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25 Abstract

26 Exercise and passive heating share some acute physiological responses. These include increases 

27 in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood 

28 volume. These responses can vary depending on the heating modality or dose (e.g. temperature, 

29 duration, body coverage) and are beneficial to athletes in specific scenarios. These scenarios 

30 include being applied to increase muscle or force production, induce rapid weight loss, stimulate 

31 thermoregulatory or cardiovascular adaptation, or to accelerate recovery. The rationale being to 

32 tailor the specific passive heating protocol to target the desired physiological response. However, 

33 some acute responses to passive heating may also be detrimental to sporting outcomes, such as 

34 exercising in the heat, having unintended residual negative effects on performance or perceptions 

35 of fatigue, or even resulting in hospitalization if implemented inappropriately. Accordingly, the 

36 effects of passive heating should be carefully considered prior to implementation by athletes, 

37 coaches, and support staff. Therefore, the purpose of this review is to evaluate the physiological 

38 responses to different modes and doses of passive heating and explore the various sport contexts 

39 where these effects may either benefit or hinder athletes. Understanding these responses can aid 

40 the implementation of passive heating in sport and identify potential recommended heating 

41 protocols in each given scenario.

42 Key Words: 

43 Passive heating, sports performance, recovery, training, dose

44 Take home message

45 When implementing passive heating in sport, effective protocol design should align the desired 

46 training or performance outcome to the physiological responses induced by the heating modality 

47 and dose.

48
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49 Introduction

50 Athletes seeking performance advantages may implement novel interventions that manipulate 

51 factors such as environmental stimuli or diet, to improve performance, accelerate recovery, or 

52 augment the adaptive response to training (Hawley et al. 2018; Hyldahl and Peake 2020; Chaillou 

53 et al. 2022). The application of heat to the body at rest, termed passive heating, by methods such 

54 as hot water immersion, sauna-bathing or heated clothing have long been demonstrated to be 

55 beneficial when performed immediately before exercise (Asmussen and Bøje 1945), in recovery 

56 from exercise (Clarke 1963), or repeatedly to elicit adaptive responses (Fox et al. 1963). 

57 Accordingly, passive heating has been used and investigated in a number of contexts within sport 

58 with a view to improving the physiological processes that underpin sporting performance.

59 Passive heating can result in a wide range of physiological responses; this includes increases in 

60 skin, muscle, and/or core body temperature (e.g. González-Alonso et al. 1999; Pilch et al. 2013; 

61 Chiesa et al. 2016; Rodrigues et al. 2020), which can be accompanied by increased sweat rates 

62 (Kozlowski and Saltin 1964), and redistribution of blood to the periphery (Crandall and Wilson 

63 2015) to dissipate heat. Indeed, passive heating leads to multiple acute cardiovascular responses, 

64 such as increases in arterial blood flow and shear stress with a concomitant increase in heart rate 

65 and reduction in blood pressure (Crandall and Wilson 2015; Thomas et al. 2016). Additionally, in 

66 response to these stressors, passive heating can induce an acute inflammatory and hormonal 

67 response (Kosunen et al. 1976; Gagnon et al. 2015; Hoekstra et al. 2018) and alter cellular 

68 signaling cascades within skeletal muscle (Ihsan et al. 2020). The extent and magnitude of these 

69 physiological responses is dependent on the specific passive heating protocol, with the potential 

70 beneficial effects being context specific to each sporting application. Therefore, it is vital that 

71 athletes and practitioners understand the underlying physiological effect they are seeking when 

72 implementing passive heating and appropriately design their passive heating protocol to match this.

73 Multiple excellent reviews to date have discussed the potential application of temperature 

74 manipulation (i.e. hot and cold) within sport but have largely focused on the application of cooling 

75 (Versey et al. 2013; Hyldahl and Peake 2020; Chaillou et al. 2022), or the specific ability of heat 

76 to elicit adaptive effects (Hawley et al. 2018; Kim et al. 2020a). Recent interest in the application 

77 of heating in multiple sporting contexts has added more knowledge to this specific area and as 

78 such this review will provide an overarching summary of the various scenarios in which passive 
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79 heating can be used in sport. Although many effects of heating have been demonstrated using 

80 animal (e.g. Tamura et al. 2014) or cell-culture (e.g. Liu and Brooks 2011) models, this review 

81 will focus on evidence taken from human studies to allow for translation to practical application 

82 and to avoid discussion of effects that are a consequence of the higher tissue temperatures (e.g. > 

83 42 °C) that can be achieved in these models but cannot be replicated in humans. A second focus 

84 of this review will be to demonstrate how the physiological effects of passive heating can be 

85 manipulated by factors such as mode or dose with different physiological effects desired in 

86 different sporting contexts. Accordingly, this review aims to discuss different protocols of passive 

87 heating and the associated physiological responses, critically appraise their efficacy in a range of 

88 sporting scenarios and provide recommendations for practice where there is sufficient evidence to 

89 do so.

90 Passive heating protocols; considerations of heating dose and mode

91 Heat transfer occurs between the passive heating source and an individual principally via 

92 conduction and convection. Heat transfer is dependent on the mode and dose of heat application 

93 and the ability of the individual to dissipate heat and prevent increases in body temperature. 

94 Accordingly, mode, dose, and individual characteristics should all be considered when designing 

95 a passive heating protocol to elicit the desired physiological effects. 

96 The heating dose of a passive heating protocol is determined by the thermal energy load, which 

97 can be manipulated by the external heating temperature, the area of the body exposed to the 

98 stimulus, and the duration of the stimulus with the rate of energy transfer depending on the thermal 

99 gradient between the heating source and the individual. The relationship between the heating 

100 stimulus, core body, muscle, and skin temperature is specific to the heating protocol, with higher 

101 temperatures applied to a smaller area resulting in greater increases in skin and muscle temperature 

102 and a reduced effect on core body temperature. However, where the modality of heat transfer and 

103 area of the body exposed to the heating stimulus are held constant, increases in the heating 

104 temperature (Henderson et al. 2021; Cullen et al. 2024) or duration (Ježová et al. 1994; Steward et 

105 al. 2024) results in a greater effect on the body’s temperature response and subsequently a larger 

106 acute physiological response.

