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Abstract: With the advancement of human society, more construction and building materials are
required to produce sustainable construction. The advancement of polymer materials and their use in
building construction has been improved. Compared to inorganic materials, polymer materials offer
numerous superior qualities and may also be modified to increase their usefulness. Additionally,
although bio-polymeric materials have effectively supplanted many conventional materials in various
relevant disciplines, their applications in construction, including building façades and so on, have
been quite limited up to now. Nowadays, most architects and engineers find it challenging to
choose materials due to the proliferation of new materials and the market availability of various
manufacturing techniques. This emphasizes the necessity of adopting a unique scientific strategy for
the materials selection process to assist in picking the most suitable materials for the necessary civil
application rather than following an obsolete traditional selection path that depends mostly on prior
subjective personal experiences. This review article has identified critical concerns, inspired more
study, and provided crucial insights into the prospective field of synthetic and natural construction
and building polymeric materials towards sustainable construction.

Keywords: sustainable construction; synthetic polymer; natural polymer; construction materials;
building materials

1. Introduction

Throughout history, the construction industry has made substantial progress in de-
veloping ecologically conscious constructions. The advancement of environmentally sus-
tainable building methods is closely tied to the advancements made in utilizing different
construction and building materials (CBMs). Construction work often has significant
negative impacts on the environment and sustainable economic development, such as
degradation of the environment, depletion of resources, and waste generation. Selection
of sustainable building materials is an important strategy in sustainable construction [1].
Sustainability in construction encompasses various aspects, from site selection to ma-
terial quality assessment and decision-making processes [2]. Scholars have developed
numerous methodologies and decision-making models to address these challenges [3].
For instance, Peldschus et al. [4] highlight the criticality of selecting the right construc-
tion site, leveraging game theory to provide insights into competitive decision-making
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processes. Quality assessment of construction materials and evaluation of technologies’
performance and mechanisms to apply them are essential [5]. Effective decision-making
in sustainable construction management requires considering multiple criteria and stake-
holders’ preferences [6]. Erdogan et al. [7] developed a multi-criteria decision-making
model integrating the Analytic Hierarchy Process (AHP) method to facilitate informed
decision-making processes. Furthermore, Turskis et al. [8] present a model for prioritizing
heritage value in urban cultural renovation projects, facilitating decision-making processes
that balance stakeholder interests and environmental considerations. Advancements in
multi-criteria decision-making methods contribute to robust decision-support systems
for sustainable construction practices [9]. Keshavarz Ghorabaee et al. [10] introduce an
extended evaluation method, demonstrating its effectiveness in handling complex decision-
making scenarios. Moreover, Turskis et al. [11] propose a fuzzy WASPAS-based approach
to identify critical information infrastructures essential for the sustainable development
of EU countries, contributing to their sustainable development objectives. Integrating
advanced methodologies and decision-making models is essential for promoting sustain-
ability in construction and construction materials, offering valuable insights for enhancing
environmental, economic, and social performance in construction projects. Selection of
sustainable building materials is an important strategy in sustainable construction [1]. The
components that make up a building can be classified as structural, decorative, or one of
several other subtypes. Diverse types of coatings, paints, plating, veneering, ceramic tiles
of varying colors, and glass with unique effects are all examples of materials that may
be used for decorative purposes. Wood, bamboo, stone, cement, concrete, metal, brick,
ceramics, glass, and engineered plastics are all used in construction [12]. In recent years,
there has been a discernible growth in the production of innovative bio-polymeric materials
derived from renewable biomass, which is anticipated to reach 7.8 million tons by 2019.
The usage of bio-polymeric materials in the field of building facades has not yet exceeded
expectations [13]. In contrast to traditional facade materials, bio-polymeric materials may
dramatically lower the building facade’s carbon footprint and help minimize the amount
of construction and demolition waste thrown into landfills each year by providing more
ecologically beneficial end-of-life alternatives. The discovery of innovative biological raw
materials is predicted to rise [13,14]. This will aid in the protection of natural resources, the
preservation of landfill space, a decrease in pollution levels, and the reduction in building
weight and energy consumption. As a result, the development of innovative screening
approaches and selection strategies will be required shortly as new material families with
advanced chemical compositions and novel characteristics emerge [13].

Polymer materials have superior properties compared to inorganic materials, including
anti-corrosion, waterproof, sound insulation, wear resistance, heat insulation, light weight,
antiseismic activity, bright colors, electrical insulation, and suitable strength. With the continu-
ous advancement of material science and technology, the industry will be able to exploit the
application potential of polymer materials. Polymer materials are widely utilized in the con-
struction industry due to their exceptional qualities. Examples of polymer materials include
the insulating layer of water supply pipes, drainage pipes, wire and cable, and the substance
used for wall insulation [12–14]. Polymers, particularly plastics, have been extensively used in
the building industry in recent years. Polymer-based CBMs are characterized by their superior
strength and weight performance, resistance to corrosion, stability in various environmental
conditions, insulating properties, and cost-effectiveness. Although polymer-based CBMs offer
significant benefits compared to traditional materials, they also come with notable drawbacks,
including flammability and smoke toxicity. However, the utilization of additives or the amal-
gamation of plastics with other substances enables the enhancement of superior qualities. The
recent discoveries enable the assessment of the caliber of polymer-based CBMs. The durability
of the material is also influenced by its quality [15]. The construction sector has widely utilized
synthetic and natural polymers [16–26]. Figure 1 illustrates a diverse range of synthetic and
natural polymers employed as CBMs, whereas Figure 2 showcases the various applications
of these polymers. Polymer materials are commonly used in the construction of buildings,
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bridges, industrial structures, and other types of civil engineering infrastructure. Over the past
few years, polymers have had a growing impact on the development of new structures and
the upkeep of deteriorating infrastructure [27–31]. This study seeks to emphasize significant
issues, promote further investigation, and offer enlightening details regarding the possible
use of natural and synthetic polymeric materials for sustainable construction. A summary of
new investigations on synthetic and natural polymers in the construction industry is given
in the following parts of this study. In addition, in the present review, the most relevant
polymeric applications for sustainable construction are evaluated in detail. In this vein, the
Google Scholar, Scopus, and Web of Science databases were adopted for this study to review.
A considerable number of outstanding publications on construction materials were reviewed
to identify related prestigious topics. “Polymer”, “sustainable material”, and “materials”
in combination with “construction” were searched in the field of “topic”. At the time of
preparing this paper, the oldest document dated back to 1980, and the newest was from 2024.
No limitation was adopted in terms of time to reach a complete analysis and comprehensive
interpretation. It is worth noting that the reduction in the number of publications in 2024
compared to the previous year is because the number of articles only represents 6 months.
Results were also limited to “English” in terms of language. In addition, most literature
reviews on construction management have only covered journal articles.
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2. Synthetic and Natural Polymers as Construction and Building Materials

