ‘Workshop on the Theory
and Application of of Cryptographic Techniques’, Springer, pp. 468–475.

BS (2015), Information technology – security techniques – information security man-
agement for inter-sector and inter-organizational communications., Standard, British
Standards Institution.

Butzin, B., Golatowski, F. and Timmermann, D. (2016), Microservices approach for the
internet of things, in ‘Emerging Technologies and Factory Automation (ETFA), 2016
IEEE 21st International Conference on’, IEEE, pp. 1–6.

Calvaresi, D., Dubovitskaya, A., Calbimonte, J. P., Taveter, K. and Schumacher, M.
(2018), Multi-agent systems and blockchain: Results from a systematic literature re-
view, in ‘International Conference on Practical Applications of Agents and Multi-Agent
Systems’, Springer, pp. 110–126.

Chor, B., Goldwasser, S., Micali, S. and Awerbuch, B. (1985), Verifiable secret sharing
and achieving simultaneity in the presence of faults, in ‘26th Annual Symposium on
Foundations of Computer Science (sfcs 1985)’, IEEE, pp. 383–395.

104

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515

Ciuffoletti, A. (2015), ‘Automated deployment of a microservice-based monitoring in-
frastructure’, Procedia Computer Science 68, 163–172.

CloudPassage (2017), ‘Verify, don’t trust: Best practices for reducing vulnerabil-
ity exposure in docker environments’, https://pages.cloudpassage.com/
part-2-best-practices-reducing-vulnerability-ug.html. Ac-
cessed: 2017-12-30.

Combe, T., Martin, A. and Di Pietro, R. (2016), ‘To docker or not to docker: A security
perspective.’, IEEE Cloud Computing 3(5), 54–62.

Cucurull, J. and Puiggalı́, J. (2016), Distributed immutabilization of secure logs, in

‘International Workshop on Security and Trust Management’, Springer, pp. 122–137.

de Vrieze, P. and Xu, L. (2018), ‘Resilience analysis of service-oriented collabo-
ration process management systems’, Service Oriented Computing and Applications

12(1), 25–39.

Di Francesco, P., Malavolta, I. and Lago, P. (2017), Research on architecting microser-
vices: Trends, focus, and potential for industrial adoption, in ‘2017 IEEE International
Conference on Software Architecture (ICSA)’, IEEE, pp. 21–30.

Dragoni N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R.
and Safina, L. (2017), Microservices: yesterday, today, and tomorrow, in ‘Present and
ulterior software engineering’, Springer, pp. 195–216.

Dragoni, N., Dustdar, S., Larsen, S. T. and Mazzara, M. (2017), ‘Microservices: Mi-
gration of a mission critical system’, arXiv preprint arXiv:1704.04173 .

D’Souza, R., Jao, D., Mironov, I. and Pandey, O. (2011), Publicly verifiable secret
sharing for cloud-based key management, in ‘International Conference on Cryptology
in India’, Springer, pp. 290–309.

Ebert, C., Gallardo, G., Hernantes, J. and Serrano, N. (2016), ‘Devops’, IEEE Software

33(3), 94–100.

Esposito, C., Castiglione, A. and Choo, K.-K. R. (2016), ‘Challenges in delivering
software in the cloud as microservices’, IEEE Cloud Computing 3(5), 10–14.

Fernández, F., Alonso, Á., Marco, L. and Salvachúa, J. (2017), A model to enable
application-scoped access control as a service for iot using oauth 2.0, in ‘Innovations in
Clouds, Internet and Networks (ICIN), 2017 20th Conference on’, IEEE, pp. 322–324.

Fetzer, C. (2016), ‘Building critical applications using microservices’, IEEE Security

and Privacy 14(6), 86–89.

105

https://pages.cloudpassage.com/part-2-best-practices-reducing-vulnerability-ug.html
https://pages.cloudpassage.com/part-2-best-practices-reducing-vulnerability-ug.html

Flores, D. A. (2014), An authentication and auditing architecture for enhancing secu-
rity on egovernment services, in ‘2014 First International Conference on eDemocracy
eGovernment (ICEDEG)’, pp. 73–76.