107 The duration of passive heating used within the literature range from relatively short bouts (e.g. 

108 15 minutes), to several hours. Due to the requirement to overcome the initial thermal inertia, core 
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109 body temperature increases relatively slowly in the first 15 minutes of heating, increasing more 

110 rapidly later into the heating duration as the temperature of peripheral tissues are increased 

111 (Rodrigues et al. 2020; Larson et al. 2021; Campbell et al. 2022); this  is an important consideration 

112 for scenarios such as heat acclimation, where a large increase in core body temperature is important 

113 for driving adaptation (as will be discussed in more detail later in this review) (Daanen et al. 2018; 

114 Ravanelli et al. 2021). In an uncompensable heat environment, where physiological mechanisms 

115 of thermoregulation are ineffective to maintain heat balance, body temperature progressively 

116 increases throughout the duration of the heating stimulus. However, many heating protocols apply 

117 an external stimulus that increases body temperature initially before plateauing once an 

118 equilibrium of heat transfer is reached. For example, 42 °C waist-deep water immersion can result 

119 in an initial steady increase in rectal and deep vastus lateralis temperature in the first 60 minutes 

120 of heating before plateauing at 38.8 and 39.0 °C, respectively after ~85 minutes (Rodrigues et al. 

121 2020). 

122 As passive heating applies heat to the skin, skin temperatures increase rapidly from the onset of 

123 heating before plateauing and differs according to the external environment or heating modality 

124 (Rodrigues et al. 2020; Campbell et al. 2022). This rapid increase in skin temperature has been 

125 linked to thermal discomfort and is suggested to initiate behavioural thermoregulation (Bulcao et 

126 al. 2000). Indeed, prolonged passive heating often results in thermal discomfort (Hoekstra et al. 

127 2018; Mansfield et al. 2021; Campbell et al. 2022), which can result in a reduced duration of 

128 passive heating due to intolerance (Zurawlew et al. 2016, 2018; Campbell et al. 2022). Indeed, 

129 irrespective of efficacy, an individual’s tolerance and potential adherence to a given intervention 

130 should be carefully considered. The total duration can be extended through short breaks to the 

131 heating stimulus that acutely improve thermal comfort (Heinonen and Laukkanen 2018; Steward 

132 et al. 2023), or implementing mitigation strategies such as fan cooling (Steward et al. 2023). It 

133 should be acknowledged that these mitigation strategies may impact the subsequent desired 

134 physiological response. Mansfield et al., (2021) demonstrated that the inflammatory response to 

135 lower limb passive heating was not altered by upper body cooling, however the same research 

136 group later demonstrated attenuated vascular responses with lower body compared to whole body 

137 heating (Hoekstra et al. 2021). In contrast, several studies from a different research group have 

138 maintained a core body temperature of ~38.5 °C for a prolonged period (~60 min) by altering 

139 immersion depth throughout the protocol (Brunt et al. 2016; Francisco et al. 2021). Francisco et al 
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140 demonstrated that despite no further increases in core body temperature, there were continued 

141 physiological effects of an extended duration, such as decreases in diastolic blood pressure and 

142 increases in mean shear rate in the brachial artery (Francisco et al. 2021). This demonstrates that 

143 duration has physiological effects independent of progressive increases in body temperature and 

144 as discussed elsewhere in this review, there are many important physiological stimuli for 

145 adaptation beyond increases core body temperature. 

146 Passive heating modalities commonly used in sport include hot water immersion, sauna-bathing, 

147 environmental (heat) chambers and heated clothing (Menzies et al. 2023). Selection of an 

148 appropriate heating modality may be a combination of a physiological rationale, as well as 

149 practical or logistical considerations. For example, the use of sauna-bathing may depend on the 

150 cost and proximity to appropriate facilities, with greater access in parts of the world such as Finland 

151 that have a greater sauna-bathing culture. In contrast, hot water immersion can be considered 

152 relatively cheap and accessible due to the use of bathtubs or portable, inflatable, hot tubs, however 

153 this modality may be logistically more challenging with large groups of athletes, or in situations 

154 where access to a power supply is not possible. Nevertheless, recent work from our group has 

155 indicated that hot water immersion may be the most common mode of passive heating used in 

156 sport (Menzies et al. 2023). Alternatively, despite the increasing prevalence in a laboratory setting, 

157 and appeal from an experimental design perspective, water-perfused suits are not available to most 

158 of the general public and therefore represents an impractical or inaccessible mode of passive 

159 heating for use in sport. In contrast, electrically heated clothing may be the most easily accessible 

160 method of passive heating, although as discussed later in this review, careful consideration should 

161 be given to the efficacy of this method.

162 Each mode of passive heating creates a different thermal environment, which impacts thermal 

163 energy transfer resulting in different temperatures used for each modality. For example, given that 

164 water has a higher thermal conductivity than air, water temperatures can be lower than air 

165 temperatures in the application of a heating protocol. Water immersion protocols typically use 

166 temperatures of > 38.5 °C. When submerged in hot water, the body has an inability to dissipate 

167 heat through evaporation or conduction, meaning thermoregulatory processes of sweating and 

168 increased skin blood flow are ineffective. Moreover, the heat transfer from the water to the skin 

169 makes increased blood flow counterproductive and further increases core and muscle temperatures 
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170 (Faulkner et al. 2017; Rodrigues et al. 2020; Steward et al. 2023; Cullen et al. 2024). Air 

171 temperatures of 40 °C and ~40% relative humidity in an environmental chamber can result in no 

172 observed increase in core body temperature, but ~3 °C increases in skin temperature (Hesketh et 

173 al. 2019). Increasing the relative humidity (and reducing the water vapour gradient) can reduce the 

174 capacity for evaporative heat loss resulting in increased thermoregulatory challenge (Alber-

175 Wallerström and Holmér 1985). Accordingly, increasing the air temperature or relative humidity 

176 results in larger changes in thermo-physiological effects (Henderson et al. 2021). As a result, 

177 traditional saunas consist of an environment of 70 – 100 °C and 10 – 20% relative humidity but 

178 the adding of water to a sauna’s heat source increases the humidity meaning that typically slightly 

179 hotter sauna temperatures are paired with lower relative humidity and vice versa. Unlike traditional 

180 saunas, infrared sauna or waon therapy generate infrared waves that can penetrate the skin meaning 