Polymers are both synthetic and natural substances. Polymerization is the transforma-
tion of monomers, or “building blocks”, into polymers. In addition to chemicals obtained
from petroleum, chlorine, hydrochloric acid, fluorine, nitrogen, oxygen, and sulfur are used
in the production process. In all plastics, additives include plasticizers, pigments, solar radi-
ation stabilizers, preservatives, and fragrances. Plastic is composed of organic compounds
with a high molecular weight that may be liquefied and poured into certain molds [15]. Any
dosage form uses polymers as necessary excipients. They should be trustworthy, affordable,
non-toxic, etc. There are two basic types of polymers: synthetic and natural. Due to their
potential environmental uses, synthetic and natural biodegradable polymers have garnered
much more attention recently. Various industries, including building, agriculture, and
pharmaceutical packaging, use biodegradable materials. In recent years, there has been
increased interest in biodegradable polymers. Synthetic and natural polymers are the two
main forms of biodegradable polymers [32].

Both manufactured and naturally occurring chemicals can be used in the production
of biodegradable polymers. In applications that are only intended to be transitory, polysac-
charides originating from plants (such as cellulose, alginate, and dextran) and polymers
produced from animals (such as collagen, silk, and chitosan) that have an inherent capacity
to be broken down by enzymes have been applied. These compounds typically have in-
trinsic bioactivity, which when taken may result in an immunogenic reaction; nevertheless,
they may also demonstrate a significant amount of variance from batch to batch. Synthetic
polymers, on the other hand, tend to exhibit more predictable physical characteristics and
patterns of degradability that may be chemically changed in addition to the increased level
of biological inertness. The ester bond in synthetic biodegradable polymers like polylactide
(PLA), polycaprolactone (PCL), and polyglycolide (PGL) makes hydrolytic degradation
possible. Cleavage sites on the polymer backbone can be an amide, thioester, anhydride,



Buildings 2024, 14, 2569 5 of 25

carbonate, urea, urethane, imide, or imine bond when the circumstances are physiologically
safe. Both chemically and enzymatically, these moieties can be broken down using the
process of hydrolysis. Most of the research that has been carried out on biodegradable
polymers thus far has been on hydrolysable connections, which are connections that break
down when exposed to physiological water conditions [16]. Even though there have been
reports of enzymatic cleavage of carbon–carbon bonds and the possibility of hydrolysis of
other moieties (sulfonamides, phosphonates, and others) by a catalytic acid or base, there
are no instances of enzymatic cleavage of carbon–carbon bonds [16]. Synthetic and natural
polymer materials are extensively used in the construction industry [33–36]. One study
investigated replacing traditional reinforcement with natural polymers such as bamboo
pegs to improve the bonding ability of concrete. Using discarded glass powder and glass
polymer in concrete reduces global warming concerns and promotes a sustainable soci-
ety [37]. Due to their advantages outweighing their drawbacks, composite materials are
used; for example, glass and natural polymers are combined to improve the mechanical
qualities of concrete [38]. Concrete’s mechanical qualities are improved when bamboo
is used in place of some of the traditional reinforcements [39]. Glass polymer-reinforced
plastic (GFRP) is used instead of structural steel as the primary bar, stirrup, and shear
reinforcement for GFRP plates [40]. Shear reinforcement in polymer-reinforced polymer
(FRP) composites improves strength, stiffness, and corrosion resistance [41]. Another study
investigated the use of synthetic reinforcement made from recycled thermoplastic polymers
and natural palm polymers [42]. Steel-reinforced polymer (SRP) composites are more sus-
ceptible to fatigue than reinforced concrete, according to the findings of one study [43]. As a
result, natural and synthetic polymers are extensively used in several sectors of sustainable
construction. Figure 3 illustrates the benefits of different polymers as CBMs [12].

1 
 

 
Figure 3. Beneficial properties of different polymers as CBMs [12].

2.1. Poly(methylmethacrylate(PMMA))

PMMA stands for poly (methyl methacrylate), which is a type of fabricated polymer
that is generated from the methyl methacrylate monomer. Additionally, it is referred to by
the IUPAC names poly[1-(methoxycarbonyl)-1-methyl ethylene] and poly(methyl 2-methyl
propanoate), respectively [44]. Otto Rohm, a German scientist, produced the concept of
PMMA for the first time in 1934, about the same time as British chemists Rowland Hill
and John Crawford discovered PMMA in the early 1930s [44,45]. Because of its high im-
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pact strength, low weight, resistance to shattering, and simplicity of manufacture, PMMA
is frequently used as a substitute for inorganic glass. PMMA is also an optically clear
(transparent) thermoplastic [44,46]. The ability to withstand abrasion and exposure to
the environment are both highly desirable qualities. The nearby methyl group hinders
the polymer structure from packing tightly in crystalline form and from freely spinning
around the C-C bonds, both of which are necessary for the structure to function properly
(CH3). Because of this, scientists eventually determined that PMMA is an amorphous kind
of thermoplastic. PMMA had its first significant use in the construction of airplane win-
dows during World War II [44,47]. Previous studies have shown that PMMA may be used
successfully in buildings since it is an appropriate material for this purpose [48–54]. Ac-
cording to the findings of one researcher, Poly Methyl Methacrylate Polymer Concrete
(PMMA-PC) is a CBM that has been used for overlays and possesses superior mechanical
properties, making it a potential alternative to ultra-high-performance concrete (UHPC)
for use in field joints. Comparing the structural performance of PMMA-PC and UHPC for
longitudinal field joints in bridge deck bulb tee girders was the goal of the study in [55]. Ac-
cording to another piece of research, superhydrophobic poly(methylmethacrylate)-SiO2
nanocomposite films (also known as PMMA-SiO2) with a micro–nano hierarchical struc-
ture can be manufactured even in the absence of low-surface-energy components. The
self-cleaning and waterproof properties of the resulting PMMA-SiO2 nanocomposite coat-
ings for outside building walls, exterior automotive coverings, sanitary items, and other
products proved to be promising [56]. According to one study, eicosanoid–stearic acid
(EA-SA) eutectic nano-capsules were created by using UV-photoinitiated emulsion poly-
merization. These nano-capsules were then enclosed in polymethyl methacrylate (PMMA).
Using various characterization methods, researchers investigated how different preparation
processes affected the thermal properties and particle size distribution (PSD) of the final
product. However, the latent temperatures of capsules dropped when there was a rise in the
concentration of both monomer and initiator. The kind of emulsifier that is in an emulsion
affects the phase change characteristics and PSD of EA-SA and PMMA. Manufacturing
of nano-capsules helped reduce the issue that PCMs had with excessive cooling. As a
result, this substance possesses the requisite qualities for applying it in the construction of
thermal storage CBMs [57]. As a result, polymethyl methacrylate (PMMA) was previously
considered a potential CBM for environmentally friendly structures.