Fowler, M. (2014), ‘Microservices prerequisites’, https://martinfowler.com/
bliki/MicroservicePrerequisites.html.

Fowler, M. and Lewis, J. (2014), ‘Microservices’, ThoughtWorks .

Freudenthal, M. and Willemson, J. (2017), Challenges of federating national data access
infrastructures, in ‘International Conference for Information Technology and Commu-
nications’, Springer, pp. 104–114.

Gajanayake, R., Iannella, R. and Sahama, T. (2011), ‘Sharing with care: An information
accountability perspective’, IEEE Internet Computing 15(4), 31–38.

Gao, X. and Uehara, M. (2017), Design of a sports mental cloud, in ‘Advanced In-
formation Networking and Applications Workshops (WAINA), 2017 31st International
Conference on’, IEEE, pp. 443–448.

GDS (2016), ‘Our approach to api authentication.’, https://gdstechnology.
blog.gov.uk/2016/11/14/our-approach-to-authentication note =
Accessed: 2018-05-20.

Geisriegler, M., Kolodiy, M., Stani, S. and Singer, R. (2017), Actor based business
process modeling and execution: A reference implementation based on ontology mod-
els and microservices, in ‘Software Engineering and Advanced Applications (SEAA),
2017 43rd Euromicro Conference on’, IEEE, pp. 359–362.

González, L., Echevarrı́a, A., Morales, D. and Ruggia, R. (2016), ‘An e-government
interoperability platform supporting personal data protection regulations’, CLEI elec-

tronic journal 19(2), 8–8.

González, L., Ruggia, R., Abin, J., Llambı́as, G., Sosa, R., Rienzi, B., Bello, D. and
Álvarez, F. (2012), A service-oriented integration platform to support a joined-up e-
government approach: the uruguayan experience, in ‘International Conference on Elec-
tronic Government and the Information Systems Perspective’, Springer, pp. 140–154.

Gorski, P. L., Iacono, L. L., Nguyen, H. V. and Torkian, D. B. (2014a), Service secu-
rity revisited, in ‘2014 IEEE International Conference on Services Computing’, IEEE,
pp. 464–471.

Gorski, P. L., Iacono, L. L., Nguyen, H. V. and Torkian, D. B. (2014b), Service security
revisited, in ‘2014 IEEE International Conference on Services Computing’, pp. 464–
471.

106

https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://gdstechnology.blog.gov.uk/2016/11/14/our-approach-to-authentication
https://gdstechnology.blog.gov.uk/2016/11/14/our-approach-to-authentication

Goseva-Popstojanova, K., Li, F., Wang, X. and Sangle, A. (2006), A contribution to-
wards solving the web workload puzzle, in ‘International Conference on Dependable
Systems and Networks (DSN’06)’, IEEE, pp. 505–516.

Gummaraju, J., Desikan, T. and Turner, Y. (2015), Over 30% of official images in
docker hub contain high priority security vulnerabilities, Technical report, Technical
report, BanyanOps.

Hale, M. L., Gamble, M. T. and Gamble, R. F. (2013), A design and verification frame-
work for service composition in the cloud, in ‘2013 IEEE Ninth World Congress on
Services’, pp. 317–324.

Härtig, H., Roitzsch, M., Weinhold, C. and Lackorzynski, A. (2017), Lateral think-
ing for trustworthy apps, in ‘2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS)’, IEEE, pp. 1890–1899.

Hartmann, K. and Steup, C. (2015), ‘On the security of international data exchange
services for e-governance systems’, Datenschutz und Datensicherheit-DuD 39(7), 472–
476.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L. E., Pahl, C., Schulte, S.
and Wettinger, J. (2017), Performance engineering for microservices: Research chal-
lenges and directions, in ‘Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering Companion’, ACM, pp. 223–226.

Hildebrand, J. and Jones, M. (2015), ‘Json web encryption (jwe)’, https://tools.
ietf.org/html/rfc7516.

IBM (2016), ‘An integrated approach to insider threat protection.’, https:

//www-05.ibm.com/services/europe/digital-whitepaper/

security/growing_threats.html. Accessed: 2018-05-15.