181 comparatively lower air temperatures (60 °C) are required to elicit increases in core body 

182 temperature (Tei et al. 1995). Although there are multiple whole body heating modalities that can 

183 be used to elicit thermo-physiological stressors, users should consider the overall effects of each 

184 mode rather than simply isolating the thermal effects. Independent of temperature, water 

185 immersion exerts hydrostatic pressure on the body, resulting in increases in mean arterial pressure, 

186 stroke volume, cardiac output, and peripheral artery diameter (Farhi and Linnarsson 1977; Ayme 

187 et al. 2014). Similarly, when compared to traditional sauna the relatively smaller increases in skin 

188 temperature and skin blood flow observed with infrared sauna or waon therapy may lead to 

189 differences in adaptations, however, these suggestions remain to be studied empirically (Brunt and 

190 Minson 2021). Additionally, more work is required to determine the distinct physiological 

191 responses to small changes in environmental temperature. For example, a ~1 °C greater reduction 

192 in water temperature during a 30-minute exposure when starting at 39 °C, can result in a blunting 

193 of the increase in superficial femoral artery blood flow of approximately 35% (Cullen et al. 2024).

194 Some heating modalities allow for heat to be applied to a specific region, increasing skin (John et 

195 al. 2024) or muscle temperature (Faulkner et al. 2013a) but not necessarily core body temperature. 

196 For example, heated trousers with a 40 – 42 °C electrical heating element used to heat the thigh 

197 muscles have been used to attenuate the reduction in muscle temperature by 0.5 – 1.0 °C following 

198 exercise (Faulkner et al. 2013a). Moreover, pulsed shortwave diathermy delivers high frequency 

199 electromagnetic energy to heat body tissue and two hours of 800 pulses per second, with a pulse 

200 duration of 400 microseconds applied to the quadriceps muscles increased deep vastus lateralis 
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201 temperature by ~3.9 °C in the first 30 minutes before plateauing (Hafen et al. 2018). It should also 

202 be highlighted that water temperature and depth can also be manipulated during water immersion 

203 protocols to alter both local and whole-body thermo-physiological responses. For example, similar 

204 increases in rectal temperature can be achieved through different combinations of water 

205 temperature and depth with, 60 minutes of neck-deep immersion in 39 °C water being shown to 

206 increase rectal temperature by ~1.5 °C (Hoekstra et al. 2018) and a similar increase observed from 

207 the same duration of waist-deep immersion in 42 °C (Mansfield et al. 2021). However, it remains 

208 unclear whether these different protocols may have differing effects on muscle and skin 

209 temperature, potentially impacting subsequent localized or peripheral adaptations. Indeed, the 

210 optimal heating protocol is dependent on the desired physiological response. For example, 

211 localized heating methods may be advantageous in certain scenarios given that local temperature 

212 is suggested to be important for increases in blood flow (Chiesa et al. 2016), accelerating glycogen 

213 resynthesis (Cheng et al., 2017), or stimulating mitochondrial adaptation (Kim et al. 2020a), or 

214 angiogenesis (Hesketh et al. 2019). In contrast, core body temperature is a key stimulus in heat 

215 acclimation (Daanen et al. 2018; Ravanelli et al. 2021), and the acute neuro-endocrine or 

216 inflammatory response (Rhind et al. 2004; Hoekstra et al. 2021). The majority of these responses 

217 appear intuitive, with local stimuli inducing peripheral adaptations, however, there are some 

218 scenarios where this appears not to be the case. For example, when wanting to elevate signaling 

219 processes involved in skeletal muscle hypertrophy, experimental data in humans to date suggests 

220 that elevated muscle and core body temperature may also be required (Ihsan et al. 2020). Ihsan et 

221 al., reported that 60 minutes whole body heating in an environmental chamber (44–50 °C, 50% 

222 humidity) increases molecular signalling responses associated with hypertrophy of skeletal muscle 

223 with local heating of the lower limbs using a water suit (water temp 49 °C) (Ihsan et al. 2020). A 

224 strength of this study was that the elevation in muscle temperature was similar between local and 

225 whole-body heating (~3 °C increase from baseline), while core body temperature was only 

226 increased (by ~2 °C) in the whole-body heating condition, suggesting that increases in core body 

227 temperature may be favourable for enhancing anabolic responses within skeletal muscle.

228 Within sport, the individual characteristics and requirements of each athlete will differ both within 

229 and between sports, which should be taken into consideration when implementing a passive 

230 heating protocol. In an uncompensable environment, the rate of temperature rise is largely 

231 dependent on body mass, surface area to mass ratio, and body composition, with an individual of 
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232 larger mass heating more slowly than someone of smaller mass (Havenith 2001; Petrofsky and 

233 Laymon 2009). This principle of heat transfer will apply to both whole body and localized heating 

234 meaning that even when applied to achieve the same sporting objective (e.g. increases in power), 

235 a different protocol may be required for a >150 kg judoka compared to a <50 kg gymnast. 

236 Moreover, in a compensable environment, physiological responses such as increased sweat rate, 

237 or skin blood flow enable individuals to dissipate heat more effectively resulting in a reduced effect 

238 of the external heating stimulus. Differences in these responses have been observed with 

239 acclimation status (Zurawlew et al. 2016), training status (Zurawlew et al. 2018), sex (Larson et 

240 al. 2021), and age (Inoue et al. 1998) meaning that these factors should also be considered in 

241 passive heating protocol design. Therefore, passive heating protocols should be designed and 

242 interpreted in the context of its intended population with progression applied as individuals adapt 

243 to the thermal stress.