2.2. Poly(vinylbutyrate(PVB))

Polyvinyl Butyral, often known as PVB, is a polymer with great mechanical and
optical clarity. It has been extensively used as an interlayer material for laminated glass
in the construction industry, where it has proven to be particularly useful. When making
laminated glass, it is a frequent practice to use a transparent polymer interlayer to glue the
two sheets of glass together throughout the manufacturing process. The composite pane,
which has low shear stiffness, transmits lateral stresses through its two glass plies before
the glass fails. After the glass has broken, the tensile force is borne by the PVB interlayer
that joins the shattered glass shards, while the glass ply itself is solely responsible for
bearing the compressive stress. The study and design of laminated glass against common
quasi-static and low-rate dynamic loadings are not as well understood as the behavior
of a laminated pane under high-rate dynamic loadings, such as blast and impact. This is
because the study and design of laminated glass are more straightforward. Several studies
on the behaviors of laminated glass have been described [58–61]. Glass is frequently used
in building windows and structural façades. Traditional monolithic glass panes, on the
other hand, provide minimal resistance, especially against high pressures such as impact
and air blast loads, as glass is a brittle and delicate material. The collapse of glass windows
frequently results in significant fatalities because the fragmented glass fragments caused
by blast loads are sharp and fly at high speeds. Blast-resistant glazing has been studied
since World War II. There have been several retrofit solutions offered [62]. As an interlayer
material for laminated glass, polyvinyl butyral (PVB) has seen widespread application
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because it is very ductile and adheres well to the glass. This helps reduce the risk of injury
posed by broken glass shards. As a direct response to the growing dangers posed by
terrorist attacks and the effects of debris, the use of PVB laminated safety glass has been
expanded beyond quasi-static loading regimes and into impact and blast loading regimes.
According to one study, a broad variety of strain rates were used to experimentally examine
the mechanical properties of PVB. It is discovered that PVB acts as a hyperplastic material
under quasi-static tensile stress, and the loading rate affects material properties. When
subjected to dynamic loading, PVB reactions exhibit a time-dependent nonlinear elastic
characteristic. As the strain rate rises, PVB ductility decreases [59].

Numerous numerical methodologies have been applied to mimic the responses that
laminated glass windows produce [63–66]. Wei et al. [63] developed a three-dimensional
finite element model that consisted of a viscoelastic material model for PVB and an elastic
model for glass. Hooper et al. [64] developed a two-stage model (pre-crack and post-crack)
by supposing that glass breaks in a millisecond. The Johnson–Cook model that takes
strain rate dependency into account is one of the most common models used in numerical
simulations to simulate the overall behavior of laminated glass. Experiments conducted
over the years on PVB material have provided conclusive evidence of the significance of the
strain rate effect. When subjected to static or quasi-static stress, PVB displays viscoelastic
behavior; nevertheless, it demonstrates elastoplastic or even brittle behavior when subjected
to dynamic loading [62]. Reproducing layered glass with an elastoplastic material model
for PVB and an elastic material model for glass was accomplished by Larcher et al. [65]
using dynamic testing data and an elastic material model for glass. In another work [66],
the delamination behavior of polyvinyl butyral (PVB) laminated glass was investigated
using a cohesive zone model (CZM) with an isotropic bilinear traction–separation (T–δ) law
under quasi-static stress. PVB has been used as window glass in environmentally friendly
structures because it possesses exceptional mechanical qualities.

2.3. Poly(vinylchloride(PVC))

Regnault discovered vinyl chloride (VC) in 1835, and the polymer was first detected
in 1838 [67]. To produce the white powdery substance known as PVC, Baumann reported
the polymerization of several vinyl halides, including VC, using sunlight in 1872 [68]. The
1930s saw the development of stabilizer usage [69–73]. Due to its exceptional mechanical
and physical qualities, PVC is one of the most widely used polymers in the world today.
However, compared to other common polymers like polyethylene and polystyrene, PVC’s
fluidity and heat stability are subpar [69,71]. Most PVC is created using radical polymeriza-
tion. However, radical polymerization of VC produces molecules with various structural
flaws and isomeric forms. These elements are crucial for PVC users because they affect
the completed product’s mechanical qualities, color, and processing behavior, the thermal
stability of the polymer, and the crystallinity. The nature of the side reactions that occur
during polymerization is revealed by defect studies [69,72]. Along with the inclusion of
additives including plasticizers, thermal stabilizers, lubricants, fillers, and other polymers,
many efforts have been made to enhance the substandard qualities of PVC [72].

The one type of thermoplastic that is most frequently used in building construction is
polyvinyl chloride (PVC). The primary properties of PVC are resistance to rips, low cost,
and resilience to water and certain chemicals. Many polymers have excellent water and
vapor resistance and strong thermal insulation qualities when formed as foams. Plastic
can pose as a sealer under the guises of paint, sheeting, paper, sealing strips, and masking
tape. The three polymers used to make sheeting are PVC, poly-isobutylene, and polyethy-
lene. Sheeting can be used as a vapor barrier, moisture-proofing, or damp-proofing for
foundations [15,73]. Foam made of polyvinyl chloride (PVC) is a decent substitute for
wood and is frequently used in the construction sector. To encourage the use of PVC foam
in the construction industry, a researcher explored the properties of PVC foam materials
in various areas as well as important future research and development directions [74].
In addition, they study and describe the use of PVC foam materials in domains such as
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thermal insulation materials, concrete forms, and resilient flooring. Although rigid vinyl
foam is already used in products such as profiles, sheets, and foam core pipes, it is still
uncommon in applications such as house siding and other wood replacements. Another
study compares the end-use capabilities of vinyl foam and its potential as a wood substitute.
The impact of certain types of formulation components on density, surface quality, and
other physical attributes is addressed, as are comparisons between the various extrusion
techniques and formulations [75]. Through practical and analytical analyses, a different
study proposed and verified a novel ductile design approach for confined concrete-filled
polyvinyl chloride tubular (CCFPT) columns. It is a novel design idea for building ductile
columns in seismic areas [76,77]. As a result, PVC is an appropriate polymer and a popular
CBM for sustainable construction.