Ilhan, Ö. M., Thatmann, D. and Küpper, A. (2015), A performance analysis of the xacml
decision process and the impact of caching, in ‘2015 11th International Conference on
Signal-Image Technology and Internet-Based Systems (SITIS)’, IEEE, pp. 216–223.

Jander, K., Braubach, L. and Pokahr, A. (2018), ‘Defense-in-depth and role authentica-
tion for microservice systems’, Procedia computer science 130, 456–463.

Jarwar, M. A., Ali, S., Kibria, M. G., Kumar, S. and Chong, I. (2017), Exploiting
interoperable microservices in web objects enabled internet of things, in ‘Ubiquitous
and Future Networks (ICUFN), 2017 Ninth International Conference on’, IEEE, pp. 49–
54.

107

https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7516
https://www-05.ibm.com/services/europe/digital-whitepaper/security/growing_threats.html
https://www-05.ibm.com/services/europe/digital-whitepaper/security/growing_threats.html
https://www-05.ibm.com/services/europe/digital-whitepaper/security/growing_threats.html

Jones, M. (2015a), ‘Json web algorithms (jwa)’, https://tools.ietf.org/
html/rfc7518.

Jones, M. (2015b), ‘Json web key (jwk)’, https://tools.ietf.org/html/
rfc7517.

Jones, M., Nadalin, A., Campbell, B., Bradley, J. and Mortimore,
C. (2019), ‘Token exchange’, https://tools.ietf.org/html/

draft-ietf-oauth-token-exchange-19.

Jones, M., Sakimura, N. and Bradley, J. (2015), ‘Json web token (jwt)’, https://
www.rfc-editor.org/rfc/rfc7519.txt.

Karmel, A., Chadromouli, R. and Iorga, M. (2016), ‘Nist definition of microservices,
application containers and system virtual machines’, Nat’l Inst. of Standards and Tech-

nology (NIST) Special Publication pp. 800–180.

Kieseberg, P., Malle, B., Frühwirt, P., Weippl, E. and Holzinger, A. (2016), ‘A tamper-
proof audit and control system for the doctor in the loop’, Brain informatics 3(4), 269–
279.

Kuntze, N. and Rudolph, C. (2011), Secure digital chains of evidence, in ‘Systematic
Approaches to Digital Forensic Engineering (SADFE), 2011 IEEE Sixth International
Workshop on’, IEEE, pp. 1–8.

Kütt, A. and Priisalu, J. (2014), Framework of e-government technical infrastructure.
case of estonia, in ‘Proceedings of the International Conference on e-Learning, e-
Business, Enterprise Information Systems, and e-Government (EEE)’, The Steering
Committee of The World Congress in Computer Science, Computer . . . , p. 1.

Lightstep, D. (2018), ‘Global microservices trends a survey of
development professionals’, https://go.lightstep.com/

global-microservices-trends-report-2018 note = Accessed: 2019-10-
20.

Lim, H. W., Kerschbaum, F. and Wang, H. (2012), ‘Workflow signatures for busi-
ness process compliance’, IEEE Transactions on Dependable and Secure Computing

9(5), 756–769.

Linthicum, D. S. (2016), ‘Practical use of microservices in moving workloads to the
cloud’, IEEE Cloud Computing 3(5), 6–9.

Lu, D., Huang, D., Walenstein, A. and Medhi, D. (2017), A secure microservice frame-
work for iot, in ‘Service-Oriented System Engineering (SOSE), 2017 IEEE Symposium
on’, IEEE, pp. 9–18.

108

https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-19
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-19
https://www.rfc-editor.org/rfc/rfc7519.txt
https://www.rfc-editor.org/rfc/rfc7519.txt
https://go.lightstep.com/global-microservices-trends-report-2018
https://go.lightstep.com/global-microservices-trends-report-2018

Lu, Q. and Xu, X. (2017), ‘Adaptable blockchain-based systems: A case study for
product traceability’, IEEE Software 34(6), 21–27.

Ma, D. and Tsudik, G. (2009), ‘A new approach to secure logging’, ACM Transactions

on Storage (TOS) 5(1), 2.