244 Uses of passive heating in sport

245 Warm-up & breaks in competition

246 Athletes regularly complete a warm-up prior to competition, completing bouts of exercise that 

247 increase core body and muscle temperature (Saltin et al. 1968). Elevated muscle temperature 

248 increases muscle force and power production in isolated rat muscle in vitro (Ranatunga 1998), 

249 whilst in humans, power production during a vertical jump and sprint cycling increases by 2 – 10% 

250 per ˚C increase of muscle temperature between ~30 - 39 ˚C (Bergh and Ekblom 1979; Sargeant 

251 1987). These improvements occur due to intramuscular increase in calcium influx and sensitivity 

252 along with increases in intracellular fluid that improves both voluntary and involuntary muscle 

253 force output in the heated muscle (Rodrigues et al. 2023). However, it is common for athletes to 

254 experience a gap following a warm-up prior to competition where decreases in temperature can 

255 reduce these effects and can negatively impact performance (West et al. 2013). Moreover, many 

256 intermittent team sports include a half time of 10-20 minutes, whilst the competition schedule in 

257 sports such as track cycling or judo often require athletes to compete multiple times with short (15 

258 – 60 minutes) breaks between rounds, races, or fights. Therefore, the use of passive heating at 

259 competitions could benefit performance through increases or maintenance of body temperature 

260 during these periods of inactivity.
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261 In sports with requirements for high power production, passive heating is beneficial in mitigating 

262 decreases in body temperature following an active warm up. This can result in improved peak 

263 power production and subsequently performance when performed under conditions that do not 

264 have large thermoregulatory demands (Faulkner et al. 2013a; Cowper et al. 2022). The use of 

265 insulated clothing maintains core body and muscle temperature following an active warm-up prior 

266 to a rugby match or bob-skeleton run (Cook et al., 2013; Kilduff et al., 2013; West et al., 2016), 

267 and during half time of a simulated rugby match performed in temperate conditions (Russell et al. 

268 2015, 2018), resulting in improved sprint times, power production, and performance. Indeed, 

269 passive heating may also be useful in scenarios where there is minimal space or time for incoming 

270 substitutes to perform an effective warm-up (Cowper et al. 2024). Beyond mitigating decreases in 

271 body temperature, the application of heat can increase muscle temperature in similar scenarios 

272 following an active warm-up across numerous disciplines, including sprint swimming (McGowan 

273 et al. 2016; Wilkins and Havenith 2017), sprint cycling (Faulkner et al. 2013a, 2013b; Raccuglia 

274 et al. 2016), and alpine skiing (McGawley et al. 2021). However, there is a suggested plateau 

275 where increases in muscle temperature no longer increase power production (McRae and Esrick 

276 1993), resulting in post warm-up passive heating having no benefit beyond an active warm-up 

277 when the time gap prior to performance is relatively short (<15 minutes) (Marshall et al. 2015; 

278 Cocking et al. 2020). Therefore, the potential benefit of passive heating to sports with demands for 

279 high power production, in maintaining or elevating body temperature prior to competition or 

280 during a break between rounds, is context dependent on the scheduling demands of the competition. 

281 However, more research may be required to investigate the efficacy of this intervention in other 

282 potentially applicable scenarios with different logistical or environmental constraints, such as 

283 gymnastics, high diving, or jumping and throwing events in athletics. Further research may also 

284 be needed to optimise protocols between athletes of vastly different body shape and limb size, 

285 which may also impact the speed and efficacy of local heating protocols.

286 In contrast, sports of longer durations with large thermoregulatory demands, due to sustained 

287 elevations in metabolic heat production, may see detrimental effects of using passive heating 

288 immediately prior to competition. Prior hot water immersion reduces time to exhaustion during 

289 constant load cycling in the heat (40 ̊ C) and intermittent treadmill exercise in temperate conditions 

290 (22 ˚C) by ~40% (González-Alonso et al. 1999; Gregson et al. 2005). Similarly, simulated football 

291 sprint performance in the heat is impaired in the second half with the use of insulated clothing to 
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292 increase heat maintenance at half time (Soo et al. 2019). These studies postulate that fatigue is 

293 accelerated due to hyperthermia-related mechanisms, such as a reduced cardiac output and 

294 increased competition for blood flow between the skin and muscle at elevated core body 

295 temperatures, which occur earlier in exercise as a consequence of elevating core body temperature 

296 prior to exercise. Not only can additional thermal strain accelerate fatigue, but it can also impair 

297 cognitive performance and decision making which are important factors in many sports (Donnan 

298 et al. 2022). Athletes competing in events that place demands on the thermoregulatory system 

299 should avoid the use of passive heating and its associated increases in core body temperature, and 

300 may in fact benefit from pre- (Ross et al. 2013) or per-cooling (Graham et al. 2021; Brown et al. 

301 2024) strategies instead. 

302 Recommendations for the use of passive heating as part of a warm-up or during breaks in 

303 competition depend on the physiological requirements of the competition, competition schedule, 

304 and environmental conditions. Athletes should aim to increase (or mitigate decreases) in muscle 

305 temperature to improve power production, whilst increases in core body temperature may be 

306 detrimental for prolonged sports with large thermoregulatory requirements. Therefore, local 

307 heating modalities, such as heated clothing, that focus on the active muscle groups, may be the 

308 most appropriate in this context and given the apparent plateau in beneficial increases in muscle 

309 temperature on power production (McRae and Esrick 1993), modest heating doses are likely 

310 sufficient. The beneficial effects of passive heating in these contexts are likely reduced with shorter 

311 durations between warm up and competition or gaps in competition, and when used in hotter 

312 environmental conditions. Finally, in sports with requirements for both high power production and 

313 aerobic capacity, such as soccer, basketball or rugby, athletes and practitioners should consider the 

314 potential pros and cons of engaging in passive heating on performance outcomes. Accordingly, the 

315 most appropriate strategy may differ depending on the context of the specific environmental 

316 conditions, the thermo-physiological demands of each athlete, and typical clothing worn during 

317 competition.

318 Rapid weight loss

319 Many sports, such as boxing, weightlifting, or rowing, involve separating athletes into weight 

320 divisions to ensure the safety and fairness of competition. Accordingly, it is common practice for 

321 athletes in these sports to engage in weight manipulation strategies, prior to competition, to 
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322 transiently reduce their body mass at weigh in to gain a perceived competitive advantage 

323 (Franchini et al. 2012; Pettersson et al. 2013). Passive heating promotes high sweat rates that 

324 enables rapid reductions in body mass through reducing body water content (Burke et al. 2021). 