2.4. Polyamides(nylons)

In addition to being well known for fiber used in the construction industry and other
sectors, polyamides (also known as nylons) are important technological polymers. The
materials discussed are amorphous nylon, nylon-4,6, nylon-6,6, nylon-6,9, nylon-6,12, nylon-
12, nylon-11, and various semi-aromatic nylons. Physical features include crystallinity,
thermal parameters, moisture absorption, electrical properties, and flammability. Chemical
features include hydrolysis or polycondensation, thermal deterioration, oxidation, and
UV aging [78]. Polyamide fibers can take on several shapes in civil construction projects
depending on the purpose for which they are intended. Polyamide fibers are utilized
as micro- and macro-fibers, fibrillated fibers, and monofilaments for concrete internal
reinforcement [79]. Previous research has revealed many features and applications of
this polymer in the construction industry [79–86]. Using these fibers sparingly, Walton
and Majumdar showed that the composite’s impact resistance is significantly improved
while its tensile or flexural strength is little affected [79]. Clarifying the performance of
synthetic fiber-reinforced concrete has become crucial due to increased industry interest in
using it. The article in [80] discusses the properties of numerous synthetic fibers, including
polyamide, and the behavior of concrete reinforced with each of these fibers. The post-
peak decrease is steeper for nylon than for steel fiber according to Kurtz and Balaguru’s
comparison of the load–deformation behavior of rapid-hardening concrete reinforced with
nylon six and steel fibers [81]. The strength characteristics of concrete reinforced with
polyamide fiber have been examined by Song et al. The polyamide fibers claimed to have a
marginally higher ability to disperse themselves throughout the concrete when compared to
polypropylene fibers, dispersing the unfavorable stresses over a larger volume of concrete
and enhancing the properties of the concrete in the plastic and hardened states [82].

Fibers, particularly nylon, are essential components in creating a wide variety of
structures, including roadways, bridges, nonstructural gratings and claddings, structural
systems for industrial supports, buildings, long-span roof structures, tanks, and thermal
insulators. In geotechnical and environmental applications where non-mechanical qualities
are of the utmost significance, fibers and textile structures are frequently used as CBMs.
Fibers and fibrous structures are the primary CBMs, as evidenced by examples such
as barriers and retaining walls, road construction, road overlaying, erosion control of
steep slopes, shore protection, construction of waste landfills, architectural membranes,
and offshore applications. Other examples include dams and retaining walls. In these
applications, polyamide fibers, namely polypropylene and polyester fibers, are used to an
excessive degree [83]. Nylons are therefore applied in various civil engineering applications,
such as creating sustainable bridges and roads.

2.5. Polycarbonate (PC)

Engineering thermoplastics are highly sought-after for various uses worldwide. Soci-
ety prefers polycarbonate as a synthetic thermoplastic for various uses. It is an example of
an amorphous thermoplastic. It possesses special moldable mechanical, thermal, optical,
and electrical characteristics. It has numerous industrial applications including civil engi-
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neering, construction, and electronics [87]. By focusing on the thermal insulation system, a
novel category of polymer heat and thermal conductivity creates a significant advancement
in sustainable construction, including creating concrete panels that combine polycarbonate
with concrete. Concrete panels made of polycarbonate may be an excellent heat insula-
tor. The most crucial factor in changing a building system to a green building design is
energy efficiency [88]. According to certain studies, this polymer has been used in several
civil engineering disciplines [88–93]. Different purposes and restrictions affect modern
building construction. Design decisions must take energy efficiency and environmental
issues into account in addition to robustness, comfort, and cost-effectiveness. CBMs made
of polymers can be used in place of or in addition to conventional CBMs such as bricks,
concrete, metals, wood, and glass. Plastic materials offer several characteristics including
light weight, the ability to be molded into intricate designs, durability, and the requirement
of little maintenance. Plastic materials come in various forms, hues, and textures and do not
necessarily need to be painted. They are immune to microbiological assault and metallic
corrosion and are resistant to heat transmission and moisture dispersion. In the building
construction sector, polymeric materials, notably thermoplastics (such as polycarbonate
glass), have various structural and nonstructural uses [89]. The assessment of precast
concrete sandwich panels (PCSPs), the connection of concrete panels to walls or roofs using
polycarbonate panels, and simple temperature insulation in concrete panels are all topics
of another piece of research [88]. The usual characteristics of plastic glazing materials, such
as polycarbonate, were introduced by Blaga [81]. According to research conducted in the
past, plastics are used in construction because of the multiple design choices that they
offer in terms of light transmittance, color, and form. Additionally, plastics have low heat
conductivity compared to other CBMs [82]. Another researcher has developed a multiscale
simulation that links the development of materials at the microscale, the design of compo-
nent structures at the mesoscale, and the evaluation of the thermal insulation of the entire
building at the macroscale. This was carried out to encourage the sustainable development
of housing in a society that produces small amounts of carbon. The purpose is to evaluate
the interaction between regional material research and global objectives. One of the most
difficult aspects of the simulation involved a novel polycarbonate glass with a covering
of scratch-resistant resin containing hollow silica nanoparticles [92]. One researcher [93]
created glass with polycarbonate glazing. Polymers are used in a variety of structural
and nonstructural applications in the building industry; around 18% of the United States’
plastic use occurs in the building and construction industry [89,94]. Plastic smart windows
are quickly becoming one of the primary components of the next generation of highly
energy-efficient buildings. The manufacturing of low-cost and lightweight electrochromic
(EC) devices that will be included in such buildings is an important consideration. For this
reason, one study focused on developing ITO-coated polycarbonate (PC) structures that
could serve as transparent and conductive plastic supports using a deposition process that
occurred entirely at room temperature. Radiofrequency magnetron sputtering is used to
generate indium tin oxide (ITO) thin films under a variety of different deposition circum-
stances without the need for the substrate to be heated or for the polymer surface to be
activated [95]. As a result, this thermoplastic polymer is frequently used in construction to
create sustainable structures.