Maleshkova, M. (2015), Towards Open Services on the Web-A Semantic Approach,
PhD thesis, The Open University.

Martinovic, I., Kello, L. and Sluganovic, I. (2017), ‘Blockchains for governmental ser-
vices: Design principles, applications, and case studies’, Centre for Technology and

Global Affairs— University of Oxford .

Marty, R. (2011), Cloud application logging for forensics, in ‘proceedings of the 2011
ACM Symposium on Applied Computing’, ACM, pp. 178–184.

Masood, A. and Java, J. (2015), Static analysis for web service security-tools and tech-
niques for a secure development life cycle, in ‘2015 IEEE International Symposium on
Technologies for Homeland Security (HST)’, IEEE, pp. 1–6.

Meier, J., Farre, C., Taylor, J., Bansode, P., Gregersen, S., Sundararajan, M. and
Boucher, R. (2009), ‘Improving web services security: Scenarios and implementation
guidance for wcf’, Microsoft Developer Network .

Microsoft (2012), ‘The oauth 2.0 authorization framework’, https://tools.

ietf.org/pdf/rfc6749.pdf.

Nami, M. R. and Malekpour, A. (2008), Application of self-managing properties in
virtual organizations, in ‘Computer Science and its Applications, 2008. CSA’08. Inter-
national Symposium on’, IEEE, pp. 13–16.

Namiot, D. and Sneps-Sneppe, M. (2014), ‘On micro-services architecture’, Interna-

tional Journal of Open Information Technologies 2(9), 24–27.

Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A. (2018), Fine-grained access control
for microservices, in ‘International Symposium on Foundations and Practice of Secu-
rity’, Springer, pp. 285–300.

Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A. (2019a), Decentralised and col-
laborative auditing of workflows, in ‘International Conference on Trust and Privacy in
Digital Business’, Springer, pp. 129–144.

Nehme, A., Jesus, V., Mahbub, K. and Abdallah, A. (2019b), ‘Securing microservices’,
IT Professional 21(1), 42–49.

109

https://tools.ietf.org/pdf/rfc6749.pdf
https://tools.ietf.org/pdf/rfc6749.pdf

Neri, D., Soldani, J., Zimmermann, O. and Brogi, A. (2019), ‘Design principles, archi-
tectural smells and refactorings for microservices: a multivocal review’, SICS Software-

Intensive Cyber-Physical Systems pp. 1–13.

Newman, S. (2015), Building microservices: designing fine-grained systems, ” O’Reilly
Media, Inc.”.

NGINX, I. (2015), ‘The future of application development and delivery is now’,
https://www.nginx.com/resources/library/app-dev-survey/

note = Accessed: 2018-12-20.

Nofer, M., Gomber, P., Hinz, O. and Schiereck, D. (2017), ‘Blockchain’, Business and

Information Systems Engineering 59(3), 183–187.

Odat, A. M. (2012), E-government in developing countries: Framework of challenges
and opportunities, in ‘2012 International Conference for Internet Technology and Se-
cured Transactions’, IEEE, pp. 578–582.

Otterstad, C. and Yarygina, T. (2017), Low-level exploitation mitigation by diverse
microservices, in ‘European Conference on Service-Oriented and Cloud Computing’,
Springer, pp. 49–56.

Pappel, I., Pappel, I., Tepandi, J. and Draheim, D. (2017), Systematic digital signing in
estonian e-government processes, in ‘Transactions on large-scale data-and knowledge-
centered systems XXXVI’, Springer, pp. 31–51.

Patanjali, S., Truninger, B., Harsh, P. and Bohnert, T. M. (2015), Cyclops: a micro
service based approach for dynamic rating, charging and billing for cloud, in ‘Telecom-
munications (ConTEL), 2015 13th International Conference on’, IEEE, pp. 1–8.

Paxson, V. (1993), ‘Empirically-derived analytic models of wide-area tcp connections’.

Pereira, Ó. M., Semenski, V., Regateiro, D. D. and Aguiar, R. L. (2017), ‘The xacml
standard: addressing architectural and security aspects’.

Preuveneers, D. and Joosen, W. (2017), ‘Access control with delegated authorization
policy evaluation for data-driven microservice workflows’, Future Internet 9(4), 58.