325 For example, 60 minutes in a 70 ̊ C sauna decreases body mass by 1-2% amongst athletes weighing 

326 ~70 kg (Gutiérrez et al. 2003). In more extreme cases, passive heating has assisted in reductions 

327 of 5 kg in a single day, albeit with inducing rhabdomyolysis and fatal consequences (Murugappan 

328 et al. 2019). Indeed, about 75% of athletes in combat sports engage in passive heating in the lead 

329 up to competition to induce rapid weight loss (Giannini Artioli et al. 2010; Matthews and Nicholas 

330 2017; Barley et al. 2018). Despite the perceived benefits of rapid weight loss followed by 

331 subsequent regaining of weight prior to competition, this strategy may still have some detrimental 

332 effects on competition. Many athletes have been identified as dehydrated on the day of competition 

333 following attempts at rehydration (Pettersson and Berg 2014), with acute hypohydration being 

334 associated with reductions in muscular endurance, strength and anaerobic power in non-body 

335 weight dependent muscle performance (Savoie et al. 2015). Moreover, detrimental effects of rapid 

336 weight loss on power production have been observed to persist following rehydration in women 

337 (Gutiérrez et al. 2003) suggesting more prolonged negative effects of rapid weight loss on 

338 performance. 

339 Although passive heating is commonly used in the lead up to competition in combat sports, athletes 

340 and practitioners should be cautious of the dangerous and potentially detrimental consequences 

341 associated with this strategy and consider practical long-term approaches to body-weight 

342 management, which may be more favorable for health and performance (Burke et al. 2021). For 

343 those still wishing to engage in passive heating, relatively large heating doses are required to 

344 induce sweat losses, and modalities such as sauna-bathing and hot water immersion are likely the 

345 most effective in this regard and have been shown to induce similar sweat rates (Campbell et al. 

346 2022). Combat sport athletes typically lose 1.4 – 3.4 kg of body mass in the 24 hours prior to 

347 weigh-in (Barley et al. 2018) and therefore 30 – 60 minutes of intermittent passive heating may be 

348 used to contribute ~0.4 – 1.4 kg of this (Gutiérrez et al. 2003; Steward et al. 2023).  However, 

349 athletes and practitioners should be aware of the potential negative effects and symptoms imposed 

350 by these protocols prior to implementation, and it should be reiterated that other, healthier 

351 strategies should be implemented ahead of heat-induced weight loss (Burke et al. 2021).
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352 Heat acclimation

353 Aerobic exercise performance is impaired in hot and humid environmental conditions (Galloway 

354 and Maughan 1997; Jenkins et al. 2023). However, repeated exposure, in the lead up to competition, 

355 to simulated heat (termed heat acclimation), results in thermoregulatory adaptations and 

356 subsequently improved endurance performance in the heat (Périard et al. 2015). Traditional heat 

357 acclimation protocols involve exercise in a hot (e.g. 40 ˚C) environmental chamber over a period 

358 of 5 – 21 days (Périard et al. 2015; Tyler et al. 2016). However, this approach may be inaccessible 

359 or impractical for some athletes without access to an environmental chamber. Therefore, passive 

360 heating may be a more accessible method of repeated exposures to elevated core body temperatures, 

361 and a systematic review of passive heating as a method of heat acclimation concluded it can be an 

362 effective method of inducing thermoregulatory adaptations (Heathcote et al. 2018). Comparisons 

363 between 40 ˚C hot water immersion and 55 – 70 ˚C sauna bathing have shown similar magnitudes 

364 of acclimation with after five days of 30-60 minutes of heat exposure per day (Kissling et al. 2022; 

365 Ashworth et al. 2023). Therefore, providing appropriate temperatures are used to account for the 

366 different thermal conductivity of water and air, either modality may be used by athletes. Athletes 

367 at risk of impaired aerobic exercise performance in the heat may benefit from engaging in passive 

368 heating in the lead up to a competition in a hot environment or during a tapering phase, with current 

369 recommendations suggesting a minimum of 6-7 days of consecutive exposure to heating with a 

370 minimum duration of 30 minutes per session (Heathcote et al. 2018). Passive heating can also be 

371 employed post-exercise when core temperature is already elevated to extend both the magnitude 

372 and duration of the heating stimulus (Zurawlew et al. 2016; Kirby et al. 2020). A particular strength 

373 of this work by Zurawlew and colleagues was that it isolated the effects of temperature (from those 

374 of hydrostatic pressure) by including a control condition which employed thermoneutral water 

375 (34°C) immersion post-exercise, wherein no improvements to thermoregulation or performance 

376 were observed.

377 When comparing passive and active heat acclimation, hot water immersion post-exercise has been 

378 shown to induce greater thermoregulatory adaptations, such as a decrease in resting rectal 

379 temperature (-0.38 vs -0.14 ˚C) and the rectal temperature at the onset of sweating (-0.43 vs -0.22 

380 ˚C) than traditional heat acclimation protocols (McIntyre et al. 2021, 2022). This increased 

381 adaptive response may be due to the dual stimulus of acute elevations in both core and skin 
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382 temperature that occurs with passive heating, that are key to inducing a more complete state of 

383 heat acclimation (Regan et al. 1996). Given that passive and active heat acclimation both appear 

384 effective, and through similar mechanisms, these strategies may also be used interchangeably 

385 during the same period (Ruddock et al. 2016; Fenemor et al. 2022). However, when engaging in 

386 heat acclimatization through training camp in hot environmental conditions, the addition of passive 

387 heating in the form of 40 °C hot water immersion has been shown to add no further adaptative 

388 responses (Stevens et al. 2020). 

389 Training and/or acclimation status may alter the required passive heating protocol required to elicit 

390 an adaptive thermoregulatory response. Indeed, endurance athletes are considered partially heat 

391 acclimated (Piwonka et al. 1965; Strydom et al. 1966) and demonstrate increased heat tolerance 

392 before and after heat acclimation compared to less trained, age-matched individuals (Cheung and 

393 McLellan 1998). Accordingly, trained athletes can tolerate greater durations resulting in a larger 

394 overall stimulus than recreationally active individuals (Zurawlew et al. 2018). Moreover, during 

395 duration and temperature matched passive heating, trained athletes show a lower resting and end 

396 of exposure core temperature (Pilch et al. 2013), greater whole body sweat rates (Pilch et al. 2013), 

397 and a reduced expression of stress-related genes (Żychowska et al. 2017). Therefore, due to 

398 adaptations such as reduced resting rectal temperature and increased sweat rates, the magnitude of 

399 heating stimulus from post-exercise hot water immersion, as measured by area under the curve 

400 (AUC) for rectal temperatures above 38.5 °C, is only maintained across six consecutive days by 

401 increases in heating duration (Zurawlew et al. 2018). Additionally, despite generally longer 

402 immersion times and a greater AUC rectal temperature stimulus amongst trained athletes 

403 compared to recreationally active individuals, both groups demonstrated similar magnitudes of 

404 thermoregulatory adaptation suggesting a greater stimulus may be required for the same adaptative 

405 response amongst trained individuals (Zurawlew et al. 2018).   