2.6. Polyethylene (PE)

Polyethylene (PE), although having the most fundamentally straightforward structure
of any polymer, is responsible for the production of the greatest quantity of plastics by
weight (repetition of CH2 units). PE’s most appealing properties are its low cost, good
electrical insulation across a wide frequency range, exceptionally high chemical resistance,
exceptional processability, toughness, and flexibility. Thermoplastic polymers such as PE
have frequently used materials crucial to every part of our existence. A robust end-of-life
management strategy is required due to the ubiquitous creation of plastic garbage. This
thermoplastic polymer is mostly found in durable goods such as CBMs. Applications for
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plastics vary widely because of their unique characteristics [96]. Given the wide range of
PE kinds and grades discussed thus far, it should not be surprising that PE now controls
the polymer market. PE’s qualities are what made it so popular for many packaging and
construction applications. PE foam is used in concrete, brick, and block construction as
an expansion joint filler or as an insulator in structures [97]. CBMs have been made using
this polymer [98–105]. PE powder has been used as a multifunctional and cost-effective
construction element in foam concrete to boost thermal insulation. This would solve the
issue of energy consumption and satisfy the demand for energy efficiency in buildings [98].
According to the findings of a second researcher, the study of concrete that incorporates
polymers such as fibers, resins, and aggregates did not start until the very last decade of
the twentieth century. Raw plastic, PE, was used for specific purposes and it was most
frequently used in the form of granules. Plastic aggregates derived from various sources,
including the shredding of recycled plastic bottles, were applied in the production of such
concretes [99]. Increasing numbers of researchers are interested in developing thermally
insulated lightweight concrete (TI-LWC) for structural purposes. The reason for this interest
is the desire to limit the emissions of greenhouse gases and the consumption of energy. The
described study was conducted to develop TI-LWC, although only a few studies have been
conducted to create LWC. To create the described TI-LWC, PE beads were used [100]. One
study discusses fire resistance, one of the main problems preventing the widespread adop-
tion of composite construction in high-rise buildings. In this work, a method for improving
the fire resistance of multilayer composite sandwich panels—made of PE foam core and
GFRP composite facets—was introduced [102]. Lightweight concrete with PE foam waste
included has been made with a volume proportion of 30% by Perevozchikov et al. [103].
They produced lightweight concrete with densities between 1592 and 1840 kg/m3 and
compressive strengths between 2.31 and 8.44 MPa by adjusting the water and cement
concentrations. Given the obvious financial benefits, it made sense to apply recycled
PE, particularly for polymer concrete, which has an endless market in civil engineering
applications for green buildings.

2.7. Poly-Isobutylene (PIB)

Poly-isobutylenes (PIBs) are a very flexible class of saturated aliphatic polymer mate-
rial, although they are manufactured in far fewer numbers than other common polymer
commodities. Because of their low reactivity, PIB materials exhibit excellent chemical resis-
tance to strong oxidizers (such as ammonium hydroxide, peroxides, and hydrochloric acid),
corrosives (such as sulfuric acid and diluted hydrofluoric acid), and harsh chemicals (like
n-methylpyrollidone). The low dependence on temperature, the high degree of inelastic
spreading, and the low dependence on viscosity set it apart from other polymer materials.
Furthermore, the high rates of structural relaxation are responsible for the extremely unique
and rare structural relaxation temperature. As a result, PIBs have numerous important
commercial uses, including as raw materials in the production of lube additives, metalwork-
ing fluids, adhesives, and various construction industry materials such as sealants [106].
Consequently, PIBs have been used as CBMs in a range of civil projects [107–111]. One
study examines the properties of a specific sealing system applied in warm edge glazing
units as well as the causes of damage that may occur to such a system. The effectiveness of
the dual-seal PIB/silicone system was of primary interest. This glass is frequently used
in the modern curtain walls and tops of commercial buildings and shopping centers [107].
The findings of laboratory and field experiments conducted to establish the displacements
of insulating glass seals are given in Watson et al.’s study. The authors concentrated on fig-
uring out how frequently thermoplastic sealing, specifically dual seals with PIB, would be
displaced [108]. Studies on the incoherent inelastic neutron scattering of poly-isobutylene,
the least brittle polymeric glass-forming material yet discovered, were conducted. When
the temperature is greater than the glass transition, a fast dynamical process is found in a
frequency range of around 500 GHz, almost unaffected by the relaxation. According to the
data, this fast dynamical process can be inelastic and devoid of relaxational or quasielastic
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features. This emphasizes how important it is for glasses’ vibrational behaviors to alter
close to the glass-transition temperature [109]. According to another study, plasticized
poly-isobutylene and other polymer materials are now used in the construction industry
overseas. However, this material lacks the elasticity and suppleness needed to adapt to
changes in structural components brought on by temperature changes. The best water-
proofing materials for this purpose are elastomers [110]. One piece of the study suggests
that the lifetime of buildings can be increased by applying double sealants comprising
adjacent silicone and poly-isobutylene sealants. In a double-sealed connection, the inner
sealant is often a silicone sealant. The outer polyisobutylene sealant is commonly used for
buildings [111]. As mentioned before, this polymer has been applied in construction to
create sustainable construction.

2.8. Polypropylene (PP)

Due to its low density, polypropylene (PP) became popular quickly. Extrusion and in-
jection molding are two methods for converting PP, and it is chemically resistant. Propylene
can catalyze the production of polypropylene. Elevated temperature resistance is one of the
key characteristics of PP, making it ideal for trays, funnels, buckets, bottles, carboys, and
instrument jars used in clinical contexts. Free-color polypropylene is strong. Consequently,
new polypropylene grades are necessary for some applications, and the study of such
grades must continue so that we always have the best alternative to meet the needs of
our evolving society [112]. Multiple scientists have tried using this polymer in construc-
tion [113–121], particularly in concrete. One study found that the performance of FRC was
affected by the type of fiber utilized in its construction. The advancement of hydrophobic
polypropylene (PP) fibers in FRC can improve the material’s tensile and flexural properties,
resilience, and fracture resistance. The effects of long (38.1 mm) PP fibers on the workability,
compressive strength, and flexural strength of concrete at concentrations of 0.20%, 0.25%,
and 0.30% are the focus of [113]. In a separate study, 0.20, 0.25%, and 0.30% content by
weight of three distinct PP fibers were used. Strengths in both compression and flexure
were determined. The findings demonstrated that the compressive strength decreased
significantly with increasing fiber size, even though it was still superior to the sample that
served as a control. The compressive and flexural strengths of the concrete were both signif-
icantly impacted by the length of the PP fibers that were included in the mix [114]. Despite
its relative immaturity, polypropylene fiber-reinforced concrete has impressive mechanical
strength, stiffness, and longevity. Incorporating polypropylene fibers into concrete helps
cut costs while making the most efficient use of the material. In this study, the behavior,
applications, and performance of polypropylene fiber-reinforced concrete are dissected in
detail [115]. Though Thirumurgan and Siva Kumar found that adding polypropylene fibers
made the concrete less workable, they found that high-range water-lowering additives
helped restore the material’s pliability [116,117]. As the fiber content of polypropylene
fibers in concrete rises, its workability decreases, as reported by Patel et al. [118]. The use
of polypropylene fibers in fly ash concrete was a topic of study by Murahari and Rama
Mohan Rao [119]. According to Jianzhuang Xiao et al. [120], polypropylene fibers may be
applied to control plastic shrinkage and fresh and hardened concrete properties. Shotcrete
polypropylene (PP) fibers have been used for years to reinforce and stabilize buildings
and foundations. However, recently, there has been a shift towards using waste materials
in cement-based combinations to make greener products. There has been a rise in the
popularity of eco-friendly construction, which has led to an increase in the number of
inquiries about how engineers and architects may use eco-friendly materials [122]. This
polymer is therefore widely used as a structural component in several environmentally
friendly infrastructure developments.