Priisalu, J. and Ottis, R. (2017), ‘Personal control of privacy and data: Estonian experi-
ence’, Health and technology 7(4), 441–451.

Pulls, T., Peeters, R. and Wouters, K. (2013), Distributed privacy-preserving trans-
parency logging, in ‘Proceedings of the 12th ACM workshop on Workshop on privacy
in the electronic society’, ACM, pp. 83–94.

110

https://www.nginx.com/resources/library/app-dev-survey/

Putz, B., Menges, F. and Pernul, G. (2019), ‘A secure and auditable logging infrastruc-
ture based on a permissioned blockchain’, Computers and Security p. 101602.

Rahman, M. and Gao, J. (2015), A reusable automated acceptance testing architecture
for microservices in behavior-driven development, in ‘Service-Oriented System Engi-
neering (SOSE), 2015 IEEE Symposium on’, IEEE, pp. 321–325.

Rajalakshmi, J. R., Rathinraj, M. and Braveen, M. (2014), Anonymizing log manage-
ment process for secure logging in the cloud, in ‘2014 International Conference on
Circuits, Power and Computing Technologies [ICCPCT-2014]’, pp. 1559–1564.

Rajani, V., Garg, D. and Rezk, T. (2016), On access control, capabilities, their equiva-
lence, and confused deputy attacks, in ‘2016 IEEE 29th Computer Security Foundations
Symposium (CSF)’, IEEE, pp. 150–163.

Ray, I., Belyaev, K., Strizhov, M., Mulamba, D. and Rajaram, M. (2013), ‘Secure
logging as a service-delegating log management to the cloud’, IEEE Systems Journal

7(2), 323–334.

Redfield, C. M. and Date, H. (2014), Gringotts: securing data for digital evidence, in

‘2014 IEEE Security and Privacy Workshops’, IEEE, pp. 10–17.

Richardson, C. and Smith, F. (2016), ‘Microservices from de-
sign to deployment’, https://www.nginx.com/blog/

microservices-from-design-to-deployment-ebook-nginx.pdf.

Rimba, P., Tran, A. B., Weber, I., Staples, M., Ponomarev, A. and Xu, X. (2017), Com-
paring blockchain and cloud services for business process execution, in ‘2017 IEEE
International Conference on Software Architecture (ICSA)’, IEEE, pp. 257–260.

Robinson, N. and Martin, K. (2017), ‘Distributed denial of government: The estonian
data embassy initiative’, Network Security 2017(9), 13–16.

Rudolph, C., Kuntze, N. and Velikova, Z. (2009), ‘Secure web service workflow execu-
tion’, Electronic Notes in Theoretical Computer Science 236, 33–46.

Saito, T., Tsunoda, Y., Miyata, D., Watanabe, R. and Chen, Y. (2016), An authorization
scheme concealing client’s access from authentication server, in ‘Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), 2016 10th International Conference
on’, IEEE, pp. 593–598.

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M. and Al-Hammadi, Y. (2016),
The evolution of distributed systems towards microservices architecture, in ‘Internet
Technology and Secured Transactions (ICITST), 2016 11th International Conference
for’, IEEE, pp. 318–325.

111

https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx.pdf
https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx.pdf

Samlinson, E. and Usha, M. (2013), User-centric trust based identity as a service for
federated cloud environment, in ‘2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT)’, IEEE, pp. 1–5.

Savchenko, D. I., Radchenko, G. I. and Taipale, O. (2015), Microservices validation:
Mjolnirr platform case study, in ‘Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), 2015 38th International Convention on’, IEEE,
pp. 235–240.

Schoenmakers, B. (1999), A simple publicly verifiable secret sharing scheme and
its application to electronic voting, in ‘Annual International Cryptology Conference’,
Springer, pp. 148–164.

Shamir, A. (1979), ‘How to share a secret’, Communications of the ACM 22(11), 612–
613.

Sill, A. (2016), ‘The design and architecture of microservices’, IEEE Cloud Computing

3(5), 76–80.