406 Maximizing adaptation & limiting deconditioning 

407 The adaptive response to exercise training is a key response in determining the limits of athletic 

408 performance through enhancing key physiological characteristics that underpin the competition 

409 demands. Repeated exposure to passive heating alongside exercise training has been suggested to 

410 aid or augment the adaptive responses to enhance both endurance and resistance determinants of 

411 performance (Hyldahl and Peake 2020), making this strategy potentially applicable to many 
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412 sporting disciplines. Additionally, these adaptive responses to passive heating may enable athletes 

413 to maintain conditioning through periods of injury and return to competition faster (Ihsan et al. 

414 2019). Accordingly, athletes may seek to complement the adaptive responses to exercise training 

415 with passive heating out of competition during regular training or periods of injury. Indeed, 

416 athletes and practitioners should consider when passive heating may be most beneficial and 

417 compliment the effects of training without providing additional muscular load and potentially 

418 reducing the risk of injury, and when the time required to complete passive heating may be better 

419 used elsewhere (e.g. additional training load, tactical/technical session etc.).  

420 The physiological determinants of endurance performance range from whole body characteristics, 

421 such as lactate threshold or maximal oxygen uptake (V̇O2max), to muscular components, including 

422 capillary density or mitochondrial enzyme activity (Joyner and Coyle 2008). Engaging in 30 – 50 

423 minutes of passive heating three times per week for 6 – 8 weeks can increase V̇O2max by ~5% in 

424 untrained individuals (Bailey et al. 2016; Hesketh et al. 2019). When implemented alongside 

425 training, three weeks of 30-minute sauna-bathing 3 – 4 times per week improves V̇O2max, lactate 

426 threshold, and time to exhaustion in trained endurance athletes by a mean of 8%, 4%, and 12 – 

427 32%, respectively (Scoon et al. 2007; Kirby et al. 2020). Similarly, six weeks of 2 – 3 times per 

428 week of 15-30-minute 39.5 °C water immersion improves intermittent running performance in 

429 semi-professional Australian Rules Football players (Philp et al. 2022). These improvements in 

430 the determinants of endurance performance may be underpinned by increases in capillary density 

431 (Hesketh et al. 2019), mitochondrial biogenesis (Hafen et al. 2018), and red blood cell volume 

432 (Scoon et al. 2007), which have all shown to increase in response to different forms of passive 

433 heating. However, not all studies have reported positive findings; 90 – 120 minutes of post exercise 

434 lower limb heating using heated trousers five times per week for four weeks resulted in no greater 

435 improvements in V̇O2peak, or efficiency compared to exercise only in recreationally trained 

436 individuals (John et al. 2024). Whilst four weeks of post exercise water immersion for 20-minutes 

437 in 40 °C water four times per week was insufficient to induce increases in V̇O2max or peak power 

438 output from an incremental exercise test in trained speed skaters (Méline et al. 2021). Notably, the 

439 heating stimulus appears modest in both of these studies, characterized by a short duration (Méline 

440 et al. 2021), while in the case of John et al., high skin temperatures were reported but with a more 

441 modest impact on core temperature. Taken together it appears that the heating dose required for 
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442 beneficial effects on endurance performance may be moderate-high, such as >30 minutes of 

443 systemic heating using modalities such as hot water immersion or sauna-bathing.

444 Muscular strength and power are key performance determinants for a range of sporting events 

445 (Wisløff et al. 1998; Chaabène et al. 2015; Kordi et al. 2020, 2021). In vitro studies have shown 

446 hypertrophic responses in muscle cells at increased environmental temperatures (Yamashita-Goto 

447 et al. 2002; Guo et al. 2016), however, in humans, single leg immersion for 20 minutes in 46 °C 

448 water does not alter muscle protein synthesis responses in the immersed leg following resistance 

449 exercise (Fuchs et al. 2020). Similarly, research by Ihsan et al, suggests that whole body but not 

450 localized heating increases the molecular signaling responses associated with hypertrophy of 

451 skeletal muscle (Ihsan et al. 2020), although signaling responses have been augmented when 

452 localized heating is implemented in conjunction with resistance exercise (Kakigi et al. 2011). 

453 Findings with repeated heating exposures are similarly mixed. Ten weeks of eight hours per day, 

454 four times per week of heat exposure using heat and steam generating sheets increased thigh 

455 muscle cross-sectional area and maximum isometric knee extensor force (Goto et al. 2011). 

456 Similarly, isometric torque production in the knee extensors is improved relative to a control after 

457 four and eight weeks of water-perfused heating of the thigh for 90 minutes, five times per week 

458 (Kim et al. 2020b). In conjunction with low-intensity resistance exercise, application of a heat pack 

459 in the 20 minutes prior to training for six weeks increased muscle strength and thickness in the 

460 triceps brachii relative to an exercise-only group (Nakamura et al. 2019). However, a similar 

461 heating protocol implemented following resistance training with higher loads for 12 weeks showed 

462 no additional increases in muscle strength or size of the knee extensors compared to an exercise-

463 only condition (Stadnyk et al. 2018). In a sporting context findings are also mixed, for example it 

464 has been reported that four weeks of post-exercise 40 °C water immersion in trained rugby players 

465 does not enhance lower body power or body composition compared to control (Horgan et al. 2023). 

466 While Méline et al. (2021), showed increases in knee extensor strength without any changes in 

467 muscle cross-sectional area following four weeks of post-exercise hot water immersion. This may 

468 suggest heating can influence neural pathways that influence strength that are separate to the 

469 hypertrophic response, but this theory remains to be investigated in detail. The discrepancies in 

470 the findings on the use of passive heating alongside resistance training may be due to the mode 

471 and intensity of the heating intervention or exercise intensity of the population studied with small 

472 increases in the adaptive response observed with lesser trained populations and in conjunction with 
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473 lower exercise intensities. Accordingly, further studies are required to better understand the 

474 potential underlying mechanisms and determine combinations of passive heating and resistance 

475 exercise with greatest efficacy. 