2.9. Polystyrene (PS)

Crystal polystyrene, general-purpose polystyrene, and other trade names all refer
to the same amorphous polymer that is very transparent, odorless, and rigid yet brit-
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tle [123]. Besides its use in concrete, this polymer is also found in various CBMs [124–130].
Polystyrene is being applied in sustainable materials because of its low density and great
thermal efficiency, according to one researcher. Lightweight aggregate concrete can be
made using this material instead of coarse aggregate (LWAC). Expanded polystyrene (EPS)
is a common substitute for aggregates in concrete due to its light weight and low thermal
conductivity [124]. Adeola’s and Soyemi’s work on expanded polystyrene concrete is note-
worthy. They used EPS as an aggregate replacement in the range of 5 to 30% to evaluate its
impact on the concrete’s workability and mechanical properties (5% interval). They argued
that the concrete became less workable as the proportion of EPS substitution increased [125].
Foamed concrete’s fire retardancy, thermal conductivity, and compressive strength were all
studied by Sayadi et al., who looked at the effects of EPS particles at EPS volumes ranging
from 0 to 82%. Therefore, they concluded that concrete mixes with low EPS volume and
high cement content created higher fire endurance [126]. Another study found that the
moisture content and thermal conductivity of CBMs were the two most relevant thermal
transfer factors. Insulating materials play a larger role in the energy and moisture balance
of a building than any other building component. Studies of expanded polystyrene thermal
insulation materials of varying mass densities are presented here, and their results for ther-
mal conductivity and water sorption are discussed [127]. The physicomechanical qualities
of lightweight bricks made from cement kiln dust (CKD) and poly(styrene) (PS) are suitable
for use in subsequent construction applications, with or without the inclusion of additives
that increase the materials’ properties, as was achieved in separate research [128]. Mild
steel bars were used to reinforce the same specimens in both sets of tests [129]. Another
study reported that lightweight concrete using expanded polystyrene beads (EPS-LWC)
has been extensively used in both structural and nonstructural contexts [130]. Several green
CBMs have been developed using this polymer.

2.10. Polyurethane (PU)

Polyurethane is a very prevalent polymer molecule that belongs to the plastic fam-
ily (PU). To protect, strengthen, and restore civil engineering infrastructure, PU and its
variants have become more popular over the past decades. Castable elastomers, stiff and
flexible foams, coatings, fiber, adhesives, sealants, thermoplastics, and millable gum are all
examples of PU materials used in this context. To tailor its mechanical properties to the
requirements of specific applications, PU shows promise as a versatile and adaptable mate-
rial. Because of its critical binding qualities with various substrates and its self-supporting
feature that does not require extra adhesive, PU may be easily manufactured using basic
techniques and applied to a variety of surface types [131]. Otto Bayer and colleagues at
I.G. Germany’s Ferbenindustri discovered the first PUs in 1937 [132]. This polymer is
used as a structural component in various construction applications [132–139]. Magnesium
oxide (MgO) board and stiff polyurethane foam (PUF) reinforced with glass fibers are the
components of a newly created prefabricated wall system, and its structural behavior is
discussed by one researcher. Finally, the findings support the viability of applying this
composite wall system in residential modular construction [133]. Mohamed et al. note
that the increased demand for modern structural systems can be attributed to their greater
longevity and reduced maintenance needs over their service lives. Sandwich composite
structures are of particular interest due to their many attractive features including light
weight, high strength, resistance to corrosion, long lifespan, and ease of construction. In
this study, new-generation two-part thermoset polyurethane resin systems are used as
matrix materials in the vacuum-assisted resin transfer molding (VARTM) process to create
three distinctive designs of glass-reinforced composite sandwich structures: boxes, trape-
zoids, and polyurethane rigid foam [134]. A sandwich composite approach using PU foam
and concrete has been developed by Hradil et al. [135] to extend the longevity of walls
by decreasing rainwater infiltration. The flexural performance of an innovative hybrid
composite floor plate system with a polyurethane (PU) core, glass fiber-reinforced cement
(GFRC) outer layer, and steel laminates was studied by Abeysinghe et al. In addition to
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other structural benefits [136], a developed slab system has a weight reduction of 50–70%
compared to conventional composite slabs. Flexural behavior and potential as a replace-
ment for concrete panels were investigated by Fam and Sharaf [137] in sandwich panels
with a PU foam core and glass fiber-reinforced skins and ribs in various configurations.
Lee and Lee [138] investigated a PU foam core reinforced composite system comprising
plywood, triplex, mastic, and steel sheets. Gong et al.’s research centered on developing
low-grade hardwood laminated railway ties that met North American performance criteria.
No. 3B common-grade wood, mostly hard maple and, to a lesser extent, yellow birch, were
glued together using a two-component polyurethane structural adhesive to form sixteen
joints [139]. Therefore, because of technological developments and the versatility of PU,
new uses for PU have significantly increased in recent years, especially in environmentally
responsible structural and infrastructural applications.

2.11. Cellulose

The most well-known and in-demand source of cellulose is plants, but it is also
necessary for bacterial, fungal, algal, and even animal systems to function during their
life cycles. The evidence for the structure of cellulose came from two different directions:
traditional organic chemistry on the one hand and early polymer investigations on the
other [140]. Cellulose (C6H10O5)n may form linear chains with hundreds to over nine
thousand glucose units joined by 1-4 glucosidic linkages, making it an organic polymer
that is most frequently found in nature and a key component of natural fabrics like cotton
and wood [141].

Fabrics are a common and time-tested choice for residential construction. There
has been an increase in the number of projects using fiber-reinforced composites. Fiber-
reinforced concrete, concrete retrofitting, concrete jacketing, and the internal and external
reinforcement of composite concrete structures all make extensive use of fibers and fibrous
structures. Fibers like AR-glass, carbon, and aramid are of uttermost value in these novel
applications because of their high strength, high modulus, and capacity to compete with
standard structural CBMs [79]. In contrast to synthetic materials, natural fibers have poor
mechanical properties and cannot be used in engineering construction [83]. This natural
polymer’s application as a CBM has been detailed in previous research [83,142–148]. Civil
engineers have used cellulosic textiles as reinforcing components in cement-based com-
posites [142]. Cementitious composites that use hemp textiles as reinforcement have been
applied, as reported by Hakamy et al. Hemp fabric has a tensile strength of 591–857 MPa,
an elastic modulus of 38–58 GPa, and a density of 600 kg/m3 [143]. Yan et al. wrapped
flax fabric FRP composites around plain concrete (PC) and coir fiber-reinforced concrete
(CFRC) to examine their compressive properties. Wrappings made of flax fiber-reinforced
plastic (FFRP) increased the final compressive strength [144]. Tensile properties of man-
ually laid-up flax fabric/epoxy and glass fabric/epoxy composites were compared by
Assarar et al. [145]. Research has shown that flax composites can have a tensile strength of
up to 380 MPa, making them competitive with epoxy composites that also include glass
fiber for reinforcement [145]. Jawaid et al. investigated epoxy composites that used both
jute cloth and oil palm fiber (EFB) as reinforcing materials. It was found that the tensile
characteristics of hybrid composites may be enhanced by adding additional jute fabric to
the mixture. They theorized that oil palm/jute hybrid composites could replace synthetic
composites in construction, transportation, and aerospace with the right amount of engi-
neering [146]. Sustainable construction uses for cellulosic fiber include the strengthening of
concrete, masonry, and wood structures.