Siriwardena, P. (2014), Advanced API Security: Securing APIs with OAuth 2.0, OpenID

Connect, JWS, and JWE, Apress.

Slater, N. (2015), ‘Using containers to build a microservices architec-
ture’, https://medium.com/aws-activate-startup-blog/using-containers-to-build-a-
microservices-architecture-6e1b8bacb7d1.

Solinski, A. and Petersen, K. (2016), ‘Prioritizing agile benefits and limitations in rela-
tion to practice usage’, Software quality journal 24(2), 447–482.

Souppaya, M., Morello, J. and Scarfone, K. (2017), ‘Application container security
guide’, NIST Special Publication 800, 190.

Stadler, M. (1996), Publicly verifiable secret sharing, in ‘International Conference on
the Theory and Applications of Cryptographic Techniques’, Springer, pp. 190–199.

Sullivan, C. and Burger, E. (2017), ‘E-residency and blockchain’, computer law and

security review 33(4), 470–481.

Sun, S.-T. and Beznosov, K. (2012), The devil is in the (implementation) details: an
empirical analysis of oauth sso systems, in ‘Proceedings of the 2012 ACM conference
on Computer and communications security’, ACM, pp. 378–390.

Sun, Y., Nanda, S. and Jaeger, T. (2015), Security-as-a-service for microservices-based
cloud applications, in ‘Cloud Computing Technology and Science (CloudCom), 2015
IEEE 7th International Conference on’, IEEE, pp. 50–57.

112

Sundareswaran, S., Squicciarini, A. C. and Lin, D. (2012), ‘Ensuring distributed ac-
countability for data sharing in the cloud’, IEEE Transactions on Dependable and Se-

cure Computing 9(4), 556–568.

Suryotrisongko, H., Jayanto, D. P. and Tjahyanto, A. (2017), ‘Design and development
of backend application for public complaint systems using microservice spring boot’,
Procedia Computer Science 124, 736–743.

Suzic, B. (2016a), Securing integration of cloud services in cross-domain distributed
environments, in ‘Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting’, ACM, pp. 398–405.

Suzic, B. (2016b), User-centered security management of api-based data integration
workflows, in ‘NOMS 2016-2016 IEEE/IFIP Network Operations and Management
Symposium’, IEEE, pp. 1233–1238.

Suzic, B. and Reiter, A. (2016), Towards secure collaboration in federated cloud en-
vironments, in ‘Availability, Reliability and Security (ARES), 2016 11th International
Conference on’, IEEE, pp. 750–759.

Suzuki, S. and Murai, J. (2017), Blockchain as an audit-able communication channel,
in ‘2017 IEEE 41st Annual Computer Software and Applications Conference (COMP-
SAC)’, Vol. 2, IEEE, pp. 516–522.

Tang, L., Ouyang, L. and Tsai, W.-T. (2015), Multi-factor web api security for secur-
ing mobile cloud, in ‘Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th
International Conference on’, IEEE, pp. 2163–2168.

Tang, Y. R., Xing, Z., Xu, C., Chen, J. and Xu, J. (2018), Lightweight blockchain log-
ging for data-intensive applications, in ‘International Conference on Financial Cryptog-
raphy and Data Security’, Springer, pp. 308–324.

Tapas, N., Merlino, G., Longo, F. and Puliafito, A. (2019), Blockchain-based publicly
verifiable cloud storage, in ‘2019 IEEE International Conference on Smart Computing
(SMARTCOMP)’, IEEE, pp. 381–386.

Thompson, N., Ravindran, R. and Nicosia, S. (2015), ‘Government data does not mean
data governance: Lessons learned from a public sector application audit’, Government

information quarterly 32(3), 316–322.

Thönes, J. (2015), ‘Microservices’, IEEE Software 32(1), 116–116.

Tian, F. (2017), A supply chain traceability system for food safety based on haccp,
blockchain and internet of things, in ‘Service Systems and Service Management (IC-
SSSM), 2017 International Conference on’, IEEE, pp. 1–6.

113

Tian, H., Chen, Z., Chang, C.-C., Kuribayashi, M., Huang, Y., Cai, Y., Chen, Y. and
Wang, T. (2017), ‘Enabling public auditability for operation behaviors in cloud storage’,
Soft Computing 21(8), 2175–2187.