476 Given that passive heating appears to provide some beneficial adaptive responses without exercise, 

477 some researchers have theorised that passive heating may be used during periods of injury to 

478 minimise the deconditioning effects on both cardiorespiratory fitness and muscle atrophy (Ihsan 

479 et al. 2019). In these scenarios there could feasibly be more time available in an athlete’s schedule 

480 to commit to these activities in comparison to the generally shorter periods of heating employed 

481 post training. For example, two hours of daily microwave diathermy attenuates muscle atrophy 

482 during 10 days of lower-limb immobilisation (Hafen et al. 2019). Similarly, passive heating can 

483 result in increases in cardiac function (Wilson et al., 2020), plasma volume (Beaudin et al. 2009), 

484 and V̇O2max (Bailey et al. 2016; Hesketh et al. 2019) demonstrating a potential to provide a 

485 sufficient stimulus to minimise losses in cardiorespiratory fitness. However, research in injury 

486 rehabilitation is limited, meaning that although passive heating appears to be a promising tool to 

487 accelerate rehabilitation for an injured athlete, these benefits remain largely uninvestigated and 

488 theoretical, with recommendations for appropriate protocols, modalities, or heating dose currently 

489 lacking.

490 Recovery

491 The physiological stress caused by training and/or competition can compromise future exercise 

492 performance, with methods of accelerating recovery therefore enhancing future performance, 

493 enabling tolerance to a greater training load, and reducing the risk of injury or overtraining (Barnett 

494 2006). The multifactorial nature of recovery means the context and outcome measures of interest 

495 can vary greatly (Kellmann et al. 2018), leading to divergent conclusions about the potential of 

496 passive heating to improve recovery. However, passive heating is considered an effective mode of 

497 recovery by athletes (Menzies et al. 2023), with sauna-bathing being commonly used and 

498 considered one of the most important recovery methods for athletes in Germany (Meyer et al. 

499 2016). Indeed, sauna-bathing is used all over the world, with athletes considering it to induce 

500 relaxation, reduce stress, relieve aches and pains (Meyer et al. 2016; Hussain et al. 2019). Despite 

501 the apparent importance of relaxation and stress reduction in the context of highly stressful 

502 competitive sporting environments there can sometimes be a disconnect between athlete beliefs 
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503 and the evidence base that supports efficacy. Nevertheless, its perceived importance may suggest 

504 passive heating can be an effective method for accelerating recovery and the following section will 

505 assess the evidence supporting the processes by which passive heating can enhance recovery from 

506 exercise.

507 Muscle glycogen – Muscle glycogen resynthesis is a key component of recovery of exercise 

508 capacity in prolonged sports (Alghannam et al. 2016). Increasing muscle temperature to ~37 ˚C 

509 without increasing core temperature through localised heating methods in the 2-4 hour period 

510 immediately post-exercise has been shown to accelerate glycogen resynthesis resulting in 

511 improved performance (Cheng et al., 2017; Slivka et al., 2012). This has been suggested to be due 

512 to increases in muscle temperature increasing blood flow, and glucose delivery (Slivka et al. 2012). 

513 In contrast, four hours of post-exercise whole body heating in a 33 °C environmental chamber 

514 resulting in increases in core body temperature to >38 ̊ C impairs glycogen resynthesis (Naperalsky 

515 et al. 2010). This differential effect of whole body versus local heating methods may be explained 

516 by core body temperature increasing blood adrenaline concentration, which has an inhibitory effect 

517 on glycogen synthase (Hutson et al. 1976). Therefore, the mode of passive heating may result in 

518 differential effects on glycogen recovery, with favourable outcomes limited to local or peripheral 

519 heating. However, more research is required to investigate these differences and potential effects 

520 of different heating dose before robust recommendations about application can be made. 

521 Delayed onset muscle soreness (DOMS) & muscular force production – Exercise-induced muscle 

522 damage is characterised by structural changes to the muscle and often results in decreased muscle 

523 function and DOMS which increases the risk of injury and reduces training or competition 

524 performance (Owens et al. 2019). Historically cold-water immersion has been prioritised by 

525 athletes seeking to enhance recovery of muscle function and soreness primarily based upon the 

526 theory that cooling the muscle reduced inflammation and oedema, however, recent research has 

527 shown that cold water immersion does not alter intramuscular inflammatory or cellular stress 

528 responses to resistance exercise (Peake et al. 2017). It has since been proposed that increased 

529 muscle blood flow exhibited with post exercise heating may facilitate a more rapid resolution of 

530 inflammatory processes associated with muscle damage and repair, thereby enhancing the overall 

531 recovery process (Wilcock et al. 2006) but until recently this theory had not been extensively 

532 tested. Two recent studies have shown that waist-deep 40 °C water immersion for 10 minutes 
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533 (Jackman et al. 2023), or 15 minutes in 39 °C water (Horgan et al. 2022) does not enhance the 

534 recovery of muscle function (as measured by maximal voluntary isometric contraction force) or 

535 muscle soreness following exercise induced muscle damage. However, subsequent work by 

536 Sautillet and colleagues has reported that waist-deep immersion in 41 °C, but not 40 °C, water 

537 enhanced the recovery of the rate of force development at 24 hrs and peak force at 48 hrs post 

538 exercise muscle soreness as measured by the pressure pain threshold (Sautillet et al. 2024b, 2024a). 

539 Importantly, the duration used by Sautillet and colleagues was fairly long (~47 minutes) in 

540 comparison to typical recovery interventions, and this could be considered impractical or at least 

541 interfere with other important post exercise activities in some scenarios. Nonetheless, the dose of 

542 heating appears important for benefits to be evident. Indeed, the authors suggest the mechanism 

543 that underpins these benefits could be related to the upregulation of heat shock proteins. This does 

544 seem reasonable given that other studies have shown that 60 minutes of whole-body heating in an 

545 environmental chamber (44–50 °C, 50% humidity), increased the skeletal muscle expression of 

546 selected heat shock proteins and signalling molecules in the Akt/mTOR signalling pathway in 

547 skeletal muscle (Ihsan et al. 2020). Aside from water immersion, there is also emerging evidence 

548 suggesting far infrared radiation lamps used for 30 minutes can enhance recovery from eccentric 

549 exercise in lab (Chen et al. 2023) and field studies (Tseng et al. 2024). Future studies investing 

550 these interventions should also endeavor to study the molecular signaling responses within skeletal 

551 muscle to confirm this hypothesis. While the recent results in this area appear promising there is 

552 still a considerable volume of research required to understand these processes and propose an 

553 optimal strategy.