2.12. Alginate

Alginate is a polyelectrolyte and biopolymer that is thought to be biocompatible,
non-toxic, immune-suppressive, and biodegradable [149]. Alginates must be seen as a
family of copolymers [150]. CBMs have been prepared using alginate [151–156]. The use
of sodium alginate emulsions for asphalt concrete modifiers was mentioned in one search
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result [151]. Another goal of this study is to stabilize soils using natural polymers and
fibers to create composite CBMs that are sustainable, non-toxic, and obtained locally. As a
bonding agent in the composite, alginate (a natural polymer derived from the cell walls
of brown algae) has been applied [152]. One study found that extending the lifespan of
asphalt surfaces might be accomplished by increasing the material’s inherent capacity to
repair itself. Calcium alginate capsules encapsulating rejuvenators for asphalt mastic have
been created and shown to be effective in providing localized crack healing [153]. Green
concrete has emerged as a crucial factor in recent years, according to another study. Durable
concrete is crucial to a building’s capacity to withstand the elements and remain standing.
Long-term viability was diligently pursued as the end goal. All these measures contribute
to the “greenness” of the concrete project by reducing energy use and fossil fuel ash. Marine
brown seaweed is a naturally occurring biopolymer that may be found along the shore
and has several benefits, such as improved soil stability, heat capacity qualities, and carbon
dioxide fixation. The cell walls of sea brown algae secrete a natural hydrogel known as
alginate. It is used in cases like unfired clay bricks, internal curing agents, admixtures that
boost viscosity, etc. One research study investigates the potential of alginate-based seaweed
as a natural polymer in concrete [154]. Previous research reports that civil engineers have
always been interested in learning more about how to enhance soil quality. Another study
aims to promote the use of sodium alginate biopolymer as a sustainable material for
fortifying dunes [155]. Another study examines the viability of treating weak cohesive
subgrades using a sodium alginate biopolymer, particularly when subjected to repetitive
traffic loads for pavement construction applications [157]. Alginate is therefore one of the
most used CBMs for long-lasting civil infrastructure.

2.13. Epoxy Resins

The term ‘epoxy resin’ is used to refer to both the prepolymers and the cured resins.
The prepolymers are named thus because they contain reactive epoxy groups. The cured
resins undergo a complete reaction of all their reactive groups, resulting in the absence of
epoxy groups. However, they are still referred to as epoxy resins [158]. Epoxy resin has
garnered significant interest from researchers, particularly in the realm of building materials,
due to its exceptional characteristics such as high strength, strong adhesion, adjustable
setting time, chemical resistance, and impermeability. Multiple researchers have examined
different features of epoxy resin-based concretes and compared their qualities to those of
traditional Portland cement concrete [159]. Research cites epoxy resins as materials for
construction and building purposes [160–163]. Epoxy resin exhibits significant potential for
incorporation into masonry mortar and concrete as a binding agent, either in conjunction
with traditional Portland cement or alone. One review demonstrates that epoxy resin
possesses exceptional qualities when used without Portland cement, as the presence of
water required for the hydration of Portland cement hinders the cross-linking process
of epoxy resin. The performance of epoxy resin-based mortar and concrete exhibited
significant variations based on factors such as the characteristics and type of epoxy resin
and hardener, the amount of each component used, the concentration of the hardener,
and the specific methods employed for mixing the composition and curing the material.
A formulation based on epoxy resin has been created and successfully employed for the
repair and maintenance of buildings. Epoxy resin demonstrates its exceptional ability
to repair civil constructions [159]. The growing popularity of epoxy adhesives can be
attributed to the diverse formulations available, offering a wide range of properties both
before and after curing. This versatility makes them suitable for bonding various substrate
materials in a wide array of applications and conditions. Additionally, the typical range of
operating temperatures and the minimal shrinkage during curing make epoxies particularly
advantageous for use in civil engineering [164]. Wood composites, such as plywood,
composition board, and laminated beams, are commonly used in various applications
within a building, including kitchen and bathroom cabinets, structural and decorative
paneling, engineered wood flooring, and ceilings. These composites are created by blending
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wood and wood particles with polymeric adhesives. The adhesives commonly used in
these applications belong to the phenolic class. A phenolic resin is normally created
through a condensation reaction between phenol or a substituted phenol and formaldehyde.
Curing occurs at a high temperature. These adhesives provide intrinsic fire resistance, low
smoke production, excellent dimensional stability, resistance to deformation, strength, and
resistance to solvents. Epoxy resin systems and polyvinyl acetate (white glue) have superior
strength compared to resorcinol and formaldehyde (RF) and demonstrate greater tolerance
towards structural manufacturing faults [165]. Epoxy resins are predominantly utilized
in civil engineering to adhere composite materials, specifically carbon fiber-reinforced
polymer (CFRP) strips and sheets, to concrete, metallic, or timber substrates. Typically,
two-component epoxy resins are combined at the location where they will be used and need
a specific amount of time to cure in order to provide adequate strength and stiffness [166].
Table 1 displays the assortment of polymers employed as CBMs, with corresponding
references ranging from [166–178]. Table 2 presents the mechanical properties of polymers
utilized as CBMs, with references spanning from [113,131,142] to [179–188].

Table 1. Diverse polymers used as CBMs [166–178].

No. Polymer Result [Ref.]

1 Poly(methyl methacrylate
(PMMA)

To produce high-performance light-transmitting concrete, specific
quantities of Portland cement, polymethylmethacrylate (PMMA)
optical fibers, silica fume, fine aggregate, polycarboxylate
superplasticizer, silica powder, and water were mixed. The concrete
was then put through a series of tests to determine its optical and
physical properties.