Twining, P., Raffaghelli, J., Albion, P. and Knezek, D. (2013), ‘Moving education into
the digital age: The contribution of teachers’ professional development’, Journal of

computer assisted learning 29(5), 426–437.

Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode,
M., Silva, F., Al-Shakarchi, E. et al. (2013), ‘A case study into using common real-time
workflow monitoring infrastructure for scientific workflows’, Journal of grid computing

11(3), 381–406.

Vandikas, K. and Tsiatsis, V. (2016), Microservices in iot clouds, in ‘Cloudification of
the Internet of Things (CIoT)’, IEEE, pp. 1–6.

Velikova, Z., Schütte, J. and Kuntze, N. (2009), Towards security in decentralized work-
flows, in ‘Ultra Modern Telecommunications and Workshops, 2009. ICUMT’09. Inter-
national Conference on’, IEEE, pp. 1–6.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R. and
Gil, S. (2015), Evaluating the monolithic and the microservice architecture pattern to
deploy web applications in the cloud, in ‘Computing Colombian Conference (10CCC),
2015 10th’, IEEE, pp. 583–590.

Wang, L., Du, Y. and Liu, W. (2017), ‘Aligning observed and modelled behaviour based
on workflow decomposition’, Enterprise Information Systems 11(8), 1207–1227.

Waters, B. R., Balfanz, D., Durfee, G. and Smetters, D. K. (2004), Building an en-
crypted and searchable audit log., in ‘NDSS’, Vol. 4, pp. 5–6.

Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A. and Mendling, J. (2016),
Untrusted business process monitoring and execution using blockchain, in ‘Interna-
tional Conference on Business Process Management’, Springer, pp. 329–347.

Werner, M. and Gehrke, N. (2015), ‘Multilevel process mining for financial audits’,
IEEE Transactions on Services Computing 8(6), 820–832.

Wombacher, A., Wieringa, R., Jonker, W., Knežević, P. and Pokraev, S. (2005), Require-
ments for secure logging of decentralized cross-organizational workflow executions, in

‘OTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”’, Springer, pp. 526–536.

114

Wouters, K., Simoens, K., Lathouwers, D. and Preneel, B. (2008), Secure and privacy-
friendly logging for egovernment services, in ‘2008 Third International Conference on
Availability, Reliability and Security’, pp. 1091–1096.

Xiong, Y. and Du, J. (2019), Electronic evidence preservation model based on
blockchain, in ‘Proceedings of the 3rd International Conference on Cryptography, Se-
curity and Privacy’, ACM, pp. 1–5.

Yao, J., Chen, S., Wang, C., Levy, D. and Zic, J. (2010), Accountability as a service
for the cloud: From concept to implementation with bpel, in ‘Services (SERVICES-1),
2010 6th World Congress on’, IEEE, pp. 91–98.

Yarygina, T. (2017), Restful is not secure, in ‘International Conference on Applications
and Techniques in Information Security’, Springer, pp. 141–153.

Yarygina, T. and Bagge, A. H. (2018), Overcoming security challenges in microser-
vice architectures, in ‘2018 IEEE Symposium on Service-Oriented System Engineering
(SOSE)’, IEEE, pp. 11–20.

Yu, Y., Silveira, H. and Sundaram, M. (2016), A microservice based reference architec-
ture model in the context of enterprise architecture, in ‘Advanced Information Manage-
ment, Communicates, Electronic and Automation Control Conference (IMCEC), 2016
IEEE’, IEEE, pp. 1856–1860.

Zawoad, S., Dutta, A. and Hasan, R. (2016), ‘Towards building forensics enabled cloud
through secure logging-as-a-service’, IEEE Transactions on Dependable and Secure

Computing (1), 1–1.

Zawoad, S., Dutta, A. K. and Hasan, R. (2013), Seclaas: secure logging-as-a-service for
cloud forensics, in ‘Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security’, ACM, pp. 219–230.

Zhang, H., Li, Z. and Wu, W. (2012), Open social and xacml based group authorization
framework, in ‘2012 Second International Conference on Cloud and Green Computing’,
IEEE, pp. 655–659.