554 In the absence of strong evidence for the intramuscular mechanisms underpinning the benefits of 

555 passive heating on muscle function and DOMS, researchers, athletes, and practitioners should also 

556 consider the potential role of psychological responses in mediating any effects. The placebo and/or 

557 expectation effect may be particularly important as blinding participants from the intervention is 

558 impossible in heating studies of this nature. Indeed, 85% of athletes engaging in passive heating 

559 for recovery believe it to be beneficial for recovery (Menzies et al. 2023). This belief in passive 

560 heating could itself have a positive effect on recovery as research into cold-water immersion has 

561 shown a large psychological or perceptual component to recovery, with an athlete’s belief of 

562 recovery or the placebo effect relating to beneficial outcomes (Broatch et al., 2014; Cook & 

563 Beaven, 2013). Passive heating may also bring about psychological benefits to reduced stress and 
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564 enhanced relaxation. Several studies from our laboratory have shown that multiple physiological 

565 aspects associated with ‘psychological stress’ such as blood pressure and cortisol are reduced 

566 following modest hot water immersion protocols (30 minutes neck deep immersion at 39 °C) 

567 which resulted in increases in core body temperature of ~0.5 °C (Cullen et al. 2024). However, 

568 when the duration is extended to 60 minutes and core body temperature increased, ~1 °C cortisol 

569 concentration is increased while thermal comfort is significantly decreased (Steward et al. 2024). 

570 Similarly, a short (15 minutes) but intense sauna (96 °C) has been shown to increase cortisol 

571 concentration (Pilch et al. 2013), suggesting that at higher doses of warm water immersion may 

572 no longer be beneficial to relaxation and stress reduction. Future studies are required to further 

573 understand the mechanisms and benefits of passive heat induced relaxation for athletes. Our 

574 current recommendation would be that athletes should avoiding excessively long or intense bouts 

575 of heating and prioritise their personal preferences when choosing an appropriate protocol.   

576 Perceptions of fatigue and decrements in performance or training load – Reductions in self-

577 selected training volume or intensities have been observed with periods of post-exercise sauna-

578 bathing (Stanley et al. 2015). This may be artefact of the additional time commitments required to 

579 complete post exercise passive heating or a physiologically induced increase in perceptions of 

580 fatigue. Indeed, peak rectal temperature has previously been associated with subsequent 

581 perceptions of fatigue (Willmott et al. 2017). This is likely due to a number of inflammatory and 

582 hormonal factors, such as interleukin-6 (IL-6) and cortisol, that have been associated with fatigue 

583 (Vargas and Marino 2014; Cullen et al. 2017) and transiently increase in response to passive 

584 heating (Ježová et al. 1994; Faulkner et al. 2017; Steward et al. 2024). Skorski et al. (2019) 

585 demonstrated intense swimming intervals followed by 3 x 8 minutes of 80 – 85 °C sauna-bathing 

586 impairs next day sprint swimming performance and perception of recovery. Alternatively, no 

587 effect of passive heating on perception of effort or recovery has been observed with more moderate 

588 heating doses such as 14 minutes of 38 °C water immersion (Vaile et al. 2008), 30 minutes of arms 

589 out 40 °C water immersion (Menzies et al. 2024), 20 minutes of waist-deep 41 °C water immersion 

590 (Solsona et al. 2023), or in ~30 minutes of ~101 °C sauna (Kirby et al. 2020). Therefore, athletes 

591 engaging in passive heating protocols eliciting large acute increases in core body temperature 

592 should be aware of potential detrimental effects on future training sessions or competition, 

593 however these effects do not appear to be present with more moderate and/or localised heating 

594 doses.
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595 Summary

596 Passive heating elicits a wide range of physiological responses, which can be used for enhancing 

597 training or performance outcomes in many different sporting scenarios. The physiological 

598 responses to passive heating are specific to the mode and dose of heating and should be carefully 

599 selected so that they are aligned to the determinants of the sporting performance or training process 

600 being targeted (Figure 1). Consequently, the use and efficacy of passive heating protocols will 

601 differ by individual, sport, situation, or environmental conditions. As such, where there is a sound 

602 understanding of the physiological mechanism that results in improved outcomes (e.g. increased 

603 muscle temperature increases power production), more research is required to expand the 

604 application of this knowledge to different individuals and settings. Additionally, there are many 

605 unanswered questions about the applications or mechanism of certain uses of passive heating (e.g. 

606 promoting muscle hypertrophy) that require more investigation before their efficacy can be 

607 determined. When implementing a passive heating protocol in sport, athletes and practitioners 

608 should aim to understand the physiological responses that should be targeted for the given use. To 

609 determine the appropriate heating mode and dose, key factors in its implementation should be 

610 considered, such as potential negative consequences, practical restrictions, or the specific 

611 requirements of the individual, sport, situation, or environmental conditions (Figure 2).
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Figure 1 - Summary of the acute physiological responses that could be targeted in different scenarios of 

passive heating implementation. 
#repeated exposures over >5 days. 

*Psychophysiological mechanism not fully understood. 

612

613
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Figure 2 – Key factors for consideration in the implementation of a passive heating protocol within sport. 

Different modalities and doses of heating have different physiological effects with the desired effect and 

utility of passive heating being context specific based on a number of factors (e.g. demands of the 

situation, individual characteristics, potential negative effects, practical restrictions).
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Figure 1 - Summary of the acute physiological responses that could be targeted in different scenarios of 
passive heating implementation.   

#repeated exposures over >5 days.   

*Psychophysiological mechanism not fully understood.   
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Figure 2 – Key factors for consideration in the implementation of a passive heating protocol within sport. 
Different modalities and doses of heating have different physiological effects with the desired effect and 

utility of passive heating being context specific based on a number of factors (e.g. demands of the situation, 
individual characteristics, potential negative effects, practical restrictions). 
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