[167]

2 Polyvinylbutyrate (PVB)

Both the safety of PVB-laminated glass and its behavior after it has
been broken are highly dependent on the interfacial adhesion that
exists between the interlayer and the glass. By increasing the
thickness of the PVB layer, it is possible to improve the maximum
force and energy absorption capacity of the laminated glass.

[168]

3 Polyvinylchloride (PVC)

The mechanical, confinement, and deformability qualities of
thin-walled polyvinyl chloride (PVC) tubular specimens filled with
concrete are discussed along with their other applications in civil
and building construction.

[169]

4 Polyamides(nylons) The orthotropic steel that makes up the bridge’s wearing surfaces
also serves as the bridge’s abutments. [170]

5 Polycarbonate (PC)

This study provides a greater understanding of the thermal and
optical behavior of the polycarbonate panels and a collection of
important data for precise studies in building integration,
proposing that these systems may be a viable alternative to
traditional windows in commercial buildings.

[171]

6 Polyethylene (PE)

The purpose of this research is to provide a comprehensive
literature review on the engineering performance of recycled
high-density polyethylene (HDPE) aggregates, fibers, and
cementitious materials that are utilized in concrete. In conclusion,
this research is the first of its kind to describe and evaluate the
status of the mechanical and durability performance of recycled
HDPE as a sustainable CBM.

[172]

7 Polyisobutylene The insulated glass unit is installed into the window frame (or sash,
in the case of operable windows) and secured with a glazing stop. [173]
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Table 1. Cont.

No. Polymer Result [Ref.]

8 Polypropylene (PP)

The compressive and flexural strengths of concrete that was
produced with rice husk ash (RHA) as an additional cementitious
ingredient were evaluated. As a result, polypropylene (PP) fibers
were applied to reinforce RHA-based environmentally
friendly concrete.

[174]

9 Polystyrene (PS)

Expanded polystyrene (EPS) concrete was mixed using a premix
process analogous to the sand-wrapping approach to create a
lightweight, low-strength material with high energy-absorbing
qualities. EPS concrete has poor workability and reduced strength
because the hydrophobic surface and light weight of the EPS beads
cause them to segregate during casting.

[175]

10 Polyurethane (PU)

The behavior of the three different methods that can be used to
reinforce concrete bridge girders is compared here. One technique
involves using carbon fiber-reinforced polymer (CFRP) sheets that
have already been pre-impregnated with a water-activated
polyurethane (PU) matrix.

[176]

11 Cellulose
Denser and more robust composites were produced by including
silane, which functioned as a bridge between the cellulosic fiber
surface, the fumed silica, and the cement matrix.

[177]

12 Alginate

This research aims to construct multinuclear Ca–alginate
microcapsules with a rejuvenator for the self-healing of bituminous
binder by integrating the alginate micro-emulsion technique with
the droplet’s microfluidic technology.

[178]

13 Epoxy resins
The glass transition of commercially available epoxy resins used for
structural strengthening of concrete members for instance by
means of carbon-fiber reinforced polymer (CFRP) strips

[166]

Table 2. Mechanical properties of the different polymers used as CBMs [113,131,142,179–188].

No. Polymer Result [Ref.]

1 Poly(methylmethacrylate
(PMMA) The tensile strength is about 58.07 ± 3.14 MPa. [179]

2 Poly(vinylbutyrate (PVB)

When considering dynamic loadings, such as impact or blast
loading, the strain rate effect of PVB is of relevance. This research
explored the strain rate impact in various strain rate ranges,
including 0.07 s−1–89 s−1, 0.0067 s−1–118 s−1, 0.2 s−1–400 s−1, and
0.008 s−1–1360 s−1.

[180]

3 Poly(vinylchloride (PVC) The tensile strength is equal to 63.67 N/mm2. [181]

4 Polyamides(nylons)
The tensile strength of nylon-6, nylon-66, nylon-11, nylon-12, and
nylon-46, respectively, is 83 MPa, 80 MPa, 48 MPa, 66 MPa, and
100 MPa.

[182]

5 Polycarbonate (PC)

The reported tensile strength of low-viscosity, molding, and
extrusion-grade PC ranges between 62.7 and 72.4 MPa.
Nonetheless, the maximum tensile strength measured in this
experiment was 58.8 MPa.

[183]

6 Polyethylene (PE) The tensile strength of polyethylene is 2610 MPa. [184]

7 Polyisobutylene Tensile strength is about 1.7–2.5 MPa. [185]
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Table 2. Cont.

No. Polymer Result [Ref.]

8 Polypropylene (PP) Tensile strength at break is about 4500–6000 psi. [113]

9 Polystyrene (PS) Tensile strength is about 5000 MPa and tensile modulus is
80,000 GPa. [186]

10 Polyurethane (PU)
The tensile strength of commercially available polyurethane (PU)
ranges from 20.7 to 65.5 MPa, and this polymer has a greater strain
capacity and cut-and-tear resistance.

[131]

11 Cellulose Cotton has a relative density of around 1.5–1.6 g/cm3, a tensile
strength of 287–800 MPa, and an elastic modulus of 5.5–12.6 GPa.

[142]

12 Alginate The wet tensile strength ranged from 0.166 g d−1 at 16 mPa·s to
0.494 g d−1 at 994 mPa·s.

[187]

13 Epoxy resins The tensile strength of epoxy resin is about 8 MPa. [188]

3. Conclusions and Perspectives

Engineering fields such as communication, acoustics, architecture, and structure are
now included in the broad and multidisciplinary study of sustainable construction. Owners,
contractors, suppliers, and building users all participate in it [187]. The past several years
have seen a significant amount of research on sustainable construction [189–202]. In this
context, polymer-based CBMs have seen increased application in recent years in the field
of construction engineering [203–209]. Polymer-based CBMs offer significant benefits over
conventional CBMs when functional additives are added to these polymers or when these
polymers are added to traditional CBMs like concrete and mortars. Concrete and other
CBMs can acquire good mechanical strength, quick curing times, strong adhesive qualities,
resistance to abrasion and weathering, waterproofness, and great insulating qualities by
adding polymers. FRPs can transform the prefabrication construction industry and offer
appropriate housing for the expanding population, and their integration into prefabricated
structures benefits both the structural and nonstructural components [210]. Polymer-based
CBMs will have increased and expanded applications in the field of construction engineer-
ing due to their ability to provide sustainable building. The authors thoroughly analyze
important subjects in this article, promote further research, and offer significant insights
into the prospective domain of sustainable construction using natural and synthetic poly-
meric materials for building construction. Additional research is required to gain a deeper
understanding of how various components can be incorporated into polymers to enhance
their advantages as CBMs and encourage sustainable construction practices. Enhancing the
mechanical properties, moisture resistance, and durability of these CBMs can be achieved
by implementing advanced surface modification techniques on different polymers.
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