Zimmermann, O. (2016), ‘Microservices tenets: agile approach to service development
and deployment’, Computer Science-Research and Development 32(3), 301–310.

115

	Abstract
	Acknowledgement
	List of figures
	List of terms and abbreviations
	List of publications
	Introduction
	Introduction
	Thesis Motivation and Rationale
	A Layered Approach for Security
	Research Aims and Objectives
	Thesis Structure
	Chapter 2: A Security Reference Architecture for Microservices-Based Applications
	Chapter 3: Fine-grained Access Control Approach for Microservices-Based Applications
	Chapter 4: Auditing of Distributed Workflow Collaborations (AuDiC)
	Chapter 5: Adopting Blockchain With AuDiC

	A Reference Architecture for Microservices-Based Applications
	Introduction
	Overview of Microservices
	From Monoliths to Microservices-Based Applications
	Microservices Principles and Enablers
	Selective Scaling and Fast Delivery
	Containerisation
	End-to-End Coordination of Microservices
	A Representative Model of Microservices-Based Applications

	Microservices Security in the Literature
	Considerations for Microservices Security
	Security Standards
	Secure and Trusted Services Interactions
	Secure Architecture
	Secure Infrastructure
	Securing the Development Lifecycle and Governance
	A Secure Reference Model for Microservices-Based Applications

	Conclusion

	Fine-grained Access Control for Microservices-Based Applications
	Introduction
	Practices for Access Control
	Microservices Access Control: Problem Statement
	Threat Model for Microservices Access Control
	Security Requirements for Microservices Access Control
	Decoupling Security from Functional Requirements
	Inadequacy of Current Practices with Microservices

	An Approach for Microservices Access Control
	A Fine-Grained Access Control
	Proposed Security Checks
	Operational Flow of the Proposed Approach

	Analysis of the Proposed Approach
	Fine-Grained Access Control
	Token Theft Mitigation
	Confused Deputy Mitigation
	Manageability and Reusability

	Implementation of Fine-grained Access For Microservices
	Prototype of the Proposed Security Checks
	Performance Evaluation of the Prototype

	Conclusion

	AuDiC: Auditing of Distributed Workflows Collaborations
	Introduction
	Auditing Approaches: State of the Art
	Auditing of Workflows: Problem Statement
	Threat Model With a Centralised Audit Server

	Trustless and Collaborative Auditing
	Notation for Auditing Operations of Workflows
	Coverage of Arbitrary Topology
	Key Management

	System Overview with a Centralised Audit Server
	Audit Data Structure
	Audit Record Verification
	Audit Server Verification
	Protocol of AuDiC with a Centralised Audit Server

	Analysis of AuDiC with a Centralised Audit Server
	Malicious Participant
	Malicious Audit Server
	Collusion Between Nodes
	Collusion Between Participants and the Audit Server
	Representative Scenarios

	Implementation and Evaluation with a Centralised Audit Server
	Load Emulation of the Audit Server
	Performance Evaluation with the Centralised Audit Server

	Conclusion

	A Blockchain-Based Implementation of AuDiC
	Introduction
	Blockchain for Auditing: State of the Art
	Blockchain for Auditing of Workflows: Problem Statement
	Threat model with a Blockchain-Based Audit Server

	System Overview with Blockchain-Based Audit Server
	Key Differences With the Centralised Audit Server
	Audit Data Structure
	Audit Record Verification
	Protocol

	Analysis of AuDiC with Blockchain-Based Audit Server
	Malicious Participant
	Non-consecutive Colluders
	Consecutive Colluders
	Scenarios

	Implementation and Evaluation with Blockchain-Based Audit Server
	Comparing Performance of Both Implementations
	Effect of Sharing Records

	An Application Agnostic Evaluation of our Contributions
	Conclusion

	Conclusion and Future Work
	The Big Picture
	Secure Architecture Enabling Securing Access Control
	Secure Applications Enabling Robust Collaborative Auditing

	Conclusion and Future Work
	Summary of the Research Contributions
	Limitations
	Future Research Directions

	 References

